Science.gov

Sample records for human mdm2 correlates

  1. Induction of MDM2-P2 Transcripts Correlates with Stabilized Wild-Type p53 in Betel- and Tobacco-Related Human Oral Cancer

    PubMed Central

    Ralhan, Ranju; Sandhya, Agarwal; Meera, Mathur; Bohdan, Wasylyk; Nootan, Shukla K.

    2000-01-01

    MDM2, a critical element of cellular homeostasis mechanisms, is involved in complex interactions with important cell-cycle and stress-response regulators including p53. The mdm2-P2 promoter is a transcriptional target of p53. The aim of this study was to determine the association between mdm2-P2 transcripts and the status of the p53 gene in betel- and tobacco-related oral squamous cell carcinomas (SCCs) to understand the mechanism of deregulation of MDM2 and p53 expression and their prognostic implications in oral tumorigenesis. Elevated levels of MDM2 proteins were observed in 11 of 25 (44%) oral hyperplastic lesions, nine of 15 (60%) dysplastic lesions, and 71 of 100 (71%) SCCs. The intriguing feature of the study was the identification and different subcellular localization of three isoforms of MDM2 (ie, 90 kd, 76 kd, and 57 kd) in oral SCCs and their correlation with p53 overexpression in each tumor. The hallmark of the study was the detection of mdm2-P2 transcripts in 12 of 20 oral SCCs overexpressing both MDM2 and p53 proteins while harboring wild-type p53 alleles. Furthermore, mdm2 amplification was an infrequent event in betel- and tobacco-associated oral tumorigenesis. The differential compartmentalization of the three isoforms of MDM2 suggests that each has a distinct function, potentially in the regulation of p53 and other gene products implicated in oral tumorigenesis. In conclusion, we report herein the first evidence suggesting that enhanced translation of mdm2-P2 transcripts (S-mdm2) may represent an important mechanism of overexpression and consequent stabilization and functional inactivation of wild-type p53 serving as an adverse prognosticator in betel- and tobacco-related oral cancer. The clinical significance of the functional inactivation of wild-type p53 by MDM2 is underscored by the significantly shorter median disease-free survival time (16 months) observed in p53/MDM2-positive cases as compared to those which did not show co-expression of

  2. Haplotype structure and selection of the MDM2 oncogene in humans.

    PubMed

    Atwal, Gurinder Singh; Bond, Gareth L; Metsuyanim, Sally; Papa, Moshe; Friedman, Eitan; Distelman-Menachem, Tal; Ben Asher, Edna; Lancet, Doron; Ross, David A; Sninsky, John; White, Tomas J; Levine, Arnold J; Yarden, Ronit

    2007-03-13

    The MDM2 protein is an ubiquitin ligase that plays a critical role in regulating the levels and activity of the p53 protein, which is a central tumor suppressor. A SNP in the human MDM2 gene (SNP309 T/G) occurs at frequencies dependent on demographic history and has been shown to have important differential effects on the activity of the MDM2 and p53 proteins and to associate with altered risk for the development of several cancers. In this report, the haplotype structure of the MDM2 gene is determined by using 14 different SNPs across the gene from three different population samples: Caucasians, African Americans, and the Ashkenazi Jewish ethnic group. The results presented in this report indicate that there is a substantially reduced variability of the deleterious SNP309 G allele haplotype in all three populations studied, whereas multiple common T allele haplotypes were found in all three populations. This observation, coupled with the relatively high frequency of the G allele haplotype in both and Caucasian and Ashkenazi Jewish population data sets, suggests that this haplotype could have undergone a recent positive selection sweep. An entropy-based selection test is presented that explicitly takes into account the correlations between different SNPs, and the analysis of MDM2 reveals a significant departure from the standard assumptions of selective neutrality.

  3. Endogenous Human MDM2-C Is Highly Expressed in Human Cancers and Functions as a p53-Independent Growth Activator

    PubMed Central

    Okoro, Danielle R.; Arva, Nicoleta; Gao, Chong; Polotskaia, Alla; Puente, Cindy; Rosso, Melissa; Bargonetti, Jill

    2013-01-01

    Human cancers over-expressing mdm2, through a T to G variation at a single nucleotide polymorphism at position 309 (mdm2 SNP309), have functionally inactivated p53 that is not effectively degraded. They also have high expression of the alternatively spliced transcript, mdm2-C. Alternatively spliced mdm2 transcripts are expressed in many forms of human cancer and when they are exogenously expressed they transform human cells. However no study to date has detected endogenous MDM2 protein isoforms. Studies with exogenous expression of splice variants have been carried out with mdm2-A and mdm2-B, but the mdm2-C isoform has remained virtually unexplored. We addressed the cellular influence of exogenously expressed MDM2-C, and asked if endogenous MDM2-C protein was present in human cancers. To detect endogenous MDM2-C protein, we created a human MDM2-C antibody to the splice junction epitope of exons four and ten (MDM2 C410) and validated the antibody with in vitro translated full length MDM2 compared to MDM2-C. Interestingly, we discovered that MDM2-C co-migrates with MDM2-FL at approximately 98 kDa. Using the validated C410 antibody, we detected high expression of endogenous MDM2-C in human cancer cell lines and human cancer tissues. In the estrogen receptor positive (ER+) mdm2 G/G SNP309 breast cancer cell line, T47D, we observed an increase in endogenous MDM2-C protein with estrogen treatment. MDM2-C localized to the nucleus and the cytoplasm. We examined the biological activity of MDM2-C by exogenously expressing the protein and observed that MDM2-C did not efficiently target p53 for degradation or reduce p53 transcriptional activity. Exogenous expression of MDM2-C in p53-null human cancer cells increased colony formation, indicating p53-independent tumorigenic properties. Our data indicate a role for MDM2-C that does not require the inhibition of p53 for increasing cancer cell proliferation and survival. PMID:24147044

  4. Endogenous human MDM2-C is highly expressed in human cancers and functions as a p53-independent growth activator.

    PubMed

    Okoro, Danielle R; Arva, Nicoleta; Gao, Chong; Polotskaia, Alla; Puente, Cindy; Rosso, Melissa; Bargonetti, Jill

    2013-01-01

    Human cancers over-expressing mdm2, through a T to G variation at a single nucleotide polymorphism at position 309 (mdm2 SNP309), have functionally inactivated p53 that is not effectively degraded. They also have high expression of the alternatively spliced transcript, mdm2-C. Alternatively spliced mdm2 transcripts are expressed in many forms of human cancer and when they are exogenously expressed they transform human cells. However no study to date has detected endogenous MDM2 protein isoforms. Studies with exogenous expression of splice variants have been carried out with mdm2-A and mdm2-B, but the mdm2-C isoform has remained virtually unexplored. We addressed the cellular influence of exogenously expressed MDM2-C, and asked if endogenous MDM2-C protein was present in human cancers. To detect endogenous MDM2-C protein, we created a human MDM2-C antibody to the splice junction epitope of exons four and ten (MDM2 C410) and validated the antibody with in vitro translated full length MDM2 compared to MDM2-C. Interestingly, we discovered that MDM2-C co-migrates with MDM2-FL at approximately 98 kDa. Using the validated C410 antibody, we detected high expression of endogenous MDM2-C in human cancer cell lines and human cancer tissues. In the estrogen receptor positive (ER+) mdm2 G/G SNP309 breast cancer cell line, T47D, we observed an increase in endogenous MDM2-C protein with estrogen treatment. MDM2-C localized to the nucleus and the cytoplasm. We examined the biological activity of MDM2-C by exogenously expressing the protein and observed that MDM2-C did not efficiently target p53 for degradation or reduce p53 transcriptional activity. Exogenous expression of MDM2-C in p53-null human cancer cells increased colony formation, indicating p53-independent tumorigenic properties. Our data indicate a role for MDM2-C that does not require the inhibition of p53 for increasing cancer cell proliferation and survival.

  5. The p53-Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans.

    PubMed

    Coffill, Cynthia R; Lee, Alison P; Siau, Jia Wei; Chee, Sharon M; Joseph, Thomas L; Tan, Yaw Sing; Madhumalar, Arumugam; Tay, Boon-Hui; Brenner, Sydney; Verma, Chandra S; Ghadessy, Farid J; Venkatesh, Byrappa; Lane, David P

    2016-02-01

    The extant jawless vertebrates, represented by lampreys and hagfish, are the oldest group of vertebrates and provide an interesting genomic evolutionary pivot point between invertebrates and jawed vertebrates. Through genome analysis of one of these jawless vertebrates, the Japanese lamprey (Lethenteron japonicum), we identified all three members of the important p53 transcription factor family--Tp53, Tp63, and Tp73--as well as the Mdm2 and Mdm4 genes. These genes and their products are significant cellular regulators in human cancer, and further examination of their roles in this most distant vertebrate relative sheds light on their origin and coevolution. Their important role in response to DNA damage has been highlighted by the discovery of multiple copies of the Tp53 gene in elephants. Expression of lamprey p53, Mdm2, and Mdm4 proteins in mammalian cells reveals that the p53-Mdm2 interaction and the Mdm2/Mdm4 E3 ligase activity existed in the common ancestor of vertebrates and have been conserved for >500 million years of vertebrate evolution. Lamprey Mdm2 degrades human p53 with great efficiency, but this interaction is not blocked by currently available small molecule inhibitors of the human HDM2 protein, suggesting utility of lamprey Mdm2 in the study of the human p53 signaling pathway.

  6. The p53–Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans

    PubMed Central

    Coffill, Cynthia R.; Lee, Alison P.; Siau, Jia Wei; Chee, Sharon M.; Joseph, Thomas L.; Tan, Yaw Sing; Madhumalar, Arumugam; Tay, Boon-Hui; Brenner, Sydney; Verma, Chandra S.; Ghadessy, Farid J.; Venkatesh, Byrappa; Lane, David P.

    2016-01-01

    The extant jawless vertebrates, represented by lampreys and hagfish, are the oldest group of vertebrates and provide an interesting genomic evolutionary pivot point between invertebrates and jawed vertebrates. Through genome analysis of one of these jawless vertebrates, the Japanese lamprey (Lethenteron japonicum), we identified all three members of the important p53 transcription factor family—Tp53, Tp63, and Tp73—as well as the Mdm2 and Mdm4 genes. These genes and their products are significant cellular regulators in human cancer, and further examination of their roles in this most distant vertebrate relative sheds light on their origin and coevolution. Their important role in response to DNA damage has been highlighted by the discovery of multiple copies of the Tp53 gene in elephants. Expression of lamprey p53, Mdm2, and Mdm4 proteins in mammalian cells reveals that the p53–Mdm2 interaction and the Mdm2/Mdm4 E3 ligase activity existed in the common ancestor of vertebrates and have been conserved for >500 million years of vertebrate evolution. Lamprey Mdm2 degrades human p53 with great efficiency, but this interaction is not blocked by currently available small molecule inhibitors of the human HDM2 protein, suggesting utility of lamprey Mdm2 in the study of the human p53 signaling pathway. PMID:26798135

  7. EGFR, p53, IDH-1 and MDM2 immunohistochemical analysis in glioblastoma: therapeutic and prognostic correlation.

    PubMed

    Montgomery, Richard Murdoch; Queiroz, Luciano de Souza; Rogerio, Fabio

    2015-07-01

    We studied 36 glioblastoma cases at HC-UNICAMP from 2008 to 2012 and classified the immunohistochemical distribution of the wild-type epidermal growth factor receptor (EGFR), mutated forms of p53 protein and isocitrate dehydrogenase-1 (IDH-1) and murine double protein 2 (MDM2). Immunostaining findings were correlated with clinical data and response to treatment (surgery, chemotherapy and radiotherapy). About 97% of the tumors were primary, most of them localized in the frontal lobe. Mean time free of clinical or symptomatic disease and free time of radiological disease were 7.56 and 7.14 months, respectively. We observed a significant positive correlation between expressions of p53 and MDM2, EGFR and MDM2. Clinical, radiological and overall survivals also showed a significant positive correlation. p53 staining and clinical survival showed a significant negative correlation. The current series provides clinical and histopathological data that contribute to knowledge on glioblastoma in Brazilians.

  8. Recombinant human MDM2 oncoprotein shows sequence composition selectivity for binding to both RNA and DNA.

    PubMed

    Challen, Christine; Anderson, John J; Chrzanowska-Lightowlers, Zofia M A; Lightowlers, Robert N; Lunec, John

    2012-03-01

    MDM2 is a 90 kDa nucleo-phosphoprotein that binds p53 and other proteins contributing to its oncogenic properties. Its structure includes an amino proximal p53 binding site, a central acidic domain and a carboxy region which incorporates Zinc and Ring Finger domains suggestive of nucleic acid binding or transcription factor function. It has previously been reported that a bacculovirus expressed MDM2 protein binds RNA in a sequence-specific manner through the Ring Finger domain, however, its ability to bind DNA has yet to be examined. We report here that a bacterially expressed human MDM2 protein binds both DNA as well as the previously defined RNA consensus sequence. DNA binding appears selective and involves the carboxy-terminal domain of the molecule. RNA binding is inhibited by an MDM2 specific antibody, which recognises an epitope within the carboxy region of the protein. Selection cloning and sequence analysis of MDM2 DNA binding sequences, unlike RNA binding sequences, revealed no obvious DNA binding consensus sequence, but preferential binding to oligopurine:pyrimidine-rich stretches. Our results suggest that the observed preferential DNA binding may occur through the Zinc Finger or in a charge-charge interaction through the Ring Finger, thereby implying potentially different mechanisms for DNA and RNA MDM2 binding.

  9. Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer

    PubMed Central

    Swetzig, Wendy M.; Wang, Jianmin; Das, Gokul M.

    2016-01-01

    MDM2 and MDM4 are heterodimeric, non-redundant oncoproteins that potently inhibit the p53 tumor suppressor protein. MDM2 and MDM4 also enhance the tumorigenicity of breast cancer cells in in vitro and in vivo models and are overexpressed in primary human breast cancers. Prior studies have characterized Estrogen Receptor Alpha (ERα/ESR1) as a regulator of MDM2 expression and an MDM2- and p53-interacting protein. However, similar crosstalk between ERα and MDM4 has not been investigated. Moreover, signaling pathways that mediate the overexpression of MDM4 in human breast cancer remain to be elucidated. Using the Cancer Genome Atlas (TCGA) breast invasive carcinoma patient cohort, we have analyzed correlations between ERα status and MDM4 and MDM2 expression in primary, treatment-naïve, invasive breast carcinoma samples. We report that the expression of MDM4 and MDM2 is elevated in primary human breast cancers of luminal A/B subtypes and associates with ERα-positive disease, independently of p53 mutation status. Furthermore, in cell culture models, ERα positively regulates MDM4 and MDM2 expression via p53-independent mechanisms, and these effects can be blocked by the clinically-relevant endocrine therapies fulvestrant and tamoxifen. Additionally, ERα also positively regulates p53 expression. Lastly, we report that endogenous MDM4 negatively regulates ERα expression and forms a protein complex with ERα in breast cancer cell lines and primary human breast tumor tissue. This suggests direct signaling crosstalk and negative feedback loops between ERα and MDM4 expression in breast cancer cells. Collectively, these novel findings implicate ERα as a central component of the p53-MDM2-MDM4 signaling axis in human breast cancer. PMID:26909605

  10. Requirement for human Mps1/TTK in oxidative DNA damage repair and cell survival through MDM2 phosphorylation

    PubMed Central

    Yu, Zheng-Cheng; Huang, Yi-Fu; Shieh, Sheau-Yann

    2016-01-01

    Human Mps1 (hMps1) is a protein kinase essential for mitotic checkpoints and the DNA damage response. Here, we present new evidence that hMps1 also participates in the repair of oxidative DNA lesions and cell survival through the MDM2-H2B axis. In response to oxidative stress, hMps1 phosphorylates MDM2, which in turn promotes histone H2B ubiquitination and chromatin decompaction. These events facilitate oxidative DNA damage repair and ATR-CHK1, but not ATM-CHK2 signaling. Depletion of hMps1 or MDM2 compromised H2B ubiquitination, DNA repair and cell survival. The impairment could be rescued by re-expression of WT but not the phospho-deficient MDM2 mutant, supporting the involvement of hMps1-dependent MDM2 phosphorylation in the oxidative stress response. In line with these findings, localization of RPA and base excision repair proteins to damage foci also requires MDM2 and hMps1. Significantly, like MDM2, hMps1 is upregulated in human sarcoma, suggesting high hMps1 and MDM2 expression may be beneficial for tumors constantly challenged by an oxidative micro-environment. Our study therefore identified an hMps1-MDM2-H2B signaling axis that likely plays a relevant role in tumor progression. PMID:26531827

  11. Downregulation of MDM2 expression by RNAi inhibits LoVo human colorectal adenocarcinoma cells growth and the treatment of LoVo cells with mdm2siRNA3 enhances the sensitivity to cisplatin

    SciTech Connect

    Yu Yan . E-mail: gyfyuyan@hotmail.com; Sun Ping . E-mail: sunny19750502@hotmail.com; Sun Lichun; Liu Guoyi; Chen Guohua . E-mail: olivebranch_82@hotmail.com; Shang Lihua . E-mail: leval1000@sina.com; Wu Hongbo . E-mail: whpwl@sina.com; Hu Jing; Li Yue; Mao Yinling; Sui Guangjie; Sun Xiwen

    2006-01-06

    To investigate the biological effect of mdm2 in human colorectal adenocarcinoma LoVo cells, three mdm2siRNA constructions were recombinated and transient transfected into human colorectal adenocarcinoma LoVo cells with low differentiation character in vitro. The results showed that mdm2siRNA3 reduced mRNA level of mdm2 and protein level of mdm2, leading to proliferation inhibition on LoVo cells, and reduced tumor growth in nude mice. It was found that depletion of MDM2 in this pattern promoted apoptosis of LoVo cells and Cisplatin (DDP) treated in the mdm2siRNA3 transfected cell population would result in a substantial decrease by MTT colorimetry. Decreasing the MDM2 protein level in LoVo cells by RNAi could significantly inhibit tumor growth both in vitro and in vivo, which indicated that mdm2 gene played a definite role in the development and aggressiveness of human colon carcinoma. It also could be a therapeutic target in colorectal carcinoma. The synergistic activation of RNAi and cell toxicity agents indicated that the combination of chemotherapy and gene therapy will be a promising approach in the future.

  12. Human Glioblastoma Multiforme: p53 Reactivation by a Novel MDM2 Inhibitor

    PubMed Central

    Costa, Barbara; Bendinelli, Sara; Gabelloni, Pamela; Da Pozzo, Eleonora; Daniele, Simona; Scatena, Fabrizio; Vanacore, Renato; Campiglia, Pietro; Bertamino, Alessia; Gomez-Monterrey, Isabel; Sorriento, Daniela; Del Giudice, Carmine; Iaccarino, Guido; Novellino, Ettore; Martini, Claudia

    2013-01-01

    Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM), p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2) oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ) produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients. PMID:23977270

  13. Fulvestrant treatment alters MDM2 protein turnover and sensitivity of human breast carcinoma cells to chemotherapeutic drugs.

    PubMed

    Dolfi, Sonia C; Jäger, Adriana V; Medina, Daniel J; Haffty, Bruce G; Yang, Jin-Ming; Hirshfield, Kim M

    2014-08-01

    The human homologue of mouse double minute 2 (MDM2) is overexpressed in tumors and contributes to tumorigenesis through inhibition of p53 activity. We investigated the effect of the anti-estrogen fulvestrant on MDM2 expression and sensitivity of estrogen receptor positive human breast cancer cell lines to chemotherapeutics. Fulvestrant down-regulated MDM2 through increased protein turnover. Fulvestrant blocked estrogen-dependent up-regulation of MDM2 and decreased basal expression of MDM2 in the absence of estradiol. As combinations of fulvestrant with doxorubicin, etoposide or paclitaxel were synergistic, altering cell cycle distribution and increasing cell death, this provides rationale for testing combinatorial chemotherapy with fulvestrant as a novel therapeutic strategy for patients with advanced breast cancer.

  14. Influence of zinc deficiency on AKT-MDM2-P53 signaling axes in normal and malignant human prostate cells

    USDA-ARS?s Scientific Manuscript database

    With prostate being the highest zinc-accumulating tissue before the onset of cancer, the effects of physiologic levels of zinc on Akt-Mdm2-p53 and Akt-p21 signaling axes in human normal prostate epithelial cells (PrEC) and malignant prostate LNCaP cells were examined. Cells were cultured for 6 d in...

  15. P15, MDM2, NF-κB, and Bcl-2 expression in primary bone tumor and correlation with tumor formation and metastasis

    PubMed Central

    Qian, Guibin; Hao, Songnan; Yang, Dawei; Meng, Qinggang

    2015-01-01

    Primary bone tumor is one of the most common malignant tumors in skeletal system. It seriously affected bone movement and development with unclear pathogenesis. In this paper, rabbit VX-2 malignant bone tumor model was applied to explore apoptotic genes P15, MDM2, NF-κB and Bcl-2 correlation with primary bone tumor occurrence and metastasis. 0.3 ml rabbit VX-2 tumor cell suspension (1×106/ml) was injected to the marrow cavity of the right tibia condyle to establish the rabbit malignant bone tumor model, while equal amount of the saline was injected to the left tibia as control. Real-time PCR was applied to determine P15, MDM2, NF-κB and Bcl-2 expression level. Immunohistochemistry was performed to detect the abovementioned genes expression in lung, stomach, kidney and bladder. Compared with control, P15 expression level in the inoculation site surrounding tissues decreased obviously following the inoculate time elongation (P<0.05), while Bcl-2, MDM2 and NF-κB expression significantly increased (P<0.05). Bcl-2 showed significant correlation with MDM2 and NF-κB (P<0.05). At the 2, 4, 6 weeks, Bcl-2, MDM2 and NF-κB in lung, Bcl-2 in kidney, and Bcl-2 and MDM2 in bladder positively expressed (P<0.05), whereas P15 gene exhibited no significant positive expression in these tissues (P>0.05). P15, MDM2, NF-κB, and Bcl-2 genes expression levels can effectively reflect malignant bone tumor growth of rabbit tibia. MDM2, NF-κB and Bcl-2 genes involved in primary bone tumors metastasis directly. It has important clinical significance for early diagnosis and treatment of primary bone tumor. PMID:26823818

  16. Triptolide has anticancer and chemosensitization effects by down-regulating Akt activation through the MDM2/REST pathway in human breast cancer.

    PubMed

    Xiong, Jing; Su, Tiefen; Qu, Zhiling; Yang, Qin; Wang, Yu; Li, Jiansha; Zhou, Sheng

    2016-04-26

    Triptolide has been shown to exhibit anticancer activity. However, its mechanism of action is not clearly defined. Herein we report a novel signaling pathway, MDM2/Akt, is involved in the anticancer mechanism of triptolide. We observed that triptolide inhibits MDM2 expression in human breast cancer cells with either wild-type or mutant p53. This MDM2 inhibition resulted in decreased Akt activation. More specifically, triptolide interfered with the interaction between MDM2 and the transcription factor REST to increase expression of the regulatory subunit of PI3-kinase p85 and consequently inhibit Akt activation. We further showed that, regardless of p53 status, triptolide inhibited proliferation, induced apoptosis, and caused G1 phase cell cycle arrest. Triptolide also enhanced the cytotoxic effect of doxorubicin. MDM2 inhibition plays a causative role in these effects. The inhibitory effect of triptolide on MDM2-mediated Akt activation was eliminated with MDM2 overexpression. MDM2-overexpressing tumor cells, in turn, were less susceptible to the anticancer and chemosensitization effects of triptolide than control cells. Triptolide also exhibited anticancer and chemosensitization effects in nude mouse xenograft model. When it was administered to tumor-bearing nude mice, triptolide inhibited tumor growth and enhanced the antitumor effects of doxorubicin. In summary, triptolide has anticancer and chemosensitization effects by down-regulating Akt activation through the MDM2/REST pathway in human breast cancer. Our study helps to elucidate the p53-independent regulatory function of MDM2 in Akt signaling, offering a novel view of the mechanism by which triptolide functions as an anticancer agent.

  17. Splice variants of MDM2 in oncogenesis.

    PubMed

    Rosso, Melissa; Okoro, Danielle E; Bargonetti, Jill

    2014-01-01

    Many types of human cancers overexpress MDM2 protein. A common characteristic among these cancers is an associated increase in mdm2 splice variants. Provided here is a comprehensive list, based on a literature review, of over 70 mdm2 variants. These variants are grouped according to in-frame versus out-of-frame status and their potential (or ability) to be translated into isoform proteins. We describe the putative functions for these mdm2 splice variant mRNAs, as well as the mechanistic drivers associated with increased mdm2 transcription and splicing. The paradoxical signal transduction functions of the most commonly studied variants mdm2-a,-b and -c are addressed for their outcomes in the presence and absence of wild-type p53. These outcomes vary from tumor promotion to growth arrest. Finally, we present issues in the detection of endogenous MDM2 protein and how many of the antibodies commonly used to detect MDM2 do not present a full picture of the cellular representation of the isoform proteins. This review provides a focusing lens for individuals interested in learning about the complexities of mdm2 mRNAs and their protein isoforms as well as the roles MDM2 isoforms may play in cancer progression.

  18. Aciculatin Induces p53-Dependent Apoptosis via MDM2 Depletion in Human Cancer Cells In Vitro and In Vivo

    PubMed Central

    Lai, Chin-Yu; Tsai, An-Chi; Chen, Mei-Chuan; Chang, Li-Hsun; Sun, Hui-Lung; Chang, Ya-Ling; Chen, Chien-Chih

    2012-01-01

    Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (−/−) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity. PMID:22912688

  19. MDM2 and HIF1alpha expression levels in different histologic subtypes of malignant pleural mesothelioma: correlation with pathological and clinical data

    PubMed Central

    Mencoboni, Manlio; Grosso, Federica; Ceresoli, Giovanni Luca; Lunardi, Francesca; Vuljan, Stefania Edith; Bertorelle, Roberta; Sacchetto, Valeria; Ciminale, Vincenzo; Rea, Federico; Favaretto, Adolfo; Conte, PierFranco; Calabrese, Fiorella

    2015-01-01

    Malignant pleural mesothelioma (MPM) is an aggressive tumor with poor prognosis and limited treatment options. Sarcomatoid/biphasic mesotheliomas are characterized by more aggressive behaviour and a poorer prognosis compared with the epithelioid subtype. To date prognostic and tailored therapeutic biomarkers are lacking. The present study analyzed the expression levels of MDM2 and HIF1alpha in different histologic subtypes from chemonaive MPM patients. Diagnostic biopsies of MPM patients from four Italian cancer centers were centrally collected and analyzed. MDM2 and HIF1alpha expression levels were investigated through immunohistochemistry and RT-qPCR. Pathological assessment of necrosis, inflammation and proliferation index was also performed. Molecular markers, pathological features and clinical characteristics were correlated to overall survival (OS) and progression free survival (PFS). Sixty MPM patients were included in the study (32 epithelioid and 28 non-epithelioid). Higher levels of MDM2 (p < 0.001), HIF1alpha (p = 0.013), necrosis (p = 0.013) and proliferation index (p < 0.001) were seen mainly in sarcomatoid/biphasic subtypes. Higher levels of inflammation were significantly associated with epithelioid subtype (p = 0.044). MDM2 expression levels were correlated with HIF1alpha levels (p = 0.0001), necrosis (p = 0.008) and proliferation index (p = 0.009). Univariate analysis showed a significant correlation of non-epithelioid histology (p = 0.04), high levels of necrosis (p = 0.037) and proliferation index (p = 0.0002) with shorter PFS. Sarcomatoid/biphasic and epithelioid mesotheliomas showed different MDM2 and HIF1alpha expression levels and were characterized by different levels of necrosis, proliferation and inflammation. Further studies are warranted to confirm a prognostic and predictive role of such markers and features. PMID:26544728

  20. Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models.

    PubMed

    Wang, Hui Qin; Halilovic, Ensar; Li, Xiaoyan; Liang, Jinsheng; Cao, Yichen; Rakiec, Daniel P; Ruddy, David A; Jeay, Sebastien; Wuerthner, Jens U; Timple, Noelito; Kasibhatla, Shailaja; Li, Nanxin; Williams, Juliet A; Sellers, William R; Huang, Alan; Li, Fang

    2017-04-20

    The efficacy of ALK inhibitors in patients with ALK-mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end, we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations.

  1. Differential response between the p53 ubiquitin-protein ligases Pirh2 and MdM2 following DNA damage in human cancer cells

    SciTech Connect

    Duan Wenrui; Gao, Li; Wu Xin; Zhang Yang; Otterson, Gregory A.; Villalona-Calero, Miguel A. . E-mail: Miguel.villalona@osumc.edu

    2006-10-15

    Pirh2, a recently identified ubiquitin-protein ligase, has been reported to promote p53 degradation. Pirh2 physically interacts with p53 and promotes ubiquitination of p53 independently of MDM2. Like MDM2, Pirh2 is thought to participate in an autoregulatory feedback loop that controls p53 function. We have previously reported that Pirh2 was overexpressed in human and murine lung cancers as compared to uninvolved lung tissue. Pirh2 increase could potentially cause degradation of wildtype p53 and reduce its tumor suppression function in the lung tumor cells. Since Pirh2 has been reported to be transactivated by p53, however, the mechanisms by which a high level of Pirh2 expression is maintained in tumor cells despite low level of wildtype p53 protein are unclear. In order to evaluate p53 involvement in the transactivation of Pirh2, we evaluated Pirh2, MDM2, p53 and p21 expression with Western blot analysis and real time PCR after {gamma} irradiation or cisplatin DNA damage treatment using human cancer cell lines containing wildtype (A549, MCF-7), mutant (H719) and null (H1299) p53. Surprisingly, Pirh2 expression was not affected by the presence of wildtype p53 in the cancer cells. In contrast, MDM2 was upregulated by wildtype p53 in A549 and MCF-7 cells and was absent from the H1299 and the H719 cells. We conclude that Pirh2 operates in a distinct manner from MDM2 in response to DNA damage in cancer cells. Pirh2 elevation in p53 null cells indicates the existence of additional molecular mechanisms for Pirh2 upregulation and suggests that p53 is not the sole target of Pirh2 ubiquitin ligase activity.

  2. Pharmacological inhibition of Mdm2 triggers growth arrest and promotes DNA breakage in mouse colon tumors and human colon cancer cells

    PubMed Central

    Rigatti, Marc J.; Verma, Rajeev; Belinsky, Glenn S.; Rosenberg, Daniel W.; Giardina, Charles

    2011-01-01

    The p53 tumor suppressor protein performs a number of cellular functions, ranging from the induction of cell cycle arrest and apoptosis to effects on DNA repair. Modulating p53 activity with Mdm2 inhibitors is a promising approach for treating cancer; however, it is presently unclear how the in vivo application of Mdm2 inhibitors impact the myriad processes orchestrated by p53. Since approximately half of all colon cancers (predominately cancers with microsatellite instability) are p53-normal, we assessed the anticancer activity of the Mdm2 inhibitor Nutlin-3 in the mouse azoxymethane (AOM) colon cancer model, in which p53 remains wild type. Using a cell line derived from an AOM-induced tumor, we found that four daily exposures to Nutlin-3 induced persistent p53 stabilization and cell cycle arrest without significant apoptosis. A four day dosing schedule in vivo generated a similar response in colon tumors; growth arrest without significantly increased apoptosis. In adjacent normal colon tissue, Nutlin-3 treatment reduced both cell proliferation and apoptosis. Surprisingly, Nutlin-3 induced a transient DNA damage response in tumors but not in adjacent normal tissue. Nutlin-3 likewise induced a transient DNA damage response in human colon cancer cells in a p53-dependent manner, and enhanced DNA strand breakage and cell death induced by doxorubicin. Our findings indicate that Mdm2 inhibitors not only trigger growth arrest, but may also stimulate p53’s reported ability to slow homologous recombination repair. The potential impact of Nutlin-3 on DNA repair in tumors suggests that Mdm2 inhibitors may significantly accentuate the tumoricidal actions of certain therapeutic modalities. PMID:21557332

  3. P53 and Murine Double Mimute 2 (MDM2) Expression Changes and Significance in Different Types of Endometrial Lesions

    PubMed Central

    Jiang, Zhongyong; Xu, Wanqing; Dan, Gang; Liu, Yuan; Xiong, Jie

    2016-01-01

    Background Endometrial lesions are common in obstetrics and gynecology, including endometrial polyps, uterine adenomyosis, and malignant endometrial adenocarcinoma. Endometrial lesions seriously affect women’s health, fertility, quality of life, and life safety. As a pro-apoptosis gene, p53 is considered to be closely related with human tumors. Murine double mimute 2 (MDM2) is an oncogene that can promote tumor occurrence and development. P53 and MDM2 expression and significance in different types of endometrial lesions have not been fully elucidated. Material/Methods Normal endometrium, endometrial polyps, uterine adenomyosis, and endometrial adenocarcinoma tissue samples were collected. Real-time PCR was used to detect p53 and MDM2 mRNA expression. Immunohistochemical staining and Western blot analysis were applied to test p53 and MDM2 protein expression. Their correlation with clinical staging of endometrial adenocarcinoma was analyzed. Results P53 and MDM2 mRNA and protein expression were significantly elevated in the endometrial polyps group and the endometrial adenocarcinoma group compared with the normal control group (P<0.05). Their levels increased more obviously in endometrial adenocarcinoma compared with endometrial polyps (P<0.05). P53 and MDM2 mRNA and protein expression were slightly enhanced in uterine adenomyosis compared with normal controls, but this difference lacked statistical significance (P>0.05). P53 and MDM2 mRNA and protein level showed a positive correlation. Significantly higher expression of p53 or MDM2 was observed in patients with stage III compared to those in patients with stage II. Higher expression was also observed in patients with stage II than in patients with stage I. Conclusions P53 and MDM2 mRNA and protein were elevated in endometrial polyps and endometrial adenocarcinoma and their expressions were correlated with clinical staging of endometrial adenocarcinoma. They can promote cancer occurrence and development, and can

  4. Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells.

    PubMed

    Daniele, Simona; Barresi, Elisabetta; Zappelli, Elisa; Marinelli, Luciana; Novellino, Ettore; Da Settimo, Federico; Taliani, Sabrina; Trincavelli, Maria L; Martini, Claudia

    2016-02-16

    The development of multi-target drugs and irreversible modulators of deregulated signalling proteins is the major challenge for improving glioblastoma multiforme (GBM) treatment. Reversible single-target drugs are not sufficient to sustain a therapeutic effect over time and may favour the activation of alternative signalling pathways and the onset of resistance phenomena. Thus, a multi-target compound that has a long-lasting mechanism of action might have a greater and longer life span of anti-proliferative activity. Recently, a dual-target indol-3ylglyoxyldipeptide derivative, designed to bind to the Translocator Protein (TSPO) and reactivate p53 function via dissociation from its physiological inhibitor, murine double minute 2 (MDM2), has been developed as a potent GBM pro-apoptotic agent. In this study, this derivative was chemically modified to irreversibly bind MDM2 and TSPO. The new compound elicited a TSPO-mediated mitochondrial membrane dissipation and restored p53 activity, triggering a long-lasting apoptosis of GBM cells. These effects were sustained over time, involved a stable activation of extracellular signal regulated kinases and were specifically observed in cancer cells, in which these protein kinases are deregulated. Dual-targeting and irreversible binding properties combined in the same molecule may represent a useful strategy to overcome the time-limited effects elicited by classical chemotherapies.

  5. Podocyte loss involves MDM2-driven mitotic catastrophe.

    PubMed

    Mulay, Shrikant R; Thomasova, Dana; Ryu, Mi; Kulkarni, Onkar P; Migliorini, Adriana; Bruns, Hauke; Gröbmayr, Regina; Lazzeri, Elena; Lasagni, Laura; Liapis, Helen; Romagnani, Paola; Anders, Hans-Joachim

    2013-07-01

    Podocyte apoptosis as a pathway of podocyte loss is often suspected but rarely detected. To study podocyte apoptosis versus inflammatory forms of podocyte death in vivo, we targeted murine double minute (MDM)-2 for three reasons. First, MDM2 inhibits p53-dependent apoptosis; second, MDM2 facilitates NF-κB signalling; and third, podocytes show strong MDM2 expression. We hypothesized that blocking MDM2 during glomerular injury may trigger p53-mediated podocyte apoptosis, proteinuria, and glomerulosclerosis. Unexpectedly, MDM2 blockade in early adriamycin nephropathy of Balb/c mice had the opposite effect and reduced intra-renal cytokine and chemokine expression, glomerular macrophage and T-cell counts, and plasma creatinine and blood urea nitrogen levels. In cultured podocytes exposed to adriamycin, MDM2 blockade did not trigger podocyte death but induced G2/M arrest to prevent aberrant nuclear divisions and detachment of dying aneuploid podocytes, a feature of mitotic catastrophe in vitro and in vivo. Consistent with these observations, 12 of 164 consecutive human renal biopsies revealed features of podocyte mitotic catastrophe but only in glomerular disorders with proteinuria. Furthermore, delayed MDM2 blockade reduced plasma creatinine levels, blood urea nitrogen, tubular atrophy, interstitial leukocyte numbers, and cytokine expression as well as interstitial fibrosis. Together, MDM2-mediated mitotic catastrophe is a previously unrecognized variant of podocyte loss where MDM2 forces podocytes to complete the cell cycle, which in the absence of cytokinesis leads to podocyte aneuploidy, mitotic catastrophe, and loss by detachment. MDM2 blockade with nutlin-3a could be a novel therapeutic strategy to prevent renal inflammation, podocyte loss, glomerulosclerosis, proteinuria, and progressive kidney disease. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  6. Age-Related Susceptibility to Apoptosis in Human Retinal Pigment Epithelial Cells Is Triggered by Disruption of p53–Mdm2 Association

    PubMed Central

    Bhattacharya, Sujoy; Chaum, Edward; Johnson, Dianna A.; Johnson, Leonard R.

    2012-01-01

    Purpose. Relatively little is known about the contribution of p53/Mdm2 pathway in apoptosis of retinal pigment epithelial (RPE) cells or its possible link to dysfunction of aging RPE or to related blinding disorders such as age-related macular degeneration (AMD). Methods. Age-associated changes in p53 activation were evaluated in primary RPE cultures from human donor eyes of various ages. Apoptosis was evaluated by activation of caspases and DNA fragmentation. Gene-specific small interfering RNA was used to knock down expression of p53. Results. We observed that the basal rate of p53-dependent apoptosis increased in an age-dependent manner in human RPE. The age-dependent increase in apoptosis was linked to alterations in several aspects of the p53 pathway. p53 phosphorylation Ser15 was increased through the stimulation of ATM-Ser1981. p53 acetylation Lys379 was increased through the inhibition of SIRT1/2. These two posttranslational modifications of p53 blocked the sequestration of p53 by Mdm2, thus resulting in an increase in free p53 and of p53 stimulation of apoptosis through increased expression of PUMA (p53 upregulated modulator of apoptosis) and activation of caspase-3. Aged RPE also had reduced expression of antiapoptotic Bcl-2, which contributed to the increase in apoptosis. Of particular interest in these studies was that pharmacologic treatments to block p53 phosphorylation, acetylation, or expression were able to protect RPE cells from apoptosis. Conclusions. Our studies suggest that aging in the RPE leads to alterations of specific checkpoints in the apoptotic pathway, which may represent important molecular targets for the treatment of RPE-related aging disorders such as AMD. PMID:23139272

  7. Estradiol shows anti-skin cancer activities through decreasing MDM2 expression.

    PubMed

    Li, Li; Feng, Jianguo; Chen, Ying; Li, Shun; Ou, Mengting; Sun, Weichao; Tang, Liling

    2017-01-31

    Estradiol plays important roles in many biological responses inducing tumor genesis and cancer treatment. However, the effects of estradiol on tumors were inconsistent among a lot of researches and the mechanism is not fully understood. Our previous study indicated that splicing factor hnRNPA1 could bind to the human homologue of mouse double minute (MDM2), an oncogene which has been observed to be over-expressed in numerous types of cancers. In this research, we investigated whether and how estradiol correlate to cancer cell behaviors through heterogeneous nuclear ribonucleoprotein (hnRNPA1) and MDM2. Results showed that 10×10-13Mestradiol elevated the expression of hnRNPA1 regardless ER expression in cells, and then down-regulated the expression of MDM2. At the same time, estradiol inhibited cell proliferation, migration and epithelial-mesenchymal transition progression of A375 and GLL19 cells. While, knocking down hnRNPA1 through the transfection of hnRNPA1 siRNA led to the increase of MDM2 at both protein level and gene level In vivo experiment, subcutaneous injection with estradiol every two days near the tumor at doses of 2.5mg/kg/d suppressed tumor growth and reduced MDM2 expression. In a word, via increasing hnRNPA1 level and then reducing the expression of MDM2, estradiol prevented carcinogenesis in melanomas. We confirmed therapeutic effect of estradiol, as well as a new way for estradiol to resist skin cancer.

  8. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation

    PubMed Central

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna; Hoffmann, Else Kay

    2016-01-01

    The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21Waf1/Cip1, Bax, Noxa, MDM2, and activation of Caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter apoptosis, i.e., their p53 and downstream signaling are reduced and caspase activity unaltered following Cisplatin exposure. Reduced LRRC8A expression and VSOAC activity are previously shown to correlate with Cisplatin resistance, and here we demonstrate that pharmacological inhibition and transient knockdown of LRRC8A reduce the protein level of p53, MDM2, and p21Waf1/Cip1 as well as Caspase-9/-3 activation in Cisplatin-sensitive cells. Cisplatin resistance is accompanied by reduction in total LRRC8A expression (A2780) or LRRC8A expression in the plasma membrane (A549). Activation of Caspase-3 dependent apoptosis by TNFα-exposure or hyperosmotic cell shrinkage is almost unaffected by pharmacological anion channel inhibition. Our data indicate 1) that expression/activity of LRRC8A is essential for Cisplatin-induced increase in p53 protein level and its downstream signaling, i.e., Caspase-9/-3 activation, expression of p21Waf1/Cip1 and MDM2; and 2) that downregulation of LRRC8A-dependent osmolyte transporters contributes to acquirement of Cisplatin resistance in ovarian and lung carcinoma cells. Activation of LRRC8A-containing channels is upstream to apoptotic volume decrease as hypertonic cell shrinkage induces apoptosis independent of the presence of LRRC8A. PMID:26984736

  9. Disruption of the p53-Mdm2 Complex by Nutlin-3 Reveals Different Cancer Cell Phenotypes

    PubMed Central

    Arva, Nicoleta C.; Talbott, Kathryn E.; Okoro, Danielle R.; Brekman, Angelika; Qiu, Wei Gang; Bargonetti, Jill

    2012-01-01

    Introduction Mdm2 inhibits p53 transactivation by forming a p53-Mdm2 complex on chromatin. Upon DNA damage-induced complex disruption, such latent p53 can be activated, but in cells overexpressing Mdm2 because of a homozygous single nucleotide polymorphism at position 309 (T→G) of mdm2, the complex is highly stable and cannot be disrupted by DNA damage, rendering p53 inactive. Methods To determine whether the p53 response phenotype is influenced differentially in cells with variable mdm2 genotypes, we compared responses to DNA damage and targeted p53-Mdm2 complex disruption by Nutlin-3 in the following wild-type p53 human cancer cell lines: A875 and CCF-STTG-1 (G/G for mdm2 SNP309), SJSA-1 (mdm2 genomic amplification and T/T for mdm2 SNP309), MCF-7 (estrogen-induced Mdm2 overexpression and T/G for mdm2 SNP309), ML-1 and H460 (T/T for mdm2 SNP309), and K562 (p53-null and T/G for mdm2 SNP309). We also examined mdm2 gene-splicing patterns in these lines by cloning and sequencing analyses. Results While Mdm2-overexpressing G/G cells were resistant to p53 activation by DNA damage, they were sensitive to Nutlin-3. Strikingly, the p53 G1 checkpoint in G/G cells was activated by Nutlin-3 but not by etoposide, whereas in other Mdm2-overexpressing cells, both drugs activated p53 and subsequent G1 arrest or apoptosis. cDNA clones lacking exons 5–9 were generated at a high frequency in cells overexpressing Mdm2. Conclusion Nutlin-3 and DNA damage distinguish a differential phenotype in human cancer cells with G/G mdm2 SNP309 from other Mdm2 overexpressers. Categorization of the Mdm2 isoforms produced and their influence on p53 activity will help in characterization and treatment development for different cancers. PMID:18646312

  10. Mdm2 links genotoxic stress and metabolism to p53.

    PubMed

    Wang, Zhongfeng; Li, Baojie

    2010-12-01

    Mouse double minute 2 (Mdm2) gene was isolated from a cDNA library derived from transformed mouse 3T3 cells, and was classified as an oncogene as it confers 3T3 and Rat2 cells tumorigenicity when overexpressed. It encodes a nucleocytoplasmic shuttling ubiquitin E3 ligase, with its main target being tumor suppressor p53, which is mutated in more than 50% of human primary tumors. Mdm2's oncogenic activity is mainly mediated by p53, which is activated by various stresses, especially genotoxic stress, via Atm (ataxia telangiectasia mutated) and Atr (Atm and Rad3-related). Activated p53 inhibits cell proliferation, induces apoptosis or senescence, and maintains genome integrity. Mdm2 is also a target gene of p53 transcription factor. Thus, Mdm2 and p53 form a feedback regulatory loop. External and internal cues, through multiple signaling pathways, can act on Mdm2 to regulate p53 levels and cell proliferation, death, and senescence. This review will focus on how Mdm2 is regulated under genotoxic stress, and by the Akt1-mTOR-S6K1 pathway that is activated by insulin, growth factors, amino acids, or energy status.

  11. Anoikis triggers Mdm2-dependent p53 degradation

    PubMed Central

    Ghosh, Abhijit; Chen, Tina Chunyuan; Kapila, Yvonne L.

    2010-01-01

    The extracellular matrix (ECM) plays a key role in cell–cell communication and signaling, and the signals it propagates are important for tissue remodeling and survival. However, signals from disease-altered ECM may lead to anoikis—apoptotic cell death triggered by loss of ECM contacts. Previously, we found that an altered fibronectin matrix triggers anoikis in human primary ligament cells via a pathway that requires p53 transcriptional downregulation. Here we show that this p53 reduction is suppressed by transfecting cells with Mdm2 antisense oligonucleotides or small interfering RNA. Similar results were found in cells treated to prevent p53 and Mdm2 interactions. When p53 was overexpressed in cells lacking Mdm2 and p53, p53 levels were unaffected by anoikis conditions. However, cells cotransfected with p53 and wild type Mdm2, but not a mutant Mdm2, exhibited decreased p53 levels in response to anoikis conditions. Thus, cells under anoikis conditions undergo p53 degradation that is mediated by Mdm2. PMID:20577896

  12. Contrasting effects of an Mdm2 functional polymorphism on tumor phenotypes.

    PubMed

    Ortiz, G J; Li, Y; Post, S M; Pant, V; Xiong, S; Larsson, C A; El-Naggar, A K; Johnson, D G; Lozano, G

    2017-09-18

    MDM2, an E3 ubiquitin ligase, is a potent inhibitor of the p53 tumor suppressor and is elevated in many human cancers that retain wild-type p53. MDM2 SNP309G is a functional polymorphism that results in elevated levels of MDM2 (due to enhanced SP1 binding to the MDM2 promoter) thus decreasing p53 activity. Mdm2(SNP309G/G) mice are more prone to spontaneous tumor formation than Mdm2(SNP309T/T) mice, providing direct evidence for the impact of this SNP in tumor development. We asked whether environmental factors impact SNP309G function and show that SNP309G cooperates with ionizing radiation to exacerbate tumor development. Surprisingly, ultraviolet B light or Benzo(a)pyrene exposure of skin shows that SNP309G allele actually protects against squamous cell carcinoma susceptibility. These contrasting differences led us to interrogate the mechanism by which Mdm2 SNP309 regulates tumor susceptibility in a tissue-specific manner. Although basal Mdm2 levels were significantly higher in most tissues in Mdm2(SNP309G/G) mice compared with Mdm2(SNP309T/T) mice, they were significantly lower in Mdm2(SNP309G/G) keratinocytes, the cell-type susceptible to squamous cell carcinoma. The assessment of potential transcriptional regulators in ENCODE ChIP-seq database identified transcriptional repressor E2F6 as a possible negative regulator of MDM2 expression. Our data show that E2F6 suppresses Mdm2 expression in cells harboring the SNP309G allele but not the SNP309T allele. Thus, Mdm2 SNP309G exhibits tissue-specific regulation and differentially impacts cancer risk.Oncogene advance online publication, 18 September 2017; doi:10.1038/onc.2017.344.

  13. Population distribution and ancestry of the cancer protective MDM2 SNP285 (rs117039649).

    PubMed

    Knappskog, Stian; Gansmo, Liv B; Dibirova, Khadizha; Metspalu, Andres; Cybulski, Cezary; Peterlongo, Paolo; Aaltonen, Lauri; Vatten, Lars; Romundstad, Pål; Hveem, Kristian; Devilee, Peter; Evans, Gareth D; Lin, Dongxin; Van Camp, Guy; Manolopoulos, Vangelis G; Osorio, Ana; Milani, Lili; Ozcelik, Tayfun; Zalloua, Pierre; Mouzaya, Francis; Bliznetz, Elena; Balanovska, Elena; Pocheshkova, Elvira; Kučinskas, Vaidutis; Atramentova, Lubov; Nymadawa, Pagbajabyn; Titov, Konstantin; Lavryashina, Maria; Yusupov, Yuldash; Bogdanova, Natalia; Koshel, Sergey; Zamora, Jorge; Wedge, David C; Charlesworth, Deborah; Dörk, Thilo; Balanovsky, Oleg; Lønning, Per E

    2014-09-30

    The MDM2 promoter SNP285C is located on the SNP309G allele. While SNP309G enhances Sp1 transcription factor binding and MDM2 transcription, SNP285C antagonizes Sp1 binding and reduces the risk of breast-, ovary- and endometrial cancer. Assessing SNP285 and 309 genotypes across 25 different ethnic populations (>10.000 individuals), the incidence of SNP285C was 6-8% across European populations except for Finns (1.2%) and Saami (0.3%). The incidence decreased towards the Middle-East and Eastern Russia, and SNP285C was absent among Han Chinese, Mongolians and African Americans. Interhaplotype variation analyses estimated SNP285C to have originated about 14,700 years ago (95% CI: 8,300 - 33,300). Both this estimate and the geographical distribution suggest SNP285C to have arisen after the separation between Caucasians and modern day East Asians (17,000 - 40,000 years ago). We observed a strong inverse correlation (r = -0.805; p < 0.001) between the percentage of SNP309G alleles harboring SNP285C and the MAF for SNP309G itself across different populations suggesting selection and environmental adaptation with respect to MDM2 expression in recent human evolution. In conclusion, we found SNP285C to be a pan-Caucasian variant. Ethnic variation regarding distribution of SNP285C needs to be taken into account when assessing the impact of MDM2 SNPs on cancer risk.

  14. Dual function of MDM2 and MDMX toward the tumor suppressors p53 and RB

    PubMed Central

    Hernández-Monge, Jesús; Rousset-Roman, Adriana Berenice; Medina-Medina, Ixaura; Olivares-Illana, Vanesa

    2016-01-01

    The orchestrated crosstalk between the retinoblastoma (RB) and p53 pathways contributes to preserving proper homeostasis within the cell. The deregulation of one or both pathways is a common factor in the development of most types of human cancer. The proto-oncoproteins MDMX and MDM2 are the main regulators of the well- known tumor suppressor p53 protein. Under normal conditions, MDM2 and MDMX inhibit p53, either via repression of its transcriptional activity by protein-protein interaction, or via polyubiquitination as a result of MDM2-E3 ubiquitin ligase activity, for which MDM2 needs to dimerize with MDMX. Under genotoxic stress conditions, both become positive regulators of p53. The ATM-dependent phosphorylation of MDM2 and MDMX allow them to bind p53 mRNA, these interactions promote p53 translation. MDM2 and MDMX are also being revealed as effective regulators of the RB protein. MDM2 is able to degrade RB by two different mechanisms, that is, by ubiquitin dependent and independent pathways. MDMX enhances the ability of MDM2 to bind and degrade RB protein. However, MDMX also seems to stabilize RB through interaction and competition with MDM2. Here, we will contextualize the findings that suggest that the MDM2 and MDMX proteins have a dual function on both p53 and RB. PMID:28050229

  15. Dual function of MDM2 and MDMX toward the tumor suppressors p53 and RB.

    PubMed

    Hernández-Monge, Jesús; Rousset-Roman, Adriana Berenice; Medina-Medina, Ixaura; Olivares-Illana, Vanesa

    2016-09-01

    The orchestrated crosstalk between the retinoblastoma (RB) and p53 pathways contributes to preserving proper homeostasis within the cell. The deregulation of one or both pathways is a common factor in the development of most types of human cancer. The proto-oncoproteins MDMX and MDM2 are the main regulators of the well- known tumor suppressor p53 protein. Under normal conditions, MDM2 and MDMX inhibit p53, either via repression of its transcriptional activity by protein-protein interaction, or via polyubiquitination as a result of MDM2-E3 ubiquitin ligase activity, for which MDM2 needs to dimerize with MDMX. Under genotoxic stress conditions, both become positive regulators of p53. The ATM-dependent phosphorylation of MDM2 and MDMX allow them to bind p53 mRNA, these interactions promote p53 translation. MDM2 and MDMX are also being revealed as effective regulators of the RB protein. MDM2 is able to degrade RB by two different mechanisms, that is, by ubiquitin dependent and independent pathways. MDMX enhances the ability of MDM2 to bind and degrade RB protein. However, MDMX also seems to stabilize RB through interaction and competition with MDM2. Here, we will contextualize the findings that suggest that the MDM2 and MDMX proteins have a dual function on both p53 and RB.

  16. Mdm2 and Mdm4 Loss Regulates Distinct p53 Activities

    PubMed Central

    Barboza, Juan A.; Iwakuma, Tomoo; Terzian, Tamara; El-Naggar, Adel K.; Lozano, Guillermina

    2009-01-01

    Mutational inactivation of p53 is a hallmark of most human tumors. Loss of p53 function also occurs by overexpression of negative regulators such as MDM2 and MDM4. Deletion of Mdm2 or Mdm4 in mice results in p53-dependent embryo lethality due to constitutive p53 activity. However, Mdm2−/− and Mdm4−/− embryos display divergent phenotypes, suggesting that Mdm2 and Mdm4 exert distinct control over p53. To explore the interaction between Mdm2 and Mdm4 in p53 regulation, we first generated mice and cells that are triple null for p53, Mdm2, and Mdm4. These mice had identical survival curves and tumor spectrum as p53−/− mice, substantiating the principal role of Mdm2 and Mdm4 as negative p53 regulators. We next generated mouse embryo fibroblasts null for p53 with deletions of Mdm2, Mdm4, or both; introduced a retrovirus expressing a temperature-sensitive p53 mutant, p53A135V; and examined p53 stability and activity. In this system, p53 activated distinct target genes, leading to apoptosis in cells lacking Mdm2 and a cell cycle arrest in cells lacking Mdm4. Cells lacking both Mdm2 and Mdm4 had a stable p53 that initiated apoptosis similar to Mdm2-null cells. Additionally, stabilization of p53 in cells lacking Mdm4 with the Mdm2 antagonist nutlin-3 was sufficient to induce a cell death response. These data further differentiate the roles of Mdm2 and Mdm4 in the regulation of p53 activities. PMID:18567799

  17. The Impact of a Common Mdm2 SNP on the Sensitivity of Breast Cancer to Treatment

    DTIC Science & Technology

    2009-06-06

    fulvestrant , causes a decrease in mdm2 protein half-life, leading to a reduction in mdm2 following treatment with this agent. We demonstrate that combined...use of fulvestrant with chemotherapeutic drugs doxorubicin, etoposide and paclitaxel can enhance the sensitivity of breast cancer cells to these...estrogen agent, fulvestrant , on mdm2 expression and sensitivity of human breast cancer cells to chemotherapeutic drugs. We found that in both MCF7 (T/G

  18. The Impact of a Common Mdm2 SNP on the Sensitivity of Breast Cancer to Treatment

    DTIC Science & Technology

    2010-06-01

    cancer recurrences. We observed that anti-estrogen agent, fulvestrant , causes a decrease in mdm2 protein half-life, leading to a reduction in mdm2...following treatment with this agent. We demonstrate that combined use of fulvestrant with chemotherapeutic drugs doxorubicin, etoposide and paclitaxel...grant period, we have investigated the effects of anti-estrogen agent, fulvestrant , on mdm2 expression and sensitivity of human breast cancer cells to

  19. p53 and MDM2 protein expression in actinic cheilitis.

    PubMed

    de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida

    2008-01-01

    Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia.

  20. Downregulation of cyclin D1 sensitizes cancer cells to MDM2 antagonist Nutlin-3

    PubMed Central

    Li, Xuhui; Eilers, Grant; He, Quan; Liu, Lili; Wu, Yeqing; Wu, Yuehong; Yu, Wei; Fletcher, Jonathan A.; Ou, Wen-Bin

    2016-01-01

    The MDM2-p53 pathway has a prominent oncogenic function in the pathogenesis of various cancers. Nutlin-3, a small-molecule antagonist of MDM2-p53 interaction, inhibits proliferation in cancer cells with wild-type p53. Herein, we evaluate the expression of MDM2, both the full length and a splicing variant MDM2-A, and the sensitivity of Nutlin-3 in different cancer cell lines. Included are seven cell lines with wild-type p53 (four mesothelioma, one breast cancer, one chondrosarcoma, and one leiomyosarcoma), two liposarcoma cell lines harboring MDM2 amplification and wild-type p53, and one mesothelioma cell line harboring a p53 point mutation. Nutlin-3 treatment increased expression of cyclin D1, MDM2, and p53 in cell lines with wild-type p53. Additive effects were observed in cells containing wild-type p53 through coordinated attack on MDM2-p53 binding and cyclin D1 by lentivirual shRNA knockdown or small molecule inhibition, as demonstrated by immunoblots and cell viability analyses. Further results demonstrate that MDM2 binds to cyclin D1, and that an increase in cyclin D1 expression after Nutlin-3 treatment is correlated with expression and ubiquitin E3-ligase activity of MDM2. MDM2 and p53 knockdown experiments demonstrated inhibition of cyclin D1 by MDM2 but not p53. These results indicate that combination inhibition of cyclin D1 and MDM2-p53 binding warrants clinical evaluation as a novel therapeutic strategy in cancer cells harboring wild-type p53. PMID:27129163

  1. Ubiquitin-specific peptidase 48 regulates Mdm2 protein levels independent of its deubiquitinase activity

    PubMed Central

    Cetkovská, Kateřina; Šustová, Hana; Uldrijan, Stjepan

    2017-01-01

    The overexpression of Mdm2 has been linked to the loss of p53 tumour suppressor activity in several human cancers. Here, we present results suggesting that ubiquitin-specific peptidase 48 (USP48), a deubiquitinase that has been linked in previous reports to the NF-κB signaling pathway, is a novel Mdm2 binding partner that promotes Mdm2 stability and enhances Mdm2-mediated p53 ubiquitination and degradation. In contrast to other deubiquitinating enzymes (DUBs) that have been previously implicated in the regulation of Mdm2 protein stability, USP48 did not induce Mdm2 stabilization by significantly reducing Mdm2 ubiquitination levels. Moreover, two previously characterized USP48 mutants lacking deubiquitinase activity were also capable of efficiently stabilizing Mdm2, indicating that USP48 utilizes a non-canonical, deubiquitination-independent mechanism to promote Mdm2 oncoprotein stability. This study represents, to the best of our knowledge, the first report suggesting DUB-mediated target protein stabilization that is independent of its deubiquitinase activity. In addition, our results suggest that USP48 might represent a new mechanism of crosstalk between the NF-κB and p53 stress response pathways. PMID:28233861

  2. Immunohistochemically detectable p53 and mdm-2 oncoprotein expression in colorectal carcinoma: prognostic significance

    PubMed Central

    Öfner, D; Maier, H; Riedmann, B; Holzberger, P; Nogler, M; Tötsch, M; Bankfalvi, A; Winde, G; Böcker, W; Schmid, K W

    1995-01-01

    Aims—To investigate the correlation between the expression of the p53 and mdm-2 oncoproteins and to assess their prognostic value in colorectal cancer. Methods—Using a polyclonal (CM1) and a monoclonal antibody directed against p53 and mdm-2, respectively, these oncoproteins were stained immunohistochemically in 109 colorectal adenocarcinomas. Results—p53 was detected in less than 10% of tumour cells in 11 of 109 adenocarcinomas, in 10-50% of tumour cells, in 17 of 109 adenocarcinomas, and in more than 50% of tumour cells in 32 of 109 adenocarcinomas. Expression of mdm-2 was detected in 22 of 109 (20%) cases investigated, of which 19 showed concomitant p53 expression. In most cases mdm-2 immunoreactivity was strongly associated with a small proportion of p53 positive tumour cells. Both p53 and mdm-2 expression lacked statistical significance when correlated with common staging and grading parameters. Conclusions—Detection of p53 and mdm-2 oncoprotein expression, detected using immunohistochemistry, is of no prognostic value in colorectal cancer. However, the close correlation between mdm-2 immunoreactivity and the proportion of p53 positive cells provides further evidence that the mdm-2 gene product interacts with p53 protein. PMID:16695968

  3. Direct transcriptional regulation of MDM2 by Fli-1.

    PubMed

    Truong, Amandine H L; Cervi, David; Lee, Jane; Ben-David, Yaacov

    2005-02-03

    The Ets transcription factor, Fli-1, has been shown to play a pivotal role in the induction and progression of Friend Murine Leukemia Virus (F-MuLV)-induced erythroleukemia, with its overexpression leading to erythroblast survival, proliferation, and inhibition of terminal differentiation. P53 inactivation is an additional genetic alteration that occurs in late-stage leukemic progression associated with in vivo and in vitro immortalization. Since p53 protein expression levels are low, to undetectable, in primary erythroleukemic cells that express elevated levels of Fli-1, we investigated the potential regulation of p53 by Fli-1. We assessed whether the overexpression of Fli-1 could partially regulate p53 via modulation of its well-established regulator, MDM2. In this paper, we demonstrate that the promoter of MDM2 contains a consensus binding site for Fli-1 that is bound by this transcription factor in vitro and in vivo, resulting in MDM2 transcriptional regulation. We further substantiate these observations in vivo by demonstrating a positive correlation in the expression of Fli-1 and MDM2, and a negative correlation with p53 in leukemic tissues obtained from mice with Friend Disease. These observations depict a significant function of Fli-1 overexpression in the indirect control of p53, evidently capable of leading to an increasingly aggressive erythroleukemic clone in vivo.

  4. Enigma negatively regulates p53 through MDM2 and promotes tumor cell survival in mice.

    PubMed

    Jung, Cho-Rok; Lim, Jung Hwa; Choi, Yoonjung; Kim, Dae-Ghon; Kang, Koo Jeong; Noh, Seung-Moo; Im, Dong-Soo

    2010-12-01

    The human E3 ubiquitin ligase murine double minute 2 (MDM2) targets the tumor suppressor p53 for ubiquitination and degradation but also promotes its own ubiquitination and subsequent degradation. As the balance between MDM2 and p53 levels plays a crucial role in regulating cell proliferation and apoptosis, we sought to identify factors selectively inhibiting MDM2 self-ubiquitination. Here we have shown that the LIM domain protein Enigma directly interacts with MDM2 to form a ternary complex with p53 in vitro and in human hepatoma and colon carcinoma cell lines and mouse embryonic fibroblasts. We found that Enigma elicited p53 degradation by inhibiting MDM2 self-ubiquitination and increasing its ubiquitin ligase activity toward p53 in cells. Moreover, mitogenic stimuli such as serum, FGF, and HGF increased Enigma transcription via induction of serum response factor (SRF), leading to MDM2 stabilization and subsequent p53 degradation. We observed similar results in the livers of mice treated with HGF. In humans, we found SRF and Enigma coexpressed with MDM2 but not p53 in several liver and stomach tumors. Finally, we showed that Enigma promoted cell survival and chemoresistance by suppressing p53-mediated apoptosis in both cell lines and a mouse xenograft model. Our findings suggest a role for Enigma in tumorigenesis and uncover a mechanism whereby mitogens attenuate p53 antiproliferative activity through an SRF/Enigma/MDM2 pathway.

  5. Targeting p53-MDM2-MDMX Loop for Cancer Therapy

    PubMed Central

    Zhang, Qi; Zeng, Shelya X.

    2015-01-01

    The tumor suppressor p53 plays a central role in anti-tumorigenesis and cancer therapy. It has been described as “the guardian of the genome”, because it is essential for conserving genomic stability by preventing mutation, and its mutation and inactivation are highly related to all human cancers. Two important p53 regulators, MDM2 and MDMX, inactivate p53 by directly inhibiting its transcriptional activity and mediating its ubiquitination in a feedback fashion, as their genes are also the transcriptional targets of p53. On account of the importance of the p53-MDM2- MDMX loop in the initiation and development of wild type p53-containing tumors, intensive studies over the past decade have been aiming to identify small molecules or peptides that could specifically target individual protein molecules of this pathway for developing better anti-cancer therapeutics. In this chapter, we review the approaches for screening and discovering efficient and selective MDM2 inhibitors with emphasis on the most advanced synthetic small molecules that interfere with the p53-MDM2 interaction and are currently on Phase I clinical trials. Other therapeutically useful strategies targeting this loop, which potentially improve the prospects of cancer therapy and prevention, will also be discussed briefly. PMID:25201201

  6. MDM2 SNP309 polymorphism is associated with colorectal cancer risk

    PubMed Central

    Wang, Weizhi; Du, Mulong; Gu, Dongying; Zhu, Lingjun; Chu, Haiyan; Tong, Na; Zhang, Zhengdong; Xu, Zekuan; Wang, Meilin

    2014-01-01

    The human murine double minute 2 (MDM2) is known as an oncoprotein through inhibiting P53 transcriptional activity and mediating P53 ubiquitination. Therefore, the amplification of MDM2 may attenuate the P53 pathway and promote tumorigenesis. The SNP309 T>G polymorphism (rs2279744), which is located in the intronic promoter of MDM2 gene, was reported to contribute to the increased level of MDM2 protein. In this hospital-based case-control study, which consisted of 573 cases and 588 controls, we evaluated the association between MDM2 SNP309 and the risk of colorectal cancer (CRC) in a Chinese population by using the TaqMan method to genotype the polymorphism. We found that the MDM2 SNP309 polymorphism was significantly associated with CRC risk. In addition, in our meta-analysis, we found a significant association between MDM2 SNP309 and CRC risk among Asians, which was consistent with our results. In conclusion, we demonstrated that the MDM2 SNP309 polymorphism increased the susceptibility of CRC in Asian populations. PMID:24797837

  7. Population distribution and ancestry of the cancer protective MDM2 SNP285 (rs117039649)

    PubMed Central

    Knappskog, Stian; Gansmo, Liv B.; Dibirova, Khadizha; Metspalu, Andres; Cybulski, Cezary; Peterlongo, Paolo; Aaltonen, Lauri; Vatten, Lars; Romundstad, Pål; Hveem, Kristian; Devilee, Peter; Evans, Gareth D.; Lin, Dongxin; Camp, Guy Van; Manolopoulos, Vangelis G.; Osorio, Ana; Milani, Lili; Ozcelik, Tayfun; Zalloua, Pierre; Mouzaya, Francis; Bliznetz, Elena; Balanovska, Elena; Pocheshkova, Elvira; Kučinskas, Vaidutis; Atramentova, Lubov; Nymadawa, Pagbajabyn; Titov, Konstantin; Lavryashina, Maria; Yusupov, Yuldash; Bogdanova, Natalia; Koshel, Sergey; Zamora, Jorge; Wedge, David C.; Charlesworth, Deborah; Dörk, Thilo; Balanovsky, Oleg; Lønning, Per E.

    2014-01-01

    The MDM2 promoter SNP285C is located on the SNP309G allele. While SNP309G enhances Sp1 transcription factor binding and MDM2 transcription, SNP285C antagonizes Sp1 binding and reduces the risk of breast-, ovary- and endometrial cancer. Assessing SNP285 and 309 genotypes across 25 different ethnic populations (>10.000 individuals), the incidence of SNP285C was 6-8% across European populations except for Finns (1.2%) and Saami (0.3%). The incidence decreased towards the Middle-East and Eastern Russia, and SNP285C was absent among Han Chinese, Mongolians and African Americans. Interhaplotype variation analyses estimated SNP285C to have originated about 14,700 years ago (95% CI: 8,300 – 33,300). Both this estimate and the geographical distribution suggest SNP285C to have arisen after the separation between Caucasians and modern day East Asians (17,000 - 40,000 years ago). We observed a strong inverse correlation (r = -0.805; p < 0.001) between the percentage of SNP309G alleles harboring SNP285C and the MAF for SNP309G itself across different populations suggesting selection and environmental adaptation with respect to MDM2 expression in recent human evolution. In conclusion, we found SNP285C to be a pan-Caucasian variant. Ethnic variation regarding distribution of SNP285C needs to be taken into account when assessing the impact of MDM2 SNPs on cancer risk. PMID:25327560

  8. MDM2 promotes rheumatoid arthritis via activation of MAPK and NF-κB.

    PubMed

    Zhang, Lin; Luo, Jing; Wen, Hongyan; Zhang, Tingting; Zuo, Xiaoxia; Li, Xiaofeng

    2016-01-01

    Murine double minute-2 (MDM2) has pleiotropic roles in immune activation and regulation. However, the role of MDM2 in rheumatoid arthritis (RA) remains unknown. We undertook this study to investigate the role of MDM2 in rheumatoid arthritis (RA). Fibroblast-like synoviocytes (FLS) were isolated from 25 patients with active RA and 25 patients with osteoarthritis (OA). FLS were stimulated in the presence or absence of IL-1β in vitro. Mice with collagen-induced arthritis (CIA) were treated with Nutlin-3a (100mg/kg) or vehicle twice daily for 2weeks. MDM2 expression was determined by Western blot. MDM2 was down-regulated by specific gene silencing. The concentrations of pro-inflammatory cytokines and matrix metalloproteinases (MMPs) were analyzed using enzyme-linked immunosorbent assay (ELISA). The pathways of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) were investigated by Western blot. Arthritis scoring and histological analysis were conducted. MDM2 expression was significantly higher in RA-FLS than in OA-FLS. MDM2 protein expression was positively correlated with disease activity of RA. MDM2 promoted the production of TNF-α, IL-6, MMP1 and MMP13 through MAPK and NF-κB pathways in RA-FLS. Nutlin-3a treatment decreased the arthritis severity and joint damage in CIA. Nutlin-3a also inhibited the activation of MAPK and NF-κB in arthritic joints. In conclusion, MDM2 inhibition exhibits anti-inflammatory activity and MDM2 might be a new therapeutic target for RA. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Enhanced cytotoxicity of prenylated chalcone against tumour cells via disruption of the p53-MDM2 interaction.

    PubMed

    Leão, Mariana; Soares, Joana; Gomes, Sara; Raimundo, Liliana; Ramos, Helena; Bessa, Cláudia; Queiroz, Glória; Domingos, Sofia; Pinto, Madalena; Inga, Alberto; Cidade, Honorina; Saraiva, Lucília

    2015-12-01

    Chalcones are naturally occurring compounds with recognized anticancer activity. It was recently shown that the O-prenyl derivative (2) of 2'-hydroxy-3,4,4',5,6'-pentamethoxychalcone (1) had a remarkably increased cytotoxicity against human tumour cells compared to its precursor. With this study, we aimed to investigate the molecular mechanism underlying the improved tumour cytotoxicity of prenylchalcone 2. The impact of chalcones 1 and 2 on p53-MDM2 interaction was investigated using yeast growth-inhibitory and p53 transactivation assays. Their tumour growth-inhibitory effects were assessed on human colon adenocarcinoma HCT116 cell lines with wild-type p53 and its p53-null derivative, followed by analysis of cell cycle and apoptosis. In tumour cells, the activation of a mitochondrial pathway was checked by analysis of reactive oxygen species generation, Bax mitochondrial translocation and cytochrome c release. Additionally, the up-regulation of p53 transcriptional activity was investigated through Western blot analysis of p53 target expression levels, and the disruption of the p53-MDM2 interaction was confirmed by co-immunoprecipitation. The potent cell tumour growth-inhibitory activity of prenylchalcone 2 was associated with the activation of a p53 pathway involving cell cycle arrest and a mitochondria-dependent apoptosis. Furthermore, a correlation between the distinct cytotoxicity of chalcones 1 and 2 and their ability to disrupt the p53-MDM2 interaction was established. This work shows that prenylation is a determinant factor for the enhancement of chalcones tumour cytotoxicity by improving their ability to disrupt the p53-MDM2 interaction. Prenylchalcone 2 represents a starting basis for the design of new p53-MDM2 interaction inhibitors with improved antitumor properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. MDM2 gene polymorphisms and risk of classic Kaposi's sarcoma among Iranian patients.

    PubMed

    Varmazyar, Sajad; Marashi, Sayed Mahdi; Shoja, Zabihollah; Tornesello, Maria Lina; Buonaguro, Franco M; Shahmahmoodi, Shohreh; Safaie-Naraghi, Zahra; Jalilvand, Somayeh

    2017-04-01

    A single-nucleotide polymorphism (SNP) in the promoter region of MDM2 (SNP309T>G, rs2279744) has been shown to increase the expression of the MDM2 protein in various cancer types. However, only one study has analyzed the role of the MDM2 polymorphism in the development of Kaposi's sarcoma (KS). The association of MDM2 SNP309 with classic KS risk was evaluated in 79 Iranian patients with classic KS and 123 healthy controls. The MDM2 SNP309 was genotyped using PCR and restriction fragment length polymorphism methods. No significant correlation was found between the SNP309 polymorphism in MDM2 promoter and classic KS risk. There was no significant correlation between gender and disease stage. However, a significant association was found between SNP309 GG genotype and younger age (≤50 years) (odds ratio 9.5, 95% confidence intervals 1.5-60, p = 0.03). Our findings support no major role for the MDM2 SNP309 in KS development although it might influence the clinical outcome of KS in younger patients.

  11. The transcription factor MEF/Elf4 is dually modulated by p53-MDM2 axis and MEF-MDM2 autoregulatory mechanism.

    PubMed

    Suico, Mary Ann; Fukuda, Ryosuke; Miyakita, Rui; Koyama, Kosuke; Taura, Manabu; Shuto, Tsuyoshi; Kai, Hirofumi

    2014-09-19

    Myeloid Elf-1-like factor (MEF) or Elf4 is an ETS transcription factor that activates innate immunity-associated genes such as lysozyme (LYZ), human β-defensin 2 (HβD2), and interleukin-8 (IL-8) in epithelial cells and is also known to influence cell cycle progression. MEF is transcriptionally activated by E2F1, but the E2F1-mediated transcriptional activation is inhibited by p53 through E2F1-p53 protein interaction. Although the transcriptional activation of MEF has been investigated in depth, its post-translational regulation is not well explored. By overexpressing MEF cDNA in human cell lines, here we show that MEF protein expression is suppressed by p53. By screening a number of E3 ligases regulated by p53, we found that MDM2 is involved in the effect of p53 on MEF. MDM2 is transcriptionally activated by p53 and interacts with MEF protein to enhance MEF degradation. MDM2 reduces MEF protein expression, as well as stability and function of MEF as transcriptional activator. Furthermore, MDM2 was able to down-regulate MEF in the absence of p53, indicating a p53-independent effect on MEF. Notably, MEF transcriptionally activates MDM2, which was previously demonstrated to be the mechanism by which MEF suppresses the p53 protein. These results reveal that in addition to the potential of MEF to down-regulate p53 by transcriptionally activating E3 ligase MDM2, MEF participates with MDM2 in a novel autoregulatory feedback loop to regulate itself. Taken together with the findings on the effect of p53 on MEF, these data provide evidence that the p53-MDM2-MEF axis is a feedback mechanism that exquisitely controls the balance of these transcriptional regulators.

  12. The Transcription Factor MEF/Elf4 Is Dually Modulated by p53-MDM2 Axis and MEF-MDM2 Autoregulatory Mechanism*

    PubMed Central

    Suico, Mary Ann; Fukuda, Ryosuke; Miyakita, Rui; Koyama, Kosuke; Taura, Manabu; Shuto, Tsuyoshi; Kai, Hirofumi

    2014-01-01

    Myeloid Elf-1-like factor (MEF) or Elf4 is an ETS transcription factor that activates innate immunity-associated genes such as lysozyme (LYZ), human β-defensin 2 (HβD2), and interleukin-8 (IL-8) in epithelial cells and is also known to influence cell cycle progression. MEF is transcriptionally activated by E2F1, but the E2F1-mediated transcriptional activation is inhibited by p53 through E2F1-p53 protein interaction. Although the transcriptional activation of MEF has been investigated in depth, its post-translational regulation is not well explored. By overexpressing MEF cDNA in human cell lines, here we show that MEF protein expression is suppressed by p53. By screening a number of E3 ligases regulated by p53, we found that MDM2 is involved in the effect of p53 on MEF. MDM2 is transcriptionally activated by p53 and interacts with MEF protein to enhance MEF degradation. MDM2 reduces MEF protein expression, as well as stability and function of MEF as transcriptional activator. Furthermore, MDM2 was able to down-regulate MEF in the absence of p53, indicating a p53-independent effect on MEF. Notably, MEF transcriptionally activates MDM2, which was previously demonstrated to be the mechanism by which MEF suppresses the p53 protein. These results reveal that in addition to the potential of MEF to down-regulate p53 by transcriptionally activating E3 ligase MDM2, MEF participates with MDM2 in a novel autoregulatory feedback loop to regulate itself. Taken together with the findings on the effect of p53 on MEF, these data provide evidence that the p53-MDM2-MEF axis is a feedback mechanism that exquisitely controls the balance of these transcriptional regulators. PMID:25081543

  13. Systems biology analysis reveals role of MDM2 in diabetic nephropathy

    PubMed Central

    Saito, Rintaro; Rocanin-Arjo, Anaïs; You, Young-Hyun; Darshi, Manjula; Van Espen, Benjamin; Miyamoto, Satoshi; Pham, Jessica; Pu, Minya; Romoli, Simone; Natarajan, Loki; Ju, Wenjun; Kretzler, Matthias; Nelson, Robert; Ono, Keiichiro; Thomasova, Dana; Mulay, Shrikant R.; Ideker, Trey; D’Agati, Vivette; Beyret, Ergin; Belmonte, Juan Carlos Izpisua; Anders, Hans Joachim

    2016-01-01

    To derive new insights in diabetic complications, we integrated publicly available human protein-protein interaction (PPI) networks with global metabolic networks using metabolomic data from patients with diabetic nephropathy. We focused on the participating proteins in the network that were computationally predicted to connect the urine metabolites. MDM2 had the highest significant number of PPI connections. As validation, significant downregulation of MDM2 gene expression was found in both glomerular and tubulointerstitial compartments of kidney biopsy tissue from 2 independent cohorts of patients with diabetic nephropathy. In diabetic mice, chemical inhibition of MDM2 with Nutlin-3a led to reduction in the number of podocytes, increased blood urea nitrogen, and increased mortality. Addition of Nutlin-3a decreased WT1+ cells in embryonic kidneys. Both podocyte- and tubule-specific MDM2-knockout mice exhibited severe glomerular and tubular dysfunction, respectively. Interestingly, the only 2 metabolites that were reduced in both podocyte and tubule-specific MDM2-knockout mice were 3-methylcrotonylglycine and uracil, both of which were also reduced in human diabetic kidney disease. Thus, our bioinformatics tool combined with multi-omics studies identified an important functional role for MDM2 in glomeruli and tubules of the diabetic nephropathic kidney and links MDM2 to a reduction in 2 key metabolite biomarkers. PMID:27777973

  14. Systems biology analysis reveals role of MDM2 in diabetic nephropathy.

    PubMed

    Saito, Rintaro; Rocanin-Arjo, Anaïs; You, Young-Hyun; Darshi, Manjula; Van Espen, Benjamin; Miyamoto, Satoshi; Pham, Jessica; Pu, Minya; Romoli, Simone; Natarajan, Loki; Ju, Wenjun; Kretzler, Matthias; Nelson, Robert; Ono, Keiichiro; Thomasova, Dana; Mulay, Shrikant R; Ideker, Trey; D'Agati, Vivette; Beyret, Ergin; Belmonte, Juan Carlos Izpisua; Anders, Hans Joachim; Sharma, Kumar

    2016-10-20

    To derive new insights in diabetic complications, we integrated publicly available human protein-protein interaction (PPI) networks with global metabolic networks using metabolomic data from patients with diabetic nephropathy. We focused on the participating proteins in the network that were computationally predicted to connect the urine metabolites. MDM2 had the highest significant number of PPI connections. As validation, significant downregulation of MDM2 gene expression was found in both glomerular and tubulointerstitial compartments of kidney biopsy tissue from 2 independent cohorts of patients with diabetic nephropathy. In diabetic mice, chemical inhibition of MDM2 with Nutlin-3a led to reduction in the number of podocytes, increased blood urea nitrogen, and increased mortality. Addition of Nutlin-3a decreased WT1(+) cells in embryonic kidneys. Both podocyte- and tubule-specific MDM2-knockout mice exhibited severe glomerular and tubular dysfunction, respectively. Interestingly, the only 2 metabolites that were reduced in both podocyte and tubule-specific MDM2-knockout mice were 3-methylcrotonylglycine and uracil, both of which were also reduced in human diabetic kidney disease. Thus, our bioinformatics tool combined with multi-omics studies identified an important functional role for MDM2 in glomeruli and tubules of the diabetic nephropathic kidney and links MDM2 to a reduction in 2 key metabolite biomarkers.

  15. Elucidation of Ligand-Dependent Modulation of Disorder-Order Transitions in the Oncoprotein MDM2

    PubMed Central

    Bueren-Calabuig, Juan A.; Michel, Julien

    2015-01-01

    Numerous biomolecular interactions involve unstructured protein regions, but how to exploit such interactions to enhance the affinity of a lead molecule in the context of rational drug design remains uncertain. Here clarification was sought for cases where interactions of different ligands with the same disordered protein region yield qualitatively different results. Specifically, conformational ensembles for the disordered lid region of the N-terminal domain of the oncoprotein MDM2 in the presence of different ligands were computed by means of a novel combination of accelerated molecular dynamics, umbrella sampling, and variational free energy profile methodologies. The resulting conformational ensembles for MDM2, free and bound to p53 TAD (17-29) peptide identify lid states compatible with previous NMR measurements. Remarkably, the MDM2 lid region is shown to adopt distinct conformational states in the presence of different small-molecule ligands. Detailed analyses of small-molecule bound ensembles reveal that the ca. 25-fold affinity improvement of the piperidinone family of inhibitors for MDM2 constructs that include the full lid correlates with interactions between ligand hydrophobic groups and the C-terminal lid region that is already partially ordered in apo MDM2. By contrast, Nutlin or benzodiazepinedione inhibitors, that bind with similar affinity to full lid and lid-truncated MDM2 constructs, interact additionally through their solubilizing groups with N-terminal lid residues that are more disordered in apo MDM2. PMID:26046940

  16. High levels of the MDM2 oncogene in paediatric rhabdomyosarcoma cell lines may confer multidrug resistance

    PubMed Central

    Cocker, H A; Hobbs, S M; Tiffin, N; Pritchard-Jones, K; Pinkerton, C R; Kelland, L R

    2001-01-01

    The MDM2 protein is known to be overexpressed in some sarcomas including rhabdomyosarcoma. However, the extent to which the MDM2 protein influences sensitivity to chemotherapeutic drugs is unclear. We have analysed this further using stable transfection of the mdm2 gene into 4 well-characterised human paediatric rhabdomyosarcoma cell lines. Transfection with the mdm2 gene resulted in increased levels of the MDM2 protein in all the cell lines. In 2 of the lines, SCMC and RD, the mdm2 gene caused between 2-fold and 61-fold increase in resistance to vincristine, etoposide and doxorubicin but not to cisplatin. In these lines there was an increase in expression of the mdr-1 gene which encodes P-glycoprotein, but not the mrp1 gene which encodes the multidrug resistance protein (MRP). The resistance was reversible using the MDR modulator PSC833, confirming the presence of P-glycoprotein. We conclude that MDM2 overexpression may be a mechanism by which multidrug resistance is regulated in some rhabdomyosarcomas. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11742497

  17. p53-independent mechanisms regulate the P2-MDM2 promoter in adult astrocytic tumours.

    PubMed

    Dimitriadi, M; Poulogiannis, G; Liu, L; Bäcklund, L M; Pearson, D M; Ichimura, K; Collins, V P

    2008-10-07

    The MDM2 gene is amplified and/or overexpressed in about 10% of glioblastomas and constitutes one of a number of ways the p53 pathway is disrupted in these tumours. MDM2 encodes a nuclear phosphoprotein that regulates several cell proteins by binding and/or ubiquitinating them, with p53 being a well-established partner. MDM2 has two promoters, P1 and P2 that give rise to transcripts with distinct 5' untranslated regions. Transcription from P2 is believed to be controlled by p53 and a single-nucleotide polymorphism (SNP309, T>G) in P2 is reported to be associated with increased risk for, and early development of, malignancies. The use of P1 and P2 has not been investigated in gliomas. We used RT-PCR to study P1- and P2-MDM2 transcript expression in astrocytic tumours, xenografts and cell lines with known MDM2, TP53 and p14(ARF) gene status. Both promoters were used in all genetic backgrounds including the use of the P2 promoter in TP53 null cells, indicating a p53-independent induction of transcription. Transcripts from the P1 promoter formed a greater proportion of the total MDM2 transcripts in tumours with MDM2 amplification, despite these tumours having two wild-type TP53 alleles. Examination of SNP309 in glioblastoma patients showed a borderline association with survival but no apparent correlation with age at diagnosis nor with TP53 and p14(ARF) status of their tumours. Our findings also indicate that elevated MDM2 mRNA levels in tumours with MDM2 amplification are preferentially driven by the P1 promoter and that the P2 promoter is not only regulated by p53 but also by other transcription factor(s).

  18. Splicing Up Mdm2 for Cancer Proteome Diversity

    PubMed Central

    Okoro, Danielle R.; Rosso, Melissa

    2012-01-01

    Cancer cells often have high expression of Mdm2. However, in many cancers mdm2 is alternatively spliced, with more than 40 mRNA variants identified. Many of the alternative spliced mdm2 mRNAs have the potential to encode truncated Mdm2 isoforms. These putative Mdm2 isoforms can theoretically increase the diversity of the cancer proteome. The 3 best characterized are Mdm2-A, Mdm2-B, and Mdm2-C. As described in this review, the exogenous expression of these isoforms results in paradoxical phenotypes of transformation-associated growth as well as the inhibition of growth. Interestingly, these Mdm2 isoforms contribute tumor-promoting capacity in p53-null backgrounds. Herein we describe how alternative splicing of mdm2 may result in Mdm2 protein products that alter signal transduction to promote tumorigenesis. The tumor promoting capacity of Mdm2 isoforms is discussed in the context of functions that do not require the inhibition of p53. When N-terminal portions of Mdm2 are missing, the biochemical functions encoded by exon 12 are proposed to become more important. This may result in growth promoting functions when wild-type p53 is absent or compromised. The p53-independent tumor promoting activity of Mdm2 is proposed to result from C-terminal biochemical contributions of DNA binding, RNA binding, nucleolar localization, and nucleotide binding. PMID:23150764

  19. Prospective virtual screening for novel p53-MDM2 inhibitors using ultrafast shape recognition

    NASA Astrophysics Data System (ADS)

    Patil, Sachin P.; Ballester, Pedro J.; Kerezsi, Cassidy R.

    2014-02-01

    The p53 protein, known as the guardian of genome, is mutated or deleted in approximately 50 % of human tumors. In the rest of the cancers, p53 is expressed in its wild-type form, but its function is inhibited by direct binding with the murine double minute 2 (MDM2) protein. Therefore, inhibition of the p53-MDM2 interaction, leading to the activation of tumor suppressor p53 protein presents a fundamentally novel therapeutic strategy against several types of cancers. The present study utilized ultrafast shape recognition (USR), a virtual screening technique based on ligand-receptor 3D shape complementarity, to screen DrugBank database for novel p53-MDM2 inhibitors. Specifically, using 3D shape of one of the most potent crystal ligands of MDM2, MI-63, as the query molecule, six compounds were identified as potential p53-MDM2 inhibitors. These six USR hits were then subjected to molecular modeling investigations through flexible receptor docking followed by comparative binding energy analysis. These studies suggested a potential role of the USR-selected molecules as p53-MDM2 inhibitors. This was further supported by experimental tests showing that the treatment of human colon tumor cells with the top USR hit, telmisartan, led to a dose-dependent cell growth inhibition in a p53-dependent manner. It is noteworthy that telmisartan has a long history of safe human use as an approved anti-hypertension drug and thus may present an immediate clinical potential as a cancer therapeutic. Furthermore, it could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against variety of cancers. Importantly, the present study demonstrates that the adopted USR-based virtual screening protocol is a useful tool for hit identification in the domain of small molecule p53-MDM2 inhibitors.

  20. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf-Mdm2-p53 and RP-Mdm2-p53 pathways.

    PubMed

    Meng, X; Carlson, N R; Dong, J; Zhang, Y

    2015-11-12

    The multifaceted oncogene c-Myc plays important roles in the development and progression of human cancer. Recent in vitro and in vivo studies have shown that the p19Arf-Mdm2-p53 and the ribosomal protein (RP)-Mdm2-p53 pathways are both essential in preventing oncogenic c-Myc-induced tumorigenesis. Disruption of each pathway individually by p19Arf deletion or by Mdm2(C305F) mutation, which disrupts RP-Mdm2 binding, accelerates Eμ-myc transgene-induced pre-B/B-cell lymphoma in mice at seemingly similar paces with median survival around 10 and 11 weeks, respectively, compared to 20 weeks for Eμ-myc transgenic mice. Because p19Arf can inhibit ribosomal biogenesis through its interaction with nucleophosmin (NPM/B23), RNA helicase DDX5 and RNA polymerase I transcription termination factor (TTF-I), it has been speculated that the p19Arf-Mdm2-p53 and the RP-Mdm2-p53 pathways might be a single p19Arf-RP-Mdm2-p53 pathway, in which p19Arf activates p53 by inhibiting RP biosynthesis; thus, p19Arf deletion or Mdm2(C305F) mutation would result in similar consequences. Here, we generated mice with concurrent p19Arf deletion and Mdm2(C305F) mutation and investigated the compound mice for tumorigenesis in the absence and the presence of oncogenic c-Myc overexpression. In the absence of Eμ-myc transgene, the Mdm2(C305F) mutation did not elicit spontaneous tumors in mice, nor did it accelerate spontaneous tumors in mice with p19Arf deletion. In the presence of Eμ-myc transgene, however, Mdm2(C305F) mutation significantly accelerated p19Arf deletion-induced lymphomagenesis and promoted rapid metastasis. We found that when p19Arf-Mdm2-p53 and RP-Mdm2-p53 pathways are independently disrupted, oncogenic c-Myc-induced p53 stabilization and activation is only partially attenuated. When both pathways are concurrently disrupted, however, c-Myc-induced p53 stabilization and activation are essentially obliterated. Thus, the p19Arf-Mdm2-p53 and the RP-Mdm2-p53 are non-redundant pathways

  1. Identification of functional DNA variants in the constitutive promoter region of MDM2.

    PubMed

    Lalonde, Marie-Eve; Ouimet, Manon; Larivière, Mathieu; Kritikou, Ekaterini A; Sinnett, Daniel

    2012-09-01

    Although mutations in the oncoprotein murine double minute 2 (MDM2) are rare, MDM2 gene overexpression has been observed in several human tumors. Given that even modest changes in MDM2 levels might influence the p53 tumor suppressor signaling pathway, we postulated that sequence variation in the promoter region of MDM2 could lead to disregulated expression and variation in gene dosage. Two promoters have been reported for MDM2; an internal promoter (P2), which is located near the end of intron 1 and is p53-responsive, and an upstream constitutive promoter (P1), which is p53-independent. Both promoter regions contain DNA variants that could influence the expression levels of MDM2, including the well-studied single nucleotide polymorphism (SNP) SNP309, which is located in the promoter P2; i.e., upstream of exon 2. In this report, we screened the promoter P1 for DNA variants and assessed the functional impact of the corresponding SNPs. Using the dbSNP database and genotyping validation in individuals of European descent, we identified three common SNPs (-1494 G > A; indel 40 bp; and -182 C > G). Three major promoter haplotypes were inferred by using these three promoter SNPs together with rs2279744 (SNP309). Following subcloning into a gene reporter system, we found that two of the haplotypes significantly influenced MDM2 promoter activity in a haplotype-specific manner. Site-directed mutagenesis experiments indicated that the 40 bp insertion/deletion variation is causing the observed allelic promoter activity. This study suggests that part of the variability in the MDM2 expression levels could be explained by allelic p53-independent P1 promoter activity.

  2. MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification

    PubMed Central

    Kwon, Duk-Hwa; Eom, Gwang Hyeon; Ko, Jeong Hyeon; Shin, Sera; Joung, Hosouk; Choe, Nakwon; Nam, Yoon Seok; Min, Hyun-Ki; Kook, Taewon; Yoon, Somy; Kang, Wanseok; Kim, Yong Sook; Kim, Hyung Seok; Choi, Hyuck; Koh, Jeong-Tae; Kim, Nacksung; Ahn, Youngkeun; Cho, Hyun-Jai; Lee, In-Kyu; Park, Dong Ho; Suk, Kyoungho; Seo, Sang Beom; Wissing, Erin R.; Mendrysa, Susan M.; Nam, Kwang-Il; Kook, Hyun

    2016-01-01

    Vascular calcification (VC) is often associated with cardiovascular and metabolic diseases. However, the molecular mechanisms linking VC to these diseases have yet to be elucidated. Here we report that MDM2-induced ubiquitination of histone deacetylase 1 (HDAC1) mediates VC. Loss of HDAC1 activity via either chemical inhibitor or genetic ablation enhances VC. HDAC1 protein, but not mRNA, is reduced in cell and animal calcification models and in human calcified coronary artery. Under calcification-inducing conditions, proteasomal degradation of HDAC1 precedes VC and it is mediated by MDM2 E3 ubiquitin ligase that initiates HDAC1 K74 ubiquitination. Overexpression of MDM2 enhances VC, whereas loss of MDM2 blunts it. Decoy peptide spanning HDAC1 K74 and RG 7112, an MDM2 inhibitor, prevent VC in vivo and in vitro. These results uncover a previously unappreciated ubiquitination pathway and suggest MDM2-mediated HDAC1 ubiquitination as a new therapeutic target in VC. PMID:26832969

  3. Therapeutic Efficacy of p53 Restoration in Mdm2-overexpressing Tumors

    PubMed Central

    Li, Qin; Zhang, Yun; El-Nagga, Adel K.; Xiong, Shunbin; Yang, Peirong; Jackson, James G.; Chau, Gilda; Lozano, Guillermina

    2014-01-01

    The p53 (TP53) tumor suppressor is the most frequently mutated gene in human cancers. Restoring expression of wild-type p53 has led to tumor growth suppression in a variety of tumor models that are p53 deficient. Other mechanisms, e.g. up-regulation of Mdm2, exist in tumors to inactivate the p53 pathway. Mdm2, an E3 ubiquitin-ligase that targets p53 for proteasomal degradation, is present at high levels in many tumors with wild-type p53. In this study, the effects of restoring p53 activity were probed in Mdm2-overexpressing tumors genetically using animal models. Here it was demonstrated that elevated levels of Mdm2 and decreased levels of p53 act additively to dampen p53 activity in DNA damage response and tumor development. Our data further indicate that restoration of wild-type p53 expression in Mdm2-overexpressing angiosarcomas results in tumor stasis and regression in some cases. Finally, it was determined that restored p53 suppressed cell proliferation but did not elicit apoptosis in the Mdm2-overexpressing angiosarcomas. PMID:24598047

  4. The Clustered, Regularly Interspaced, Short Palindromic Repeats-associated Endonuclease 9 (CRISPR/Cas9)-created MDM2 T309G Mutation Enhances Vitreous-induced Expression of MDM2 and Proliferation and Survival of Cells*

    PubMed Central

    Duan, Yajian; Ma, Gaoen; Huang, Xionggao; D'Amore, Patricia A.; Zhang, Feng; Lei, Hetian

    2016-01-01

    The G309 allele of SNPs in the mouse double minute (MDM2) promoter locus is associated with a higher risk of cancer and proliferative vitreoretinopathy (PVR), but whether SNP G309 contributes to the pathogenesis of PVR is to date unknown. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease (Cas) 9 from Streptococcus pyogenes (SpCas9) can be harnessed to manipulate a single or multiple nucleotides in mammalian cells. Here we delivered SpCas9 and guide RNAs using dual adeno-associated virus-derived vectors to target the MDM2 genomic locus together with a homologous repair template for creating the mutation of MDM2 T309G in human primary retinal pigment epithelial (hPRPE) cells whose genotype is MDM2 T309T. The next-generation sequencing results indicated that there was 42.51% MDM2 G309 in the edited hPRPE cells using adeno-associated viral CRISPR/Cas9. Our data showed that vitreous induced an increase in MDM2 and subsequent attenuation of p53 expression in MDM2 T309G hPRPE cells. Furthermore, our experimental results demonstrated that MDM2 T309G in hPRPE cells enhanced vitreous-induced cell proliferation and survival, suggesting that this SNP contributes to the pathogenesis of PVR. PMID:27246850

  5. The Clustered, Regularly Interspaced, Short Palindromic Repeats-associated Endonuclease 9 (CRISPR/Cas9)-created MDM2 T309G Mutation Enhances Vitreous-induced Expression of MDM2 and Proliferation and Survival of Cells.

    PubMed

    Duan, Yajian; Ma, Gaoen; Huang, Xionggao; D'Amore, Patricia A; Zhang, Feng; Lei, Hetian

    2016-07-29

    The G309 allele of SNPs in the mouse double minute (MDM2) promoter locus is associated with a higher risk of cancer and proliferative vitreoretinopathy (PVR), but whether SNP G309 contributes to the pathogenesis of PVR is to date unknown. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease (Cas) 9 from Streptococcus pyogenes (SpCas9) can be harnessed to manipulate a single or multiple nucleotides in mammalian cells. Here we delivered SpCas9 and guide RNAs using dual adeno-associated virus-derived vectors to target the MDM2 genomic locus together with a homologous repair template for creating the mutation of MDM2 T309G in human primary retinal pigment epithelial (hPRPE) cells whose genotype is MDM2 T309T. The next-generation sequencing results indicated that there was 42.51% MDM2 G309 in the edited hPRPE cells using adeno-associated viral CRISPR/Cas9. Our data showed that vitreous induced an increase in MDM2 and subsequent attenuation of p53 expression in MDM2 T309G hPRPE cells. Furthermore, our experimental results demonstrated that MDM2 T309G in hPRPE cells enhanced vitreous-induced cell proliferation and survival, suggesting that this SNP contributes to the pathogenesis of PVR. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Structural effects and competition mechanisms targeting the interactions between p53 and MDM2 for cancer therapy

    NASA Astrophysics Data System (ADS)

    Liu, Shu-Xia; Geng, Yi-Zhao; Yan, Shi-Wei

    2017-06-01

    Approximately half of all human cancers show normal TP53 gene expression but aberrant overexpression of MDM2 and/or MDMX. This fact suggests a promising cancer therapeutic strategy in targeting the interactions between p53 and MDM2/MDMX. To help realize the goal of developing effective inhibitors to disrupt the p53-MDM2/MDMX interaction, we systematically investigated the structural and interaction characteristics of p53 with inhibitors of its interactions with MDM2 and MDMX from an atomistic perspective using stochastic molecular dynamics simulations. We found that some specific α helices in the structures of MDM2 and MDMX play key roles in their binding to inhibitors, and that the hydrogen bond formed by the Trp23 residue of p53 with its counterpart in MDM2 or MDMX determines the dynamic competition processes of the disruption of the MDM2-p53 interaction and replacement of p53 from the MDM2-p53 complex in vivo. The results reported in this paper are expected to provide basic information for designing functional inhibitors and realizing new strategies of cancer gene therapy.

  7. Epoxy clerodane diterpene inhibits MCF-7 human breast cancer cell growth by regulating the expression of the functional apoptotic genes Cdkn2A, Rb1, mdm2 and p53.

    PubMed

    Subash-Babu, P; Alshammari, Ghedeir M; Ignacimuthu, S; Alshatwi, Ali A

    2017-03-01

    Systematic analyses of plants that are used in traditional medicine may lead to the discovery of novel cytotoxic secondary metabolites. Diterpene possesses multiple bioactivities; here, epoxy clerodane diterpene (ECD) was isolated from Tinospora cordifolia (Willd.) stem and shown potential antiproliferative effect in MCF-7 human breast cancer cells. The antiproliferative effect of ECD on MCF-7 cells was systematically analyzed by cell and nuclear morphology, alterations in oxidative stress, and the expression of tumor suppressor and mitochondria-mediated apoptosis-related genes. We found that the IC50 value of ECD was 3.2μM at 24h and 2.4μM at 48h. We observed that the cytotoxicity of ECD was specific to MCF-7 cells, whereas ECD was nontoxic to normal Vero and V79 cells. ECD significantly triggered intracellular ROS generation even from the lower doses of 0.6 and 1.2μM; and it is relative to higher dose of 2.4μM. Further, we used 0.6μM, 1.2μM and 2.4μM as experimental doses to analyze the relative dose-dependent effects. Nuclear staining revealed that cells treated with the 2.4μM dose exhibited characteristic apoptotic morphological changes and that 46% of the cells were apoptotic and 4% were necrotic after 48h. ECD significantly increased the expression of mitochondria-dependent apoptotic pathway-related genes after 48h; we observed significantly (p≤0.05) increased expression of CYP1A, GPX, GSK3β and TNF-α and downregulated expression of NF-κB. ECD also increased the expression of tumor suppressor genes such as Cdkn2A, Rb1 and p53. In addition, we observed that ECD treatment significantly (p≤0.001) upregulated the expression of apoptotic genes such as Bax, cas-3, cas-8, cas-9 and p21 and downregulated the expression of BCL-2, mdm2 and PCNA. In conclusion, ECD regulates the expression of Cdkn2A, p53 and mdm2 and induces apoptosis via the mitochondrial pathway in MCF-7 human breast cancer cells.

  8. Gastrointestinal stromal tumors: clinical significance of p53 expression, MDM2 amplification, and KIT mutation status.

    PubMed

    Wallander, Michelle L; Layfield, Lester J; Tripp, Sheryl R; Schmidt, Robert L

    2013-07-01

    Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. Clinical behavior is best predicted by size and mitotic count (risk index). KIT and platelet-derived growth factor receptor α (PDGFRA) mutations have therapeutic and prognostic value but few other prognostically significant molecular markers have been identified. We investigated the prognostic value of p53 protein expression and MDM2 gene amplification in a series of GISTs. Thirty-five GISTs were tested for KIT and PDGFRA mutations, p53 protein expression (high >10% positive by immunohistochemistry) and MDM2 gene amplification (ratio >1.8). Mitotic index (>5/50 HPF), MDM2 amplification status, p53 protein expression, tumor size, and KIT/PDGFRA mutational status were correlated with clinical outcome. Only a single (3%) GIST was amplified for MDM2. p53 protein expression, mitotic index, and KIT/PDGFRA mutations did not correlate with recurrence or metastasis (P=0.20, 0.50, and 0.08, respectively) but tumor size did (P=0.04). Risk assessment (size and mitotic index) showed a weak association with clinical behavior (P=0.19). MDM2 amplification is uncommon in GISTs. Although high p53 expression occurred in 35% of cases, it did not correlate with clinical behavior. Only GIST size predicted clinical outcome.

  9. Regulation of p53 and MDM2 activity by MTBP.

    PubMed

    Brady, Mark; Vlatkovic, Nikolina; Boyd, Mark T

    2005-01-01

    p53 is a critical coordinator of a wide range of stress responses. To facilitate a rapid response to stress, p53 is produced constitutively but is negatively regulated by MDM2. MDM2 can inhibit p53 in multiple independent ways: by binding to its transcription activation domain, inhibiting p53 acetylation, promoting nuclear export, and probably most importantly by promoting proteasomal degradation of p53. The latter is achieved via MDM2's E3 ubiquitin ligase activity harbored within the MDM2 RING finger domain. We have discovered that MTBP promotes MDM2-mediated ubiquitination and degradation of p53 and also MDM2 stabilization in an MDM2 RING finger-dependent manner. Moreover, using small interfering RNA to down-regulate endogenous MTBP in unstressed cells, we have found that MTBP significantly contributes to MDM2-mediated regulation of p53 levels and activity. However, following exposure of cells to UV, but not gamma-irradiation, MTBP is destabilized as part of the coordinated cellular response. Our findings suggest that MTBP differentially regulates the E3 ubiquitin ligase activity of MDM2 towards two of its most critical targets (itself and p53) and in doing so significantly contributes to MDM2-dependent p53 homeostasis in unstressed cells.

  10. Nuclear interactor of ARF and Mdm2 regulates multiple pathways to activate p53

    PubMed Central

    Reed, Sara M; Hagen, Jussara; Tompkins, Van S; Thies, Katie; Quelle, Frederick W; Quelle, Dawn E

    2014-01-01

    The p53 tumor suppressor is controlled by an interactive network of factors that stimulate or inhibit its transcriptional activity. Within that network, Mdm2 functions as the major antagonist of p53 by promoting its ubiquitylation and degradation. Conversely, Tip60 activates p53 through direct association on target promoters as well as acetylation of p53 at lysine 120 (K120). This study examines the functional relationship between Mdm2 and Tip60 with a novel p53 regulator, NIAM (nuclear interactor of ARF and Mdm2). Previous work showed NIAM can suppress proliferation and activate p53 independently of ARF, indicating that other factors mediate those activities. Here, we demonstrate that NIAM is a chromatin-associated protein that binds Tip60. NIAM can promote p53 K120 acetylation, although that modification is not required for NIAM to inhibit proliferation or induce p53 transactivation of the p21 promoter. Notably, Tip60 silencing showed it contributes to but is not sufficient for NIAM-mediated p53 activation, suggesting other mechanisms are involved. Indeed, growth-inhibitory forms of NIAM also bind to Mdm2, and increased NIAM expression levels disrupt p53–Mdm2 association, inhibit p53 polyubiquitylation, and prevent Mdm2-mediated inhibition of p53 transcriptional activity. Importantly, loss of NIAM significantly impairs p53 activation. Together, these results show that NIAM activates p53 through multiple mechanisms involving Tip60 association and Mdm2 inhibition. Thus, NIAM regulates 2 critical pathways that control p53 function and are altered in human cancers, implying an important role for NIAM in tumorigenesis. PMID:24621507

  11. p53 and mdm2 in mantle cell lymphoma in leukemic phase.

    PubMed

    Solenthaler, Max; Matutes, Estella; Brito-Babapulle, Vasantha; Morilla, Ricardo; Catovsky, Daniel

    2002-11-01

    In mantle cell lymphoma (MCL), abnormalities additional to t(11;14) including those affecting genes involved in the p53 pathway, are important for disease development and progression. This study aimed to assess the frequency, relationship and impact of p53 abnormalities and those of its inhibitor mdm2 in blastoid and non-blastoid MCL in leukemic phase. Isolated blood lymphocytes from 21 patients with MCL in leukemic phase, characterized by the presence of t(11;14), were analyzed by flow cytometry and by fluorescent in situ hybridization in order to investigate whether there is a correlation between overexpression and deletion of p53, overexpression of mdm2 and gain of chromosome 12. Results were also correlated with morphologic subtypes, proliferative activity assessed by expression of Ki67 and clinical outcome. Cells from 2/21 (10%) and 7/21 (33%) patients overexpressed p53 and mdm2, respectively. No single case expressed both proteins. Ten out of 19 (53%) patients had a hemizygous loss of 17p (p53) including the 2 patients (11%) overexpressing p53. Gains of chromosome 12 (mdm2) were found in only 2 cases with expression of mdm2 in one of them. Overall, p53 deletion and/or overexpression of mdm2 was found in 71% of cases. Ten of 19 patients had a blastoid MCL, including all 5 patients who were Ki67 positive, 6 of the 7 patients expressing mdm2 and one of the 2 patients expressing p53. There was no correlation between p53 deletion and morphologic subtypes. All patients with blastoid MCL have died after a median time of 25 months. In MCL in leukemic phase there is a high frequency of p53 deletion and/or overexpression of mdm2. In contrast, over expression of p53 is relatively rare. Overexpression of mdm2 is seen predominantly in blastoid MCL, the latter being characterized by a short median survival, and seems unrelated to a numerical gain of chromosome 12. It does not reflect a high proliferative rate but might indicate an alternative mechanism of inactivating p53

  12. MDM2 phenotypic and genotypic profiling, respective to TP53 genetic status, in diffuse large B-cell lymphoma patients treated with rituximab-CHOP immunochemotherapy: a report from the International DLBCL Rituximab-CHOP Consortium Program.

    PubMed

    Xu-Monette, Zijun Y; Møller, Michael B; Tzankov, Alexander; Montes-Moreno, Santiago; Hu, Wenwei; Manyam, Ganiraju C; Kristensen, Louise; Fan, Lei; Visco, Carlo; Dybkaer, Karen; Chiu, April; Tam, Wayne; Zu, Youli; Bhagat, Govind; Richards, Kristy L; Hsi, Eric D; Choi, William W L; van Krieken, J Han; Huang, Qin; Huh, Jooryung; Ai, Weiyun; Ponzoni, Maurilio; Ferreri, Andrés J M; Wu, Lin; Zhao, Xiaoying; Bueso-Ramos, Carlos E; Wang, Sa A; Go, Ronald S; Li, Yong; Winter, Jane N; Piris, Miguel A; Medeiros, L Jeffrey; Young, Ken H

    2013-10-10

    MDM2 is a key negative regulator of the tumor suppressor p53, however, the prognostic significance of MDM2 overexpression in diffuse large B-cell lymphoma (DLBCL) has not been defined convincingly. In a p53 genetically-defined large cohort of de novo DLBCL patients treated with rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone (R-CHOP) chemotherapy, we assessed MDM2 and p53 expression by immunohistochemistry (n = 478), MDM2 gene amplification by fluorescence in situ hybridization (n = 364), and a single nucleotide polymorphism in the MDM2 promoter, SNP309, by SNP genotyping assay (n = 108). Our results show that MDM2 overexpression, unlike p53 overexpression, is not a significant prognostic factor in overall DLBCL. Both MDM2 and p53 overexpression do not predict for an adverse clinical outcome in patients with wild-type p53 but predicts for significantly poorer survival in patients with mutated p53. Variable p53 activities may ultimately determine the survival differences, as suggested by the gene expression profiling analysis. MDM2 amplification was observed in 3 of 364 (0.8%) patients with high MDM2 expression. The presence of SNP309 did not correlate with MDM2 expression and survival. This study indicates that evaluation of MDM2 and p53 expression correlating with TP53 genetic status is essential to assess their prognostic significance and is important for designing therapeutic strategies that target the MDM2-p53 interaction.

  13. Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapy: Progress and Challenges.

    PubMed

    Wang, Shaomeng; Zhao, Yujun; Aguilar, Angelo; Bernard, Denzil; Yang, Chao-Yie

    2017-03-07

    MDM2 is a primary cellular inhibitor of p53. It inhibits p53 function by multiple mechanisms, each of which, however, is mediated by their direct interaction. It has been proposed that small-molecule inhibitors designed to block the MDM2-p53 interaction may be effective in the treatment of human cancer retaining wild-type p53 by reactivating the p53 tumor suppressor function. Through nearly two decades of intense efforts, a number of structurally distinct, highly potent, nonpeptide, small-molecule inhibitors of the MDM2-p53 interaction (MDM2 inhibitors) have been successfully designed and developed, and at least seven such compounds have now been advanced into human clinical trials as new anticancer drugs. This review offers a perspective on the design and development of MDM2 small-molecule inhibitors and discusses early clinical data for some of the MDM2 small-molecule inhibitors and future challenges for the successful clinical development of MDM2 inhibitors for cancer treatment.

  14. The alternative translated MDMXp60 isoform regulates MDM2 activity

    PubMed Central

    Tournillon, Anne-Sophie; López, Ignacio; Malbert-Colas, Laurence; Naski, Nadia; Olivares-Illana, Vanesa; Fåhraeus, Robin

    2015-01-01

    Isoforms derived from alternative splicing, mRNA translation initiation or promoter usage extend the functional repertoire of the p53, p63 and p73 genes family and of their regulators MDM2 and MDMX. Here we show cap-independent translation of an N-terminal truncated isoform of hMDMX, hMDMXp60, which is initiated at the 7th AUG codon downstream of the initiation site for full length hMDMXFL at position +384. hMDMXp60 lacks the p53 binding motif but retains the RING domain and interacts with hMDM2 and hMDMXFL. hMDMXp60 shows higher affinity for hMDM2, as compared to hMDMXFL. In vitro data reveal a positive cooperative interaction between hMDMXp60 and hMDM2 and in cellulo data show that low levels of hMDMXp60 promote degradation of hMDM2 whereas higher levels stabilize hMDM2 and prevent hMDM2-mediated degradation of hMDMXFL. These results describe a novel alternatively translated hMDMX isoform that exhibits unique regulatory activity toward hMDM2 autoubiquitination. The data illustrate how the N-terminus of hMDMX regulates its C-terminal RING domain and the hMDM2 activity. PMID:25659040

  15. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy

    PubMed Central

    Tovar, Christian; Rosinski, James; Filipovic, Zoran; Higgins, Brian; Kolinsky, Kenneth; Hilton, Holly; Zhao, Xiaolan; Vu, Binh T.; Qing, Weiguo; Packman, Kathryn; Myklebost, Ola; Heimbrook, David C.; Vassilev, Lyubomir T.

    2006-01-01

    The p53 tumor suppressor retains its wild-type conformation and transcriptional activity in half of all human tumors, and its activation may offer a therapeutic benefit. However, p53 function could be compromised by defective signaling in the p53 pathway. Using a small-molecule MDM2 antagonist, nutlin-3, to probe downstream p53 signaling we find that the cell-cycle arrest function of the p53 pathway is preserved in multiple tumor-derived cell lines expressing wild-type p53, but many have a reduced ability to undergo p53-dependent apoptosis. Gene array analysis revealed attenuated expression of multiple apoptosis-related genes. Cancer cells with mdm2 gene amplification were most sensitive to nutlin-3 in vitro and in vivo, suggesting that MDM2 overexpression may be the only abnormality in the p53 pathway of these cells. Nutlin-3 also showed good efficacy against tumors with normal MDM2 expression, suggesting that many of the patients with wild-type p53 tumors may benefit from antagonists of the p53–MDM2 interaction. PMID:16443686

  16. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy.

    PubMed

    Tovar, Christian; Rosinski, James; Filipovic, Zoran; Higgins, Brian; Kolinsky, Kenneth; Hilton, Holly; Zhao, Xiaolan; Vu, Binh T; Qing, Weiguo; Packman, Kathryn; Myklebost, Ola; Heimbrook, David C; Vassilev, Lyubomir T

    2006-02-07

    The p53 tumor suppressor retains its wild-type conformation and transcriptional activity in half of all human tumors, and its activation may offer a therapeutic benefit. However, p53 function could be compromised by defective signaling in the p53 pathway. Using a small-molecule MDM2 antagonist, nutlin-3, to probe downstream p53 signaling we find that the cell-cycle arrest function of the p53 pathway is preserved in multiple tumor-derived cell lines expressing wild-type p53, but many have a reduced ability to undergo p53-dependent apoptosis. Gene array analysis revealed attenuated expression of multiple apoptosis-related genes. Cancer cells with mdm2 gene amplification were most sensitive to nutlin-3 in vitro and in vivo, suggesting that MDM2 overexpression may be the only abnormality in the p53 pathway of these cells. Nutlin-3 also showed good efficacy against tumors with normal MDM2 expression, suggesting that many of the patients with wild-type p53 tumors may benefit from antagonists of the p53-MDM2 interaction.

  17. Simulating molecular mechanisms of the MDM2-mediated regulatory interactions: a conformational selection model of the MDM2 lid dynamics.

    PubMed

    Verkhivker, Gennady M

    2012-01-01

    Diversity and complexity of MDM2 mechanisms govern its principal function as the cellular antagonist of the p53 tumor suppressor. Structural and biophysical studies have demonstrated that MDM2 binding could be regulated by the dynamics of a pseudo-substrate lid motif. However, these experiments and subsequent computational studies have produced conflicting mechanistic models of MDM2 function and dynamics. We propose a unifying conformational selection model that can reconcile experimental findings and reveal a fundamental role of the lid as a dynamic regulator of MDM2-mediated binding. In this work, structure, dynamics and energetics of apo-MDM2 are studied as a function of posttranslational modifications and length of the lid. We found that the dynamic equilibrium between "closed" and "semi-closed" lid forms may be a fundamental characteristic of MDM2 regulatory interactions, which can be modulated by phosphorylation, phosphomimetic mutation as well as by the lid size. Our results revealed that these factors may regulate p53-MDM2 binding by fine-tuning the thermodynamic equilibrium between preexisting conformational states of apo-MDM2. In agreement with NMR studies, the effect of phosphorylation on MDM2 interactions was more pronounced with the truncated lid variant that favored the thermodynamically dominant closed form. The phosphomimetic mutation S17D may alter the lid dynamics by shifting the thermodynamic equilibrium towards the ensemble of "semi-closed" conformations. The dominant "semi-closed" lid form and weakened dependence on the phosphorylation seen in simulations with the complete lid can provide a rationale for binding of small p53-based mimetics and inhibitors without a direct competition with the lid dynamics. The results suggested that a conformational selection model of preexisting MDM2 states may provide a robust theoretical framework for understanding MDM2 dynamics. Probing biological functions and mechanisms of MDM2 regulation would require

  18. Anticancer Effects of a New SIRT Inhibitor, MHY2256, against Human Breast Cancer MCF-7 Cells via Regulation of MDM2-p53 Binding.

    PubMed

    Park, Eun Young; Woo, Youngwoo; Kim, Seong Jin; Kim, Do Hyun; Lee, Eui Kyung; De, Umasankar; Kim, Kyeong Seok; Lee, Jaewon; Jung, Jee H; Ha, Ki-Tae; Choi, Wahn Soo; Kim, In Su; Lee, Byung Mu; Yoon, Sungpil; Moon, Hyung Ryong; Kim, Hyung Sik

    2016-01-01

    The sirtuins (SIRTs), a family of NAD(+)-dependent class III histone deacetylase, are involved in various biological processes including cell survival, division, senescence, and metabolism via activation of the stress-response pathway. Recently, inhibition of SIRTs has been considered a promising anticancer strategy, but their precise mechanisms of action are not well understood. In particular, the relevance of p53 to SIRT-induced effects has not been fully elucidated. We investigated the anticancer effects of a novel SIRT inhibitor, MHY2256, and its efficacy was compared to that of salermide in MCF-7 (wild-type p53) and SKOV-3 (null-type p53) cells. Cell viability, SIRT1 enzyme activity, cell cycle regulation, apoptosis, and autophagic cell death were measured. We compared sensitivity to cytotoxicity in MCF-7 and SKOV-3 cells. MHY2256 significantly decreased the viability of MCF-7 (IC50, 4.8 μM) and SKOV-3 (IC50, 5.6 μM) cells after a 48 h treatment period. MHY2256 showed potent inhibition (IC50, 0.27 mM) against SIRT1 enzyme activity compared with nicotinamide (IC50, >1 mM). Moreover, expression of SIRT (1, 2, or 3) protein levels was significantly reduced by MHY2256 treatment in both MCF-7 and SKOV-3 cells. Flow cytometry analysis revealed that MHY2256 significantly induced cell cycle arrest in the G1 phase, leading to an effective increase in apoptotic cell death in MCF-7 and SKOV-3 cells. A significant increase in acetylated p53, a target protein of SIRT, was observed in MCF-7 cells after MHY2256 treatment. MHY2256 up-regulated LC3-II and induced autophagic cell death in MCF-7 cells. Furthermore, MHY2256 markedly inhibited tumor growth in a tumor xenograft model of MCF-7 cells. These results suggest that a new SIRT inhibitor, MHY2256, has anticancer activity through p53 acetylation in MCF-7 human breast cancer cells.

  19. Anticancer Effects of a New SIRT Inhibitor, MHY2256, against Human Breast Cancer MCF-7 Cells via Regulation of MDM2-p53 Binding

    PubMed Central

    Park, Eun Young; Woo, Youngwoo; Kim, Seong Jin; Kim, Do Hyun; Lee, Eui Kyung; De, Umasankar; Kim, Kyeong Seok; Lee, Jaewon; Jung, Jee H.; Ha, Ki-Tae; Choi, Wahn Soo; Kim, In Su; Lee, Byung Mu; Yoon, Sungpil; Moon, Hyung Ryong; Kim, Hyung Sik

    2016-01-01

    The sirtuins (SIRTs), a family of NAD+-dependent class III histone deacetylase, are involved in various biological processes including cell survival, division, senescence, and metabolism via activation of the stress-response pathway. Recently, inhibition of SIRTs has been considered a promising anticancer strategy, but their precise mechanisms of action are not well understood. In particular, the relevance of p53 to SIRT-induced effects has not been fully elucidated. We investigated the anticancer effects of a novel SIRT inhibitor, MHY2256, and its efficacy was compared to that of salermide in MCF-7 (wild-type p53) and SKOV-3 (null-type p53) cells. Cell viability, SIRT1 enzyme activity, cell cycle regulation, apoptosis, and autophagic cell death were measured. We compared sensitivity to cytotoxicity in MCF-7 and SKOV-3 cells. MHY2256 significantly decreased the viability of MCF-7 (IC50, 4.8 μM) and SKOV-3 (IC50, 5.6 μM) cells after a 48 h treatment period. MHY2256 showed potent inhibition (IC50, 0.27 mM) against SIRT1 enzyme activity compared with nicotinamide (IC50, >1 mM). Moreover, expression of SIRT (1, 2, or 3) protein levels was significantly reduced by MHY2256 treatment in both MCF-7 and SKOV-3 cells. Flow cytometry analysis revealed that MHY2256 significantly induced cell cycle arrest in the G1 phase, leading to an effective increase in apoptotic cell death in MCF-7 and SKOV-3 cells. A significant increase in acetylated p53, a target protein of SIRT, was observed in MCF-7 cells after MHY2256 treatment. MHY2256 up-regulated LC3-II and induced autophagic cell death in MCF-7 cells. Furthermore, MHY2256 markedly inhibited tumor growth in a tumor xenograft model of MCF-7 cells. These results suggest that a new SIRT inhibitor, MHY2256, has anticancer activity through p53 acetylation in MCF-7 human breast cancer cells. PMID:27994519

  20. Hispolon from Phellinus linteus has antiproliferative effects via MDM2-recruited ERK1/2 activity in breast and bladder cancer cells.

    PubMed

    Lu, Te-Ling; Huang, Guan-Jhong; Lu, Te-Jung; Wu, Jin-Bin; Wu, Chieh-Hsi; Yang, Tung-Chuan; Iizuka, Akira; Chen, Yuh-Fung

    2009-08-01

    The MDM2 proto-oncogene is overexpressed in many human tumors. Although MDM2 inhibits tumor-suppressor function of p53, there exists a p53-independent role for MDM2 in tumorigenesis. Therefore, downregulation of MDM2 has been considered an attractive therapeutic strategy. Hispolon extracted from Phellinus species was found to induce epidermoid and gastric cancer cell apoptosis. However, the mechanisms are not fully understood. Herein, we report our findings that hispolon inhibited breast and bladder cancer cell growth, regardless of p53 status. Furthermore, p21(WAF1), a cyclin-dependent kinase inhibitor, was elevated in hispolon-treated cells. MDM2, a negative regulator of p21(WAF1), was ubiquitinated and degraded after hispolon treatment. We also found that activated ERK1/2 (extracellular signal-regulated kinase1/2) was recruited to MDM2 and involved in mediating MDM2 ubiquitination. Based on this finding, we investigated whether the sensitivity of cells to hispolon was related to ERK1/2 activity. The results indicated that cells with higher ERK1/2 activity were more sensitive to hispolon. In addition, hispolon-induced caspase-7 cleavage was inhibited by the ERK1/2 inhibitor, U0126. In conclusion, hispolon ubiquitinates and downregulates MDM2 via MDM2-recruited activated ERK1/2. Therefore, hispolon may be a potential anti-tumor agent in breast and bladder cancers.

  1. p53 and MDM2: antagonists or partners in crime?

    PubMed

    Eischen, Christine M; Lozano, Guillermina

    2009-03-03

    Therapeutics that disrupt the p53-MDM2 interaction show promise for cancer treatment but surprisingly have different biological outcomes. A study by Enge et al. in this issue of Cancer Cell shows that the ability of MDM2 to target hnRNP K for degradation contributes to the decision to induce apoptosis rather than cell-cycle arrest.

  2. Preclinical efficacy of the MDM2 inhibitor RG7112 in MDM2 amplified and TP53 wild-type glioblastomas

    PubMed Central

    Verreault, Maite; Schmitt, Charlotte; Goldwirt, Lauriane; Pelton, Kristine; Haidar, Samer; Levasseur, Camille; Guehennec, Jeremy; Knoff, David; Labussiere, Marianne; Marie, Yannick; Ligon, Azra H.; Mokhtari, Karima; Hoang-Xuan, Khe; Sanson, Marc; Alexander, Brian M; Wen, Patrick Y.; Delattre, Jean-Yves; Ligon, Keith L.; Idbaih, Ahmed

    2016-01-01

    Rationale p53 pathway alterations are key molecular events in glioblastoma (GBM). MDM2 inhibitors increase expression and stability of p53 and are presumed to be most efficacious in patients with TP53 wild-type and MDM2-amplified cancers. However, this biomarker hypothesis has not been tested in patients or patient-derived models for GBM. Methods We performed a preclinical evaluation of RG7112 MDM2 inhibitor, across a panel of 36 patient-derived GBM cell lines (PDCLs), each genetically characterized according to their P53 pathway status. We then performed a pharmacokinetic (PK) profiling of RG7112 distribution in mice and evaluated the therapeutic activity of RG7112 in orthotopic and subcutaneous GBM models. Results MDM2-amplified PDCLs were 44 times more sensitive than TP53 mutated lines that showed complete resistance at therapeutically attainable concentrations (avg. IC50 of 0.52 μM vs 21.9 μM). MDM4 amplified PDCLs were highly sensitive but showed intermediate response (avg. IC50 of 1.2 μM), whereas response was heterogeneous in TP53 wild-type PDCLs with normal MDM2/4 levels (avg. IC50 of 7.7 μM). In MDM2-amplified lines, RG7112 restored p53 activity inducing robust p21 expression and apoptosis. PK profiling of RG7112-treated PDCL intracranial xenografts demonstrated that the compound significantly crosses the blood-brain and the blood-tumor barriers. Most importantly, treatment of MDM2-amplified/TP53 wild-type PDCL-derived model (subcutaneous and orthotopic) reduced tumor growth, was cytotoxic, and significantly increased survival. Conclusion These data strongly support development of MDM2 inhibitors for clinical testing in MDM2-amplified GBM patients. Moreover, significant efficacy in a subset of non-MDM2 amplified models suggests that additional markers of response to MDM2 inhibitors must be identified. PMID:26482041

  3. Identification of antipsychotic drug fluspirilene as a potential p53-MDM2 inhibitor: a combined computational and experimental study

    NASA Astrophysics Data System (ADS)

    Patil, Sachin P.; Pacitti, Michael F.; Gilroy, Kevin S.; Ruggiero, John C.; Griffin, Jonathan D.; Butera, Joseph J.; Notarfrancesco, Joseph M.; Tran, Shawn; Stoddart, John W.

    2015-02-01

    The inhibition of tumor suppressor p53 protein due to its direct interaction with oncogenic murine double minute 2 (MDM2) protein, plays a central role in almost 50 % of all human tumor cells. Therefore, pharmacological inhibition of the p53-binding pocket on MDM2, leading to p53 activation, presents an important therapeutic target against these cancers expressing wild-type p53. In this context, the present study utilized an integrated virtual and experimental screening approach to screen a database of approved drugs for potential p53-MDM2 interaction inhibitors. Specifically, using an ensemble rigid-receptor docking approach with four MDM2 protein crystal structures, six drug molecules were identified as possible p53-MDM2 inhibitors. These drug molecules were then subjected to further molecular modeling investigation through flexible-receptor docking followed by Prime/MM-GBSA binding energy analysis. These studies identified fluspirilene, an approved antipsychotic drug, as a top hit with MDM2 binding mode and energy similar to that of a native MDM2 crystal ligand. The molecular dynamics simulations suggested stable binding of fluspirilene to the p53-binding pocket on MDM2 protein. The experimental testing of fluspirilene showed significant growth inhibition of human colon tumor cells in a p53-dependent manner. Fluspirilene also inhibited growth of several other human tumor cell lines in the NCI60 cell line panel. Taken together, these computational and experimental data suggest a potentially novel role of fluspirilene in inhibiting the p53-MDM2 interaction. It is noteworthy here that fluspirilene has a long history of safe human use, thus presenting immediate clinical potential as a cancer therapeutic. Furthermore, fluspirilene could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against several types of cancer. Importantly, the combined computational and experimental screening protocol

  4. A chromatin-associated and transcriptionally inactive p53-Mdm2 complex occurs in mdm2 SNP309 homozygous cells.

    PubMed

    Arva, Nicoleta C; Gopen, Tamara R; Talbott, Kathryn E; Campbell, Latoya E; Chicas, Agustin; White, David E; Bond, Gareth L; Levine, Arnold J; Bargonetti, Jill

    2005-07-22

    In cancer cells, the function of the tumor suppressor protein p53 is usually blocked. Impairment of the p53 pathway results in tumor cells with endogenous overexpression of Mdm2 via a naturally occurring single nucleotide polymorphism (SNP) in the mdm2 gene at position 309. Here we report that in mdm2 SNP309 cells, inactivation of p53 results in a chromatin-associated Mdm2-p53 complex without clearance of p53 by protein degradation. Nuclear accumulation of p53 protein in mdm2 SNP309 cells results after 6 h of camptothecin, etoposide, or mitomycin C treatment, with the p53 protein phosphorylated at Ser15. Chromatin immunoprecipitation demonstrated p53 and Mdm2 bound to p53 responsive elements. Interestingly, although the p53 protein was able to bind to DNA, quantitative PCR showed compromised transcription of endogenous target genes. Additionally, exogenously introduced p53 was incapable of activating transcription from p53 responsive elements in SNP309 cells, confirming the trans-acting nature of the inhibitor. Inhibition of Mdm2 by siRNA resulted in transcriptional activation of these p53 targets. Our data suggest that overproduction of Mdm2, resulting from a naturally occurring SNP, inhibits chromatin-bound p53 from activating the transcription of its target genes.

  5. P53-MDM2 Pathway: Evidences for A New Targeted Therapeutic Approach in B-Acute Lymphoblastic Leukemia

    PubMed Central

    Trino, Stefania; De Luca, Luciana; Laurenzana, Ilaria; Caivano, Antonella; Del Vecchio, Luigi; Martinelli, Giovanni; Musto, Pellegrino

    2016-01-01

    The tumor suppressor p53 is a canonical regulator of different biological functions, like apoptosis, cell cycle arrest, DNA repair, and genomic stability. This gene is frequently altered in human tumors generally by point mutations or deletions. Conversely, in acute lymphoblastic leukemia (ALL) genomic alterations of TP53 are rather uncommon, and prevalently occur in patients at relapse or with poor prognosis. On the other hand, p53 pathway is often compromised by the inactivation of its regulatory proteins, as MDM2 and ARF. MDM2 inhibitor molecules are able to antagonize p53-MDM2 interaction allowing p53 to exert tumor suppressor transcriptional regulation and to induce apoptotic pathways. Recent preclinical and clinical studies propose that MDM2 targeted therapy represents a promising anticancer strategy restoring p53 dependent mechanisms in ALL disease. Here, we discussed the use of new small molecule targeting p53 pathways as a promising drug target therapy in ALL. PMID:28018226

  6. MDM2 turnover and expression of ATRX determine the choice between quiescence and senescence in response to CDK4 inhibition

    PubMed Central

    Dickson, Mark A.; Klein, Mary E.; O'Connor, Rachael; Wilder, Fatima O.; Socci, Nicholas D.; Tap, William D.; Schwartz, Gary K.; Singer, Samuel; Crago, Aimee M.; Koff, Andrew

    2015-01-01

    CDK4 inhibitors (CDK4i) earned Breakthrough Therapy Designation from the FDA last year and are entering phase III clinical trials in several cancers. However, not all tumors respond favorably to these drugs. CDK4 activity is critical for progression through G1 phase and into the mitotic cell cycle. Inhibiting this kinase induces Rb-positive cells to exit the cell cycle into either a quiescent or senescent state. In this report, using well-differentiated and dedifferentiated liposarcoma (WD/DDLS) cell lines, we show that the proteolytic turnover of MDM2 is required for CDK4i-induced senescence. Failure to reduce MDM2 does not prevent CDK4i-induced withdrawal from the cell cycle but the cells remain in a reversible quiescent state. Reducing MDM2 in these cells drives them into the more stable senescent state. CDK4i-induced senescence associated with loss of MDM2 is also observed in some breast cancer, lung cancer and glioma cell lines indicating that this is not limited to WD/DDLS cells in which MDM2 is overexpressed or in cells that contain wild type p53. MDM2 turnover depends on its E3 ligase activity and expression of ATRX. Interestingly, in seven patients the changes in MDM2 expression were correlated with outcome. These insights identify MDM2 and ATRX as new regulators controlling geroconversion, the process by which quiescent cells become senescent, and this insight may be exploited to improve the activity of CDK4i in cancer therapy. PMID:25803170

  7. Overexpression of SKI oncoprotein leads to p53 degradation through regulation of MDM2 protein sumoylation.

    PubMed

    Ding, Boxiao; Sun, Yin; Huang, Jiaoti

    2012-04-27

    Protooncogene Ski was identified based on its ability to transform avian fibroblasts in vitro. In support of its oncogenic activity, SKI was found to be overexpressed in a variety of human cancers, although the exact molecular mechanism(s) responsible for its oncogenic activity is not fully understood. We found that SKI can negatively regulate p53 by decreasing its level through up-regulation of MDM2 activity, which is mediated by the ability of SKI to enhance sumoylation of MDM2. This stimulation of MDM2 sumoylation is accomplished through a direct interaction of SKI with SUMO-conjugating enzyme E2, Ubc9, resulting in enhanced thioester bond formation and mono-sumoylation of Ubc9. A mutant SKI defective in transformation fails to increase p53 ubiquitination and is unable to increase MDM2 levels and to increase mono-sumoylation of Ubc9, suggesting that the ability of SKI to enhance Ubc9 activity is essential for its transforming function. These results established a detailed molecular mechanism that underlies the ability of SKI to cause cellular transformation while unraveling a novel connection between sumoylation and tumorigenesis, providing potential new therapeutic targets for cancer.

  8. Chlamydia infection depends on a functional MDM2-p53 axis.

    PubMed

    González, Erik; Rother, Marion; Kerr, Markus C; Al-Zeer, Munir A; Abu-Lubad, Mohammad; Kessler, Mirjana; Brinkmann, Volker; Loewer, Alexander; Meyer, Thomas F

    2014-11-13

    Chlamydia, a major human bacterial pathogen, assumes effective strategies to protect infected cells against death-inducing stimuli, thereby ensuring completion of its developmental cycle. Paired with its capacity to cause extensive host DNA damage, this poses a potential risk of malignant transformation, consistent with circumstantial epidemiological evidence. Here we reveal a dramatic depletion of p53, a tumor suppressor deregulated in many cancers, during Chlamydia infection. Using biochemical approaches and live imaging of individual cells, we demonstrate that p53 diminution requires phosphorylation of Murine Double Minute 2 (MDM2; a ubiquitin ligase) and subsequent interaction of phospho-MDM2 with p53 before induced proteasomal degradation. Strikingly, inhibition of the p53-MDM2 interaction is sufficient to disrupt intracellular development of Chlamydia and interferes with the pathogen's anti-apoptotic effect on host cells. This highlights the dependency of the pathogen on a functional MDM2-p53 axis and lends support to a potentially pro-carcinogenic effect of chlamydial infection.

  9. Potential Landscape and Flux of p53-Mdm2 Oscillator Mediated by Mdm2 Degradation Rate

    NASA Astrophysics Data System (ADS)

    Bi, Yuanhong; Yang, Zhuoqin

    The dynamics of the tumor suppressor p53 can play a crucial role in deciding cell fate after DNA damage. In this paper, we explore the dynamics and stability of p53 mediated by Mdm2 degradation rate in p53-Mdm2 oscillator through bifurcation, the potential landscape and flux. Based on the investigation of the bifurcation, we find that p53 can exhibit rich dynamics including monostability, bistability of two stable steady states and oscillation behaviors as well as bistability between a stable steady state and an oscillatory state. The stability of these states are further validated by the potential landscape. In addition, oscillatory behaviors of p53 are explored by means of the negative gradient of the potential landscape and the probability flux. It is shown that the negative gradient of the potential landscape can attract the system towards the oscillatory path and the flux can drive oscillation along the path. Moreover, the quicker the flux runs, the smaller the period is. Besides, stability and sensitivity of the system are explored by the barrier height and the entropy production rate in a single cell level, and we further compare the potential landscapes at single and population cell levels. Our results may be useful for understanding the regulation of p53 signaling pathways in response to DNA damage.

  10. Simulating Molecular Mechanisms of the MDM2-Mediated Regulatory Interactions: A Conformational Selection Model of the MDM2 Lid Dynamics

    PubMed Central

    Verkhivker, Gennady M.

    2012-01-01

    Diversity and complexity of MDM2 mechanisms govern its principal function as the cellular antagonist of the p53 tumor suppressor. Structural and biophysical studies have demonstrated that MDM2 binding could be regulated by the dynamics of a pseudo-substrate lid motif. However, these experiments and subsequent computational studies have produced conflicting mechanistic models of MDM2 function and dynamics. We propose a unifying conformational selection model that can reconcile experimental findings and reveal a fundamental role of the lid as a dynamic regulator of MDM2-mediated binding. In this work, structure, dynamics and energetics of apo-MDM2 are studied as a function of posttranslational modifications and length of the lid. We found that the dynamic equilibrium between “closed” and “semi-closed” lid forms may be a fundamental characteristic of MDM2 regulatory interactions, which can be modulated by phosphorylation, phosphomimetic mutation as well as by the lid size. Our results revealed that these factors may regulate p53-MDM2 binding by fine-tuning the thermodynamic equilibrium between preexisting conformational states of apo-MDM2. In agreement with NMR studies, the effect of phosphorylation on MDM2 interactions was more pronounced with the truncated lid variant that favored the thermodynamically dominant closed form. The phosphomimetic mutation S17D may alter the lid dynamics by shifting the thermodynamic equilibrium towards the ensemble of “semi-closed” conformations. The dominant “semi-closed” lid form and weakened dependence on the phosphorylation seen in simulations with the complete lid can provide a rationale for binding of small p53-based mimetics and inhibitors without a direct competition with the lid dynamics. The results suggested that a conformational selection model of preexisting MDM2 states may provide a robust theoretical framework for understanding MDM2 dynamics. Probing biological functions and mechanisms of MDM2 regulation

  11. MDM2 and CDK4 expression in periosteal osteosarcoma.

    PubMed

    Righi, Alberto; Gambarotti, Marco; Benini, Stefania; Gamberi, Gabriella; Cocchi, Stefania; Picci, Piero; Bertoni, Franco

    2015-04-01

    Periosteal osteosarcoma is defined by the World Health Organization as an intermediate-grade, malignant, cartilaginous, and bone-forming neoplasm arising on the surface of bone. Unlike other subtypes of osteosarcoma, no data have been published about mouse double minute 2 (MDM2) and cyclin-dependent kinase 4 (CDK4) expression. For this reason, we evaluated the molecular and immunohistochemical features of MDM2 and CDK4 in 27 cases relative to 20 patients with a diagnosis of periosteal osteosarcoma, surgically treated at the Rizzoli Institute between 1981 and 2014. When possible, these results were compared with the MDM2 amplification status as determined by fluorescence in situ hybridization (FISH). All but 1 case (26/27, 96.3%) were negative for MDM2 protein using immunohistochemistry both in primary and in recurrent periosteal osteosarcoma, whereas gene amplification of MDM2 was not detected in any tumor analyzed (10 cases). The positive immunohistochemical case shows a weak/moderate focal nuclear expression of MDM2 antibody in the prevalent cartilaginous component and in the spindle cells of peripheral fibroblastic areas associated with osteoid production in a primary periosteal osteosarcoma. CDK4 immunohistochemical expression was negative in all 27 cases. This retrospective analysis has demonstrated that MDM2 and CDK4 are very rarely expressed in primary and recurrent periosteal osteosarcomas and therefore do not appear to be molecules central to the control of cancer development, growth, and progression in periosteal osteosarcoma. Therefore, when compared with low-grade central and parosteal osteosarcomas, MDM2 and CDK4 markers cannot be used diagnostically to differentiate this subtype of osteosarcoma.

  12. Energetic Landscape of MDM2-p53 Interactions by Computational Mutagenesis of the MDM2-p53 Interaction.

    PubMed

    Thayer, Kelly M; Beyer, George A

    2016-01-01

    The ubiquitin ligase MDM2, a principle regulator of the tumor suppressor p53, plays an integral role in regulating cellular levels of p53 and thus a prominent role in current cancer research. Computational analysis used MUMBO to rotamerize the MDM2-p53 crystal structure 1YCR to obtain an exhaustive search of point mutations, resulting in the calculation of the ΔΔG comprehensive energy landscape for the p53-bound regulator. The results herein have revealed a set of residues R65-E69 on MDM2 proximal to the p53 hydrophobic binding pocket that exhibited an energetic profile deviating significantly from similar residues elsewhere in the protein. In light of the continued search for novel competitive inhibitors for MDM2, we discuss possible implications of our findings on the drug discovery field.

  13. p53 and MDM2 in Renal Cell Carcinoma

    PubMed Central

    Noon, Aidan P.; Vlatković, Nikolina; Polański, Radosław; Maguire, Maria; Shawki, Howida; Parsons, Keith; Boyd, Mark T.

    2010-01-01

    Renal cell carcinoma (RCC) is the most common type of kidney cancer and follows an unpredictable disease course. To improve prognostication, a better understanding of critical genes associated with disease progression is required. The objective of this review was to focus attention on 2 such genes, p53 and murine double minute 2 (MDM2), and to provide a comprehensive summary and critical analysis of the literature regarding these genes in RCC. Information was compiled by searching the PubMed database for articles that were published or e-published up to April 1, 2009. Search terms included renal cancer, renal cell carcinoma, p53, and MDM2. Full articles and any supplementary data were examined; and, when appropriate, references were checked for additional material. All studies that described assessment of p53 and/or MDM2 in renal cancer were included. The authors concluded that increased p53 expression, but not p53 mutation, is associated with reduced overall survival/more rapid disease progression in RCC. There also was evidence that MDM2 up-regulation is associated with decreased disease-specific survival. Two features of RCC stood out as unusual and will require further investigation. First, increased p53 expression is tightly linked with increased MDM2 expression; and, second, patients who have tumors that display increased p53 and MDM2 expression may have the poorest overall survival. Because there was no evidence to support the conclusion that p53 mutation is associated with poorer survival, it seemed clear that increased p53 expression in RCC occurs independent of mutation. Further investigation of the mechanisms leading to increased p53/MDM2 expression in RCC may lead to improved prognostication and to the identification of novel therapeutic interventions. PMID:20052733

  14. Regulation of the Abundance of Kaposi’s Sarcoma-Associated Herpesvirus ORF50 Protein by Oncoprotein MDM2

    PubMed Central

    Chang, Tzu-Hsuan; Chen, Lee-Wen; Shih, Ying-Ju; Chang, Li-Kwan; Liu, Shih-Tung; Chang, Pey-Jium

    2016-01-01

    The switch between latency and the lytic cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV) is controlled by the expression of virally encoded ORF50 protein. Thus far, the regulatory mechanism underlying the protein stability of ORF50 is unknown. Our earlier studies have demonstrated that a protein abundance regulatory signal (PARS) at the ORF50 C-terminal region modulates its protein abundance. The PARS region consists of PARS-I (aa 490–535) and PARS-II (aa 590–650), and mutations in either component result in abundant expression of ORF50. Here, we show that ORF50 protein is polyubiquitinated and its abundance is controlled through the proteasomal degradation pathway. The PARS-I motif mainly functions as a nuclear localization signal in the control of ORF50 abundance, whereas the PARS-II motif is required for the binding of ubiquitin enzymes in the nucleus. We find that human oncoprotein MDM2, an ubiquitin E3 ligase, is capable of interacting with ORF50 and promoting ORF50 degradation in cells. The interaction domains between both proteins are mapped to the PARS region of ORF50 and the N-terminal 220-aa region of MDM2. Additionally, we identify lysine residues at positions 152 and 154 in the N-terminal domain of ORF50 critically involved in MDM2-mediated downregulation of ORF50 levels. Within KSHV-infected cells, the levels of MDM2 were greatly reduced during viral lytic cycle and genetic knockdown of MDM2 in these cells favored the enhancement of ORF50 expression, supporting that MDM2 is a negative regulator of ORF50 expression. Collectively, the study elucidates the regulatory mechanism of ORF50 stability and implicates that MDM2 may have a significant role in the maintenance of viral latency by lowering basal level of ORF50. PMID:27698494

  15. Regulation of the Abundance of Kaposi's Sarcoma-Associated Herpesvirus ORF50 Protein by Oncoprotein MDM2.

    PubMed

    Chang, Tzu-Hsuan; Wang, Shie-Shan; Chen, Lee-Wen; Shih, Ying-Ju; Chang, Li-Kwan; Liu, Shih-Tung; Chang, Pey-Jium

    2016-10-01

    The switch between latency and the lytic cycle of Kaposi's sarcoma-associated herpesvirus (KSHV) is controlled by the expression of virally encoded ORF50 protein. Thus far, the regulatory mechanism underlying the protein stability of ORF50 is unknown. Our earlier studies have demonstrated that a protein abundance regulatory signal (PARS) at the ORF50 C-terminal region modulates its protein abundance. The PARS region consists of PARS-I (aa 490-535) and PARS-II (aa 590-650), and mutations in either component result in abundant expression of ORF50. Here, we show that ORF50 protein is polyubiquitinated and its abundance is controlled through the proteasomal degradation pathway. The PARS-I motif mainly functions as a nuclear localization signal in the control of ORF50 abundance, whereas the PARS-II motif is required for the binding of ubiquitin enzymes in the nucleus. We find that human oncoprotein MDM2, an ubiquitin E3 ligase, is capable of interacting with ORF50 and promoting ORF50 degradation in cells. The interaction domains between both proteins are mapped to the PARS region of ORF50 and the N-terminal 220-aa region of MDM2. Additionally, we identify lysine residues at positions 152 and 154 in the N-terminal domain of ORF50 critically involved in MDM2-mediated downregulation of ORF50 levels. Within KSHV-infected cells, the levels of MDM2 were greatly reduced during viral lytic cycle and genetic knockdown of MDM2 in these cells favored the enhancement of ORF50 expression, supporting that MDM2 is a negative regulator of ORF50 expression. Collectively, the study elucidates the regulatory mechanism of ORF50 stability and implicates that MDM2 may have a significant role in the maintenance of viral latency by lowering basal level of ORF50.

  16. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage

    PubMed Central

    Maya, Ruth; Balass, Moshe; Kim, Seong-Tae; Shkedy, Dganit; Leal, Juan-Fernando Martinez; Shifman, Ohad; Moas, Miri; Buschmann, Thomas; Ronai, Ze'ev; Shiloh, Yosef; Kastan, Michael B.; Katzir, Ephraim; Oren, Moshe

    2001-01-01

    The p53 tumor suppressor protein, a key regulator of cellular responses to genotoxic stress, is stabilized and activated after DNA damage. The rapid activation of p53 by ionizing radiation and radiomimetic agents is largely dependent on the ATM kinase. p53 is phosphorylated by ATM shortly after DNA damage, resulting in enhanced stability and activity of p53. The Mdm2 oncoprotein is a pivotal negative regulator of p53. In response to ionizing radiation and radiomimetic drugs, Mdm2 undergoes rapid ATM-dependent phosphorylation prior to p53 accumulation. This results in a decrease in its reactivity with the 2A10 monoclonal antibody. Phage display analysis identified a consensus 2A10 recognition sequence, possessing the core motif DYS. Unexpectedly, this motif appears twice within the human Mdm2 molecule, at positions corresponding to residues 258–260 and 393–395. Both putative 2A10 epitopes are highly conserved and encompass potential phosphorylation sites. Serine 395, residing within the carboxy-terminal 2A10 epitope, is the major target on Mdm2 for phosphorylation by ATM in vitro. Mutational analysis supports the conclusion that Mdm2 undergoes ATM-dependent phosphorylation on serine 395 in vivo in response to DNA damage. The data further suggests that phosphorylated Mdm2 may be less capable of promoting the nucleo-cytoplasmic shuttling of p53 and its subsequent degradation, thereby enabling p53 accumulation. Our findings imply that activation of p53 by DNA damage is achieved, in part, through attenuation of the p53-inhibitory potential of Mdm2. PMID:11331603

  17. Discovery of Dual Inhibitors of MDM2 and XIAP for Cancer Treatment | Office of Cancer Genomics

    Cancer.gov

    MDM2 and XIAP are mutually regulated. Binding of MDM2 RING protein to the IRES region on XIAP mRNA results in MDM2 protein stabilization and enhanced XIAP translation. In this study, we developed a protein-RNA fluorescence polarization (FP) assay for high-throughput screening (HTS) of chemical libraries. Our FP-HTS identified eight inhibitors that blocked the MDM2 protein-XIAP RNA interaction, leading to MDM2 degradation.

  18. Design, synthesis and biological evaluation of sulfamide and triazole benzodiazepines as novel p53-MDM2 inhibitors.

    PubMed

    Yu, Zhiliang; Zhuang, Chunlin; Wu, Yuelin; Guo, Zizhao; Li, Jin; Dong, Guoqiang; Yao, Jianzhong; Sheng, Chunquan; Miao, Zhenyuan; Zhang, Wannian

    2014-09-05

    A series of sulfamide and triazole benzodiazepines were obtained with the principle of bioisosterism. The p53-murine double minute 2 (MDM2) inhibitory activity and in vitro antitumor activity were evaluated. Most of the novel benzodiazepines exhibited moderate protein binding inhibitory activity. Particularly, triazole benzodiazepines showed good inhibitory activity and antitumor potency. Compound 16 had promising antitumor activity against the U-2 OS human osteosarcoma cell line with an IC50 value of 4.17 μM, which was much better than that of nutlin-3. The molecular docking model also successfully predicted that this class of compounds mimicked the three critical residues of p53 binding to MDM2.

  19. Immunohistochemical detection of P53 and Mdm2 in vitiligo

    PubMed Central

    Bakry, Ola A.; Hammam, Mostafa A.; Wahed, Moshira M. Abdel

    2012-01-01

    Background: Vitiligo is a common depigmented skin disorder that is caused by selective destruction of melanocytes. It is generally accepted that the main function of melanin resides in the protection of skin cells against the deleterious effect of ultraviolet rays (UVRs). Association of vitiligo and skin cancer has been a subject of controversy. Occurrence of skin cancer in long-lasting vitiligo is rare despite multiple evidences of DNA damage in vitiliginous skin. Aim: To detect the expression of P53 and Mdm2 proteins in both depigmented and normally pigmented skin of vitiligo patients and to compare it to control subjects suffering from nonmelanoma skin cancer (NMSC). Materials and Methods: Thirty-four patients with vitiligo and 30 age and sex-matched patients with nodulo-ulcerative basal cell carcinoma (BCC) as a control group were selected. Both patients and control subjects had outdoor occupations. Skin biopsies were taken from each case and control subjects. Histopathological examination of Hematoxylin and eosin-stained sections was done. Expression of P53 and Mdm2 proteins were examined immunohistochemically. Results: Both P53 and Mdm2 were strongly expressed in depigmented as well as normally pigmented skin of vitiligo patients. This expression involved the epidermis, skin adnexa and blood vessels with significant differences between cases and controls. Conclusions: The overexpression of P53 and Mdm2 proteins in both normally pigmented and depigmented skin of patients with vitiligo could contribute to the decreased occurrence of actinic damage and NMSC in these patients. PMID:23189248

  20. Anatomy of Mdm2 and Mdm4 in evolution.

    PubMed

    Tan, Ban Xiong; Liew, Hoe Peng; Chua, Joy S; Ghadessy, Farid J; Tan, Yaw Sing; Lane, David P; Coffill, Cynthia R

    2017-02-01

    Mouse double minute (Mdm) genes span an evolutionary timeframe from the ancient eukaryotic placozoa Trichoplax adhaerens to Homo sapiens, implying a significant and possibly conserved cellular role throughout history. Maintenance of DNA integrity and response to DNA damage involve many key regulatory pathways, including precise control over the tumour suppressor protein p53. In most vertebrates, degradation of p53 through proteasomal targeting is primarily mediated by heterodimers of Mdm2 and the Mdm2-related protein Mdm4 (also known as MdmX). Both Mdm2 and Mdm4 have p53-binding regions, acidic domains, zinc fingers, and C-terminal RING domains that are conserved throughout evolution. Vertebrates typically have both Mdm2 and Mdm4 genes, while analyses of sequenced genomes of invertebrate species have identified single Mdm genes, suggesting that a duplication event occurred prior to emergence of jawless vertebrates about 550-440 million years ago. The functional relationship between Mdm and p53 in T. adhaerens, an organism that has existed for 1 billion years, implies that these two proteins have evolved together to maintain a conserved and regulated function. © The Author (2017). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  1. Therapeutic Inhibition of the MDM2-p53 Interaction Prevents Recurrence of Adenoid Cystic Carcinomas.

    PubMed

    Nör, Felipe; Warner, Kristy A; Zhang, Zhaocheng; Acasigua, Gerson A; Pearson, Alexander T; Kerk, Samuel A; Helman, Joseph I; Sant'Ana Filho, Manoel; Wang, Shaomeng; Nör, Jacques E

    2017-02-15

    Purpose: Conventional chemotherapy has modest efficacy in advanced adenoid cystic carcinomas (ACC). Tumor recurrence is a major challenge in the management of ACC patients. Here, we evaluated the antitumor effect of a novel small-molecule inhibitor of the MDM2-p53 interaction (MI-773) combined with cisplatin in patient-derived xenograft (PDX) ACC tumors.Experimental Design: Therapeutic strategies with MI-773 and/or cisplatin were evaluated in SCID mice harboring PDX ACC tumors (UM-PDX-HACC-5) and in low passage primary human ACC cells (UM-HACC-2A, -2B, -5, -6) in vitro The effect of therapy on the fraction of cancer stem cells (CSC) was determined by flow cytometry for ALDH activity and CD44 expression.Results: Combined therapy with MI-773 with cisplatin caused p53 activation, induction of apoptosis, and regression of ACC PDX tumors. Western blots revealed induction of MDM2, p53 and downstream p21 expression, and regulation of apoptosis-related proteins PUMA, BAX, Bcl-2, Bcl-xL, and active caspase-9 upon MI-773 treatment. Both single-agent MI-773 and MI-773 combined with cisplatin decreased the fraction of CSCs in PDX ACC tumors. Notably, neoadjuvant MI-773 and surgery eliminated tumor recurrences during a postsurgical follow-up of more than 300 days. In contrast, 62.5% of mice that received vehicle control presented with palpable tumor recurrences within this time period (P = 0.0097).Conclusions: Collectively, these data demonstrate that therapeutic inhibition of MDM2-p53 interaction by MI-773 decreased the CSC fraction, sensitized ACC xenograft tumors to cisplatin, and eliminated tumor recurrence. These results suggest that patients with ACC might benefit from the therapeutic inhibition of the MDM2-p53 interaction. Clin Cancer Res; 23(4); 1036-48. ©2016 AACR.

  2. Structure of the stapled p53 peptide bound to Mdm2.

    PubMed

    Baek, Sohee; Kutchukian, Peter S; Verdine, Gregory L; Huber, Robert; Holak, Tad A; Lee, Ki Won; Popowicz, Grzegorz M

    2012-01-11

    Mdm2 is a major negative regulator of the tumor suppressor p53 protein, a protein that plays a crucial role in maintaining genome integrity. Inactivation of p53 is the most prevalent defect in human cancers. Inhibitors of the Mdm2-p53 interaction that restore the functional p53 constitute potential nongenotoxic anticancer agents with a novel mode of action. We present here a 2.0 Å resolution structure of the Mdm2 protein with a bound stapled p53 peptide. Such peptides, which are conformationally and proteolytically stabilized with all-hydrocarbon staples, are an emerging class of biologics that are capable of disrupting protein-protein interactions and thus have broad therapeutic potential. The structure represents the first crystal structure of an i, i + 7 stapled peptide bound to its target and reveals that rather than acting solely as a passive conformational brace, a staple can intimately interact with the surface of a protein and augment the binding interface.

  3. IMPORTANCE OF APOPTOSIS MARKERS (MDM2, BCL-2 AND Bax) IN BENIGN PROSTATIC HYPERPLASIA AND PROSTATE CANCER.

    PubMed

    Saker, Z; Tsintsadze, O; Jiqia, I; Managadze, L; Chkhotua, A

    2015-12-01

    MDM2, Bcl-2 and Bax are well recognized markers of apoptosis. The goal of the current study was evaluation of the activity of these markers in different cells of BPH, PCa and hormonally treated prostate cancer (CRPCa) tissues. Activity of the markers has been evaluated in: 39 BPH, 28 prostate cancer (PCa) and 10 castration resistant PCa (CRPCa) tissues. Possible association of intensity of the expression with the disease clinical parameters has been assessed. Activity of MDM2 was higher in PCa and CRPCa as compared with BPH. This difference has been detected in epithelial and vascular prostatic cells. Epithelial activity of Bcl-2 was significantly lower in BPH as compared with PCa and CRPCa. Conversely, intensity of pro-apoptotic protein Bax was significantly higher in PBH than in PCa and CRPCa. The Bax activity in acinar and ductal cells of BPH was positively correlated with age. Intensity of Bcl-2 was significantly increasing, while activity of Bax was decreasing with increasing prostate volume. Significant correlation has been detected with the markers' activity and residual urine. In particular, MDM2 activity was increasing while epithelial activity of Bax was decreasing with increasing residual urine. Serum PSA level was positively correlated with MDM2 and negatively correlated with Bax activity. p27(Kip1) cell cycle inhibitor was positively correlated with Bax but negatively correlated with Bcl-2 activities. Proliferation marker Ki67 was positively correlated with MDM2 and Bcl-2. With increasing Ki67, Bax activity was significantly decreasing. Cyclin D3 was positively correlated with Bax. This pilot study has shown importance of apoptosis markers in BPH and PCa. It is the first study showing complex interrelation between apoptosis and cell cycle regulating proteins in BPH and PCa.

  4. MDM2 promoter polymorphism and pancreatic cancer risk and prognosis.

    PubMed

    Asomaning, Kofi; Reid, Amy E; Zhou, Wei; Heist, Rebecca S; Zhai, Rihong; Su, Li; Kwak, Eunice L; Blaszkowsky, Lawrence; Zhu, Andrew X; Ryan, David P; Christiani, David C; Liu, Geoffrey

    2008-06-15

    The mouse double minute 2 homologue (MDM2) -309T/G promoter polymorphism has been associated recently with the development and prognosis of a variety of tumors. The G allele is associated with increased affinity for Sp1 binding and higher MDM2 mRNA and protein levels, leading to diminished tumor suppressor activity of the p53 pathway. We hypothesized that the G allele is also associated with increased risk and worse outcome in pancreatic cancer. We evaluated the association between MDM2 309T/G and the risk of histologically confirmed pancreatic adenocarcinoma at Massachusetts General Hospital using unconditional logistic regression (123 cases and 372 controls). Complete overall survival and progression-free survival data were also available for 109 newly diagnosed patients. The adjusted odds ratios (95% confidence intervals) of pancreatic cancer associated with the MDM2 T/G and G/G genotypes compared with TT were 1.89 (1.20-2.99) and 2.07 (1.03-4.16), respectively (adjusting for age, gender, smoking status, and pack-years of smoking). In Cox proportional hazards model with the wild-type T/T genotype as the reference category and adjusting for stage, treatment, and performance status, both the heterozygous T/G and the homozygous G/G genotypes were associated with decreased progression-free survival [adjusted hazard ratio (95% confidence interval), 1.67 (0.98-2.84) for T/G and 2.28 (1.11-4.71) for G/G] and overall survival [2.64 (1.23-5.67) for T/G and 3.12 (1.22-7.91) for G/G]. The G allele of the MDM2 -309T/G polymorphism is associated with 2- to 3-fold increase risk and progression of pancreatic adenocarcinoma and a corresponding decrease in survival.

  5. P19ARF stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2

    PubMed Central

    Tao, Weikang; Levine, Arnold J.

    1999-01-01

    The INK4a-ARF locus encodes two distinct tumor suppressors, p16INK4a and p19ARF. Whereas p16INK4a restrains cell growth through preventing phosphorylation of the retinoblastoma protein, p19ARF acts by attenuating Mdm2-mediated degradation of p53, thereby stabilizing p53. Recent data indicate that Mdm2 shuttles between the nucleus and the cytoplasm and that nucleo-cytoplasmic shuttling of Mdm2 is essential for Mdm2’s ability to promote p53 degradation. Therefore, Mdm2 must export p53 from the nucleus to the cytoplasm where it targets p53 for degradation. We show here that coexpression of p19ARF blocks the nucleo-cytoplasmic shuttling of Mdm2. Moreover, subnuclear localization of Mdm2 changes from the nucleoplasm to the nucleolus in a shuttling time-dependent manner, whereas p19ARF is exclusively located in the nucleolus. In heterokaryons containing Mdm2 and p19ARF, the longer the Mdm2 shuttling is allowed, the more Mdm2 protein colocalizes with p19ARF in the nucleolus, implying that Mdm2 moves from the nucleoplasm to the nucleolus and then associates with p19ARF there. Furthermore, whether or not Mdm2 colocalizes with p19ARF in the nucleolus, p19ARF prevents Mdm2 shuttling. This observation suggests that Mdm2 might be exported through the nucleolus and p19ARF could inhibit the nuclear export of Mdm2 by tethering Mdm2 in the nucleolus. Taken together, p19ARF could stabilize p53 by inhibiting the nuclear export of Mdm2. PMID:10359817

  6. Transcriptional repressor NIR interacts with the p53-inhibiting ubiquitin ligase MDM2.

    PubMed

    Heyne, Kristina; Förster, Juliane; Schüle, Roland; Roemer, Klaus

    2014-04-01

    NIR (novel INHAT repressor) can bind to p53 at promoters and inhibit p53-mediated gene transactivation by blocking histone acetylation carried out by p300/CBP. Like NIR, the E3 ubiquitin ligase MDM2 can also bind and inhibit p53 at promoters. Here, we present data indicating that NIR, which shuttles between the nucleolus and nucleoplasm, not only binds to p53 but also directly to MDM2, in part via the central acidic and zinc finger domain of MDM2 that is also contacted by several other nucleolus-based MDM2/p53-regulating proteins. Like some of these, NIR was able to inhibit the ubiquitination of MDM2 and stabilize MDM2; however, unlike these nucleolus-based MDM2 regulators, NIR did not inhibit MDM2 to activate p53. Rather, NIR cooperated with MDM2 to repress p53-induced transactivation. This cooperative repression may at least in part involve p300/CBP. We show that NIR can block the acetylation of p53 and MDM2. Non-acetylated p53 has been documented previously to more readily associate with inhibitory MDM2. NIR may thus help to sustain the inhibitory p53:MDM2 complex, and we present evidence suggesting that all three proteins can indeed form a ternary complex. In sum, our findings suggest that NIR can support MDM2 to suppress p53 as a transcriptional activator.

  7. Lung cancer stem cells, p53 mutations and MDM2.

    PubMed

    Gadepalli, Venkat Sundar; Deb, Swati Palit; Deb, Sumitra; Rao, Raj R

    2014-01-01

    Over the past few decades, advances in cancer research have enabled us to understand the different mechanisms that contribute to the aberrant proliferation of normal cells into abnormal cells that result in tumors. In the pursuit to find cures, researchers have primarily focused on various molecular level changes that are unique to cancerous cells. In humans, about 50 % or more cancers have a mutated tumor suppressor p53 gene thereby resulting in accumulation of p53 protein and losing its function to activate the target genes that regulate cell cycle and apoptosis. Extensive research conducted in murine cancer models with activated p53, loss of p53, or p53 missense mutations have facilitated researchers to understand the role of this key protein. Despite the identification of numerous triggers that causes lung cancer specific cure still remain elusive. One of the primary reasons attributed to this is due to the fact that the tumor tissue is heterogeneous and contains numerous sub-populations of cells. Studies have shown that a specific sub-population of cells termed as cancer stem cells (CSCs) drive the recurrence of cancer in response to standard chemotherapy. These CSCs are mutated cells with core properties similar to those of adult stem cells. They reside in a microenvironment within the tumor tissue that supports their growth and make them less susceptible to drug treatment. These cells possess properties of symmetric self-renewal and migration thus driving tumor formation and metastasis. Therefore, research specifically targeting these cells has gained prominence towards developing new therapeutic agents against cancer. This chapter focuses on lung cancer stem cells, p53 mutations noted in these cells, and importance of MDM2 interactions. Further, research approaches for better understanding of molecular mechanisms that drive CSC function and developing appropriate therapies are discussed.

  8. Degradation of MDM2 by the interaction between berberine and DAXX leads to potent apoptosis in MDM2-overexpressing cancer cells.

    PubMed

    Zhang, Xiaoling; Gu, Lubing; Li, Jiansha; Shah, Noopur; He, Jing; Yang, Lin; Hu, Qun; Zhou, Muxiang

    2010-12-01

    Berberine, a natural product derived from a plant used in Chinese herbal medicine, is reported to exhibit anticancer effects; however, its mechanism of action is not clearly defined. Herein, we demonstrate that berberine induces apoptosis in acute lymphoblastic leukemia (ALL) cells by downregulating the MDM2 oncoprotein. The proapoptotic effects of berberine were closely associated with both the MDM2 expression levels and p53 status of a set of ALL cell lines. The most potent apoptosis was induced by berberine in ALL cells with both MDM2 overexpression and a wild-type (wt)-p53, whereas no proapoptotic effect was detected in ALL cells that were negative for MDM2 and wt-p53. In contrast to the conventional chemotherapeutic drug doxorubicin, which induces p53 activation and a subsequent upregulation of MDM2, berberine strongly induced persistent downregulation of MDM2 followed by a steady-state activation of p53. We discovered that downregulation of MDM2 in ALL cells by berberine occurred at a posttranslational level through modulation of death domain-associated protein (DAXX), which disrupted the MDM2-DAXX-HAUSP interactions and thereby promoted MDM2 self-ubiquitination and degradation. Given that MDM2-overexpressing cancer cells are commonly chemoresistant, our findings suggest that this naturally derived agent may have a highly useful role in the treatment of cancer patients with refractory disease.

  9. Degradation of MDM2 by the interaction between berberine and DAXX leads to potent apoptosis in MDM2-overexpressing cancer cells

    PubMed Central

    Zhang, Xiaoling; Gu, Lubing; Li, Jiansha; Shah, Noopur; He, Jing; Yang, Lin; Hu, Qun; Zhou, Muxiang

    2010-01-01

    Berberine, a natural product derived from a plant used in Chinese herbal medicine, is reported to exhibit anticancer effects; however, its mechanism of action is not clearly defined. Herein, we demonstrate that berberine induces apoptosis in acute lymphoblastic leukemia (ALL) cells by downregulating the MDM2 oncoprotein. The pro-apoptotic effects of berberine were closely associated with both the MDM2 expression levels and p53 status of a set of ALL cell lines. The most potent apoptosis was induced by berberine in ALL cells with both MDM2 overexpression and a wild-type (wt) p53, while no pro-apoptotic effect was detected in ALL cells that were negative for MDM2 and wt-p53. In contrast to the conventional chemotherapeutic drug doxorubicin, which induces p53 activation and a subsequent upregulation of MDM2, berberine strongly induced persistent downregulation of MDM2 followed by a steady-state activation of p53. We discovered that downregulation of MDM2 in ALL cells by berberine occurred at a post-translational level through modulation of DAXX, which disrupted the MDM2-DAXX-HAUSP interactions and thereby promoted MDM2 self-ubiquitination and degradation. Given that MDM2-overexpressing cancer cells are commonly chemoresistant, our findings suggest that this naturally-derived agent may have a highly useful role in the treatment of cancer patients with refractory disease. PMID:20935220

  10. The Impact of a Common MDM2 SNP on the Sensitivity of Breast Cancer to Treatment

    DTIC Science & Technology

    2012-06-01

    could decrease the effectiveness of treatment. These outcomes are likely due to the increased expression of mdm2 protein in SNP309 individuals, which...expression at the protein level occur in the mdm2 SNP309 cell line. There was no association between the mdm2 SNP309 and clinical outcome of breast cancer...with chemotherapy, hormonal therapy and radiation therapy. 1S. SUBJECT TERMS mdm2, breast cancer, polymorphisms 16. SECURITY CLASSIFICATION OF: 17

  11. Regulation of MDM2 Activity by Nucleolin

    DTIC Science & Technology

    2005-06-01

    tumorigenesis with -50% of human cancers showing mutation of the TP53 gene , often a loss of one gene copy and a point mutation within the second. p53...Sordat B, Gillet M, Schorderet D, Bosman FT, Chaubert P (2001) Methylation silencing and mutations of the p14ARF and pl6INK4a genes in colon cancer. Lab...for the first machinery (for example, see reference 53 and references step of pre-rRNA processing (22). Mutation of the genes en- therein). It is

  12. Inhibition of invasion and migration of prostate cancer cells by miRNA-509-5p via targeting MDM2.

    PubMed

    Tian, X M; Luo, Y Z; He, P; Li, J; Ma, Z W; An, Y

    2017-02-23

    Prostate cancer is a common malignancy of the male reproductive-urinary system. MDM2 is an oncogene, whose expression can be regulated by microRNA (miRNA). The present study investigated the expression and correlation of miRNA-509-5p and MDM2 to determine the mechanism of their function in invasion and migration of prostate cancer cells. RT-PCR was performed to detect the expression of miRNA-509-5p and MDM2 in tumor, tumor-adjacent, and normal tissues, obtained from prostate cancer patients, using the HGC-27 cell line as an in vitro model. Cultured HGC-27 cells were transfected with miRNA-509-5p mimics, miRNA-509-5p inhibitor, and mimic control. Expression levels of miRNA-509-5p and MDM2 were quantified by RT-PCR. Cell proliferation and invasion/migration were examined by the MTT and transwell assays, respectively. MiRNA-509-5p was significantly down-regulated in prostate cancer cells exhibiting high MDM2 mRNA levels. MiRNA mimic transfection elevated miRNA levels and suppressed MDM2 expression. With prolonged incubation time, the proliferation ratio and OD values of miRNA-509-5p mimic transfected cells decreased, along with decrease in cell migration and invasion. These results suggested that miRNA-509-5p negatively regulates MDM2 expression via targeting the 3'-UTR of genes. As a novel tumor suppressor, miRNA-509-5p in prostate cancer HGC-27 cells can suppress MDM2 expression and inhibit cell proliferation, invasion, and migration. Therefore, miRNA-509-5p could be used as a novel therapeutic agent in the treatment of prostate cancer.

  13. [Sarcoma of the spleen with MDM2 expression].

    PubMed

    Hansen, T; Titze, U; Deeb, A; Eikötter, B; Schütz, M; Schildhaus, H U

    2016-07-01

    Primary sarcomas and sarcoma metastases are a rarity in the spleen. We report on the case of a 69-year-old male patient presenting with unclear abdominal symptoms and computed tomography (CT) revealed a tumor mass in the spleen. Histologically the tumor mass predominantly showed features of a spindle cell sarcoma with lymphoid infiltrates. The expression and amplification of MDM2 could be demonstrated by means of immunohistochemistry and fluorescence in situ hybridization (FISH). Furthermore, staging examinations did not reveal indications of any other primary tumors. These preliminary findings were suggestive of a dedifferentiated liposarcoma; however, in the further diagnostic work-up the tumor showed strong expression of CD21 and CD23 and was ultimately diagnosed as a follicular dendritic cell sarcoma (FDCS). The case emphasizes that MDM2 expression represents a possible pitfall in the diagnosis of spindle cell tumors. The differential diagnostic distinction between FDCS and a dedifferentiated liposarcoma is discussed.

  14. Concordant p53 and mdm-2 protein expression in vulvar squamous cell carcinoma and adjacent lichen sclerosus.

    PubMed

    Carlson, J A; Amin, S; Malfetano, J; Tien, A T; Selkin, B; Hou, J; Goncharuk, V; Wilson, V L; Rohwedder, A; Ambros, R; Ross, J S

    2001-06-01

    To determine if carcinogenic events in vulvar skin precede the onset of morphologic atypia, the authors investigated for derangements in DNA content, cell proliferation, and cell death in vulvar carcinomas and surrounding skin in 140 samples of tumor and surrounding skin collected from 35 consecutive vulvectomy specimen for squamous cell carcinoma (SCC) or vulvar intraepithelial neoplasia (VIN) 3. Vulvar non-cancer excisions were used as controls. Investigations consisted of histologic classification and measurement of 9 variables--epidermal thickness (acanthosis and rete ridge length), immunolabeling index (LI) for 3 proteins (p53 protein, Ki-67, and mdm-2), pattern of p53 expression (dispersed vs. compact), DNA content index, and presence of aneuploidy by image analysis and apoptotic rate by Apotag labeling. Significant positive correlations were found for all nine variables studied versus increasing histologic severity in two proposed histologic stepwise models of vulvar carcinogenesis (lichen sclerosus (LS) and VIN 3 undifferentiated associated SCC groups). High p53 LI (>25) and the compact pattern of p53 expression (suspected oncoprotein) significantly correlated with LS and its associated vulvar samples compared with samples not associated with LS (P < or = 0.001). Furthermore, p53 LI, mdm-2 LI, and pattern of p53 expression were concordant between patient matched samples of LS and SCC. In addition, mdm-2 LI significantly correlated with dispersed pattern p53 LI suggesting a response to wild-type p53 protein accumulation. These findings support the hypothesis that neoplastic transformation occurs in sequential steps and compromises proteins involved in the cell cycle control. Concordance of p53 and mdm-2 protein expression in LS and adjacent SCC provides evidence that LS can act as a precursor lesion in the absence of morphologic atypia. Overexpression of mdm-2 with stabilization and inactivation of p53 protein may provide an alternate pathway for vulvar

  15. Induction of apoptosis in non-small cell lung cancer by downregulation of MDM2 using pH-responsive PMPC-b-PDPA/siRNA complex nanoparticles.

    PubMed

    Yu, Haijun; Zou, Yonglong; Jiang, Lei; Yin, Qi; He, Xinyu; Chen, Lingli; Zhang, Zhiwen; Gu, Wangwen; Li, Yaping

    2013-04-01

    Non-small cell lung cancer (NSCLC) accounts for the majority of lung cancer caused human death. In this work, we selected oncogene mouse double minute 2 (MDM2) as a therapeutic target for NSCLC treatment and proposed that sufficient MDM2 knockdown could inhibit tumor growth via induction of cell cycle arrest and cancer cell apoptosis. On this regard, a new pH-responsive diblock copolymer of poly(methacryloyloxy ethyl phosphorylcholine)-block-poly(diisopropanolamine ethyl methacrylate) (PMPC-b-PDPA)/siRNA-MDM2 complex nanoparticle with minimized surface charge and suitable particle size was designed and developed for siRNA-MDM2 delivery in vitro and in vivo. The experimental results showed that the nanoparticles were spherical with particle size around 50 nm. MDM2 knockdown in p53 mutant NSCLC H2009 cells induced significant cell cycle arrest, apoptosis and growth inhibition through upregulation of p21 and activation of caspase-3. Furthermore, the growth of H2009 xenograft tumor in nude mice was inhibited via repeated injection of PMPC-b-PDPA/siRNA-MDM2 complex nanoparticles. These results suggested that PMPC-b-PDPA/siRNA complex nanoparticles targeting a unique set of oncogenes could be developed into a new therapeutic approach for NSCLC treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Aberrant splicing of the DMP1-ARF-MDM2-p53 pathway in cancer.

    PubMed

    Inoue, Kazushi; Fry, Elizabeth A

    2016-07-01

    Alternative splicing (AS) of mRNA precursors is a ubiquitous mechanism for generating numerous transcripts with different activities from one genomic locus in mammalian cells. The gene products from a single locus can thus have similar, dominant-negative or even opposing functions. Aberrant AS has been found in cancer to express proteins that promote cell growth, local invasion and metastasis. This review will focus on the aberrant splicing of tumor suppressor/oncogenes that belong to the DMP1-ARF-MDM2-p53 pathway. Our recent study shows that the DMP1 locus generates both tumor-suppressive DMP1α (p53-dependent) and oncogenic DMP1β (p53-independent) splice variants, and the DMP1β/α ratio increases with neoplastic transformation of breast epithelial cells. This process is associated with high DMP1β protein expression and shorter survival of breast cancer (BC) patients. Accumulating pieces of evidence show that ARF is frequently inactivated by aberrant splicing in human cancers, demonstrating its involvement in human malignancies. Splice variants from the MDM2 locus promote cell growth in culture and accelerate tumorigenesis in vivo. Human cancers expressing these splice variants are associated with advanced stage/metastasis, and thus have negative clinical impacts. Although they lack most of the p53-binding domain, their activities are mostly dependent on p53 since they bind to wild-type MDM2. The p53 locus produces splice isoforms that have either favorable (β/γ at the C-terminus) or negative impact (Δ40, Δ133 at the N-terminus) on patients' survival. As the oncogenic AS products from these loci are expressed only in cancer cells, they may eventually become targets for molecular therapies. © 2016 UICC.

  17. Structure of a stapled peptide antagonist bound to nutlin-resistant Mdm2.

    PubMed

    Chee, Sharon Min Qi; Wongsantichon, Jantana; Soo Tng, Quah; Robinson, Robert; Joseph, Thomas L; Verma, Chandra; Lane, David P; Brown, Christopher J; Ghadessy, Farid J

    2014-01-01

    As key negative regulator of the p53 tumour suppressor, Mdm2 is an attractive therapeutic target. Small molecules such as Nutlin have been developed to antagonise Mdm2, resulting in p53-dependent death of tumour cells. We have recently described a mutation in Mdm2 (M62A), which precludes binding of Nutlin, but not p53. This Nutlin-resistant variant is not, however, refractory to binding and inhibition by stapled peptide antagonists targeting the same region of Mdm2. A detailed understanding of how stapled peptides are recalcitrant to Mdm2 mutations conferring Nutlin-resistance will aid in the further development of potent Mdm2 antagonists. Here, we report the 2.00 Å crystal structure of a stapled peptide antagonist bound to Nutlin resistant Mdm2. The stapled peptide relies on an extended network of interactions along the hydrophobic binding cleft of Mdm2 for high affinity binding. Additionally, as seen in other stapled peptide structures, the hydrocarbon staple itself contributes to binding through favourable interactions with Mdm2. The structure highlights the intrinsic plasticity present in both Mdm2 and the hydrocarbon staple moiety, and can be used to guide future iterations of both small molecules and stapled peptides for improved antagonists of Mdm2.

  18. Structurally diverse MDM2–p53 antagonists act as modulators of MDR-1 function in neuroblastoma

    PubMed Central

    Chen, L; Zhao, Y; Halliday, G C; Berry, P; Rousseau, R F; Middleton, S A; Nichols, G L; Del Bello, F; Piergentili, A; Newell, D R; Lunec, J; Tweddle, D A

    2014-01-01

    Background: A frequent mechanism of acquired multidrug resistance in human cancers is overexpression of ATP-binding cassette transporters such as the Multi-Drug Resistance Protein 1 (MDR-1). Nutlin-3, an MDM2–p53 antagonist, has previously been reported to be a competitive MDR-1 inhibitor. Methods: This study assessed whether the structurally diverse MDM2–p53 antagonists, MI-63, NDD0005, and RG7388 are also able to modulate MDR-1 function, particularly in p53 mutant neuroblastoma cells, using XTT-based cell viability assays, western blotting, and liquid chromatography–mass spectrometry analysis. Results: Verapamil and the MDM2–p53 antagonists potentiated vincristine-mediated growth inhibition in a concentration-dependent manner when used in combination with high MDR-1-expressing p53 mutant neuroblastoma cell lines at concentrations that did not affect the viability of cells when given alone. Liquid chromatography–mass spectrometry analyses showed that verapamil, Nutlin-3, MI-63 and NDD0005, but not RG7388, led to increased intracellular levels of vincristine in high MDR-1-expressing cell lines. Conclusions: These results show that in addition to Nutlin-3, other structurally unrelated MDM2–p53 antagonists can also act as MDR-1 inhibitors and reverse MDR-1-mediated multidrug resistance in neuroblastoma cell lines in a p53-independent manner. These findings are important for future clinical trial design with MDM2–p53 antagonists when used in combination with agents that are MDR-1 substrates. PMID:24921920

  19. ERN1 knockdown modifies the hypoxic regulation of TP53, MDM2, USP7 and PERP gene expressions in U87 glioma cells.

    PubMed

    Danilovskyi, S V; Minchenko, D O; Moliavko, O S; Kovalevska, O V; Karbovskyi, L L; Minchenko, O H

    2014-01-01

    Endoplasmic reticulum stress and hypoxia are necessary components of malignant tumors growth and suppression of ERN1 (from endoplasmic reticulum to nuclei-1) signalling pathway, which is linked to the apoptosis and cell death processes, significantly decreases proliferative processes. Glioma cells with ERN1 knockdown were used in order to investigate the effect of ERNI blockade on the expression of TP53, MDM2, PERP, and USP7 genes and its hypoxic regulation. We have studied the expression of TP53 (tumor protein 53), MDM2 (TP53 E3 ubiquitin protein ligase homolog), PERP (TP53 apoptosis effector), and USP7 (ubiquitin specific peptidase 7) genes, which are related to cell proliferation and apoptosis, in glioma cells with ERN1 knockdown under hypoxic condition. It was shown that blockade of ERNI gene function in U87 glioma cells intensified the expression of TP53 and USP7 genes, but decreased the expression ofMDM2 and PERP genes. Thus, an enhanced expression of TP53 gene in ERN1 knockdown glioma cells correlates with the decreased level of ubiquitin ligase MDM2 and increased expression level of USP7 which deubiquitinates TP53 and MDM2 and induces TP53-dependent cell growth repression and apoptosis. At the same time, the expression levels of TP53, MDM2, and USP7 genes do not change significantly in glioma cells with suppression of endoribonuclease activity only, but PERP gene expression is strongly increased. Moreover, the expression of TP53 and UPS7 genes is decreased in hypoxic conditions in control glioma cells only; however, MDM2 and PERP gene expressions are increased in both cell types, being more significant in ERN1 knockdown cells. Thus, the expression of genes encoding TP53 and related to TP53 factors depends upon the endoplasmic reticulum stress signaling as well as on hypoxia, and correlates with suppression of glioma growth under ERN1 knockdown.

  20. microRNAs and Alu elements in the p53-Mdm2-Mdm4 regulatory network.

    PubMed

    Hoffman, Yonit; Pilpel, Yitzhak; Oren, Moshe

    2014-06-01

    p53 is a transcription factor that governs numerous stress response pathways within the cell. Maintaining the right levels of p53 is crucial for cell survival and proper cellular homeostasis. The tight regulation of p53 involves many cellular components, most notably its major negative regulators Mdm2 and Mdm4, which maintain p53 protein amount and activity in tight check. microRNAs (miRNAs) are small non-coding RNAs that target specific mRNAs to translational arrest and degradation. miRNAs are also key components of the normal p53 pathway, joining forces with Mdm2 and Mdm4 to maintain proper p53 activity. Here we review the current knowledge of miRNAs targeting Mdm2 and Mdm4, and their importance in different tissues and in pathological states such as cancer. In addition, we address the role of Alu sequences-highly abundant retroelements spread throughout the human genome, and their impact on gene regulation via the miRNA machinery. Alus occupy a significant portion of genes' 3'UTR, and as such they have the potential to impact mRNA regulation. Since Alus are primate-specific, they introduce a new regulatory layer into primate genomes. Alus can influence and alter gene regulation, creating primate-specific cancer-preventive regulatory mechanisms to sustain the transition to longer life span in primates. We review the possible influence of Alu sequences on miRNA functionality in general and specifically within the p53 network.

  1. HAUSP, a novel deubiquitinase for Rb - MDM2 the critical regulator.

    PubMed

    Bhattacharya, Seemana; Ghosh, Mrinal K

    2014-07-01

    Tumor suppressor retinoblastoma-associated protein (Rb) is an important cell cycle regulator, arresting cells in early G1. It is commonly inactivated in cancers and its level is maintained during the cell cycle. Rb is regulated by various post-translational modifications such as phosphorylation, acetylation, ubiquitination and so on. Several E3 ligases including murine double minute 2 (MDM2) promote the degradation of Rb. This study focuses on the role of HAUSP (herpes virus associated ubiquitin specific protease) on Rb. Here, we show that HAUSP colocalizes and interacts with Rb to stabilize it from proteasomal degradation by removing wild-type and K48-linked ubiquitin chains in human embryonic kidney 293 (HEK293) cells. HAUSP deubiquitinates Rb in vivo and in vitro, leading to an increased cell population in the G1 phase. Hence, HAUSP is a novel deubiquitinase for Rb. Immunohistochemistry, western blotting and cell-based assays show that HAUSP is overexpressed in glioma and contributes towards glioma progression. However, HAUSP activity on Rb is abrogated in glioma (cancer), where these two proteins show an inverse relationship. MDM2 (a known substrate of HAUSP) serves as a better target for HAUSP-mediated deubiquitination in cancer cells, facilitating degradation of Rb and oncogenic progression. This novel regulatory axis is proteasome mediated, p53 independent, and the level of MDM2 is critical. The shift in equilibrium by differential deubiquitination in regulation of Rb explains a subtle difference existing between normal and cancer cells. This leads to speculation about a new possibility for distinguishing cancer cells from normal cells at the molecular level, which may be investigated for therapeutic intervention in the future.

  2. DNA damage response to the Mdm2 inhibitor Nutlin-3

    PubMed Central

    Verma, Rajeev; Rigatti, Marc J.; Belinsky, Glenn S.; Godman, Cassandra A.; Giardina, Charles

    2009-01-01

    Mdm2 inhibitors represent a promising class of p53 activating compounds that may be useful in cancer treatment and prevention. However, the consequences of pharmacological p53 activation are not entirely clear. We observed that Nutlin-3 triggered a DNA damage response in azoxymethane-induced mouse AJ02-NM0 colon cancer cells, characterized by the phosphorylation of H2AX (at Ser-139) and p53 (at Ser-15). The DNA damage response was highest in cells showing robust p53 stabilization, it could be triggered by the active but not the inactive Nutlin-3 enantiomer, and it was also activated by another pharmacological Mdm2 inhibitor (Caylin). Quantification of γH2AX-positive cells following Nutlin-3 exposure showed that approximately 17% of cells in late S and G2/M were mounting a DNA damage response (compared to a ~50% response to 5-fluorouracil). Nutlin-3 treatment caused the formation of double strand DNA strand breaks, promoted the formation of micronuclei, accentuated strand breakage induced by doxorubicin and sensitized the mouse colon cancer cells to DNA break-inducing topoisomerase II inhibitors. Although the HCT116 colon cancer cells did not mount a significant DNA damage response following Nutlin-3 treatment, Nutlin-3 enhanced the DNA damage response to the nucleotide synthesis inhibitor hydroxyurea in a p53-dependent manner. Finally, p21 deletion also sensitized HCT116 cells to the Nutlin-3-induced DNA damage response, suggesting that cell cycle checkpoint abnormalities may promote this response. We propose that p53 activation by Mdm2 inhibitors can result in the slowing of double stranded DNA repair. Although this effect may suppress illegitimate homologous recombination repair, it may also increase the risk of clastogenic events. PMID:19788889

  3. Synergistic cooperation of MDM2 and E2F1 contributes to TAp73 transcriptional activity

    SciTech Connect

    Kasim, Vivi; Huang, Can; Zhang, Jing; Jia, Huizhen; Wang, Yunxia; Yang, Li; Miyagishi, Makoto; Wu, Shourong

    2014-07-04

    Highlights: • MDM2 is a novel positive regulator of TAp73 transcriptional activity. • MDM2 colocalizes together and physically interacts with E2F1. • Synergistic cooperation of MDM2 and E2F1 is crucial for TAp73 transcription. • MDM2 regulates TAp73 transcriptional activity in a p53-independent manner. - Abstract: TAp73, a structural homologue of p53, plays an important role in tumorigenesis. E2F1 had been reported as a transcriptional regulator of TAp73, however, the detailed mechanism remains to be elucidated. Here we reported that MDM2-silencing reduced the activities of the TAp73 promoters and the endogenous TAp73 expression level significantly; while MDM2 overexpression upregulated them. We further revealed that the regulation of TAp73 transcriptional activity occurs as a synergistic effect of MDM2 and E2F1, most probably through their physical interaction in the nuclei. Furthermore, we also suggested that MDM2 might be involved in DNA damage-induced TAp73 transcriptional activity. Finally, we elucidated that MDM2-silencing reduced the proliferation rate of colon carcinoma cells regardless of the p53 status. Our data show a synergistic effect of MDM2 and E2F1 on TAp73 transcriptional activity, suggesting a novel regulation pathway of TAp73.

  4. MDM2 prevents spontaneous tubular epithelial cell death and acute kidney injury

    PubMed Central

    Thomasova, Dana; Ebrahim, Martrez; Fleckinger, Kristina; Li, Moying; Molnar, Jakob; Popper, Bastian; Liapis, Helen; Kotb, Ahmed M; Siegerist, Florian; Endlich, Nicole; Anders, Hans-Joachim

    2016-01-01

    Murine double minute-2 (MDM2) is an E3-ubiquitin ligase and the main negative regulator of tumor suppressor gene p53. MDM2 has also a non-redundant function as a modulator of NF-kB signaling. As such it promotes proliferation and inflammation. MDM2 is highly expressed in the unchallenged tubular epithelial cells and we hypothesized that MDM2 is necessary for their survival and homeostasis. MDM2 knockdown by siRNA or by genetic depletion resulted in demise of tubular cells in vitro. This phenotype was completely rescued by concomitant knockdown of p53, thus suggesting p53 dependency. In vivo experiments in the zebrafish model demonstrated that the tubulus cells of the larvae undergo cell death after the knockdown of mdm2. Doxycycline-induced deletion of MDM2 in tubular cell-specific MDM2-knockout mice Pax8rtTa-cre; MDM2f/f caused acute kidney injury with increased plasma creatinine and blood urea nitrogen and sharp decline of glomerular filtration rate. Histological analysis showed massive swelling of renal tubular cells and later their loss and extensive tubular dilation, markedly in proximal tubules. Ultrastructural changes of tubular epithelial cells included swelling of the cytoplasm and mitochondria with the loss of cristae and their transformation in the vacuoles. The pathological phenotype of the tubular cell-specific MDM2-knockout mouse model was completely rescued by co-deletion of p53. Tubular epithelium compensates only partially for the cell loss caused by MDM2 depletion by proliferation of surviving tubular cells, with incomplete MDM2 deletion, but rather mesenchymal healing occurs. We conclude that MDM2 is a non-redundant survival factor for proximal tubular cells by protecting them from spontaneous p53 overexpression-related cell death. PMID:27882940

  5. Oxazoloisoindolinones with in vitro antitumor activity selectively activate a p53-pathway through potential inhibition of the p53-MDM2 interaction.

    PubMed

    Soares, Joana; Pereira, Nuno A L; Monteiro, Ângelo; Leão, Mariana; Bessa, Cláudia; Dos Santos, Daniel J V A; Raimundo, Liliana; Queiroz, Glória; Bisio, Alessandra; Inga, Alberto; Pereira, Clara; Santos, Maria M M; Saraiva, Lucília

    2015-01-23

    One of the most appealing targets for anticancer treatment is the p53 tumor suppressor protein. In half of human cancers, this protein is inactivated due to endogenous negative regulators such as MDM2. Actually, restoring the p53 activity, particularly through the inhibition of its interaction with MDM2, is considered a valuable therapeutic strategy against cancers with a wild-type p53 status. In this work, we report the synthesis of nine enantiopure phenylalaninol-derived oxazolopyrrolidone lactams and the evaluation of their biological effects as p53-MDM2 interaction inhibitors. Using a yeast-based screening assay, two oxazoloisoindolinones, compounds 1b and 3a, were identified as potential p53-MDM2 interaction inhibitors. The molecular mechanism of oxazoloisoindolinone 3a was further validated in human colon adenocarcinoma HCT116 cells with wild-type p53 (HCT116 p53(+/+)) and in its isogenic derivative without p53 (HCT116 p53(-/-)). Indeed, using these cells, we demonstrated that oxazoloisoindolinone 3a exhibited a p53-dependent in vitro antitumor activity through induction of G0/G1-phase cell cycle arrest and apoptosis. The selective activation of a p53-apoptotic pathway by oxazoloisoindolinone 3a was further supported by the occurrence of PARP cleavage only in p53-expressing HCT116 cells. Moreover, oxazoloisoindolinone 3a led to p53 protein stabilization and to the up-regulation of p53 transcriptional activity with increased expression levels of several p53 target genes, as p21(WAF1/CIP1), MDM2, BAX and PUMA, in p53(+/+) but not in p53(-/-) HCT116 cells. Additionally, the ability of oxazoloisoindolinone 3a to block the p53-MDM2 interaction in HCT116 p53(+/+) cells was confirmed by co-immunoprecipitation. Finally, the molecular docking analysis of the interactions between the synthesized compounds and MDM2 revealed that oxazoloisoindolinone 3a binds to MDM2. Altogether, this work adds, for the first time, the oxazoloisoindolinone scaffold to the list of

  6. The Impact of a Common Mdm2 SNP on the Sensitivity of Breast Cancer To Treatment

    DTIC Science & Technology

    2008-10-01

    fulvestrant , causes a decrease in mdm2 protein half-life, leading to a reduction in mdm2 following treatment with this agent. We demonstrate that combined...use of fulvestrant with chemotherapeutic drugs doxorubicin, etoposide and paclitaxel can enhance the sensitivity of breast cancer cells to these...Hormonal therapy 25 75 Herceptin 90 10 7 In this grant period, we have investigated the effects of anti-estrogen agent, fulvestrant , on mdm2

  7. A subset of fat-predominant angiomyolipomas label for MDM2: a potential diagnostic pitfall.

    PubMed

    Asch-Kendrick, Rebecca J; Shetty, Shashi; Goldblum, John R; Sharma, Rajni; Epstein, Jonathan I; Argani, Pedram; Cimino-Mathews, Ashley

    2016-11-01

    Angiomyolipomas (AMLs) are typically benign mesenchymal tumors with variable histologic composition. Fat-predominant AMLs can mimic well-differentiated liposarcomas (WDLSs) both radiographically and histologically because of the abundance of fat with admixed atypical cells resembling lipoblasts. However, the treatment and prognosis of AMLs and WDLSs are vastly different. Immunohistochemistry for murine double minute 2 (MDM2) has been used to support a diagnosis of WDLS; however, MDM2 labeling has not been specifically evaluated in fat-predominant AMLs. Here, we evaluated MDM2 immunohistochemistry in 36 AMLs (including 14 conventional AMLs, 13 fat-predominant AMLs, 6 fat-rich AMLs, 3 epithelioid AMLs) and 10 WDLSs. In addition, we labeled cases for HMB45, calponin, or actin, which are immunostains traditionally used to label AML. We performed fluorescence in situ hybridization (FISH) for MDM2 amplification on selected cases. By immunohistochemistry, 14% (5/36) of AMLs were MDM2+, including 23% (3/13) of fat-predominant AMLs. All MDM2+ AMLs evaluated by FISH (n=4) were negative for MDM2 amplification. By immunohistochemistry, 90% of WDLSs were MDM2+, and both MDM2+ WDLSs evaluated by FISH (n=2) were MDM2 amplified. All 36 AMLs labeled with HMB45 and calponin or actin. No WDLS labeled with HMB45; however, 80% of WDLSs labeled with calponin or actin. Although uncommon, MDM2 labeling is seen in a subset of fat-predominant AMLs and is a potential diagnostic pitfall in the evaluation of fatty tumors of the retroperitoneum. HMB45 is more sensitive and specific for AML than calponin or actin, and an immunopanel containing both HMB45 and MDM2 may be warranted to distinguish between fat-predominant AML and WDLS in histologically ambiguous cases. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. NFkB is essential for activin-induced colorectal cancer migration via upregulation of PI3K-MDM2 pathway.

    PubMed

    Jana, Arundhati; Krett, Nancy L; Guzman, Grace; Khalid, Ahmer; Ozden, Ozkan; Staudacher, Jonas J; Bauer, Jessica; Baik, Seung Hyun; Carroll, Timothy; Yazici, Cemal; Jung, Barbara

    2017-06-06

    Colorectal cancer (CRC) remains a common and deadly cancer due to metastatic disease. Activin and TGFB (TGFβ) signaling are growth suppressive pathways that exert non-canonical pro-metastatic effects late in CRC carcinogenesis. We have recently shown that activin downregulates p21 via ubiquitination and degradation associated with enhanced cellular migration independent of SMADs. To investigate the mechanism of metastatic activin signaling, we examined activated NFkB signaling and activin ligand expression in CRC patient samples and found a strong correlation. We hypothesize that activation of the E3 ubiquitin ligase MDM2 by NFkB leads to p21 degradation in response to activin treatment. To dissect the link between activin and pro-carcinogenic NFkB signaling and downstream targets, we found that activin but not TGFB induced activation of NFkB leading to increased MDM2 ubiquitin ligase via PI3K. Further, overexpression of wild type p65 NFkB increased MDM2 expression while the NFkB inhibitors NEMO-binding domain (NBD) and Bay11-7082 blocked the activin-induced increase in MDM2. In conclusion, in colon cancer cell migration, activin utilizes NFkB to induce MDM2 activity leading to the degradation of p21 in a PI3K dependent mechanism. This provides new mechanistic knowledge linking activin and NFkB signaling in advanced colon cancer which is applicable to targeted therapeutic interventions.

  9. NFkB is essential for activin-induced colorectal cancer migration via upregulation of PI3K-MDM2 pathway

    PubMed Central

    Jana, Arundhati; Krett, Nancy L; Guzman, Grace; Khalid, Ahmer; Ozden, Ozkan; Staudacher, Jonas J; Bauer, Jessica; Baik, Seung Hyun; Carroll, Timothy; Yazici, Cemal; Jung, Barbara

    2017-01-01

    Colorectal cancer (CRC) remains a common and deadly cancer due to metastatic disease. Activin and TGFB (TGFβ) signaling are growth suppressive pathways that exert non-canonical pro-metastatic effects late in CRC carcinogenesis. We have recently shown that activin downregulates p21 via ubiquitination and degradation associated with enhanced cellular migration independent of SMADs. To investigate the mechanism of metastatic activin signaling, we examined activated NFkB signaling and activin ligand expression in CRC patient samples and found a strong correlation. We hypothesize that activation of the E3 ubiquitin ligase MDM2 by NFkB leads to p21 degradation in response to activin treatment. To dissect the link between activin and pro-carcinogenic NFkB signaling and downstream targets, we found that activin but not TGFB induced activation of NFkB leading to increased MDM2 ubiquitin ligase via PI3K. Further, overexpression of wild type p65 NFkB increased MDM2 expression while the NFkB inhibitors NEMO-binding domain (NBD) and Bay11-7082 blocked the activin-induced increase in MDM2. In conclusion, in colon cancer cell migration, activin utilizes NFkB to induce MDM2 activity leading to the degradation of p21 in a PI3K dependent mechanism. This provides new mechanistic knowledge linking activin and NFkB signaling in advanced colon cancer which is applicable to targeted therapeutic interventions. PMID:28418896

  10. Tissue-specific and age-dependent effects of global Mdm2 loss.

    PubMed

    Zhang, Yun; Xiong, Shunbin; Li, Qin; Hu, Sophia; Tashakori, Mehrnoosh; Van Pelt, Carolyn; You, Mingjian James; Pageon, Laura; Lozano, Guillermina

    2014-08-01

    Mdm2, an E3 ubiquitin ligase, negatively regulates the tumour suppressor p53. In this study we utilized a conditional Mdm2 allele, Mdm2(FM) , and a CAG-CreER tamoxifen-inducible recombination system to examine the effects of global Mdm2 loss in adult mice. Two different tamoxifen injection regimens caused 100% lethality of Mdm2(FM) (/-) ;CAG-CreER mice; both radio-sensitive and radio-insensitive tissues were impaired. Strikingly, a large number of radio-insensitive tissues, including the kidney, liver, heart, retina and hippocampus, exhibited various pathological defects. Similar tamoxifen injections in older (16-18 month-old) Mdm2(FM) (/-) ;CAG-CreER mice yielded abnormalities only in the kidney. In addition, transcriptional activation of Cdkn1a (p21), Bbc3 (Puma) and multiple senescence markers in young (2-4 month-old) mice following loss of Mdm2 was dampened in older mice. All phenotypes were p53-dependent, as Mdm2(FM) (/-) ;Trp53(-/-) ;CAG-CreER mice subjected to the same tamoxifen regimens were normal. Our findings implicate numerous possible toxicities in many normal tissues upon use of cancer therapies that aim to inhibit Mdm2 in tumours with wild-type p53.

  11. Primary extraskeletal osteosarcoma: a clinicopathological study of 18 cases focusing on MDM2 amplification status.

    PubMed

    Yamashita, Kyoko; Kohashi, Kenichi; Yamada, Yuichi; Nishida, Yoshihiro; Urakawa, Hiroshi; Oda, Yoshinao; Toyokuni, Shinya

    2017-05-01

    Extraskeletal osteosarcoma (ESOS) is an uncommon malignant neoplasm. Most ESOSs are high grade, although some low-grade cases have been reported. A few cases of ESOS with MDM2 amplification have also been reported, suggesting some similarity to skeletal low-grade osteosarcoma such as parosteal osteosarcoma, where MDM2 is often amplified. However, the frequency of low-grade cases and cases with MDM2 amplification among ESOSs remains unknown, and their relationship is unclear. To clarify this, we examined 18 primary ESOS cases clinically, pathologically, and genetically, focusing on their MDM2 amplification status. Our cases comprised 10 men and 8 women whose mean age was 58.6 years; the most common site of the lesion was the thigh and buttock. There were one histologically low-grade case evaluated by biopsy specimen with an aggressive course and 2 relatively low-grade cases whose lesions were of low grade for the most part. MDM2 amplification status was revealed by fluorescence in situ hybridization in all 18 cases; 2 patients-histologically intermediate- and high-grade cases-were found to have MDM2 amplification. In conclusion, this study indicates that histologically low-grade and relatively low-grade cases of ESOS are not always associated with MDM2 amplification. The ESOS case with MDM2 amplification could be high grade, although MDM2-amplified dedifferentiated liposarcoma with osteogenic differentiation should be ruled out in making the diagnosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. ELF4/MEF activates MDM2 expression and blocks oncogene-induced p16 activation to promote transformation.

    PubMed

    Sashida, Goro; Liu, Yan; Elf, Shannon; Miyata, Yasuhiko; Ohyashiki, Kazuma; Izumi, Miki; Menendez, Silvia; Nimer, Stephen D

    2009-07-01

    Several ETS transcription factors, including ELF4/MEF, can function as oncogenes in murine cancer models and are overexpressed in human cancer. We found that Elf4/Mef activates Mdm2 expression; thus, lack of or knockdown of Elf4/Mef reduces Mdm2 levels in mouse embryonic fibroblasts (mef's), leading to enhanced p53 protein accumulation and p53-dependent senescence. Even though p53 is absent in Elf4(-/-) p53(-/-) mef's, neither oncogenic H-Ras(V12) nor c-myc can induce transformation of these cells. This appears to relate to the INK4a/ARF locus; both p19(ARF) and p16 are increased in Elf4(-/-) p53(-/-) mef's, and expression of Bmi-1 or knockdown of p16 in this context restores H-Ras(V12)-induced transformation. Thus, ELF4/MEF promotes tumorigenesis by inhibiting both the p53 and p16/Rb pathways.

  13. Design, Synthesis and Biological Evaluation of Sulfamide and Triazole Benzodiazepines as Novel p53-MDM2 Inhibitors

    PubMed Central

    Yu, Zhiliang; Zhuang, Chunlin; Wu, Yuelin; Guo, Zizhao; Li, Jin; Dong, Guoqiang; Yao, Jianzhong; Sheng, Chunquan; Miao, Zhenyuan; Zhang, Wannian

    2014-01-01

    A series of sulfamide and triazole benzodiazepines were obtained with the principle of bioisosterism. The p53-murine double minute 2 (MDM2) inhibitory activity and in vitro antitumor activity were evaluated. Most of the novel benzodiazepines exhibited moderate protein binding inhibitory activity. Particularly, triazole benzodiazepines showed good inhibitory activity and antitumor potency. Compound 16 had promising antitumor activity against the U-2 OS human osteosarcoma cell line with an IC50 value of 4.17 μM, which was much better than that of nutlin-3. The molecular docking model also successfully predicted that this class of compounds mimicked the three critical residues of p53 binding to MDM2. PMID:25198897

  14. MDM2 antagonists synergize with PI3K/mTOR inhibition in well-differentiated/dedifferentiated liposarcomas

    PubMed Central

    Laroche, Audrey; Chaire, Vanessa; Algeo, Marie-Paule; Karanian, Marie; Fourneaux, Benjamin; Italiano, Antoine

    2017-01-01

    Background Well-differentiated/dedifferentiated liposarcoma (WDLPS/DDLPS) are characterized by a consistent amplification of the MDM2 gene. The PI3K/AKT/mTOR pathway has been suggested to play also an important role in their tumorigenesis. Our goal was to determine whether combined MDM2 and PI3K/AKT/mTOR targeting is associated with higher anti-tumor activity than single agent alone in preclinical models of WDLPS/DDLPS. Methods WDLPS/DDLPS cells were exposed to RG7388 (MDM2 antagonist) and BEZ235 (PI3K/mTOR dual inhibitor) after which apoptosis and signaling/survival pathway perturbations were monitored by flow cytometry and Western blot analysis. Xenograft mouse models were used to assess tumor growth and animal survival. Western blotting, histopathology, and tumor volume evolution were used for the assessment of treatment efficacy. Results The PI3K/AKT/mTOR was upregulated in up to 81% of the human WDLPS/DDLPS samples analysed. Treatment with RG7388 and BEZ235 resulted in a greater tumor activity than either drug alone with a significant difference in terms of cell viability after 72h of treatment with RG-73888 alone, BEZ235 alone and a combination of both agents. Consistent with these observations, we found a significant increase in apoptosis with the combination versus the single agent treatment alone. We then analysed the in vivo antitumor activity of RG7388 and BEZ235 in a xenograft model of DDLPS. The combination regimen significantly reduced tumor growth rate in comparison with single agent alone. Conclusions Our results represent the first in vivo evidence of synergy between MDM2 and PI3K/AKT/mTOR antagonists and represent a strong rationale to evaluate the therapeutic potential of such a combination in WDLPS/DDLPS.

  15. MDM2 antagonists synergize with PI3K/mTOR inhibition in well-differentiated/dedifferentiated liposarcomas.

    PubMed

    Laroche, Audrey; Chaire, Vanessa; Algeo, Marie-Paule; Karanian, Marie; Fourneaux, Benjamin; Italiano, Antoine

    2017-08-15

    Well-differentiated/dedifferentiated liposarcoma (WDLPS/DDLPS) are characterized by a consistent amplification of the MDM2 gene. The PI3K/AKT/mTOR pathway has been suggested to play also an important role in their tumorigenesis. Our goal was to determine whether combined MDM2 and PI3K/AKT/mTOR targeting is associated with higher anti-tumor activity than single agent alone in preclinical models of WDLPS/DDLPS. WDLPS/DDLPS cells were exposed to RG7388 (MDM2 antagonist) and BEZ235 (PI3K/mTOR dual inhibitor) after which apoptosis and signaling/survival pathway perturbations were monitored by flow cytometry and Western blot analysis. Xenograft mouse models were used to assess tumor growth and animal survival. Western blotting, histopathology, and tumor volume evolution were used for the assessment of treatment efficacy. The PI3K/AKT/mTOR was upregulated in up to 81% of the human WDLPS/DDLPS samples analysed. Treatment with RG7388 and BEZ235 resulted in a greater tumor activity than either drug alone with a significant difference in terms of cell viability after 72h of treatment with RG-73888 alone, BEZ235 alone and a combination of both agents. Consistent with these observations, we found a significant increase in apoptosis with the combination versus the single agent treatment alone. We then analysed the in vivo antitumor activity of RG7388 and BEZ235 in a xenograft model of DDLPS. The combination regimen significantly reduced tumor growth rate in comparison with single agent alone. Our results represent the first in vivo evidence of synergy between MDM2 and PI3K/AKT/mTOR antagonists and represent a strong rationale to evaluate the therapeutic potential of such a combination in WDLPS/DDLPS.

  16. MDM2 promotes cell motility and invasiveness through a RING-finger independent mechanism.

    PubMed

    Polański, Radosław; Warburton, Hazel E; Ray-Sinha, Arpita; Devling, Timothy; Pakula, Hubert; Rubbi, Carlos P; Vlatković, Nikolina; Boyd, Mark T

    2010-11-19

    Recent studies connect MDM2 with increased cell motility, invasion and/or metastasis proposing an MDM2-mediated ubiquitylation-dependent mechanism. Interestingly, in renal cell carcinoma (RCC) p53/MDM2 co-expression is associated with reduced survival which is independently linked with metastasis. We therefore investigated whether expression of p53 and/or MDM2 promotes aggressive cell phenotypes. Our data demonstrate that MDM2 promotes increased motility and invasiveness in RCC cells (N.B. similar results are obtained in non-RCC cells). This study shows for the first time both that endogenous MDM2 significantly contributes to cell motility and that this does not depend upon the MDM2 RING-finger, i.e. is independent of ubiquitylation (and NEDDylation). Our data suggest that protein-protein interactions provide a likely mechanistic basis for MDM2-promoted motility which may constitute future therapeutic targets. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. MDM2 expression during mouse embryogenesis and the requirement of p53.

    PubMed

    Léveillard, T; Gorry, P; Niederreither, K; Wasylyk, B

    1998-06-01

    We compared mouse embryonic expression of the MDM2 proto-oncogene, p21WAF1/CIP1 and their transcriptional regulator, p53. MDM2 expression is ubiquitous from 7.5 to 11.5 days post coitum (dpc) and more restricted from 12.5 dpc, with the highest levels in the testes and neural tube. From 14.5 to 18.5 dpc, the nasal respiratory epithelium expresses high levels of MDM2 RNA and protein and p21WAF1/CIP1 RNA, in both wild type and p53 null embryos. MDM2 expression during development is tissue-specific and, like p21WAF1/CIP1, is independent of p53. MDM2 may have a developmental role after 6.5 dpc, when MDM2 null mice die (Jones, S.N., Roe, A.E., Donehower, L.A., Bradley, A., 1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206-208; Montes de Oca Luna, R., Wagner, D.S., Lozano, G., 1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203-206).

  18. Auto-ubiquitination of Mdm2 Enhances Its Substrate Ubiquitin Ligase Activity*

    PubMed Central

    Ranaweera, Ruchira S.; Yang, Xiaolu

    2013-01-01

    The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. PMID:23671280

  19. Regulation of Actinomycin D induced upregulation of Mdm2 in H1299 cells.

    PubMed

    Li, Lianjie; Cui, Di; Zheng, Shijun J; Lou, Huiqiang; Tang, Jun

    2012-02-01

    Mdm2 is a critical negative regulator of the p53 tumor suppressor and also has many p53-independent functions. Deregulation of Mdm2 is closely associated with tumorigenesis. However, how Mdm2 is regulated in response to various stresses is not well understood. In this study, we found that Mdm2 was stabilized and upregulated upon Actinomycin D (ActD) treatment in the p53-deficient H1299 cell line. This Mdm2 upregulation was not dependent on the ribosomal protein L11, an essential player in ribosomal stress-induced p53 activation, but did require a NEDDylation-dependent mechanism. We further demonstrated that the ActD-induced Mdm2 stabilization may be modulated by the cell growth signaling, and that knockdown of Mdm2 enhanced ActD-induced cell death in H1299 cells. These results suggested a role of Mdm2 in the ribosomal stress response in the p53 deficient cells, which could be exploited in therapeutic use for treating cancers harboring p53 mutations.

  20. TP53 and MDM2 single nucleotide polymorphisms influence survival in non-del(5q) myelodysplastic syndromes

    PubMed Central

    Sallman, David A.; Basiorka, Ashley A.; Irvine, Brittany A.; Zhang, Ling; Epling-Burnette, P.K.; Rollison, Dana E.; Mallo, Mar; Sokol, Lubomir; Solé, Francesc; Maciejewski, Jaroslaw; List, Alan F.

    2015-01-01

    P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to −2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome. PMID:26416416

  1. p16INK4a hypermethylation and p53, p16 and MDM2 protein expression in esophageal squamous cell carcinoma.

    PubMed

    Taghavi, Noushin; Biramijamal, Firouzeh; Sotoudeh, Masoud; Khademi, Hooman; Malekzadeh, Reza; Moaven, Omeed; Memar, Bahram; A'rabi, Azadeh; Abbaszadegan, Mohammad Reza

    2010-04-13

    Tumor suppressor genes p53 and p16INK4a and the proto-oncogene MDM2 are considered to be essential G1 cell cycle regulatory genes whose loss of function is associated with ESCC carcinogenesis. We assessed the aberrant methylation of the p16 gene and its impact on p16INK4a protein expression and correlations with p53 and MDM2 protein expressions in patients with ESCC in the Golestan province of northeastern Iran in which ESCC has the highest incidence of cancer, well above the world average. Cancerous tissues and the adjacent normal tissue obtained from 50 ESCC patients were assessed with Methylation-Specific-PCR to examine the methylation status of p16. The expression of p16, p53 and MDM2 proteins was detected by immunohistochemical staining. Abnormal expression of p16 and p53, but not MDM2, was significantly higher in the tumoral tissue. p53 was concomitantly accumulated in ESCC tumor along with MDM2 overexpression and p16 negative expression. Aberrant methylation of the p16INK4a gene was detected in 31/50 (62%) of esophageal tumor samples, while two of the adjacent normal mucosa were methylated (P < 0.001). p16INK4a aberrant methylation was significantly associated with decreased p16 protein expression (P = 0.033), as well as the overexpression of p53 (P = 0.020). p16 hypermethylation is the principal mechanism of p16 protein underexpression and plays an important role in ESCC development. It is associated with p53 protein overexpression and may influence the accumulation of abnormally expressed proteins in p53-MDM2 and p16-Rb pathways, suggesting a possible cross-talk of the involved pathways in ESCC development.

  2. p16INK4a hypermethylation and p53, p16 and MDM2 protein expression in Esophageal Squamous Cell Carcinoma

    PubMed Central

    2010-01-01

    Background Tumor suppressor genes p53 and p16INK4a and the proto-oncogene MDM2 are considered to be essential G1 cell cycle regulatory genes whose loss of function is associated with ESCC carcinogenesis. We assessed the aberrant methylation of the p16 gene and its impact on p16INK4a protein expression and correlations with p53 and MDM2 protein expressions in patients with ESCC in the Golestan province of northeastern Iran in which ESCC has the highest incidence of cancer, well above the world average. Methods Cancerous tissues and the adjacent normal tissue obtained from 50 ESCC patients were assessed with Methylation-Specific-PCR to examine the methylation status of p16. The expression of p16, p53 and MDM2 proteins was detected by immunohistochemical staining. Results Abnormal expression of p16 and p53, but not MDM2, was significantly higher in the tumoral tissue. p53 was concomitantly accumulated in ESCC tumor along with MDM2 overexpression and p16 negative expression. Aberrant methylation of the p16INK4a gene was detected in 31/50 (62%) of esophageal tumor samples, while two of the adjacent normal mucosa were methylated (P < 0.001). p16INK4a aberrant methylation was significantly associated with decreased p16 protein expression (P = 0.033), as well as the overexpression of p53 (P = 0.020). Conclusions p16 hypermethylation is the principal mechanism of p16 protein underexpression and plays an important role in ESCC development. It is associated with p53 protein overexpression and may influence the accumulation of abnormally expressed proteins in p53-MDM2 and p16-Rb pathways, suggesting a possible cross-talk of the involved pathways in ESCC development. PMID:20388212

  3. Fluorescence polarization assay and inhibitor design for MDM2/p53 interaction.

    PubMed

    Zhang, Rumin; Mayhood, Todd; Lipari, Philip; Wang, Yaolin; Durkin, James; Syto, Rosalinda; Gesell, Jennifer; McNemar, Charles; Windsor, William

    2004-08-01

    MDM2 is an important negative regulator of the tumor suppressor protein p53 which regulates the expression of many genes including MDM2. The delicate balance of this autoregulatory loop is crucial for the maintenance of the genome and control of the cell cycle and apoptosis. MDM2 hyperactivity, due to amplification/overexpression or mutational inactivation of the ARF locus, inhibits the function of wild-type p53 and can lead to the development of a wide variety of cancers. Thus, the development of anti-MDM2 therapies may restore normal p53 function in tumor cells and induce growth suppression and apoptosis. We report here a novel high-throughput fluorescence polarization binding assay and its application in rank ordering small-molecule inhibitors that block the binding of MDM2 to a p53-derived fluorescent peptide.

  4. Systematic Mutational Analysis of Peptide Inhibition of the p53-MDM2/MDMX Interactions

    PubMed Central

    Li, Chong; Pazgier, Marzena; Li, Changqing; Yuan, Weirong; Liu, Min; Wei, Gang; Lu, Wei-Yue; Lu, Wuyuan

    2010-01-01

    Inhibition of the interaction between the tumor suppressor protein p53 and its negative regulators MDM2 and MDMX is of great interest in cancer biology and drug design. We previously reported a potent duodecimal peptide inhibitor, termed PMI (TSFAEYWNLLSP), of the p53-MDM2 and -MDMX interactions. PMI competes with p53 for MDM2 and MDMX binding at an affinity roughly two orders of magnitude higher than that of 17–28p53 (ETFSDLWKLLPE) of the same length; both peptides adopt nearly identical α-helical conformations in the complexes, where the three highlighted hydrophobic residues Phe, Trp and Leu dominate PMI or 17–28p53 binding to MDM2 and MDMX. To elucidate the molecular determinants for PMI activity and specificity, we performed a systematic Ala scanning mutational analysis of PMI and 17–28p53. The binding affinities for MDM2 and MDMX of a total of 35 peptides including 10 truncation analogs were quantified, affording a complete dissection of energetic contributions of individual residues of PMI and 17–28p53 to MDM2 and MDMX association. Importantly, the N8A mutation turned PMI into the most potent dual specific antagonist of MDM2 and MDMX reported to date, registering respective Kd values of 490 pM and 2.4 nM. The co-crystal structure of N8A-PMI-25–109MDM2 was determined at 1.95 Å, affirming that high-affinity peptide binding to MDM2/MDMX necessitates, in addition to optimized inter-molecular interactions, enhanced helix stability or propensity contributed by non-contact residues. The powerful empirical binding data and crystal structures present a unique opportunity for computational studies of peptide inhibition of the p53-MDM2/MDMX interactions. PMID:20226197

  5. Accumulation of wild-type p53 protein in astrocytomas is not mediated by MDM2 gene amplification

    SciTech Connect

    Rubio, M.P.; Louis, D.N. Harvard Medical School, Boston, MA )

    1993-05-01

    The authors have previously described ten cases of astrocytoma (three WHO grade II, four grade III and four grade IV) with seemingly contradictory results on immunohistochemical analysis of the p53 protein and molecular genetic analysis of the p53 gene. Fixed, embedded tissues from these cases were immunohistochemically positive with the PAb 1801 antibody, which supposedly implies the presence of mutant protein. These ten cases, however, did not have mutations in exons 5 through 8 of the p53 gene, the conserved regions in which almost all human mutations have been described. The authors suggested that these cases might either represent overexpression of wild-type p53 protein (since the PAb 1801 antibody reacts with both wild-type and mutant p53 protein) or mutations in less conserved regions of the gene. To investigate these possibilities further, they performed single strand conformational polymorphism analysis and DNA sequencing on p53 exons 4, 9 and 10 in the nine cases with available DNA, since rare mutations have been noted at these loci. None of the cases showed alterations, making it highly unlikely that these tumors harbor mutations in exons of the p53 gene. They also performed immunohistochemistry on frozen sections from seven available tumors, using the mutant-specific antibody PAb 240 in addition to PAb 1801. All tumors continued to show positive staining with PAb 1801, but only one tumor reacted with PAb 240. The results support the hypothesis that the accumulated p53 protein in most cases is wild-type. Because the product of the MDM2 oncogene can bind to wild-type p53 protein, and because MDM2 amplification has recently been demonstrated in human tumors, the authors evaluated MDM2 amplification in the nine astrocytomas with available DNA. Using slot blot analysis with a 96-base pair, PCR-generated probe to the first exon of the MDM2 gene, they were unable to show MDM2 gene amplification in these tumors or in other assayed astrocytomas.

  6. Unbalancing p53/Mdm2/IGF-1R axis by Mdm2 activation restrains the IGF-1-dependent invasive phenotype of skin melanoma

    PubMed Central

    Worrall, C; Suleymanova, N; Crudden, C; Trocoli Drakensjö, I; Candrea, E; Nedelcu, D; Takahashi, S-I; Girnita, L; Girnita, A

    2017-01-01

    Melanoma tumors usually retain wild-type p53; however, its tumor-suppressor activity is functionally disabled, most commonly through an inactivating interaction with mouse double-minute 2 homolog (Mdm2), indicating p53 release from this complex as a potential therapeutic approach. P53 and the tumor-promoter insulin-like growth factor type 1 receptor (IGF-1R) compete as substrates for the E3 ubiquitin ligase Mdm2, making their relative abundance intricately linked. Hence we investigated the effects of pharmacological Mdm2 release from the Mdm2/p53 complex on the expression and function of the IGF-1R. Nutlin-3 treatment increased IGF-1R/Mdm2 association with enhanced IGF-1R ubiquitination and a dual functional outcome: receptor downregulation and selective downstream signaling activation confined to the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. This Nutlin-3 functional selectivity translated into IGF-1-mediated bioactivities with biphasic effects on the proliferative and metastatic phenotype: an early increase and late decrease in the number of proliferative and migratory cells, while the invasiveness was completely inhibited following Nutlin-3 treatment through an impaired IGF-1-mediated matrix metalloproteinases type 2 activation mechanism. Taken together, these experiments reveal the biased agonistic properties of Nutlin-3 for the mitogen-activated protein kinase pathway, mediated by Mdm2 through IGF-1R ubiquitination and provide fundamental insights into destabilizing p53/Mdm2/IGF-1R circuitry that could be developed for therapeutic gain. PMID:28092675

  7. ET-62HIGHLY SELECTIVE ACTIVITY OF MDM2 INHIBITOR RG7112 AGAINST MDM2-AMPLIFIED/TP53 WILD-TYPE GLIOBLASTOMAS

    PubMed Central

    Verreault, Maite; Levasseur, Camille; Schmitt, Charlotte; Guehennec, Jeremy; Labussiere, Marianne; Marie, Yannick; Haidar, Sam; Mokhtari, Karima; Hoang-Xuan, Khe; Sanson, Marc; Ligon, Keith; Delattre, Jean-Yves; Idbaih, Ahmed

    2014-01-01

    Alteration of P53 pathway is one of the key molecular events involved in glioblastoma (GBM) biology. Genetic alterations which reduce TP53 function in GBM include MDM2 amplification (14% of patients), MDM4 amplification (7%), and TP53 gene mutations (35%), each of which is generally thought to be mutually exclusive. The study presented here aims to test the therapeutic activity of RG7112, a member of cis-imidazoline MDM2 inhibitors (Nutlins), in GBM cells according to their functional P53 pathway status. The effect of RG7112 was assessed in a panel of eleven GBM patient-derived cell lines (PDCLs) genetically selected to assess the drug response of the different alterations of P53 pathway. RG7112 was found to be able to induce cell death in all cell lines tested, with the highest cytotoxic efficacy against MDM2/MDM4-amplified GBM PDCL. Indeed, GBM cell lines carrying MDM2 or MDM4 gene amplification were 10 to 20 times more sensitive to the inhibitor than the other lines. TP53 mutant lines were the least sensitive lines. RG7112 treatment restored P53 and P21 protein levels in MDM2-amplified GBM cells. Most importantly, treatment of MDM2-amplified GBM orthotopic patient derived xenograft (PDX) bearing mice with 100 mg/kg RG7112 (Q5Dx3) reduced tumor growth rate and significantly increased survival duration compared to vehicle-treated mice. This data supports the research towards the development of RG7112 for clinical testing in MDM2/4-amplified glioblastoma patients. Studies assessing the capacity of RG7112 compound to cross the blood-brain barrier in healthy and GBM tumor tissue are currently ongoing.

  8. microRNAs are differentially regulated between MDM2-positive and negative malignant pleural mesothelioma

    PubMed Central

    Walter, Robert Fred Henry; Vollbrecht, Claudia; Werner, Robert; Wohlschlaeger, Jeremias; Christoph, Daniel Christian; Schmid, Kurt Werner; Mairinger, Fabian Dominik

    2016-01-01

    Background Malignant pleural mesothelioma (MPM) is a highly aggressive tumour first-line treated with a combination of cisplatin and pemetrexed. MDM2 and P14/ARF (CDKN2A) are upstream regulators of TP53 and may contribute to its inactivation. In the present study, we now aimed to define the impact of miRNA expression on this mechanism. Material and Methods 24 formalin-fixed paraffin-embedded (FFPE) tumour specimens were used for miRNA expression analysis of the 800 most important miRNAs using the nCounter technique (NanoString). Significantly deregulated miRNAs were identified before a KEGG-pathway analysis was performed. Results 17 miRNAs regulating TP53, 18 miRNAs regulating MDM2, and 11 miRNAs directly regulating CDKN2A are significantly downregulated in MDM2-expressing mesotheliomas. TP53 is downregulated in MDM2-negative tumours through miRNAs with a miSVR prediction score of 11.67, RB1 with a prediction score of 8.02, MDM2 with a prediction score of 4.50 and CDKN2A with a prediction score of 1.27. Conclusion MDM2 expression seems to impact miRNA expression levels in MPM. Especially, miRNAs involved in TP53-signaling are strongly decreased in MDM2-positive mesotheliomas. A better understanding of its tumour biology may open the chance for new therapeutic approaches and thereby augment patients' outcome. PMID:26918730

  9. Lack of association of the TP53 Arg72Pro SNP and the MDM2 SNP309 with systemic lupus erythematosus in Caucasian, African American, and Asian children and adults.

    PubMed

    Onel, K B; Huo, D; Hastings, D; Fryer-Biggs, J; Crow, M K; Onel, K

    2009-01-01

    The p53 tumour suppressor is the central regulator of apoptosis. Previously, the functional TP53 Arg72Pro polymorphism was found to be associated with systemic lupus erythematosus (SLE) in Koreans but not Spaniards. MDM2 is the major negative regulator of p53. An intronic polymorphism in MDM2, the SNP309, attenuates p53 activity and is associated with accelerated tumour development in premenopausal women. Polymorphic variation in MDM2 has never been studied in SLE. The aim of this study is to further assess the contribution of p53-pathway genetic variation to SLE by testing the association of the TP53 Arg72Pro polymorphism and the MDM2 SNP309 with SLE in a well-characterised and ethnically diverse cohort of patients with both childhood- and adult-onset SLE (n = 314). No association was found between the TP53 Arg72Pro polymorphism and SLE in patients of European descent, Asian descent or in African Americans, nor was an association found between the MDM2 SNP309 and SLE in patients of European descent or in African Americans. In addition, there was no correlation between either variant and early-onset disease or nephritis, an index of severe disease. It is concluded that neither the TP53 Arg72Pro polymorphism nor the MDM2 SNP309 contributes significantly to either susceptibility or disease severity in SLE.

  10. Rapid and efficient hydrophilicity tuning of p53/mdm2 antagonists*

    PubMed Central

    Srivastava, Stuti; Beck, Barbara; Wang, Wei; Czarna, Anna; Holak, Tad A.; Dömling, Alexander

    2009-01-01

    The protein-protein interaction of p53 and mdm2 is an important anticancer target. The interface, however, is very hydrophobic and naturally results in very hydrophobic antagonists. We used the Orru three component reaction (O-3CR) along with a rapid and efficient, recently discovered amidation reaction to dramatically improve the water solubility of our recently discovered low molecular weight p53/mdm2 antagonists. Arrays of amides were synthesized with improved hydrophilicity and retainment and/or improvement of p53/mdm2 inhibitory activity. PMID:19548636

  11. DIMP53-1: A novel small-molecule dual inhibitor of p53-MDM2/X interactions with multifunctional p53-dependent anticancer properties.

    PubMed

    Soares, Joana; Espadinha, Margarida; Raimundo, Liliana; Ramos, Helena; Gomes, Ana Sara; Gomes, Sara; Loureiro, Joana B; Inga, Alberto; Reis, Flávio; Gomes, Célia; Santos, Maria M M; Saraiva, Lucília

    2017-03-10

    The transcription factor p53 plays a crucial role in cancer development and dissemination, and thus p53-targeted therapies are amongst the most encouraging anticancer strategies. In human cancers with wild-type (wt) p53, its inactivation by interaction with murine double minute (MDM)2 and MDMX is a common event. Simultaneous inhibition of the p53 interaction with both MDMs is crucial to restore the tumor suppressor activity of p53. Here we describe the synthesis of the new tryptophanol-derived oxazoloisoindolinone DIMP53-1 and identify its activity as a dual inhibitor of the p53-MDM2/X interactions using a yeast-based assay. DIMP53-1 caused growth inhibition, mediated by p53 stabilization and upregulation of p53 transcriptional targets involved in cell cycle arrest and apoptosis, in wt p53-expressing tumor cells, including MDM2- or MDMX-overexpressing cells. Importantly, DIMP53-1 abolishes the p53-MDM2/X interactions by binding to p53, in human colon adenocarcinoma HCT116 cells. DIMP53-1 also inhibited the migration and invasion of HCT116 cells, and the migration and tube formation of HMVEC-D endothelial cells. Notably, in human tumor xenograft mice models, DIMP53-1 showed a p53-dependent antitumor activity through induction of apoptosis and inhibition of proliferation and angiogenesis. Finally, no genotoxicity or undesirable toxic effects were observed with DIMP53-1. In conclusion, DIMP53-1 is a novel p53 activator, which potentially binds to p53 inhibiting its interaction with MDM2 and MDMX. Although target-directed, DIMP53-1 has a multifunctional activity, targeting major hallmarks of cancer through its anti-proliferative, pro-apoptotic, anti-angiogenic, anti-invasive and anti-migratory properties. DIMP53-1 is a promising anticancer drug candidate and an encouraging starting point to develop improved derivatives for clinical application.

  12. Polymorphism of MDM2 promoter 309 (rs 2279744) and the risk of PCOS.

    PubMed

    Chan, Ying; Jiang, Hongguo; Yang, Xiaoling; Li, Dongya; Ma, Lan; Luo, Ying; Tang, Wenru

    2016-01-01

    This study aimed at evaluating possible association between MDM2 SNP309 polymorphism (rs 2279744) and polycystic ovary syndrome (PCOS). One hundred and twenty-five women with PCOS and two hundred and fifty women without PCOS were collected from the department of reproductive medicine of college hospital in this case-control study. Peripheral blood samples were collected from all participants and DNA was extracted, MDM2 SNP309 polymorphism (rs 2279744) was determined from the 125 cases and 250 controls. Women were grouped into PCOS (n = 125) group and control group (n = 250). Odds ratios (OR) and 95% confidence intervals (CI) were used to evaluate the association between MDM2 SNP309 polymorphism (rs 2279744) and PCOS. The distribution of T allele was significant higher in PCOS cases than controls. MDM2 SNP 309 T allele is associated with PCOS.

  13. Regulation of NUB1 Activity through Non-Proteolytic Mdm2-Mediated Ubiquitination

    PubMed Central

    Bonacci, Thomas; Audebert, Stéphane; Camoin, Luc; Baudelet, Emilie; Iovanna, Juan-Lucio

    2017-01-01

    NUB1 (Nedd8 ultimate buster 1) is an adaptor protein which negatively regulates the ubiquitin-like protein Nedd8 as well as neddylated proteins levels through proteasomal degradation. However, molecular mechanisms underlying this function are not completely understood. Here, we report that the oncogenic E3 ubiquitin ligase Mdm2 is a new NUB1 interacting protein which induces its ubiquitination. Interestingly, we found that Mdm2-mediated ubiquitination of NUB1 is not a proteolytic signal. Instead of promoting the conjugation of polyubiquitin chains and the subsequent proteasomal degradation of NUB1, Mdm2 rather induces its di-ubiquitination on lysine 159. Importantly, mutation of lysine 159 into arginine inhibits NUB1 activity by impairing its negative regulation of Nedd8 and of neddylated proteins. We conclude that Mdm2 acts as a positive regulator of NUB1 function, by modulating NUB1 ubiquitination on lysine 159. PMID:28099510

  14. Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition

    SciTech Connect

    Yang, Zhihong; Zhang, Yuxia; Wang, Li

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mdm2 enhances HNF4{alpha} activation of the ApoCIII promoter via interaction with HNF4{alpha}. Black-Right-Pointing-Pointer p53 antagonizes the effect of Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer SHP strengthens p53 inhibition but abolishes Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer Mdm2 alters the enrichment of HNF4{alpha}, p53 and SHP to the ApoCIII promoter. -- Abstract: We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4{alpha}. A direct association of Mdm2 protein with the HNF4{alpha} protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4{alpha} activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4{alpha} to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.

  15. Design and Testing of Bi-functional, P-loop Targeted MDM2 Inhibitors

    DTIC Science & Technology

    2008-03-01

    based on the discovery that nucleotides can bind to the P-loop of MDM2 and cause its relocalization to the nucleolus. Such bifunctional compounds will be...developed a high-throughput docking assay based on Mdm2’s RING domain structure and (4) developed a high-throughput compatible luciferase- based ...target. Based on previous mutational studies on the RING domain (Poyurovsky et al. 2003.) and molecular dynamics simulations we predicted the ATP

  16. MDM2 and CDK4 amplifications are rare events in salivary duct carcinomas

    PubMed Central

    Grünewald, Inga; Trautmann, Marcel; Busch, Alina; Bauer, Larissa; Huss, Sebastian; Schweinshaupt, Petra; Vollbrecht, Claudia; Odenthal, Margarete; Quaas, Alexander; Büttner, Reinhard; Meyer, Moritz F.; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Stenner, Markus; Hartmann, Wolfgang

    2016-01-01

    Salivary duct carcinoma (SDC) is an aggressive adenocarcinoma of the salivary glands associated with poor clinical outcome. SDCs are known to carry TP53 mutations in about 50%, however, only little is known about alternative pathogenic mechanisms within the p53 regulatory network. Particularly, data on alterations of the oncogenes MDM2 and CDK4 located in the chromosomal region 12q13-15 are limited in SDC, while genomic rearrangements of the adjacent HMGA2 gene locus are well documented in subsets of SDCs. We here analyzed the mutational status of the TP53 gene, genomic amplification of MDM2, CDK4 and HMGA2 rearrangement/amplification as well as protein expression of TP53 (p53), MDM2 and CDK4 in 51 de novo and ex pleomorphic adenoma SDCs. 25 of 51 cases were found to carry TP53 mutations, associated with extreme positive immunohistochemical p53 staining levels in 13 cases. Three out of 51 tumors had an MDM2 amplification, one of them coinciding with a CDK4 amplification and two with a HMGA2 rearrangement/amplification. Two of the MDM2 amplifications occurred in the setting of a TP53 mutation. Two out of 51 cases showed a CDK4 amplification, one synchronously being MDM2 amplified and the other one displaying concurrent low copy number increases of both, MDM2 and HMGA2. In summary, we here show that subgroups of SDCs display genomic amplifications of MDM2 and/or CDK4, partly in association with TP53 mutations and rearrangement/amplification of HMGA2. Further research is necessary to clarify the role of chromosomal region 12q13-15 alterations in SDC tumorigenesis and their potential prognostic and therapeutic relevance. PMID:27662657

  17. Mdm2 Promotes Myogenesis through the Ubiquitination and Degradation of CCAAT/Enhancer-binding Protein β

    PubMed Central

    Fu, Dechen; Lala-Tabbert, Neena; Lee, Hwabin; Wiper-Bergeron, Nadine

    2015-01-01

    Myogenesis is a tightly regulated differentiation process during which precursor cells express in a coordinated fashion the myogenic regulatory factors, while down-regulating the satellite cell marker Pax7. CCAAT/Enhancer-binding protein β (C/EBPβ) is also expressed in satellite cells and acts to maintain the undifferentiated state by stimulating Pax7 expression and by triggering a decrease in MyoD protein expression. Herein, we show that C/EBPβ protein is rapidly down-regulated upon induction of myogenesis and this is not due to changes in Cebpb mRNA expression. Rather, loss of C/EBPβ protein is accompanied by an increase in Mdm2 expression, an E3 ubiquitin ligase. We demonstrate that Mdm2 interacts with, ubiquitinates and targets C/EBPβ for degradation by the 26 S proteasome, leading to increased MyoD expression. Knockdown of Mdm2 expression in myoblasts using a shRNA resulted in high C/EBPβ levels and a blockade of myogenesis, indicating that Mdm2 is necessary for myogenic differentiation. Primary myoblasts expressing the shMdm2 construct were unable to contribute to muscle regeneration when grafted into cardiotoxin-injured muscle. The differentiation defect imposed by loss of Mdm2 could be partially rescued by loss of C/EBPβ, suggesting that the regulation of C/EBPβ turnover is a major role for Mdm2 in myoblasts. Taken together, we provide evidence that Mdm2 regulates entry into myogenesis by targeting C/EBPβ for degradation by the 26 S proteasome. PMID:25720496

  18. Phosphorylation by Casein Kinase I Promotes the Turnover of the Mdm2 Oncoprotein via the SCFβ-TRCP Ubiquitin Ligase

    PubMed Central

    Inuzuka, Hiroyuki; Tseng, Alan; Gao, Daming; Zhai, Bo; Zhang, Qing; Shaik, Shavali; Wan, Lixin; Ang, Xiaolu L.; Mock, Caroline; Yin, Haoqiang; Stommel, Jayne M.; Gygi, Steven; Lahav, Galit; Asara, John; Jim Xiao, Zhi-Xiong; Kaelin, William G.; Harper, J. Wade; Wei, Wenyi

    2010-01-01

    Summary Mdm2 is the major negative regulator of the p53 pathway. Here we report that Mdm2 is rapidly degraded after DNA damage and that phosphorylation of Mdm2 by Casein Kinase I (CKI) at multiple sites triggers its interaction with, and subsequent ubiquitination and destruction, by SCFβ-TRCP. Inactivation of either β-TRCP or CKI results in accumulation of Mdm2 and decreased p53 activity, and resistance to apoptosis induced by DNA damaging-agents. Moreover, SCFβ-TRCP-dependent Mdm2 turnover also contributes to the control of repeated p53 pulses in response to persistent DNA damage. Our results provide insight into the signaling pathways controlling Mdm2 destruction and further suggest that compromised regulation of Mdm2 results in attenuated p53 activity, thereby facilitating tumor progression. PMID:20708156

  19. The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression.

    PubMed

    Minsky, Neri; Oren, Moshe

    2004-11-19

    Histone modifications play a pivotal role in regulating transcription and other chromatin-associated processes. In yeast, histone H2B monoubiquitylation affects gene silencing. However, mammalian histone ubiquitylation remains poorly understood. We report that the Mdm2 oncoprotein, a RING domain E3 ubiquitin ligase known to ubiquitylate the p53 tumor suppressor protein, can interact directly with histones and promote in vitro monoubiquitylation of histones H2A and H2B. Moreover, Mdm2 induces H2B monoubiquitylation in vivo. Endogenous Mdm2 is tethered in vivo, presumably via p53, to chromatin comprising the p53-responsive p21(waf1) promoter, and Mdm2 overexpression enhances protein ubiquitylation in the vicinity of a p53 binding site within that promoter. Moreover, when recruited to a promoter in the absence of p53, Mdm2 can repress transcription dependently on its RING domain, suggesting that its E3 activity contributes to repression. Histone ubiquitylation may thus constitute a novel mechanism of transcriptional repression by Mdm2, possibly underlying some of its oncogenic activities.

  20. MDM2-MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance.

    PubMed

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2-MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2-MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD ) in the micromolar range for the MDM2-MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2-MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2-MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation.

  1. Nardostachys jatamansi Root Extract Modulates the Growth of IMR-32 and SK-N-MC Neuroblastoma Cell Lines Through MYCN Mediated Regulation of MDM2 and p53

    PubMed Central

    Suryavanshi, Snehal; Raina, Prerna; Deshpande, Rashmi; Kaul-Ghanekar, Ruchika

    2017-01-01

    Aim: The present study evaluated the effect of ethanolic extract of Nardostachys jatamansi roots (NJet) on MYCN mediated regulation of expression of MDM2 and p53 proteins in neuroblastoma cell lines, IMR-32 and SK-N-MC. Materials and Methods: The effect of NJet on cell viability was determined by MTT; and on growth kinetics was evaluated by trypan blue dye exclusion method and soft agar assay. The expression of p53, MDM2 and MYCN proteins in response to NJet treatment was evaluated by immunoblotting. Results: NJet decreased the viability of neuroblastoma cells without affecting the viability of non-cancerous, HEK-293 cells. It altered the growth kinetics of the cancer cells in a dose-dependent manner. NJet down regulated the expression of MYCN and MDM2 proteins with a simultaneous increase in the expression of tumor suppressor protein p53. Conclusions: The present data demonstrated that NJet regulated the growth of IMR-32 and SK-N-MC through reduction in MYCN expression that lead to down regulation of MDM2 protein and increase in p53 expression. These preliminary results warrant further in depth studies to explore the therapeutic potential of Nardostachys jatamansi in the management of neuroblastoma. SUMMARY NJet reduced the viability of human neuroblastoma cell lines without affecting the viability of non-cancerous, HEK-293 cells.NJet regulated the growth kinetics of the cancer cells.NJet decreased the expression of MYCN and MDM2 proteins and simultaneously increased the expression of tumor suppressor protein p53. Abbreviation used: NJet: Ethanolic extract of Nardostachys jatamansi MTT: 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide HPTLC: High performance thin layer chromatography PMID:28216878

  2. Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf(-/-) mouse model.

    PubMed

    Chapeau, Emilie A; Gembarska, Agnieszka; Durand, Eric Y; Mandon, Emeline; Estadieu, Claire; Romanet, Vincent; Wiesmann, Marion; Tiedt, Ralph; Lehar, Joseph; de Weck, Antoine; Rad, Roland; Barys, Louise; Jeay, Sebastien; Ferretti, Stephane; Kauffmann, Audrey; Sutter, Esther; Grevot, Armelle; Moulin, Pierre; Murakami, Masato; Sellers, William R; Hofmann, Francesco; Jensen, Michael Rugaard

    2017-03-21

    Inhibitors of double minute 2 protein (MDM2)-tumor protein 53 (TP53) interaction are predicted to be effective in tumors in which the TP53 gene is wild type, by preventing TP53 protein degradation. One such setting is represented by the frequent CDKN2A deletion in human cancer that, through inactivation of p14ARF, activates MDM2 protein, which in turn degrades TP53 tumor suppressor. Here we used piggyBac (PB) transposon insertional mutagenesis to anticipate resistance mechanisms occurring during treatment with the MDM2-TP53 inhibitor HDM201. Constitutive PB mutagenesis in Arf(-/-) mice provided a collection of spontaneous tumors with characterized insertional genetic landscapes. Tumors were allografted in large cohorts of mice to assess the pharmacologic effects of HDM201. Sixteen out of 21 allograft models were sensitive to HDM201 but ultimately relapsed under treatment. A comparison of tumors with acquired resistance to HDM201 and untreated tumors identified 87 genes that were differentially and significantly targeted by the PB transposon. Resistant tumors displayed a complex clonality pattern suggesting the emergence of several resistant subclones. Among the most frequent alterations conferring resistance, we observed somatic and insertional loss-of-function mutations in transformation-related protein 53 (Trp53) in 54% of tumors and transposon-mediated gain-of-function alterations in B-cell lymphoma-extra large (Bcl-xL), Mdm4, and two TP53 family members, resulting in expression of the TP53 dominant negative truncations ΔNTrp63 and ΔNTrp73. Enhanced BCL-xL and MDM4 protein expression was confirmed in resistant tumors, as well as in HDM201-resistant patient-derived tumor xenografts. Interestingly, concomitant inhibition of MDM2 and BCL-xL demonstrated significant synergy in p53 wild-type cell lines in vitro. Collectively, our findings identify several potential mechanisms by which TP53 wild-type tumors may escape MDM2-targeted therapy.

  3. Significance of MDM2 and P14ARF polymorphisms in susceptibility to differentiated thyroid carcinoma

    PubMed Central

    Zhang, Fenghua; Xu, Li; Wei, Qingyi; Song, Xicheng; Sturgis, Erich M.; Li, Guojun

    2012-01-01

    Background Murine double minute 2 (MDM2) oncoprotein and p14ARF tumor suppressor play pivotal roles in regulating p53 and function in the MAPK pathway, which is frequently mutated in differentiated thyroid carcinoma (DTC). We hypothesized that functional polymorphisms in the promoters of MDM2 and p14ARF contribute to the inter-individual difference in predisposition to DTC. Methods MDM2-rs2279744, MDM2-rs937283, p14ARF-rs3731217, and p14ARF-rs3088440 were genotyped in 303 patients with DTC and 511 cancer-free controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Results MDM2-rs2279744 and p14ARF-rs3731217 were associated with a significantly increased risk of DTC (MDM2-rs2279744: TT vs. TG/GG, OR = 1.5, 95% CI, 1.1–2.0; p14ARF-rs3731217: TG/GG vs. TT, OR = 1.7, 95% CI, 1.2–2.3). No association was found for MDM2-rs937283 or p14ARF-rs3088440. Individuals carrying 3–4 risk genotypes of MDM2 and p14ARF had 2.2 times (95% CI, 1.4–3.5) the DTC risk of individuals carrying 0–1 risk genotypes (Ptrend = 0.021). The combined effect of MDM2 and p14ARF on DTC risk was confined to young subjects (≤45 years), non-smokers, non-drinkers, and subjects with a first-degree family history of cancer. These associations were quite similar in strength when cases were restricted to those with papillary thyroid cancer. Conclusion Our results suggest that polymorphisms of MDM2 and p14ARF contribute to the inter-individual difference in susceptibility to DTC, either alone or more likely jointly. The observed associations warrant further confirmation in independent studies. PMID:23218882

  4. STIP is a critical nuclear scaffolding protein linking USP7 to p53-Mdm2 pathway regulation

    PubMed Central

    Liu, Jing; Wu, Kuangpei; Yao, Shan; Sun, Yang; Zhou, Lei; Deng, Tanggang; Chen, Ying; Huang, Chenghan; Tan, Weihong

    2015-01-01

    The ubiquitin-specific protease USP7 stabilizes both Mdm2 and p53 by removing ubiquitins, hence playing an important enzymatic role in the p53-Mdm2 pathway. However, it is poorly understood how USP7 executes its dual-stabilization effect on Mdm2 and p53 in cellular context. Here, we report that STIP is a novel macromolecular scaffold that links USP7 to the p53-Mdm2 pathway. STIP and a fraction of USP7 interact and constitutively colocalize in nucleoplasma. Overexpression of STIP stabilizes Mdm2 and p53, whereas downregulation of STIP decreases Mdm2 and p53 levels. The effect of STIP on Mdm2 and p53 depends on USP7 function as a deubiquitinating enzyme. Furthermore, we demonstrate that STIP mediates the assembly of two separate ternary protein complexes in vivo as STIP-USP7-Mdm2 and STIP-USP7-p53, which facilitates USP7-mediated stabilization of Mdm2 and p53. Collectively, these results pinpoint a new molecular function of STIP and reveal a novel mechanism whereby USP7 executes its dual-stabilization effect on Mdm2 and p53 via STIP scaffolding. PMID:26460617

  5. STIP is a critical nuclear scaffolding protein linking USP7 to p53-Mdm2 pathway regulation.

    PubMed

    Ye, Mao; Tang, Yani; Tang, Shijun; Liu, Jing; Wu, Kuangpei; Yao, Shan; Sun, Yang; Zhou, Lei; Deng, Tanggang; Chen, Ying; Huang, Chenghan; Tan, Weihong

    2015-10-27

    The ubiquitin-specific protease USP7 stabilizes both Mdm2 and p53 by removing ubiquitins, hence playing an important enzymatic role in the p53-Mdm2 pathway. However, it is poorly understood how USP7 executes its dual-stabilization effect on Mdm2 and p53 in cellular context. Here, we report that STIP is a novel macromolecular scaffold that links USP7 to the p53-Mdm2 pathway. STIP and a fraction of USP7 interact and constitutively colocalize in nucleoplasma. Overexpression of STIP stabilizes Mdm2 and p53, whereas downregulation of STIP decreases Mdm2 and p53 levels. The effect of STIP on Mdm2 and p53 depends on USP7 function as a deubiquitinating enzyme. Furthermore, we demonstrate that STIP mediates the assembly of two separate ternary protein complexes in vivo as STIP-USP7-Mdm2 and STIP-USP7-p53, which facilitates USP7-mediated stabilization of Mdm2 and p53. Collectively, these results pinpoint a new molecular function of STIP and reveal a novel mechanism whereby USP7 executes its dual-stabilization effect on Mdm2 and p53 via STIP scaffolding.

  6. Genetic polymorphisms of MDM2, cumulative cigarette smoking and nonsmall cell lung cancer risk.

    PubMed

    Liu, Geoffrey; Wheatley-Price, Paul; Zhou, Wei; Park, Sohee; Heist, Rebecca S; Asomaning, Kofi; Wain, John C; Lynch, Thomas J; Su, Li; Christiani, David C

    2008-02-15

    Abnormalities of the tumor suppressor TP53 pathway are critical in the development of many cancers since it regulates cell cycle components and apoptosis. Murine double minute-2 (MDM2) protein is a central node in the p53 pathway and a direct negative regulator of p53. The MDM2 SNP309 (rs2279744) polymorphism increases MDM2 RNA and protein levels, attenuating the p53 pathway. The MDM2 SNP309 polymorphism was investigated in 1,787 Caucasian nonsmall cell lung cancer (NSCLC) patients and 1,360 healthy controls. Cases and controls were analyzed for associations with genotype and adjusted for age, gender, histology and smoking history. There were no overall associations between the MDM2 genotypes and risk of lung cancer (adjusted odds ratios [AORs] = 0.82 [95% confidence interval [CI] = 0.6-1.1] for the T/G genotype and AOR = 1.32 [95% CI = 0.9-2.0] for the G/G genotype). A statistically significant interaction (p = 0.01) was found between smoking and MDM2 genotypes. Consistent with this interaction, stratified analysis by pack-years of smoking demonstrated that the AORs of G/G vs. T/T were 1.56 (1.0-2.7), 1.46 (1.0-2.2), 0.80 (0.5-1.3) and 0.63 (0.4-1.1), respectively, for never, mild (<30 pack-years), moderate (30-57 pack-years) and heavy smokers (>or=58 pack-years). In conclusion, a strong gene-smoking interaction was observed between the MDM2 SNP309 and NSCLC risk. (c) 2007 Wiley-Liss, Inc.

  7. Natural product ginsenoside 25-OCH3-PPD inhibits breast cancer growth and metastasis through down-regulating MDM2.

    PubMed

    Wang, Wei; Zhang, Xu; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree Ashok; Wang, Ming-Hai; Wang, Hui; Zhang, Ruiwen

    2012-01-01

    Although ginseng and related herbs have a long history of utility for various health benefits, their application in cancer therapy and underlying mechanisms of action are not fully understood. Our recent work has shown that 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol (25-OCH(3)-PPD), a newly identified ginsenoside from Panax notoginseng, exerts activities against a variety of cancer cells in vitro and in vivo. This study was designed to investigate its anti-breast cancer activity and the underlying mechanisms of action. We observed that 25-OCH(3)-PPD decreased the survival of breast cancer cells by induction of apoptosis and G1 phase arrest and inhibited the growth of breast cancer xenografts in vivo. We further demonstrated that, in a dose- and time-dependent manner, 25-OCH(3)-PPD inhibited MDM2 expression at both transcriptional and post-translational levels in human breast cancer cells with various p53 statuses (wild type and mutant). Moreover, 25-OCH(3)-PPD inhibited in vitro cell migration, reduced the expression of epithelial-to-mesenchymal transition (EMT) markers, and prevented in vivo metastasis of breast cancer. In summary, 25-OCH(3)-PPD is a potential therapeutic and anti-metastatic agent for human breast cancer through down-regulating MDM2. Further preclinical and clinical development of this agent is warranted.

  8. The effects of phosphomimetic lid mutation on the thermostability of the N-terminal domain of MDM2.

    PubMed

    Worrall, Erin G; Worrall, Liam; Blackburn, Elizabeth; Walkinshaw, Malcolm; Hupp, Ted R

    2010-05-07

    The multidomain E3 ubiquitin ligase MDM2 catalyzes p53 ubiquitination by a "dual-site" docking mechanism whereby MDM2 binding to at least two distinct peptide motifs on p53 promotes ubiquitination. One protein-protein interaction occurs between the N-terminal hydrophobic pocket of MDM2 and the transactivation motif of p53, and the second interaction occurs between the acidic domain of MDM2 and a motif in the DNA-binding domain of p53. A flexible N-terminal pseudo-substrate or "lid" adjacent to the N-terminal hydrophobic pocket of MDM2 has a phosphorylation site, and there are distinct models proposed on how the phosphorylated lid could affect MDM2 function. Biochemical studies have predicted that phosphomimetic mutation will stabilize the lid on the surface of MDM2 and will "open" the hydrophobic pocket and stabilize the MDM2-p53 complex, while NMR studies proposed that phosphomimetic mutation "closes" the lid over the MDM2 pocket and inhibits MDM2-p53 complex formation. To resolve these discrepancies, we utilized a quantitative fluorescence-based dye binding assay to measure the thermal unfolding of wild-type (wt), DeltaLid, and S17D N-terminal domains of MDM2 as a function of increasing ligand concentration. Our data reveal that S17D lid mutation increases, rather than decreases, the thermostability of the N-terminal domain of MDM2 in the absence or in the presence of ligand. DeltaLid mutation, by contrast, increases MDM2 thermoinstability. This is consistent with biochemical data, using full-length MDM2, showing that the S17D mutation stabilizes the MDM2-p53 complex and increases the specific activity of the E3 ubiquitin ligase function of MDM2. These data indicate that phosphomimetic lid mutation results in an "opening," rather than a "closing," of the pocket of MDM2 and highlight the ability of small intrinsically disordered or unstructured peptide motifs to regulate the specific activity of a protein.

  9. MDM2 Inhibition rescues neurogenic and cognitive deficits in fragile X mice

    PubMed Central

    Li, Yue; Stockton, Michael E.; Bhuiyan, Ismat; Eisinger, Brian E.; Gao, Yu; Miller, Jessica L.; Bhattacharyya, Anita; Zhao, Xinyu

    2016-01-01

    Fragile X syndrome, the most common form of inherited intellectual disability, is caused most often by a lack of fragile X mental retardation protein (FMRP). However, the mechanism remains unclear and effective treatment is lacking. Here we show that a loss of FMRP leads to activation of adult neural stem cells (NSCs) and a subsequent reduction in neuronal production. We identified ubiquitin ligase MDM2 as a target of FMRP. FMRP regulates Mdm2 mRNA stability, and loss of FMRP results in elevated mRNA and MDM2 protein levels. We further found that increased MDM2 levels lead to reduced P53 in NSCs, which alters NSC proliferation and differentiation. Treatment with Nutlin-3, a small molecule undergoing clinical trials for cancer, specifically inhibits MDM2 and P53 interaction, and rescues the neurogenic and cognitive deficits in FMRP-deficient mice. Our data unveil a regulatory role for FMRP and a potential new treatment for fragile X syndrome. PMID:27122614

  10. Ribosomal Protein S14 Unties the MDM2-p53 Loop Upon Ribosomal Stress

    PubMed Central

    Zhou, Xiang; Hao, Qian; Liao, Jun-ming; Zhang, Qi; Lu, Hua

    2013-01-01

    The MDM2-p53 feedback loop is crucially important for restricting p53 level and activity during normal cell growth and proliferation, and is thus subjected to dynamic regulation in order for cells to activate p53 upon various stress signals. Several ribosomal proteins, such as RPL11, RPL5, RPL23, RPL26, or RPS7, have been shown to play a role in regulation of this feedback loop in response to ribosomal stress. Here, we identify another ribosomal protein S14, which is highly associated with 5q-syndrome, as a novel activator of p53 by inhibiting MDM2 activity. We found that RPS14, but not RPS19, binds to the central acidic domain of MDM2, like RPL5 and RPL23, and inhibits its E3 ubiquitin ligase activity toward p53. This RPS14-MDM2 binding was induced upon ribosomal stress caused by actinomycin D or mycophenolic acid. Overexpression of RPS14, but not RPS19, elevated p53 level and activity, leading to G1 or G2 arrest. Conversely, knockdown of RPS14 alleviated p53 induction by these two reagents. Interestingly, knockdown of either RPS14 or RPS19 caused a ribosomal stress that led to p53 activation, which was impaired by further knocking down the level of RPL11 or RPL5. Together, our results demonstrate that RPS14 and RPS19 play distinct roles in regulating the MDM2-p53 feedback loop in response to ribosomal stress. PMID:22391559

  11. Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation.

    PubMed

    Gaughan, Luke; Logan, Ian R; Neal, David E; Robson, Craig N

    2005-01-01

    The androgen receptor (AR) is a member of the nuclear hormone receptor family of transcription factors and plays a critical role in regulating the expression of genes involved in androgen-dependent and -independent tumour formation. Regulation of the AR is achieved by alternate binding of either histone acetyltransferase (HAT)-containing co-activator proteins, or histone deacetylase 1 (HDAC1). Factors that control AR stability may also constitute an important regulatory mechanism, a notion that has been confirmed with the finding that the AR is a direct target for Mdm2-mediated ubiquitylation and proteolysis. Using chromatin immunoprecipitation (ChIP) and re-ChIP analyses, we show that Mdm2 associates with AR and HDAC1 at the active androgen-responsive PSA promoter in LNCaP prostate cancer cells. Furthermore, we demonstrate that Mdm2-mediated modification of AR and HDAC1 catalyses protein destabilization and attenuates AR sactivity, suggesting that ubiquitylation of the AR and HDAC1 may constitute an additional mechanism for regulating AR function. We also show that HDAC1 and Mdm2 function co-operatively to reduce AR-mediated transcription that is attenuated by the HAT activity of the AR co-activator Tip60, suggesting interplay between acetylation status and receptor ubiquitylation in AR regulation. In all, our data indicates a novel role for Mdm2 in regulating components of the AR transcriptosome.

  12. A stapled peptide antagonist of MDM2 carried by polymeric micelles sensitizes glioblastoma to temozolomide treatment through p53 activation.

    PubMed

    Chen, Xishan; Tai, Lingyu; Gao, Jie; Qian, Jianchang; Zhang, Mingfei; Li, Beibei; Xie, Cao; Lu, Linwei; Lu, Wuyuan; Lu, Weiyue

    2015-11-28

    Antagonizing MDM2 and MDMX to activate the tumor suppressor protein p53 is an attractive therapeutic paradigm for the treatment of glioblastoma multiforme (GBM). However, challenges remain with respect to the poor ability of p53 activators to efficiently cross the blood-brain barrier and/or blood-brain tumor barrier and to specifically target tumor cells. To circumvent these problems, we developed a cyclic RGD peptide-conjugated poly(ethylene glycol)-co-poly(lactic acid) polymeric micelle (RGD-M) that carried a stapled peptide antagonist of both MDM2 and MDMX (sPMI). The peptide-carrying micelle RGD-M/sPMI was prepared via film-hydration method with high encapsulation efficiency and loading capacity as well as ideal size distribution. Micelle encapsulation dramatically increased the solubility of sPMI, thus alleviating its serum sequestration. In vitro studies showed that RGD-M/sPMI efficiently inhibited the proliferation of glioma cells in the presence of serum by activating the p53 signaling pathway. Further, RGD-M/sPMI exerted potent tumor growth inhibitory activity against human glioblastoma in nude mouse xenograft models. Importantly, the combination of RGD-M/sPMI and temozolomide--a standard chemotherapy drug for GBM increased antitumor efficacy against glioblastoma in experimental animals. Our results validate a combination therapy using p53 activators with temozolomide as a more effective treatment for GBM.

  13. Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction.

    PubMed

    Pettersson, Mariell; Quant, Maria; Min, Jaeki; Iconaru, Luigi; Kriwacki, Richard W; Waddell, M Brett; Guy, R Kiplin; Luthman, Kristina; Grøtli, Morten

    2015-01-01

    The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2) via a direct protein-protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.

  14. Senescence-inducing stress promotes proteolysis of phosphoglycerate mutase via ubiquitin ligase Mdm2

    PubMed Central

    Mikawa, Takumi; Maruyama, Takeshi; Okamoto, Koji; Nakagama, Hitoshi; Lleonart, Matilde E.; Tsusaka, Takeshi; Hori, Kousuke; Murakami, Itsuo; Izumi, Taisuke; Takaori-Kondo, Akifumi; Yokode, Masayuki; Peters, Gordon; Beach, David

    2014-01-01

    Despite the well-documented clinical significance of the Warburg effect, it remains unclear how the aggressive glycolytic rates of tumor cells might contribute to other hallmarks of cancer, such as bypass of senescence. Here, we report that, during oncogene- or DNA damage–induced senescence, Pak1-mediated phosphorylation of phosphoglycerate mutase (PGAM) predisposes the glycolytic enzyme to ubiquitin-mediated degradation. We identify Mdm2 as a direct binding partner and ubiquitin ligase for PGAM in cultured cells and in vitro. Mutations in PGAM and Mdm2 that abrogate ubiquitination of PGAM restored the proliferative potential of primary cells under stress conditions and promoted neoplastic transformation. We propose that Mdm2, a downstream effector of p53, attenuates the Warburg effect via ubiquitination and degradation of PGAM. PMID:24567357

  15. Senescence-inducing stress promotes proteolysis of phosphoglycerate mutase via ubiquitin ligase Mdm2.

    PubMed

    Mikawa, Takumi; Maruyama, Takeshi; Okamoto, Koji; Nakagama, Hitoshi; Lleonart, Matilde E; Tsusaka, Takeshi; Hori, Kousuke; Murakami, Itsuo; Izumi, Taisuke; Takaori-Kondo, Akifumi; Yokode, Masayuki; Peters, Gordon; Beach, David; Kondoh, Hiroshi

    2014-03-03

    Despite the well-documented clinical significance of the Warburg effect, it remains unclear how the aggressive glycolytic rates of tumor cells might contribute to other hallmarks of cancer, such as bypass of senescence. Here, we report that, during oncogene- or DNA damage-induced senescence, Pak1-mediated phosphorylation of phosphoglycerate mutase (PGAM) predisposes the glycolytic enzyme to ubiquitin-mediated degradation. We identify Mdm2 as a direct binding partner and ubiquitin ligase for PGAM in cultured cells and in vitro. Mutations in PGAM and Mdm2 that abrogate ubiquitination of PGAM restored the proliferative potential of primary cells under stress conditions and promoted neoplastic transformation. We propose that Mdm2, a downstream effector of p53, attenuates the Warburg effect via ubiquitination and degradation of PGAM.

  16. MDM2 285G>C and 344T>A gene variants and their association with hepatocellular carcinoma: a Moroccan case–control study

    PubMed Central

    2014-01-01

    Background MDM2 gene polymorphisms 285G/C and 344 T/A are two single nucleotide polymorphisms (SNPs) recently identified as important variants that could influence the expression of MDM2 gene through the modulation of transcription factors binding on the SNP309T/G. The 285C variant seems to present a geographically distinct distribution in humans and to be associated with a low cancer risk. In the present report, we studied the distribution of the three SNPs in a population with low liver cancer incidence. Methods A group of 119 patients with hepatocellular carcinoma (HCC, 63.45 ± 12.59 year, 26–80) and another of 103 non-HCC controls (56 ± 10.82 year, 22–79) were enrolled to investigate association between MDM2 polymorphisms and susceptibility to develop HCC. The three studied SNPs (285G/C, 309 T/G and 344 T/A) were genotyped using polymerase chain reaction and sequencing techniques. Results Genotypes and alleles distributions of the three studied polymorphisms of MDM2 were not significantly different between cases and controls. An increased risk of HCC development was found in case of 309G allele presence albeit without reaching the significance (29.8% vs 22.3%, OR = 1.48, 95% CI, 0.96-2.27, p = 0.073). In addition, neither 285C nor 344A MDM2 variants were significantly associated with an increased risk of HCC (p = 0.688 and p = 1 respectively). Remarkably, we found that the supposedly Caucasian-specific 285C variant was present in 1% of the Moroccan population. Conclusions This is the first study of the MDM2 SNP285G/C and SNP344T/A polymorphisms in association with HCC development. In contrast with previous studies, showing that females carrying SNP285C variant have a significantly reduced risk of developing breast, ovarian and endometrial cancer, no significant modulation of HCC risk was found in a North-African population. PMID:24708820

  17. MDM2 Promoter SNP344T>A (rs1196333) Status Does Not Affect Cancer Risk

    PubMed Central

    Knappskog, Stian; Gansmo, Liv B.; Romundstad, Pål; Bjørnslett, Merete; Trovik, Jone; Sommerfelt-Pettersen, Jan; Løkkevik, Erik; Tollenaar, Rob A. E. M.; Seynaeve, Caroline; Devilee, Peter; Salvesen, Helga B.; Dørum, Anne; Hveem, Kristian; Vatten, Lars; Lønning, Per E.

    2012-01-01

    The MDM2 proto-oncogene plays a key role in central cellular processes like growth control and apoptosis, and the gene locus is frequently amplified in sarcomas. Two polymorphisms located in the MDM2 promoter P2 have been shown to affect cancer risk. One of these polymorphisms (SNP309T>G; rs2279744) facilitates Sp1 transcription factor binding to the promoter and is associated with increased cancer risk. In contrast, SNP285G>C (rs117039649), located 24 bp upstream of rs2279744, and in complete linkage disequilibrium with the SNP309G allele, reduces Sp1 recruitment and lowers cancer risk. Thus, fine tuning of MDM2 expression has proven to be of significant importance with respect to tumorigenesis. We assessed the potential functional effects of a third MDM2 promoter P2 polymorphism (SNP344T>A; rs1196333) located on the SNP309T allele. While in silico analyses indicated SNP344A to modulate TFAP2A, SPIB and AP1 transcription factor binding, we found no effect of SNP344 status on MDM2 expression levels. Assessing the frequency of SNP344A in healthy Caucasians (n = 2,954) and patients suffering from ovarian (n = 1,927), breast (n = 1,271), endometrial (n = 895) or prostatic cancer (n = 641), we detected no significant difference in the distribution of this polymorphism between any of these cancer forms and healthy controls (6.1% in healthy controls, and 4.9%, 5.0%, 5.4% and 7.2% in the cancer groups, respectively). In conclusion, our findings provide no evidence indicating that SNP344A may affect MDM2 transcription or cancer risk. PMID:22558411

  18. A spatiotemporal characterization of the effect of p53 phosphorylation on its interaction with MDM2

    PubMed Central

    ElSawy, Karim M; Sim, Adelene; Lane, David P; Verma, Chandra S; Caves, Leo SD

    2015-01-01

    The interaction of p53 and MDM2 is modulated by the phosphorylation of p53. This mechanism is key to activating p53, yet its molecular determinants are not fully understood. To study the spatiotemporal characteristics of this molecular process we carried out Brownian dynamics simulations of the interactions of the MDM2 protein with a p53 peptide in its wild type state and when phosphorylated at Thr18 (pThr18) and Ser20 (pSer20). We found that p53 phosphorylation results in concerted changes in the topology of the interaction landscape in the diffusively bound encounter complex domain. These changes hinder phosphorylated p53 peptides from binding to MDM2 well before reaching the binding site. The underlying mechanism appears to involve shift of the peptide away from the vicinity of the MDM2 protein, peptide reorientation, and reduction in peptide residence time relative to wild-type p53 peptide. pThr18 and pSr20 p53 peptides experience reduction in residence times by factors of 13.6 and 37.5 respectively relative to the wild-type p53 peptide, indicating a greater role for Ser20 phosphorylation in abrogating p53 MDM2 interactions. These detailed insights into the effect of phosphorylation on molecular interactions are not available from conventional experimental and theoretical approaches and open up new avenues that incorporate molecular interaction dynamics, for stabilizing p53 against MDM2, which is a major focus of anticancer drug lead development. PMID:25584963

  19. Influence of MDM2 polymorphisms on squamous cell carcinoma susceptibility: a meta-analysis

    PubMed Central

    Yu, Huanxin; Li, Haiyan; Zhang, Jinling; Liu, Gang

    2016-01-01

    Purpose Controversial associations between single-nucleotide polymorphisms (rs2279744, rs937283, rs3730485) of the MDM2 gene and the etiology of squamous cell carcinomas (SCCs) have been reported. This merits further comprehensive assessment. Materials and methods We systematically reviewed the available data and conducted an updated meta-analysis to evaluate the genetic effect of MDM2 polymorphisms in SCC susceptibility, using Stata/SE 12.0 software. Results After screening, 7,987 SCC cases and 12,954 controls from 26 eligible case–control studies were enrolled. Overall, compared with the control group, a significantly increased SCC risk was observed for the MDM2 rs2279744 polymorphism in the Asian population (test of association: odds ratio [OR] 1.12, P=0.027 for G vs T; OR 1.26, P=0.016 for GG vs TT; OR 1.25, P<0.001 for GG vs TT + TG; and OR 1.08, P=0.023 for carrier G vs T). In subgroup analysis by SCC type, a similarly increased esophageal SCC risk was detected (OR 1.19, P<0.001 for G vs T; OR 1.46, P<0.001 for GG vs TT; and OR 1.48, P=0.005 for GG vs TT + TG). Furthermore, MDM2–TP53 double mutation was statistically associated with increased SCC susceptibility overall (OR 1.52, P=0.001), especially in the Asian population (OR 1.49, P=0.022). However, no significant difference between the control and case groups was obtained for MDM2 rs937283 or rs3730485 under any genetic model (all P>0.05). Conclusion Our results highlight a positive association between the GG genotype of MDM2 rs2279744 polymorphism and an increased risk of esophageal SCC in the Asian population, which needs to be clarified by more large-scale studies. PMID:27785069

  20. MDM2 regulates a novel form of incomplete neoplastic transformation of Theileria parva infected lymphocytes.

    PubMed

    Hayashida, Kyoko; Kajino, Kiichi; Hattori, Masakazu; Wallace, Maura; Morrison, Ivan; Greene, Mark I; Sugimoto, Chihiro

    2013-02-01

    Our efforts are concerned with identifying features of incomplete malignant transformation caused by non viral pathogens. Theileria parva (T. parva) is a tick-transmitted protozoan parasite that can cause a fatal lymphoproliferative disease in cattle. The T. parva-infected lymphocytes display a transformed phenotype and proliferate in culture media like the other tumor cells, however those cells will return to normal after antiprotozoal treatment reflecting the incomplete nature of transformation. To identify signaling pathways involved in this form of transformation of T. parva-infected cells, we screened a library of anticancer compounds. Among these, TIBC, a specific inhibitor of MDM2, markedly inhibited proliferation of T. parva-infected lymphocytes and promoted apoptosis. Therefore we analyzed MDM2 function in T. parva-infected cells. Several T. parva-infected cell lines showed increased expression level of MDM2 with alternatively spliced isoforms compared to the lymphoma cells or ConA blasts. In addition, buparvaquone affected MDM2 expression in T. parva transformed cells. Moreover, p53 protein accumulation and function were impaired in T. parva-infected cells after cisplatin induced DNA damage despite the increased p53 transcription level. Finally, the treatment of T. parva-infected cells with boronic-chalcone derivatives TIBC restored p53 protein accumulation and induced Bax expression. These results suggest that the overexpression of MDM2 is closely linked to the inhibition of p53-dependent apoptosis of T. parva-infected lymphocytes. Aberrant expression of host lymphocyte MDM2 induced by cytoplasmic existence of T. parva, directly and/or indirectly, is associated with aspects of this type of transformation of T. parva-infected lymphocytes. This form of transformation shares features of oncogene induced malignant phenotype acquisition.

  1. MDM2 SNP309 polymorphism contributes to endometrial cancer susceptibility: evidence from a meta-analysis

    PubMed Central

    2013-01-01

    Objective The SNP309 polymorphism (T-G) in the promoter of MDM2 gene has been reported to be associated with enhanced MDM2 expression and tumor development. Studies investigating the association between MDM2 SNP309 polymorphism and endometrial cancer risk reported conflicting results. We performed a meta-analysis of all available studies to explore this association. Methods All studies published up to August 2013 on the association between MDM2 SNP309 polymorphism and endometrial cancer risk were identified by searching electronic databases PubMed, Web of Science, EMBASE, and Chinese Biomedical Literature database (CBM). The association between the MDM2 SNP309 polymorphism and endometrial cancer risk was assessed by odds ratios (ORs) together with their 95% confidence intervals (CIs). Results Eight case–control studies with 2069 endometrial cancer cases and 4546 controls were identified. Overall, significant increase of endometrial cancer risk was found when all studies were pooled in the meta-analysis (GG vs. TT: OR = 1.464, 95% CI 1.246–1.721, P < 0.001; GG vs. TG + TT: OR = 1.726, 95% CI 1.251–2.380, P = 0.001; GG + TG vs. TT: OR = 1.169, 95% CI 1.048–1.304, P = 0.005). In subgroup analysis by ethnicity and HWE in controls, significant increase of endometrial cancer risks were observed in Caucasians and studies consistent with HWE. In subgroup analysis according to study quality, significant associations were observed in both high quality studies and low quality studies. Conclusions This meta-analysis suggests that MDM2 SNP309 polymorphism contributes to endometrial cancer susceptibility, especially in Caucasian populations. Further large and well-designed studies are needed to confirm this association. PMID:24423195

  2. Assessment of mdm2 Alterations on p53 Expression in Breast Cancer

    DTIC Science & Technology

    2000-10-01

    Bueso-Ramos, C., Manshouri, T., Haidar , M., Yung, Y., McCown, P., Ordonez, N., Glassman, A., Sneige, J., and Albitar, M. Abnormal expression of mdm2 in...during mammary tumorigenesis. Int J Cancer. 81: 292-298, 1999. 31. Bueso-Ramos, C, Manshouri, T., Haidar , M., Huh, Y., Keating, M., and Albitar, M...Bueso-Ramos, C, Manshouri. T.. Haidar , M., Yung, Y.. McCown. P., Ordonez, N., Glassman, A.. Sneige. J., and Albitar, M. Abnormal expression of mdm2

  3. Nandrolone, an anabolic steroid, stabilizes Numb protein through inhibition of mdm2 in C2C12 myoblasts.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Collier, Lauren; Bauman, William A; Cardozo, Christopher P

    2012-01-01

    Nandrolone, an anabolic steroid, slows denervation atrophy of rat muscle, prevents denervation-induced nuclear accumulation of intracellular domain of the Notch receptor, and elevates expression of Numb. Numb acts as an inhibitor of Notch signaling and promotes myogenic differentiation of satellite cells. Turnover of Numb is regulated by mdm2, an E3 ubiquitin ligase. With these considerations in mind, we investigated the effects of nandrolone on the expression of Numb and mdm2 proteins and determined the effect of mdm2 on nandrolone-induced alterations in Numb protein in C2C12 myoblasts. When C2C12 cells were cultured in a medium favoring differentiation (Dulbecco modified Eagle medium containing 2% horse serum), nandrolone up-regulated Numb protein levels in a time-dependent manner and prolonged Numb protein half-life from 10 to 18 hours. In contrast, nandrolone reduced the expression of mdm2 protein. To determine whether the decreased mdm2 expression induced by nandrolone was responsible for the increased levels and prolonged half-life of Numb protein in this cell line, mdm2-small interfering RNA (siRNA) was employed to inhibit mdm2 expression. Compared to cells transfected with scrambled siRNA (negative control), transfection with mdm2-siRNA increased basal Numb protein expression but abolished the further increase in Numb protein levels by nandrolone. In addition, transfection of mdm2-siRNA mimicked the effect of nandrolone to prolong the half-life of Numb protein. Moreover, when C2C12 cells were forced to overexpress mdm2, there was a significant decline in the expression of both basal and inducible Numb protein. Our data suggest that nandrolone, by a novel mechanism for this agent in a muscle cell type, increases Numb protein levels in C2C12 myoblasts by stabilizing Numb protein against degradation, at least in part, via suppression of mdm2 expression.

  4. Hyperglycemia promotes p53-Mdm2 interaction but reduces p53 ubiquitination in RINm5F cells.

    PubMed

    Barzalobre-Gerónimo, R; Raúl, Barzalobre-Gerónimo; Flores-López, L A; Antonio, Flores-López Luis; Baiza-Gutman, L A; Arturo, Baiza-Gutman Luis; Cruz, M; Miguel, Cruz; García-Macedo, R; Rebeca, García-Macedo; Ávalos-Rodríguez, A; Alejandro, Ávalos-Rodríguez; Contreras-Ramos, A; Alejandra, Contreras-Ramos; Díaz-Flores, A; Margarita, Díaz-Flores; Ortega-Camarillo, C; Clara, Ortega-Camarillo

    2015-07-01

    The apoptosis of β cells induced by hyperglycemia has been associated with p53 mobilization to mitochondria and p53 phosphorylation. Murine double minute 2 (Mdm2) induces the degradation of p53 and thereby protects cells from apoptosis. We studied the effect of glucose at high concentration on the ability of Mdm2 to ubiquitinate p53 and promote its degradation. RINm5F cells were grown in RPMI-1640 medium with 5 or 30 mM glucose for varying periods of time. After this treatment, the expression of Mdm2 was measured using real-time PCR. The phosphorylation of Mdm2 at Ser166, p53 at Ser15, and the kinases Akt and ATM were measured by Western blotting. The formation of the p53-Mdm2 complex and p53 ubiquitination was assessed by p53 immunoprecipitation and immunofluorescence. Our results showed that high glucose reduced Mdm2 mRNA expression and protein concentration and increased Mdm2 and Akt phosphorylation, albeit with slower kinetics for Akt. It also promoted p53-Mdm2 complex formation, whereas p53 ubiquitination was suppressed. Furthermore, phosphorylation of both p53 Ser15 and ATM was increased in the presence of 30 mM glucose. These data indicate that high concentration glucose decrease the mRNA expression and cytosolic concentration of Mdm2. However, although the increase in glucose promoted the phosphorylation of Mdm2, it also decreased p53 ubiquitination, thus avoiding p53 degradation. In hyperglycemic conditions, such as diabetes mellitus, the reduction of pancreatic β cells mass is favored by stabilization of p53 in association with low p53 ubiquitination and reduced expression of Mdm2.

  5. Core Binding Factor β Protects HIV, Type 1 Accessory Protein Viral Infectivity Factor from MDM2-mediated Degradation.

    PubMed

    Matsui, Yusuke; Shindo, Keisuke; Nagata, Kayoko; Yoshinaga, Noriyoshi; Shirakawa, Kotaro; Kobayashi, Masayuki; Takaori-Kondo, Akifumi

    2016-11-25

    HIV, type 1 overcomes host restriction factor apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins by organizing an E3 ubiquitin ligase complex together with viral infectivity factor (Vif) and a host transcription cofactor core binding factor β (CBFβ). CBFβ is essential for Vif to counteract APOBEC3 by enabling the recruitment of cullin 5 to the complex and increasing the steady-state level of Vif protein; however, the mechanisms by which CBFβ up-regulates Vif protein remains unclear. Because we have reported previously that mouse double minute 2 homolog (MDM2) is an E3 ligase for Vif, we hypothesized that CBFβ might protect Vif from MDM2-mediated degradation. Co-immunoprecipitation analyses showed that Vif mutants that do not bind to CBFβ preferentially interact with MDM2 and that overexpression of CBFβ disrupts the interaction between MDM2 and Vif. Knockdown of CBFβ reduced the steady-state level of Vif in MDM2-proficient cells but not in MDM2-null cells. Cycloheximide chase analyses revealed that Vif E88A/W89A, which does not interact with CBFβ, degraded faster than wild-type Vif in MDM2-proficient cells but not in MDM2-null cells, suggesting that Vif stabilization by CBFβ is mainly caused by impairing MDM2-mediated degradation. We identified Vif R93E as a Vif variant that does not bind to MDM2, and the virus with this substitution mutation was more resistant to APOBEC3G than the parental virus. Combinatory substitution of Vif residues required for CBFβ binding and MDM2 binding showed full recovery of Vif steady-state levels, supporting our hypothesis. Our data provide new insights into the mechanism of Vif augmentation by CBFβ.

  6. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy.

    PubMed

    Chang, Yong S; Graves, Bradford; Guerlavais, Vincent; Tovar, Christian; Packman, Kathryn; To, Kwong-Him; Olson, Karen A; Kesavan, Kamala; Gangurde, Pranoti; Mukherjee, Aditi; Baker, Theresa; Darlak, Krzysztof; Elkin, Carl; Filipovic, Zoran; Qureshi, Farooq Z; Cai, Hongliang; Berry, Pamela; Feyfant, Eric; Shi, Xiangguo E; Horstick, James; Annis, D Allen; Manning, Anthony M; Fotouhi, Nader; Nash, Huw; Vassilev, Lyubomir T; Sawyer, Tomi K

    2013-09-03

    Stapled α-helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-7041, which effectively activates the p53 pathway in tumors in vitro and in vivo. Specifically, ATSP-7041 binds both MDM2 and MDMX with nanomolar affinities, shows submicromolar cellular activities in cancer cell lines in the presence of serum, and demonstrates highly specific, on-target mechanism of action. A high resolution (1.7-Å) X-ray crystal structure reveals its molecular interactions with the target protein MDMX, including multiple contacts with key amino acids as well as a role for the hydrocarbon staple itself in target engagement. Most importantly, ATSP-7041 demonstrates robust p53-dependent tumor growth suppression in MDM2/MDMX-overexpressing xenograft cancer models, with a high correlation to on-target pharmacodynamic activity, and possesses favorable pharmacokinetic and tissue distribution properties. Overall, ATSP-7041 demonstrates in vitro and in vivo proof-of-concept that stapled peptides can be developed as therapeutically relevant inhibitors of protein-protein interaction and may offer a viable modality for cancer therapy.

  7. Stapled α−helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy

    PubMed Central

    Chang, Yong S.; Graves, Bradford; Guerlavais, Vincent; Tovar, Christian; Packman, Kathryn; To, Kwong-Him; Olson, Karen A.; Kesavan, Kamala; Gangurde, Pranoti; Mukherjee, Aditi; Baker, Theresa; Darlak, Krzysztof; Elkin, Carl; Filipovic, Zoran; Qureshi, Farooq Z.; Cai, Hongliang; Berry, Pamela; Feyfant, Eric; Shi, Xiangguo E.; Horstick, James; Annis, D. Allen; Manning, Anthony M.; Fotouhi, Nader; Nash, Huw; Vassilev, Lyubomir T.; Sawyer, Tomi K.

    2013-01-01

    Stapled α−helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-7041, which effectively activates the p53 pathway in tumors in vitro and in vivo. Specifically, ATSP-7041 binds both MDM2 and MDMX with nanomolar affinities, shows submicromolar cellular activities in cancer cell lines in the presence of serum, and demonstrates highly specific, on-target mechanism of action. A high resolution (1.7-Å) X-ray crystal structure reveals its molecular interactions with the target protein MDMX, including multiple contacts with key amino acids as well as a role for the hydrocarbon staple itself in target engagement. Most importantly, ATSP-7041 demonstrates robust p53-dependent tumor growth suppression in MDM2/MDMX-overexpressing xenograft cancer models, with a high correlation to on-target pharmacodynamic activity, and possesses favorable pharmacokinetic and tissue distribution properties. Overall, ATSP-7041 demonstrates in vitro and in vivo proof-of-concept that stapled peptides can be developed as therapeutically relevant inhibitors of protein–protein interaction and may offer a viable modality for cancer therapy. PMID:23946421

  8. Novel MDM2 inhibitor SAR405838 (MI-773) induces p53-mediated apoptosis in neuroblastoma

    PubMed Central

    Lu, Jiaxiong; Guan, Shan; Zhao, Yanling; Yu, Yang; Wang, Yongfeng; Shi, Yonghua; Mao, Xinfang; Yang, Kristine L.; Sun, Wenjing; Xu, Xin; Yi, Joanna S.; Yang, Tianshu; Yang, Jianhua; Nuchtern, Jed G.

    2016-01-01

    Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common childhood extracranial malignant tumor. In NB, somatic mutations of the tumor suppressor, p53, are exceedingly rare. Unlike in adult tumors, the majority of p53 downstream functions are still intact in NB cells with wild-type p53. Thus, restoring p53 function by blocking its interaction with p53 suppressors such as MDM2 is a viable therapeutic strategy for NB treatment. Herein, we show that MDM2 inhibitor SAR405838 is a potent therapeutic drug for NB. SAR405838 caused significantly decreased cell viability of p53 wild-type NB cells and induced p53-mediated apoptosis, as well as augmenting the cytotoxic effects of doxorubicin (Dox). In an in vivo orthotopic NB mouse model, SAR405838 induced apoptosis in NB tumor cells. In summary, our data strongly suggest that MDM2-specific inhibitors like SAR405838 may serve not only as a stand-alone therapy, but also as an effective adjunct to current chemotherapeutic regimens for treating NB with an intact MDM2-p53 axis. PMID:27764791

  9. Combined targeting of MDM2 and CDK4 is synergistic in dedifferentiated liposarcomas.

    PubMed

    Laroche-Clary, Audrey; Chaire, Vanessa; Algeo, Marie-Paule; Derieppe, Marie-Alix; Loarer, François L; Italiano, Antoine

    2017-06-19

    MDM2 and CDK4 are frequently co-amplified in well-differentiated/dedifferentiated liposarcoma (WDLPS/DDLPS). We aimed to determine whether combined MDM2/CDK4 targeting is associated with higher antitumour activity than a single agent in preclinical models of DDLPS. DDLPS cells were exposed to RG7388 (MDM2 antagonist) and palbociclib (CDK4 inhibitor), and apoptosis and signalling/survival pathway perturbations were monitored by flow cytometry and Western blotting. Xenograft mouse models were used to assess tumour growth and survival. Treatment efficacy was assessed by Western blotting, histopathology and tumour volume. RG7388 and palbociclib together exerted a greater antitumour effect than either drug alone, with significant differences in cell viability after a 72-h treatment with RG7388 and/or palbociclib. The combination treatment significantly increased apoptosis compared to the single agents. We then analysed the in vivo antitumour activity of RG7388 and palbociclib in a xenograft model of DDLPS. The combination regimen reduced the tumour growth rate compared with a single agent alone and significantly increased the median progression-free survival. Our results provide a strong rationale for evaluating the therapeutic potential of CDK4 inhibitors as potentiators of MDM2 antagonists in DDLPS and justify clinical trials in this setting.

  10. A fluorescent probe for imaging p53-MDM2 protein-protein interaction.

    PubMed

    Liu, Zhenzhen; Miao, Zhenyuan; Li, Jin; Fang, Kun; Zhuang, Chunlin; Du, Lupei; Sheng, Chunquan; Li, Minyong

    2015-04-01

    In this article, we describe a no-wash small-molecule fluorescent probe for detecting and imaging p53-MDM2 protein-protein interaction based on an environment-sensitive fluorescent turn-on mechanism. After extensive biological examination, this probe L1 exhibited practical activity and selectivity in vitro and in cellulo.

  11. Study of MDM2 and SUMO-1 expression in actinic cheilitis and lip cancer.

    PubMed

    Oliveira Alves, Mônica Ghislaine; da Mota Delgado, Adriana; Balducci, Ivan; Carvalho, Yasmin Rodarte; Cavalcante, Ana Sueli Rodrigues; Almeida, Janete Dias

    2014-11-01

    Actinic cheilitis exhibits a potential of malignant transformation in 10-20 % of cases. The objective of this study was to compare the expression of MDM2 and SUMO-1 proteins between actinic cheilitis (AC) and squamous cell carcinoma (SCC) of the lip. The sample consisted of lower lip mucosa specimens obtained from cases with a clinical and histopathological diagnosis of AC (n = 26) and SCC (n = 25) and specimens of labial semi-mucosa (n = 15) without clinical alterations or inflammation. The tissue samples were stained with hematoxylin-eosin and anti-MDM2 and anti-SUMO-1 antibodies. Data were analyzed by the Kruskal-Wallis and Dunn's tests (5 %). The median expression of MDM2 (kW = 36.8565; df = 3-1 = 2; p = 0.0001) and SUMO-1 (kW = 32.7080; df = 3-1 = 2; p = 0.0001) was similar in cases of AC and SCC of the lip, but differed significantly from that observed for normal labial semi-mucosa. Despite the limitations of the present study, immunohistochemistry demonstrated the overexpression of important proteins (MDM2 and SUMO-1) related to regulatory mechanisms of apoptosis in AC and SCC of the lip, but further studies are needed.

  12. MDM2 T309G polymorphism and esophageal cancer risk: a meta-analysis.

    PubMed

    Lei, Caipeng; Zhang, Weiguo; Fan, Junli; Qiao, Bin; Chen, Qiang; Liu, Qin; Zhao, Chunling

    2015-01-01

    Murine double minute 2 (MDM2) has suggested to play an important role in esophageal cancer. The association between MDM2 T309G polymorphism and esophageal cancer risk was inconclusive. To clarify the possible association, we conducted a meta-analysis. We searched in the PubMed, Embase, and Wanfang databases. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. A total of 6 studies with 4909 cases and controls were included based on the search criteria. The MDM2 T309G polymorphism was associated with a significantly decreased risk of esophageal cancer (OR=0.88; 95% CI, 0.81-0.96; I(2)=22%). When stratified by type of race, a significantly decreased esophageal cancer risk were observed in Asians (OR=0.85; 95% CI, 0.78-0.93; I(2)=0%). In conclusion, this meta-analysis suggested that MDM2 T309G polymorphism was associated with a significantly decreased risk of esophageal cancer.

  13. MDM2 T309G polymorphism and esophageal cancer risk: a meta-analysis

    PubMed Central

    Lei, Caipeng; Zhang, Weiguo; Fan, Junli; Qiao, Bin; Chen, Qiang; Liu, Qin; Zhao, Chunling

    2015-01-01

    Murine double minute 2 (MDM2) has suggested to play an important role in esophageal cancer. The association between MDM2 T309G polymorphism and esophageal cancer risk was inconclusive. To clarify the possible association, we conducted a meta-analysis. We searched in the PubMed, Embase, and Wanfang databases. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. A total of 6 studies with 4909 cases and controls were included based on the search criteria. The MDM2 T309G polymorphism was associated with a significantly decreased risk of esophageal cancer (OR=0.88; 95% CI, 0.81-0.96; I2=22%). When stratified by type of race, a significantly decreased esophageal cancer risk were observed in Asians (OR=0.85; 95% CI, 0.78-0.93; I2=0%). In conclusion, this meta-analysis suggested that MDM2 T309G polymorphism was associated with a significantly decreased risk of esophageal cancer. PMID:26550276

  14. MDM2 facilitates adipocyte differentiation through CRTC-mediated activation of STAT3

    PubMed Central

    Hallenborg, P; Siersbæk, M; Barrio-Hernandez, I; Nielsen, R; Kristiansen, K; Mandrup, S; Grøntved, L; Blagoev, B

    2016-01-01

    The ubiquitin ligase MDM2 is best known for balancing the activity of the tumor suppressor p53. We have previously shown that MDM2 is vital for adipocyte conversion through controlling Cebpd expression in a p53-independent manner. Here, we show that the proadipogenic effect of MDM2 relies on activation of the STAT family of transcription factors. Their activation was required for the cAMP-mediated induction of target genes. Interestingly, rather than influencing all cAMP-stimulated genes, inhibition of the kinases directly responsible for STAT activation, namely JAKs, or ablation of MDM2, each resulted in abolished induction of a subset of cAMP-stimulated genes, with Cebpd being among the most affected. Moreover, STATs were able to interact with the transcriptional cofactors CRTC2 and CRTC3, hitherto only reported to associate with the cAMP-responsive transcription factor CREB. Last but not least, the binding of CRTC2 to a transcriptional enhancer that interacts with the Cebpd promoter was dramatically decreased upon JAK inhibition. Our data reveal the existence of an unusual functional interplay between STATs and CREB at the onset of adipogenesis through shared CRTC cofactors. PMID:27362806

  15. FMRP-dependent Mdm2 dephosphorylation is required for MEF2-induced synapse elimination.

    PubMed

    Tsai, Nien-Pei; Wilkerson, Julia R; Guo, Weirui; Huber, Kimberly M

    2016-12-26

    The Myocyte Enhancer Factor 2 (MEF2) transcription factors suppress an excitatory synapse number by promoting degradation of the synaptic scaffold protein, postsynaptic density protein 95 (PSD-95), a process that is deficient in the mouse model of Fragile X Syndrome, Fmr1 KO. How MEF2 activation results in PSD-95 degradation and why this is defective in Fmr1 KO neurons is unknown. Here we report that MEF2 induces a Protein phosphatase 2A (PP2A)-mediated dephosphorylation of murine double minute-2 (Mdm2), the ubiquitin E3 ligase for PSD-95, which results in nuclear export and synaptic accumulation of Mdm2 as well as PSD-95 degradation and synapse elimination. In Fmr1 KO neurons, Mdm2 is hyperphosphorylated, nuclear localized basally, and unaffected by MEF2 activation, which our data suggest due to an enhanced interaction with Eukaryotic Elongation Factor 1α (EF1α), whose protein levels are elevated in Fmr1 KO. Expression of a dephosphomimetic of Mdm2 rescues PSD-95 ubiquitination, degradation and synapse elimination in Fmr1 KO neurons. This work reveals detailed mechanisms of synapse elimination in health and a developmental brain disorder.

  16. The MDM2 promoter polymorphism SNP309T→G and the risk of uterine leiomyosarcoma, colorectal cancer, and squamous cell carcinoma of the head and neck

    PubMed Central

    Alhopuro, P; Ylisaukko-oja, S; Koskinen, W; Bono, P; Arola, J; Jarvinen, H; Mecklin, J; Atula, T; Kontio, R; Makitie, A; Suominen, S; Leivo, I; Vahteristo, P; Aaltonen, L; Aaltonen, L

    2005-01-01

    Background: MDM2 acts as a principal regulator of the tumour suppressor p53 by targeting its destruction through the ubiquitin pathway. A polymorphism in the MDM2 promoter (SNP309) was recently identified. SNP309 was shown to result, via Sp1, in higher levels of MDM2 RNA and protein, and subsequent attenuation of the p53 pathway. Furthermore, SNP309 was proposed to be associated with accelerated soft tissue sarcoma formation in both hereditary (Li-Fraumeni) and sporadic cases in humans. Methods: We evaluated the possible contribution of SNP309 to three tumour types known to be linked with the MDM2/p53 pathway, using genomic sequencing or restriction fragment length polymorphism as screening methods. Three separate Finnish tumour materials (population based sets of 68 patients with early onset uterine leiomyosarcomas and 1042 patients with colorectal cancer, and a series of 162 patients with squamous cell carcinoma of the head and neck) and a set of 185 healthy Finnish controls were analysed for SNP309. Results: Frequencies of SNP309 were similar in all four cohorts. In the colorectal cancer series, SNP309 was somewhat more frequent in women and in patients with microsatellite stable tumours. Female SNP309 carriers were diagnosed with colorectal cancer approximately 2.7 years earlier than those carrying the wild type gene. However, no statistically significant association of SNP309 with patients' age at disease onset or to any other clinicopathological parameter was found in these three tumour materials. Conclusion: SNP309 had no significant contribution to tumour formation in our materials. Possible associations of SNP309 with microsatellite stable colorectal cancer and with earlier disease onset in female carriers need to be examined in subsequent studies. PMID:16141004

  17. A computational analysis of binding modes and conformation changes of MDM2 induced by p53 and inhibitor bindings

    NASA Astrophysics Data System (ADS)

    Chen, Jianzhong; Wang, Jinan; Zhu, Weiliang; Li, Guohui

    2013-11-01

    Molecular dynamics (MD) simulations followed by principal component analysis were performed to study the conformational change of MDM2 induced by p53 and two inhibitor (P4 and MI63a) bindings. The results show that the hydrophobic cleft of MDM2 is very flexible and adaptive to different structural binding partners. The cleft tends to become wider and more stable as MDM2 binds to the three binding partners, while unbound MDM2 shows a narrower and pretty flexible cleft, which agrees with recent experimental data and theoretical studies. It was also found that the binding of P4 and p53 stabilizes the motion of the loop L2 linking the helix α2 and β strand (β3), but the presence of MI63a makes the motion of L2 disordered. In addition, the binding free energies of the three partners to MDM2 were calculated using molecular mechanics generalized Born surface area to explain the binding modes of these three partners to MDM2. This study will be helpful not only for better understanding the functional, concerted motion of MDM2, but also for the rational design of potent anticancer drugs targeting the p53-MDM2 interaction.

  18. Antisense-MDM2 Sensitizes LNCaP Prostate Cancer Cells to Androgen Deprivation, Radiation, and the Combination In Vivo

    SciTech Connect

    Stoyanova, Radka; Hachem, Paul; Hensley, Harvey; Khor, L.-Y.; Mu Zhaomei; Hammond, M. Elizabeth H.; Agrawal, Sudhir; Pollack, Alan . E-mail: Alan.Pollack@fccc.edu

    2007-07-15

    Purpose: To test the effects of antisense (AS)-MDM2 alone and with androgen deprivation (AD), radiotherapy (RT), and AD + RT on wild-type LNCaP cells in an orthotopic in vivo model. Methods: Androgen-sensitive LNCaP cells were grown in the prostates of nude mice. Magnetic resonance imaging-based tumor volume and serum prostate-specific antigen (PSA) measurements were used to assess effects on tumor response. Tumor response was measured by biochemical and tumor volume failure definitions and doubling time estimates from fitted PSA and tumor volume growth curves. Expression of MDM2, p53, p21, and Ki-67 was quantified using immunohistochemical staining and image analysis of formalin-fixed tissue, analogous to methods used clinically. Results: Antisense-MDM2 significantly inhibited the growth of LNCaP tumors over the mismatch controls. The most significant increase in tumor growth delay and tumor doubling time was from AS-MDM2 + AD + RT, although the effect of AS-MDM2 + AD was substantial. Expression of MDM2 was significantly reduced by AS-MDM2 in the setting of RT. Conclusions: This is the first in vivo investigation of the effects of AS-MDM2 in an orthotopic model and the first to demonstrate incremental sensitization when added to AD and AD + RT. The results with AD underscore the potential to affect micrometastatic disease, which is probably responsible for treatment failure in 30-40% of men with high-risk disease.

  19. Targeting the MDM2/MDM4 interaction interface as a promising approach for p53 reactivation therapy.

    PubMed

    Pellegrino, Marsha; Mancini, Francesca; Lucà, Rossella; Coletti, Alice; Giacchè, Nicola; Manni, Isabella; Arisi, Ivan; Florenzano, Fulvio; Teveroni, Emanuela; Buttarelli, Marianna; Fici, Laura; Brandi, Rossella; Bruno, Tiziana; Fanciulli, Maurizio; D'Onofrio, Mara; Piaggio, Giulia; Pellicciari, Roberto; Pontecorvi, Alfredo; Marine, Jean Christophe; Macchiarulo, Antonio; Moretti, Fabiola

    2015-11-01

    Restoration of wild-type p53 tumor suppressor function has emerged as an attractive anticancer strategy. Therapeutics targeting the two p53-negative regulators, MDM2 and MDM4, have been developed, but most agents selectively target the ability of only one of these molecules to interact with p53, leaving the other free to operate. Therefore, we developed a method that targets the activity of MDM2 and MDM4 simultaneously based on recent studies indicating that formation of MDM2/MDM4 heterodimer complexes are required for efficient inactivation of p53 function. Using computational and mutagenesis analyses of the heterodimer binding interface, we identified a peptide that mimics the MDM4 C-terminus, competes with endogenous MDM4 for MDM2 binding, and activates p53 function. This peptide induces p53-dependent apoptosis in vitro and reduces tumor growth in vivo. Interestingly, interfering with the MDM2/MDM4 heterodimer specifically activates a p53-dependent oxidative stress response. Consistently, distinct subcellular pools of MDM2/MDM4 complexes were differentially sensitive to the peptide; nuclear MDM2/MDM4 complexes were particularly highly susceptible to the peptide-displacement activity. Taken together, these data identify the MDM2/MDM4 interaction interface as a valuable molecular target for therapeutic reactivation of p53 oncosuppressive function.

  20. Suppression of the p300-dependent mdm2 negative-feedback loop induces the p53 apoptotic function

    PubMed Central

    Thomas, Anju; White, Eileen

    1998-01-01

    The p53 tumor suppressor gene product interacts with the p300 transcriptional coactivator that regulates the transactivation of p53-inducible genes. The adenovirus E1A protein has been shown to bind to p300 and inhibit its function. E1A inhibits p53 transactivation and also promotes p53 accumulation by a p300-dependent mechanism. Murine double minute 2 (Mdm2) is a transcriptional target of p53 that binds to p53 and inhibits its transcriptional activity. E1A inhibited mdm2 transactivation without affecting the expression of p21WAF1 or Bax, which resulted in high levels of p53 accumulation and apoptosis. Ectopic expression of p300 restored Mdm2 levels and inhibited p53-dependent apoptosis, as did ectopic expression of Mdm2. Thus, p300 is required for mdm2 induction by p53 and the subsequent inhibition of p53 stabilization. Inhibition of p300 by E1A results in stabilization of p53 and causes apoptosis. Moreover, E1B 19K or Bcl-2 expression in E1A-transformed cells abrogated p53-dependent apoptosis by restoring mdm2 transactivation by p53. Hence, p300 regulation of mdm2 expression controls apoptotic activity of p53, and 19K or Bcl-2 bypass E1A inhibition of p300 transactivation of Mdm2. PMID:9649502

  1. Reliability of differential PCR for the detection of EGFR and MDM2 gene amplification in DNA extracted from FFPE glioma tissue

    SciTech Connect

    Hunter, S.B.; Abbott, K.; Varma, V.A.

    1995-01-01

    A series of 43 human gliomas, consisting of 30 glioblastomas, 7 anaplastic astrocytomas, 3 low grade astrocytomas, 2 ependymomas, and 1 oligodendroglioma, was studied for amplification of the epidermal growth factor receptor (EGFR) and mouse double minute 2 (MDM2) genes. DNA extracted from formalin-fixed, paraffin-embedded tissue sections was analyzed by differential PCR and the results were compared with slot blot examination of DNA extracted from frozen tissue from the same neoplasms. Twelve glioblastomas (40%) showed amplification of the EGFR gene, and overexpression of EGFR was evident in each of these tumors as indicated by the immunoperoxidase technique. Two of the tumors with EGFR gene amplification also revealed amplification of the MDM2 gene, while one additional glioblastoma revealed MDM2 amplification only. A 100% concordance in the detection of amplification was observed between differential PCR and slot blot analysis; consequently these results indicate that differential PCR using DNA extracted front archival tissue sections is a reliable method of demonstrating gene amplifications in glial tumors. 29 refs., 2 figs., 3 tabs.

  2. Expression of p53, MDM2, p21, heat shock protein 70, and HPV 16/18 E6 proteins in oral verrucous carcinoma and oral verrucous hyperplasia.

    PubMed

    Lin, Hung-Pin; Wang, Yi-Ping; Chiang, Chun-Pin

    2011-03-01

    Oral verrucous hyperplasia is a precancerous lesion of oral verrucous carcinoma. This study used immunohistochemistry to examine the expression of p53, murine double minute 2 (MDM2), p21, heat shock protein 70 (HSP 70), and human papillomavirus (HPV) 16/18 E6 proteins in 48 oral verrucous carcinoma and 30 oral verrucous hyperplasia samples. The mean labeling indices of p53, MDM2, p21, HSP 70, and HPV 16/18 E6 proteins in oral verrucous carcinoma samples were 21%, 31%, 7%, 17%, and 0.5%, respectively, and those in oral verrucous hyperplasia samples were 19%, 35%, 11%, 14%, and 0.3%, respectively. Immunohistochemistry with the above-cited 5 biomarkers could not help differentiate oral verrucous hyperplasia from oral verrucous carcinoma. The low expression of p21 may partially explain abnormal epithelial overgrowth in both verrucous lesions. The pathogenesis of both verrucous lesions may be at least partially attributed to the overexpression of MDM2 protein and moderate expression of HSP 70 protein in both lesions. Copyright © 2010 Wiley Periodicals, Inc.

  3. Chemical inhibition of wild-type p53 induced phosphatase 1 (WIP1/PPM1D) by GSK2830371 potentiates the sensitivity to MDM2 inhibitors in a p53-dependent manner

    PubMed Central

    Esfandiari, Arman; Hawthorne, Thomas A.; Nakjang, Sirintra; Lunec, John

    2016-01-01

    Sensitivity to MDM2 inhibitors is widely different among responsive TP53 wild-type cell lines and tumours. Understanding the determinants of MDM2 inhibitor sensitivity is pertinent for their optimal clinical application. Wild-type p53-inducible phosphatase-1 (WIP1) encoded by PPM1D, is activated, gained/amplified in a range of TP53 wild-type malignancies and is involved in p53 stress response homeostasis. We investigated cellular growth/proliferation of TP53 wild-type and matched mutant/null cell line pairs, differing in PPM1D genetic status, in response to Nutlin-3/RG7388 ± a highly selective WIP1 inhibitor GSK2830371. We also assessed the effects of GSK2830371 on MDM2 inhibitor induced p53Ser15 phosphorylation, p53-mediated global transcriptional activity and apoptosis. The investigated cell line pairs were relatively insensitive to single agent GSK2830371. However, a non-growth inhibitory dose of GSK2830371 markedly potentiated the response to MDM2 inhibitors in TP53 wild-type cell lines, most notably in those harbouring PPM1D activating mutations or copy number gain (up to 5.8-fold decrease in GI50). Potentiation also correlated with significant increase in MDM2 inhibitor induced cell death endpoints which were preceded by a marked increase in a WIP1 negatively regulated substrate, phosphorylated p53Ser15, known to increase p53 transcriptional activity. Microarray-based gene expression analysis showed that the combination treatment increases the subset of early RG7388 induced p53-transcriptional target genes. These findings demonstrate that potent and selective WIP1 inhibition potentiates the response to MDM2 inhibitors in TP53 wild-type cells, particularly those with PPM1D activation or gain, while highlighting the mechanistic importance of p53Ser15 and its potential use as a biomarker for response to this combination regimen. PMID:26832796

  4. A p53-independent role of Mdm2 in estrogen-mediated activation of breast cancer cell proliferation

    PubMed Central

    2011-01-01

    Introduction Estrogen receptor positive breast cancers often have high levels of Mdm2. We investigated if estrogen signaling in such breast cancers occurred through an Mdm2 mediated pathway with subsequent inactivation of p53. Methods We examined the effect of long-term 17β-estradiol (E2) treatment (five days) on the p53-Mdm2 pathway in estrogen receptor alpha (ERα) positive breast cancer cell lines that contain wild-type p53 (MCF-7 and ZR75-1). We assessed the influence of estrogen by examining cell proliferation changes, activation of transcription of p53 target genes, p53-chromatin interactions and cell cycle profile changes. To determine the effects of Mdm2 and p53 knockdown on the estrogen-mediated proliferation signals we generated MCF-7 cell lines with inducible shRNA for mdm2 or p53 and monitored their influence on estrogen-mediated outcomes. To further address the p53-independent effect of Mdm2 in ERα positive breast cancer we generated cell lines with inducible shRNA to mdm2 using the mutant p53 expressing cell line T-47D. Results Estrogen increased the Mdm2 protein level in MCF-7 cells without decreasing the p53 protein level. After estrogen treatment of MCF-7 cells, down-regulation of basal transcription of p53 target genes puma and p21 was observed. Estrogen treatment also down-regulated etoposide activated transcription of puma, but not p21. Mdm2 knockdown in MCF-7 cells increased p21 mRNA and protein, decreased cell growth in 3D matrigel and also decreased estrogen-induced cell proliferation in 2D culture. In contrast, knockdown of p53 had no effect on estrogen-induced cell proliferation. In T-47D cells with mutant p53, the knockdown of Mdm2 decreased estrogen-mediated cell proliferation but did not increase p21 protein. Conclusions Estrogen-induced breast cancer cell proliferation required a p53-independent role of Mdm2. The combined influence of genetic and environmental factors on the tumor promoting effects of estrogen implicated Mdm2 as a

  5. Regulation of expression of the p21(CIP1) gene by the transcription factor ZNF217 and MDM2.

    PubMed

    Mantsou, Aglaia; Koutsogiannouli, Evangelia; Haitoglou, Costas; Papavassiliou, Athanasios G; Papanikolaou, Nikolaos A

    2016-12-01

    Using mouse double minute 2 (MDM2) protein-specific affinity chromatography and mass spectrometry, we have isolated the protein product of the oncogene znf217, which is a transcription factor and a component of a Hela-S-derived HDAC1 complex, as a novel MDM2-interacting protein. When co-expressed in cultured cancer cells, ZNF217 forms a complex with MDM2 and its ectopic over-expression reduces the steady-state levels of acetylated p53 in cell lines, suppressing its ability to activate the expression of a p21 promoter construct. In-silico analysis of the p21 promoter revealed the presence of several ZNF217-binding sites. These findings suggest that MDM2 controls p21 expression by at least 2 mechanisms: through ZNF217-mediated recruitment of HDAC1/MDM2 activity, which inhibits p53 acetylation; and through direct interaction with its binding site(s) on the p21 promoter.

  6. MAGE-A Cancer/Testis Antigens Inhibit MDM2 Ubiquitylation Function and Promote Increased Levels of MDM4

    PubMed Central

    Marcar, Lynnette; Ihrig, Bianca; Hourihan, John; Bray, Susan E.; Quinlan, Philip R.; Jordan, Lee B.; Thompson, Alastair M.; Hupp, Ted R.; Meek, David W.

    2015-01-01

    Melanoma antigen A (MAGE-A) proteins comprise a structurally and biochemically similar sub-family of Cancer/Testis antigens that are expressed in many cancer types and are thought to contribute actively to malignancy. MAGE-A proteins are established regulators of certain cancer-associated transcription factors, including p53, and are activators of several RING finger-dependent ubiquitin E3 ligases. Here, we show that MAGE-A2 associates with MDM2, a ubiquitin E3 ligase that mediates ubiquitylation of more than 20 substrates including mainly p53, MDM2 itself, and MDM4, a potent p53 inhibitor and MDM2 partner that is structurally related to MDM2. We find that MAGE-A2 interacts with MDM2 via the N-terminal p53-binding pocket and the RING finger domain of MDM2 that is required for homo/hetero-dimerization and for E2 ligase interaction. Consistent with these data, we show that MAGE-A2 is a potent inhibitor of the E3 ubiquitin ligase activity of MDM2, yet it does not have any significant effect on p53 turnover mediated by MDM2. Strikingly, however, increased MAGE-A2 expression leads to reduced ubiquitylation and increased levels of MDM4. Similarly, silencing of endogenous MAGE-A expression diminishes MDM4 levels in a manner that can be rescued by the proteasomal inhibitor, bortezomid, and permits increased MDM2/MDM4 association. These data suggest that MAGE-A proteins can: (i) uncouple the ubiquitin ligase and degradation functions of MDM2; (ii) act as potent inhibitors of E3 ligase function; and (iii) regulate the turnover of MDM4. We also find an association between the presence of MAGE-A and increased MDM4 levels in primary breast cancer, suggesting that MAGE-A-dependent control of MDM4 levels has relevance to cancer clinically. PMID:26001071

  7. MDM2 is a potential therapeutic target and prognostic factor for ovarian clear cell carcinomas with wild type TP53

    PubMed Central

    Makii, Chinami; Oda, Katsutoshi; Ikeda, Yuji; Sone, Kenbun; Hasegawa, Kosei; Uehara, Yuriko; Nishijima, Akira; Asada, Kayo; Koso, Takahiro; Fukuda, Tomohiko; Inaba, Kanako; Oki, Shinya; Machino, Hidenori; Kojima, Machiko; Kashiyama, Tomoko; Mori-Uchino, Mayuyo; Arimoto, Takahide; Wada-Hiraike, Osamu; Kawana, Kei; Yano, Tetsu; Fujiwara, Keiichi; Aburatani, Hiroyuki; Osuga, Yutaka; Fujii, Tomoyuki

    2016-01-01

    MDM2, a ubiquitin ligase, suppresses wild type TP53 via proteasome-mediated degradation. We evaluated the prognostic and therapeutic value of MDM2 in ovarian clear cell carcinoma. MDM2 expression in ovarian cancer tissues was analyzed by microarray and real-time PCR, and its relationship with prognosis was evaluated by Kaplan-Meier method and log-rank test. The anti-tumor activities of MDM2 siRNA and the MDM2 inhibitor RG7112 were assessed by cell viability assay, western blotting, and flow cytometry. The anti-tumor effects of RG7112 in vivo were examined in a mouse xenograft model. MDM2 expression was significantly higher in clear cell carcinoma than in ovarian high-grade serous carcinoma (P = 0.0092) and normal tissues (P = 0.035). High MDM2 expression determined by microarray was significantly associated with poor progression-free survival and poor overall survival (P = 0.0002, and P = 0.0008, respectively). Notably, RG7112 significantly suppressed cell viability in clear cell carcinoma cell lines with wild type TP53. RG7112 also strongly induced apoptosis, increased TP53 phosphorylation, and stimulated expression of the proapoptotic protein PUMA. Similarly, siRNA knockdown of MDM2 induced apoptosis. Finally, RG7112 significantly reduced the tumor volume of xenografted RMG-I clear cell carcinoma cells (P = 0.033), and the density of microvessels (P = 0.011). Our results highlight the prognostic value of MDM2 expression in clear cell carcinoma. Thus, MDM2 inhibitors such as RG7112 may constitute a class of potential therapeutics. PMID:27659536

  8. The Splicing Factor FUBP1 Is Required for the Efficient Splicing of Oncogene MDM2 Pre-mRNA*

    PubMed Central

    Jacob, Aishwarya G.; Singh, Ravi K.; Mohammad, Fuad; Bebee, Thomas W.; Chandler, Dawn S.

    2014-01-01

    Alternative splicing of the oncogene MDM2 is a phenomenon that occurs in cells in response to genotoxic stress and is also a hallmark of several cancer types with important implications in carcinogenesis. However, the mechanisms regulating this splicing event remain unclear. Previously, we uncovered the importance of intron 11 in MDM2 that affects the splicing of a damage-responsive MDM2 minigene. Here, we have identified discrete cis regulatory elements within intron 11 and report the binding of FUBP1 (Far Upstream element-Binding Protein 1) to these elements and the role it plays in MDM2 splicing. Best known for its oncogenic role as a transcription factor in the context of c-MYC, FUBP1 was recently described as a splicing regulator with splicing repressive functions. In the case of MDM2, we describe FUBP1 as a positive splicing regulatory factor. We observed that blocking the function of FUBP1 in in vitro splicing reactions caused a decrease in splicing efficiency of the introns of the MDM2 minigene. Moreover, knockdown of FUBP1 in cells induced the formation of MDM2-ALT1, a stress-induced splice variant of MDM2, even under normal conditions. These results indicate that FUBP1 is also a strong positive splicing regulator that facilitates efficient splicing of the MDM2 pre-mRNA by binding its introns. These findings are the first report describing the regulation of alternative splicing of MDM2 mediated by the oncogenic factor FUBP1. PMID:24798327

  9. Protein-peptide molecular docking with large-scale conformational changes: the p53-MDM2 interaction

    NASA Astrophysics Data System (ADS)

    Ciemny, Maciej Pawel; Debinski, Aleksander; Paczkowska, Marta; Kolinski, Andrzej; Kurcinski, Mateusz; Kmiecik, Sebastian

    2016-12-01

    Protein-peptide interactions are often associated with large-scale conformational changes that are difficult to study either by classical molecular modeling or by experiment. Recently, we have developed the CABS-dock method for flexible protein-peptide docking that enables large-scale rearrangements of the protein chain. In this study, we use CABS-dock to investigate the binding of the p53-MDM2 complex, an element of the cell cycle regulation system crucial for anti-cancer drug design. Experimental data suggest that p53-MDM2 binding is affected by significant rearrangements of a lid region - the N-terminal highly flexible MDM2 fragment; however, the details are not clear. The large size of the highly flexible MDM2 fragments makes p53-MDM2 intractable for exhaustive binding dynamics studies using atomistic models. We performed extensive dynamics simulations using the CABS-dock method, including large-scale structural rearrangements of MDM2 flexible regions. Without a priori knowledge of the p53 peptide structure or its binding site, we obtained near-native models of the p53-MDM2 complex. The simulation results match well the experimental data and provide new insights into the possible role of the lid fragment in p53 binding. The presented case study demonstrates that CABS-dock methodology opens up new opportunities for protein-peptide docking with large-scale changes of the protein receptor structure.

  10. Quantitative lid dynamics of MDM2 reveals differential ligand binding modes of the p53-binding cleft.

    PubMed

    Showalter, Scott A; Bruschweiler-Li, Lei; Johnson, Eric; Zhang, Fengli; Brüschweiler, Rafael

    2008-05-21

    The oncoprotein MDM2 regulates the activity and stability of the tumor suppressor p53 through protein-protein interaction involving their N-terminal domains. The N-terminal lid of MDM2 has been implicated in p53 regulation; however, due to its flexible nature, limited data are available concerning its role in ligand binding. The quantitative dynamics study using NMR reported here shows, for the first time, that the lid in apo-MDM2 slowly interconverts between a "closed" state that is associated with the p53-binding cleft and an "open" state that is highly flexible. Our results reveal that apo-MDM2 predominantly populates the closed state, whereas the p53-bound MDM2 exclusively populates the open state. Unlike p53 binding, the small molecule MDM2 antagonist nutlin-3 binds to the cleft essentially without perturbing the closed lid state. The lid dynamics thereby represents a signature for the experimental and virtual screening of therapeutic antagonists that target the p53-MDM2 interaction.

  11. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity

    USDA-ARS?s Scientific Manuscript database

    Mdm2 is an E3 ubiquitin ligase that targets p53 for degradation. p53(515C) (encoding p53R172P) is a hypomorphic allele of p53 that rescues the embryonic lethality of Mdm2(-/-) mice. Mdm2(-/-) p53(515C/515C) mice, however, die by postnatal day 13 resulting from hematopoietic failure. Hematopoietic st...

  12. Rearrangement of mitochondrial pyruvate dehydrogenase subunit dihydrolipoamide dehydrogenase protein–protein interactions by the MDM2 ligand nutlin‐3

    PubMed Central

    Way, Luke; Faktor, Jakub; Dvorakova, Petra; Nicholson, Judith; Vojtesek, Borek; Graham, Duncan; Ball, Kathryn L.

    2016-01-01

    Drugs targeting MDM2's hydrophobic pocket activate p53. However, these agents act allosterically and have agonist effects on MDM2's protein interaction landscape. Dominant p53‐independent MDM2‐drug responsive‐binding proteins have not been stratified. We used as a variable the differential expression of MDM2 protein as a function of cell density to identify Nutlin‐3 responsive MDM2‐binding proteins that are perturbed independent of cell density using SWATH‐MS. Dihydrolipoamide dehydrogenase, the E3 subunit of the mitochondrial pyruvate dehydrogenase complex, was one of two Nutlin‐3 perturbed proteins identified fours hour posttreatment at two cell densities. Immunoblotting confirmed that dihydrolipoamide dehydrogenase was induced by Nutlin‐3. Depletion of MDM2 using siRNA also elevated dihydrolipoamide dehydrogenase in Nutlin‐3 treated cells. Mitotracker confirmed that Nutlin‐3 inhibits mitochondrial activity. Enrichment of mitochondria using TOM22+ immunobeads and TMT labeling defined key changes in the mitochondrial proteome after Nutlin‐3 treatment. Proximity ligation identified rearrangements of cellular protein–protein complexes in situ. In response to Nutlin‐3, a reduction of dihydrolipoamide dehydrogenase/dihydrolipoamide acetyltransferase protein complexes highlighted a disruption of the pyruvate dehydrogenase complex. This coincides with an increase in MDM2/dihydrolipoamide dehydrogenase complexes in the nucleus that was further enhanced by the nuclear export inhibitor Leptomycin B. The data suggest one therapeutic impact of MDM2 drugs might be on the early perturbation of specific protein–protein interactions within the mitochondria. This methodology forms a blueprint for biomarker discovery that can identify rearrangements of MDM2 protein–protein complexes in drug‐treated cells. PMID:27273042

  13. Disruption of the RP-MDM2-p53 pathway accelerates APC loss-induced colorectal tumorigenesis.

    PubMed

    Liu, S; Tackmann, N R; Yang, J; Zhang, Y

    2017-03-01

    Inactivation of the adenomatous polyposis coli (APC) tumor suppressor is frequently found in colorectal cancer. Loss of APC function results in deregulation of the Wnt/β-catenin signaling pathway causing overexpression of the c-MYC oncogene. In lymphoma, both p19ARF and ribosomal proteins RPL11 and RPL5 respond to c-MYC activation to induce p53. Their role in c-MYC-driven colorectal carcinogenesis is unclear, as p19ARF deletion does not accelerate APC loss-triggered intestinal tumorigenesis. To determine the contribution of the ribosomal protein (RP)-murine double minute 2 (MDM2)-p53 pathway to APC loss-induced tumorigenesis, we crossed mice bearing MDM2(C305F) mutation, which disrupts RPL11- and RPL5-MDM2 binding, with Apc(min/+) mice, which are prone to intestinal tumor formation. Interestingly, loss of RP-MDM2 binding significantly accelerated colorectal tumor formation while having no discernable effect on small intestinal tumor formation. Mechanistically, APC loss leads to overexpression of c-MYC, RPL11 and RPL5 in mouse colonic tumor cells irrespective of MDM2(C305F) mutation. However, notable p53 stabilization and activation were observed only in Apc(min/+);Mdm2(+/+) but not Apc(min/+);Mdm2(C305F/C305F) colon tumors. These data establish that the RP-MDM2-p53 pathway, in contrast to the p19ARF-MDM2-p53 pathway, is a critical mediator of colorectal tumorigenesis following APC loss.

  14. The inhibition of calcium carbonate crystal growth by the cysteine-rich Mdm2 peptide.

    PubMed

    Dalas, E; Chalias, A; Gatos, D; Barlos, K

    2006-08-15

    The crystal growth of calcite, the most stable calcium carbonate polymorph, in the presence of the cysteine-rich Mdm2 peptide (containing 48 amino acids in the ring finger configuration), has been investigated by the constant composition technique. Crystallization took place exclusively on well-characterized calcite crystals in solutions supersaturated only with respect to this calcium carbonate salt. The kinetic results indicated a surface diffusion spiral growth mechanism. The presence of the Mdm2 peptide inhibited the crystal growth of calcite by 22-58% in the concentration range tested, through adsorption onto the active growth sites of the calcite crystal surface. The kinetic results favored a Langmuir-type adsorption model, and the value of the calculated affinity constant was k(aff)=147x10(4) dm(3)mol(-1), a(ads)=0.29.

  15. Rare Aggressive Behavior of MDM2-Amplified Retroperitoneal Dedifferentiated Liposarcoma, with Brain, Lung and Subcutaneous Metastases

    PubMed Central

    Ben Salha, Imen; Zaidi, Shane; Noujaim, Jonathan; Miah, Aisha B.; Fisher, Cyril; Jones, Robin L.; Thway, Khin

    2016-01-01

    Dedifferentiated liposarcoma (DDL) is a histologically pleomorphic sarcoma, traditionally defined as well-differentiated liposarcoma with abrupt transition to high grade, non-lipogenic sarcoma. It can occur as part of recurrent well-differentiated liposarcoma, or may arise de novo. DDL most frequently occurs within the retroperitoneum, and while it is prone to local recurrence, it usually has a lower rate of metastasis than other pleomorphic sarcomas. We describe a case of retroperitoneal dedifferentiated liposarcoma in a 63-year-old male, who showed MDM2 amplification with fluorescence in situ hybridization, which displayed unusually aggressive behavior, with brain, lung and subcutaneous soft tissue metastases. As previous reports of metastatic liposarcoma have largely grouped DDL in with other (genetically and clinically distinct) liposarcoma subtypes, we highlight and discuss the rare occurrence of brain metastasis in MDM2-amplified retroperitoneal liposarcoma. PMID:27746879

  16. On the interaction mechanisms of a p53 peptide and nutlin with the MDM2 and MDMX proteins

    PubMed Central

    ElSawy, Karim M.; Verma, Chandra S.; Joseph, Thomas L.; Lane, David P.; Twarock, Reidun; Caves, Leo S.D.

    2013-01-01

    The interaction of p53 with its regulators MDM2 and MDMX plays a major role in regulating the cell cycle. Inhibition of this interaction has become an important therapeutic strategy in oncology. Although MDM2 and MDMX share a very high degree of sequence/structural similarity, the small-molecule inhibitor nutlin appears to be an efficient inhibitor only of the p53-MDM2 interaction. Here, we investigate the mechanism of interaction of nutlin with these two proteins and contrast it with that of p53 using Brownian dynamics simulations. In contrast to earlier attempts to examine the bound states of the partners, here we locate initial reaction events in these interactions by identifying the regions of space around MDM2/MDMX, where p53/nutlin experience associative encounters with prolonged residence times relative to that in bulk solution. We find that the initial interaction of p53 with MDM2 is long-lived relative to nutlin, but, unlike nutlin, it takes place at the N- and C termini of the MDM2 protein, away from the binding site, suggestive of an allosteric mechanism of action. In contrast, nutlin initially interacts with MDM2 directly at the clefts of the binding site. The interaction of nutlin with MDMX, however, is very short-lived compared with MDM2 and does not show such direct initial interactions with the binding site. Comparison of the topology of the electrostatic potentials of MDM2 and MDMX and the locations of the initial encounters with p53/nutlin in tandem with structure-based sequence alignment revealed that the origin of the diminished activity of nutlin toward MDMX relative to MDM2 may stem partly from the differing topologies of the electrostatic potentials of the two proteins. Glu25 and Lys51 residues underpin these topological differences and appear to collectively play a key role in channelling nutlin directly toward the binding site on the MDM2 surface and are absent in MDMX. The results, therefore, provide new insight into the mechanism of p53

  17. High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma

    PubMed Central

    Carr-Wilkinson, Jane; O' Toole, Kieran; Wood, Katrina M.; Challen, Christine C.; Baker, Angela G.; Board, Julian R.; Evans, Laura; Cole, Michael; Cheung, Nai-Kong V.; Boos, Joachim; Köhler, Gabriele; Leuschner, Ivo; Pearson, Andrew D.J.; Lunec, John; Tweddle, Deborah A.

    2010-01-01

    Purpose: Most neuroblastomas initially respond to therapy but many relapse with chemoresistant disease. p53 mutations are rare in diagnostic neuroblastomas, but we have previously reported inactivation of the p53/MDM2/p14ARF pathway in 9/17 (53%) neuroblastoma cell lines established at relapse. Hypothesis: Inactivation of the p53/MDM2/p14ARF pathway develops during treatment and contributes to neuroblastoma relapse. Methods: Eighty-four neuroblastomas were studied from 41 patients with relapsed neuroblastoma including 38 paired neuroblastomas at different stages of therapy. p53 mutations were detected by automated sequencing, p14ARF methylation and deletion by methylation-specific PCR and duplex PCR respectively, and MDM2 amplification by fluorescent in-situ hybridisation. Results: Abnormalities in the p53 pathway were identified in 20/41(49%) cases. Downstream defects due to inactivating missense p53 mutations were identified in 6/41 (15%) cases, 5 following chemotherapy and/or at relapse and 1 at diagnosis, post chemotherapy and relapse. The presence of a p53 mutation was independently prognostic for overall survival (hazard ratio 3.4, 95% confidence interval 1.2, 9.9; p = 0.02). Upstream defects were present in 35% cases: MDM2 amplification in 3 cases, all at diagnosis & relapse and p14ARF inactivation in 12/41 (29%) cases: 3 had p14ARF methylation, 2 after chemotherapy, and 9 had homozygous deletions, 8 at diagnosis and relapse. Conclusions: These results show that a high proportion of neuroblastomas which relapse have an abnormality in the p53 pathway. The majority have upstream defects suggesting that agents which reactivate wild-type p53 would be beneficial, in contrast to those with downstream defects where p53 independent therapies are indicated. PMID:20145180

  18. The Impact of a Common MDM2 SNP on the Sensitivity of Breast Cancer to Treatment

    DTIC Science & Technology

    2011-06-01

    Univariate and multivariate survival analysis was carried out using Cox’s proportional hazard regression model. Multivariate analysis was used to...found to have predictive value in the ER+ subset may be explained by higher biologic activity of MDM2 in estrogen responsive tumors. Numerous...Garcia MA, Green AR, Reis-Filho JS, Ellis IO: The biological , clinical and prognostic implications of p53 transcriptional pathways in breast cancers

  19. Synergistic Inhibition of Her2/neu and p53-MDM2 Pathways. Addendum

    DTIC Science & Technology

    2007-09-01

    and the explicit shape constrains to the active conformation of Nutlin and the p53 fragment that binds to MDM2. Database screening using these...similarity tolerance of shape is an important parameter to adjust the percentage of hits yielded from database screening. The values of 0.5-1 was used as...molecule database . In this work however, we combined the shape constraint onto the feature model to generate a shape- merged pharmacophore model, labeled

  20. The T309G MDM2 Gene Polymorphism Is a Novel Risk Factor for Proliferative Vitreoretinopathy

    PubMed Central

    Pastor-Idoate, Salvador; Rodríguez-Hernández, Irene; Rojas, Jimena; Fernández, Itziar; García-Gutiérrez, María T.; Ruiz-Moreno, José M.; Rocha-Sousa, Amandio; Ramkissoon, Yashin; Harsum, Steven; MacLaren, Robert E.; Charteris, David; VanMeurs, Jan C.; González-Sarmiento, Rogelio; Pastor, José C.

    2013-01-01

    Proliferative vitreoretinopathy (PVR) is still the major cause of failure in retinal detachment (RD) surgery. It is believed that down-regulation in the p53 pathway could be an important key in PVR pathogenesis. The purpose was to evaluate the impact of T309G MDM2 polymorphism (rs2279744) in PVR. Distribution of T309G MDM2 genotypes among European subjects undergoing RD surgery was evaluated. Proportions of genotypes between subsamples from different countries were analyzed. Also, a genetic interaction between rs2279744 in MDM2 and rs1042522 in p53 gene was analyzed. Significant differences were observed comparing MDM2 genotype frequencies at position 309 of intron 1 between cases (GG: 21.6%, TG: 54.5%, TT: 23.8%) and controls (GG: 7.3%, TG: 43.9%, TT: 48.7%). The proportions of genotypes between sub-samples from different countries showed a significant difference. Distribution of GG genotype revealed differences in Spain (35.1–53.0)/(22.6–32.9), Portugal (39.0–74.4)/(21.4–38.9), Netherlands (40.6–66.3)/(25.3–38.8) and UK (37.5–62.4)/(23.3–34.2). The OR of G carriers in the global sample was 5.9 (95% CI: 3.2 to 11.2). The OR of G carriers from Spain and Portugal was 5.4 (95% CI: 2.2–12.7), whereas in the UK and the Netherlands was 7.3 (95% CI: 2.8–19.1). Results indicate that the G allele of rs2279744 is associated with a higher risk of developing PVR in patients undergoing a RD surgery. Further studies are necessary to understand the role of this SNP in the development of PVR. PMID:24349246

  1. The T309G MDM2 gene polymorphism is a novel risk factor for proliferative vitreoretinopathy.

    PubMed

    Pastor-Idoate, Salvador; Rodríguez-Hernández, Irene; Rojas, Jimena; Fernández, Itziar; García-Gutiérrez, María T; Ruiz-Moreno, José M; Rocha-Sousa, Amandio; Ramkissoon, Yashin; Harsum, Steven; MacLaren, Robert E; Charteris, David; VanMeurs, Jan C; González-Sarmiento, Rogelio; Pastor, José C

    2013-01-01

    Proliferative vitreoretinopathy (PVR) is still the major cause of failure in retinal detachment (RD) surgery. It is believed that down-regulation in the p53 pathway could be an important key in PVR pathogenesis. The purpose was to evaluate the impact of T309G MDM2 polymorphism (rs2279744) in PVR. Distribution of T309G MDM2 genotypes among European subjects undergoing RD surgery was evaluated. Proportions of genotypes between subsamples from different countries were analyzed. Also, a genetic interaction between rs2279744 in MDM2 and rs1042522 in p53 gene was analyzed. Significant differences were observed comparing MDM2 genotype frequencies at position 309 of intron 1 between cases (GG: 21.6%, TG: 54.5%, TT: 23.8%) and controls (GG: 7.3%, TG: 43.9%, TT: 48.7%). The proportions of genotypes between sub-samples from different countries showed a significant difference. Distribution of GG genotype revealed differences in Spain (35.1-53.0)/(22.6-32.9), Portugal (39.0-74.4)/(21.4-38.9), Netherlands (40.6-66.3)/(25.3-38.8) and UK (37.5-62.4)/(23.3-34.2). The OR of G carriers in the global sample was 5.9 (95% CI: 3.2 to 11.2). The OR of G carriers from Spain and Portugal was 5.4 (95% CI: 2.2-12.7), whereas in the UK and the Netherlands was 7.3 (95% CI: 2.8-19.1). Results indicate that the G allele of rs2279744 is associated with a higher risk of developing PVR in patients undergoing a RD surgery. Further studies are necessary to understand the role of this SNP in the development of PVR.

  2. Indispensable role of Mdm2/p53 interaction during the embryonic and postnatal inner ear development

    PubMed Central

    Laos, M.; Sulg, M.; Herranen, A.; Anttonen, T.; Pirvola, U.

    2017-01-01

    p53 is a key component of a signaling network that protects cells against various stresses. As excess p53 is detrimental to cells, its levels are tightly controlled by several mechanisms. The E3 ubiquitin ligase Mdm2 is a major negative regulator of p53. The significance of balanced p53 levels in normal tissues, at different stages of lifetime, is poorly understood. We have studied in vivo how the disruption of Mdm2/p53 interaction affects the early-embryonic otic progenitor cells and their descendants, the auditory supporting cells and hair cells. We found that p53 accumulation, as a consequence of Mdm2 abrogation, is lethal to both proliferative progenitors and non-proliferating, differentiating cells. The sensitivity of postmitotic supporting cells to excess p53 decreases along maturation, suggesting that maturation-related mechanisms limit p53′s transcriptional activity towards pro-apoptotic factors. We have also investigated in vitro whether p53 restricts supporting cell’s regenerative capacity. Unlike in several other regenerative cellular models, p53 inactivation did not alter supporting cell’s proliferative quiescence nor transdifferentiation capacity. Altogether, the postmitotic status of developing hair cells and supporting cells does not confer protection against the detrimental effects of p53 upregulation. These findings might be linked to auditory disturbances observed in developmental syndromes with inappropriate p53 upregulation. PMID:28181574

  3. Dual targeting of MDM2 and BCL2 as a therapeutic strategy in neuroblastoma.

    PubMed

    Van Goethem, Alan; Yigit, Nurten; Moreno-Smith, Myrthala; Vasudevan, Sanjeev A; Barbieri, Eveline; Speleman, Frank; Shohet, Jason; Vandesompele, Jo; Van Maerken, Tom

    2017-08-22

    Wild-type p53 tumor suppressor activity in neuroblastoma tumors is hampered by increased MDM2 activity, making selective MDM2 antagonists an attractive therapeutic strategy for this childhood malignancy. Since monotherapy in cancer is generally not providing long-lasting clinical responses, we here aimed to identify small molecule drugs that synergize with idasanutlin (RG7388). To this purpose we evaluated 15 targeted drugs in combination with idasanutlin in three p53 wild type neuroblastoma cell lines and identified the BCL2 inhibitor venetoclax (ABT-199) as a promising interaction partner. The venetoclax/idasanutlin combination was consistently found to be highly synergistic in a diverse panel of neuroblastoma cell lines, including cells with high MCL1 expression levels. A more pronounced induction of apoptosis was found to underlie the synergistic interaction, as evidenced by caspase-3/7 and cleaved PARP measurements. Mice carrying orthotopic xenografts of neuroblastoma cells treated with both idasanutlin and venetoclax had drastically lower tumor weights than mice treated with either treatment alone. In conclusion, these data strongly support the further evaluation of dual BCL2/MDM2 targeting as a therapeutic strategy in neuroblastoma.

  4. Isoquinolin-1-one inhibitors of the MDM2-p53 interaction.

    PubMed

    Rothweiler, Ulli; Czarna, Anna; Krajewski, Marcin; Ciombor, Jolanta; Kalinski, Cédric; Khazak, Vladimir; Ross, Günther; Skobeleva, Natalia; Weber, Lutz; Holak, Tad A

    2008-07-01

    p53 has been at the centre of attention for drug design since the discovery of its growth-suppressive and pro-apoptotic activity. Herein we report the design and characterisation of a new class of isoquinolinone inhibitors of the MDM2-p53 interaction. Our identification of druglike and selective inhibitors of this protein-protein interaction included a straightforward in silico compound-selection process, a recently reported NMR spectroscopic approach for studying the MDM2-p53 interaction, and selectivity screening assays using cells with the same genetic background. The selected inhibitors were all able to induce apoptosis and the expression of p53-related genes, but only the isoquinolin-1-one-based inhibitors stabilised p53. Our NMR experiments give a persuading explanation for these results, showing that isoquinolin-1-one derivates are able to dissociate the preformed MDM2-p53 complex in vitro, releasing a folded and soluble p53. The joint application of these methods provides a framework for the discovery of protein interaction inhibitors as a promising starting point for further drug design.

  5. MDM2 Amplification and PI3KCA Mutation in a Case of Sclerosing Rhabdomyosarcoma.

    PubMed

    Kikuchi, Ken; Wettach, George R; Ryan, Christopher W; Hung, Arthur; Hooper, Jody E; Beadling, Carol; Warrick, Andrea; Corless, Christopher L; Olson, Susan B; Keller, Charles; Mansoor, Atiya

    2013-01-01

    A rare sclerosing variant of rhabdomyosarcoma characterized by prominent hyalinization and pseudovascular pattern has recently been described as a subtype biologically distinct from embryonal, alveolar, and pleomorphic forms. We present cytogenetic and molecular findings as well as experimental studies of an unusual case of sclerosing rhabdomyosarcoma. The primary lesion arose within the plantar subcutaneous tissue of the left foot of an otherwise healthy 23-year-old male who eventually developed pulmonary nodules despite systemic chemotherapy. Two genetic abnormalities identified in surgical and/or autopsy samples of the tumor were introduced into 10T1/2 murine fibroblasts to determine whether these genetic changes cooperatively facilitated transformation and growth. Cytogenetic analysis revealed a complex abnormal hyperdiploid clone, and MDM2 gene amplification was confirmed by fluorescence in situ hybridization. Cancer gene mutation screening using a combination of multiplexed PCR and mass spectroscopy revealed a PIK3CA exon 20 H1047R mutation in the primary tumor, lung metastasis, and liver metastasis. However, this mutation was not cooperative with MDM2 overexpression in experimental assays for transformation or growth. Nevertheless, MDM2 and PIK3CA are genes worthy of further investigation in patients with sclerosing rhabdomyosarcoma and might be considered in the enrollment of these patients into clinical trials of targeted therapeutics.

  6. Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis.

    PubMed

    Carr, Michael I; Jones, Stephen N

    2016-12-01

    The p53 tumor suppressor acts as a guardian of the genome in mammalian cells undergoing DNA double strand breaks induced by a various forms of cell stress, including inappropriate growth signals or ionizing radiation. Following damage, p53 protein levels become greatly elevated in cells and p53 functions primarily as a transcription factor to regulate the expression a wide variety of genes that coordinate this DNA damage response. In cells undergoing high amounts of DNA damage, p53 can promote apoptosis, whereas in cells undergoing less damage, p53 promotes senescence or transient cell growth arrest and the expression of genes involved in DNA repair, depending upon the cell type and level of damage. Failure of the damaged cell to undergo growth arrest or apoptosis, or to respond to the DNA damage by other p53-coordinated mechanisms, can lead to inappropriate cell growth and tumorigenesis. In cells that have successfully responded to genetic damage, the amount of p53 present in the cell must return to basal levels in order for the cell to resume normal growth and function. Although regulation of p53 levels and function is coordinated by many proteins, it is now widely accepted that the master regulator of p53 is Mdm2. In this review, we discuss the role(s) of p53 in the DNA damage response and in tumor suppression, and how post-translational modification of Mdm2 regulates the Mdm2-p53 signaling axis to govern p53 activities in the cell.

  7. 8-Triazolylpurines: Towards Fluorescent Inhibitors of the MDM2/p53 Interaction

    PubMed Central

    Jacobsson, Jimmy; Nilsson, Jesper R.; Min, Jaeki; Iconaru, Luigi; Guy, R. Kiplin; Kriwacki, Richard W.; Andréasson, Joakim; Grøtli, Morten

    2015-01-01

    Small molecule nonpeptidic mimics of α-helices are widely recognised as protein-protein interaction (PPIs) inhibitors. Protein-protein interactions mediate virtually all important regulatory pathways in a cell, and the ability to control and modulate PPIs is therefore of great significance to basic biology, where controlled disruption of protein networks is key to understanding network connectivity and function. We have designed and synthesised two series of 2,6,9-substituted 8-triazolylpurines as α-helix mimetics. The first series was designed based on low energy conformations but did not display any biological activity in a biochemical fluorescence polarisation assay targeting MDM2/p53. Although solution NMR conformation studies demonstrated that such molecules could mimic the topography of an α-helix, docking studies indicated that the same compounds were not optimal as inhibitors for the MDM2/p53 interaction. A new series of 8-triazolylpurines was designed based on a combination of docking studies and analysis of recently published inhibitors. The best compound displayed low micromolar inhibitory activity towards MDM2/p53 in a biochemical fluorescence polarisation assay. In order to evaluate the applicability of these compounds as biologically active and intrinsically fluorescent probes, their absorption/emission properties were measured. The compounds display fluorescent properties with quantum yields up to 50%. PMID:25942498

  8. Bcl-2/MDM2 Dual Inhibitors Based on Universal Pyramid-Like α-Helical Mimetics.

    PubMed

    Wang, Ziqian; Song, Ting; Feng, Yingang; Guo, Zongwei; Fan, Yudan; Xu, Wenjie; Liu, Lu; Wang, Anhui; Zhang, Zhichao

    2016-04-14

    No α-helical mimetic that exhibits Bcl-2/MDM2 dual inhibition has been rationally designed due to the different helicities of the α-helixes at their binding interfaces. Herein, we extracted a one-turn α-helix-mimicking ortho-triarene unit from o-phenylene foldamers. Linking benzamide substrates with a rotatable C-N bond, we constructed a novel semirigid pyramid-like scaffold that could support its two-turn α-helix mimicry without aromatic stacking interactions and could adopt the different dihedral angles of the key residues of p53 and BH3-only peptides. On the basis of this universal scaffold, a series of substituent groups were installed to capture the key residues of both p53TAD and BimBH3 and balance the differences of the bulks between them. Identified by FP, ITC, and NMR spectroscopy, a compound 6e (zq-1) that directly binds to Mcl-1, Bcl-2, and MDM2 with balanced submicromolar affinities was obtained. Cell-based experiments demonstrated its antitumor ability through Bcl-2/MDM2 dual inhibition simultaneously.

  9. Explaining oscillations and variability in the p53-Mdm2 system

    PubMed Central

    Proctor, Carole J; Gray, Douglas A

    2008-01-01

    Background In individual living cells p53 has been found to be expressed in a series of discrete pulses after DNA damage. Its negative regulator Mdm2 also demonstrates oscillatory behaviour. Attempts have been made recently to explain this behaviour by mathematical models but these have not addressed explicit molecular mechanisms. We describe two stochastic mechanistic models of the p53/Mdm2 circuit and show that sustained oscillations result directly from the key biological features, without assuming complicated mathematical functions or requiring more than one feedback loop. Each model examines a different mechanism for providing a negative feedback loop which results in p53 activation after DNA damage. The first model (ARF model) looks at the mechanism of p14ARF which sequesters Mdm2 and leads to stabilisation of p53. The second model (ATM model) examines the mechanism of ATM activation which leads to phosphorylation of both p53 and Mdm2 and increased degradation of Mdm2, which again results in p53 stabilisation. The models can readily be modified as further information becomes available, and linked to other models of cellular ageing. Results The ARF model is robust to changes in its parameters and predicts undamped oscillations after DNA damage so long as the signal persists. It also predicts that if there is a gradual accumulation of DNA damage, such as may occur in ageing, oscillations break out once a threshold level of damage is acquired. The ATM model requires an additional step for p53 synthesis for sustained oscillations to develop. The ATM model shows much more variability in the oscillatory behaviour and this variability is observed over a wide range of parameter values. This may account for the large variability seen in the experimental data which so far has examined ARF negative cells. Conclusion The models predict more regular oscillations if ARF is present and suggest the need for further experiments in ARF positive cells to test these predictions

  10. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios

    2009-12-01

    The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis.

  11. NFBD1/MDC1 stabilizes oncogenic MDM2 to contribute to cell fate determination in response to DNA damage

    SciTech Connect

    Inoue, Ken-ichi; Nakanjishi, Mitsuru; Kikuchi, Hironobu; Yamamoto, Hideki; Todo, Satoru; Nakagawara, Akira Ozaki, Toshinori

    2008-07-11

    In response to DNA damage, NFBD1/MDC1 induces the accumulation of DNA repair machinery such as MRN complex at the sites of damaged DNA to form nuclear foci. In this study, we found that NFBD1 directly interacts with MDM2 and increases its stability. During adriamycin (ADR)-mediated apoptosis, expression levels of NFBD1 reduced in association with the down-regulation of MDM2. Enforced expression of NFBD1 resulted in a significant stabilization of MDM2. Consistent with these observations, siRNA-mediated knockdown of the endogenous NFBD1 decreased the amounts of the endogenous MDM2. Immunoprecipitation and in vitro pull-down assays demonstrated that NFBD1 interacts with MDM2 through its COOH-terminal BRCT domains. In accordance with our recent results, enforced expression of NFBD1 rendered cells resistant to DNA damage. Similar results were also obtained in cells expressing exogenous MDM2. Taken together, our present findings suggest that NFBD1-mediated stabilization contributes to cell survival in response to DNA damage.

  12. Lenalidomide Promotes p53 Degradation by Inhibiting MDM2 Auto-ubiquitination in Myelodysplastic Syndrome with Chromosome 5q Deletion

    PubMed Central

    Wei, Sheng; Chen, Xianghong; McGraw, Kathy; Zhang, Ling; Komrokji, Rami; Clark, Justine; Caceres, Gisela; Billingsley, Debbie; Sokol, Lubomir; Lancet, Jeffrey; Fortenbery, Nicole; Zhou, Junmin; Eksioglu, Erika A.; Sallman, David; Wang, Huaquan; Epling-Burnette, Pearlie K.; Djeu, Julie; Maciejewski, Jaroslaw P.; Sekeres, Mikkael; List, Alan

    2013-01-01

    Allelic deletion of the RPS14 gene is a key effector of the hypoplastic anemia in patients with myelodysplastic syndrome (MDS) and chromosome 5q deletion [del(5q)]. Disruption of ribosome integrity liberates free ribosomal proteins to bind to and trigger degradation of MDM2, with consequent p53 transactivation. Herein we show that p53 is overexpressed in erythroid precursors of primary bone marrow del(5q) MDS specimens accompanied by reduced cellular MDM2. More importantly, we show that lenalidomide acts to stabilize MDM2, thereby accelerating p53 degradation. Biochemical and molecular analyses showed that lenalidomide inhibits the haplodeficient PP2Acα phosphatase resulting in hyperphosphorylation of inhibitory serine-166 and serine-186 residues on MDM2, and displaces binding of RPS-14 to suppress MDM2 auto-ubiquitination; whereas PP2Acα over expression promotes drug resistance. Bone marrow specimens from del(5q) MDS patients resistant to lenalidomide over-expressed PP2Acα accompanied by restored accumulation of p53 in erythroid precursors. Our findings indicate that lenalidomide restores MDM2 functionality in the 5q- syndrome to overcome p53 activation in response to nucleolar stress, and therefore may warrant investigation in other disorders of ribosomal biogenesis. PMID:22525275

  13. MDM2 interacts with NME2 (non-metastatic cells 2, protein) and suppresses the ability of NME2 to negatively regulate cell motility.

    PubMed

    Polanski, Radoslaw; Maguire, Maria; Nield, Paul C; Jenkins, Rosalind E; Park, B Kevin; Krawczynska, Karolina; Devling, Timothy; Ray-Sinha, Arpita; Rubbi, Carlos P; Vlatkovic, Nikolina; Boyd, Mark T

    2011-08-01

    MDM2 expression, combined with increased p53 expression, is associated with reduced survival in several cancers, but is particularly of interest in renal cell carcinoma (RCC) where evidence suggests the presence of tissue-specific p53/MDM2 pathway defects. We set out to identify MDM2-interacting proteins in renal cells that could act as mediators/targets of MDM2 oncogenic effects in renal cancers. We identified the non-metastatic cells 2, protein; NME2 (NDPK-B, NM23-B/-H2), a nucleoside diphosphate kinase, as an MDM2-interacting protein using both a proteomic-based strategy [affinity chromatography and tandem mass spectrometry [MS/MS] from HEK293 cells] and a yeast two-hybrid screen of a renal carcinoma cell-derived complementary DNA library. The MDM2-NME2 interaction is highly specific, as NME1 (87.5% amino acid identity) does not interact with MDM2 in yeast. Specific NME proteins display well-documented cell motility and metastasis-suppressing activity. We show that NME2 contributes to motility suppression under conditions where MDM2 is expressed at normal physiological/low levels. However, up-regulation of MDM2 in RCC cells abolishes the ability of NME2 to suppress motility. Significantly, when MDM2 expression is down-regulated in these cells using small interfering RNA, the motility-suppressing activity of NME2 is rescued, confirming that MDM2 expression causes the loss of NME2 cell motility regulatory function. Thus MDM2 up-regulation in renal cancer cells can act in a dominant manner to abrogate the function of a potent suppressor of motility and metastasis. Our studies identify a novel protein-protein interaction between MDM2 and NME2, which suggests a mechanism that could explain the link between MDM2 expression and poor patient survival in RCC.

  14. Is MDM2 SNP309 Variation a Risk Factor for Head and Neck Carcinoma?

    PubMed Central

    Zhuo, Xianlu; Ye, Huiping; Li, Qi; Xiang, Zhaolan; Zhang, Xueyuan

    2016-01-01

    Abstract Murine double minute-2 (MDM2) is a negative regulator of P53, and its T309G polymorphism has been suggested as a risk factor for a variety of cancers. Increasing evidence has shown the association of MDM2 T309G polymorphism with head and neck carcinoma (HNC) risk. However, the results are inconsistent. Thus, we performed a meta-analysis to elucidate the association. The meta-analysis retrieved studies published up to August 2015, and essential information was extracted for analysis. Separate analyses on ethnicity, source of controls, sample size, detection method, and cancer types were also conducted. Odds ratios (ORs) and their 95% confidence intervals (CIs) were used to estimate the association. Pooled data from 16 case–control studies including 4625 cases and 6927 controls failed to indicate a significant association. However, in the subgroup analysis of sample sizes, an increased risk was observed in the largest sample size group (>1000) under a recessive model (OR = 1.52; 95% CI = 1.08–2.13). Increased risks were also found in the nasopharyngeal cancer in the subgroup analysis of cancer types (GG vs TT: OR = 2.07; 95% CI = 1.38–3.12; dominant model: OR = 1.48; 95% CI = 1.13–1.93; recessive model: OR = 1.76; 95% CI = 1.17–2.65). The results suggest that homozygote GG alleles of MDM2 SNP309 may be a low-penetrant risk factor for HNC, and G allele may confer nasopharyngeal cancer susceptibility. PMID:26945408

  15. The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease.

    PubMed

    Pelava, Andria; Schneider, Claudia; Watkins, Nicholas J

    2016-08-15

    Ribosomes are abundant, large RNA-protein complexes that are the source of all protein synthesis in the cell. The production of ribosomes is an extremely energetically expensive cellular process that has long been linked to human health and disease. More recently, it has been shown that ribosome biogenesis is intimately linked to multiple cellular signalling pathways and that defects in ribosome production can lead to a wide variety of human diseases. Furthermore, changes in ribosome production in response to nutrient levels in the diet lead to metabolic re-programming of the liver. Reduced or abnormal ribosome production in response to cellular stress or mutations in genes encoding factors critical for ribosome biogenesis causes the activation of the tumour suppressor p53, which leads to re-programming of cellular transcription. The ribosomal assembly intermediate 5S RNP (ribonucleoprotein particle), containing RPL5, RPL11 and the 5S rRNA, accumulates when ribosome biogenesis is blocked. The excess 5S RNP binds to murine double minute 2 (MDM2), the main p53-suppressor in the cell, inhibiting its function and leading to p53 activation. Here, we discuss the involvement of ribosome biogenesis in the homoeostasis of p53 in the cell and in human health and disease. © 2016 The Author(s).

  16. SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression

    DOE PAGES

    Wang, Shaomeng; Sun, Wei; Zhao, Yujun; ...

    2014-08-21

    Blocking the MDM2-p53 protein-protein interaction has long been considered to offer a broad cancer therapeutic strategy, despite the potential risks of selecting tumors harboring p53 mutations that escape MDM2 control. In this study, we report a novel small molecule inhibitor of the MDM2-p53 interaction, SAR405838 (MI-77301) that has been advanced into Phase I clinical trials. SAR405838 binds to MDM2 with Ki = 0.88 nM and has high specificity over other proteins. A co-crystal structure of the SAR405838:MDM2 complex shows that in addition to mimicking three key p53 amino acid residues, the inhibitor captures additional interactions not observed in the p53-MDM2more » complex and induces refolding of the short, unstructured MDM2 N-terminal region to achieve its high affinity. SAR405838 effectively activates wild-type p53 in vitro and in xenograft tumor tissue of leukemia and solid tumors, leading to p53-dependent cell cycle arrest and/or apoptosis. At well-tolerated dose schedules, SAR405838 achieves either durable tumor regression or complete tumor growth inhibition in mouse xenograft models of SJSA-1 osteosarcoma, RS4;11 acute leukemia, LNCaP prostate cancer and HCT-116 colon cancer. Remarkably, a single oral dose of SAR405838 is sufficient to achieve complete tumor regression in the SJSA-1 model. Mechanistically, robust transcriptional up-regulation of PUMA induced by SAR405838 results in strong apoptosis in tumor tissue, leading to complete tumor regression. Lastly, our findings provide a preclinical basis upon which to evaluate SAR405838 as a therapeutic agent in patients whose tumors retain wild-type p53.« less

  17. SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression

    SciTech Connect

    Wang, Shaomeng; Sun, Wei; Zhao, Yujun; McEachern, Donna; Meaux, Isabelle; Barriere, Cedric; Stuckey, Jeanne A.; Meagher, Jennifer L.; Bai, Longchuan; Liu, Liu; Hoffman-Luca, Cassandra Gianna; Lu, Jianfeng; Shangary, Sanjeev; Yu, Shanghai; Bernard, Denzil; Aguilar, Angelo; Dos-Santos, Odette; Besret, Laurent; Guerif, Stephane; Pannier, Pascal; Gorge-Bernat, Dimitri; Debussche, Laurent

    2014-08-21

    Blocking the MDM2-p53 protein-protein interaction has long been considered to offer a broad cancer therapeutic strategy, despite the potential risks of selecting tumors harboring p53 mutations that escape MDM2 control. In this study, we report a novel small molecule inhibitor of the MDM2-p53 interaction, SAR405838 (MI-77301) that has been advanced into Phase I clinical trials. SAR405838 binds to MDM2 with Ki = 0.88 nM and has high specificity over other proteins. A co-crystal structure of the SAR405838:MDM2 complex shows that in addition to mimicking three key p53 amino acid residues, the inhibitor captures additional interactions not observed in the p53-MDM2 complex and induces refolding of the short, unstructured MDM2 N-terminal region to achieve its high affinity. SAR405838 effectively activates wild-type p53 in vitro and in xenograft tumor tissue of leukemia and solid tumors, leading to p53-dependent cell cycle arrest and/or apoptosis. At well-tolerated dose schedules, SAR405838 achieves either durable tumor regression or complete tumor growth inhibition in mouse xenograft models of SJSA-1 osteosarcoma, RS4;11 acute leukemia, LNCaP prostate cancer and HCT-116 colon cancer. Remarkably, a single oral dose of SAR405838 is sufficient to achieve complete tumor regression in the SJSA-1 model. Mechanistically, robust transcriptional up-regulation of PUMA induced by SAR405838 results in strong apoptosis in tumor tissue, leading to complete tumor regression. Lastly, our findings provide a preclinical basis upon which to evaluate SAR405838 as a therapeutic agent in patients whose tumors retain wild-type p53.

  18. A systematic review and meta-analysis of MDM2 polymorphisms in osteosarcoma susceptibility.

    PubMed

    Bilbao-Aldaiturriaga, Nerea; Askaiturrieta, Ziortza; Granado-Tajada, Itsasne; Goričar, Katja; Dolžan, Vita; For The Slovenian Osteosarcoma Study Group; Garcia-Miguel, Purificación; Garcia de Andoin, Nagore; Martin-Guerrero, Idoia; Garcia-Orad, Africa

    2016-10-01

    Two polymorphisms in the murine double minute 2 (MDM2) gene (rs1690916 and rs2279744) have been associated with the risk of osteosarcoma (OS). When we analyzed these two polymorphisms in two new independents cohorts (Spanish and Slovenian), we found no association. In order to clarify this, we conducted a meta-analysis including six populations, with a total of 246 OS patients and 1,760 controls for rs1690916; and 433 OS patients and 1,959 controls for rs2279744. Pooled odds ratio risks and corresponding 95% CI were estimated to assess the possible associations. Our results showed that these two polymorphisms were not associated with the susceptibility of OS under any genetic model studied. In conclusion, the present meta-analysis indicates that MDM2 rs1690916 and rs2279744 cannot be considered as genetic risk factors for OS susceptibility in the different populations. Therefore, the influence of these two polymorphisms on the risk of OS may be less important than previously suggested. Future studies are needed to confirm these results.

  19. Stress-specific response of the p53-Mdm2 feedback loop

    PubMed Central

    2010-01-01

    Background The p53 signalling pathway has hundreds of inputs and outputs. It can trigger cellular senescence, cell-cycle arrest and apoptosis in response to diverse stress conditions, including DNA damage, hypoxia and nutrient deprivation. Signals from all these inputs are channeled through a single node, the transcription factor p53. Yet, the pathway is flexible enough to produce different downstream gene expression patterns in response to different stresses. Results We construct a mathematical model of the negative feedback loop involving p53 and its inhibitor, Mdm2, at the core of this pathway, and use it to examine the effect of different stresses that trigger p53. In response to DNA damage, hypoxia, etc., the model exhibits a wide variety of specific output behaviour - steady states with low or high levels of p53 and Mdm2, as well as spiky oscillations with low or high average p53 levels. Conclusions We show that even a simple negative feedback loop is capable of exhibiting the kind of flexible stress-specific response observed in the p53 system. Further, our model provides a framework for predicting the differences in p53 response to different stresses and single nucleotide polymorphisms. PMID:20624280

  20. MDM2 Inhibition Sensitizes Prostate Cancer Cells to Androgen Ablation and Radiotherapy in a p53-Dependent Manner12

    PubMed Central

    Feng, Felix Y.; Zhang, Yu; Kothari, Vishal; Evans, Joseph R.; Jackson, William C.; Chen, Wei; Johnson, Skyler B.; Luczak, Connor; Wang, Shaomeng; Hamstra, Daniel A.

    2016-01-01

    PURPOSE: Increased murine double minute 2 (MDM2) expression, independent of p53 status, is associated with increased cancer-specific mortality for men with prostate cancer treated with radiotherapy. We assessed MI-219, a small molecule inhibitor of MDM2 with improved pharmacokinetics over nutlin-3, for sensitization of prostate cancer cells to radiotherapy and androgen deprivation therapy, a standard treatment option for men with high-risk prostate cancer. EXPERIMENTAL DESIGN: The effect of MDM2 inhibition by MI-219 was assessed in vitro and in vivo with mouse xenograft models across multiple prostate cancer cell lines containing varying p53 functional status. RESULTS: MDM2 inhibition by MI-219 resulted in dose- and time-dependent p53 activation and decreased clonogenic cell survival after radiation in a p53-dependent manner. Mechanistically, radiosensitization following inhibition of MDM2 was largely the result of p53-dependent increases in apoptosis and DNA damage as evidenced by Annexin V flow cytometry and γ-H2AX foci immunofluorescence. Similarly, treatment with MI-219 enhanced response to antiandrogen therapy via a p53-dependent increase in apoptotic cell death. Lastly, triple therapy with radiation, androgen deprivation therapy, and MI-219 decreased xenograft tumor growth compared with any single- or double-agent treatment. CONCLUSION: MDM2 inhibition with MI-219 results in p53-dependent sensitization of prostate cancer cells to radiation, antiandrogen therapy, and the combination. These findings support MDM2 small molecule inhibitor therapy as a therapy intensification strategy to improve clinical outcomes in high-risk localized prostate cancer. TRANSLATIONAL RELEVANCE: The combination of radiotherapy and androgen deprivation therapy is a standard treatment option for men with high-risk prostate cancer. Despite improvements in outcomes when androgen deprivation therapy is added to radiation, men with high-risk prostate cancer have significant risk for

  1. PTCH-1 and MDM2 expression in ameloblastoma from a West African sub-population: implication for chemotherapeutics

    PubMed Central

    Udeabor, Samuel Ebele; Adisa, Akinyele Olumuyiwa; Lawal, Ahmed Oluwatoyin; Barbeck, Mike; Booms, Patrick; Sader, Robert Alexander; Ghanaati, Shahram

    2015-01-01

    Introduction Ameloblastoma is a slow growing, painless odontogenic swelling which can attain sizes that result in severe deformities of the craniofacial complex. It is the most commonly encountered odontogenic tumor in Nigeria. Surgical intervention is currently the method of treatment; however identification of altered molecular pathways may inform chemotherapeutic potential. The Protein Patched homolog 1 (PTCH-1) is overexpressed in ameloblastoma. Also, mutation in the MDM2 gene can reduce the tumor suppressor function of p53 and promote ameloblastoma growth. No study however has characterized the molecular profile of African cases of ameloblastoma with a view to developing chemotherapeutic alternatives. The objective was to characterize the PTCH-1 genetic profile of Ameloblastoma in Nigerian patients as a first step in investigating its potential for chemotherapeutic intervention. Methods Twenty-eight FFPE blocks of ameloblastoma cases from Nigerian patients were prepared for antibody processing to PTCH-1 (Polyclonal Anti-PTCH antibody ab39266) and MDM2 (Monoclonal Anti-MDM2 antibody (2A10) ab16895). Cytoplasmic brown staining was considered as positive for PTCH while nuclear staining was positive for MDM2. Results Moderate and strong expressions for PTCH in ameloblast and stellate reticulum were 78.6% and 60.7% respectively. Only 3 (10.7%) cases expressed MDM2. Conclusion The importance of our study is that it supports, in theory, anti-PTCH/SHH chemotherapeutics for Nigerian ameloblastoma cases and also infers the possible additional use of anti-p53 agents. PMID:27386018

  2. PTCH-1 and MDM2 expression in ameloblastoma from a West African sub-population: implication for chemotherapeutics.

    PubMed

    Udeabor, Samuel Ebele; Adisa, Akinyele Olumuyiwa; Lawal, Ahmed Oluwatoyin; Barbeck, Mike; Booms, Patrick; Sader, Robert Alexander; Ghanaati, Shahram

    2015-01-01

    Ameloblastoma is a slow growing, painless odontogenic swelling which can attain sizes that result in severe deformities of the craniofacial complex. It is the most commonly encountered odontogenic tumor in Nigeria. Surgical intervention is currently the method of treatment; however identification of altered molecular pathways may inform chemotherapeutic potential. The Protein Patched homolog 1 (PTCH-1) is overexpressed in ameloblastoma. Also, mutation in the MDM2 gene can reduce the tumor suppressor function of p53 and promote ameloblastoma growth. No study however has characterized the molecular profile of African cases of ameloblastoma with a view to developing chemotherapeutic alternatives. The objective was to characterize the PTCH-1 genetic profile of Ameloblastoma in Nigerian patients as a first step in investigating its potential for chemotherapeutic intervention. Twenty-eight FFPE blocks of ameloblastoma cases from Nigerian patients were prepared for antibody processing to PTCH-1 (Polyclonal Anti-PTCH antibody ab39266) and MDM2 (Monoclonal Anti-MDM2 antibody (2A10) ab16895). Cytoplasmic brown staining was considered as positive for PTCH while nuclear staining was positive for MDM2. Moderate and strong expressions for PTCH in ameloblast and stellate reticulum were 78.6% and 60.7% respectively. Only 3 (10.7%) cases expressed MDM2. The importance of our study is that it supports, in theory, anti-PTCH/SHH chemotherapeutics for Nigerian ameloblastoma cases and also infers the possible additional use of anti-p53 agents.

  3. Application of Binding Free Energy Calculations to Prediction of Binding Modes and Affinities of MDM2 and MDMX Inhibitors

    PubMed Central

    Lee, Hui Sun; Jo, Sunhwan; Lim, Hyun-Suk; Im, Wonpil

    2012-01-01

    Molecular docking is widely used to obtain binding modes and binding affinities of a molecule to a given target protein. Despite considerable efforts, however, prediction of both properties by docking remains challenging mainly due to protein’s structural flexibility and inaccuracy of scoring functions. Here, an integrated approach has been developed to improve the accuracy of binding mode and affinity prediction, and tested for small molecule MDM2 and MDMX antagonists. In this approach, initial candidate models selected from docking are subjected to equilibration MD simulations to further filter the models. Free energy perturbation molecular dynamics (FEP/MD) simulations are then applied to the filtered ligand models to enhance the ability in predicting the near-native ligand conformation. The calculated binding free energies for MDM2 complexes are overestimated compared to experimental measurements mainly due to the difficulties in sampling highly flexible apo-MDM2. Nonetheless, the FEP/MD binding free energy calculations are more promising for discriminating binders from nonbinders than docking scores. In particular, the comparison between the MDM2 and MDMX results suggests that apo-MDMX has lower flexibility than apo-MDM2. In addition, the FEP/MD calculations provide detailed information on the different energetic contributions to ligand binding, leading to a better understanding of the sensitivity and specificity of protein-ligand interactions. PMID:22731511

  4. Characterizing the Free-Energy Landscape of MDM2 Protein-Ligand Interactions by Steered Molecular Dynamics Simulations.

    PubMed

    Hu, Guodong; Xu, Shicai; Wang, Jihua

    2015-12-01

    Inhibition of p53-MDM2 interaction by small molecules is considered to be a promising approach to re-activate wild-type p53 for tumor suppression. Several inhibitors of the MDM2-p53 interaction were designed and studied by the experimental methods and the molecular dynamics simulation. However, the unbinding mechanism was still unclear. The steered molecular dynamics simulations combined with Brownian dynamics fluctuation-dissipation theorem were employed to obtain the free-energy landscape of unbinding between MDM2 and their four ligands. It was shown that compounds 4 and 8 dissociate faster than compounds 5 and 7. The absolute binding free energies for these four ligands are in close agreement with experimental results. The open movement of helix II and helix IV in the MDM2 protein-binding pocket upon unbinding is also consistent with experimental MDM2-unbound conformation. We further found that different binding mechanisms among different ligands are associated with H-bond with Lys51 and Glu25. These mechanistic results may be useful for improving ligand design. © 2015 John Wiley & Sons A/S.

  5. BP-1T, an antiangiogenic benzophenone-thiazole pharmacophore, counteracts HIF-1 signalling through p53/MDM2-mediated HIF-1α proteasomal degradation.

    PubMed

    Thirusangu, Prabhu; Vigneshwaran, V; Prashanth, T; Vijay Avin, B R; Malojirao, Vikas H; Rakesh, H; Khanum, Shaukath Ara; Mahmood, Riaz; Prabhakar, B T

    2017-02-01

    Hypoxia is a feature of all solid tumours, contributing to tumour progression. Activation of HIF-1α plays a critical role in promoting tumour angiogenesis and metastasis. Since its expression is positively correlated with poor prognosis for cancer patients, HIF-1α is one of the most convincing anticancer targets. BP-1T is a novel antiproliferative agent with promising antiangiogenic effects. In the present study, the molecular mechanism underlying cytotoxic/antiangiogenic effects of BP-1T on tumour/non-tumour angiogenesis was evaluated. Evidences show that BP-1T exhibits potent cytotoxicity with prolonged activity and effectively regressed neovessel formation both in reliable non-tumour and tumour angiogenic models. The expression of CoCl2-induced HIF-1α was inhibited by BP-1T in various p53 (WT)-expressing cancer cells, including A549, MCF-7 and DLA, but not in mutant p53-expressing SCC-9 cells. Mechanistically, BP-1T mediates the HIF-1α proteasomal degradation by activating p53/MDM2 pathway and thereby downregulated HIF-1α-dependent angiogenic genes such as VEGF-A, Flt-1, MMP-2 and MMP-9 under hypoxic condition of in vitro and in vivo solid tumour, eventually leading to abolition of migration and invasion. Based on these observations, we conclude that BP-1T acts on HIF-1α degradation through p53/MDM2 proteasome pathway.

  6. Long non-coding RNA ENST00462717 suppresses the proliferation, survival, and migration by inhibiting MDM2/MAPK pathway in glioma.

    PubMed

    Wang, Aiqin; Meng, Mingzhu; Zhao, Xiuhe; Kong, Lina

    2017-04-01

    Gliomas are the most common and aggressive primary malignant tumor in the central nervous system, and requires new biomarkers and therapeutic methods. Long noncoding RNAs (lncRNAs) are important factors in numerous human diseases, including cancer. But studies on lncRNAs and gliomas are limited. In this study, we investigated the expression patterns of lncRNAs in 3 pairs of glioma samples and adjacent non-tumor tissues via microarray and selected the most down-regulated lnc00462717 to further verify its roles in glioma. We observed that decreased lnc00462717 expression was associated with the malignant status in glioma. In vitro experiment demonstrated that lnc00462717 overexpression suppressed glioma cell proliferation, survival and migration while knockdown of lnc00462717 had an opposite result. Moreover, we identified MDM2 as a direct target of lnc00462717 and lnc00462717 played a role by partially regulating the MDM2/MAPK pathway. In conclusion, lnc00462717 may function in suppressing glioma cell proliferation, survival, migration and may potentially serve as a novel biomarker and therapeutic target for glioma.

  7. A re-examination of the MDM2/p53 interaction leads to revised design criteria for novel inhibitors.

    PubMed

    Vasilevich, Natalya I; Afanasyev, Ilya I; Kovalskiy, Dmitry A; Genis, Dmitry V; Kochubey, Valery S

    2014-11-01

    The general model of epitope-type MDM2 inhibitor was developed based on the structural information on the complexes between MDM2 and various low molecular weight ligands found in the PDB database. Application of this model to our in-house library has led us to a new scaffold capable of interrupting protein-protein interactions. A synthetic library based on this and related scaffolds resulted in new classes of compounds that possess biochemical and cellular activity and good pharmacokinetic properties. We assume that such general approach to PPI inhibitors design may be useful for the development of inhibitors of various PPI types, including Bcl/XL.

  8. An Integrative Analysis Reveals a Central Role of P53 Activation via MDM2 in Zika Virus Infection Induced Cell Death.

    PubMed

    Teng, Yue; Liu, Shufeng; Guo, Xiaocan; Liu, Shuxia; Jin, Yuan; He, Tongtong; Bi, Dehua; Zhang, Pei; Lin, Baihan; An, Xiaoping; Feng, Dan; Mi, Zhiqiang; Tong, Yigang

    2017-01-01

    Zika virus (ZIKV) infection is an emerging global threat that is suspected to be associated with fetal microcephaly. However, the molecular mechanisms underlying ZIKV disease pathogenesis in humans remain elusive. Here, we investigated the human protein interaction network associated with ZIKV infection using a systemic virology approach, and reconstructed the transcriptional regulatory network to analyze the mechanisms underlying ZIKV-elicited microcephaly pathogenesis. The bioinformatics findings in this study show that P53 is the hub of the genetic regulatory network for ZIKV-related and microcephaly-associated proteins. Importantly, these results imply that the ZIKV capsid protein interacts with mouse double-minute-2 homolog (MDM2), which is involved in the P53-mediated apoptosis pathway, activating the death of infected neural cells. We also found that synthetic mimics of the ZIKV capsid protein induced cell death in vitro and in vivo. This study provides important insight into the relationship between ZIKV infection and brain diseases.

  9. USP7 Enforces Heterochromatinization of p53 Target Promoters by Protecting SUV39H1 from MDM2-Mediated Degradation.

    PubMed

    Mungamuri, Sathish Kumar; Qiao, Rui F; Yao, Shen; Manfredi, James J; Gu, Wei; Aaronson, Stuart A

    2016-03-22

    The H3K9me3 repressive histone conformation of p53 target promoters is abrogated in response to p53 activation by MDM2-mediated SUV39H1 degradation. Here, we present evidence that the USP7 deubiquitinase protects SUV39H1 from MDM2-mediated ubiquitination in the absence of p53 stimulus. USP7 occupies p53 target promoters in unstressed conditions, a process that is abrogated with p53 activation associated with loss of the H3K9me3 mark on these same promoters. Mechanistically, USP7 forms a trimeric complex with MDM2 and SUV39H1, independent of DNA, and modulates MDM2-dependent SUV39H1 ubiquitination. Furthermore, we show that this protective function of USP7 on SUV39H1 is independent of p53. Finally, USP7 blocking cooperates with p53 in inducing apoptosis by enhancing p53 promoter occupancy and dependent transactivation of target genes. These results uncover a layer of the p53 transcriptional program mediated by USP7, which restrains relaxation of local chromatin conformation at p53 target promoters. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Probing the origin of structural stability of single and double stapled p53 peptide analogs bound to MDM2.

    PubMed

    Guo, Zuojun; Streu, Kristina; Krilov, Goran; Mohanty, Udayan

    2014-06-01

    The stabilization of secondary structure is believed to play an important role in the peptide-protein binding interaction. In this study, the α-helical conformation and structural stability of single and double stapled all-hydrocarbon cross-linked p53 peptides when bound and unbound to MDM2 are investigated. We determined the effects of the peptide sequence, the stereochemistry of the cross-linker, the conformation of the double bond in the alkene bridge, and the length of the bridge, to the relative stability of the α-helix structure. The binding affinity calculations by WaterMap provided over one hundred hydration sites in the MDM2 binding pocket where water density is greater than twice that of the bulk, and the relative value of free energy released by displacing these hydration sites. In agreement with the experimental data, potentials of mean force obtained by weighted histogram analysis methods indicated the order of peptides from lowest to highest binding affinity. Our study provides a comprehensive rationalization of the relationship between peptide stapling strategy, the secondary structural stability, and the binding affinity of p53/MDM2 complex. We hope our efforts can help to further the development of a new generation p53/MDM2 inhibitors that can reactivate the function of p53 as tumor suppressor gene.

  11. Conjugation of spermine enhances cellular uptake of the stapled peptide-based inhibitors of p53-Mdm2 interaction.

    PubMed

    Muppidi, Avinash; Li, Xiaolong; Chen, Jiandong; Lin, Qing

    2011-12-15

    We report the first synthesis of the C-terminally spermine-conjugated stapled peptide-based inhibitors of the p53-Mdm2 interaction. Subsequent biological, biophysical and cellular uptake assays with the spermine-conjugated stapled peptides revealed that spermine conjugation minimally affects biological activity while significantly increases peptide helicity and cellular uptake without apparent cytotoxicity.

  12. Senescence induction in renal carcinoma cells by Nutlin-3: a potential therapeutic strategy based on MDM2 antagonism.

    PubMed

    Polański, Radosław; Noon, Aidan P; Blaydes, Jeremy; Phillips, Anna; Rubbi, Carlos P; Parsons, Keith; Vlatković, Nikolina; Boyd, Mark T

    2014-10-28

    Although the role of p53 as a tumour suppressor in renal cell carcinoma (RCC) is unclear, our recent analysis suggests that increased wild-type p53 protein expression is associated with poor outcome. A growing body of evidence also suggests that p53 expression and increased co-expression of MDM2 are linked with poor prognosis in RCC. We have therefore examined whether an MDM2 antagonist; Nutlin-3, might rescue/increase p53 expression and induce growth inhibition or apoptosis in RCC cells that retain wild-type p53. We show that inhibition of p53 suppression by MDM2 in RCC cells promotes growth arrest and p53-dependent senescence - phenotypes known to mediate p53 tumour suppression in vivo. We propose that future investigations of therapeutic strategies for RCC should incorporate MDM2 antagonism as part of strategies aimed at rescuing/augmenting p53 tumour suppressor function. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Feedback modulation of neural network synchrony and seizure susceptibility by Mdm2-p53-Nedd4-2 signaling.

    PubMed

    Jewett, Kathryn A; Christian, Catherine A; Bacos, Jonathan T; Lee, Kwan Young; Zhu, Jiuhe; Tsai, Nien-Pei

    2016-03-22

    Neural network synchrony is a critical factor in regulating information transmission through the nervous system. Improperly regulated neural network synchrony is implicated in pathophysiological conditions such as epilepsy. Despite the awareness of its importance, the molecular signaling underlying the regulation of neural network synchrony, especially after stimulation, remains largely unknown. In this study, we show that elevation of neuronal activity by the GABA(A) receptor antagonist, Picrotoxin, increases neural network synchrony in primary mouse cortical neuron cultures. The elevation of neuronal activity triggers Mdm2-dependent degradation of the tumor suppressor p53. We show here that blocking the degradation of p53 further enhances Picrotoxin-induced neural network synchrony, while promoting the inhibition of p53 with a p53 inhibitor reduces Picrotoxin-induced neural network synchrony. These data suggest that Mdm2-p53 signaling mediates a feedback mechanism to fine-tune neural network synchrony after activity stimulation. Furthermore, genetically reducing the expression of a direct target gene of p53, Nedd4-2, elevates neural network synchrony basally and occludes the effect of Picrotoxin. Finally, using a kainic acid-induced seizure model in mice, we show that alterations of Mdm2-p53-Nedd4-2 signaling affect seizure susceptibility. Together, our findings elucidate a critical role of Mdm2-p53-Nedd4-2 signaling underlying the regulation of neural network synchrony and seizure susceptibility and reveal potential therapeutic targets for hyperexcitability-associated neurological disorders.

  14. Chemical states of the N-terminal "lid" of MDM2 regulate p53 binding: simulations reveal complexities of modulation.

    PubMed

    Dastidar, Shubhra Ghosh; Raghunathan, Devanathan; Nicholson, Judith; Hupp, Ted R; Lane, David P; Verma, Chandra S

    2011-01-01

    Phosphorylation of S17 in the N-terminal "lid" of MDM2 (residues 1-24) is proposed to regulate the binding of p53. The lid is composed of an intrinsically disordered peptide motif that is not resolved in the crystal structure of the MDM2 N-terminal domain. Molecular dynamics simulations of MDM2 provide novel insight into how the lid undergoes complex dynamics depending on its phosphorylation state that have not been revealed by NMR analyses. The difference in charges between the phosphate and the phosphomimetic 'Asp' and the change in shape from tetrahedral to planar are manifested in differences in strengths and durations of interactions that appear to modulate access of the binding site to ligands and peptides differentially. These findings unveil the complexities that underlie protein-protein interactions and reconcile some differences between the biochemical and NMR data suggesting that lid mutation or deletion can change the specific activity of MDM2 and provide concepts for future approaches to evaluate the effects of S17 modification on p53 binding.

  15. Next-generation repeat-free FISH probes for DNA amplification in glioblastoma in vivo: Improving patient selection to MDM2-targeted inhibitors.

    PubMed

    Brunelli, Matteo; Eccher, Albino; Cima, Luca; Trippini, Tobia; Pedron, Serena; Chilosi, Marco; Barbareschi, Mattia; Scarpa, Aldo; Pinna, Giampietro; Cabrini, Giulio; Pilotto, Sara; Carbognin, Luisa; Bria, Emilio; Tortora, Giampaolo; Fioravanzo, Adele; Schiavo, Nicola; Meglio, Mario; Sava, Teodoro; Belli, Laura; Martignoni, Guido; Ghimenton, Claudio

    2017-01-01

    A next-generation FISH probe mapping to the MDM2 locus-specific region has recently been designed. The level of MDM2 gene amplification (high versus low) may allow selection of patients for cancer treatment with MDM2 inhibitors and may predict their responsiveness. We investigated the spectrum of MDM2 gene alterations using the new probes in vivo after visualizing single neoplastic cells in situ from a series of glioblastomas. Signals from next-generation repeat-free FISH interphase probes were identified in tissue microarrays that included 3 spots for each of the 48 cases. The murine double minutes (MDM2)-specific DNA probe and the satellite enumeration probe for chromosome 12 were used. Three cases (6%) showed more than 25 signals (high gene amplification), and 7 (15%) showed 3-10 signals (gains); among these, 4 cases (8%) had an equal number of MDM2 and centromeric signals on chromosome 12 (polyploidy). Genomic heterogeneity was observed only in 3 cases with low gene amplification. In our series, 6% of glioblastomas exhibited high MDM2 amplification (in vivo) with a pattern related to the known double minutes/chromothripsis phenomenon (in situ), and only cases with low amplification showed genomic heterogeneity. We concluded that the rate of MDM2 gene amplification can be a useful predictive biomarker to improve patient selection.

  16. HIF-1α, MDM2, CDK4, and p16 expression in ischemic fasciitis, focusing on its ischemic condition.

    PubMed

    Yamada, Yuichi; Kinoshita, Izumi; Kohashi, Kenichi; Yamamoto, Hidetaka; Kuma, Yuki; Ito, Takamichi; Koda, Kenji; Kisanuki, Atsushi; Kurosawa, Manabu; Yoshimura, Michiko; Furue, Masutaka; Oda, Yoshinao

    2017-07-01

    Ischemic fasciitis is a benign myofibroblastic lesion, occurring in the sacral region or proximal thigh of elderly or bedridden individuals. The pathogenesis of ischemic fasciitis is thought to be based on ischemic condition; however, it has never been demonstrated. In this study, we examined the expression of ischemia-associated proteins in ischemic fasciitis by immunohistochemical and genetic methods. Specifically, this study aimed to reveal the expression of HIF-1α, MDM2, CDK4, p16, and gene amplification of MDM2 gene. Seven cases of ischemic fasciitis from among the soft-tissue tumors registered at our institution were retrieved. Histopathological findings were as follows: poorly demarcated nodular masses, a proliferation of spindle-shaped fibroblastic or myofibroblastic cells with oval nuclei and eosinophilic or pale cytoplasm, zonal fibrinous deposition, pseudocystic degeneration, granulation-like proliferation of capillary vessels, ganglion-like cells, myxoid or hyalinized stroma, and chronic inflammatory infiltration. Immunohistochemically, the spindle cells were positive for HIF-1α (7/7 cases), MDM2 (4/7 cases), CDK4 (4/7 cases), p16 (7/7 cases), p53 (2/7 case), cyclin D1 (7/7 cases), and alpha-smooth muscle actin (6/7 cases). Neither MDM2 gene amplification nor USP6 gene split signal was detected in any case. Overexpression of the above proteins may be associated with the pathogenic mechanism of ischemic fasciitis. It is noted that the immunohistochemical positivity of MDM2, CDK4, and p16 do not necessarily indicate malignant neoplasm such as dedifferentiated liposarcoma.

  17. On the origin of the stereoselective affinity of Nutlin-3 geometrical isomers for the MDM2 protein

    PubMed Central

    ElSawy, Karim M; Verma, Chandra S; Lane, David P; Caves, Leo SD

    2013-01-01

    The stereoselective affinity of small-molecule binding to proteins is typically broadly explained in terms of the thermodynamics of the final bound complex. Using Brownian dynamics simulations, we show that the preferential binding of the MDM2 protein to the geometrical isomers of Nutlin-3, an effective anticancer lead that works by inhibiting the interaction between the proteins p53 and MDM2, can be explained by kinetic arguments related to the formation of the MDM2:Nutlin-3 encounter complex. This is a diffusively bound state that forms prior to the final bound complex. We find that the MDM2 protein stereoselectivity for the Nutlin-3a enantiomer stems largely from the destabilization of the encounter complex of its mirror image enantiomer Nutlin-3b, by the K70 residue that is located away from the binding site. On the other hand, the trans-Nutlin-3a diastereoisomer exhibits a shorter residence time in the vicinity of MDM2 compared with Nutlin-3a due to destabilization of its encounter complex by the collective interaction of pairs of charged residues on either side of the binding site: Glu25 and Lys51 on one side, and Lys94 and Arg97 on the other side. This destabilization is largely due to the electrostatic potential of the trans-Nutlin-3a isomer being largely positive over extended continuous regions around its structure, which are otherwise well-identified into positive and negative regions in the case of the Nutlin-3a isomer. Such rich insight into the binding processes underlying biological selectivity complements the static view derived from the traditional thermodynamic analysis of the final bound complex. This approach, based on an explicit consideration of the dynamics of molecular association, suggests new avenues for kinetics-based anticancer drug development and discovery. PMID:24270847

  18. MDM2 and CDK4 Immunohistochemistry: Should It Be Used in Problematic Differentiated Lipomatous Tumors?: A New Perspective.

    PubMed

    Clay, Michael R; Martinez, Anthony P; Weiss, Sharon W; Edgar, Mark A

    2016-12-01

    Although most cases of atypical lipomatous tumor/well-differentiated liposarcoma (ALT/WDL) can be diagnosed solely on the basis of histologic features, those lacking diagnostic histologic features require ancillary studies for accurate classification. Fluorescent in situ hybridization (FISH) for amplification of MDM2 has been considered the gold standard for diagnosis in these situations. Immunostaining for MDM2 and/or CDK4 has been adopted as a surrogate method because of its high concordance rate with FISH and lower cost. However, studies examining the concordance of the 2 methods have been based preferentially on cases in which the diagnosis could be established histologically. No study has explored the concordance between the 2 methods in histologically ambiguous cases or in cases in which the diagnosis of ALT/WDL is not apparent after a review of all slides. To address this, we performed immunostaining for MDM2 and CDK4 on 183 well-differentiated lipomatous tumors that could not be diagnosed on purely histologic grounds and that were, therefore, subjected to FISH analysis. These included ALT/WDLs (n=56), lipomas (n=96), and lipoma variants (n=31). Staining for MDM2 and CDK4 was noted in 25/56 and 23/56 ALT/WDL, respectively, giving a sensitivity of 45% and 41% and a specificity of 98% and 92%. Staining was noted exclusively in the nuclei of atypical cells and not in the nuclei of adipocytes. Staining for MDM2 and CDK4 occurred in 2/125 and 10/117 benign lipomatous lesions, respectively. False-positive staining was equivalent in intensity to ALT/WDL. We conclude that MDM2 and CDK4 staining is a relatively insensitive method for diagnosing ALT/WDL in cases that are histologically ambiguous, as staining is restricted to neoplastic cells with atypia that are underrepresented in these cases. Therefore, in cases like ours that closely simulate clinical practice, FISH is the more reliable and cost-effective option.

  19. Loss of oocytes due to conditional ablation of Murine double minute 2 (Mdm2) gene is p53-dependent and results in female sterility.

    PubMed

    Livera, Gabriel; Uzbekov, Rustem; Jarrier, Peggy; Fouchécourt, Sophie; Duquenne, Clotilde; Parent, Anne-Simone; Marine, Jean-Christophe; Monget, Philippe

    2016-08-01

    Murine double minute 2 and 4 (Mdm2, Mdm4) are major p53-negative regulators, preventing thus uncontrolled apoptosis induction in numerous cell types, although their function in the female germ line has received little attention. In the present work, we have generated mice with specific invalidation of Mdm2 and Mdm4 genes in the mouse oocyte (Mdm2(Ocko) and Mdm4(Ocko) mice), to test their implication in survival of these germ cells. Most of the Mdm2(Ocko) but not Mdm4(Ocko) mice were sterile, with a dramatic reduction of the weight of ovaries and genital tract, a strong increase in follicle-stimulating hormone and luteinizing hormone serum levels, and a reduction of anti-mullerian hormone serum levels. Histological analyses revealed an obvious decrease of the number of growing follicles beyond the primary stage in Mdm2(Ocko) ovaries in comparison to controls, with a pronounced increase in the apparition of primary atretic follicles, most being devoid of oocyte. Similar phenotypes were observed with Mdm2(Ocko) Mdm4(Ocko) ovaries, with no worsening of the phenotype. However, we failed to detect any increase in p53 level in mutant oocytes, nor any other apoptotic marker, introgression of this targeted invalidation in p53-/- mice restored the fertility of females. This study is the first to show that Mdm2, but not Mdm4, has a critical role in oocyte survival and would be involved in premature ovarian insufficiency phenotype. © 2016 Federation of European Biochemical Societies.

  20. Non-degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway.

    PubMed

    Pettersson, Susanne; Sczaniecka, Matylda; McLaren, Lorna; Russell, Fiona; Gladstone, Karen; Hupp, Ted; Wallace, Maura

    2013-03-15

    The Notch receptor is necessary for modulating cell fate decisions throughout development, and aberrant activation of Notch signalling has been associated with many diseases, including tumorigenesis. The E3 ligase MDM2 (murine double minute 2) plays a role in regulating the Notch signalling pathway through its interaction with NUMB. In the present study we report that MDM2 can also exert its oncogenic effects on the Notch signalling pathway by directly interacting with the Notch 1 receptor through dual-site binding. This involves both the N-terminal and acidic domains of MDM2 and the RAM [RBP-Jκ (recombination signal-binding protein 1 for Jκ)-associated molecule] and ANK (ankyrin) domains of Notch 1. Although the interaction between Notch1 and MDM2 results in ubiquitination of Notch1, this does not result in degradation of Notch1, but instead leads to activation of the intracellular domain of Notch1. Furthermore, MDM2 can synergize with Notch1 to inhibit apoptosis and promote proliferation. This highlights yet another target for MDM2-mediated ubiquitination that results in activation of the protein rather than degradation and makes MDM2 an attractive target for drug discovery for both the p53 and Notch signalling pathways.

  1. NF-kappaB inhibits T-cell activation-induced, p73-dependent cell death by induction of MDM2.

    PubMed

    Busuttil, Valere; Droin, Nathalie; McCormick, Laura; Bernassola, Francesca; Candi, Eleonora; Melino, Gerry; Green, Douglas R

    2010-10-19

    NF-κB is a key transcription factor involved in the regulation of T-cell activation and proliferation upon engagement of the T-cell receptor (TCR). T cells that lack the IκB kinase (IKKβ) are unable to activate NF-κB, and rapidly undergo apoptosis upon activation. NF-κB activation following T-cell receptor engagement induces the expression of Mdm2 through interaction with NF-κB sites in its P1 promoter, and enforced expression of Mdm2 protected T cells deficient for NF-κB activation from activation-induced cell death. In T cells with intact NF-κB signaling, ablation or pharmacologic inhibition of Mdm2 resulted in activation-induced apoptosis. Mdm2 coprecipitates with p73 in activated T cells, and apoptosis induced by inhibition of Mdm2 was p73-dependent. Further, Bim was identified as a p73 target gene required for cell death induced by Mdm2 inhibition, and a p73-responsive element in intron 1 of Bim was characterized. Our results demonstrate a pathway for survival of activated T cells through NF-κB-induced Mdm2, which blocks Bim-dependent apoptosis through binding and inhibition of p73.

  2. Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia.

    PubMed

    Jaako, P; Debnath, S; Olsson, K; Zhang, Y; Flygare, J; Lindström, M S; Bryder, D; Karlsson, S

    2015-11-01

    Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by haploinsufficiency of genes encoding ribosomal proteins (RPs). Perturbed ribosome biogenesis in DBA has been shown to induce a p53-mediated ribosomal stress response. However, the mechanisms of p53 activation and its relevance for the erythroid defect remain elusive. Previous studies have indicated that activation of p53 is caused by the inhibition of mouse double minute 2 (Mdm2), the main negative regulator of p53, by the 5S ribonucleoprotein particle (RNP). Meanwhile, it is not clear whether this mechanism solely mediates the p53-dependent component found in DBA. To approach this question, we crossed our mouse model for RPS19-deficient DBA with Mdm2(C305F) knock-in mice that have a disrupted 5S RNP-Mdm2 interaction. Upon induction of the Rps19 deficiency, Mdm2(C305F) reversed the p53 response and improved expansion of hematopoietic progenitors in vitro, and ameliorated the anemia in vivo. Unexpectedly, disruption of the 5S RNP-Mdm2 interaction also led to selective defect in erythropoiesis. Our findings highlight the sensitivity of erythroid progenitor cells to aberrations in p53 homeostasis mediated by the 5S RNP-Mdm2 interaction. Finally, we provide evidence indicating that physiological activation of the 5S RNP-Mdm2-p53 pathway may contribute to functional decline of the hematopoietic system in a cell-autonomous manner over time.

  3. MDM2 SNP309 does not confer an increased risk to oral squamous cell carcinoma but may modulate the age of disease onset.

    PubMed

    Hamid, Sharifah; Yang, Yi-Hsin; Peng, Karen Ng Lee; Ismail, Siti Mazlipah; Zain, Rosnah Binti; Lim, Kue Peng; Wan Mustafa, Wan Mahadzir; Abraham, Mannil Thomas; Teo, Soo-Hwang; Cheong, Sok Ching

    2009-06-01

    The MDM2 SNP309 has been associated with increased expression of the protein which could suppress p53 function, and has been shown to modulate risk to cancer. We have previously shown that overexpression of MDM2 is a common event in oral cancers. In the present study, we determined the association between the MDM2 SNP309 polymorphism and oral cancer in 207 oral cancer patients and 116 normal subjects. We genotyped the MDM2 SNP309 by PCR-RFLP. Logistic regression was adapted to calculate odds ratios for MDM2 SNP309 polymorphism from univariate and multivariable adjusted models. Our results suggest that MDM2 SNP309 does not confer increased risk to oral cancer (OR=1.55, 95% CI=0.77-3.11). However, the GG/TG genotype was associated with later disease onset in women above 55 years of age. Collectively, our data suggests that MDM2 SNP309 may modulate the risk to oral cancer and is a modifier of the age at oral cancer onset in women above the age of 55 years.

  4. Differential diagnosis of atypical lipomatous tumor/well-differentiated liposarcoma and dedifferentiated liposarcoma: utility of p16 in combination with MDM2 and CDK4 immunohistochemistry.

    PubMed

    Kammerer-Jacquet, Solène-Florence; Thierry, Sixte; Cabillic, Florian; Lannes, Morgane; Burtin, Florence; Henno, Sébastien; Dugay, Frédéric; Bouzillé, Guillaume; Rioux-Leclercq, Nathalie; Belaud-Rotureau, Marc-Antoine; Stock, Nathalie

    2017-01-01

    The differential diagnosis between atypical lipomatous tumor/well-differentiated liposarcoma (ALT/WDLPS) and dedifferentiated liposarcoma (DDLPS) from their morphologic counterparts is challenging. Currently, the diagnosis is guided by MDM2 and CDK4 immunohistochemistry (IHC) and is confirmed by the amplification of the corresponding genes. Recently, p16 IHC has been proposed as a useful diagnostic biomarker. The objective was to assess the utility of p16 IHC in the differential diagnosis of ALT/WDLPS and DDLPS. Our series included 101 tumors that were previously analyzed using fluorescence in situ hybridization for MDM2 and CDK4 amplification. We compared sensitivity and specificity of p16 IHC to MDM2 and CDK4 IHC in the differential diagnosis of ALT-WDLPS (n=19) versus benign adipocytic tumors (n=44) and DDLPS (n=18) versus mimicking sarcomas (n=20). In the differential diagnosis of ALT-WDLPS, p16 had a sensitivity of 89.5% but a specificity of 68.2%, which was impaired by false-positive lipomas with secondary changes, especially in biopsies. Likewise, in the differential diagnosis of DDLPS, p16 had a sensitivity of 94.4% and a specificity of 70%, which hampered its use as a single marker. However, adding p16 to MDM2 and/or CDK4 increased diagnostic specificity. Indeed, MDM2+/p16+ tumors were all ALT-WDLPS, and MDM2-/p16- tumors were all benign adipocytic tumors. Moreover, all MDM2+/CDK4+/p16+ tumors were DDLPS, and the MDM2-/CDK4-/p16- tumor was an undifferentiated sarcoma. Although the use of p16 as a single immunohistochemical marker is limited by its specificity, its combination with MDM2 and CDK4 IHC may help discriminate ALT-WDLPS/DDLPS.

  5. Targeting RING domains of Mdm2-MdmX E3 complex activates apoptotic arm of the p53 pathway in leukemia/lymphoma cells.

    PubMed

    Wu, W; Xu, C; Ling, X; Fan, C; Buckley, B P; Chernov, M V; Ellis, L; Li, F; Muñoz, I G; Wang, X

    2015-12-31

    Reactivation of tumor-suppressor p53 for targeted cancer therapy is an attractive strategy for cancers bearing wild-type (WT) p53. Targeting the Mdm2-p53 interface or MdmX ((MDM4), mouse double minute 4)-p53 interface or both has been a focus in the field. However, targeting the E3 ligase activity of Mdm2-MdmX really interesting new gene (RING)-RING interaction as a novel anticancer strategy has never been explored. In this report, we describe the identification and characterization of small molecule inhibitors targeting Mdm2-MdmX RING-RING interaction as a new class of E3 ligase inhibitors. With a fluorescence resonance energy transfer-based E3 activity assay in high-throughput screening of a chemical library, we identified inhibitors (designated as MMRis (Mdm2-MdmX RING domain inhibitors)) that specifically inhibit Mdm2-MdmX E3 ligase activity toward Mdm2 and p53 substrates. MMRi6 and its analog MMRi64 are capable of disrupting Mdm2-MdmX interactions in vitro and activating p53 in cells. In leukemia cells, MMRi64 potently induces downregulation of Mdm2 and MdmX. In contrast to Nutlin3a, MMRi64 only induces the expression of pro-apoptotic gene PUMA (p53 upregulated modulator of apoptosis) with minimal induction of growth-arresting gene p21. Consequently, MMRi64 selectively induces the apoptotic arm of the p53 pathway in leukemia/lymphoma cells. Owing to the distinct mechanisms of action of MMRi64 and Nutlin3a, their combination synergistically induces p53 and apoptosis. Taken together, this study reveals that Mdm2-MdmX has a critical role in apoptotic response of the p53 pathway and MMRi64 may serve as a new pharmacological tool for p53 studies and a platform for cancer drug development.

  6. Phosphomimetic mutation of the N-terminal lid of MDM2 enhances the polyubiquitination of p53 through stimulation of E2-ubiquitin thioester hydrolysis.

    PubMed

    Fraser, Jennifer A; Worrall, Erin G; Lin, Yao; Landre, Vivien; Pettersson, Susanne; Blackburn, Elizabeth; Walkinshaw, Malcolm; Muller, Petr; Vojtesek, Borek; Ball, Kathryn; Hupp, Ted R

    2015-04-24

    Mouse double minute 2 (MDM2) has a phosphorylation site within a lid motif at Ser17 whose phosphomimetic mutation to Asp17 stimulates MDM2-mediated polyubiquitination of p53. MDM2 lid deletion, but not Asp17 mutation, induced a blue shift in the λ(max) of intrinsic fluorescence derived from residues in the central domain including Trp235, Trp303, Trp323, and Trp329. This indicates that the Asp17 mutation does not alter the conformation of MDM2 surrounding the tryptophan residues. In addition, Phe235 mutation enhanced MDM2 binding to p53 but did not stimulate its ubiquitination function, thus uncoupling increases in p53 binding from its E3 ubiquitin ligase function. However, the Asp17 mutation in MDM2 stimulated its discharge of the UBCH5a-ubiquitin thioester adduct (UBCH5a is a ubiquitin-conjugating enzyme E2D 1 UBC4/5 homolog yeast). This stimulation of ubiquitin discharge from E2 was independent of the p53 substrate. There are now four known effects of the Asp17 mutation on MDM2: (i) it alters the conformation of the isolated N-terminus as defined by NMR; (ii) it induces increased thermostability of the isolated N-terminal domain; (iii) it stimulates the allosteric interaction of MDM2 with the DNA-binding domain of p53; and (iv) it stimulates a novel protein-protein interaction with the E2-ubiquitin complex in the absence of substrate p53 that, in turn, increases hydrolysis of the E2-ubiquitin thioester bond. These data also suggest a new strategy to disrupt MDM2 function by targeting the E2-ubiquitin discharge reaction.

  7. A conserved RAD6-MDM2 ubiquitin ligase machinery targets histone chaperone ASF1A in tumorigenesis.

    PubMed

    Wang, Chen; Chang, Jian-Feng; Yan, Hongli; Wang, Da-Liang; Liu, Yan; Jing, Yuanya; Zhang, Meng; Men, Yu-Long; Lu, Dongdong; Yang, Xiao-Mei; Chen, Su; Sun, Fang-Lin

    2015-10-06

    Chromatin is a highly organized and dynamic structure in eukaryotic cells. The change of chromatin structure is essential in many cellular processes, such as gene transcription, DNA damage repair and others. Anti-silencing function 1 (ASF1) is a histone chaperone that participates in chromatin higher-order organization and is required for appropriate chromatin assembly. In this study, we identified the E2 ubiquitin-conjugating enzyme RAD6 as an evolutionary conserved interacting protein of ASF1 in D. melanogaster and H. sapiens that promotes the turnover of ASF1A by cooperating with a well-known E3 ligase, MDM2, via ubiquitin-proteasome pathway in H. sapiens. Further functional analyses indicated that the interplay between RAD6 and ASF1A associates with tumorigenesis. Together, these data suggest that the RAD6-MDM2 ubiquitin ligase machinery is critical for the degradation of chromatin-related proteins.

  8. LC-MS/MS-based targeted proteomics quantitatively detects the interaction between p53 and MDM2 in breast cancer.

    PubMed

    Zhang, Wen; Zhong, Ting; Chen, Yun

    2017-01-30

    In breast cancer, p53 could be functionally compromised by interaction with several proteins. Among those proteins, MDM2 serves as a pivotal negative regulator and counteracts p53 activation. Thus, the ability to quantitatively and accurately monitor the changes in level of p53-MDM2 interaction with disease state can enable an improved understanding of this protein-protein interaction (PPI), provide a better insight into cancer development and allow the emergence of advanced treatments. However, rare studies have evaluated the quantitative extent of PPI including p53-MDM2 interaction so far. In this study, a LC-MS/MS-based targeted proteomics assay was developed and coupled with co-immunoprecipitation (Co-IP) for the quantification of p53-MDM2 complex. A p53 antibody with the epitope residing at 156-214 residues achieved the greatest IP efficiency. 321KPLDGEYFTLQIR333 (p53) and 327ENWLPEDK334 (MDM2) were selected as surrogate peptides in the targeted analysis. Stable isotope-labeled synthetic peptides were used as internal standards. An LOQ (limit of quantification) of 2ng/mL was obtained. Then, the assay was applied to quantitatively detect total p53, total MDM2 and p53-MDM2 in breast cells and tissue samples. Western blotting was performed for a comparison. Finally, a quantitative time-course analysis in MCF-7 cells with the treatment of nutlin-3 as a PPI inhibitor was also monitored. Proteins do not function as single entities but rather as a team player that has to communicate. Protein-protein interaction (PPI), normally by means of non-covalent contact among binary or large protein complex, is essential for many cellular processes including cancer progression. Thus, the ability to quantitatively and accurately monitor the changes in level of PPI with disease state can enable an improved understanding of PPI, provide a better insight into cancer development and allow the emergence of advanced treatments. However, rare studies have evaluated the quantitative

  9. p53 Arg72Pro and MDM2 T309G polymorphisms, histology, and esophageal cancer prognosis.

    PubMed

    Cescon, David W; Bradbury, Penelope A; Asomaning, Kofi; Hopkins, Jessica; Zhai, Rihong; Zhou, Wei; Wang, Zhaoxi; Kulke, Matthew; Su, Li; Ma, Clement; Xu, Wei; Marshall, Ariela L; Heist, Rebecca Suk; Wain, John C; Lynch, Thomas J; Christiani, David C; Liu, Geoffrey

    2009-05-01

    This study aimed to evaluate the prognostic significance of two functional single nucleotide polymorphisms (SNP) in the p53 pathway (p53 Arg72Pro and MDM2 T309G) in patients with esophageal cancer, and to determine the importance of histologic subtype in the SNP-outcome relationships. A cohort of 371 patients with esophageal carcinoma enrolled in Boston, USA from 1999 to 2004 were genotyped for the p53 and MDM2 SNPs. Associations between genotypes and overall survival (OS; the primary outcome) and progression-free survival (PFS) were assessed using the Kaplan-Meier method. Cox proportional hazard models, adjusted for age, stage, performance status, and smoking were developed. Interaction analyses were done for histology (adenocarcinoma versus squamous cell carcinoma). At the median follow-up of 33 months, median survival (MS) and PFS were 29.1 and 15.7 months, respectively. p53 Pro/Pro was strongly associated with shorter survival in the entire cohort (MS of 11.8 versus 29.1 months, P < 0.0001; adjusted hazard ratio for death, 2.05; 95% confidence interval, 1.30-3.24; P = 0.002 for Pro/Pro versus Arg/Arg). MDM2 G/G was associated with markedly reduced survival in squamous cell carcinoma (MS of 10.3 versus 49.4 months; adjusted hazard ratio for death, 7.9; 95% confidence interval, 2.4-26.0; P = 0.0007 for G/G versus T/T) but not in adenocarcinoma (SNP-histology interaction P = 0.004). In a large prospective cohort, p53 Arg72Pro Pro/Pro was associated with a 2-fold increased risk of death in all esophageal cancers, whereas MDM2 T309G G/G was associated with a 7-fold increased risk of death in squamous cell carcinoma.

  10. [Value of MDM2, CDK4 and SATB2 immunohistochemistry in histologic diagnosis of low-grade osteosarcoma].

    PubMed

    Chen, C Y; Zhang, H Z; Jiang, Z M; Zhou, J; Chen, J; Liu, L

    2016-06-08

    To investigate the value of combined application of MDM2, CDK4 and SATB2 immunohistochemistry in pathological diagnosis of low-grade osteosarcoma. Forty-seven cases of low grade osteosarcoma, including low grade central osteosarcoma (n=20) and parosteal osteosarcoma (n=27), were selected from Shanghai Jiaotong University Affiliated the Sixth People's Hospital. The clinical, radiography and histopathology were reviewed. The sensitivity and specificity of MDM2, CDK4 and SATB2 immunohistochemistry in the diagnosis of low-grade osteosarcoma were assessed along with an evaluation of their expressions in fibrous dysplasia, desmoplastic fibroma, low-grade fibrosarcoma and other fibrous tumors. Low-grade osteosarcoma had protracted clinical course, occurring mostly in elder adults and mainly involving long bones. Radiographic studies showed that low-grade central osteosarcoma had a mainly malignant lytic presentation, however about 5/18 of tumors overlapping with intermediate and benign bone diseases, while parosteal osteosarcoma was characterized by a densely sclerotic malignant appearance. Histologically, low-grade osteosarcomas were characterized by well-differentiated spindle tumor cells, various mature tumor bones and an aggressive growth pattern. The positive expression rates of MDM2 and CDK4 in low-grade osteosarcoma were 74.5% and 55.3%, respectively. Eighty-three percent of low-grade osteosarcoma expressed one or both markers. Low-grade osteosarcoma and fibrous dysplasia were both positive for SATB2, while desmoplastic fibroma, low-grade fibrosacoma and other fibrous tumors were negative for SATB2. Accurate diagnosis of low-grade osteosarcoma should be based on combination of clinical presentation, imaging and histopathology, with immunohistochemistry as a diagnostic adjunct. Positive immunostaining for CDK4 and/or MDM2 supports the diagnosis of low-grade osteosarcoma, but the negative one does not rule out such lesion. The negative expression of SATB2 is helpful

  11. Polymorphisms at p53, p73, and MDM2 loci modulate the risk of tobacco associated leukoplakia and oral cancer.

    PubMed

    Misra, Chaitali; Majumder, Mousumi; Bajaj, Swati; Ghosh, Saurabh; Roy, Bidyut; Roychoudhury, Susanta

    2009-09-01

    Polymorphisms at loci controlling cellular processes such as cell cycle, DNA repair, and apoptosis may modulate the risk of cancer. We examined the association of two linked polymorphisms (G4C14-A4T14) at p73 and one polymorphism (309G > T) at MDM2 promoter with the risk of leukoplakia and oral cancer. The p73 and MDM2 genotypes were determined in 197 leukoplakia patients, 310 oral cancer patients and in 348 healthy control subjects. The p73 GC/AT genotype increased the risk of leukoplakia (OR = 1.6, 95% CI = 1.1-2.3) and oral cancer (OR = 2.4, 95% CI = 1.7-3.3) but the 309G > T MDM2 polymorphism independently could not modify the risk of any of the diseases. Stratification of the study population into subgroups with different tobacco habits showed that the risk of the oral cancer is not modified further for the individuals carrying p73 risk genotype. However, leukoplakia patients with smokeless tobacco habit showed increased risk with combined GC/AT and AT/AT (OR = 3.0, 95% CI = 1.3-7.0) genotypes. A combined analysis was done with our previous published data on p53 codon 72 pro/arg polymorphism. Analysis of pair wise genotype combinations revealed increase in risk for specific p73-MDM2 and p73-p53 genotype combinations. Finally, the combined three loci analyses revealed that the presence of at least one risk allele at all three loci increases the risk of both leukoplakia and oral cancer.

  12. Blocking ETV6/RUNX1-induced MDM2 overexpression by Nutlin-3 reactivates p53 signaling in childhood leukemia

    PubMed Central

    Kaindl, U; Morak, M; Portsmouth, C; Mecklenbräuker, A; Kauer, M; Zeginigg, M; Attarbaschi, A; Haas, O A; Panzer-Grümayer, R

    2014-01-01

    ETV6/RUNX1 (E/R) is the most common fusion gene in childhood acute lymphoblastic leukemia. It is responsible for the initiation of leukemia but also indispensable for disease maintenance and propagation, although its function in these latter processes is less clear. We therefore investigated the effects of the perceived p53 pathway alterations in model cell lines and primary leukemias and, in particular, how E/R upregulates MDM2, the predominant negative regulator of p53. We found that E/R transactivates MDM2 in both p53+/+ and p53−/− HCT116 cells by binding to promoter-inherent RUNX1 motifs, which indicates that this activation occurs in a direct and p53-independent manner. Treatment of E/R-positive leukemic cell lines with Nutlin-3, a small molecule that inhibits the MDM2/p53 interaction, arrests their cell cycle and induces apoptosis. These phenomena concur with a p53-induced expression of p21, pro-apoptotic BAX and PUMA, as well as caspase 3 activation and poly ADP-ribose polymerase cleavage. The addition of DNA-damaging and p53-activating chemotherapeutic drugs intensifies apoptosis. Moreover, Nutlin-3 exposure leads to an analogous p53 accumulation and apoptotic surge in E/R-positive primary leukemic cells. Our findings clarify the role of p53 signaling in E/R-positive leukemias and outline the potential basis for its therapeutic exploitation in this setting. PMID:24240203

  13. MDM2 Amplification in Problematic Lipomatous Tumors: Analysis of FISH Testing Criteria.

    PubMed

    Clay, Michael R; Martinez, Anthony P; Weiss, Sharon W; Edgar, Mark A

    2015-10-01

    To discriminate lipomas from atypical lipomatous tumor/well-differentiated liposarcoma (ALT/WDL) we perform fluorescence in situ hybridization (FISH) for MDM2 amplification in several problematic situations: "lipomas" >10 cm, lesions with equivocal atypia, recurrent "lipomas," all retroperitoneal/pelvic/abdominal "lipomas", and in cases not fitting the above criteria but having worrisome clinical or radiologic features. To ascertain the validity of these criteria, we have reviewed our experience with 301 consecutive differentiated lipomatous tumors in which the diagnosis of ALT could not be established on the basis of histologic sections and in which FISH was performed on the basis of the above criteria. The final diagnosis was based on MDM2 amplification status. Given the nature of this study to evaluate difficult lesions, most cases included (74%) were received in consultation. This enhanced our study series for borderline cases, and the data presented may not be generalizable to adipocytic tumors seen outside a subspecialty setting. Of 301 cases, 108 proved to be ALT/WDL (36%). The most common test indication was size >10 cm (n=187), followed by equivocal atypia (n=145), retroperitoneal/pelvic/abdominal location (n=86), recurrence (n=33), and clinical concern (n=12). Of the tumors >10 cm, 68 (36%) proved to be ALT/WDL, whereas the remainder were interpreted as lipoma or its variants (eg, spindle cell or pleomorphic lipoma). The 2 groups did not differ statistically in size, although ALTs consistently occurred in patients above 50 years of age. Of the cases with equivocal atypia, 72 (50%) proved to be ALT/WDL. Those in the retroperitoneum/abdomen/pelvis were ALT/WDL in 30 cases (35%), and those that had recurred were ALT in 18 cases (55%). Recurrence, atypia, and having multiple indications for testing were more common in ALT than in benign lesions (P=0.02, 0.0001, 0.0012, respectively). No ALT/WDL occurred in the hands and feet, and only a single ALT/WDL was

  14. Ibrutinib synergizes with MDM-2 inhibitors in promoting cytotoxicity in B chronic lymphocytic leukemia

    PubMed Central

    Melloni, Elisabetta; Rigolin, Gian Matteo; Casciano, Fabio; Arcidiacono, Maria Vittoria; Celeghini, Claudio; Cuneo, Antonio; Zauli, Giorgio; Secchiero, Paola

    2016-01-01

    Objective The aim of this study was to investigate the anti-leukemic activity of the Bruton tyrosine kinase inhibitor Ibrutinib in combination with the small molecule MDM-2 inhibitor Nutlin-3 in preclinical models. Methods The potential efficacy of the Ibrutinib/Nutlin-3 combination was evaluated in vitro in a panel of B leukemic cell lines (EHEB, JVM-2, JVM-3, MEC-1, MEC-2) and in primary B-chronic lymphocytic leukemia (B-CLL) patient samples, by assessing cell viability, cell cycle profile, apoptosis and intracellular pathway modulations. Validation of the combination therapy was assessed in a B leukemic xenograft mouse model. Results Ibrutinib exhibited variable anti-leukemic activity in vitro and the combination with Nutlin-3 synergistically enhanced the induction of apoptosis independently from the p53 status. Indeed, the Ibrutinib/Nutlin-3 combination was effective in promoting cytotoxicity also in primary B-CLL samples carrying 17p13 deletion and/or TP53 mutations, already in therapy with Ibrutinib. Molecular analyses performed on both B-leukemic cell lines as well as on primary B-CLL samples, while confirming the switch-off of the MAPK and PI3K pro-survival pathways by Ibrutinib, indicated that the synergism of action with Nutlin-3 was independent by p53 pathway and was accompanied by the activation of the DNA damage cascade signaling through the phosphorylation of the histone protein H2A.X. This observation was confirmed also in the JVM-2 B leukemic xenograft mouse model. Conclusions Taken together, our data emphasize that the Ibrutinib/Nutlin-3 combination merits to be further evaluated as a therapeutic option for B-CLL. PMID:27661115

  15. Apoptosis of Sertoli cells after conditional ablation of murine double minute 2 (Mdm2) gene is p53-dependent and results in male sterility

    PubMed Central

    Fouchécourt, S; Livera, G; Messiaen, S; Fumel, B; Parent, A-S; Marine, J-C; Monget, P

    2016-01-01

    Beside its well-documented role in carcinogenesis, the function of p53 family has been more recently revealed in development and female reproduction, but it is still poorly documented in male reproduction. We specifically tested this possibility by ablating Mdm2, an E3 ligase that regulates p53 protein stability and transactivation function, specifically in Sertoli cells (SCs) using the AMH-Cre line and created the new SC-Mdm2−/− line. Heterozygous SC-Mdm2−/+ adult males were fertile, but SC-Mdm2−/− males were infertile and exhibited: a shorter ano-genital distance, an extra duct along the vas deferens that presents a uterus-like morphology, degenerated testes with no organized seminiferous tubules and a complete loss of differentiated germ cells. In adults, testosterone levels as well as StAR, P450c17 (Cyp17a1) and P450scc (Cyp11a1) mRNA levels decreased significantly, and both plasma LH and FSH levels increased. A detailed investigation of testicular development indicated that the phenotype arose during fetal life, with SC-Mdm2−/− testes being much smaller at birth. Interestingly, Leydig cells remained present until adulthood and fetal germ cells abnormally initiated meiosis. Inactivation of Mdm2 in SCs triggered p53 activation and apoptosis as early as 15.5 days post conception with significant increase in apoptotic SCs. Importantly, testis development occurred normally in SC-Mdm2−/− lacking p53 mice (SC-Mdm2−/−p53−/−) and accordingly, these mice were fertile indicating that the aforementioned phenotypes are entirely p53-dependent. These data not only highlight the importance of keeping p53 in check for proper testicular development and male fertility but also certify the critical role of SCs in the maintenance of meiotic repression. PMID:26470726

  16. MDM2 SNP309 and SNP285 Act as Negative Prognostic Markers for Non-small Cell Lung Cancer Adenocarcinoma Patients

    PubMed Central

    Deben, Christophe; Op de Beeck, Ken; Van den Bossche, Jolien; Jacobs, Julie; Lardon, Filip; Wouters, An; Peeters, Marc; Van Camp, Guy; Rolfo, Christian; Deschoolmeester, Vanessa; Pauwels, Patrick

    2017-01-01

    Objectives: Two functional polymorphisms in the MDM2 promoter region, SNP309T>G and SNP285G>C, have been shown to impact MDM2 expression and cancer risk. Currently available data on the prognostic value of MDM2 SNP309 in non-small cell lung cancer (NSCLC) is contradictory and unavailable for SNP285. The goal of this study was to clarify the role of these MDM2 SNPs in the outcome of NSCLC patients. Materials and Methods: In this study we genotyped SNP309 and SNP285 in 98 NSCLC adenocarcinoma patients and determined MDM2 mRNA and protein levels. In addition, we assessed the prognostic value of these common SNPs on overall and progression free survival, taking into account the TP53 status of the tumor. Results and Conclusion: We found that the SNP285C allele, but not the SNP309G allele, was significantly associated with increased MDM2 mRNA expression levels (p = 0.025). However, we did not observe an association with MDM2 protein levels for SNP285. The SNP309G allele was significantly associated with the presence of wild type TP53 (p = 0.047) and showed a strong trend towards increased MDM2 protein levels (p = 0.068). In addition, patients harboring the SNP309G allele showed a worse overall survival, but only in the presence of wild type TP53. The SNP285C allele was significantly associated with an early age of diagnosis and metastasis. Additionally, the SNP285C allele acted as an independent predictor for worse progression free survival (HR = 3.97; 95% CI = 1.51 - 10.42; p = 0.005). Our data showed that both SNP309 (in the presence of wild type TP53) and SNP285 act as negative prognostic markers for NSCLC patients, implicating a prominent role for these variants in the outcome of these patients. PMID:28819417

  17. The polymorphisms of P53 codon 72 and MDM2 SNP309 and renal cell carcinoma risk in a low arsenic exposure area

    SciTech Connect

    Huang, Chao-Yuan; Su, Chien-Tien; Chu, Jan-Show; Huang, Shu-Pin; Pu, Yeong-Shiau; Yang, Hsiu-Yuan; Chung, Chi-Jung; Wu, Chia-Chang; Hsueh, Yu-Mei

    2011-12-15

    Our recent study demonstrated the increased risk of renal cell carcinoma (RCC) associated with high urinary total arsenic levels among people living in a low arsenic exposure area. Genomic instability is important in arsenic carcinogenesis. This study evaluated the relationship between the polymorphisms of p53, p21, and MDM2, which plays a role in gene stability, and the arsenic-related RCC risk. Here, we found that p53 Pro/Pro genotype and MDM2 SNP309 GG genotype significantly increased RCC risk compared to the p53 Arg/Arg genotype and MDM2 SNP309 TT genotype. RCC patients with the p53Arg/Arg genotype had a signicantly low percentage of inorganic arsenic, a low percentage of monomethylarsonic acid (MMA), and a high percentage of dimethylarsinic acid (DMA), which indicates efcient arsenic methylation capacity. Subjects with the p53 Arg/Pro + Pro/Pro genotype or MDM2 SNP309 TG + GG genotype, in conjunction with high urinary total arsenic ({>=} 14.02 {mu}g/L), had a signicantly higher RCC risk than those with the p53 Arg/Arg or MDM2 SNP309 TT genotypes and low urinary total arsenic. Taken together, this is the first study to show that a variant genotype of p53 Arg{sup 72}Pro or MDM2 SNP309 may modify the arsenic-related RCC risk even in a non-obvious arsenic exposure area. -- Highlights: Black-Right-Pointing-Pointer Subjects with p53 Pro/Pro or MDM2 GG genotype significantly increased RCC risk. Black-Right-Pointing-Pointer A significant multiplicative joint effect of p53 and p21 on RCC risk. Black-Right-Pointing-Pointer RCC patients with p53 Arg/Arg genotype had efficient arsenic methylation capacity. Black-Right-Pointing-Pointer Joint effect of p53 or MDM2 genotype and high urinary total arsenic on RCC risk.

  18. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity

    PubMed Central

    Abbas, Hussein A.; Maccio, Daniela R.; Coskun, Suleyman; Jackson, James G.; Hazen, Amy L.; Sills, Tiffany M.; You, M. James; Hirschi, Karen K.; Lozano, Guillermina

    2010-01-01

    Summary Mdm2 is an E3 ubiquitin ligase that targets p53 for degradation. p53515C (encoding p53R172P) is a hypomorphic allele of p53 that rescues the embryonic lethality of Mdm2−/− mice. Mdm2−/− p53515C/515C mice, however, die by postnatal day 13 due to hematopoietic failure. Hematopoietic stem cells and progenitors of Mdm2−/− p53515C/515C mice were normal in fetal livers but were depleted in postnatal bone marrows. After birth, these mice had elevated reactive oxygen species (ROS) thus activating p53R172P. In the absence of Mdm2, stable p53R172P induced ROS, and cell cycle arrest, senescence and cell death in the hematopoietic compartment. This phenotype was partially rescued with antioxidant treatment and upon culturing of hematopoietic cells in methycellulose at 3% oxygen. p16 was also stabilized due to ROS, and its loss increased cell cycling, and partially rescued hematopoiesis and survival. Thus, Mdm2 is required to control ROS-induced p53 levels for sustainable hematopoiesis. PMID:21040902

  19. Induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway delays the initiation but fails to eradicate established murine acute myeloid leukemia.

    PubMed

    Jaako, P; Ugale, A; Wahlestedt, M; Velasco-Hernandez, T; Cammenga, J; Lindström, M S; Bryder, D

    2017-01-01

    Mutations resulting in constitutive activation of signaling pathways that regulate ribosome biogenesis are among the most common genetic events in acute myeloid leukemia (AML). However, whether ribosome biogenesis presents as a therapeutic target to treat AML remains unexplored. Perturbations in ribosome biogenesis trigger the 5S ribonucleoprotein particle (RNP)-Mdm2-p53 ribosomal stress pathway, and induction of this pathway has been shown to have therapeutic efficacy in Myc-driven lymphoma. In the current study we address the physiological and therapeutic role of the 5S RNP-Mdm2-p53 pathway in AML. By utilizing mice that have defective ribosome biogenesis due to downregulation of ribosomal protein S19 (Rps19), we demonstrate that induction of the 5S RNP-Mdm2-p53 pathway significantly delays the initiation of AML. However, even a severe Rps19 deficiency that normally results in acute bone marrow failure has no consistent efficacy on already established disease. Finally, by using mice that harbor a mutation in the Mdm2 gene disrupting its binding to 5S RNP, we show that loss of the 5S RNP-Mdm2-p53 pathway is dispensable for development of AML. Our study suggests that induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway holds limited potential as a single-agent therapy in the treatment of AML.

  20. Polymorphisms of p53 and MDM2 genes are associated with severe toxicities in patients with non-small cell lung cancer.

    PubMed

    Zheng, Datong; Chen, Yanping; Gao, Caijie; Wei, Yongyue; Cao, Guochun; Lu, Nan; Hou, Yayi; Jiang, Xiuqin; Wang, Jianjun

    2014-01-01

    Adverse events in platinum-based chemotherapy for patients with advanced non-small cell lung cancer (NSCLC) are major challenges. In this study, we investigated the role of the p53 and MDM2 genes in predicting adverse events in NSCLC patients treated with platinum-based chemotherapy. Specifically, we examined the p53 p. Pro72Arg (rs1042522), MDM2 c.14 + 309T>G (rs2279744) and MDM2 c.- 461C > G (rs937282) polymorphisms using PCR-based restriction fragment length polymorphism (RFLP) in 444 NSCLC patients. We determine that MDM2 c.14 + 309T > G was significantly associated with severe hematologic and overall toxicities for advanced NSCLC patients treated with platinum-based chemotherapy, especially for patients aged 57 and younger. This was also true for patients with adenocarcinoma. Second, we determine that severe gastrointestinal toxicities in patients with heterozygous MDM2 c.-461C > G were significantly higher than in patients with the G/G genotype. Third, patients with the MDM2 c.-461C > G - c.14 + 309T > G CT haplotype show much higher toxicities than those of CG haplotype. Moreover, patients carrying the MDM2 c.-461 > G -c.14 + 309T > G CG/CT diplotype exhibited higher toxicities than those carrying CG/CG. Fourth, we found that the p53 p. Pro72Arg polymorphism interacts with both age and genotype. In addition, no significant associations were observed between the 3 SNPs and the response to first-line platinum-based chemotherapy in advanced NSCLC patients. In summary, we found that the p53 p. Pro72Arg, MDM2 c.14 + 309T > G and MDM2 c.-461C > G polymorphisms are associated with toxicity risks following platinum-based chemotherapy treatment in advanced NSCLC patients. We suggest that MDM2 c.14 + 309T > G may be used as a candidate biomarker to predict adverse events in advanced NSCLC patients who had platinum-based chemotherapy treatment.

  1. HMG-CoA reductase inhibitors, statins, induce phosphorylation of Mdm2 and attenuate the p53 response to DNA damage.

    PubMed

    Pääjärvi, Gerd; Roudier, Emilie; Crisby, Milita; Högberg, Johan; Stenius, Ulla

    2005-03-01

    3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitors, statins, are widely used cholesterol-lowering drugs and have been shown to have anticancer effects in many models. We have investigated the effect of statins on Mdm2, a p53-specific ubiquitin ligase. It was found that pravastatin induced Mdm2 phosphorylation at Ser166 and at 2A10 antibody-specific epitopes in HepG2 cells, while mRNA levels were unchanged. Furthermore, pravastatin was found to induce phosphorylation of mTOR at Ser2448. Ser166 phosphorylation of Mdm2 was abrogated by an inhibitor of mTOR, rapamycin, but not by the PI3-kinase inhibitors LY294002 and wortmannin. Ser166 phosphorylation of Mdm2 has been associated to active Mdm2 and has been shown to increase its ubiquitin ligase activity and lead to increased p53 degradation. Our data show that statins attenuated the p53 response to DNA damage. Thus, in HepG2 cells pravastatin and simvastatin pretreatment attenuated the p53 response to DNA damage induced by 5-fluorouracil and benzo(a)pyrene. Similar attenuation was induced when p53 stabilization was induced by the inhibitor of nuclear export, leptomycin B. Furthermore, in the DNA-damaged cells, half-lives of Mdm2 and p53 were decreased by statins, indicating a more rapid formation of p53/Mdm2 complexes and facilitated p53 degradation. The induction of p53 responsive genes and apoptosis was attenuated. Mdm2 and p53 were also studied in vivo in rat liver employing immunohistochemistry, and it was found that constitutive Mdm2 expression was changed in livers of pravastatin-treated rats. We also show that the p53 response to a challenging dose of diethylnitrosamine was attenuated in hepatocytes in situ and in primary cultures of hepatocytes by pravastatin pretreatment. Taken together, these data indicate that statins induce an mTOR-dependent Ser166 phosphorylation of Mdm2, and this effect may attenuate the duration and intensity of the p53 response to DNA damage in hepatocytes.

  2. Mdm2 inhibition confers protection of p53-proficient cells from the cytotoxic effects of Wee1 inhibitors.

    PubMed

    Li, Yizhu; Saini, Priyanka; Sriraman, Anusha; Dobbelstein, Matthias

    2015-10-20

    Pharmacological inhibition of the cell cycle regulatory kinase Wee1 represents a promising strategy to eliminate cancer cells. Wee1 inhibitors cooperate with chemotherapeutics, e. g. nucleoside analogues, pushing malignant cells from S phase towards premature mitosis and death. However, considerable toxicities are observed in preclinical and clinical trials. A high proportion of tumor cells can be distinguished from all other cells of a patient's body by inactivating mutations in the tumor suppressor p53. Here we set out to develop an approach for the selective protection of p53-proficient cells against the cytotoxic effects of Wee1 inhibitors. We pretreated such cells with Nutlin-3a, a prototype inhibitor of the p53-antagonist Mdm2. The resulting transient cell cycle arrest effectively increased the survival of cells that were subsequently treated with combinations of the Wee1 inhibitor MK-1775 and/or the nucleoside analogue gemcitabine. In this constellation, Nutlin-3a reduced caspase activation and diminished the phosphorylation of Histone 2AX, an indicator of the DNA damage response. Both effects were strictly dependent on the presence of p53. Moreover, Nutlin pre-treatment reduced the fraction of cells that were undergoing premature mitosis in response to Wee1 inhibition. We conclude that the pre-activation of p53 through Mdm2 antagonists serves as a viable option to selectively protect p53-proficient cells against the cytotoxic effects of Wee1 inhibitors, especially when combined with a nucleoside analogue. Thus, Mdm2 antagonists might prove useful to avoid unwanted side effects of Wee1 inhibitors. On the other hand, when a tumor contains wild type p53, care should be taken not to induce its activity before applying Wee1 inhibitors.

  3. d-Amino acid mutation of PMI as potent dual peptide inhibitors of p53-MDM2/MDMX interactions.

    PubMed

    Li, Xiang; Liu, Chao; Chen, Si; Hu, Honggang; Su, Jiacan; Zou, Yan

    2017-09-07

    According to the previously reported potent dual l-peptide PMI of p53-MDM2/MDMX interactions, a series of d-amino acid mutational PMI analogues, PMI-1-4, with enhanced proteolytic resistence and in vitro tumor cell inhibitory activities were reported, of which Liposome-PMI-1 showed a stronger inhibitory activity against the U87 cell lines than Nutlin-3. This d-amino acid mutation strategy may give a hand for enhancing the potential of peptide drugs. Copyright © 2017. Published by Elsevier Ltd.

  4. 1,4-Thienodiazepine-2,5-diones via MCR (I): Synthesis, Virtual Space and p53-Mdm2 Activity

    PubMed Central

    Huang, Yijun; Wolf, Siglinde; Bista, Michal; Meireles, Lidio; Camacho, Carlos; Holak, Tad A.; Dömling, Alexander

    2010-01-01

    1,4-Thienodiazepine-2,5-diones have been synthesized via the Ugi-Deprotection-Cyclization (UDC) approach starting from Gewald 2-aminothiophenes i n a convergent and versatile manner. The resulting scaffold is unprecedented, cyclic and peptidomimetic with four points of diversity introduced from readily available starting materials. In addition to eighteen synthesized and characterized compounds, a virtual compound library was generated and evaluated for chemical space distribution and drug-like properties. A small focused compound library of 1,4-thienodiazepine-2,5-diones has been screened for the activity against p53-Mdm2 interaction. Biological evaluations demonstrated that some compounds exhibited promising antagonistic activity. PMID:20492448

  5. Structure- and ligand-based virtual screening identifies new scaffolds for inhibitors of the oncoprotein MDM2.

    PubMed

    Houston, Douglas R; Yen, Li-Hsuan; Pettit, Simon; Walkinshaw, Malcolm D

    2015-01-01

    A major challenge in the field of ligand discovery is to identify chemically useful fragments that can be developed into inhibitors of specific protein-protein interactions. Low molecular weight fragments (with molecular weight less than 250 Da) are likely to bind weakly to a protein's surface. Here we use a new virtual screening procedure which uses a combination of similarity searching and docking to identify chemically tractable scaffolds that bind to the p53-interaction site of MDM2. The binding has been verified using capillary electrophoresis which has proven to be an excellent screening method for such small, weakly binding ligands.

  6. Relationship of Ki67, TP53, MDM-2 and BCL-2 expressions with WHO 1973 and WHO/ISUP grades, tumor category and overall patient survival in urothelial tumors of the bladder.

    PubMed

    Gönül, Ipek Işik; Akyürek, Nalan; Dursun, Ayşe; Küpeli, Bora

    2008-01-01

    Using the 1998 World Health Organization/International Society of Urological Pathology (WHO/ISUP) (2004 WHO), 1999 WHO/ISUP, and 1973 WHO classifications, we examined Ki67, BCL-2, TP53, and MDM-2 expressions in invasive and noninvasive urothelial neoplasias of the bladder of 72 patients, and compared the results regarding tumor category and grade with clinical outcome to determine the clinicopathological relevance of these classifications. Ki67 and TP53 expressions were correlated with tumor grades of the 1973 WHO classification, and they also distinguished "papillary urothelial neoplasm with low malignant potential" from other WHO/ISUP grades (p < 0.05). No difference was observed for Ki67 and TP53 expressions between the other WHO/ISUP grades (p > 0.05). Neither tumor grade nor tumor category correlated with MDM-2 or BCL-2 expressions (p > 0.05). WHO/ISUP classifications are obviously not superior to the 1973 WHO classification for grading urothelial neoplasia of the bladder. However, if the "papillary urothelial neoplasm with low malignant potential" is distinguished from grade 1 tumors of the 1973 WHO classification, more precise prognostic information may be obtained.

  7. Association of MDM2 T309G and p53 Arg72Pro polymorphisms and gastroesophageal reflux disease with survival in esophageal adenocarcinoma.

    PubMed

    Renouf, Daniel J; Zhai, Rihong; Sun, Bin; Xu, Wei; Cheung, Winson Y; Heist, Rebecca S; Kulke, Matthew H; Cescon, David; Asomaning, Kofi; Marshall, Ariella L; Li, Su; Christiani, David C; Liu, Geoffrey

    2013-09-01

    Although gastroesophageal reflux disease (GERD) is a risk factor for esophageal adenocarcinoma (EAC), some patients develop EAC in the absence of GERD. A putative mechanism of reflux-induced tumorigenesis involves disruptions in the p53 pathway. We assessed the interaction of GERD and p53 pathway polymorphisms on EAC prognosis. In a prospective cohort of 358 EAC patients, clinical data (including GERD history and survival) were collected. Germline DNA was genotyped for MDM2 T309G and p53 Arg72Pro. Cox proportional hazards models were used to determine adjusted hazard ratios (AHR) for associations between genotype, GERD, and genotype-GERD interactions with survival. Compared with other genotypes, MDM2 G/G (median overall survival 21 vs 30 months; P < 0.001) and p53 Pro/Pro (12 vs 30 months; P = 0.004) were associated with shorter survival. When analyzed by GERD, MDM2 G/G was associated with shorter survival in patients without GERD (AHR 3.4, 95% CI 2.0-6.0), but not in patients with GERD (AHR 1.1 [0.7-1.8]); the MDM2-GERD interaction was significant (P = 0.003). A similar trend was seen for p53 Pro/Pro (AHRs 2.5 without GERD vs 1.4 with GERD). Combined analysis of at-risk variants (MDM2 G or p53 Pro), revealed each additional at-risk variant was associated with shorter survival in patients without GERD (AHR 1.6) but not with GERD (AHR 1.0). MDM2 G/G and the combination of MDM2 G and p53 Pro were negative prognostic factors for EAC patients without GERD but not for those with GERD. There may be biological differences between GERD positive and GERD negative EAC. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  8. Significant Differences in the Development of Acquired Resistance to the MDM2 Inhibitor SAR405838 between In Vitro and In Vivo Drug Treatment

    PubMed Central

    Hoffman-Luca, C. Gianna; Yang, Chao-Yie; Lu, Jianfeng; Ziazadeh, Daniel; McEachern, Donna; Debussche, Laurent; Wang, Shaomeng

    2015-01-01

    SAR405838 is a potent and specific MDM2 inhibitor currently being evaluated in Phase I clinical trials for the treatment of human cancer. Using the SJSA-1 osteosarcoma cell line which harbors an amplified MDM2 gene and wild-type p53, we have investigated the acquired resistance mechanisms both in vitro and in vivo to SAR405838. Treatment of SJSA-1 cells with SAR405838 in vitro leads to dose-dependent cell growth inhibition, cell cycle arrest and robust apoptosis. However, prolonged treatment of SJSA-1 cells in vitro with SAR405838 results in profound acquired resistance to the drug. Analysis of in vitro-derived resistant cell lines showed that p53 is mutated in the DNA binding domain and can no longer be activated by SAR405838. Treatment of the parental SJSA-1 xenograft tumors with SAR405838 in mice yields rapid tumor regression but the tumors eventually regrow. Culturing the regrown tumors established a number of sublines, which showed only modest (3–5 times) loss of sensitivity to SAR405838 in vitro. Sequencing of the p53 showed that it retains its wild-type status in these in vivo sublines, with the exception of one subline, which harbors a single heterozygous C176F p53 mutation. Using xenograft models of two in vivo derived sublines, which has either wild-type p53 or p53 containing a single heterozygous C176F mutation, we showed that while SAR405838 effectively achieves partial tumor regression in these models, it no longer induces complete tumor regression and tumors resume growth once the treatment is stopped. Harvesting and culturing tumors obtained from a prolonged treatment with SAR405838 in mice established additional in vivo sublines, which all contain a single heterozygous C176F mutation with no additional p53 mutation detected. Interestingly, SAR405838 can still effectively activate p53 in all sublines containing a single heterozygous C176F mutation, with a moderately reduced potency as compared to that in the parental cell line. Consistently, SAR

  9. Inhibition of PI3K/mTOR overcomes nilotinib resistance in BCR-ABL1 positive leukemia cells through translational down-regulation of MDM2.

    PubMed

    Ding, Jie; Romani, Julia; Zaborski, Margarete; MacLeod, Roderick A F; Nagel, Stefan; Drexler, Hans G; Quentmeier, Hilmar

    2013-01-01

    Chronic myeloid leukemia (CML) is a cytogenetic disorder resulting from formation of the Philadelphia chromosome (Ph), that is, the t(9;22) chromosomal translocation and the formation of the BCR-ABL1 fusion protein. Tyrosine kinase inhibitors (TKI), such as imatinib and nilotinib, have emerged as leading compounds with which to treat CML. t(9;22) is not restricted to CML, 20-30% of acute lymphoblastic leukemia (ALL) cases also carry the Ph. However, TKIs are not as effective in the treatment of Ph+ ALL as in CML. In this study, the Ph+ cell lines JURL-MK2 and SUP-B15 were used to investigate TKI resistance mechanisms and the sensitization of Ph+ tumor cells to TKI treatment. The annexin V/PI (propidium iodide) assay revealed that nilotinib induced apoptosis in JURL-MK2 cells, but not in SUP-B15 cells. Since there was no mutation in the tyrosine kinase domain of BCR-ABL1 in cell line SUP-B15, the cells were not generally unresponsive to TKI, as evidenced by dephosphorylation of the BCR-ABL1 downstream targets, Crk-like protein (CrkL) and Grb-associated binder-2 (GAB2). Resistance to apoptosis after nilotinib treatment was accompanied by the constitutive and nilotinib unresponsive activation of the phosphoinositide 3-kinase (PI3K) pathway. Treatment of SUP-B15 cells with the dual PI3K/mammalian target of rapamycin (mTOR) inhibitor BEZ235 alone induced apoptosis in a low percentage of cells, while combining nilotinib and BEZ235 led to a synergistic effect. The main role of PI3K/mTOR inhibitor BEZ235 and the reason for apoptosis in the nilotinib-resistant cells was the block of the translational machinery, leading to the rapid downregulation of the anti-apoptotic protein MDM2 (human homolog of the murine double minute-2). These findings highlight MDM2 as a potential therapeutic target to increase TKI-mediated apoptosis and imply that the combination of PI3K/mTOR inhibitor and TKI might form a novel strategy to combat TKI-resistant BCR-ABL1 positive leukemia.

  10. Inhibition of PI3K/mTOR Overcomes Nilotinib Resistance in BCR-ABL1 Positive Leukemia Cells through Translational Down-Regulation of MDM2

    PubMed Central

    Ding, Jie; Romani, Julia; Zaborski, Margarete; MacLeod, Roderick A. F.; Nagel, Stefan; Drexler, Hans G.; Quentmeier, Hilmar

    2013-01-01

    Chronic myeloid leukemia (CML) is a cytogenetic disorder resulting from formation of the Philadelphia chromosome (Ph), that is, the t(9;22) chromosomal translocation and the formation of the BCR-ABL1 fusion protein. Tyrosine kinase inhibitors (TKI), such as imatinib and nilotinib, have emerged as leading compounds with which to treat CML. t(9;22) is not restricted to CML, 20-30% of acute lymphoblastic leukemia (ALL) cases also carry the Ph. However, TKIs are not as effective in the treatment of Ph+ ALL as in CML. In this study, the Ph+ cell lines JURL-MK2 and SUP-B15 were used to investigate TKI resistance mechanisms and the sensitization of Ph+ tumor cells to TKI treatment. The annexin V/PI (propidium iodide) assay revealed that nilotinib induced apoptosis in JURL-MK2 cells, but not in SUP-B15 cells. Since there was no mutation in the tyrosine kinase domain of BCR-ABL1 in cell line SUP-B15, the cells were not generally unresponsive to TKI, as evidenced by dephosphorylation of the BCR-ABL1 downstream targets, Crk-like protein (CrkL) and Grb-associated binder-2 (GAB2). Resistance to apoptosis after nilotinib treatment was accompanied by the constitutive and nilotinib unresponsive activation of the phosphoinositide 3-kinase (PI3K) pathway. Treatment of SUP-B15 cells with the dual PI3K/mammalian target of rapamycin (mTOR) inhibitor BEZ235 alone induced apoptosis in a low percentage of cells, while combining nilotinib and BEZ235 led to a synergistic effect. The main role of PI3K/mTOR inhibitor BEZ235 and the reason for apoptosis in the nilotinib-resistant cells was the block of the translational machinery, leading to the rapid downregulation of the anti-apoptotic protein MDM2 (human homolog of the murine double minute-2). These findings highlight MDM2 as a potential therapeutic target to increase TKI-mediated apoptosis and imply that the combination of PI3K/mTOR inhibitor and TKI might form a novel strategy to combat TKI-resistant BCR-ABL1 positive leukemia. PMID

  11. Combined effects of MDM2 SNP309 and TP53 R72P polymorphisms, and soy isoflavones on breast cancer risk among Chinese women in Singapore

    PubMed Central

    Van Den Berg, David; Jin, Aizhen; Wang, Renwei; Yuan, Jian-Min; Yu, Mimi C.

    2012-01-01

    The MDM2 oncoprotein regulates the p53 pathway and, while functional polymorphisms of the MDM2 and p53 genes have been investigated for association with breast cancer risk, results are largely null or non-conclusive. We have earlier reported that the increased intake of soy isoflavones reduces risk of postmenopausal breast cancer, and experimental studies suggest that dietary isoflavones can down-regulate the expression of the MDM2 oncoprotein. In this study, we investigated the association between the MDM2 SNP309 and TP53 R72P polymorphisms and breast cancer risk using a case–control study of 403 cases and 662 controls nested among 35,303 women in The Singapore Chinese Health Study, a population-based, prospective cohort of middle-aged and elderly men and women who have been continuously followed since 1993. The G allele of the TP53 R72P polymorphism and T allele of the MDM2 SNP309 polymorphism were putative high-risk alleles and exhibited a combined gene–dose-dependent joint effect on breast cancer risk that was more clearly observed in postmenopausal women. Among postmenopausal women, the simultaneous presence of G allele in TP53 and T allele in MDM2 polymorphisms was associated with an odds ratio (OR) of 2.42 [95% confidence interval (CI) 1.06–5.50]. Furthermore, the protective effect of dietary soy isoflavones on postmenopausal breast cancer was mainly confined to women homozygous for the high activity MDM2 allele (GG genotype). In this genetic subgroup, women consuming levels of soy isoflavones above the median level exhibited risk that was half of those with below median intake (OR 0.52; 95% CI 0.28–0.99). Our findings support experimental data implicating combined effects of MDM2 protein and the p53-mediated pathway in breast carcinogenesis, and suggest that soy isoflavones may exert protective effect via down-regulation of the MDM2 protein. PMID:21833626

  12. Molecular interaction fields and 3D-QSAR studies of p53-MDM2 inhibitors suggest additional features of ligand-target interaction.

    PubMed

    Dezi, Cristina; Carotti, Andrea; Magnani, Matteo; Baroni, Massimo; Padova, Alessandro; Cruciani, Gabriele; Macchiarulo, Antonio; Pellicciari, Roberto

    2010-08-23

    The design and optimization of small molecule inhibitors of the murine double minute clone 2-p53 (p53-MDM2) interaction has attracted a great deal of interest as a way to novel anticancer therapies. Herein we report 3D-QSAR studies of 41 small molecule inhibitors based on the use of molecular interaction fields and docking experiments as part of an approach to generating predictive models of MDM2 affinity and shedding further light on the structural elements of the ligand-target interaction. These studies have yielded predictive models explaining much of the variance of the 41 compound training set and satisfactorily predicting with 75% success an external test set of 36 compounds. Not surprisingly, and in full agreement with previous data, inspection of the 3D-QSAR coefficients reveals that the major driving force for potent inhibition is given by the hydrophobic interaction between the inhibitors and the p53 binding cleft of MDM2. More surprisingly, and challenging previous suggestions, the projection of the 3D-QSAR coefficients back onto the experimental structures of MDM2 provides an intriguing hypothesis concerning an active role played by the N-terminal region of MDM2 in ligand binding.

  13. Probing Origin of Binding Difference of inhibitors to MDM2 and MDMX by Polarizable Molecular Dynamics Simulation and QM/MM-GBSA Calculation

    PubMed Central

    Chen, Jianzhong; Wang, Jinan; Zhang, Qinggang; Chen, Kaixian; Zhu, Weiliang

    2015-01-01

    Binding abilities of current inhibitors to MDMX are weaker than to MDM2. Polarizable molecular dynamics simulations (MD) followed by Quantum mechanics/molecular mechanics generalized Born surface area (QM//MM-GBSA) calculations were performed to investigate the binding difference of inhibitors to MDM2 and MDMX. The predicted binding free energies not only agree well with the experimental results, but also show that the decrease in van der Walls interactions of inhibitors with MDMX relative to MDM2 is a main factor of weaker bindings of inhibitors to MDMX. The analyses of dihedral angles based on MD trajectories suggest that the closed conformation formed by the residues M53 and Y99 in MDMX leads to a potential steric clash with inhibitors and prevents inhibitors from arriving in the deep of MDMX binding cleft, which reduces the van der Waals contacts of inhibitors with M53, V92, P95 and L98. The calculated results using the residue-based free energy decomposition method further prove that the interaction strength of inhibitors with M53, V92, P95 and L98 from MDMX are obviously reduced compared to MDM2. We expect that this study can provide significant theoretical guidance for designs of potent dual inhibitors to block the p53-MDM2/MDMX interactions. PMID:26616018

  14. Computational Studies of Difference in Binding Modes of Peptide and Non-Peptide Inhibitors to MDM2/MDMX Based on Molecular Dynamics Simulations

    PubMed Central

    Chen, Jianzhong; Zhang, Dinglin; Zhang, Yuxin; Li, Guohui

    2012-01-01

    Inhibition of p53-MDM2/MDMX interaction is considered to be a promising strategy for anticancer drug design to activate wild-type p53 in tumors. We carry out molecular dynamics (MD) simulations to study the binding mechanisms of peptide and non-peptide inhibitors to MDM2/MDMX. The rank of binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA) method agrees with one of the experimental values. The results suggest that van der Waals energy drives two kinds of inhibitors to MDM2/MDMX. We also find that the peptide inhibitors can produce more interaction contacts with MDM2/MDMX than the non-peptide inhibitors. Binding mode predictions based on the inhibitor-residue interactions show that the π–π, CH–π and CH–CH interactions dominated by shape complimentarity, govern the binding of the inhibitors in the hydrophobic cleft of MDM2/MDMX. Our studies confirm the residue Tyr99 in MDMX can generate a steric clash with the inhibitors due to energy and structure. This finding may theoretically provide help to develop potent dual-specific or MDMX inhibitors. PMID:22408446

  15. Induction of apoptosis in Ehrlich ascites tumour cells via p53 activation by a novel small-molecule MDM2 inhibitor - LQFM030.

    PubMed

    da Mota, Mariana F; Cortez, Alane P; Benfica, Polyana L; Rodrigues, Bruna Dos S; Castro, Thalyta F; Macedo, Larissa M; Castro, Carlos H; Lião, Luciano M; de Carvalho, Flávio S; Romeiro, Luiz A S; Menegatti, Ricardo; Verli, Hugo; Villavicencio, Bianca; Valadares, Marize C

    2016-09-01

    The activation of the p53 pathway through the inhibition of MDM2 has been proposed as a novel therapeutic strategy against tumours. A series of cis-imidazoline analogues, termed nutlins, were reported to displace the recombinant p53 protein from its complex with MDM2 by binding to MDM2 in the p53 pocket, and exhibited an antitumour activity both in vitro and in vivo. Thus, the purpose of this study was to evaluate the antitumour properties of LQFM030 (2), a nutlin analogue created by employing the strategy of molecular simplification. LQFM030 (2) cytotoxicity was evaluated in Ehrlich ascites tumour (EAT) cells, p53 wild type, by the trypan blue exclusion test, and the mechanisms involved in EAT cell death were investigated by light and fluorescence microscopy, flow cytometry, real-time PCR and Western blotting. Our results demonstrate that LQFM030 has dose-dependent antiproliferative activity and cytotoxic activity on EAT cells, induces the accumulation of p53 protein and promotes cell cycle arrest and apoptosis. p53 gene transcription was unaffected by LQFM030 (2); however, MDM2 mRNA increased and MDM2 protein decreased. These results suggest that the small-molecule p53 activator LQFM030 (2) has the potential for further development as a novel cancer therapeutic agent. © 2016 Royal Pharmaceutical Society.

  16. The NEDD8 inhibitor MLN4924 increases the size of the nucleolus and activates p53 through the ribosomal-Mdm2 pathway.

    PubMed

    Bailly, A; Perrin, A; Bou Malhab, L J; Pion, E; Larance, M; Nagala, M; Smith, P; O'Donohue, M-F; Gleizes, P-E; Zomerdijk, J; Lamond, A I; Xirodimas, D P

    2016-01-28

    The ubiquitin-like molecule NEDD8 is essential for viability, growth and development, and is a potential target for therapeutic intervention. We found that the small molecule inhibitor of NEDDylation, MLN4924, alters the morphology and increases the surface size of the nucleolus in human and germline cells of Caenorhabditis elegans in the absence of nucleolar fragmentation. SILAC proteomics and monitoring of rRNA production, processing and ribosome profiling shows that MLN4924 changes the composition of the nucleolar proteome but does not inhibit RNA Pol I transcription. Further analysis demonstrates that MLN4924 activates the p53 tumour suppressor through the RPL11/RPL5-Mdm2 pathway, with characteristics of nucleolar stress. The study identifies the nucleolus as a target of inhibitors of NEDDylation and provides a mechanism for p53 activation upon NEDD8 inhibition. It also indicates that targeting the nucleolar proteome without affecting nucleolar transcription initiates the required signalling events for the control of cell cycle regulators.

  17. Hydrophobic Interactions Are a Key to MDM2 Inhibition by Polyphenols as Revealed by Molecular Dynamics Simulations and MM/PBSA Free Energy Calculations

    PubMed Central

    Verma, Sharad; Grover, Sonam; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Singh, Aditi; Grover, Abhinav

    2016-01-01

    p53, a tumor suppressor protein, has been proven to regulate the cell cycle, apoptosis, and DNA repair to prevent malignant transformation. MDM2 regulates activity of p53 and inhibits its binding to DNA. In the present study, we elucidated the MDM2 inhibition potential of polyphenols (Apigenin, Fisetin, Galangin and Luteolin) by MD simulation and MM/PBSA free energy calculations. All polyphenols bind to hydrophobic groove of MDM2 and the binding was found to be stable throughout MD simulation. Luteolin showed the highest negative binding free energy value of -173.80 kJ/mol followed by Fisetin with value of -172.25 kJ/mol. It was found by free energy calculations, that hydrophobic interactions (vdW energy) have major contribution in binding free energy. PMID:26863418

  18. Down-regulation of p53-inducible microRNAs 192, 194 and 215 impairs the p53/MDM2 auto-regulatory loop in multiple myeloma development

    PubMed Central

    Pichiorri, Flavia; Suh, Sung-Suk; Rocci, Alberto; De Luca, Luciana; Taccioli, Cristian; Santhanam, Ramasamy; Wenchao, Zhou; Benson, Don M.; Hofmainster, Craig; Alder, Hansjuerg; Garofalo, Michela; Di Leva, Gianpiero; Volinia, Stefano; Lin, Huey-Jen; Perrotti, Danilo; Kuehl, Michael; Aqeilan, Rami I.; Palumbo, Antonio; Croce, Carlo M.

    2013-01-01

    Summary In multiple myeloma (MM), an incurable B-cell neoplasm, mutation or deletion of p53 is rarely detected at diagnosis. Using small-molecule inhibitors of MDM2, we provide evidence that miR-192, 194 and 215, which are down-regulated in a subset of newly diagnosed MMs, can be transcriptionally activated by p53 and then modulate MDM2 expression. Furthermore, ectopic re-expression of these miRNAs in MM cells increases the therapeutic action of MDM2 inhibitors in vitro and in vivo by enhancing their p53-activating effects. In addition, miR-192 and 215 target the IGF pathway, preventing enhanced migration of plasma cells into bone marrow. The results suggest that these miRNAs are positive regulators of p53 and that their down-regulation plays a key role in MM development. PMID:20951946

  19. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development.

    PubMed

    Pichiorri, Flavia; Suh, Sung-Suk; Rocci, Alberto; De Luca, Luciana; Taccioli, Cristian; Santhanam, Ramasamy; Zhou, Wenchao; Benson, Don M; Hofmainster, Craig; Alder, Hansjuerg; Garofalo, Michela; Di Leva, Gianpiero; Volinia, Stefano; Lin, Huey-Jen; Perrotti, Danilo; Kuehl, Michael; Aqeilan, Rami I; Palumbo, Antonio; Croce, Carlo M

    2010-10-19

    In multiple myeloma (MM), an incurable B cell neoplasm, mutation or deletion of p53 is rarely detected at diagnosis. Using small-molecule inhibitors of MDM2, we provide evidence that miR-192, 194, and 215, which are downregulated in a subset of newly diagnosed MMs, can be transcriptionally activated by p53 and then modulate MDM2 expression. Furthermore, ectopic re-expression of these miRNAs in MM cells increases the therapeutic action of MDM2 inhibitors in vitro and in vivo by enhancing their p53-activating effects. In addition, miR-192 and 215 target the IGF pathway, preventing enhanced migration of plasma cells into bone marrow. The results suggest that these miRNAs are positive regulators of p53 and that their downregulation plays a key role in MM development.

  20. Bioorthogonal Probes for the Study of MDM2-p53 Inhibitors in Cells and Development of High-Content Screening Assays for Drug Discovery.

    PubMed

    D'Alessandro, Pier Luca; Buschmann, Nicole; Kaufmann, Markus; Furet, Pascal; Baysang, Frederic; Brunner, Reto; Marzinzik, Andreas; Vorherr, Thomas; Stachyra, Therese-Marie; Ottl, Johannes; Lizos, Dimitrios E; Cobos-Correa, Amanda

    2016-12-23

    To study the behavior of MDM2-p53 inhibitors in a disease-relevant cellular model, we have developed and validated a set of bioorthogonal probes that can be fluorescently labeled in cells and used in high-content screening assays. By using automated image analysis with single-cell resolution, we could visualize the intracellular target binding of compounds by co-localization and quantify target upregulation upon MDM2-p53 inhibition in an osteosarcoma model. Additionally, we developed a high-throughput assay to quantify target occupancy of non-tagged MDM2-p53 inhibitors by competition and to identify novel chemical matter. This approach could be expanded to other targets for lead discovery applications. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. C-terminal region of USP7/HAUSP is critical for deubiquitination activity and contains a second mdm2/p53 binding site.

    PubMed

    Ma, Jianhong; Martin, John D; Xue, Yu; Lor, Leng A; Kennedy-Wilson, Karen M; Sinnamon, Robert H; Ho, Thau F; Zhang, Guofeng; Schwartz, Benjamin; Tummino, Peter J; Lai, Zhihong

    2010-11-15

    USP7, also known as the hepes simplex virus associated ubiquitin-specific protease (HAUSP), deubiquitinates both mdm2 and p53, and plays an important role in regulating the level and activity of p53. Here, we report that deletion of the TRAF-like domain at the N-terminus of USP7, previously reported to contain the mdm2/p53 binding site, has no effect on USP7 mediated deubiquitination of Ub(n)-mdm2 and Ub(n)-p53. Amino acids 208-1102 were identified to be the minimal length of USP7 that retains proteolytic activity, similar to full length enzyme, towards not only a truncated model substrate Ub-AFC, but also Ub(n)-mdm2, Ub(n)-p53. In contrast, the catalytic domain of USP7 (amino acids 208-560) has 50-700 fold less proteolytic activity towards different substrates. Moreover, inhibition of the catalytic domain of USP7 by Ubal is also different from the full length or TRAF-like domain deleted proteins. Using glutathione pull-down methods, we demonstrate that the C-terminal domain of USP7 contains additional binding sites, a.a. 801-1050 and a.a. 880-1050 for mdm2 and p53, respectively. The additional USP7 binding site on mdm2 is mapped to be the C-terminal RING finger domain (a.a. 425-491). We propose that the C-terminal domain of USP7 is responsible for maintaining the active conformation for catalysis and inhibitor binding, and contains the prime side of the proteolytic active site. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Single-nucleotide polymorphisms p53 G72C and Mdm2 T309G in patients with psoriasis, psoriatic arthritis, and SAPHO syndrome.

    PubMed

    Assmann, Gunter; Wagner, Annette D; Monika, Mueller; Pfoehler, Claudia; Pfreundschuh, Michael; Tilgen, Wolfgang; Roemer, Klaus

    2010-08-01

    Psoriasis (Ps), psoriatic arthritis (PsA), and SAPHO syndrome are diseases of unknown etiology that share common clinical features; however, family studies support the hypothesis of a genetic background for each of these diseases. To study the two common single-nucleotide polymorphisms (SNP) in the murine-double-minute-2-(Mdm2) and p53 genes in patients with Ps, PsA, and SAPHO syndrome. Genomic DNA was obtained from 187 patients with Ps, 50 with PsA, and 36 with SAPHO as well as 478 healthy controls. Mdm2-gene SNP T309G and p53-gene SNP G72C genotypes were determined by the polymerase chain reaction. Genotype and allele frequencies were analyzed with chi(2)-tests. Among the patients with Ps and PsA, no differences in allele or genotype frequencies of the p53-gene SNP G72C and Mdm2-gene SNP T309G were detected. However, in the SAPHO patients group, the frequencies of the Mdm2 SNP309 G allele and the genotype SNP 309 GG were significantly increased compared with the controls (G allele: 51.4 vs. 38.7%, P = 0.034; genotype GG: 36.1 vs. 14.2%, P = 0.002). In addition, the frequencies of the p53 SNP72 C allele and the genotype SNP 72 CC were also increased in the SAPHO patients cohort (C allele: 36.1 vs. 25.6%, P = 0.05; genotype CC: 16.7 vs. 6.3%, P = 0.05). SAPHO syndrome may be linked to an imbalance between MDM2 and p53 regulation with a "weak" p53-response associated with the Mdm2 SNP 309 G allele. In contrast, the p53 network does not seem to play a major role in pathogenesis of Ps or PsA.

  3. MDM2 promoter SNP55 (rs2870820) affects risk of colon cancer but not breast-, lung-, or prostate cancer

    PubMed Central

    Helwa, Reham; Gansmo, Liv B.; Romundstad, Pål; Hveem, Kristian; Vatten, Lars; Ryan, Bríd M.; Harris, Curtis C.; Lønning, Per E.; Knappskog, Stian

    2016-01-01

    Two functional SNPs (SNP285G > C; rs117039649 and SNP309T > G; rs2279744) have previously been reported to modulate Sp1 transcription factor binding to the promoter of the proto-oncogene MDM2, and to influence cancer risk. Recently, a third SNP (SNP55C > T; rs2870820) was also reported to affect Sp1 binding and MDM2 transcription. In this large population based case-control study, we genotyped MDM2 SNP55 in 10,779 Caucasian individuals, previously genotyped for SNP309 and SNP285, including cases of colon (n = 1,524), lung (n = 1,323), breast (n = 1,709) and prostate cancer (n = 2,488) and 3,735 non-cancer controls, as well as 299 healthy African-Americans. Applying the dominant model, we found an elevated risk of colon cancer among individuals harbouring SNP55TT/CT genotypes compared to the SNP55CC genotype (OR = 1.15; 95% CI = 1.01–1.30). The risk was found to be highest for left-sided colon cancer (OR = 1.21; 95% CI = 1.00–1.45) and among females (OR = 1.32; 95% CI = 1.01–1.74). Assessing combined genotypes, we found the highest risk of colon cancer among individuals harbouring the SNP55TT or CT together with the SNP309TG genotype (OR = 1.21; 95% CI = 1.00–1.46). Supporting the conclusions from the risk estimates, we found colon cancer cases carrying the SNP55TT/CT genotypes to be diagnosed at younger age as compared to SNP55CC (p = 0.053), in particular among patients carrying the SNP309TG/TT genotypes (p = 0.009). PMID:27624283

  4. Nondenaturing polyacrylamide gel electrophoresis to study the dissociation of the p53·MDM2/X complex by potentially anticancer compounds.

    PubMed

    Sgammato, Roberta; Desiderio, Doriana; Lamberti, Anna; Raimo, Gennaro; Novellino, Ettore; Carotenuto, Alfonso; Masullo, Mariorosario

    2015-12-01

    A new analytical method to study the dissociation of the complexes between the oncosuppressor p53 and its negative modulators murine double-minute protein 2 (MDM2) or MDMX, is proposed. This technique is reliable to determine the dissociative power exerted by small molecules on the complex taking advantage of the appearance of migrating MDM2 or MDMX in a native polyacrylamide gel, when inhibitors are added to the complex mixture. Therefore, we propose this new approach to easily screen library of compounds, with potential pharmacological anticancer activity.

  5. Conservation of all three p53 family members and Mdm2 and Mdm4 in the cartilaginous fish.

    PubMed

    Lane, David P; Madhumalar, Arumugam; Lee, Alison P; Tay, Boon-Hui; Verma, Chandra; Brenner, Sydney; Venkatesh, Byrappa

    2011-12-15

    Analysis of the genome of the elephant shark (Callorhinchus milii), a member of the cartilaginous fishes (Class Chondrichthyes), reveals that it encodes all three members of the p53 gene family, p53, p63 and p73, each with clear homology to the equivalent gene in bony vertebrates (Class Osteichthyes). Thus, the gene duplication events that lead to the presence of three family members in the vertebrates dates to before the Silurian era. It also encodes Mdm2 and Mdm4 genes but does not encode the p19(Arf) gene. Detailed comparison of the amino acid sequences of these proteins in the vertebrates reveals that they are evolving at highly distinctive rates, and this variation occurs not only between the three family members but extends to distinct domains in each protein.

  6. Inhibition of MDM2 by RG7388 confers hypersensitivity to X-radiation in xenograft models of childhood sarcoma.

    PubMed

    Phelps, Doris; Bondra, Kathryn; Seum, Star; Chronowski, Christopher; Leasure, Justin; Kurmasheva, Raushan T; Middleton, Steven; Wang, Dian; Mo, Xiaokui; Houghton, Peter J

    2015-08-01

    Curative therapy for childhood sarcoma presents challenges when complete resection is not possible. Ionizing radiation (XRT) is used as a standard modality at diagnosis or recurrence for childhood sarcoma; however, local recurrence is still problematic. Most childhood sarcomas are TP53 wild type at diagnosis, although approximately 5-10% have MDM2 amplification or overexpression. The MDM2 inhibitor, RG7388, was examined alone or in combination with XRT (20Gy given in 2 Gy daily fractions) to immune-deficient mice bearing Rh18 (embryonal) or a total of 30 Gy in 2 Gy fractions to mice bearing Rh30 (alveolar) rhabdomyosarcoma xenografts. RG7388 was administered by oral gavage using two schedules (daily ×5; schedule 1 or once weekly; schedule 2). TP53-responsive gene products (p21, PUMA, DDB2, and MIC1) as well as markers of apoptosis were analyzed. RG7388 showed no significant single agent antitumor activity. Twenty Grays XRT induced complete regressions (CR) of Rh18 with 100 percent tumor regrowth by week 7, but no tumor regrowth at 20 weeks when combined with RG7388. RG7388 enhanced time to recurrence combined with XRT in Rh30 xenografts compared to 30 Gy XRT alone. RG7388 did not enhance XRT-induced local skin toxicity. Combination treatments induced TP53 responsive genes more rapidly and to a greater magnitude than single agent treatments. RG7388 enhanced the activity of XRT in both rhabdomyosarcoma models without increasing local XRT-induced skin toxicity. Changes in TP53-responsive genes were consistent with the synergistic activity of RG7388 and XRT in the Rh18 model. © 2015 Wiley Periodicals, Inc.

  7. The MDM2–p53–pyruvate carboxylase signalling axis couples mitochondrial metabolism to glucose-stimulated insulin secretion in pancreatic β-cells

    PubMed Central

    Li, Xiaomu; Cheng, Kenneth K. Y.; Liu, Zhuohao; Yang, Jin-Kui; Wang, Baile; Jiang, Xue; Zhou, Yawen; Hallenborg, Philip; Hoo, Ruby L. C.; Lam, Karen S. L.; Ikeda, Yasuhiro; Gao, Xin; Xu, Aimin

    2016-01-01

    Mitochondrial metabolism is pivotal for glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells. However, little is known about the molecular machinery that controls the homeostasis of intermediary metabolites in mitochondria. Here we show that the activation of p53 in β-cells, by genetic deletion or pharmacological inhibition of its negative regulator MDM2, impairs GSIS, leading to glucose intolerance in mice. Mechanistically, p53 activation represses the expression of the mitochondrial enzyme pyruvate carboxylase (PC), resulting in diminished production of the TCA cycle intermediates oxaloacetate and NADPH, and impaired oxygen consumption. The defective GSIS and mitochondrial metabolism in MDM2-null islets can be rescued by restoring PC expression. Under diabetogenic conditions, MDM2 and p53 are upregulated, whereas PC is reduced in mouse β-cells. Pharmacological inhibition of p53 alleviates defective GSIS in diabetic islets by restoring PC expression. Thus, the MDM2–p53–PC signalling axis links mitochondrial metabolism to insulin secretion and glucose homeostasis, and could represent a therapeutic target in diabetes. PMID:27265727

  8. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    PubMed

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  9. Associations between the MDM2 promoter P1 polymorphism del1518 (rs3730485) and incidence of cancer of the breast, lung, colon and prostate

    PubMed Central

    Gansmo, Liv B.; Vatten, Lars; Romundstad, Pål; Hveem, Kristian; Ryan, Bríd M.; Harris, Curtis C.; Knappskog, Stian; Lønning, Per E.

    2016-01-01

    The MDM2 promoter region contains several polymorphisms, some of which have been associated with MDM2 expression, cancer risk and age at cancer onset. del1518 (rs3730485) is an indel polymorphism residing in the MDM2 promoter P1 and is in almost complete linkage disequilibrium with the MDM2 promoter P2 polymorphism SNP309T>G (rs2279744). Cancer risk assessments of del1518 have previously been conducted in relatively small Chinese populations only. In this study we assessed the genotype distribution of del1518 among healthy Caucasians, African Americans and Chinese, and we estimated the Odds Ratios (OR) for incident cancer of the breast, colon, lung and prostate (n=7,081) as compared to controls (n=3,749) in a large Caucasian (Norwegian) cohort. We found the genotypes of the del1518 to vary significantly between healthy Caucasians, African-Americans and Chinese (p< 1×10−5). Further, we found a positive association of the del1518 del-allele with risk of colon cancer (dominant model: OR = 1.15; 95 % CI = 1.01 – 1.31). Stratifying according to SNP309 status, this association remained among carriers of the SNP309TG genotype (OR = 1.21; 95 % CI = 1.01 – 1.46), but with no clear association among carriers of the SNP309TT genotype. In conclusion, our findings suggest del1518 to be associated with increased risk of colon cancer. PMID:27081698

  10. Tumour selection advantage of non‐dominant negative P53 mutations in homozygotic MDM2‐SNP309 colorectal cancer cells

    PubMed Central

    Alazzouzi, Hafid; Suriano, Gianpaolo; Guerra, Angel; Plaja, Alberto; Espín, Eloi; Armengol, Manel; Alhopuro, Pia; Velho, Sergia; Shinomura, Yasuhisa; González‐Aguilera, Juan José; Yamamoto, Hiroyuki; Aaltonen, Lauri A; Moreno, Víctor; Capellà, Gabriel; Peinado, Miguel Angel; Seruca, Raquel; Arango, Diego

    2007-01-01

    Background Mdm2 is a natural inhibitor of p53 function and its overexpression impairs p53 transcriptional activity. T→G single‐nucleotide polymorphism at position 309 (SNP309) of mdm2 induces overexpression of mdm2, but inhibits p53. Objectives To determine whether SNP309 is a risk‐modifier polymorphism in colorectal cancer (CRC) and whether tumour selection of P53 mutations are influenced by SNP309. Methods Single‐stranded conformation polymorphism and automatic sequencing were performed. Results SNP309 is not associated with the risk of CRC or recurrence of tumours. These data do not over‐ride the tumour‐selection capabilities of P53 mutations in CRC. However, a significant association with non‐dominant‐negative P53 mutations (p = 0.02) was found. Conclusions MDM2‐SNP309 favours tumour selection of non‐dominant negative P53 mutations in CRC, which also show an earlier age of tumour onset. PMID:16825434

  11. Potential genotype-specific single nucleotide polymorphism interaction of common variation in p53 and its negative regulator mdm2 in cholangiocarcinoma susceptibility.

    PubMed

    Zimmer, Vincent; Höblinger, Aksana; Mihalache, Florentina; Assmann, Gunter; Acalovschi, Monica; Lammert, Frank

    2012-07-01

    Aberrant cell cycle control and apoptosis deregulation are involved in biliary carcinogenesis. The tumor suppressor gene p53 and its key negative regulator murine double minute 2 (mdm2) cooperate in modulating these basic cell functions and germline p53 alteration promotes cholangiocarcinoma (CCA) formation in animal models. The potential association between common functional genetic variation in p53 (SNP72 G/C) and mdm2 (SNP309 T/G) and susceptibility to bile duct cancer, however, has not been studied. p53/SNP72 G/C (rs1042522) and mdm2/SNP309 T/G (rs2279744) were genotyped in 182 Caucasian CCA patients and 350 controls using TaqMan assays. Allelic and genotypic differences, including exploratory data analyses (according to gender, tumor localization, early onset and genotypic interactions) were compared in contingency tables using the χ(2) and Fisher's exact tests. The overall comparison of allele and genotype frequencies yielded no significant association between either SNP and CCA susceptibility. Similarly, gender- and localization-specific analyses did not reveal deviations in allelic or genotypic distributions. In carriers of the low-apoptotic p53 genotype CC, the mdm2 SNP309 T allele conferred borderline significant CCA risk [P=0.049; odds ratio (OR), 4.36; 95% CI, 0.92-20.77]. Power analysis confirmed adequate statistical power to exclude major SNP effects (each >97% for OR 1.7). Collectively, the results we obtained from the largest European CCA cohort do not support the hypothesis of a prominent role of common p53 and mdm2 variation in the genetic susceptibility to bile duct cancer. However, epistatic effects may modulate genetic CCA risk in individual subsets.

  12. Potential genotype-specific single nucleotide polymorphism interaction of common variation in p53 and its negative regulator mdm2 in cholangiocarcinoma susceptibility

    PubMed Central

    ZIMMER, VINCENT; HÖBLINGER, AKSANA; MIHALACHE, FLORENTINA; ASSMANN, GUNTER; ACALOVSCHI, MONICA; LAMMERT, FRANK

    2012-01-01

    Aberrant cell cycle control and apoptosis deregulation are involved in biliary carcinogenesis. The tumor suppressor gene p53 and its key negative regulator murine double minute 2 (mdm2) cooperate in modulating these basic cell functions and germline p53 alteration promotes cholangiocarcinoma (CCA) formation in animal models. The potential association between common functional genetic variation in p53 (SNP72 G/C) and mdm2 (SNP309 T/G) and susceptibility to bile duct cancer, however, has not been studied. p53/SNP72 G/C (rs1042522) and mdm2/SNP309 T/G (rs2279744) were genotyped in 182 Caucasian CCA patients and 350 controls using TaqMan assays. Allelic and genotypic differences, including exploratory data analyses (according to gender, tumor localization, early onset and genotypic interactions) were compared in contingency tables using the χ2 and Fisher’s exact tests. The overall comparison of allele and genotype frequencies yielded no significant association between either SNP and CCA susceptibility. Similarly, gender- and localization-specific analyses did not reveal deviations in allelic or genotypic distributions. In carriers of the low-apoptotic p53 genotype CC, the mdm2 SNP309 T allele conferred borderline significant CCA risk [P=0.049; odds ratio (OR), 4.36; 95% CI, 0.92–20.77]. Power analysis confirmed adequate statistical power to exclude major SNP effects (each >97% for OR 1.7). Collectively, the results we obtained from the largest European CCA cohort do not support the hypothesis of a prominent role of common p53 and mdm2 variation in the genetic susceptibility to bile duct cancer. However, epistatic effects may modulate genetic CCA risk in individual subsets. PMID:22807971

  13. Overexpression of miR-26a-2 in human liposarcoma is correlated with poor patient survival.

    PubMed

    Lee, D H; Amanat, S; Goff, C; Weiss, L M; Said, J W; Doan, N B; Sato-Otsubo, A; Ogawa, S; Forscher, C; Koeffler, H P

    2013-05-20

    Approximately 90% of well-differentiated/de-differentiated liposarcomas (WDLPS/DDLPS), the most common LPS subtype, have chromosomal amplification at 12q13-q22. Many protein-coding genes in the region, such as MDM2 and , have been studied as potential therapeutic targets for LPS treatment, with minimal success. In the amplified region near the MDM2 gene, our single nucleotide polymorphism (SNP) array analysis of 75 LPS samples identified frequent amplification of miR-26a-2. Besides being in the amplicon, miR-26a-2 was overexpressed significantly in WDLPS/DDLPS (P<0.001), as well as in myxoid/round cell LPS (MRC) (P<0.05). Furthermore, Kaplan-Meier survival analysis showed that overexpression of miR-26a-2 significantly correlated with poor patient survival in both types of LPS (P<0.05 for WDLPS/DDLPS; P<0.001 for MRC). Based on these findings, we hypothesized that miR-26a-2 has an important role in LPS tumorigenesis, regardless of LPS subtypes. Overexpression of miR-26a-2 in three LPS cell lines (SW872, LPS141 and LP6) enhanced the growth and survival of these cells, including faster cell proliferation and migration, enhanced clonogenicity, suppressed adipocyte differentiation and/or resistance to apoptosis. Inhibition of miR-26a-2 in LPS cells using anti-miR-26a-2 resulted in the opposite responses. To explain further the effect of miR-26a-2 overexpression in LPS cells, we performed in silico analysis and identified 93 candidate targets of miR-26a-2. Among these genes, RCBTB1 (regulator of chromosome condensation and BTB domain-containing protein 1) is located at 13q12.3-q14.3, a region of recurrent loss of heterozygosity (LOH) in LPS. Indeed, either overexpression or inhibition of RCBTB1 made LPS cells more susceptible or resistant to apoptosis, respectively. In conclusion, our study for the first time reveals the contribution of miR-26a-2 to LPS tumorigenesis, partly through inhibiting RCBTB1, suggesting that miR-26a-2 is a novel therapeutic target for human LPS.

  14. Immunohistochemical expression of the p53, mdm2, p21/Waf-1, Rb, p16, Ki67, cyclin D1, cyclin A and cyclin B1 proteins and apoptotic index in T-cell lymphomas.

    PubMed

    Kanavaros, P; Bai, M; Stefanaki, K; Poussias, G; Rontogianni, D; Zioga, E; Gorgoulis, V; Agnantis, N J

    2001-04-01

    Fifty-seven cases of T-cell lymphomas (TCL) including 5 lymphoblastic (T-LBL) and 52 peripheral TCL (PTCL) were analyzed by immunohistochemistry for the expression of p53, mdm2, p21, Rb, cyclin D1, cyclin A, cyclin B1, and Ki67/MIB1 proteins and 39/52 PTCL were also analyzed for the expression of p16 protein and for the presence of apoptotic cells by the TUNEL method. The aim was to search for abnormal immunoprofiles of p53 and Rb growth control pathways and to determine the proliferative activity and the apoptotic index of TCL. Abnormal overexpression of p53, p21 and mdm2, in comparison to normal lymph nodes, was found in 12/57, 10/57 and 2/57 cases of TCL, respectively. Abnormal loss of Rb and p16 expression was found in 1/57 and 2/39 cases, respectively, whereas abnormal overexpression of cyclin D1 was not detected in any of the 57 cases. Our data revealed entity-related p53/p21/mdm2 phenotypes. Indeed, most nodal and cutaneous CD30+ anaplastic large cell lymphomas (ALCL) showed concomitant overexpression of p53 and p21 proteins (7/8 cases), and mdm2 was overexpressed in 2 p53-positive nodal ALCL. In contrast, overexpression of p53 was found in 3/17 cases of nodal peripheral TCL unspecified (PTCL-UC) and 2/7 non-ALCL cutaneous pleomorphic TCL. Overexpression of p21 protein was detected in 2/3 p53-positive PTCL-UC and in 1/2 p53-positive non-ALCL cutaneous pleomorphic TCL. Finally, all the remaining 25 cases of TCL did not show p53 and p21 overexpression. Overall, the p53+/p21+ phenotype in 10/57 TCL suggests wild-type p53 capable of inducing p21 expression. The highest apoptotic index (AI) was found in ALCL and a positive correlation between apoptotic index and Ki67 index (p<0.001) was detected. Ki67, cyclin A and cyclin B1 expression was found in all 57 TCL and on the basis of the combined use of these 3 variables, 3 groups of proliferative activity could be determined: a) high in ALCL and T-LBL, b) low in mycosis fungoides (MF) and gammadelta hepatosplenic TCL

  15. Amelioration of Radiation Esophagitis by Orally Administered p53/Mdm2/Mdm4 Inhibitor (BEB55) or GS-Nitroxide

    PubMed Central

    KIM, HYUN; BERNARD, MARK E.; EPPERLY, MICHAEL W.; SHEN, HONGMEI; AMOSCATO, ANDREW; DIXON, TRACY M.; DOEMLING, ALEXANDER S.; LI, SONG; GAO, XIANG; WIPF, PETER; WANG, HONG; ZHANG, XICHEN; KAGAN, VALERIAN E.; GREENBERGER, JOEL S.

    2012-01-01

    Background/Aim Esophagitis is a significant toxicity of radiation therapy for lung cancer. In this study, reduction of irradiation esophagitis in mice, by orally administered p53/Mdm2/Mdm4 inhibitor, BEB55, or the GS-nitroxide, JP4-039, was evaluated. Materials and Methods BEB55 or JP4-039 in F15 (liposomal) formulation was administered intraesophageally to C57BL/6 mice prior to thoracic irradiation of 29 Gy × 1 or 11.5 Gy × 4 thoracic irradiation. Progenitor cells were sorted from excised esophagus, and nitroxide was quantified, by electron paramagnetic resonance (EPR). Mice with Lewis lung carcinoma (3LL) orthotopic lung tumors were treated with BEB55 or JP4-039 prior to 20 Gy to determine if the drugs would protect the tumor cells from radiation. Results Intraesophageal BEB55 and JP4-039 compared to formulation alone increased survival after single fraction (p=0.0209 and 0.0384, respectively) and four fraction thoracic irradiation (p=0.0241 and 0.0388, respectively). JP4-039 was detected in esophagus, liver, bone marrow, and orthotopic Lewis lung carcinoma (3LL) tumor. There was no significant radiation protection of lung tumors by BEB55 or JP4-039 compared to formulation only as assessed by survival (p=0.3021 and 0.3693, respectively). Thus, BEB55 and JP4-039 safely ameliorate radiation esophagitis in mice. PMID:22021675

  16. Phage-peptide display identifies the interferon-responsive, death-activated protein kinase family as a novel modifier of MDM2 and p21WAF1.

    PubMed

    Burch, Lindsay R; Scott, Mary; Pohler, Elizabeth; Meek, David; Hupp, Ted

    2004-03-12

    Phage-peptide display is a versatile tool for identifying novel protein-protein interfaces. Our previous work highlighted the selection of phage-peptides that bind to specific isoforms of MDM2 protein and in this work we subjected the putative MDM2-binding proteins to phage-peptide display to expand further on putative protein interaction maps. One peptide that bound MDM2 had significant homology to members of the death-activated protein kinase (DAPK) family, an enzyme family of no known direct link to the p53 pathway. We examined whether a nuclear member of the DAPK family named DAPK3 or ZIP kinase had direct links to the p53 pathway. ZIP kinase was cloned, purified, and the enzyme was able to phosphorylate MDM2 at Ser166, a site previously reported to be modified by Akt kinase, thus demonstrating that ZIP kinase is a bona fide MDM2-binding protein. Native ZIP kinase fractions were then subjected to phage-peptide display and one ZIP kinase consensus peptide motif was identified in p21(WAF1). ZIP kinase phosphorylates p21(WAF1) at Thr145 and alanine-substituted mutations in the p21(WAF1) phosphorylation site alter its ability to be phosphorylated by ZIP kinase. Thus, although ZIP kinase consensus sites were then defined as containing a minimal RKKx(T/S) consensus motif, alternate contacts in ZIP kinase binding are implicated, since amino acid residues surrounding the phospho-acceptor site can effect the specific activity of the kinase. Transfected ZIPK can promote the phosphorylation of p21(WAF1) at Thr145 in vivo and can increase the half-life of p21(WAF1), while the half-life of p21(WAF1[T145A]) is not effected by ZIP kinase. Thus, phage-peptide display identified an interferon-responsive protein kinase family as a novel modifier of two components of the p53 pathway, MDM2 and p21(WAF1), and underscores the utility of phage-peptide display for gaining novel insights into biochemical pathways.

  17. An EBV recombinant deleted for residues 130-159 in EBNA3C can deregulate p53/Mdm2 and Cyclin D1/CDK6 which results in apoptosis and reduced cell proliferation

    PubMed Central

    El-Naccache, Darine W.; Robertson, Erle S.

    2016-01-01

    Epstein-Barr virus (EBV), a gamma herpes virus is associated with B-cell malignancies. EBNA-3C is critical for in vitro primary B-cell transformation. Interestingly, the N terminal domain of EBNA3C which contains residues 130–159, interacts with various cellular proteins, such as p53, Mdm2, CyclinD1/Cdk6 complex, and E2F1. In the current reverse genetics study, we deleted the residues 130-159 aa within EBNA3C open reading frame (ORF) by BACmid recombinant engineering methodology. Our experiments demonstrated that deletion of the 130-159 aa showed a reduction in cell proliferation. Also, this recombinant virus showed with higher infectivity of human peripheral blood mononuclear cells (PBMCs) compared to wild type EBV. PBMCs- infected with recombinant EBV deleted for 130-159 residues have differential expression patterns for the p53/Mdm2, CyclinD1/Cdk6 and pRb/E2F1 pathways compared to wild type EBV-infected PBMCs. PBMCs infected with recombinant virus showed increased apoptotic cell death which further resulted in activation of polymerase 1 (PARP1), an important contributor to apoptotic signaling. Interestingly, cells infected with this recombinant virus showed a dramatic decrease in chromosomal instability, indicated by the presence of increased multinucleation and micronucleation. In addition infection with recombinant virus have increased cells in G0/G1 phase and decreased cells in S-G2M phase when compared to wild type infected cells. Thus, these differences in signaling activities due to 29 amino acid residues of EBNA3C is of particular significance in deregulation of cell proliferation in EBV-infected cells. PMID:26908453

  18. A functional polymorphism T309G in MDM2 gene promoter, intensified by Helicobacter pylori lipopolysaccharide, is associated with both an increased susceptibility and poor prognosis of gastric carcinoma in Chinese patients.

    PubMed

    Pan, Xiaolin; Li, Yuqin; Feng, Jin; Wang, Xiaoyong; Hao, Bo; Shi, Ruihua; Zhang, Guoxin

    2013-03-18

    Studies on the association between MDM2 SNP309 (T > G) and gastric cancer have reported conflicting results. Thus, the aim of this study was to investigate whether MDM2 SNP309 is associated with susceptibility and prognosis of gastric carcinoma in Chinese patients. Total of 574 gastric carcinoma cases and 574 age- and sex-matched healthy controls were included. MDM2 polymorphism was detected by PCR- RFLP and infection of Helicobacter pylori (H. pylori) by a validated serology test. The functionality of MDM2 SNP309, with or without H. pylori lipopolysaccharide (LPS), was examined by dual-luciferase assay. Kaplan-Meier survival curves were used to evaluate survival. Additional, a meta-analysis was conducted to verity the findings. MDM2 SNP309G/G genotype was associated with an increased risk of gastric carcinoma when compared with T/T genotype or T carriers (both P < 0.01), and a joint effect between MDM2 SNP309G/G and H. pylori infection was observed to intensify gastric carcinoma risk. SNP309G/G was identified as an independent marker of poor overall survival of carcinoma. In vitro, the luciferase assay further showed an increased transcriptional activity of SNP309G allele compared with SNP309T allele, and the function of polymorphism T309G in MDM2 gene promoter was intensified by H. pylori LPS. Pooled results from the meta-analysis confirmed that SNP309G/G genotype had a significantly increased risk of gastric carcinoma compared with T/T genotype or T carriers, consistent with the case-control findings. MDM2 SNP309G allele is associated with an increased risk and poor prognosis of gastric carcinoma in Chinese patients. Additional, there is a joint effect of MDM2 SNP309G/G allele and H. pylori infection on gastric carcinoma development, which may attribute to H. pylori LPS.

  19. Synthesis and Optimization of New 3,6-Disubstitutedindole Derivatives and Their Evaluation as Anticancer Agents Targeting the MDM2/MDMx Complex.

    PubMed

    Rezk, Mohamed Salah; Abdel-Halim, Mohammad; Keeton, Adam; Franklin, Derek; Bauer, Matthias; Boeckler, Frank Michael; Engel, Matthias; Hartmann, Rolf Wolfgang; Zhang, Yanping; Piazza, Gary Anthony; Abadi, Ashraf Hassan

    2016-01-01

    Twelve derivatives of the general formula 3-substituted-6-chloroindoles were synthesized and tested for their growth inhibitory effects versus p53(+/+) colorectal cancer HCT116 and its p53 knockout isogenic cells; colorectal cancer cell p53(-/-) SW480; the lung cancer cell line p53(-/-) H1299; mouse embryonic fibroblasts (MEF) p53(+/+) and its p53 knockout isogenic cells. The compounds were also evaluated for their ability to induce p53 nuclear translocation and binding to murine double minute 2 (MDM2) and murine double minute 4 (MDM4). Of these, compound 5a was the most active in inhibiting the growth of cells, with selectivity towards the p53(+/+) cell lines, and it showed stronger binding to MDM4 rather than MDM2. The activity profile of compound 5a is strongly similar to that of Nutlin-3.

  20. Expression signature based on TP53 target genes doesn't predict response to TP53-MDM2 inhibitor in wild type TP53 tumors.

    PubMed

    Sonkin, Dmitriy

    2015-10-22

    A number of TP53-MDM2 inhibitors are currently under investigation as therapeutic agents in a variety of clinical trials in patients with TP53 wild type tumors. Not all wild type TP53 tumors are sensitive to such inhibitors. In an attempt to improve selection of patients with TP53 wild type tumors, an mRNA expression signature based on 13 TP53 transcriptional target genes was recently developed (Jeay et al. 2015). Careful reanalysis of TP53 status in the study validation data set of cancer cell lines considered to be TP53 wild type detected TP53 inactivating alterations in 23% of cell lines. The subsequent reanalysis of the remaining TP53 wild type cell lines clearly demonstrated that unfortunately the 13-gene signature cannot predict response to TP53-MDM2 inhibitor in TP53 wild type tumors.

  1. mdm-2 oncoprotein expression associated with deletion of the long arm of chromosome 12 in a case of mantle cell lymphoma with blastoid transformation [corrected].

    PubMed

    Haidar, J H; Neiman, R S; Orazi, A; Albitar, M; McCarthy, L J; Heerema, N

    1996-04-01

    We report a unique case of mantle cell lymphoma in blastoid transformation associated with deletion of the long arm of chromosome 12 and with 90 kDa mdm-2 protein overexpression. Neither the mantle cells nor their blastoid counterparts expressed p53 gene product by immunohistochemical analysis. This seems to be the first reported case of this subtype of lymphoma associated with these specific cytogenetic and molecular genetic abnormalities.

  2. Matrix metalloproteinase-9, -10, and -12, MDM2 and p53 expression in mouse liver during dimethylnitrosamine-induced oxidative stress and genomic injury.

    PubMed

    Syed, Ismail; Rathod, Jasmine; Parmar, Mayur; Corcoran, George B; Ray, Sidhartha D

    2012-06-01

    Treatment during early tumor development has greater success because tissue growth remains largely confined to its original locus. At later stages, malignant cells migrate from their original location, invade surrounding normal areas, and can disseminate widely throughout the body. Remodeling of the extracellular matrix (ECM) serves as a key facilitator of this dissemination. Proteolytic enzymes including plasmin and matrix metalloproteinases (MMPs) play an integral role in degrading the surrounding ECM proteins and clearing a path for tumor cell migration. Specific MMPs are highly expressed late during malignant tumor invasion. It is not understood whether early changes in MMPs influence apoptotic and necrotic cell death, processes known to govern the early stages of carcinogenesis. Similarly, the interaction between MDM2 and p53 is tightly controlled by a complex array of post-translational modifications, which in turn dictates the stability and activity of both p53 and MDM2. The present studies examine the hypothesis that model hepatotoxin dimethylnitrosamine (DMN), which is also a model carcinogen, will induce the MMP family of proteins after administration in hepatotoxic doses. Doses of 25, 50, and 100 mg/kg DMN were administered i.p. to male C3H mice. Changes in parameters associated with apoptotic and necrotic cell death, DNA damage, cell proliferation, and extracellular proteinases were examined in liver at 24 h. Serum ALT activity, oxidative stress [malondialdehyde], and caspase-activated DNAse mediated DNA laddering increased in a dose-dependent manner, as did the level of MDM2 protein. MMP-9, -10 and -12 (gelatinase-B, stromelysin-2, macrophage elastase), and p53 protein levels increased following 25 mg/kg DMN, but were successively decreased after higher DMN doses. The results of this study demonstrate changes in MDM2 and MMPs during DMN-induced acute liver injury and provide a plausible linkage between DMN-induced oxidative stress-mediated genomic

  3. Markov models of the apo-MDM2 lid region reveal diffuse yet two-state binding dynamics and receptor poses for computational docking

    PubMed Central

    Mukherjee, Sudipto; Pantelopulos, George A.; Voelz, Vincent A.

    2016-01-01

    MDM2 is a negative regulator of p53 activity and an important target for cancer therapeutics. The N-terminal lid region of MDM2 modulates interactions with p53 via competition for its binding cleft, exchanging slowly between docked and undocked conformations in the absence of p53. To better understand these dynamics, we constructed Markov State Models (MSMs) from large collections of unbiased simulation trajectories of apo-MDM2, and find strong evidence for diffuse, yet two-state folding and binding of the N-terminal region to the p53 receptor site. The MSM also identifies holo-like receptor conformations highly suitable for computational docking, despite initiating trajectories from closed-cleft receptor structures unsuitable for docking. Fixed-anchor docking studies using a test set of high-affinity small molecules and peptides show simulated receptor ensembles achieve docking successes comparable to cross-docking studies using crystal structures of receptors bound by alternative ligands. For p53, the best-scoring receptor structures have the N-terminal region lid region bound in a helical conformation mimicking the bound structure of p53, suggesting lid region association induces receptor conformations suitable for binding. These results suggest that MD + MSM approaches can sample binding-competent receptor conformations suitable for computational peptidomimetic design, and that inclusion of disordered regions may be essential to capturing the correct receptor dynamics. PMID:27538695

  4. Common polymorphisms in TP53 and MDM2 and the relationship to TP53 mutations and clinical outcomes in women with ovarian and peritoneal carcinomas.

    PubMed

    Galic, Vijaya; Willner, Julia; Wollan, Melissa; Garg, Ruchi; Garcia, Rochelle; Goff, Barbara A; Gray, Heidi J; Swisher, Elizabeth M

    2007-03-01

    The importance of somatic TP53 mutations and germline TP53 codon 72 genotype in the survival of women with epithelial ovarian cancer is controversial. Recent data suggest that a promoter polymorphism in the MDM2 gene may influence age of cancer onset in a gender-specific fashion. We sought to determine the relationship between somatic TP53 mutations, germline genotypes at TP53 codon 72 and MDM2 SNP309, and overall survival and response to chemotherapy in a large series of patients with ovarian and peritoneal carcinomas. Of the 188 cancers, 103 (54.8%) had a TP53 mutation, of which 71% were missense mutations and 29% were null mutations. TP53 mutation status and mutation type (null vs. missense) did not influence response to therapy or overall survival. Women with the codon 72 Pro/Pro had a decreased overall survival (median, 29 months) compared with women with one or two arginine alleles (median, 49 months; P=0.04). Somatic mutation or deletion was equally common for either codon 72 allele. Age of diagnosis was not influenced by codon 72 but showed a trend for younger age in women with somatic TP53 mutations and the MDM2 G/G genotype. Copyright (c) 2006 Wiley-Liss, Inc.

  5. Markov models of the apo-MDM2 lid region reveal diffuse yet two-state binding dynamics and receptor poses for computational docking

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sudipto; Pantelopulos, George A.; Voelz, Vincent A.

    2016-08-01

    MDM2 is a negative regulator of p53 activity and an important target for cancer therapeutics. The N-terminal lid region of MDM2 modulates interactions with p53 via competition for its binding cleft, exchanging slowly between docked and undocked conformations in the absence of p53. To better understand these dynamics, we constructed Markov State Models (MSMs) from large collections of unbiased simulation trajectories of apo-MDM2, and find strong evidence for diffuse, yet two-state folding and binding of the N-terminal region to the p53 receptor site. The MSM also identifies holo-like receptor conformations highly suitable for computational docking, despite initiating trajectories from closed-cleft receptor structures unsuitable for docking. Fixed-anchor docking studies using a test set of high-affinity small molecules and peptides show simulated receptor ensembles achieve docking successes comparable to cross-docking studies using crystal structures of receptors bound by alternative ligands. For p53, the best-scoring receptor structures have the N-terminal region lid region bound in a helical conformation mimicking the bound structure of p53, suggesting lid region association induces receptor conformations suitable for binding. These results suggest that MD + MSM approaches can sample binding-competent receptor conformations suitable for computational peptidomimetic design, and that inclusion of disordered regions may be essential to capturing the correct receptor dynamics.

  6. Markov models of the apo-MDM2 lid region reveal diffuse yet two-state binding dynamics and receptor poses for computational docking.

    PubMed

    Mukherjee, Sudipto; Pantelopulos, George A; Voelz, Vincent A

    2016-08-19

    MDM2 is a negative regulator of p53 activity and an important target for cancer therapeutics. The N-terminal lid region of MDM2 modulates interactions with p53 via competition for its binding cleft, exchanging slowly between docked and undocked conformations in the absence of p53. To better understand these dynamics, we constructed Markov State Models (MSMs) from large collections of unbiased simulation trajectories of apo-MDM2, and find strong evidence for diffuse, yet two-state folding and binding of the N-terminal region to the p53 receptor site. The MSM also identifies holo-like receptor conformations highly suitable for computational docking, despite initiating trajectories from closed-cleft receptor structures unsuitable for docking. Fixed-anchor docking studies using a test set of high-affinity small molecules and peptides show simulated receptor ensembles achieve docking successes comparable to cross-docking studies using crystal structures of receptors bound by alternative ligands. For p53, the best-scoring receptor structures have the N-terminal region lid region bound in a helical conformation mimicking the bound structure of p53, suggesting lid region association induces receptor conformations suitable for binding. These results suggest that MD + MSM approaches can sample binding-competent receptor conformations suitable for computational peptidomimetic design, and that inclusion of disordered regions may be essential to capturing the correct receptor dynamics.

  7. Neuroanatomical correlates of human reasoning.

    PubMed

    Goel, V; Gold, B; Kapur, S; Houle, S

    1998-05-01

    One of the important questions cognitive theories of reasoning must address is whether logical reasoning is inherently sentential or spatial. A sentential model would exploit nonspatial (linguistic) properties of representations whereas a spatial model would exploit spatial properties of representations. In general terms, the linguistic hypothesis predicts that the language processing regions underwrite human reasoning processes, and the spatial hypothesis suggests that the neural structures for perception and motor control contribute the basic representational building blocks used for high-level logical and linguistic reasoning. We carried out a [(15)O] H(2)O PET imaging study to address this issue. Twelve normal volunteers performed three types of deductive reasoning tasks (categorical syllogisms, three-term spatial relational items, and three-term nonspatial relational items) while their regional cerebral blood flow pattern was recorded using [(15)O] H(2)O PET imaging. In the control condition subjects semantically comprehended sets of three sentences. In the deductive reasoning conditions subjects determined whether the third sentence was entailed by the first two sentences. The areas of activation in each reasoning condition were confined to the left hemisphere and were similar to each other and to activation reported in previous studies. They included the left inferior frontal gyrus (Brodmann area 45, 47), a portion of the left middle frontal gyrus (Brodmann area 46), the left middle temporal gyrus (Brodmann areas 21, 22), a region of the left lateral inferior temporal gyrus and superior temporal gyrus (Brodmann areas 22, 37), and a portion of the left cingulate gyrus (Brodmann areas 32, 24). There was no significant right-hemisphere or parietal activation. These results are consistent with previous neuroimaging studies and raise questions about the level of involvement of classic spatial regions in reasoning about linguistically presented spatial relations.

  8. Correlations and scaling laws in human mobility.

    PubMed

    Wang, Xiang-Wen; Han, Xiao-Pu; Wang, Bing-Hong

    2014-01-01

    In recent years, several path-breaking findings on human mobility patterns point out a novel issue which is of important theoretical significance and great application prospects. The empirical analysis of the data which can reflect the real-world human mobility provides the basic cognition and verification of the theoretical models and predictive results on human mobility. One of the most noticeable findings in previous studies on human mobility is the wide-spread scaling anomalies, e.g. the power-law-like displacement distributions. Understanding the origin of these scaling anomalies is of central importance to this issue and therefore is the focus of our discussion. In this paper, we empirically analyze the real-world human movements which are based on GPS records, and observe rich scaling properties in the temporal-spatial patterns as well as an abnormal transition in the speed-displacement patterns together with an evidence to the real-world traffic jams. In addition, we notice that the displacements at the population level show a significant positive correlation, indicating a cascading-like nature in human movements. Furthermore, our analysis at the individual level finds that the displacement distributions of users with stronger correlations usually are closer to the power law, suggesting a correlation between the positive correlation of the displacement series and the form of an individual's displacement distribution. These empirical findings make connections between the two basic properties of human mobility, the scaling anomalies on displacement distributions and the positive correlations on displacement series, implying the cascading-like dynamics which is exhibited by the positive correlations would cause the emergence of scaling properties on human mobility patterns. Our findings would inspire further researches on mechanisms and predictions of human mobility.

  9. Correlations and Scaling Laws in Human Mobility

    PubMed Central

    Wang, Xiang-Wen; Han, Xiao-Pu; Wang, Bing-Hong

    2014-01-01

    Background In recent years, several path-breaking findings on human mobility patterns point out a novel issue which is of important theoretical significance and great application prospects. The empirical analysis of the data which can reflect the real-world human mobility provides the basic cognition and verification of the theoretical models and predictive results on human mobility. One of the most noticeable findings in previous studies on human mobility is the wide-spread scaling anomalies, e.g. the power-law-like displacement distributions. Understanding the origin of these scaling anomalies is of central importance to this issue and therefore is the focus of our discussion. Methodology/Principal Findings In this paper, we empirically analyze the real-world human movements which are based on GPS records, and observe rich scaling properties in the temporal-spatial patterns as well as an abnormal transition in the speed-displacement patterns together with an evidence to the real-world traffic jams. In addition, we notice that the displacements at the population level show a significant positive correlation, indicating a cascading-like nature in human movements. Furthermore, our analysis at the individual level finds that the displacement distributions of users with stronger correlations usually are closer to the power law, suggesting a correlation between the positive correlation of the displacement series and the form of an individual's displacement distribution. Conclusions/Significance These empirical findings make connections between the two basic properties of human mobility, the scaling anomalies on displacement distributions and the positive correlations on displacement series, implying the cascading-like dynamics which is exhibited by the positive correlations would cause the emergence of scaling properties on human mobility patterns. Our findings would inspire further researches on mechanisms and predictions of human mobility. PMID:24454769

  10. In cultured astrocytes, p53 and MDM2 do not alter hypoxia-inducible factor-1alpha function regardless of the presence of DNA damage.

    PubMed

    Rempe, David A; Lelli, Katherine M; Vangeison, Grace; Johnson, Randall S; Federoff, Howard J

    2007-06-01

    A principal molecular mechanism by which cells respond to hypoxia is by activation of the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha). Several studies describe a binding of p53 to HIF-1alpha in a protein complex, leading to attenuated function, half-life, and abundance of HIF-1alpha. However, these reports almost exclusively utilized transformed cell lines, and many employed transfection of p53 or HIF-1alpha plasmid constructs and/or p53 and HIF-1alpha reporter constructs as surrogates for endogenous protein activity and target expression, respectively. Thus, it remains an open and important question as to whether p53 inhibits HIF-1alpha-mediated transactivation of endogenous HIF-1alpha targets in nontransformed cells. After determining in primary astrocyte cultures the HIF-1alpha targets that were most dependent on HIF-1alpha function, we examined the effect of the loss of p53 function either alone or in combination with MDM2 on expression of these targets. Although p53 null astrocyte cultures resulted in markedly increased HIF-1alpha-dependent target expression compared with controls, this altered expression was determined to be the result of increased cell density of p53 null cultures and the accompanying acidosis, not loss of p53 protein. Although activation of p53 by DNA damage induced p53 target expression in astrocytes, it did not alter hypoxia-induced HIF-1alpha target expression. Finally, a combined loss of MDM2 and p53 did not alter HIF-1alpha target expression compared with loss of p53 alone. These data strongly suggest that p53 and MDM2 do not influence the hypoxia-induced transactivation of HIF-1alpha targets, regardless of p53 activation, in primary astrocytes.

  11. p53 Arg72Pro, MDM2 T309G and CCND1 G870A polymorphisms are not associated with susceptibility to esophageal adenocarcinoma.

    PubMed

    Liu, G; Cescon, D W; Zhai, R; Zhou, W; Kulke, M H; Ma, C; Xu, W; Su, L; Asomaning, K; Heist, R S; Wain, J C; Lynch, T J; Christiani, D C

    2010-01-01

    p53 Arg72Pro, MDM2 T309G, and CCND1 G870A are functional single-nucleotide polymorphisms (SNPs) in key genes that regulate apoptosis and cell cycle. Variant genotypes of these SNPs have been associated with increased risk and earlier age of onset in some cancers. We investigated the association of these SNPs with susceptibility to esophageal adenocarcinoma in a large, North American case-control study. Three hundred and twelve cases and 454 cancer-free controls recruited in Boston, USA were genotyped for each of the three SNPs, and demographic and clinical data were collected. Genotype frequencies for each of the three SNPs did not deviate from the Hardy-Weinberg equilibrium, and did not differ between cases and controls. Odds ratios (OR), adjusted for clinical risk factors, for the homozygous variant genotypes were 0.99 (95% confidence interval [CI] 0.57-1.72) for p53 Pro/Pro, 0.81 (95% CI 0.52-1.28) for MDM2 G/G, and 0.97 (95% CI 0.64-1.49) for CCND1 A/A. The analysis was adequately powered (80%) to detect ORs of 1.37, 1.35, and 1.34 for each SNP, respectively. In contrast to the results of smaller published studies, no association between p53 Arg72Pro, MDM2 T309G, and CCND1 G870A SNPs and susceptibility to esophageal adenocarcinoma, age of onset, or stage of disease at diagnosis was detected.

  12. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.

    PubMed

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-09-04

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  13. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    NASA Astrophysics Data System (ADS)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-09-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  14. Gains of 12q13-14 and overexpression of mdm2 are frequent findings in intimal sarcomas of the pulmonary artery.

    PubMed

    Bode-Lesniewska, B; Zhao, J; Speel, E J; Biraima, A M; Turina, M; Komminoth, P; Heitz, P U

    2001-01-01

    The characterization of clinical, histopathological, immunohistochemical, and genetic features of intimal sarcomas arising in the pulmonary artery is presented in this study. Four resected lungs, one endarterectomy specimen and three biopsies from eight patients (four males and four females; median age 41 years) suffering from intimal sarcomas of the pulmonary artery using conventional stains, immunohistochemistry, and comparative genomic hybridization (CGH) were analyzed. The predominant clinical presentation was dyspnea (all eight patients) and febrile pulmonary disease (six of eight). Signs of embolic lung disease were present in all patients. One patient died postoperatively, six patients died of disease 8-35 months after presentation, and one patient was alive 6 months after surgery. Histopathological examination of the submitted material showed spindle cell, partially myxoid and pleomorphic sarcomas. Metastases were histologically confirmed in three patients (lung, pleura, and skull). Immunohistochemically, vimentin was strongly expressed in all tumors. Focal positivity was observed for alpha smooth muscle actin, CD117, CD68, p53, and bcl2. No reaction could be obtained for endothelial markers. The proliferation index Ki-67 was between 5% and 80%. Six examined tumors were positive for mdm2. In the CGH analysis, gains and amplifications in the 12q13-14 region were found in six of eight tumors (75%). Other, less consistent alterations, were losses on 3p, 3q, 4q, 9p, 11q, 13q, Xp, and Xq, gains on 7p, 17p, and 17q, and amplifications on 4q, 5p, 6p, and 11q. Intimal sarcomas of the pulmonary artery are tumors with an unfavorable prognosis and poorly differentiated morphology. A majority of tumors show a consistent genetic alteration (gains and amplifications in the 12q13-14 region) and overexpression of mdm2, implicating the mdm2/p53 pathway as a possible mechanism in the tumor pathogenesis.

  15. Synthesis of spiro[isoindole-1,5’-isoxazolidin]-3(2H)-ones as potential inhibitors of the MDM2-p53 interaction

    PubMed Central

    Cirmi, Santa; Mancuso, Raffaella; Nicolò, Francesco; Lanza, Giuseppe; Legnani, Laura; Campisi, Agata; Chiacchio, Maria A; Navarra, Michele; Gabriele, Bartolo

    2016-01-01

    A series of spiro[isoindole-1,5-isoxazolidin]-3(2H)-ones has been synthesized by 1,3-dipolar cycloaddition of N-benzylnitrone with isoindolin-3-methylene-1-ones. The regio- and stereoselectivity of the process have been rationalized by computational methods. The obtained compounds show cytotoxic properties and antiproliferative activity in the range of 9–22 μM. Biological tests suggest that the antitumor activity could be linked to the inhibition of the protein–protein p53-MDM2 interaction. Docking measurements support the biological data. PMID:28144352

  16. Co-targeting of FAK and MDM2 triggers additive anti-proliferative effects in mesothelioma via a coordinated reactivation of p53.

    PubMed

    Ou, Wen-Bin; Lu, Minmin; Eilers, Grant; Li, Hailong; Ding, Jiongyan; Meng, Xuli; Wu, Yuehong; He, Quan; Sheng, Qing; Zhou, Hai-Meng; Fletcher, Jonathan A

    2016-11-08

    Improved mesothelioma patient survival will require development of novel and more effective pharmacological interventions. TP53 genomic mutations are uncommon in mesothelioma, and recent data indicate that p53 remains functional, and therefore is a potential therapeutic target in these cancers. In addition, the tumour suppressor NF2 is inactivated by genomic mechanisms in more than 80% of mesothelioma, causing upregulation of FAK activity. Because FAK is a negative regulator of p53, NF2 regulation of FAK-p53-MDM2 signalling loops were evaluated. Interactions of FAK-p53 or NF2-FAK were evaluated by phosphotyrosine-p53 immunoaffinity purification and tandem mass spectrometry, and p53, FAK, and NF2 immunoprecipitations. Activation and/or expression of FAK, p53, and NF2 were also evaluated in mesotheliomas. Effects of combination MDM2 and FAK inhibitors/shRNAs were assessed by measuring mesothelioma cell viability/growth, expression of cell cycle checkpoints, and cell cycle alterations. We observed constitutive activation of FAK, a known negative regulator of p53, in each of 10 mesothelioma cell lines and each of nine mesothelioma surgical specimens, and FAK was associated with p53 in five of five mesothelioma cell lines. In four mesotheliomas with wild-type p53, FAK silencing by RNAi induced expression and phosphorylation of p53. However, FAK regulation of mesothelioma proliferation was not restricted to p53-dependent pathways, as demonstrated by immunoblots after FAK knockdown in JMN1B mesothelioma cells, which have mutant/inactivated p53, compared with four mesothelioma cell lines with nonmutant p53. Additive effects were obtained through a coordinated reactivation of p53, by FAK knockdown/inhibition and MDM2 inhibition, as demonstrated by immunoblots, cell viability, and cell-cycle analyses, showing increased p53 expression, apoptosis, anti-proliferative effects, and cell-cycle arrest, as compared with either intervention alone. Our results also indicate that NF2

  17. The isolation, total synthesis and structure elucidation of chlorofusin, a natural product inhibitor of the p53-MDM2 protein-protein interaction

    PubMed Central

    Clark, Ryan C.; Lee, Sang Yeul; Searcey, Mark; Boger, Dale L.

    2009-01-01

    Inhibitors of key protein-protein interactions are emerging as exciting therapeutic targets for the treatment of cancer. One such interaction between MDM2 (HDM2) and p53, that silences the tumour suppression activities of p53, was found to be inhibited by the recently isolated natural product chlorofusin. Synthetic studies on this complex natural product summarized herein have served to reassign its chromophore relative stereochemistry, assign its absolute stereochemistry, and provided access to a series of key analogues and partial structures for biological evaluation. PMID:19642417

  18. Association of p73 gene G4C14-A4T14 polymorphism and MDM2 gene SNP309 with non-small cell lung cancer risk in a Chinese population.

    PubMed

    Li, Wen; Wang, Shuang Shuang; Deng, Jing; Tang, Jian Xin

    2017-08-01

    The present study aimed to investigate the association of p73 G4C14-A4T14 polymorphism and murine double minute 2 (MDM2) 309 T/G single nucleotide polymorphisms (SNPs) with the risk of developing non-small cell lung cancer (NSCLC) in Sothern China. The p73 and MDM2 genotypes of peripheral blood DNA from 186 patients with NSCLC and 196 normal controls were detected by polymerase chain reaction (PCR) with confronting two-pair primers (CTPP) and high resolution melting (HRM), respectively. The results of genotyping were consistent with those of direct sequencing. The p73 AT/AT [odds ratio (OR)=0.46; 95% confidence interval (CI)=0.22-0.97] and MDM2 TT (OR=0.48; 95% CI=0.26-0.86) genotypes were associated with a decreased risk of developing NSCLC compared with that of the p73 GC/GC and MDM2 GG genotypes, respectively. In addition, the interaction between the p73 and MDM2 polymorphisms reduced the risk of developing NSCLC in multiple ways (OR=0.13; 95% CI=0.03-0.59) for subjects carrying both the p73 AT/AT and MDM2 TT genotypes. Therefore, the SNP in p73 G4C14-A4T14 and the MDM2 309 polymorphism may be markers of genetic susceptibility to NSCLC in a Chinese population, and there is a possible gene-gene interaction involved in the incidence of NSCLC.

  19. WDR79 promotes the proliferation of non-small cell lung cancer cells via USP7-mediated regulation of the Mdm2-p53 pathway.

    PubMed

    Sun, Yang; Cao, Lanqin; Sheng, Xunan; Chen, Jieying; Zhou, Yu; Yang, Chao; Deng, Tanggang; Ma, Hongchang; Feng, Peifu; Liu, Jing; Tan, Weihong; Ye, Mao

    2017-04-13

    WD repeat protein 79 (WDR79) is a member of the WD-repeat protein family and functions as a scaffold protein during telomerase assembly, Cajal body formation and DNA double strand break repair. We have previously shown that WDR79 is frequently overexpressed in cell lines and tissues derived from non-small cell lung cancer (NSCLC) and it accelerates cell proliferation in NSCLC. However, the detailed mechanism underlying the role of WDR79 in the proliferation of NSCLC cells remains unclear. Here, we report the discovery of a molecular interaction between WDR79 and USP7 and show its functional significance in linking the Mdm2-p53 pathway to the proliferation of NSCLC cells. We found that WDR79 colocalized and interacted with USP7 in the nucleus of NSCLC cells. This event, in turn, reduced the ubiquitination of Mdm2 and p53, thereby increasing the stability and extending the half-life of the two proteins. We further found that the functional effects of WDR79 depended upon USP7, because the knockdown of USP7 resulted in their attenuation. Finally, we demonstrated that WDR79 promoted the proliferation of NSCLC cells via USP7. Taken together, our findings reveal a novel molecular function of WDR79 and may lead to broadly applicable and innovative therapeutic avenues for NSCLC.

  20. Status of p53, p21, mdm2, pRb proteins, and DNA methylation in gonocytes of control and gamma-irradiated rats during testicular development.

    PubMed

    Moréno, S G; Dutrillaux, B; Coffigny, H

    2001-05-01

    In fetal and newborn rat testes, gonocytes, which stop cycling for about 8 days, become highly radiosensitive. The presence of p53, p21, mdm2, and pRb, which are involved in cell cycle, apoptosis control, or both, were studied by immunohistochemistry to determine if their expression is related to this radiosensitivity. A strong cytoplasmic expression of p53 and p21 was detected. Cytoplasmic expression of p53 occurred only in arrested gonocytes, whereas that of p21 was observed before and after the block. P21 was found to colocalize with mitochondria. No expression of mdm2 was detected and pRb was present only when the gonocytes started cycling again. In animals exposed to 1.5 Gy of gamma-irradiation at Day 19 postcoitum, p53 expression was prolonged in time, whereas no change was observed in p21 amounts and localization, compared with controls. Using antibodies against 5-methyl cytosine, it was shown that gonocyte DNA passed from a hypomethylated to a methylated status 1 day after gonocytes stopped cycling. A prolonged survival of gonocytes after exposure to radiation was followed by their progressive apoptosis, which finally involved the entire gonocyte population between Days 6 and 12 postpartum. The elevated but delayed sensitivity of gonocytes to genotoxic stress may be related to the unusual expression of p53 and p21, which may itself be related to the large DNA methylation changes.

  1. Elucidating the digital control mechanism for DNA damage repair with the p53–Mdm2 system: single cell data analysis and ensemble modelling

    PubMed Central

    Ogunnaike, Babatunde A

    2005-01-01

    Recent experimental evidence about DNA damage response using the p53–Mdm2 system has raised some fundamental questions about the control mechanism employed. In response to DNA damage, an ensemble of cells shows a damped oscillation in p53 expression whose amplitude increases with increased DNA damage—consistent with ‘analogue’ control. Recent experimental results, however, show that the single cell response is a series of discrete pulses in p53; and with increase in DNA damage, neither the height nor the duration of the pulses change, but the mean number of pulses increase—consistent with ‘digital’ control. Here we present a system engineering model that uses published data to elucidate this mechanism and resolve the dilemma of how digital behaviour at the single cell level can manifest as analogue ensemble behaviour. First, we develop a dynamic model of the p53–Mdm2 system that produces non-oscillatory responses to a stress signal. Second, we develop a probability model of the distribution of pulses in a cell population, and combine the two with the simplest digital control algorithm to show how oscillatory responses whose amplitudes grow with DNA damage can arise from single cell behaviour in which each single pulse response is independent of the extent of DNA damage. A stochastic simulation of the hypothesized control mechanism reproduces experimental observations remarkably well. PMID:16849229

  2. Pre-clinical evaluation of the MDM2-p53 antagonist RG7388 alone and in combination with chemotherapy in neuroblastoma.

    PubMed

    Chen, Lindi; Rousseau, Raphaël F; Middleton, Steven A; Nichols, Gwen L; Newell, David R; Lunec, John; Tweddle, Deborah A

    2015-04-30

    Neuroblastoma is a predominantly p53 wild-type (wt) tumour and MDM2-p53 antagonists offer a novel therapeutic strategy for neuroblastoma patients. RG7388 (Roche) is currently undergoing early phase clinical evaluation in adults. This study assessed the efficacy of RG7388 as a single-agent and in combination with chemotherapies currently used to treat neuroblastoma in a panel of neuroblastoma cell lines. RG7388 GI50 concentrations were determined in 21 p53-wt and mutant neuroblastoma cell lines of varying MYCN, MDM2 and p14(ARF) status, together with MYCN-regulatable Tet21N cells. The primary determinant of response was the presence of wt p53, and overall there was a >200-fold difference in RG7388 GI50 concentrations for p53-wt versus mutant cell lines. Tet21N MYCN+ cells were significantly more sensitive to RG7388 compared with MYCN- cells. Using median-effect analysis in 5 p53-wt neuroblastoma cell lines, selected combinations of RG7388 with cisplatin, doxorubicin, topotecan, temozolomide and busulfan were synergistic. Furthermore, combination treatments led to increased apoptosis, as evident by higher caspase-3/7 activity compared to either agent alone. These data show that RG7388 is highly potent against p53-wt neuroblastoma cells, and strongly supports its further evaluation as a novel therapy for patients with high-risk neuroblastoma and wt p53 to potentially improve survival and/or reduce toxicity.

  3. The silence of p66Shc in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway

    PubMed Central

    Zhang, Ling; Zhu, Shengtao; Shi, Xuesen; Sha, Weihong

    2015-01-01

    Colon cancer is the second most common cause of cancer-related death, indicating that some of its cancer cells are not eradicated by current therapies. The previous studies demonstrated that p66Shc protein, a member of Shc family, is highly expressed in colon cancer cells, but the role of p66Shc in the progress of colon cancer still unknown. In this study, we found that p66Shc highly expressed in colon cancer tissue and colon cancer cell line SW620 cells, HCT8 cells, HCT116 cells and CaCO2 cells. The silence of p66Shc in HCT8 cells reduced the proliferation and accelerated the apoptosis, in addition, the expression of pro-apoptotic proteins caspase-3, caspase-9, Bax was enhanced and the expression of anti-apoptotic protein Bcl-2 was declined. Moreover, the cell cycle arrest in G0/G1 phase after HCT8 cells treated with p66Shc siRNA. Furthermore, after HCT8 cells treated with p66Shc siRNA, the phosphorylation of PI3K and AKT was significantly suppressed, and the expression of Mdm-2, a downstream of AKT, was obviously prohibited, while the expression of p53 was enhanced. These results indicate that the silence of p66Shc in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway, it may provide a promising approach to prevent the progress of colon cancer cell. PMID:26464652

  4. The silence of p66(Shc) in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway.

    PubMed

    Zhang, Ling; Zhu, Shengtao; Shi, Xuesen; Sha, Weihong

    2015-01-01

    Colon cancer is the second most common cause of cancer-related death, indicating that some of its cancer cells are not eradicated by current therapies. The previous studies demonstrated that p66(Shc) protein, a member of Shc family, is highly expressed in colon cancer cells, but the role of p66(Shc) in the progress of colon cancer still unknown. In this study, we found that p66(Shc) highly expressed in colon cancer tissue and colon cancer cell line SW620 cells, HCT8 cells, HCT116 cells and CaCO2 cells. The silence of p66(Shc) in HCT8 cells reduced the proliferation and accelerated the apoptosis, in addition, the expression of pro-apoptotic proteins caspase-3, caspase-9, Bax was enhanced and the expression of anti-apoptotic protein Bcl-2 was declined. Moreover, the cell cycle arrest in G0/G1 phase after HCT8 cells treated with p66(Shc) siRNA. Furthermore, after HCT8 cells treated with p66(Shc) siRNA, the phosphorylation of PI3K and AKT was significantly suppressed, and the expression of Mdm-2, a downstream of AKT, was obviously prohibited, while the expression of p53 was enhanced. These results indicate that the silence of p66(Shc) in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway, it may provide a promising approach to prevent the progress of colon cancer cell.

  5. Elucidating the digital control mechanism for DNA damage repair with the p53-Mdm2 system: single cell data analysis and ensemble modelling.

    PubMed

    Ogunnaike, Babatunde A

    2006-02-22

    Recent experimental evidence about DNA damage response using the p53-Mdm2 system has raised some fundamental questions about the control mechanism employed. In response to DNA damage, an ensemble of cells shows a damped oscillation in p53 expression whose amplitude increases with increased DNA damage--consistent with 'analogue' control. Recent experimental results, however, show that the single cell response is a series of discrete pulses in p53; and with increase in DNA damage, neither the height nor the duration of the pulses change, but the mean number of pulses increase--consistent with 'digital' control. Here we present a system engineering model that uses published data to elucidate this mechanism and resolve the dilemma of how digital behaviour at the single cell level can manifest as analogue ensemble behaviour. First, we develop a dynamic model of the p53-Mdm2 system that produces non-oscillatory responses to a stress signal. Second, we develop a probability model of the distribution of pulses in a cell population, and combine the two with the simplest digital control algorithm to show how oscillatory responses whose amplitudes grow with DNA damage can arise from single cell behaviour in which each single pulse response is independent of the extent of DNA damage. A stochastic simulation of the hypothesized control mechanism reproduces experimental observations remarkably well.

  6. Evaluation of TP53 Pro72Arg and MDM2 SNP285-SNP309 polymorphisms in an Italian cohort of LFS suggestive patients lacking identifiable TP53 germline mutations.

    PubMed

    Ponti, Francesca; Corsini, Serena; Gnoli, Maria; Pedrini, Elena; Mordenti, Marina; Sangiorgi, Luca

    2016-10-01

    Li-Fraumeni syndrome (LFS) is a rare genetic cancer predisposition disease, partly determined by the presence of a TP53 germline mutation; lacking thereof, in presence of a typical LFS phenotype, defines a wide group of 'LFS Suggestive' patients. Alternative LFS susceptibility genes have been investigated without promising results, thus suggesting other genetic determinants involvement in cancer predisposition. Hence, this study explores the single and combined effects of cancer risk, age of onset and cancer type of three single nucleotide polymorphisms (SNPs)-TP53 Pro72Arg, MDM2 SNP285 and SNP309-already described as modifiers on TP53 mutation carriers but not properly investigated in LFS Suggestive patients. This case-control study examines 34 Italian LFS Suggestive lacking of germline TP53 mutations and 95 tumour-free subjects. A significant prevalence of homozygous MDM2 SNP309 G in the LFS Suggestive group (p < 0.0005) confirms its contribute to cancer susceptibility, also highlighted in LFS TP53 positive families. Conversely its anticipating role on tumour onset has not been confirmed, as in our results it was associated with the SNP309 T allele. A strong combined outcome with a 'dosage' effect has also been reported for TP53 P72 and MDM2 SNP309 G allele on cancer susceptibility (p < 0.0005). Whereas the MDM2 SNP285 C allele neutralizing effect on MDM2 SNP309 G variant is not evident in our population. Although it needs further evaluations, obtained results strengthen the role of MDM2 SNP309 as a genetic factor in hereditary predisposition to cancer, so improving LFS Suggestive patients management.

  7. Insights into the conformations of three structurally diverse proteins: cytochrome c, p53, and MDM2, provided by variable-temperature ion mobility mass spectrometry.

    PubMed

    Dickinson, Eleanor R; Jurneczko, Ewa; Pacholarz, Kamila J; Clarke, David J; Reeves, Matthew; Ball, Kathryn L; Hupp, Ted; Campopiano, Dominic; Nikolova, Penka V; Barran, Perdita E

    2015-03-17

    Thermally induced conformational transitions of three proteins of increasing intrinsic disorder-cytochrome c, the tumor suppressor protein p53 DNA binding domain (p53 DBD), and the N-terminus of the oncoprotein murine double minute 2 (NT-MDM2)-have been studied by native mass spectrometry and variable-temperature drift time ion mobility mass spectrometry (VT-DT-IM-MS). Ion mobility measurements were carried out at temperatures ranging from 200 to 571 K. Multiple conformations are observable over several charge states for all three monomeric proteins, and for cytochrome c, dimers of significant intensity are also observed. Cytochrome c [M + 5H](5+) ions present in one conformer of CCS ∼1200 Å(2), undergoing compaction in line with the reported Tmelt = 360.15 K before slight unfolding at 571 K. The more extended [M + 7H](7+) cytochrome c monomer presents as two conformers undergoing similar compaction and structural rearrangements, prior to thermally induced unfolding. The [D + 11H](11+) dimer presents as two conformers, which undergo slight structural compaction or annealing before dissociation. p53 DBD follows a trend of structural collapse before an increase in the observed collision cross section (CCS), akin to that observed for cytochrome c but proceeding more smoothly. At 300 K, the monomeric charge states present in two conformational families, which compact to one conformer of CCS ∼1750 Å(2) at 365 K, in line with the low solution Tmelt = 315-317 K. The protein then extends to produce either a broad unresolved CCS distribution or, for z > 9, two conformers. NT-MDM2 exhibits a greater number of structural rearrangements, displaying charge-state-dependent unfolding pathways. DT-IM-MS experiments at 200 K resolve multiple conformers. Low charge state species of NT-MDM2 present as a single compact conformational family centered on CCS ∼1250 Å(2) at 300 K. This undergoes conformational tightening in line with the solution Tmelt = 348 K before unfolding at

  8. Platycodin D, a metabolite of Platycodin grandiflorum, inhibits highly metastatic MDA-MB-231 breast cancer growth in vitro and in vivo by targeting the MDM2 oncogene.

    PubMed

    Kong, Ya; Lu, Zong-Liang; Wang, Jia-Jia; Zhou, Rui; Guo, Jing; Liu, Jie; Sun, Hai-Lan; Wang, He; Song, Wei; Yang, Jian; Xu, Hong-Xia

    2016-09-01

    The objective of the present study was to explore the in vitro and in vivo anticancer effects of Platycodin D (PD), derived from Platycodin grandiflorum, on highly metastatic MDA-MB-231 breast cancer cells. Using the MTT assay, we found that PD inhibited MDA-MB-231 cell growth in a concentration-dependent manner, with an IC50 value of 7.77±1.86 µM. Further studies showed that PD had anti-proliferative effects and induced cell cycle arrest in the G0/G1 phase. To explore the detailed mechanism(s) by which PD suppressed MDA-MB-231 cell growth, western blot analyses were used to detect the expression levels of proteins related to cell proliferation and survival. The data showed that PD decreased the expression of proteins related to the G0/G1 phases, downregulated the protein expression of MDM2, MDMX, and mutant p53, and increased the expression levels of p21 and p27 in vitro. We verified the effects of PD on the expression of MDM2, MDMX, mutant p53, p21 and p27 using a pcDNA3-Flag-MDM2 plasmid and MDM2 siRNA transfection, and found that PD inhibited MDA-MB-231 cell viability by targeting MDM2 and mutant p53. Compared with the corresponding parental cells, the cells with siRNA-MDM2 transfection had a greater decrease in cell viability and proliferation, while those with pcDNA3-MDM2 plasmid transfection did not show any increase in the effects of PD. We also established a MDA-MB-231 xenograft model in BALB/c nude mice, and found that PD significantly inhibited the growth of MDA-MB-231 xenograft tumors in these mice. The expression levels of various proteins in the tumor tissue exhibited changes similar to those observed in vitro. These findings indicate that PD exerted in vitro and in vivo anticancer effects against MDA-MB-231 breast cancer cells, that PD is a potential MDM2/MDMX inhibitor, and that the anticancer effects of PD were likely associated with its inhibition of these proteins. Our observations help to identify a mechanism by which PD functions as

  9. Structural brain correlates of human sleep oscillations.

    PubMed

    Saletin, Jared M; van der Helm, Els; Walker, Matthew P

    2013-12-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Gray matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, gray matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, gray matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure.

  10. The suppression of prostate LNCaP cancer cells growth by Selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis.

    PubMed

    Kong, Ling; Yuan, Qing; Zhu, Huarui; Li, Ying; Guo, Quanyi; Wang, Qin; Bi, Xiaolin; Gao, Xueyun

    2011-09-01

    The trace element Selenium is suggested having cancer prevention activity and used as food supplement. Previous results had shown Selenium nanoparticles are safer compared with other Selenium compounds like selenomethionine, sodium selenite and monomethylated Selenium, however, its anticancer activity and intrinsic mechanisms are still elusive. Here, we prepared Selenium nanoparticles and investigated its inherent anticancer mechanisms. We found Selenium nanoparticles inhibit growth of prostate LNCaP cancer cells partially through caspases mediated apoptosis. Selenium nanoparticles suppress transcriptional activity of androgen receptor via down-regulating its mRNA and protein expression. Moreover, Selenium nanoparticles activate Akt kinase by increasing its phosphorylation, promote Akt-dependent androgen receptor phosphorylation and Mdm2 regulated degradation through proteasome pathway. We suggest Selenium nanoparticles suppress prostate cancer cells growth by disrupting androgen receptor, implicating a potential application in cancer treatment.

  11. TBMS1 exerts its cytotoxicity in NCI-H460 lung cancer cells through nucleolar stress-induced p53/MDM2-dependent mechanism, a quantitative proteomics study.

    PubMed

    Lin, Yingying; Xie, Guobin; Xia, Ji; Su, Dan; Liu, Jie; Jiang, Fuquan; Xu, Yang

    2016-02-01

    Tubeimoside-1 (TBMS1) exerts its anticancer effects by inducing G2/M arrest and apoptosis of cancer cells. However, the precise molecular mechanism of its anti-tumor effects has not been fully elucidated, especially the signaling pathways involved in the early stage of TBMS1 stimulation. In this study, we employed stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics approach and identified 439 proteins that exhibit significant differential expressions in NCI-H460 lung cancer cells upon exposure to TBMS1. Gene ontology and network analysis using DAVID and STRING on-line tools revealed that several nucleolar stress (ribosomal biogenesis) response proteins were differentially regulated by TBMS1. Functional validation demonstrated that TBMS1-induced NCI-H460 cell cytotoxicity involved nucleolar stress-induced p53/murine double minute clone 2 (MDM2), mTOR, and NF-κB signaling pathways.

  12. Giant cell rich osteosarcoma revisited-diagnostic criteria and histopathologic patterns, Ki67, CDK4, and MDM2 expression, changes in response to bisphosphonate and denosumab treatment.

    PubMed

    Chow, Louis Tsun Cheung

    2016-06-01

    Defining giant cell-rich osteosarcoma (GCRO) as "an osteosarcoma in which more than 50% of the tumor consists of numerous uniformly distributed osteoclastic giant cells amidst oval or spindle mononuclear cells embedded in a fibrovascular stroma," eight such cases identified among 265 cases of osteosarcoma were analysed. Their age ranges from 11 to 33 years, with peak incidence in the second decade and equal sex distribution. Seventy-five percent presented with pain, commonest in the knee, affecting the metaphysis. Most appeared radiologically as well-circumscribed expansile multiloculated osteolytic lesions, and many are displayed periosteal reaction. They showed several distinct histologic patterns: the stromal and giant cell, fibrohistiocytic, aneurysmal-cystic, osteoblastoma-like, and parosteal and fibrous dysplasia-like patterns. Focal subtle lacelike osteoid deposition, permeative infiltration into adjacent native bony trabeculae and over 30 % Ki67 proliferative index were characteristic. There was no CDK4 and MDM2 amplification. In those having bisphosphonate and denosumab treatment, there was limited focal necrosis with reduction in the number of giant cells and broad trabecular woven bone formation but no giant osteoclast was seen. Two patients with initial diagnosis of giant cell tumor treated by curettage and local resection pursued aggressive clinical courses, died after 14 and 21 months. The others survived 12 to 110 months. GCRO accounts for about 3 % of all osteosarcomas and apart from its more frequent diaphyseal location and associated normal bone-specific alkaline phosphate levels; it shares with conventional high-grade osteosarcoma the same patient demographics, sites of occurrence, absence of CDK4 and MDM2 amplification, and probably clinical course.

  13. Hemodynamic Correlates of Cognition in Human Infants

    PubMed Central

    Aslin, Richard N.; Shukla, Mohinish; Emberson, Lauren L.

    2015-01-01

    Over the past 20 years, the field of cognitive neuroscience has relied heavily on hemodynamic measures of blood oxygenation in local regions of the brain to make inferences about underlying cognitive processes. These same functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) techniques have recently been adapted for use with human infants. We review the advantages and disadvantages of these two neuroimaging methods for studies of infant cognition, with a particular emphasis on their technical limitations and the linking hypotheses that are used to draw conclusions from correlational data. In addition to summarizing key findings in several domains of infant cognition, we highlight the prospects of improving the quality of fNIRS data from infants to address in a more sophisticated way how cognitive development is mediated by changes in underlying neural mechanisms. PMID:25251480

  14. Protective Roles of Gadd45 and MDM2 in Blueberry Anthocyanins Mediated DNA Repair of Fragmented and Non-Fragmented DNA Damage in UV-Irradiated HepG2 Cells

    PubMed Central

    Liu, Wei; Lu, Xiangyi; He, Guangyang; Gao, Xiang; Xu, Maonian; Zhang, Jingkai; Li, Meiling; Wang, Lifeng; Li, Zhenjing; Wang, Likui; Luo, Cheng

    2013-01-01

    Growth Arrest and DNA Damage-inducible 45 (Gadd45) and MDM2 proteins, together with p21 and p53, play important roles in cell cycle checkpoints, DNA repair, and genome integrity maintenance. Gadd45 and MDM2 were activated and transcribed instantly by UV irradiation, whereas blueberry anthocyanins (BA) decreased the gene and protein expression levels in HepG2 cells for up to 24 h, and gradually restored the UV-induced fragmented and non-fragmented DNA damage of the nucleus at a time point of 12 h. Nevertheless, UV-irradiated HepG2 cell arrests occurred mainly in the G1 phase, which indicated G1 as a checkpoint. The proteins, p21 and p53, retain cellular integrity, suppressing the oncogenic transformation by interruption of the G1 phase of the cellular cycle, giving time for repairing the damage to DNA, or apoptosis induction if the damage is too severe to be repaired, while MDM2 and Gadd45 concomitantly ensure the presence of p53 and p21. Thus, we conclude that repair, together with Gadd45 and MDM2 genes, were involved in light and dark reaction mechanisms, however, BA could interfere and assist the repair through restoration, although further studies of the complex of the gene cascades triggered and responded to in BA-assisted DNA repair are needed. PMID:24177565

  15. Evaluation of MDM2 and CDK4 amplification by real-time PCR on paraffin wax-embedded material: a potential tool for the diagnosis of atypical lipomatous tumours/well-differentiated liposarcomas.

    PubMed

    Hostein, I; Pelmus, M; Aurias, A; Pedeutour, F; Mathoulin-Pélissier, S; Coindre, J M

    2004-01-01

    Atypical lipomatous tumours/well-differentiated liposarcomas and dedifferentiated liposarcomas are characterized by 12q13-15 region amplification. In contrast, this molecular event has not been reported in benign lipomas. Within the 12q13-15 chromosomal region, the MDM2, SAS, HMGA2, and CDK4 genes are the most frequent targets of amplification. A series of lipomas (36 cases) and liposarcomas (48 cases) was analysed for MDM2 and CDK4 gene amplification by real-time PCR. MDM2 and CDK4 gene amplification was detected in 2.8% and 5.6% of lipomas and 98.2% and 82.4% of liposarcomas, respectively. Moreover, co-amplification of the two genes as well as a higher-level amplification was observed more frequently in dedifferentiated liposarcomas than in atypical lipomatous tumours/well-differentiated liposarcomas. Real-time PCR proved to be a fast and reliable method to characterize lipomas and liposarcomas by quantification of MDM2 and CDK4 gene amplification. It is applicable to paraffin wax-embedded tissues and could be useful when histological diagnosis is difficult. Copyright 2004 John Wiley & Sons, Ltd.

  16. Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia.

    PubMed

    Kojima, Kensuke; Konopleva, Marina; McQueen, Teresa; O'Brien, Susan; Plunkett, William; Andreeff, Michael

    2006-08-01

    Although TP53 mutations are rare in B-cell chronic lymphocytic leukemia (CLL), Mdm2 overexpression has been reported as an alternative cause of p53 dysfunction. We investigated the potential therapeutic use of nongenotoxic p53 activation by a small-molecule antagonist of Mdm2, Nutlin-3a, in CLL. Nutlin-3a induced significant apoptosis in 30 (91%) of 33 samples from previously untreated patients with CLL; all resistant samples had TP53 mutations. Low levels of Atm (ataxia telangiectasia mutated) or high levels of Mdm2 (murine double minute 2) did not prevent Nutlin-3a from inducing apoptosis. Nutlin-3a used transcription-dependent and transcription-independent pathways to induce p53-mediated apoptosis. Predominant activation of the transcription-independent pathway induced more pronounced apoptosis than that of the transcription-dependent pathway, suggesting that activation of the transcription-independent pathway is sufficient to initiate p53-mediated apoptosis in CLL. Combination treatment of Nutlin-3a and fludarabine synergistically increased p53 levels, and induced conformational change of Bax and apoptosis in wild-type p53 cells but not in cells with mutant p53. The synergistic apoptotic effect was maintained in samples with low Atm that were fludarabine resistant. Results suggest that the nongenotoxic activation of p53 by targeting the Mdm2-p53 interaction provides a novel therapeutic strategy for CLL.

  17. Do CDKN2 p16 540 C>G, CDKN2 p16 580 C>T, and MDM2 SNP309 T>G gene variants act on colorectal cancer development or progression?

    PubMed

    Tuna, Gülay; Küçükhüseyin, Ozlem; Arıkan, Soykan; Kaytan Sağlam, Esra; Güler, Erkan; Cacına, Canan; Oztop, Ozge; Turan, Saime; Korkmaz, Gurbet; Yaylım, Ilhan

    2013-07-01

    CDNK2 p16 plays a pivotal role in G1/S transition by regulating the p53 pathway, which was regulated by a nuclear oncoprotein, mouse double minute 2 (MDM2). Overexpression of the MDM2 gene has been shown in a number of tumor types, its gene amplification is found to associate with accelerated tumor development and failure to treatment in both hereditary and sporadic cancers. Although genetic association studies have revealed the relationship between certain genetic polymorphisms and genes that play important roles in the development and progression of colorectal cancer (CRC), it is still unknown. Therefore, the polymorphisms of p16 540 C>G, 580 C>T, and MDM2 SNP309 T>G designed to investigate the risk of CRC development and progression in a Turkish population. We enrolled 87 patients with CRC and 75 healthy controls into the study. Genotypings were determined using polymerase chain reaction-restriction fragment length polymorphism techniques. Genotype distributions of p16 540 C>G and 580 C>T were found in agreement with the Hardy-Weinberg equilibrium in patients and controls. MDM2 SNP309 T>G was found in agreement with the Hardy-Weinberg equilibrium in controls, but not in patients. The results of our study, the G allele of p16 540 C>G and GG genotype of MDM2 SNP309 T>G were found significantly lower in patients compared with controls (p<0.001, p<0.05, respectively). Haplotype analyses have shown that the C allele of both the CDKN2 p16 540 C>G and 580 C>T variants together indicate a risk haplotype for the patient group; besides, carrying the G allele of p16 540 and G allele of MDM2 also seems a risk haplotype for the patient group. Our study is the first study that investigates the relationship among variants of CDKN2 p16 540 C>G, 580 C>T, and MDM2 SNP309 T>G risk of CRC and the development and progression in the Turkish population.

  18. Structural Brain Correlates of Human Sleep Oscillations

    PubMed Central

    Saletin, Jared M.; van der Helm, Els; Walker, Matthew P.

    2014-01-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Grey matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, grey matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, grey matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure. PMID:23770411

  19. Tryptophan in human hair: correlation with pigmentation.

    PubMed

    Bertazzo, A; Biasiolo, M; Costa, C V; Cardin de Stefani, E; Allegri, G

    2000-08-01

    The distribution of tryptophan content in human hair of various colours was evaluated, in order to study the accumulation of this amino acid, precursor of serotonin, melatonin and niacin, in hair and the influence on hair pigmentation. Pigmentation is an important factor in determining drug incorporation into hair. Results from 1211 samples of hair from healthy subjects (577 men and 634 women) show that tryptophan levels are significantly higher in males (37.83 +/- 3.45 microg/g dry hair) than in females (26.62 +/- 2.40 microg/g hair). Besides sex, age also influences the distribution of tryptophan in human hair, the highest levels being found in both sexes in the first few years of life, probably due to the influence of milk, and in aging subjects in the groups of 61-80 and > 80 years. In order to investigate the influence of hair colour, hair samples were subdivided according to colour into blond, dark blond, red, light brown, brown, black, grey and white. The hair contents of tryptophan in both sexes was higher in brown and black hair than in blond hair, but in grey and white hair concentrations were the highest, demonstrating that tryptophan accumulates among hair fibres with age. Grouping subjects by age in relation to hair colour, we observed that at ages 1-5 and 6-12 years, colour did not influence tryptophan contents, but at ages 13-19 and 20-40 years tryptophan content increased significantly from blond to brown at 13-19 years and from blond to black at 20-40 years in both sexes. Therefore, variations in tryptophan levels of human hair appear to be correlated with differences in hair colour in both sexes. Tryptophan also accumulates in hair during keratinization, as shown by the presence of high levels of this amino acid in grey and white hair.

  20. Sensitization of Prostate Cancer Cells to Androgen Deprivation and Radiation Via Manipulation of the MDM2 Pathway

    DTIC Science & Technology

    2006-04-01

    C Jr, et al. E2F-1 gene therapy induces apoptosis and increases chemosensitivity in human pancreatic carcinoma cells. Tumour Biol 2002;23:76– 86. 6...35following standard radiation therapy for unfavorable prognosis carcinoma of the prostate. Int J Radiat Oncol Biol Phys 2001;49:937– 946 . 8. Hanks GE

  1. Combined inhibition of AKT/mTOR and MDM2 enhances Glioblastoma Multiforme cell apoptosis and differentiation of cancer stem cells

    PubMed Central

    Daniele, Simona; Costa, Barbara; Zappelli, Elisa; Da Pozzo, Eleonora; Sestito, Simona; Nesi, Giulia; Campiglia, Pietro; Marinelli, Luciana; Novellino, Ettore; Rapposelli, Simona; Martini, Claudia

    2015-01-01

    The poor prognosis of Glioblastoma Multiforme (GBM) is due to a high resistance to conventional treatments and to the presence of a subpopulation of glioma stem cells (GSCs). Combination therapies targeting survival/self-renewal signals of GBM and GSCs are emerging as useful tools to improve GBM treatment. In this context, the hyperactivated AKT/mammalian target of the rapamycin (AKT/mTOR) and the inhibited wild-type p53 appear to be good candidates. Herein, the interaction between these pathways was investigated, using the novel AKT/mTOR inhibitor FC85 and ISA27, which re-activates p53 functionality by blocking its endogenous inhibitor murine double minute 2 homologue (MDM2). In GBM cells, FC85 efficiently inhibited AKT/mTOR signalling and reactivated p53 functionality, triggering cellular apoptosis. The combined therapy with ISA27 produced a synergic effect on the inhibition of cell viability and on the reactivation of p53 pathway. Most importantly, FC85 and ISA27 blocked proliferation and promoted the differentiation of GSCs. The simultaneous use of these compounds significantly enhanced GSC differentiation/apoptosis. These findings suggest that FC85 actively enhances the downstream p53 signalling and that a combination strategy aimed at inhibiting the AKT/mTOR pathway and re-activating p53 signalling is potentially effective in GBM and in GSCs. PMID:25898313

  2. Prognostic relevance of Fédération Nationale des Centres de Lutte Contre le Cancer grade and MDM2 amplification levels in dedifferentiated liposarcoma: a study of 50 cases.

    PubMed

    Jour, George; Gullet, Ashley; Liu, Mingdong; Hoch, Benjamin L

    2015-01-01

    Dedifferentiated liposarcoma represents a form of liposarcoma composed of a non-lipogenic sarcoma associated with well-differentiated liposarcoma. The prognostic significance of histological grading of the dedifferentiated component remains to be elucidated due to vague grading criteria employed in previous studies. Molecular markers of tumor behavior, including amplification levels of murine double minute-2 (MDM2) and cyclin-dependent kinase-4 (CDK4) genes, have been explored in a limited number of cases. Here we investigate whether 'Fédération Nationale des Centres de Lutte Contre le Cancer' (FNCLCC) grade and MDM2 gene amplification levels have prognostic value in dedifferentiated liposarcoma in terms of local recurrence and disease-specific survival. Fifty cases were retrieved, reviewed and FNCLCC grade was scored for the dedifferentiated component. Testing for MDM2 gene amplification was performed by fluorescence in situ hybridization. Amplification was categorized as high level (≥20 copies) and as low level (<20 copies). Follow-up data was obtained through chart review. Log-rank test and Cox proportional hazard models were used to determine the effect of grade and level of MDM2 amplification on outcomes. Our series includes 50 patients (male n=28, female n=22) with an average age of 63 years (range, 28-88) and a median follow-up of 28 months (range, 2-120). Tumors were graded as grade 1 (6%), grade 2 (58%), and grade 3 (36%). When adjusted for age, sex, site, tumor size, and margin status, grade 3 patients had a higher recurrence rate than grades 1 and 2 (HR=2.07, 95% CI: 1.24, 7.62; P=0.015). Patients with high-level MDM2 amplification had higher recurrence rate on univariate analysis (P=0.028), but not on multivariate analysis (HR=1.69, 95% CI: 0.73, 3.94; P=0.221). FNCLCC grade 3 dedifferentiation confers a worse prognosis in dedifferentiated liposarcoma in terms of local recurrence. MDM2 amplification level remains a useful diagnostic tool in

  3. Efficient Atomistic Simulation of Pathways and Calculation of Rate Constants for a Protein-Peptide Binding Process: Application to the MDM2 Protein and an Intrinsically Disordered p53 Peptide.

    PubMed

    Zwier, Matthew C; Pratt, Adam J; Adelman, Joshua L; Kaus, Joseph W; Zuckerman, Daniel M; Chong, Lillian T

    2016-09-01

    The characterization of protein binding processes - with all of the key conformational changes - has been a grand challenge in the field of biophysics. Here, we have used the weighted ensemble path sampling strategy to orchestrate molecular dynamics simulations, yielding atomistic views of protein-peptide binding pathways involving the MDM2 oncoprotein and an intrinsically disordered p53 peptide. A total of 182 independent, continuous binding pathways were generated, yielding a kon that is in good agreement with experiment. These pathways were generated in 15 days using 3500 cores of a supercomputer, substantially faster than would be possible with "brute force" simulations. Many of these pathways involve the anchoring of p53 residue F19 into the MDM2 binding cleft when forming the metastable encounter complex, indicating that F19 may be a kinetically important residue. Our study demonstrates that it is now practical to generate pathways and calculate rate constants for protein binding processes using atomistic simulation on typical computing resources.

  4. Automated Essay Scoring versus Human Scoring: A Correlational Study

    ERIC Educational Resources Information Center

    Wang, Jinhao; Brown, Michelle Stallone

    2008-01-01

    The purpose of the current study was to analyze the relationship between automated essay scoring (AES) and human scoring in order to determine the validity and usefulness of AES for large-scale placement tests. Specifically, a correlational research design was used to examine the correlations between AES performance and human raters' performance.…

  5. Synergistic effects of p53 activation via MDM2 inhibition in combination with inhibition of Bcl-2 or Bcr-Abl in CD34+ proliferating and quiescent chronic myeloid leukemia blast crisis cells.

    PubMed

    Carter, Bing Z; Mak, Po Yee; Mak, Duncan H; Ruvolo, Vivian R; Schober, Wendy; McQueen, Teresa; Cortes, Jorge; Kantarjian, Hagop M; Champlin, Richard E; Konopleva, Marina; Andreeff, Michael

    2015-10-13

    The Bcr-Abl tyrosine kinase regulates several Bcl-2 family proteins that confer resistance to apoptosis in chronic myeloid leukemia (CML) cells. Given p53's ability to modulate the expression and activity of Bcl-2 family members, we hypothesized that targeting Bcr-Abl, Bcl-2, and p53 concomitantly could have therapeutic benefits in blast crisis (BC) CML and in quiescent CML CD34+ cells that are insensitive to tyrosine kinase inhibitors (TKI). We examined the effects of the MDM2 inhibitor nutlin3a and its combination with the dual Bcl-2 and Bcl-xL inhibitor ABT-737, and the Bcr-Abl inhibitor nilotinib on BC CML patient samples. We found that in quiescent CD34+ progenitors, p53 expression is significantly lower, and MDM2 is higher, compared to their proliferating counterparts. Treatment with nutlin3a induced apoptosis in bulk and CD34+CD38- cells, and in both proliferating and quiescent CD34+ progenitor CML cells. Nutlin3a synergized with ABT-737 and nilotinib, in part by inducing pro-apoptotic, and suppressing anti-apoptotic, Bcl-2 proteins. Nilotinib inhibited the expression of Bcl-xL and Mcl-1 in BC CML cells. These results demonstrate that p53 activation by MDM2 blockade can sensitize BC CML cells, including quiescent CD34+ cells, to Bcl-2 inhibitor- and TKI-induced apoptosis. This novel strategy could be useful in the therapy of BC CML.

  6. Patterns of interhemispheric correlation during human communication.

    PubMed

    Grinberg-Zylberbaum, J; Ramos, J

    1987-09-01

    Correlation patterns between the electroencephalographic activity of both hemispheres in adult subjects were obtained. The morphology of these patterns for one subject was compared with another subject's patterns during control situations without communication, and during sessions in which direct communication was stimulated. Neither verbalization nor visual or physical contact are necessary for direct communication to occur. The interhemispheric correlation patterns for each subject were observed to become similar during the communication sessions as compared to the control situations. These effects are not due to nonspecific factors such as habituation or fatigue. The results support the syntergic theory proposed by one of the authors (Grinberg-Zylberbaum).

  7. Association of genetic polymorphisms in GADD45A, MDM2, and p14{sup ARF} with the risk of chronic benzene poisoning in a Chinese occupational population

    SciTech Connect

    Sun Pin; Zhang Zhongbin; Wan Junxiang; Zhao Naiqing; Jin Xipeng; Xia Zhaolin

    2009-10-01

    Benzene reactive metabolites can lead to DNA damage and trigger the p53-dependent defense responses to maintain genomic stability. We hypothesized that the p53-dependent genes may play a role in the development of chronic benzene poisoning (CBP). In a case-control study of 303 patients with benzene poisoning and 295 workers occupationally exposed to benzene in south China, we investigated associations between the risk of CBP and polymorphisms in three p53-dependent genes. Potential interactions of these polymorphisms with lifestyle factors were also explored. We found p14{sup ARF} rs3731245 polymorphism was associated with risk of CBP (P = 0.014). Compared with those carrying the GG genotype, individuals carrying p14{sup ARF} rs3731245 GA+AA genotypes had a reduced risk of CBP ([adjusted odds ratio (OR{sub adj}) = 0.57, 95%CI = 0.36-0.89]. Further analysis showed p14{sup ARF} TGA/TAG diplotype was associated with an increased risk of CBP (P = 0.0006), whereas p14{sup ARF} TGG/TAA diplotype was associated with a decreased risk of CBP (P = 0.0000001). In addition, we found individuals carrying both MDM2 Del1518 WW genotype and p14{sup ARF} rs3731245 GA+AA genotypes had a lower risk of CBP (OR{sub adj} = 0.25; 95%CI = 0.10-0.62; P = 0.003). Although these results require confirmation and extension, our findings suggest that genetic polymorphisms in p14{sup ARF} may have an impact on the risk of CBP in the study population.

  8. Multiple B-vitamin inadequacy amplifies alterations induced by folate depletion in p53 expression and its downstream effector MDM2

    PubMed Central

    Liu, Zhenhua; Choi, Sang-Woon; Crott, Jimmy W.; Smith, Donald E.; Mason, Joel B.

    2009-01-01

    Folate is required for biological methylation and nucleotide synthesis, aberrations of which are thought to be the mechanisms that enhance colorectal carcinogenesis produced by folate inadequacy. These functions of folate also depend on the availability of other B-vitamins that participate in “one-carbon metabolism,” including B2, B6 and B12. Our study therefore investigated whether combined dietary restriction of these vitamins amplifies aberrations in the epigenetic and genetic integrity of the p53 gene that is induced by folate depletion alone. Ninety-six mice were group pair-fed diets with different combinations of B-vitamin depletion over 10 weeks. DNA and RNA were extracted from epithelial cells isolated from the colon. Within the hypermutable region of p53 (exons 5–8), DNA strand breaks were induced within exons 6 and 8 by folate combined with B2, B6 and B12 restriction (p < 0.05); such effects were not significantly induced by mild folate depletion alone. Similarly, a minor degree of hypomethylation of exon 6 produced by isolated folate depletion was significantly amplified (p ≤ 0.05) by simultaneous depletion of all 4 B-vitamins. Furthermore, the expression of p53 and MDM2 were significantly decreased (p ≤ 0.05) by the combined depletion state but not by folate depletion alone. These data indicate that inadequacies of other 1-carbon vitamins may amplify aberrations of the p53 gene induced by folate depletion alone, implying that concurrent inadequacies in several of these vitamins may have added tumorigenic potential beyond that observed with isolated folate depletion. PMID:18498130

  9. Neural correlates of human body perception.

    PubMed

    Aleong, Rosanne; Paus, Tomás

    2010-03-01

    The objective of this study was to investigate potential sex differences in the neural response to human bodies using fMRI carried out in healthy young adults. We presented human bodies in a block-design experiment to identify body-responsive regions of the brain, namely, extrastriate body area (EBA) and fusiform body area (FBA). In a separate event-related "adaptation" experiment, carried out in the same group of subjects, we presented sets of four human bodies of varying body size and shape. Varying levels of body morphing were introduced to assess the degree of morphing required for adaptation release. Analysis of BOLD signal in the block-design experiment revealed significant Sex x Hemisphere interactions in the EBA and the FBA responses to human bodies. Only women showed greater BOLD response to bodies in the right hemisphere compared with the left hemisphere for both EBA and FBA. The BOLD response in right EBA was higher in women compared with men. In the adaptation experiment, greater right versus left hemisphere response for EBA and FBA was also identified among women but not men. These findings are particularly novel in that they address potential sex differences in the lateralization of EBA and FBA responses to human body images. Although previous studies have found some degree of right hemisphere dominance in body perception, our results suggest that such a functional lateralization may differ between men and women.

  10. Genomic correlates of atherosclerosis in ancient humans.

    PubMed

    Zink, Albert; Wann, L Samuel; Thompson, Randall C; Keller, Andreas; Maixner, Frank; Allam, Adel H; Finch, Caleb E; Frohlich, Bruno; Kaplan, Hillard; Lombardi, Guido P; Sutherland, M Linda; Sutherland, James D; Watson, Lucia; Cox, Samantha L; Miyamoto, Michael I; Narula, Jagat; Stewart, Alexandre F R; Thomas, Gregory S; Krause, Johannes

    2014-06-01

    Paleogenetics offers a unique opportunity to study human evolution, population dynamics, and disease evolution in situ. Although histologic and computed x-ray tomographic investigations of ancient mummies have clearly shown that atherosclerosis has been present in humans for more than 5,000 years, limited data are available on the presence of genetic predisposition for cardiovascular disease in ancient human populations. In a previous whole-genome study of the Tyrolean Iceman, a 5,300-year-old glacier mummy from the Alps, an increased risk for coronary heart disease was detected. The Iceman's genome revealed several single nucleotide polymorphisms that are linked with cardiovascular disease in genome-wide association studies. Future genetic studies of ancient humans from various geographic origins and time periods have the potential to provide more insights into the presence and possible changes of genetic risk factors in our ancestors. The study of ancient humans and a better understanding of the interaction between environmental and genetic influences on the development of heart diseases may lead to a more effective prevention and treatment of the most common cause of death in the modern world.

  11. Modeling correlated human dynamics with temporal preference

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhou, Tao; Han, Xiao-Pu; Wang, Bing-Hong

    2014-03-01

    We empirically study the activity pattern of individual blog-posting and observe the interevent time distributions decay as power-laws at both individual and population level. As different from previous studies, we find significant short-term memory in it. Moreover, the memory coefficient first decays in a power law and then turns to an exponential form. Our findings produce evidence for the strong short-term memory in human dynamics and challenge previous models. Accordingly, we propose a simple model based on temporal preference, which can well reproduce both the heavy-tailed nature and the strong memory effects. This work helps in understanding the temporal regularities of online human behaviors.

  12. Frequency and Correlation of Nearest Neighboring Nucleotides in Human Genome

    NASA Astrophysics Data System (ADS)

    Jin, Neng-zhi; Liu, Zi-xian; Qiu, Wen-yuan

    2009-02-01

    Zipf's approach in linguistics is utilized to analyze the statistical features of frequency and correlation of 16 nearest neighboring nucleotides (AA, AC, AG, ..., TT) in 12 human chromosomes (Y, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, and 12). It is found that these statistical features of nearest neighboring nucleotides in human genome: (i) the frequency distribution is a linear function, and (ii) the correlation distribution is an inverse function. The coefficients of the linear function and inverse function depend on the GC content. It proposes the correlation distribution of nearest neighboring nucleotides for the first time and extends the descriptor about nearest neighboring nucleotides.

  13. Animal versus human oral drug bioavailability: do they correlate?

    PubMed

    Musther, Helen; Olivares-Morales, Andrés; Hatley, Oliver J D; Liu, Bo; Rostami Hodjegan, Amin

    2014-06-16

    Oral bioavailability is a key consideration in development of drug products, and the use of preclinical species in predicting bioavailability in human has long been debated. In order to clarify whether any correlation between human and animal bioavailability exist, an extensive analysis of the published literature data was conducted. Due to the complex nature of bioavailability calculations inclusion criteria were applied to ensure integrity of the data. A database of 184 compounds was assembled. Linear regression for the reported compounds indicated no strong or predictive correlations to human data for all species, individually and combined. The lack of correlation in this extended dataset highlights that animal bioavailability is not quantitatively predictive of bioavailability in human. Although qualitative (high/low bioavailability) indications might be possible, models taking into account species-specific factors that may affect bioavailability are recommended for developing quantitative prediction.

  14. Acoustic correlates of human responses to domestic cat (feliscatus) vocalizations

    NASA Astrophysics Data System (ADS)

    Nicastro, Nicholas

    2002-05-01

    As part of ongoing research on coevolution of vocal communication between humans and domestic cats, perceptual data were collected on participants as they listened to recorded cat vocalizations. In experiment 1, human subjects were asked to rate the pleasantness of 100 meows along a 7-point scale, from most to least pleasant. In experiment 2, a different group of participants was asked to rate the urgency of the same meows along a 7-point scale, from most to least urgent. Linear regression analysis of the results showed a strong inverse correlation between pleasantness and urgency. Acoustic correlates of pleasantness included reduced frequency modulation, a downward shift in fundamental frequency, and fewer noisy segments. Correlates of urgency included increased duration, higher Wiener entropy, and acute spectral tilt. It is speculated that humans' affective responses to these acoustic qualities, in conjunction with contextual cues, may form the basis of the communication of more specific meanings by cats to humans.

  15. Correlation between carcinogenic potency of chemicals in animals and humans

    SciTech Connect

    Allen, B.C.; Crump, K.S.; Shipp, A.M.

    1988-12-01

    Twenty-three chemicals were selected for comparison of the carcinogenic potencies estimated from epidemiological data to those estimated from animal carcinogenesis bioassays. The chemicals were all those for which reasonably strong evidence of carcinogenicity could be found in humans or animals and for which suitable data could be obtained for quantifying carcinogenic potencies in both humans and animals. Many alternative methods of analyzing the bioassay data were investigated. Almost all of the methods yielded potency estimates that were highly correlated with potencies estimated from epidemiological data; correlations were highly statistically significant (p < 0.001), with the corresponding correlation coefficients ranging as high as 0.9. These findings provide support for the general use of animal data to evaluate carcinogenic potential in humans and also for the use of animal data to quantify human risk.

  16. Correlation between three color coordinates of human teeth.

    PubMed

    Lee, Yong-Keun

    2014-11-01

    The objective was to determine whether there were significant correlations in the three color coordinates within each of two color coordinate systems, such as the Commission Internationale de l’Eclairage (CIE) L*a*b* system, and the lightness, chroma, and hue angle system, of human vital teeth. The color of six maxillary and six mandibular anterior teeth was measured by the Shade Vision System. Pearson correlations between each pair of the color coordinates were determined (α=0.01 ). The influence of two color coordinates on the other color coordinate was determined with a multiple regression analysis (α=0.01 ). Based on correlation analyses, all the color coordinate pairs showed significant correlations except for the chroma and hue angle pair. The CIE L* was negatively correlated with the CIE a*,b*, and chroma, but positively correlated with the hue angle. The CIE a* was positively correlated with the CIE b* and chroma. Tooth color coordinates were correlated each other. Lighter teeth were less chromatic both in the CIE a* and b* coordinates. Therefore, it was postulated that the three color coordinates of human teeth were harmonized within certain color attribute ranges, and a lack of correlations in these coordinates might indicate external/internal discolorations and/or anomalies of teeth.

  17. Human monoamine oxidase. Lack of brain and platelet correlation.

    PubMed

    Young, W F; Laws, E R; Sharbrough, F W; Weinshilboum, R M

    1986-06-01

    Monoamine oxidase (MAO) exists in two forms, MAO A and MAO B. Both are present in human brain, but the human platelet contains only MAO B. We studied whether individual variations in the activity of human platelet MAO B reflect individual variations in cerebral cortical MAO activities. Optimal conditions were determined for the measurement of MAO activities in both the platelet and cerebral cortex, obtained from 14 patients with epilepsy during clinically indicated neurosurgery. There was no significant correlation between the activities of MAO B in the cerebral cortex and platelets of these patients. Platelet MAO B activities also failed to correlate significantly with cerebral cortical MAO A activities. However, there was a significant positive correlation between cerebral cortical MAO A and MAO B activities. Individual variations in platelet MAO B activities do not reflect individual variations in either cerebral cortical MAO B or MAO A activities in patients with epilepsy who undergo neurosurgery.

  18. Electrophysiological Correlates of Vernier Acuity in Human Visual Cortex.

    DTIC Science & Technology

    1984-04-28

    RD-A146 533 ELECTROPHYSIOLOGICAL CORRELATES OF VERNIER ACUITY IN 1/2 HUMAN VISUAL CORTEX(U) ARMY MILITARY PERSONNEL CENTER ALEXANDRIA YA R ZRK 28 APR...CORRELATES OF VERNIER 28 APRIL 84 ACUITY IN HUMAN VISUAL CORTEX - 9. PERFORMING ORG. REPORT NUMBER T . AUTHO~’a) S. CONTRACT OR GRANT NUMBER(&) Zak, Richard...number) *Vernier acuity- Vision- Perception- Visual Evoked Potentials 06A ACT (001mm on powawO slab If aeeeW MA fdmtltF by *look number) C A three part

  19. Correlations between selected parameters of the human skull and orbit.

    PubMed

    Nitek, Stanisław; Wysocki, Jarosław; Reymond, Jerzy; Piasecki, Karol

    2009-12-01

    Correlations between selected metric parameters of the human skull and the orbit should be useful for anticipating probable dimensions of the orbit in living subjects. One hundred human skulls derived from medieval cemeteries in Poland and 20 additional contemporary skulls were investigated. Measurements were made with anthropometric caliper, vernier caliper and lead. For orbit depth, orbital coefficient was negatively correlated with the width and length coefficient of the skull, but skull length was positively correlated. The minimal distance between the anterior lacrimal crest and the optic canal had a positive correlation with the skull length and a negative correlation with the orbital coefficient. The distance between the fronto-zygomatic suture and the optic canal had a positive correlation with skull height and with orbit width. The distance between the infraorbital foramen and the optic canal had a negative correlation with the orbital coefficient. Empirical formulas were derived on the basis of the calculated means. These formulas allow prediction of the distances between important orbital structures and topographical points at the orbital entrance, based on skull dimensions which are easily measurable intravitally. We conclude that the actual distances inside the orbit can be determined on the basis of gender, length and height of the skull, the width of the orbit, and the orbital coefficient.

  20. Responses to interocular disparity correlation in the human cerebral cortex

    PubMed Central

    Ip, Ifan Betina; Minini, Loredana; Dow, James; Parker, Andrew J; Bridge, Holly

    2014-01-01

    Purpose Perceiving binocular depth relies on the ability of our visual system to precisely match corresponding features in the left and right eyes. Yet how the human brain extracts interocular disparity correlation is poorly understood. Methods We used functional magnetic resonance imaging (fMRI) to characterize brain regions involved in processing interocular disparity correlation. By varying the amount of interocular correlation of a disparity-defined random-dot-stereogram, we concomitantly controlled the perception of binocular depth and measured the percent Blood-Oxygenation-Level-Dependent (%BOLD)-signal in multiple regions-of-interest in the human occipital cortex and along the intra-parietal sulcus. Results A linear support vector machine classification analysis applied to cortical responses showed patterns of activation that represented different disparity correlation levels within regions-of-interest in the visual cortex. These also revealed a positive trend between the difference in disparity correlation and classification accuracy in V1, V3 and lateral occipital cortex. Classifier performance was significantly related to behavioural performance in dorsal visual area V3. Cortical responses to random-dot-stereogram stimuli were greater in the right compared to the left hemisphere. Conclusions Our results show that multiple regions in the cerebral cortex are sensitive to changes in interocular disparity correlation, and that dorsal area V3 may play an important role in the early transformation of binocular disparity to depth perception. PMID:24588533

  1. Isovaleric acid in stool correlates with human depression.

    PubMed

    Szczesniak, Olga; Hestad, Knut A; Hanssen, Jon Fredrik; Rudi, Knut

    2016-09-01

    Human depression is a major burden, both on the individuals who suffer from the disease and on society at large. Traditionally, depression has been linked to psychological and biological causes, but there has been increasing interest in the gut-brain axis. In this regard, we have recently shown that specific bacteria are correlated with human depression, and we hypothesize that volatile fatty acids (VFAs) are mediators. Here, we analyzed the direct correlation between VFAs, depression and cortisol in a cohort consisting of 34 depressed patients and 17 controls. We found statistically significant correlations between depression and the VFA isovaleric acid, as well as between isovaleric acid and cortisol. Furthermore, bacteria that previously have been identified as being correlated with depression were also correlated with isovaleric acid. Isovaleric acid showed a bimodal distribution in which the depressed patients were overrepresented in the high level group (P < 0.00005, binominal test). It has recently been shown that gut-derived VFAs can cross the blood-brain barrier, where isovaleric acid interferes with synaptic neurotransmitter release. The multiple correlation patterns, in addition to a potential mechanistic model, point towards a potential causal relationship between depression and isovaleric acid.

  2. [Correlation between heel vessel and human balance function].

    PubMed

    Tian, Hui; Bian, Di; Sui, Yuejiao; Ren, Lu; Ma, Tieming

    2015-04-01

    The heel vessel belongs to the eight extra meridians in human meridian system, which is closely related to the human motion function. Balance function plays an essential role in successful completion of activities in daily life, so the physiological function and pathology of heel vessel as well as human balance function are analyzed, and from the aspect of running course of heel vessel and syndrome, the correlation between heel vessel and human balance function is explored, and the application status of acupoints related to heel vessel for balance dysfunction is introduced. It is believed that heel vessel is closely related to human balance function, especially the motion regulation mechanisms of balance function, and it is hoped that new ideas and methods can be provided for acupuncture treatment for the balance function disorders.

  3. Neural correlate of human reciprocity in social interactions.

    PubMed

    Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji

    2013-01-01

    Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions.

  4. Neural correlate of human reciprocity in social interactions

    PubMed Central

    Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji

    2013-01-01

    Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions

  5. Discovery of 4-((3'R,4'S,5'R)-6″-Chloro-4'-(3-chloro-2-fluorophenyl)-1'-ethyl-2″-oxodispiro[cyclohexane-1,2'-pyrrolidine-3',3″-indoline]-5'-carboxamido)bicyclo[2.2.2]octane-1-carboxylic Acid (AA-115/APG-115): A Potent and Orally Active Murine Double Minute 2 (MDM2) Inhibitor in Clinical Development.

    PubMed

    Aguilar, Angelo; Lu, Jianfeng; Liu, Liu; Du, Ding; Bernard, Denzil; McEachern, Donna; Przybranowski, Sally; Li, Xiaoqin; Luo, Ruijuan; Wen, Bo; Sun, Duxin; Wang, Hengbang; Wen, Jianfeng; Wang, Guangfeng; Zhai, Yifan; Guo, Ming; Yang, Dajun; Wang, Shaomeng

    2017-04-13

    We previously reported the design of spirooxindoles with two identical substituents at the carbon-2 of the pyrrolidine core as potent MDM2 inhibitors. In this paper we describe an extensive structure-activity relationship study of this class of MDM2 inhibitors, which led to the discovery of 60 (AA-115/APG-115). Compound 60 has a very high affinity to MDM2 (Ki < 1 nM), potent cellular activity, and an excellent oral pharmacokinetic profile. Compound 60 is capable of achieving complete and long-lasting tumor regression in vivo and is currently in phase I clinical trials for cancer treatment.

  6. Correlation between the human fecal microbiota and depression.

    PubMed

    Naseribafrouei, A; Hestad, K; Avershina, E; Sekelja, M; Linløkken, A; Wilson, R; Rudi, K

    2014-08-01

    Depression is a chronic syndrome with a pathogenesis linked to various genetic, biological, and environmental factors. Several links between gut microbiota and depression have been established in animal models. In humans, however, few correlations have yet been demonstrated. The aim of our work was therefore to identify potential correlations between human fecal microbiota (as a proxy for gut microbiota) and depression. We analyzed fecal samples from 55 people, 37 patients, and 18 non-depressed controls. Our analyses were based on data generated by Illumina deep sequencing of 16S rRNA gene amplicons. We found several correlations between depression and fecal microbiota. The correlations, however, showed opposite directions even for closely related Operational Taxonomic Units (OTU's), but were still associated with certain higher order phylogroups. The order Bacteroidales showed an overrepresentation (p = 0.05), while the family Lachnospiraceae showed an underrepresentation (p = 0.02) of OTU's associated with depression. At low taxonomic levels, there was one clade consisting of five OTU's within the genus Oscillibacter, and one clade within Alistipes (consisting of four OTU's) that showed a significant association with depression (p = 0.03 and 0.01, respectively). The Oscillibacter type strain has valeric acid as its main metabolic end product, a homolog of neurotransmitter GABA, while Alistipes has previously been shown to be associated with induced stress in mice. In conclusion, the taxonomic correlations detected here may therefore correspond to mechanistic models. © 2014 John Wiley & Sons Ltd.

  7. Correlation between tryptophan and hair pigmentation in human hair.

    PubMed

    Biasiolo, M; Bertazzo, A; Costa, C V; Allegri, G

    1999-01-01

    The concentration of tryptophan in human hair of various colours is determined in order to study their correlation with hair pigmentation. The mean levels of this amino acid in hair samples are higher in men than in women. Therefore, sex influences the content of tryptophan in human hair. In addition, age influences the distribution, the highest levels are observed in the 1-5 year age-group and in ageing subjects in the groups up to 61-80 years in both sexes. The hair samples subdivided, according the colour, into blond, dark blond, red, light brown, brown, black, grey, and white demonstrate that in both sexes the concentrations of tryptophan are higher in brown and black hair than in blond hair. However, the tryptophan levels are highest in grey and white hair, showing that tryptophan accumulates among hair fibres with age. Therefore, there is a correlation between tryptophan content and hair pigmentation.

  8. Human Cortical Traveling Waves: Dynamical Properties and Correlations with Responses

    PubMed Central

    Patten, Timothy M.; Rennie, Christopher J.; Robinson, Peter A.; Gong, Pulin

    2012-01-01

    The spatiotemporal behavior of human EEG oscillations is investigated. Traveling waves in the alpha and theta ranges are found to be common in both prestimulus and poststimulus EEG activity. The dynamical properties of these waves, including their speeds, directions, and durations, are systematically characterized for the first time, and the results show that there are significant changes of prestimulus spontaneous waves in the presence of an external stimulus. Furthermore, the functional relevance of these waves is examined by studying how they are correlated with reaction times on a single trial basis; prestimulus alpha waves traveling in the frontal-to-occipital direction are found to be most correlated to reaction speeds. These findings suggest that propagating waves of brain oscillations might be involved in mediating long-range interactions between widely distributed parts of human cortex. PMID:22675555

  9. Human cortical traveling waves: dynamical properties and correlations with responses.

    PubMed

    Patten, Timothy M; Rennie, Christopher J; Robinson, Peter A; Gong, Pulin

    2012-01-01

    The spatiotemporal behavior of human EEG oscillations is investigated. Traveling waves in the alpha and theta ranges are found to be common in both prestimulus and poststimulus EEG activity. The dynamical properties of these waves, including their speeds, directions, and durations, are systematically characterized for the first time, and the results show that there are significant changes of prestimulus spontaneous waves in the presence of an external stimulus. Furthermore, the functional relevance of these waves is examined by studying how they are correlated with reaction times on a single trial basis; prestimulus alpha waves traveling in the frontal-to-occipital direction are found to be most correlated to reaction speeds. These findings suggest that propagating waves of brain oscillations might be involved in mediating long-range interactions between widely distributed parts of human cortex.

  10. Correlation between blood adenosine metabolism and sleep in humans.

    PubMed

    Díaz-Muñoz, M; Hernández-Muñoz, R; Suárez, J; Vidrio, S; Yááñez, L; Aguilar-Roblero, R; Rosenthal, L; Villalobos, L; Fernández-Cancino, F; Drucker-Colín, R; Chagoya De Sanchez, V

    1999-01-01

    Blood adenosine metabolism, including metabolites and metabolizing enzymes, was studied during the sleep period in human volunteers. Searching for significant correlations among biochemical parameters found: adenosine with state 1 of slow-wave sleep (SWS); activity of 5'-nucleotidase with state 2 of SWS; inosine and AMP with state 3-4 of SWS; and activity of 5'-nucleotidase and lactate with REM sleep. The correlations were detected in all of the subjects that presented normal hypnograms, but not in those who had fragmented sleep the night of the experiment. The data demonstrate that it is possible to obtain information of complex brain operations such as sleep by measuring biochemical parameters in blood. The results strengthen the notion of a role played by adenosine, its metabolites and metabolizing enzymes, during each of the stages that constitute the sleep process in humans.

  11. Dynamically correlated mutations drive human Influenza A evolution.

    PubMed

    Tria, F; Pompei, S; Loreto, V

    2013-01-01

    Human Influenza A virus undergoes recurrent changes in the hemagglutinin (HA) surface protein, primarily involved in the human antibody recognition. Relevant antigenic changes, enabling the virus to evade host immune response, have been recognized to occur in parallel to multiple mutations at antigenic sites in HA. Yet, the role of correlated mutations (epistasis) in driving the molecular evolution of the virus still represents a challenging puzzle. Further, though circulation at a global geographic level is key for the survival of Influenza A, its role in shaping the viral phylodynamics remains largely unexplored. Here we show, through a sequence based epidemiological model, that epistatic effects between amino acids substitutions, coupled with a reservoir that mimics worldwide circulating viruses, are key determinants that drive human Influenza A evolution. Our approach explains all the up-to-date observations characterizing the evolution of H3N2 subtype, including phylogenetic properties, nucleotide fixation patterns, and composition of antigenic clusters.

  12. Long-term administration of the fungus toxin, sterigmatocystin, induces intestinal metaplasia and increases the proliferative activity of PCNA, p53, and MDM2 in the gastric mucosa of aged Mongolian gerbils.

    PubMed

    Kusunoki, Masahiro; Misumi, Junichi; Shimada, Tatsuo; Aoki, Kazuo; Matsuo, Noritaka; Sumiyoshi, Hideaki; Yamaguchi, Takeshi; Yoshioka, Hidekatsu

    2011-07-01

    The causal agents of gastric cancer could include fungus toxins. Sterigmatocystin (ST), a fungus toxin, is a risk factor of gastric cancer. We investigated the effects of ST on the stomach tissues of Mongolian gerbils. Seventy-five-week-old male Mongolian gerbils received ST ad libitum at a concentration of 0 ppb (non-treated, n = 11), 100 ppb (n = 7), or 1000 ppb (n = 13) dissolved in drinking water for a period of 24 weeks. After administration, we tested the histopathological changes and immunostaining for proliferating cell nuclear antigen (PCNA), p53, and MDM2 expression. We investigated the histopathological changes and determined the incidence of histopathological changes in animals with various gastric diseases after ST administration at a dose of 0 ppb (non-treated control), 100, or 1,000 ppb as follows: firstly, indices for gastritis were 18.2, 100, and 100%, those for erosion events were 9.1, 100, and 92.3%, and those for polyps were 0, 71.4, and 61.5%, respectively. These incidences in the ST-administered groups (100 or 1000 ppb) showed significant increases compared with those in the non-treated control group. And, lastly, indices for intestinal metaplasia were 0, 100, and 15.4%, respectively. Furthermore, immunostaining for PCNA, p53, and MDM2 expression showed significantly greater rates in the ST-administered groups (100 or 1000 ppb) than in the non-treated control group. The histopathological and immunohistopathological findings of this study indicate that ST exerts a marked influence on gastric mucus and gland cells, showing dominant gastritis, erosion events, polyps, and intestinal metaplasia in these animals.

  13. Flow distributions and spatial correlations in human brain capillary networks

    NASA Astrophysics Data System (ADS)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  14. Colonic Microbiota Encroachment Correlates With Dysglycemia in Humans.

    PubMed

    Chassaing, Benoit; Raja, Shreya M; Lewis, James D; Srinivasan, Shanthi; Gewirtz, Andrew T

    2017-09-01

    Mucoid structures that coat the epithelium play an essential role in keeping the intestinal microbiota at a safe distance from host cells. Encroachment of bacteria into the normally almost-sterile inner mucus layer has been observed in inflammatory bowel disease and in mouse models of colitis. Moreover, such microbiota encroachment has also been observed in mouse models of metabolic syndrome, which are associated low-grade intestinal inflammation. Hence, we investigated if microbiota encroachment might correlate with indices of metabolic syndrome in humans. Confocal microscopy was used to measure bacterial-epithelial distance of the closest bacteria per high-powered field in colonic biopsies of all willing participants undergoing cancer screening colonoscopies. We observed that, among all subjects, bacterial-epithelial distance was inversely correlated with body mass index, fasting glucose levels, and hemoglobin A1C. However, this correlation was driven by dysglycemic subjects, irrespective of body mass index, whereas the difference in bacterial-epithelial distance between obese and nonobese subjects was eliminated by removal of dysglycemic subjects. We conclude that microbiota encroachment is a feature of insulin resistance-associated dysglycemia in humans.

  15. Correlation between experimental human and murine skin sensitization induction thresholds.

    PubMed

    Api, Anne Marie; Basketter, David; Lalko, Jon

    2015-01-01

    Quantitative risk assessment for skin sensitization is directed towards the determination of levels of exposure to known sensitizing substances that will avoid the induction of contact allergy in humans. A key component of this work is the predictive identification of relative skin sensitizing potency, achieved normally by the measurement of the threshold (the "EC3" value) in the local lymph node assay (LLNA). In an extended series of studies, the accuracy of this murine induction threshold as the predictor of the absence of a sensitizing effect has been verified by conduct of a human repeated insult patch test (HRIPT). Murine and human thresholds for a diverse set of 57 fragrance chemicals spanning approximately four orders of magnitude variation in potency have been compared. The results confirm that there is a useful correlation, with the LLNA EC3 value helping particularly to identify stronger sensitizers. Good correlation (with half an order of magnitude) was seen with three-quarters of the dataset. The analysis also helps to identify potential outlier types of (fragrance) chemistry, exemplified by hexyl and benzyl salicylates (an over-prediction) and trans-2-hexenal (an under-prediction).

  16. Diaryl- and triaryl-pyrrole derivatives: inhibitors of the MDM2-p53 and MDMX-p53 protein-protein interactions†Electronic supplementary information (ESI) available: Experimental details for compound synthesis, analytical data for all compounds and intermediates. Details for the biological evaluation. Further details for the modeling. Table of combustion analysis data. See DOI: 10.1039/c3md00161jClick here for additional data file.

    PubMed

    Blackburn, Tim J; Ahmed, Shafiq; Coxon, Christopher R; Liu, Junfeng; Lu, Xiaohong; Golding, Bernard T; Griffin, Roger J; Hutton, Claire; Newell, David R; Ojo, Stephen; Watson, Anna F; Zaytzev, Andrey; Zhao, Yan; Lunec, John; Hardcastle, Ian R

    2013-09-21

    Screening identified 2-(3-((4,6-dioxo-2-thioxotetrahydropyrimidin-5(2H)-ylidene)methyl)-2,5-dimethyl-1H-pyrrol-1-yl)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile as an MDM2-p53 inhibitor (IC50 = 12.3 μM). MDM2-p53 and MDMX-p53 activity was seen for 5-((1-(4-chlorophenyl)-2,5-diphenyl-1H-pyrrol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (MDM2 IC50 = 0.11 μM; MDMX IC50 = 4.2 μM) and 5-((1-(4-nitrophenyl)-2,5-diphenyl-1H-pyrrol-3-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-trione (MDM2 IC50 = 0.15 μM; MDMX IC50 = 4.2 μM), and cellular activity consistent with p53 activation in MDM2 amplified cells. Further SAR studies demonstrated the requirement for the triarylpyrrole moiety for MDMX-p53 activity but not for MDM2-p53 inhibition.

  17. Correlation of physical and genetic maps of human chromosome 16

    SciTech Connect

    Sutherland, G.R.

    1991-01-01

    This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentially 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.

  18. Human Facial Shape and Size Heritability and Genetic Correlations.

    PubMed

    Cole, Joanne B; Manyama, Mange; Larson, Jacinda R; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Li, Mao; Mio, Washington; Klein, Ophir D; Santorico, Stephanie A; Hallgrímsson, Benedikt; Spritz, Richard A

    2017-02-01

    The human face is an array of variable physical features that together make each of us unique and distinguishable. Striking familial facial similarities underscore a genetic component, but little is known of the genes that underlie facial shape differences. Numerous studies have estimated facial shape heritability using various methods. Here, we used advanced three-dimensional imaging technology and quantitative human genetics analysis to estimate narrow-sense heritability, heritability explained by common genetic variation, and pairwise genetic correlations of 38 measures of facial shape and size in normal African Bantu children from Tanzania. Specifically, we fit a linear mixed model of genetic relatedness between close and distant relatives to jointly estimate variance components that correspond to heritability explained by genome-wide common genetic variation and variance explained by uncaptured genetic variation, the sum representing total narrow-sense heritability. Our significant estimates for narrow-sense heritability of specific facial traits range from 28 to 67%, with horizontal measures being slightly more heritable than vertical or depth measures. Furthermore, for over half of facial traits, >90% of narrow-sense heritability can be explained by common genetic variation. We also find high absolute genetic correlation between most traits, indicating large overlap in underlying genetic loci. Not surprisingly, traits measured in the same physical orientation (i.e., both horizontal or both vertical) have high positive genetic correlations, whereas traits in opposite orientations have high negative correlations. The complex genetic architecture of facial shape informs our understanding of the intricate relationships among different facial features as well as overall facial development. Copyright © 2017 by the Genetics Society of America.

  19. Noncontact diffuse correlation tomography of human breast tumor

    PubMed Central

    He, Lian; Lin, Yu; Huang, Chong; Irwin, Daniel; Szabunio, Margaret M.; Yu, Guoqiang

    2015-01-01

    Abstract. Our first step to adapt our recently developed noncontact diffuse correlation tomography (ncDCT) system for three-dimensional (3-D) imaging of blood flow distribution in human breast tumors is reported. A commercial 3-D camera was used to obtain breast surface geometry, which was then converted to a solid volume mesh. An ncDCT probe scanned over a region of interest on the mesh surface and the measured boundary data were combined with a finite element framework for 3-D image reconstruction of blood flow distribution. This technique was tested in computer simulations and in vivo human breasts with low-grade carcinoma. Results from computer simulations suggest that relatively high accuracy can be achieved when the entire tumor is within the sensitive region of diffuse light. Image reconstruction with a priori knowledge of the tumor volume and location can significantly improve the accuracy in recovery of tumor blood flow contrasts. In vivo imaging results from two breast carcinomas show higher average blood flow contrasts (5.9- and 10.9-fold) in the tumor regions compared to the surrounding tissues, which are comparable with previous findings using diffuse correlation spectroscopy. The ncDCT system has the potential to image blood flow distributions in soft and vulnerable tissues without distorting tissue hemodynamics. PMID:26259706

  20. Noncontact diffuse correlation tomography of human breast tumor.

    PubMed

    He, Lian; Lin, Yu; Huang, Chong; Irwin, Daniel; Szabunio, Margaret M; Yu, Guoqiang

    2015-08-01

    Our first step to adapt our recently developed noncontact diffuse correlation tomography (ncDCT) system for three-dimensional (3-D) imaging of blood flow distribution in human breast tumors is reported. A commercial 3-D camera was used to obtain breast surface geometry, which was then converted to a solid volume mesh. An ncDCT probe scanned over a region of interest on the mesh surface and the measured boundary data were combined with a finite element framework for 3-D image reconstruction of blood flow distribution. This technique was tested in computer simulations and in vivo human breasts with low-grade carcinoma. Results from computer simulations suggest that relatively high accuracy can be achieved when the entire tumor is within the sensitive region of diffuse light. Image reconstruction with a priori knowledge of the tumor volume and location can significantly improve the accuracy in recovery of tumor blood flow contrasts. In vivo imaging results from two breast carcinomas show higher average blood flow contrasts (5.9- and 10.9-fold) in the tumor regions compared to the surrounding tissues, which are comparable with previous findings using diffuse correlation spectroscopy. The ncDCT system has the potential to image blood flow distributions in soft and vulnerable tissues without distorting tissue hemodynamics

  1. Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander

    2014-07-01

    The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin "wrapping", i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.

  2. Projecting Human Development and CO2 emissions employing correlations

    NASA Astrophysics Data System (ADS)

    Rybski, D.; Costa, L.; Kropp, J. P.

    2012-04-01

    We find positive and time dependent correlation between the Human Development Index (HDI) and per capita CO2 emissions from fossil fuel combustion. Based on this empirical relation, extrapolated HDI, and three population scenarios extracted from the Millennium Ecosystem Assessment report, we estimate future cumulative CO2 emissions. If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8) as defined in the United Nations Human Development Report 2009. In particular, we estimate that at least 300Gt of cumulative CO2 emissions between 2000 and 2050 are necessary for the development of developing countries in the year 2000. This value represents 30% of a previously calculated CO2 budget yielding a 75% probability of limiting global warming to 2°C. Since human development has been proved to be time and country dependent, we plead for future climate negotiations to consider a differentiated CO2 emissions reduction scheme for developing countries based on the achievement of concrete development goals.

  3. RORα and RORγ expression inversely correlates with human melanoma progression

    PubMed Central

    Brożyna, Anna A.; Jóźwicki, Wojciech; Skobowiat, Cezary; Jetten, Anton; Slominski, Andrzej T.

    2016-01-01

    The retinoic acid-related orphan receptors (RORs) regulate several physiological and pathological processes, including immune functions, development and cancer. To study the potential role of RORs in melanoma progression, we analysed RORα and RORγ expression in nevi and primary melanomas and non-lesional skin and metastases in relation to melanoma clinico-pathomorphological features. The expression of RORα and RORγ was lower in melanomas than in nevi and decreased during melanoma progression, with lowest levels found in primary melanomas at stages III and IV and in melanoma metastases. Their expression correlated with pathomorphological pTNM parameters being low in aggressive tumors and being high in tumors showing histological markers of good prognosis. Higher nuclear levels of RORα and RORγ and of cytoplasmic RORγ correlated with significantly longer overall and disease free survival time. Highly pigmented melanomas showed significantly lower level of nuclear RORs. This study shows that human melanoma development and aggressiveness is associated with decreased expression of RORα and RORγ, suggesting that RORs could be important in melanoma progression and host responses against the tumor. Furthermore, it suggests that RORα and RORγ might constitute a novel druggable target in anti-melanoma management using tumor suppressor gene therapy restoring their normal functions. PMID:27542227

  4. Regionally specific human GABA concentration correlates with tactile discrimination thresholds.

    PubMed

    Puts, Nicolaas A J; Edden, Richard A E; Evans, C John; McGlone, Francis; McGonigle, David J

    2011-11-16

    The neural mechanisms underlying variability in human sensory perception remain incompletely understood. In particular, few studies have attempted to investigate the relationship between in vivo measurements of neurochemistry and individuals' behavioral performance. Our previous work found a relationship between GABA concentration in the visual cortex and orientation discrimination thresholds (Edden et al., 2009). In the present study, we used magnetic resonance spectroscopy of GABA and psychophysical testing of vibrotactile frequency thresholds to investigate whether individual differences in tactile frequency discrimination performance are correlated with GABA concentration in sensorimotor cortex. Behaviorally, individuals showed a wide range of discrimination thresholds ranging from 3 to 7.6 Hz around the 25 Hz standard. These frequency discrimination thresholds were significantly correlated with GABA concentration (r = -0.58; p < 0.05) in individuals' sensorimotor cortex, but not with GABA concentration in an occipital control region (r = -0.04). These results demonstrate a link between GABA concentration and frequency discrimination in vivo, and support the hypothesis that GABAergic mechanisms have an important role to play in sensory discrimination.

  5. Acrolein preferentially damages nucleolus eliciting ribosomal stress and apoptosis in human cancer cells

    PubMed Central

    Wang, Hsiang-tsui; Chen, Tzu-ying; Weng, Ching-wen; Yang, Chun-hsiang; Tang, Moon-shong

    2016-01-01

    Acrolein (Acr) is a potent cytotoxic and DNA damaging agent which is ubiquitous in the environment and abundant in tobacco smoke. Acr is also an active cytotoxic metabolite of the anti-cancer drugs cyclophosphamide and ifosfamide. The mechanisms via which Acr exerts its anti-cancer activity and cytotoxicity are not clear. In this study, we found that Acr induces cytotoxicity and cell death in human cancer cells with different activities of p53. Acr preferentially binds nucleolar ribosomal DNA (rDNA) to form Acr-deoxyguanosine adducts, and induces oxidative damage to both rDNA and ribosomal RNA (rRNA). Acr triggers ribosomal stress responses, inhibits rRNA synthesis, reduces RNA polymerase I binding to the promoter of rRNA gene, disrupts nucleolar integrity, and impairs ribosome biogenesis and polysome formation. Acr causes an increase in MDM2 levels and phosphorylation of MDM2 in A549 and HeLa cells which are p53 active and p53 inactive, respectively. It enhances the binding of ribosomal protein RPL11 to MDM2 and reduces the binding of p53 and E2F-1 to MDM2 resulting in stabilization/activation of p53 in A549 cells and degradation of E2F-1 in A549 and HeLa cells. We propose that Acr induces ribosomal stress which leads to activation of MDM2 and RPL11-MDM2 binding, consequently, activates p53 and enhances E2F-1 degradation, and that taken together these two processes induce apoptosis and cell death. PMID:27741518

  6. Combination treatment in vitro with Nutlin, a small-molecule antagonist of MDM2, and pegylated interferon-α 2a specifically targets JAK2V617F-positive polycythemia vera cells

    PubMed Central

    Lu, Min; Wang, Xiaoli; Li, Yan; Tripodi, Joseph; Mosoyan, Goar; Mascarenhas, John; Kremyanskaya, Marina; Najfeld, Vesna

    2012-01-01

    Interferon (IFN-α) is effective therapy for polycythemia vera (PV) patients, but it is frequently interrupted because of adverse events. To permit the long-term use of IFN, we propose combining low doses of IFN with Nutlin-3, an antagonist of MDM2, which is also capable of promoting PV CD34+ cell apoptosis. Combination treatment with subtherapeutic doses of Peg IFN-α 2a and Nutlin-3 inhibited PV CD34+ cell proliferation by 50% while inhibiting normal CD34+ cells by 30%. Combination treatment with Nutlin-3 and Peg IFN-α 2a inhibited PV colony formation by 55%-90% while inhibiting normal colony formation by 22%-30%. The combination of these agents also decreased the proportion of JAK2V617F-positive hematopoietic progenitor cells in 6 PV patients studied. Treatment with low doses of Peg IFN-α 2a combined with Nutlin-3 increased phospho-p53 and p21 protein levels in PV CD34+ cells and increased the degree of apoptosis. These 2 reagents affect the tumor suppressor p53 through different pathways with Peg IFN-α 2a activating p38 MAP kinase and STAT1, leading to increased p53 transcription, whereas Nutlin-3 prevents the degradation of p53. These data suggest that treatment with low doses of both Nutlin-3 combined with Peg IFN-α 2a can target PV hematopoietic progenitor cells, eliminating the numbers of malignant hematopoietic progenitor cells. PMID:22872685

  7. Gray and white matter correlates of navigational ability in humans.

    PubMed

    Wegman, Joost; Fonteijn, Hubert M; van Ekert, Janneke; Tyborowska, Anna; Jansen, Clemens; Janzen, Gabriele

    2014-06-01

    Humans differ widely in their navigational abilities. Studies have shown that self-reports on navigational abilities are good predictors of performance on navigation tasks in real and virtual environments. The caudate nucleus and medial temporal lobe regions have been suggested to subserve different navigational strategies. The ability to use different strategies might underlie navigational ability differences. This study examines the anatomical correlates of self-reported navigational ability in both gray and white matter. Local gray matter volume was compared between a group (N = 134) of good and bad navigators using voxel-based morphometry (VBM), as well as regional volumes. To compare between good and bad navigators, we also measured white matter anatomy using diffusion tensor imaging (DTI) and looked at fractional anisotropy (FA) values. We observed a trend toward higher local GM volume in right anterior parahippocampal/rhinal cortex for good versus bad navigators. Good male navigators showed significantly higher local GM volume in right hippocampus than bad male navigators. Conversely, bad navigators showed increased FA values in the internal capsule, the white matter bundle closest to the caudate nucleus and a trend toward higher local GM volume in the caudate nucleus. Furthermore, caudate nucleus regional volume correlated negatively with navigational ability. These convergent findings across imaging modalities are in line with findings showing that the caudate nucleus and the medial temporal lobes are involved in different wayfinding strategies. Our study is the first to show a link between self-reported large-scale navigational abilities and different measures of brain anatomy. Copyright © 2013 Wiley Periodicals, Inc.

  8. Structure-Function Correlation of the Human Central Retina

    PubMed Central

    Charbel Issa, Peter; Troeger, Eric; Finger, Robert; Holz, Frank G.; Wilke, Robert; Scholl, Hendrik P. N.

    2010-01-01

    Background The impact of retinal pathology detected by high-resolution imaging on vision remains largely unexplored. Therefore, the aim of the study was to achieve high-resolution structure-function correlation of the human macula in vivo. Methodology/Principal Findings To obtain high-resolution tomographic and topographic images of the macula spectral-domain optical coherence tomography (SD-OCT) and confocal scanning laser ophthalmoscopy (cSLO), respectively, were used. Functional mapping of the macula was obtained by using fundus-controlled microperimetry. Custom software allowed for co-registration of the fundus mapped microperimetry coordinates with both SD-OCT and cSLO datasets. The method was applied in a cross-sectional observational study of retinal diseases and in a clinical trial investigating the effectiveness of intravitreal ranibizumab in macular telangietasia type 2. There was a significant relationship between outer retinal thickness and retinal sensitivity (p<0.001) and neurodegeneration leaving less than about 50 µm of parafoveal outer retinal thickness completely abolished light sensitivity. In contrast, functional preservation was found if neurodegeneration spared the photoreceptors, but caused quite extensive disruption of the inner retina. Longitudinal data revealed that small lesions affecting the photoreceptor layer typically precede functional detection but later cause severe loss of light sensitivity. Ranibizumab was shown to be ineffective to prevent such functional loss in macular telangietasia type 2. Conclusions/Significance Since there is a general need for efficient monitoring of the effectiveness of therapy in neurodegenerative diseases of the retina and since SD-OCT imaging is becoming more widely available, surrogate endpoints derived from such structure-function correlation may become highly relevant in future clinical trials. PMID:20877651

  9. Neural correlates of heat-evoked pain memory in humans

    PubMed Central

    Gui, Peng; Li, Lei; Ku, Yixuan; Bodner, Mark; Fan, Gaojie; Zhou, Yong-Di; Dong, Xiao-Wei

    2016-01-01

    The neural processes underlying pain memory are not well understood. To explore these processes, contact heat-evoked potentials (CHEPs) were recorded in humans with electroencephalography (EEG) technique during a delayed matching-to-sample task, a working memory task involving presentations of two successive painful heat stimuli (S-1 and S-2) with different intensities separated by a 2-s interval (the memorization period). At the end of the task, the subject was required to discriminate the stimuli by indicating which (S-1 or S-2) induced more pain. A control task was used, in which no active discrimination was required between stimuli. All event-related potential (ERP) analysis was aligned to the onset of S-1. EEG activity exhibited two successive CHEPs: an N2-P2 complex (∼400 ms after onset of S-1) and an ultralate component (ULC, ∼900 ms). The amplitude of the N2-P2 at vertex, but not the ULC, was significantly correlated with stimulus intensity in these two tasks, suggesting that the N2-P2 represents neural coding of pain intensity. A late negative component (LNC) in the frontal recording region was observed only in the memory task during a 500-ms period before onset of S-2. LNC amplitude differed between stimulus intensities and exhibited significant correlations with the N2-P2 complex. These indicate that the frontal LNC is involved in maintenance of intensity of pain in working memory. Furthermore, alpha-band oscillations observed in parietal recording regions during the late delay displayed significant power differences between tasks. This study provides in the temporal domain previously unidentified neural evidence showing the neural processes involved in working memory of painful stimuli. PMID:26740529

  10. Correlations between isochores and chromosomal bands in the human genome

    SciTech Connect

    Saccone, S.; Della Valle, G. ); De Sario, A.; Bernardi, G. ); Wiegant, J.; Raap, A.K. )

    1993-11-15

    The human genome is made up of long DNA segments, the isochores, which are compositionally homogeneous and can be subdivided into a small number of families characterized by different G+C levels. Chromosome in situ suppression hybridization (in which excess unlabeled human DNA is added to suppress hybridization of repeated sequences present in the probe, enabling enhanced observation of single-copy sequences) of DNA fractions characterized by an increasing G+C level was carried out to determine the distribution of [open quotes]single-copy[close quotes] sequences corresponding to isochore families L1 + L2, H1, H2, and H3 on metaphase chromosomes. This produced a banding pattern progressing from a relatively diffuse staining to an R-banding, to a T-banding. More specifically, the results showed that (i) T-bands are formed by the G+C-richest isochores of the H3 family and by part of the G+C-rich isochores of the H1 and H2 families (with a predominance of the latter); (ii) R[prime]-bands (namely, R-bands exclusive of T-bands) are formed to almost equal extents by G+C-rich isochores of the H1 families (with a minor contribution of the H2 and H3 families) and by G+C-poor isochores of the L1 + L2 families; (iii) G-bands essentially consist of G+C-poor isochores from the L1 + L2 families, with a minor contribution of isochores from the H1 family. These results not only clarify the correlations between DNA base composition and chromosomal bands but also provide information on the distribution of genes in chromosomes, gene concentration increasing with the G+C levels of isochores.

  11. Correlates of Perceptual Orientation Biases in Human Primary Visual Cortex.

    PubMed

    Patten, Matthew L; Mannion, Damien J; Clifford, Colin W G

    2017-05-03

    prior experience affects both perceptual judgments and neural responses in the human visual system. We observe systematic biases in the perception of orientation that correlate with the pattern of activity in the primary visual cortex of the human brain. These results indicate that prior expectations influence neural processing right from the earliest stage of the cortical hierarchy. Copyright © 2017 the authors 0270-6474/17/374744-07$15.00/0.

  12. Correlates of human papillomavirus vaccination among female university students

    PubMed Central

    Kelly, Kate M.; Vasilenko, Sara A.; Maggs, Jennifer L.

    2014-01-01

    Human papillomavirus (HPV) is the most frequently occurring sexually transmitted infection in the United States, but only one third of adolescent girls have received the HPV vaccine. Understanding correlates of vaccination behavior among young women has important implications for health care delivery and public service messages targeting HPV vaccination. Female college students (N = 313) completed web-based surveys during their sophomore (second) year of college, Fall, 2008. Surveys included questions about HPV vaccination, demographic factors (ethnicity/race, socioeconomic status [SES]), individual characteristics (romantic relationship status, grade point average, religiosity), and sexual behavior. Lifetime HPV vaccination was reported by 46.5% of participants. Being African-American/Black was associated with a lower likelihood of vaccination. Having a mother with more education, adhering to one’s religion’s teachings about sex-related principles, and having engaged in recent penetrative sex were associated with a higher likelihood of vaccination. Health care providers should consider young women to be an important group for HPV vaccine education and catch-up, particularly for African American/Black young women and young women from lower SES backgrounds. Providing vaccine education and access to young women before they become sexually active is critical. PMID:24964295

  13. Correlates of spreading depolarization in human scalp electroencephalography.

    PubMed

    Drenckhahn, Christoph; Winkler, Maren K L; Major, Sebastian; Scheel, Michael; Kang, Eun-Jeung; Pinczolits, Alexandra; Grozea, Cristian; Hartings, Jed A; Woitzik, Johannes; Dreier, Jens P

    2012-03-01

    of spreading depolarizations with persistent depression of spontaneous activity. Alternating current electroencephalography similarly displayed persistent depression of spontaneous activity, and direct current electroencephalography slow potential changes riding on a shallow negative ultraslow potential. Isolated spreading depolarizations with depression of both spontaneous electrocorticographic and electroencephalographic activity displayed significantly longer intervals between successive spreading depolarizations than isolated depolarizations with only depression of electrocorticographic activity [44.0 (28.0, 132.0) min, n = 96, versus 30.0 (26.5, 51.5) min, n = 109, P = 0.001]. This suggests fusion of electroencephalographic depression periods at high depolarization frequency. No propagation of electroencephalographic depression was seen between scalp electrodes. Durations/magnitudes of isolated electroencephalographic and corresponding electrocorticographic depression periods correlated significantly. Fewer spreading depolarizations were recorded in patients with malignant hemispheric stroke but characteristics were similar to those after subarachnoid haemorrhage. In conclusion, spreading depolarizations and depressions of spontaneous activity display correlates in time-compressed human scalp direct and alternating current electroencephalography that may serve for their non-invasive detection.

  14. Neural correlates of induced motion perception in the human brain.

    PubMed

    Takemura, Hiromasa; Ashida, Hiroshi; Amano, Kaoru; Kitaoka, Akiyoshi; Murakami, Ikuya

    2012-10-10

    A physically stationary stimulus surrounded by a moving stimulus appears to move in the opposite direction. There are similarities between the characteristics of this phenomenon of induced motion and surround suppression of directionally selective neurons in the brain. Here, functional magnetic resonance imaging was used to investigate the link between the subjective perception of induced motion and cortical activity. The visual stimuli consisted of a central drifting sinusoid surrounded by a moving random-dot pattern. The change in cortical activity in response to changes in speed and direction of the central stimulus was measured. The human cortical area hMT+ showed the greatest activation when the central stimulus moved at a fast speed in the direction opposite to that of the surround. More importantly, the activity in this area was the lowest when the central stimulus moved in the same direction as the surround and at a speed such that the central stimulus appeared to be stationary. The results indicate that the activity in hMT+ is related to perceived speed modulated by induced motion rather than to physical speed or a kinetic boundary. Early visual areas (V1, V2, V3, and V3A) showed a similar pattern; however, the relationship to perceived speed was not as clear as that in hMT+. These results suggest that hMT+ may be a neural correlate of induced motion perception and play an important role in contrasting motion signals in relation to their surrounding context and adaptively m