Science.gov

Sample records for human melanomas sensitive

  1. Growth Hormone Receptor Knockdown Sensitizes Human Melanoma Cells to Chemotherapy by Attenuating Expression of ABC Drug Efflux Pumps.

    PubMed

    Basu, Reetobrata; Baumgaertel, Nicholas; Wu, Shiyong; Kopchick, John J

    2017-03-14

    Melanoma remains one of the most therapy-resistant forms of human cancer despite recent introductions of highly efficacious targeted therapies. The intrinsic therapy resistance of human melanoma is largely due to abundant expression of a repertoire of xenobiotic efflux pumps of the ATP-binding cassette (ABC) transporter family. Here, we report that GH action is a key mediator of chemotherapeutic resistance in human melanoma cells. We investigated multiple ABC efflux pumps (ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, ABCG1, and ABCG2) reportedly associated with melanoma drug resistance in different human melanoma cells and tested the efficacy of five different anti-cancer compounds (cisplatin, doxorubicin, oridonin, paclitaxel, vemurafenib) with decreased GH action. We found that GH treatment of human melanoma cells upregulates expression of multiple ABC transporters and increases the EC50 of melanoma drug vemurafenib. Also, vemurafenib-resistant melanoma cells had upregulated levels of GH receptor (GHR) expression as well as ABC efflux pumps. GHR knockdown (KD) using siRNA in human melanoma cells treated with sub-EC50 doses of anti-tumor compounds resulted in significantly increased drug retention, decreased cell proliferation and increased drug efficacy, compared to mock-transfected controls. Our set of findings identify an unknown mechanism of GH regulation in mediating melanoma drug resistance and validates GHR as a unique therapeutic target for sensitizing highly therapy-resistant human melanoma cells to lower doses of anti-cancer drugs.

  2. Lansoprazole induces sensitivity to suboptimal doses of paclitaxel in human melanoma.

    PubMed

    Azzarito, Tommaso; Venturi, Giulietta; Cesolini, Albino; Fais, Stefano

    2015-01-28

    Tumor acidity is now considered an important determinant of drug-resistance and tumor progression, and anti-acidic approaches, such as Proton Pump inhibitors (PPIs), have demonstrated promising antitumor and chemo-sensitizing efficacy. The main purpose of the present study was to evaluate the possible PPI-induced sensitization of human melanoma cells to Paclitaxel (PTX). Our results show that PTX and the PPI Lansoprazole (LAN) combination was extremely efficient against metastatic melanoma cells, as compared to the single treatments, both in vitro and in vivo. We also showed that acidity plays an important role on the anti-tumor activity of these drugs, being detrimental for PTX activity, while crucial for the synergistic effect of PTX following pretreatment with LAN, due to its nature of pro-drug needing protonation for a full activation. We obtained straightforward results in a human melanoma xenograft model combining well tolerated LAN doses with suboptimal and poorly toxic doses of PTX. With this study we provide a clear evidence that the PPI LAN may be included in new combined therapy of human melanoma together with low doses of PTX.

  3. Restoration of E-cadherin sensitizes human melanoma cells for apoptosis.

    PubMed

    Kippenberger, Stefan; Loitsch, Stefan; Thaçi, Diamant; Müller, Jutta; Guschel, Maike; Kaufmann, Roland; Bernd, August

    2006-10-01

    Cell-cell adhesion is considered to be important in the development and maintenance of organ tissue. The spatial association between melanocytes and keratinocytes within human epidermis is achieved by homophilic interaction of E-cadherin molecules located on adjacent cells. In contrast, downregulation of E-cadherin expression in melanoma cells is considered as a key event in metastasis. Besides the adhesive properties, E-cadherin serves as a signal receptor linking to the cadherin-catenin signaling complex. As cadherins act as negative regulators of beta-catenin, a contribution to tumor formation seems likely. In the present study, it was tested whether ectopic expression of E-cadherin triggers apoptosis in human melanoma cell lines (G-361, JPC-298, SK-Mel-13). It was found that restoration of E-cadherin caused sensitization against drug-induced apoptosis. Particularly, the release of mitochondrial cytochrome c was increased in response to staurosporine. Moreover, activation of caspase-3 and caspase-8 was elevated. Similarly, DNA fragmentation, serving as a marker for advanced apoptosis, was amplified in cells transduced with E-cadherin. Interestingly, transduction with an E-cadherin construct lacking the extracellular domain showed no modified apoptosis. In conclusion, our findings suggest therapeutic strategies that enable expression of E-cadherin in order to sensitize human melanoma cells towards apoptosis.

  4. Effects of antimetabolites on adenovirus replication in sensitive and resistant human melanoma cell lines.

    PubMed

    Musk, P; Stowers, A; Parsons, P G

    1990-02-15

    Methotrexate (MTX), 6-thioguanine (6-TG) and cytosine arabinoside (ara-C) inhibited the replication of adenovirus (viral capacity) more in drug-sensitive than in resistant human melanoma cell lines. By comparison, inhibition of cellular DNA and RNA synthesis after short treatment periods (less than 48 hr) was not a good predictor of cellular sensitivity. MTX, an inhibitor of de novo nucleotide synthesis, was most effective when added to cells just before infection with virus and inhibited viral capacity at doses 10-1000-fold lower than those required to affect cell survival. The MTX-sensitive cell lines, members of a DNA repair deficient group sensitive also to killing by methylating agents (the Mer- phenotype), were not deficient in dihydrofolate reductase but exhibited DNA fragmentation after treatment with MTX for 48 hr. 6-TG and ara-C, inhibitors of purine and pyrimidine salvage, were most inhibitory to viral capacity when added greater than 36 hr before virus infection and were less effective than MTX (doses 5-7-fold and 4-24-fold higher than for cell survival respectively). No correlation was found between MTX sensitivity and sensitivity to 6-TG or ara-C. These results indicate that (i) inhibition of viral capacity is a more comprehensive test of antimetabolite cytotoxicity than inhibition of cellular DNA or RNA synthesis; (ii) the viral capacity assay correctly predicts cellular sensitivity to MTX, 6-TG and ara-C and therefore has potential for application to primary cultures of human tumours; and (iii) MTX-sensitive cell lines and adenovirus replication rely heavily on de novo nucleotide synthesis, which in Mer- cells appears to be linked to a DNA repair defect as yet undefined.

  5. Fasting boosts sensitivity of human skin melanoma to cisplatin-induced cell death.

    PubMed

    Antunes, Fernanda; Corazzari, Marco; Pereira, Gustavo; Fimia, Gian Maria; Piacentini, Mauro; Smaili, Soraya

    2017-03-25

    Melanoma is one of leading cause of tumor death worldwide. Anti-cancer strategy includes combination of different chemo-therapeutic agents as well as radiation; however these treatments have limited efficacy and induce significant toxic effects on healthy cells. One of most promising novel therapeutic approach to cancer therapy is the combination of anti-cancer drugs with calorie restriction. Here we investigated the effect Cisplatin (CDDP), one of the most potent chemotherapeutic agent used to treat tumors, in association with fasting in wild type and mutated BRAF(V600E) melanoma cell lines. Here we show that nutrient deprivation can consistently enhance the sensitivity of tumor cells to cell death induction by CDDP, also of those malignancies particularly resistant to any treatment, such as oncogenic BRAF melanomas. Mechanistic studies revealed that the combined therapy induced cell death is characterized by ROS accumulation and ATF4 in the absence of ER-stress. In addition, we show that autophagy is not involved in the enhanced sensitivity of melanoma cells to combined CDDP/EBSS-induced apoptosis. While, the exposure to 2-DG further enhanced the apoptotic rate observed in SK Mel 28 cells upon treatment with both CDDP and EBSS.

  6. Preclinical study on combined chemo- and nonviral gene therapy for sensitization of melanoma using a human TNF-alpha expressing MIDGE DNA vector.

    PubMed

    Kobelt, Dennis; Aumann, Jutta; Schmidt, Manuel; Wittig, Burghardt; Fichtner, Iduna; Behrens, Diana; Lemm, Margit; Freundt, Greta; Schlag, Peter M; Walther, Wolfgang

    2014-05-01

    Nonviral gene therapy represents a realistic option for clinical application in cancer treatment. This preclinical study demonstrates the advantage of using the small-size MIDGE(®) DNA vector for improved transgene expression and therapeutic application. This is caused by significant increase in transcription efficiency, but not by increased intracellular vector copy numbers or gene transfer efficiency. We used the MIDGE-hTNF-alpha vector for high-level expression of hTNF-alpha in vitro and in vivo for a combined gene therapy and vindesine treatment in human melanoma models. The MIDGE vector mediated high-level hTNF-alpha expression leads to sensitization of melanoma cells towards vindesine. The increased efficacy of this combination is mediated by remarkable acceleration and increase of initiator caspase 8 and 9 and effector caspase 3 and 7 activation. In the therapeutic approach, the nonviral intratumoral in vivo jet-injection gene transfer of MIDGE-hTNF-alpha in combination with vindesine causes melanoma growth inhibition in association with increased apoptosis in A375 cell line or patient derived human melanoma xenotransplant (PDX) models. This study represents a proof-of-concept for an anticipated phase I clinical gene therapy trial, in which the MIDGE-hTNF-alpha vector will be used for efficient combined chemo- and nonviral gene therapy of malignant melanoma.

  7. Sensitivity to sodium arsenite in human melanoma cells depends upon susceptibility to arsenite-induced mitotic arrest

    SciTech Connect

    McNeely, Samuel C.; Belshoff, Alex C.; Taylor, B. Frazier; Fan, Teresa W-M.; McCabe, Michael J.; Pinhas, Allan R.

    2008-06-01

    Arsenic induces clinical remission in patients with acute promyelocytic leukemia and has potential for treatment of other cancers. The current study examines factors influencing sensitivity to arsenic using human malignant melanoma cell lines. A375 and SK-Mel-2 cells were sensitive to clinically achievable concentrations of arsenite, whereas SK-Mel-3 and SK-Mel-28 cells required supratherapeutic levels for toxicity. Inhibition of glutathione synthesis, glutathione S-transferase (GST) activity, and multidrug resistance protein (MRP) transporter function attenuated arsenite resistance, consistent with studies suggesting that arsenite is extruded from the cell as a glutathione conjugate by MRP-1. However, MRP-1 was not overexpressed in resistant lines and GST-{pi} was only slightly elevated. ICP-MS analysis indicated that arsenite-resistant SK-Mel-28 cells did not accumulate less arsenic than arsenite-sensitive A375 cells, suggesting that resistance was not attributable to reduced arsenic accumulation but rather to intrinsic properties of resistant cell lines. The mode of arsenite-induced cell death was apoptosis. Arsenite-induced apoptosis is associated with cell cycle alterations. Cell cycle analysis revealed arsenite-sensitive cells arrested in mitosis whereas arsenite-resistant cells did not, suggesting that induction of mitotic arrest occurs at lower intracellular arsenic concentrations. Higher intracellular arsenic levels induced cell cycle arrest in the S-phase and G{sub 2}-phase in SK-Mel-3 and SK-Mel-28 cells, respectively. The lack of arsenite-induced mitotic arrest in resistant cell lines was associated with a weakened spindle checkpoint resulting from reduced expression of spindle checkpoint protein BUBR1. These data suggest that arsenite has potential for treatment of solid tumors but a functional spindle checkpoint is a prerequisite for a positive response to its clinical application.

  8. Melanin content of hamster tissues, human tissues, and various melanomas

    SciTech Connect

    Watts, K.P.; Fairchild, R.G.; Slatkin, D.N.; Greenberg, D.; Packer, S.; Atkins, H.L.; Hannon, S.J.

    1981-02-01

    Melanin content (percentage by weight) was determined in both pigmented and nonpigmented tissues of Syrian golden hamsters bearing Greene melanoma. Melanin content was also measured in various other melanoma models (B-16 in C57 mice, Harding-Passey in BALB/c mice, and KHDD in C3H mice) and in nine human melanomas, as well as in selected normal tissues. The purpose was to evaluate the possible efficacy of chlorpromazine, which is known to bind to melanin, as a vehicle for boron transport in neutron capture therapy. Successful therapy would depend upon selective uptake and absolute concentration of borated compounds in tumors; these parameters will in turn depend upon melanin concentration in melanomas and nonpigmented ''background'' tissues. Hamster whole eyes, hamster melanomas, and other well-pigmented animal melanomas were found to contain 0.3 to 0.8% melanin by weight, whereas human melanomas varied from 0.1 to 0.9% (average, 0.35%). Other tissues, with the exception of skin, were lower in content by a factor of greater than or equal to30. Melanin pigment was extracted from tissues, and the melanin content was determined spectrophotometrically. Measurements were found to be sensitive to the presence of other proteins. Previous procedures for isolating and quantifying melanin often neglected the importance of removing proteins and other interfering nonmelanic substances.

  9. Familial melanoma associated with dominant ultraviolet radiation sensitivity

    SciTech Connect

    Ramsay, R.G.; Chen, P.; Imray, F.P.; Kidson, C.; Lavin, M.F.; Hockey, A.

    1982-07-01

    Sensitivity to ultraviolet radiation was studied in lymphoblastoid cell lines derived from 32 members of two families with histories of multiple primary melanomas in several generations. As assayed by colony formation in agar or by trypan blue exclusion following irradiation, cellular sensitivity showed a bimodal distribution. All persons with melanoma or multiple moles were in the sensitive group, while some family members exhibited responses similar to those of controls. Cells from four cases of sporadic melanoma showed normal levels of sensitivity. The data are consistent with a dominantly inherited ultraviolet light sensitivity associated with these examples of familial melanoma. Spontaneous and ultraviolet light-induced sister chromatid exchange frequencies were similar to those in control cell lines. No defect in excision repair was detected in any of the above cell lines, but the sensitive group showed postirradiation inhibition of DNA replication intermediate between controls and an excision-deficient xeroderma pigmentosum cell line.

  10. Histone Deacetylase Inhibitor Sensitizes Apoptosis-resistant Melanomas to Cytotoxic Human T Lymphocytes through Regulation of TRAIL/DR5 Pathway

    PubMed Central

    Jazirehi, Ali R.; Kurdistani, Siavash K.; Economou, James S.

    2014-01-01

    Modern immune therapies [PD-1/PD-L1 and CTLA-4 checkpoints blockade, and adoptive cell transfer (ACT)] have remarkably improved the response rates of metastatic melanoma. These modalities rely on the killing potential of cytotoxic T lymphocytes (CTL) as proximal mediator of anti-melanoma responses. Mechanisms of tumor resistance to and the predominant cytotoxic pathway(s) employed by melanoma-reactive CTL are important outcome determinants. We hypothesized that down-modulation of death receptors in addition to aberrant apoptotic signaling might confer resistance to death signals delivered by CTL. To test these two hypotheses, we used an in vitro model of MART CTL resistant melanoma sublines. TCR transgenic and patient-derived CTLs employed the TNF-related apoptosis-inducing ligand (TRAIL) cytotoxic pathway, through DR5. Further, rhTRAIL and Drozitumab (anti-DR5 agonistic mAb) were used to explicitly verify the contribution of the DR5/TRAIL pathway in killing melanomas. CTL-resistance was due to DR5 down-regulation and an inverted ratio of pro- to anti-apoptotic molecules, both of which were reversed by the histone deacetylase inhibitor (HDACi) SAHA. Apoptosis negative (c-IAP-2 and Bcl-xL) and positive (DR5) regulators were potential incriminators partly regulating CTL sensitivity. These pre-clinical findings suggest that exposure to this chromatin remodeling drug of immune-resistant melanomas can skew towards an intracellular pro-apoptotic milieu, increase death receptor expression, and overcome acquired immune-resistance. PMID:24639349

  11. Effects of hyperglycemia on lonidamine-induced acidification and de-energization of human melanoma xenografts and sensitization to melphalan

    PubMed Central

    Nath, Kavindra; Nelson, David S.; Heitjan, Daniel F.; Zhou, Rong; Leeper, Dennis B.; Glickson, Jerry D.

    2015-01-01

    We seek to exploit the natural tendency of melanomas and other tumors to convert glucose to lactate as a method for selective intracellular acidification of cancer cells and for potentiating the activity of N-mustard antineoplastic agents. We performed this study to evaluate whether induction of hyperglycemia (26 mM) could enhance the effects of lonidamine (LND, 100 mg/kg; i.p.) on inducing intracellular acidification, bioenergetic decline and potentiation of the activity of melphalan (LPAM) against DB-1 melanoma xenografts in mice. Intracellular pH (pHi), extracellular pH (pHe) and bioenergetics (βNTP/Pi) were reduced by 0.7 units (p<0.001), 0.3 units (p>0.05) and 51.4% (p<0.05), respectively. Therapeutic response to LPAM (7.5 mg/kg; i.v.) + LND (100 mg/kg; i.p.) was reduced by about a factor of 3 under hyperglycemic conditions compared to normoglycemia, producing a growth delay of 7.76 d (tumor doubling time = 5.31 d, cell kill = 64%) compared to LND alone of 1.70 d and LPAM alone of 0.29 d. Under normoglycemic conditions LND plus LPAM produced a growth delay of 17.75 d, corresponding to a cell kill of 90 % at the same doses for each of these agents. The decrease in tumor cell kill under hyperglycemic conditions correlates with an increase in tumor ATP levels resulting from increased glycolytic activity. However, hyperglycemia substantially increases lactic acid production in tumors by a factor of ~6 (p<0.05), but hyperglycemia did not increase the effects of LND on acidification of the tumor most likely because of the strong buffering action of carbon dioxide (the pKa of carbonic acid is 6.4). Therefore, this study demonstrates that addition of glucose during treatment with LND diminishes the activity of this agent. PMID:25702942

  12. Effects of hyperglycemia on lonidamine-induced acidification and de-energization of human melanoma xenografts and sensitization to melphalan.

    PubMed

    Nath, Kavindra; Nelson, David S; Heitjan, Daniel F; Zhou, Rong; Leeper, Dennis B; Glickson, Jerry D

    2015-03-01

    We seek to exploit the natural tendency of melanomas and other tumors to convert glucose to lactate as a method for the selective intracellular acidification of cancer cells and for the potentiation of the activity of nitrogen-mustard antineoplastic agents. We performed this study to evaluate whether the induction of hyperglycemia (26 mM) could enhance the effects of lonidamine (LND, 100 mg/kg; intraperitoneally) on the induction of intracellular acidification, bioenergetic decline and potentiation of the activity of melphalan (LPAM) against DB-1 melanoma xenografts in mice. Intracellular pH (pHi ), extracellular pH (pHe ) and bioenergetics (β-nucleoside triphosphate to inorganic phosphate ratio, β-NTP/Pi) were reduced by 0.7 units (p < 0.001), 0.3 units (p > 0.05) and 51.4% (p < 0.05), respectively. The therapeutic response to LPAM (7.5 mg/kg; intravenously) + LND (100 mg/kg; intraperitoneally) was reduced by about a factor of three under hyperglycemic conditions relative to normoglycemia, producing a growth delay of 7.76 days (tumor doubling time, 5.31 days; cell kill, 64%) compared with LND alone of 1.70 days and LPAM alone of 0.29 days. Under normoglycemic conditions, LND plus LPAM produced a growth delay of 17.75 days, corresponding to a cell kill of 90% at the same dose for each of these agents. The decrease in tumor cell kill under hyperglycemic conditions correlates with an increase in tumor ATP levels resulting from increased glycolytic activity. However, hyperglycemia substantially increases lactic acid production in tumors by a factor of approximately six (p < 0.05), but hyperglycemia did not increase the effects of LND on acidification of the tumor, most probably because of the strong buffering action of carbon dioxide (the pKa of carbonic acid is 6.4). Therefore, this study demonstrates that the addition of glucose during treatment with LND diminishes the activity of this agent.

  13. The antimalarial amodiaquine causes autophagic-lysosomal and proliferative blockade sensitizing human melanoma cells to starvation- and chemotherapy-induced cell death.

    PubMed

    Qiao, Shuxi; Tao, Shasha; Rojo de la Vega, Montserrat; Park, Sophia L; Vonderfecht, Amanda A; Jacobs, Suesan L; Zhang, Donna D; Wondrak, Georg T

    2013-12-01

    Pharmacological inhibition of autophagic-lysosomal function has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Repurposing approved and abandoned non-oncological drugs is an alternative approach to the identification and development of anticancer therapeutics, and antimalarials that target autophagic-lysosomal functions have recently attracted considerable attention as candidates for oncological repurposing. Since cumulative research suggests that dependence on autophagy represents a specific vulnerability of malignant melanoma cells, we screened a focused compound library of antimalarials for antimelanoma activity. Here we report for the first time that amodiaquine (AQ), a clinical 4-aminoquinoline antimalarial with unexplored cancer-directed chemotherapeutic potential, causes autophagic-lysosomal and proliferative blockade in melanoma cells that surpasses that of its parent compound chloroquine. Monitoring an established set of protein markers (LAMP1, LC3-II, SQSTM1) and cell ultrastructural changes detected by electron microscopy, we observed that AQ treatment caused autophagic-lysosomal blockade in malignant A375 melanoma cells, a finding substantiated by detection of rapid inactivation of lysosomal cathepsins (CTSB, CTSL, CTSD). AQ-treatment was associated with early induction of energy crisis (ATP depletion) and sensitized melanoma cells to either starvation- or chemotherapeutic agent-induced cell death. AQ displayed potent antiproliferative effects, and gene expression array analysis revealed changes at the mRNA (CDKN1A, E2F1) and protein level (TP53, CDKN1A, CCND1, phospho-RB1 [Ser 780]/[Ser 807/811], E2F1) consistent with the observed proliferative blockade in S-phase. Taken together, our data suggest that the clinical antimalarial AQ is a promising candidate for repurposing efforts that aim at targeting autophagic-lysosomal function and proliferative control in malignant melanoma cells.

  14. Proteasome inhibition blocks NF-κB and ERK1/2 pathways, restores antigen expression and sensitizes resistant human melanoma to TCR-engineered CTLs

    PubMed Central

    Jazirehi, Ali R.; Economou, James S.

    2012-01-01

    Adoptive cell transfer (ACT) of ex vivo engineered autologous lymphocytes encoding high-affinity MART-1/HLA-A*0201-specific T-cell receptor (TCR) α/β chains (F5 CTL), densely infiltrate into sites of metastatic disease, mediating dramatic but partial clinical responses in melanoma patients. We hypothesized that MART-1 down-modulation in addition to aberrant apoptotic/survival signaling could confer resistance to death signals delivered by transgenic CTLs. To explore this hypothesis, we established an in vitro model of resistant (R) lines from MART-1+/HLA-A*0201+ F5 CTL-sensitive parental (P) lines under serial F5 CTL-selective pressure. We have recently reported that several melanoma R lines, while retaining MART-1 expression, exhibited constitutive NF-κB activation and over-expression of NF-κB-dependent resistance factors. Another established melanoma cell line M244, otherwise sensitive to F5 CTL, yielded R lines after serial F5 CTL selective pressure which had both reduced MART-1 expression levels, thus, could not be recognized, and were resistant to CTL-delivered apoptotic death signals. The proteasome inhibitor bortezomib blocked NF-κB activity, decreased phopspho-ERK1/2, increased phospho-JNK levels, reduced expression of resistance-factors, restored MART-1 expression to sufficient levels, which in combination allowed M244R lines be sensitized to F5 CTL-killing. These findings suggest that proteasome inhibition in immune resistant tumors can restore proapoptotic signaling and improve tumor antigen expression. PMID:22532603

  15. Biology of Human Cutaneous Melanoma

    PubMed Central

    Elias, Elias G.; Hasskamp, Joanne H.; Sharma, Bhuvnesh K.

    2010-01-01

    A review of the natural behavior of cutaneous melanoma, clinical and pathological factors, prognostic indicators, some basic research and the present and possible futuristic strategies in the management of this disease are presented. While surgery remains to be the most effective therapeutic approach in the management of early primary lesions, there is no standard adjuvant therapy after surgical resection, or for metastatic disease. PMID:24281039

  16. Melanoma

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Melanoma KidsHealth > For Teens > Melanoma Print A A A ... to the moles on your skin. What Is Melanoma? Melanoma is a type of cancer that begins ...

  17. Melanoma

    MedlinePlus

    Melanoma is the most serious type of skin cancer. Often the first sign of melanoma is a change in the size, shape, color, or feel of a mole. Most melanomas have a black or black-blue area. Melanoma ...

  18. Identification of cells initiating human melanomas

    PubMed Central

    Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.

    2012-01-01

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660

  19. Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression

    SciTech Connect

    Ivanov, Vladimir N. Partridge, Michael A.; Johnson, Geoffrey E.; Huang, Sarah X.L.; Zhou, Hongning; Hei, Tom K.

    2008-03-10

    Although many human melanomas express the death receptors TRAIL-R2/DR5 or TRAIL-R1/DR4 on cell surface, they often exhibit resistance to exogenous TRAIL. One of the main contributors to TRAIL-resistance of melanoma cells is upregulation of transcription factors STAT3 and NF-{kappa}B that control the expression of antiapoptotic genes, including cFLIP and Bcl-xL. On the other hand, the JNK-cJun pathway is involved in the negative regulation of cFLIP (a caspase-8 inhibitor) expression. Our observations indicated that resveratrol, a polyphenolic phytoalexin, decreased STAT3 and NF-{kappa}B activation, while activating JNK-cJun that finally suppressed expression of cFLIP and Bcl-xL proteins and increased sensitivity to exogenous TRAIL in DR5-positive melanomas. Interestingly, resveratrol did not increase surface expression of DR5 in human melanomas, while {gamma}-irradiation or sodium arsenite treatment substantially upregulated DR5 expression. Hence, an initial increase in DR5 surface expression (either by {gamma}-irradiation or arsenite), and subsequent downregulation of antiapoptotic cFLIP and Bcl-xL (by resveratrol), appear to constitute an efficient approach to reactivate apoptotic death pathways in TRAIL-resistant human melanomas. In spite of partial suppression of mitochondrial function and the mitochondrial death pathway, melanoma cells still retain the potential to undergo the DR5-mediated, caspase-8-dependent death pathway that could be accelerated by either an increase in DR5 surface expression or suppression of cFLIP. Taken together, these results suggest that resveratrol, in combination with TRAIL, may have a significant efficacy in the treatment of human melanomas.

  20. Sporadic naturally occurring melanoma in dogs as a preclinical model for human melanoma.

    PubMed

    Simpson, R Mark; Bastian, Boris C; Michael, Helen T; Webster, Joshua D; Prasad, Manju L; Conway, Catherine M; Prieto, Victor M; Gary, Joy M; Goldschmidt, Michael H; Esplin, D Glen; Smedley, Rebecca C; Piris, Adriano; Meuten, Donald J; Kiupel, Matti; Lee, Chyi-Chia R; Ward, Jerrold M; Dwyer, Jennifer E; Davis, Barbara J; Anver, Miriam R; Molinolo, Alfredo A; Hoover, Shelley B; Rodriguez-Canales, Jaime; Hewitt, Stephen M

    2014-01-01

    Melanoma represents a significant malignancy in humans and dogs. Different from genetically engineered models, sporadic canine melanocytic neoplasms share several characteristics with human disease that could make dogs a more relevant preclinical model. Canine melanomas rarely arise in sun-exposed sites. Most occur in the oral cavity, with a subset having intra-epithelial malignant melanocytes mimicking the in situ component of human mucosal melanoma. The spectrum of canine melanocytic neoplasia includes benign lesions with some analogy to nevi, as well as invasive primary melanoma, and widespread metastasis. Growing evidence of distinct subtypes in humans, differing in somatic and predisposing germ-line genetic alterations, cell of origin, epidemiology, relationship to ultraviolet radiation and progression from benign to malignant tumors, may also exist in dogs. Canine and human mucosal melanomas appear to harbor BRAF, NRAS, and c-kit mutations uncommonly, compared with human cutaneous melanomas, although both species share AKT and MAPK signaling activation. We conclude that there is significant overlap in the clinical and histopathological features of canine and human mucosal melanomas. This represents opportunity to explore canine oral cavity melanoma as a preclinical model.

  1. Sporadic naturally occurring melanoma in dogs as a preclinical model for human melanoma

    PubMed Central

    Simpson, R Mark; Bastian, Boris C; Michael, Helen T; Webster, Joshua D; Prasad, Manju L; Conway, Catherine M; Prieto, Victor M; Gary, Joy M; Goldschmidt, Michael H; Esplin, D Glen; Smedley, Rebecca C; Piris, Adriano; Meuten, Donald J; Kiupel, Matti; Lee, Chyi-Chia R; Ward, Jerrold M; Dwyer, Jennifer E; Davis, Barbara J; Anver, Miriam R; Molinolo, Alfredo A; Hoover, Shelley B; Rodriguez-Canales, Jaime; Hewitt, Stephen M

    2014-01-01

    Melanoma represents a significant malignancy in humans and dogs. Different from genetically engineered models, sporadic canine melanocytic neoplasms share several characteristics with human disease that could make dogs a more relevant preclinical model. Canine melanomas rarely arise in sun-exposed sites. Most occur in the oral cavity, with a subset having intra-epithelial malignant melanocytes mimicking the in situ component of human mucosal melanoma. The spectrum of canine melanocytic neoplasia includes benign lesions with some analogy to nevi, as well as invasive primary melanoma, and widespread metastasis. Growing evidence of distinct subtypes in humans, differing in somatic and predisposing germ-line genetic alterations, cell of origin, epidemiology, relationship to ultraviolet radiation and progression from benign to malignant tumors, may also exist in dogs. Canine and human mucosal melanomas appear to harbor BRAF, NRAS, and c-kit mutations uncommonly, compared with human cutaneous melanomas, although both species share AKT and MAPK signaling activation. We conclude that there is significant overlap in the clinical and histopathological features of canine and human mucosal melanomas. This represents opportunity to explore canine oral cavity melanoma as a preclinical model. PMID:24128326

  2. Bipolar cellular morphology of malignant melanoma in unstained human melanoma skin tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhang, Wenkai; Yang, Chia-Yi; Yang, Haw

    2009-03-01

    Microstructures of unstained human melanoma skin tissues have been examined by multimodal nonlinear optical microscopy. The polarized shape of the individual melanoma cell can be readily recognized-a phenotype that has been identified in laboratory cultures as characteristic of proliferating melanocytes but has not been demonstrated in clinical instances. The results thus provide snapshots of invading melanoma cells in their native environment and suggest a practical means of connecting in vitro laboratory studies to in vivo processes.

  3. Adenovirus-Mediated FKHRL1/TM Sensitizes Melanoma Cells to Apoptosis Induced by Temozolomide

    PubMed Central

    Egger, Michael E.; McNally, Lacey R.; Nitz, Jonathan; McMasters, Kelly M.

    2014-01-01

    Abstract Melanoma exhibits variable resistance to the alkylating agent temozolomide (TMZ). We evaluated the potential of adenovirus expressing forkhead human transcription factor like 1 triple mutant (Ad-FKHRL1/TM) to sensitize melanoma cells to TMZ. Four melanoma cell lines were treated with Ad-FKHRL1/TM and TMZ, alone or in combination. Apoptosis was assessed by activation and inhibition of caspase pathway, nuclei fragmentation, and annexin V staining. The potential therapeutic efficacy of Ad-FKHRL1/TM with TMZ was also assessed in a mouse melanoma xenograft model. Combination therapy of Ad-FKHRL1/TM and TMZ resulted in greater cell killing (<20% cell viability) compared with single therapy and controls (p<0.05). Combination indices of Ad-FKHRL1/TM and TMZ therapy indicated significant (p<0.05) synergistic killing effect. Greater apoptosis induction was found in cells treated with Ad-FKHRL1/TM and TMZ than with Ad-FKHRL1/TM or TMZ-treated cells alone. Treatment with TMZ enhanced adenovirus transgene expression in a cell type-dependent manner. In an in vivo model, combination therapy of Ad-FKHRL1/TM with TMZ results in greater tumor growth reduction in comparison with single treatments. We suggest that Ad-FKHRL1/TM is a promising vector to sensitize melanoma cells to TMZ, and that a combination of both approaches would be effective in the clinical setting. PMID:25238278

  4. Knockdown of lecithin retinol acyltransferase increases all-trans retinoic acid levels and restores retinoid sensitivity in malignant melanoma cells.

    PubMed

    Amann, Philipp M; Czaja, Katharina; Bazhin, Alexandr V; Rühl, Ralph; Skazik, Claudia; Heise, Ruth; Marquardt, Yvonne; Eichmüller, Stefan B; Merk, Hans F; Baron, Jens M

    2014-11-01

    Retinoids such as all-trans retinoic acid (ATRA) influence cell growth, differentiation and apoptosis and may play decisive roles in tumor development and progression. An essential retinoid-metabolizing enzyme known as lecithin retinol acyltransferase (LRAT) is expressed in melanoma cells but not in melanocytes catalysing the esterification of all-trans retinol (ATRol). In this study, we show that a stable LRAT knockdown (KD) in the human melanoma cell line SkMel23 leads to significantly increased levels of the substrate ATRol and biologically active ATRA. LRAT KD restored cellular sensitivity to retinoids analysed in cell culture assays and melanoma 3D skin models. Furthermore, ATRA-induced gene regulatory mechanisms drive depletion of added ATRol in LRAT KD cells. PCR analysis revealed a significant upregulation of retinoid-regulated genes such as CYP26A1 and STRA6 in LRAT KD cells, suggesting their possible involvement in mediating retinoid resistance in melanoma cells. In conclusion, LRAT seems to be important for melanoma progression. We propose that reduction in ATRol levels in melanoma cells by LRAT leads to a disturbance in cellular retinoid level. Balanced LRAT expression and activity may provide protection against melanoma development and progression. Pharmacological inhibition of LRAT activity could be a promising strategy for overcoming retinoid insensitivity in human melanoma cells.

  5. A novel compound which sensitizes BRAF wild-type melanoma cells to vemurafenib in a TRIM16-dependent manner

    PubMed Central

    Sutton, Selina K.; Carter, Daniel R.; Kim, Patrick; Tan, Owen; Arndt, Greg M.; Zhang, Xu Dong; Baell, Jonathan; Noll, Benjamin D.; Wang, Shudong; Kumar, Naresh; McArthur, Grant A.; Cheung, Belamy B.; Marshall, Glenn M.

    2016-01-01

    There is an urgent need for better therapeutic options for advanced melanoma patients, particularly those without the BRAFV600E/K mutation. In melanoma cells, loss of TRIM16 expression is a marker of cell migration and metastasis, while the BRAF inhibitor, vemurafenib, induces melanoma cell growth arrest in a TRIM16-dependent manner. Here we identify a novel small molecule compound which sensitized BRAF wild-type melanoma cells to vemurafenib. High throughput, cell-based, chemical library screening identified a compound (C012) which significantly reduced melanoma cell viability, with limited toxicity for normal human fibroblasts. When combined with the BRAFV600E/K inhibitor, vemurafenib, C012 synergistically increased vemurafenib potency in 5 BRAFWT and 4 out of 5 BRAFV600E human melanoma cell lines (Combination Index: CI < 1), and, dramatically reduced colony forming ability. In addition, this drug combination was significantly anti-tumorigenic in vivo in a melanoma xenograft mouse model. The combination of vemurafenib and C012 markedly increased expression of TRIM16 protein, and knockdown of TRIM16 significantly reduced the growth inhibitory effects of the vemurafenib and C012 combination. These findings suggest that the combination of C012 and vemurafenib may have therapeutic potential for the treatment of melanoma, and, that reactivation of TRIM16 may be an effective strategy for patients with this disease. PMID:27447557

  6. RORα and RORγ expression inversely correlates with human melanoma progression

    PubMed Central

    Brożyna, Anna A.; Jóźwicki, Wojciech; Skobowiat, Cezary; Jetten, Anton; Slominski, Andrzej T.

    2016-01-01

    The retinoic acid-related orphan receptors (RORs) regulate several physiological and pathological processes, including immune functions, development and cancer. To study the potential role of RORs in melanoma progression, we analysed RORα and RORγ expression in nevi and primary melanomas and non-lesional skin and metastases in relation to melanoma clinico-pathomorphological features. The expression of RORα and RORγ was lower in melanomas than in nevi and decreased during melanoma progression, with lowest levels found in primary melanomas at stages III and IV and in melanoma metastases. Their expression correlated with pathomorphological pTNM parameters being low in aggressive tumors and being high in tumors showing histological markers of good prognosis. Higher nuclear levels of RORα and RORγ and of cytoplasmic RORγ correlated with significantly longer overall and disease free survival time. Highly pigmented melanomas showed significantly lower level of nuclear RORs. This study shows that human melanoma development and aggressiveness is associated with decreased expression of RORα and RORγ, suggesting that RORs could be important in melanoma progression and host responses against the tumor. Furthermore, it suggests that RORα and RORγ might constitute a novel druggable target in anti-melanoma management using tumor suppressor gene therapy restoring their normal functions. PMID:27542227

  7. Human malignant melanoma heterotransplanted to nude mice.

    PubMed

    Tropé, C; Johnsson, J E; Alm, P; Landberg, T; Olsson, H; Wennerberg, J

    1981-01-01

    Five different human malignant melanoma were heterotransplanted subcutaneously to nude mice. When small tissue pieces were used 3 out of 5 tumors grew. Subcutaneous injections of suspended tumor cells were also made, but all failed to take. Metastatic or infiltrative growth was never seen in the mice observed for up to 2.5 months. The successful grafts largely retained the original morphologicaL features. The three successfully transplanted tumors could all be serially transferred with 100% tumor take. In one case passage time was reduced from 40 days to 15 days. As measured with 3H-thymidine incorporation the proliferation rate increased during the passages. These changes might be due to a selection of more rapidly growing tumor cells in the nudes.

  8. NAD(P)H:Quinone Oxidoreductase-1 Expression Sensitizes Malignant Melanoma Cells to the HSP90 Inhibitor 17-AAG

    PubMed Central

    Kasai, Shuya; Arakawa, Nobuyuki; Okubo, Ayaka; Shigeeda, Wataru; Yasuhira, Shinji; Masuda, Tomoyuki; Akasaka, Toshihide; Shibazaki, Masahiko; Maesawa, Chihaya

    2016-01-01

    The KEAP1-NRF2 pathway regulates cellular redox homeostasis by transcriptional induction of genes associated with antioxidant synthesis and detoxification in response to oxidative stress. Previously, we reported that KEAP1 mutation elicits constitutive NRF2 activation and resistance to cisplatin (CDDP) and dacarbazine (DTIC) in human melanomas. The present study was conducted to clarify whether an HSP90 inhibitor, 17-AAG, efficiently eliminates melanoma with KEAP1 mutation, as the NRF2 target gene, NQO1, is a key enzyme in 17-AAG bioactivation. In melanoma and non-small cell lung carcinoma cell lines with or without KEAP1 mutations, NQO1 expression and 17-AAG sensitivity are inversely correlated. NQO1 is highly expressed in normal melanocytes and in several melanoma cell lines despite the presence of wild-type KEAP1, and the NQO1 expression is dependent on NRF2 activation. Because either CDDP or DTIC produces reactive oxygen species that activate NRF2, we determined whether these agents would sensitize NQO1-low melanoma cells to 17-AAG. Synergistic cytotoxicity of the 17-AAG and CDDP combination was detected in four out of five NQO1-low cell lines, but not in the cell line with KEAP1 mutation. These data indicate that 17-AAG could be a potential chemotherapeutic agent for melanoma with KEAP1 mutation or NQO1 expression. PMID:27045471

  9. ALDH1A Isozymes Are Markers of Human Melanoma Stem Cells and Potential Therapeutic Targets

    PubMed Central

    Luo, Yuchun; Dallaglio, Katiuscia; Chen, Ying; Robinson, William A; Robinson, Steven E; McCarter, Martin D; Wang, Jianbin; Gonzalez, Rene; Thompson, David C; Norris, David A; Roop, Dennis R; Vasiliou, Vasilis; Fujita, Mayumi

    2012-01-01

    Although the concept of cancer stem cells (CSCs) is well accepted for many tumors, the existence of such cells in human melanoma has been the subject of debate. In the present study, we demonstrate the existence of human melanoma cells that fulfill the criteria for CSCs (self-renewal and differentiation) by serially xenotransplanting cells into NOD/SCID mice. These cells possess high aldehyde dehydrogenase (ALDH) activity with ALDH1A1 and ALDH1A3 being the predominant ALDH isozymes. ALDH-positive melanoma cells are more tumorigenic than ALDH-negative cells in both NOD/SCID mice and NSG mice. Biological analyses of the ALDH-positive melanoma cells reveal the ALDH isozymes to be key molecules regulating the function of these cells. Silencing ALDH1A by siRNA or shRNA leads to cell cycle arrest, apoptosis and decreased cell viability in vitro and reduced tumorigenesis in vivo. ALDH-positive melanoma cells are more resistant to chemotherapeutic agents and silencing ALDH1A by siRNA sensitizes melanoma cells to drug-induced cell death. Furthermore, we, for the first time, examined the molecular signatures of ALDH-positive CSCs from patient-derived tumor specimens. The signatures of melanoma CSCs include retinoic acid (RA)-driven target genes with RA response elements and genes associated with stem cell function. These findings implicate that ALDH isozymes are not only biomarkers of CSCs but also attractive therapeutic targets for human melanoma. Further investigation of these isozymes and genes will enhance our understanding of the molecular mechanisms governing CSCs and reveal new molecular targets for therapeutic intervention of cancer. PMID:22887839

  10. [Melanoma and Human Papillomaviruses: Is There an Outlook for Study?].

    PubMed

    Volgareva, G M; Mikhaylova, I N; Golovina, D A

    2016-01-01

    Melanoma is one of the most aggressive human malignant tumors. Its incidence and mortality are growing steadily. Ultraviolet irradiation is the main risk factor for melanoma involved in melanomagenesis. The probability of viral etiology of melanoma has been discussed. Human papillomaviruses (HPV) have been mentioned among candidates for its etiologic agents because some HPV types are the powerful carcinogens causing cervical cancer and other cancers. The review analyses the literature data on the association of melanoma with HPV Several groupsfound HPVin skin melanomas as well as in mucosa; viruses of high oncogenic risk were detected in some cases. For some organs the etiological role of high-risk HPV as inducers of invasive carcinomas is confirmed. These organs require special mention: cervix uteri, vulva, vagina, penis, anal region, and oral cavity. However in the majority of the studies in which viral DNA-positive melanomas were found, testing for viral genome expression was not done while this is the fact of primary importance. HPVare found in normal skin and mucous membranes thus creating justifiable threat of tumor specimen contamination with viral DNA in vivo. There are limited data on aggravation of the disease prognosis in papillomavirus-positive melanomas. However, any systematic observation of a sizeable patient group distinguished by that tumor type has not been performed yet. Viral E6 and E7 oncogenes of high-risk papillomaviruses were shown to be able to transform normal human melanocytes in vitro experiments. Thus, we can assume the presence of the association of melanoma with oncogenic HPV. The clinical significance of this problem is indisputable under the conditions of the steady increase in melanoma incidence and mortality rates in Russia and abroad. The problem requires further study.

  11. Expression of NM23 in human melanoma progression and metastasis.

    PubMed Central

    Easty, D. J.; Maung, K.; Lascu, I.; Véron, M.; Fallowfield, M. E.; Hart, I. R.; Bennett, D. C.

    1996-01-01

    NM23 is a putative metastasis-suppressor gene for some human cancers. Here we have studied NM23 expression during melanoma progression using Northern blotting and immunocytochemistry. There was no significant difference in the average amounts of NM23 mRNA between cell lines derived from metastatic and primary melanomas. The level of NM23 mRNA was also determined for three pairs of poorly metastatic parental (P) and their highly metastatic variant (M) cell lines; the ratios for M/P were 1.2, 0.98 and 0.80. Next we used immunocytochemistry to study NM23 protein in normal skin, benign naevi and primary and metastatic melanomas. Melanocytes in all normal skin and benign samples were positive for NM23; however most primary melanomas (7/11) were not stained by the antibody. All metastatic melanoma samples (5/5) were positively stained. Findings were similar with an antiserum reactive with both forms of NM23 (H1 and H2), and with an antibody specific for NM23-H1. No relationship was apparent between NM23 immunoreactivity in primary tumours and their aggressiveness or prognosis. Hence, in contrast to the situation described for murine melanoma, the amount of NM23 mRNA or protein in human melanoma did not correlate inversely with metastasis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8679442

  12. Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine.

    PubMed

    Bedia, Carmen; Casas, Josefina; Andrieu-Abadie, Nathalie; Fabriàs, Gemma; Levade, Thierry

    2011-08-12

    Dacarbazine (DTIC) is the treatment of choice for metastatic melanoma, but its response in patients remains very poor. Ceramide has been shown to be a death effector and to play an important role in regulating cancer cell growth upon chemotherapy. Among ceramidases, the enzymes that catabolize ceramide, acid ceramidase (aCDase) has been implicated in cancer progression. Here we show that DTIC elicits a time- and dose-dependent decrease of aCDase activity and an increase of intracellular ceramide levels in human A375 melanoma cells. The loss of enzyme activity occurred as a consequence of reactive oxygen species-dependent activation of cathepsin B-mediated degradation of aCDase. These events preceded autophagic features and loss of cell viability. Down-regulation of acid but not neutral or alkaline ceramidase 2 resulted in elevated levels of ceramide and sensitization to the toxic effects of DTIC. Conversely, inducible overexpression of acid but not neutral ceramidase reduced ceramide levels and conferred resistance to DTIC. In conclusion, we report that increased levels of ceramide, due to enhanced degradation of aCDase, are in part responsible for the cell death effects of DTIC. These results suggest that down-regulation of aCDase alone or in combination with DTIC may represent a useful tool in the treatment of metastatic melanoma.

  13. Temperature-sensitive mutants of p16CDKN2 associated with familial melanoma.

    PubMed Central

    Parry, D; Peters, G

    1996-01-01

    Altered expression or function of the p16CDKN2 tumor suppressor gene on chromosome 9p21 occurs in a wide range of human tumors, and mutations in the gene have been shown to segregate with familial predisposition to malignant melanoma. We have used a variety of assays to examine the functional properties of tumor-associated alleles, including eight premature termination mutants, eight missense mutants, and three isoforms of p16 initiated at different amino-terminal methionine codons. The amino- and carboxy-terminal domains of the protein, outside the ankyrin-like repeats, appeared to be dispensable, but the majority of the premature termination mutations led to loss of function. Of the missense mutations tested, four displayed clear loss of function whereas two behaved like the wild type under all conditions tested. The remaining two mutations, a G-to-W mutation at position 101 (Gl01W) and V126D, both of which are associated with familial melanoma, were found to be temperature sensitive for binding to Cdk4 and Cdk6 in vitro, for inhibiting cyclin D1-Cdk4 in a reconstituted pRb-kinase assay, and for increasing the proportion of G1-phase cells following transfection. These findings clarify previous disparities and argue strongly that p16CDKN2 is a bona fide tumor suppressor associated with familial melanoma. PMID:8668202

  14. Melanoma

    MedlinePlus

    ... flat or raised, large or small, light or dark, and can appear anywhere on our bodies. Sometimes, ... can still get melanoma even if they're dark skinned, young, and have no family history. Even ...

  15. Melanoma.

    PubMed

    Gershenwald, J E

    2001-01-01

    The presentations at the American Society of Clinical Oncology 2001 meeting reported or updated the results of phase I, II, and III randomized trials and also reported important meta-analyses and retrospective studies impacting on the management of patients with melanoma. In the treatment of early stage melanoma, the prognostic significance of pathologic status of sentinel lymph nodes was affirmed. With respect to regional nodal involvement (American Joint Committee on Cancer [AJCC] stage III), investigators presented the interim results of the United Kingdom randomized low-dose interferon (IFN) trial, and up-to-date meta-analyses of several IFN trials including a pooled analysis of the Eastern Cooperative Oncology Group trials evaluating interferon in the adjuvant setting. In the advanced disease setting (AJCC stage IV), several studies elucidated the pros and cons of biochemotherapy in patients with metastatic melanoma, with an emphasis on seeking to improve response in the central nervous system and durability of response in general. Thought provoking was new data regarding the potential for lovastatin to act as a chemopreventive agent for melanoma. Translational studies were presented, one supporting the importance of HLA-typing in developing targeted vaccine therapy. Finally, the results of a novel experimental melanoma vaccine were presented using autologous tumor-derived heat-shock protein peptide complex-96 (HSPPC-96).

  16. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  17. SKI knockdown inhibits human melanoma tumor growth in vivo.

    PubMed

    Chen, Dahu; Lin, Qiushi; Box, Neil; Roop, Dennis; Ishii, Shunsuke; Matsuzaki, Koichi; Fan, Tao; Hornyak, Thomas J; Reed, Jon A; Stavnezer, Ed; Timchenko, Nikolai A; Medrano, Estela E

    2009-12-01

    The SKI protein represses the TGF-beta tumor suppressor pathway by associating with the Smad transcription factors. SKI is upregulated in human malignant melanoma tumors in a disease-progression manner and its overexpression promotes proliferation and migration of melanoma cells in vitro. The mechanisms by which SKI antagonizes TGF-beta signaling in vivo have not been fully elucidated. Here we show that human melanoma cells in which endogenous SKI expression was knocked down by RNAi produced minimal orthotopic tumor xenograft nodules that displayed low mitotic rate and prominent apoptosis. These minute tumors exhibited critical signatures of active TGF-beta signaling including high levels of nuclear Smad3 and p21(Waf-1), which are not found in the parental melanomas. To understand how SKI promotes tumor growth we used gain- and loss-of-function approaches and found that simultaneously to blocking the TGF-beta-growth inhibitory pathway, SKI promotes the switch of Smad3 from tumor suppression to oncogenesis by favoring phosphorylations of the Smad3 linker region in melanoma cells but not in normal human melanocytes. In this context, SKI is required for preventing TGF-beta-mediated downregulation of the oncogenic protein c-MYC, and for inducing the plasminogen activator inhibitor-1, a mediator of tumor growth and angiogenesis. Together, the results indicate that SKI exploits multiple regulatory levels of the TGF-beta pathway and its deficiency restores TGF-beta tumor suppressor and apoptotic activities in spite of the likely presence of oncogenic mutations in melanoma tumors.

  18. Oxidative stress inhibits distant metastasis by human melanoma cells

    PubMed Central

    Piskounova, Elena; Agathocleous, Michalis; Murphy, Malea M.; Hu, Zeping; Huddlestun, Sara E.; Zhao, Zhiyu; Leitch, A. Marilyn; Johnson, Timothy M.; DeBerardinis, Ralph J.; Morrison, Sean J.

    2015-01-01

    Solid cancer cells commonly enter the blood and disseminate systemically but are highly inefficient at forming distant metastases for poorly understood reasons. We studied human melanomas that differed in their metastasis histories in patients and in their capacity to metastasize in NSG mice. All melanomas had high frequencies of cells that formed subcutaneous tumours, but much lower percentages of cells that formed tumours after intravenous or intrasplenic transplantation, particularly among inefficient metastasizers. Melanoma cells in the blood and visceral organs experienced oxidative stress not observed in established subcutaneous tumours. Successfully metastasizing melanomas underwent reversible metabolic changes during metastasis that increased their capacity to withstand oxidative stress, including increased dependence upon NADPH-generating enzymes in the folate pathway. Anti-oxidants promoted distant metastasis in NSG mice. Folate pathway inhibition using low-dose methotrexate, ALDH1L2 knockdown, or MTHFD1 knockdown inhibited distant metastasis without significantly affecting the growth of subcutaneous tumors in the same mice. Oxidative stress thus limits distant metastasis by melanoma cells in vivo. PMID:26466563

  19. Biologic and Therapeutic Significance of MYB Expression in Human Melanoma

    NASA Astrophysics Data System (ADS)

    Hijiya, Nobuko; Zhang, Jin; Ratajczak, Mariusz Z.; Kant, Jeffrey A.; Deriel, Kim; Herlyn, Meenhard; Zon, Gerald; Gewirtz, Alan M.

    1994-05-01

    We investigated the therapeutic potential of employing antisense oligodeoxynucleotides to target the disruption of MYB, a gene which has been postulated to play a pathogenetic role in cutaneous melanoma. We found that MYB was expressed at low levels in several human melanoma cell lines. Also, growth of representative lines in vitro was inhibited in a dose- and sequence-dependent manner by targeting the MYB gene with unmodified or phosphorothioate-modified antisense oligodeoxynucleotides. Inhibition of cell growth correlated with specific decrease of MYB mRNA. In SCID mice bearing human melanoma tumors, infusion of MYB antisense transiently suppressed MYB gene expression but effected long-term growth suppression of transplanted tumor cells. Toxicity of the oligodeoxynucleotides was minimal in mice, even when targeted to the murine Myb gene. These results suggest that the MYB gene may play an important, though undefined, role in the growth of at least some human melanomas. Inhibition of MYB expression might be of use in the treatment of this disease.

  20. Regulation of mda-7 gene expression during human melanoma differentiation.

    PubMed

    Madireddi, M T; Dent, P; Fisher, P B

    2000-03-02

    Induction of irreversible growth arrest and terminal differentiation in human melanoma cells following treatment with recombinant human fibroblast interferon (IFN-beta) and mezerein (MEZ) results in elevated expression of a specific melanoma differentiation associated gene, mda-7. Experiments were conducted to define the mechanism involved in the regulation of mda-7 expression in differentiating human melanoma cells. The mda-7 gene is actively transcribed in uninduced HO-1 human melanoma cells and the rate of transcription of mda-7 is not significantly enhanced by treatment with IFN-beta, MEZ or IFN-beta+MEZ. The high basal activity of the mda-7 promoter in uninduced melanoma cells and the absence of enhancing effect upon treatment with differentiation inducers is corroborated by transfection studies using the promoter region of mda-7 linked to a luciferase reporter gene containing the SV40 polyadenylation signal sequence. RT - PCR analysis detects the presence of low levels of mda-7 transcripts in uninduced and concomitant increases in differentiation inducer treated HO-1 cells. However, steady-state mda-7 mRNA is detected only in IFN-beta+MEZ and to a lesser degree in MEZ treated cells. We show that induction of terminal differentiation of HO-1 cells with IFN-beta+MEZ dramatically increases the half-life of mda-7 mRNA while treatment with cycloheximide results in detectable mda-7 mRNA in control and inducer treated cells. These observations confirm constitutive activity of the mda-7 promoter in HO-1 cells irrespective of differentiation status suggesting posttranscriptional processes as important determinants of mda-7 expression during terminal differentiation. The 3' UTR region of mda-7 contains AU-rich elements (ARE) that contribute to rapid mda-7 mRNA turnover during proliferation and reversible differentiation, a process controlled by a labile protein factor(s). Substitution of the SV40 polyadenylation signal sequence in the luciferase reporter plasmid with

  1. Unique glycoprotein-proteoglycan complex defined by monoclonal antibody on human melanoma cells.

    PubMed Central

    Bumol, T F; Reisfeld, R A

    1982-01-01

    A monoclonal antibody, 9.2.27, with a high specificity for human melanoma cell surfaces has been utilized for biosynthetic studies in M21 human melanoma cells to define a unique antigenic complex consisting of a 250-kilodalton N-linked glycoprotein and a high molecular weight proteoglycan component larger than 400 kilodaltons. The 250-kilodalton glycoprotein has endoglycosidase H-sensitive precursors and shows a lower apparent molecular weight after treatment with neuraminidase. The biosynthesis of the proteoglycan component is inhibited by exposure of M21 cells to the monovalent ionophore monensin, this component can be labeled biosynthetically with 35SO4, is sensitive to beta-elimination in dilute base, and is degraded by both chondroitinase AC and ABC lyases, suggesting that it is a chondroitin sulfate proteoglycan. These data demonstrate that the antigenic determinant recognized by monoclonal antibody 9.2.27 is located on a glycoprotein-proteoglycan complex which may have unique implications for the interaction of glycoconjugates at the human melanoma tumor cell surface. Images PMID:6175965

  2. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    PubMed

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  3. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    SciTech Connect

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J.

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  4. Vinculin activators target integrins from within the cell to increase melanoma sensitivity to chemotherapy

    PubMed Central

    Nelson, Elke S.; Folkmann, Andrew W.; Henry, Michael D.; DeMali, Kris A.

    2011-01-01

    Metastatic melanoma is an aggressive skin disease for which there are no effective therapies. Emerging evidence indicates that melanomas can be sensitized to chemotherapy by increasing integrin function. Current integrin therapies work by targeting the extracellular domain, resulting in complete gains or losses of integrin function that lead to mechanism-based toxicities. An attractive alternative approach is to target proteins, such as vinculin, that associate with the integrin cytoplasmic domains and regulate its ligand binding properties. Here we report that a novel reagent, denoted vinculin activating peptide or VAP, increases integrin activity from within the cell, as measured by elevated: (1) numbers of active integrins, (2) adhesion of cells to extracellular matrix ligands, (3) numbers of cell-matrix adhesions, and (4) downstream signaling. These effects are dependent on both integrins and a key regulatory residue A50 in the vinculin head domain. We further show that VAP dramatically increases the sensitivity of melanomas to chemotherapy in clonal growth assays and in vivo mouse models of melanoma. Finally, we demonstrate that the increase in chemosensitivity results from increases in DNA damage-induced apoptosis in a p53-dependent manner. Collectively these findings demonstrate for the first time that integrin function can be manipulated from within the cell and validate integrins as a new therapeutic target for the treatment of chemoresistant melanomas. PMID:21460181

  5. Versican Is Differentially Expressed in Human Melanoma and May Play a Role in Tumor Development

    PubMed Central

    Touab, Malika; Villena, Juan; Barranco, Carlos; Arumí-Uría, Montserrat; Bassols, Anna

    2002-01-01

    Undifferentiated human melanoma cell lines produce a large chondroitin sulfate proteoglycan, different from the well-known melanoma-specific proteoglycan mel-PG (Heredia and colleagues, Arch Biochem Biophys, 333: 198–206, 1996). We have identified this proteoglycan as versican and analyzed the expression of versican in several human melanoma cell lines. Versican isoforms are expressed in undifferentiated cell lines but not in differentiated cells, and the isoform expression pattern depends on the degree of cell differentiation. The V0 and V1 isoforms are found on cells with an early degree of differentiation, whereas the V1 isoform is present in cells with an intermediate degree of differentiation. We have also characterized some functional properties of versican on human melanoma cells: the purified proteoglycan stimulates cell growth and inhibits cell adhesion when cells are grown on fibronectin or collagen type I as substrates, and thus may facilitate tumor cell detachment and proliferation. Furthermore, we have analyzed the expression of versican in human melanocytic nevi and melanoma: 10 benign melanocytic nevi, 10 dysplastic nevi, 11 primary malignant melanomas, and 8 metastatic melanomas were tested. Immunoreactivity for versican was negative in benign melanocytic nevi, weakly to strongly positive in dysplastic nevi, and intensely positive in primary malignant melanomas and metastatic melanomas. Our results indicate that versican is involved in the progression of melanomas and may be a reliable marker for clinical diagnosis. PMID:11839575

  6. Epigenetic impacts of ascorbate on human metastatic melanoma cells.

    PubMed

    Venturelli, Sascha; Sinnberg, Tobias W; Berger, Alexander; Noor, Seema; Levesque, Mitchell Paul; Böcker, Alexander; Niessner, Heike; Lauer, Ulrich M; Bitzer, Michael; Garbe, Claus; Busch, Christian

    2014-01-01

    In recent years, increasing evidence has emerged demonstrating that high-dose ascorbate bears cytotoxic effects on cancer cells in vitro and in vivo, making ascorbate a pro-oxidative drug that catalyzes hydrogen peroxide production in tissues instead of acting as a radical scavenger. This anticancer effect of ascorbate is hypoxia-inducible factor-1α- and O2-dependent. However, whether the intracellular mechanisms governing this effect are modulated by epigenetic phenomena remains unknown. We treated human melanoma cells with physiological (200 μM) or pharmacological (8 mM) ascorbate for 1 h to record the impact on DNA methyltransferase (DNMT)-activity, histone deacetylases (HDACs), and microRNA (miRNA) expression after 12 h. The results were analyzed with the MIRUMIR online tool that estimates the power of miRNA to serve as potential biomarkers to predict survival of cancer patients. FACS cell-cycle analyses showed that 8 mM ascorbate shifted BLM melanoma cells toward the sub-G1 fraction starting at 12 h after an initial primary G2/M arrest, indicative for secondary apoptosis induction. In pharmacological doses, ascorbate inhibited the DNMT activity in nuclear extracts of MeWo and BLM melanoma cells, but did not inhibit human HDAC enzymes of classes I, II, and IV. The expression of 151 miRNAs was altered 12 h after ascorbate treatment of BLM cells in physiological or pharmacological doses. Pharmacological doses up-regulated 32 miRNAs (≥4-fold) mainly involved in tumor suppression and drug resistance in our preliminary miRNA screening array. The most prominently up-regulated miRNAs correlated with a significantly increased overall survival of breast cancer or nasopharyngeal carcinoma patients of the MIRUMIR database with high expression of the respective miRNA. Our results suggest a possible epigenetic signature of pharmacological doses of ascorbate in human melanoma cells and support further pre-clinical and possibly even clinical evaluation of

  7. Response of human neuroblastoma and melanoma multicellular tumor spheroids (MTS) to single dose irradiation

    SciTech Connect

    Evans, S.M.; Labs, L.M.; Yuhas, J.M.

    1986-06-01

    The growth characteristics of 6 human cell line derived multicellular tumor spheroids (MTS) were studied. Melanoma MTS (C32, HML-A, HML-B) were slow growing with baseline growth rates of 13.9 to 27.3 microns diameter/day. Neuroblastoma MTS (Lan-1, NB-100, NB-134) grew rapidly, with baseline growth rates of 32.1 to 40.3 microns diameter/day, that is, 1.2 to 2.9 times as fast as the melanomas. Delay constants were calculated for all six lines. The neuroblastomas were more sensitive to radiation than melanomas, as reflected in a greater value for the radiation-induced growth delay constant. One neuroblastoma line, Lan-1, was highly radioresponsive; that is, after a subcurative dose of radiation, the MTS diameter decreased beyond the original diameter, which was followed by recovery and regrowth. Irrespective of these initial changes in diameter, growth delay sensitivity (value of delay constant) was the same for Lan-1 and NB-100, an MTS line that did not show the responsive pattern.

  8. MicroRNA 211 Functions as a Metabolic Switch in Human Melanoma Cells

    PubMed Central

    Mazar, Joseph; Qi, Feng; Lee, Bongyong; Marchica, John; Govindarajan, Subramaniam; Shelley, John; Li, Jian-Liang; Ray, Animesh

    2016-01-01

    MicroRNA 211 (miR-211) negatively regulates genes that drive invasion of metastatic melanoma. Compared to normal human melanocytes, miR-211 expression is significantly reduced or absent in nonpigmented melanoma cells and lost during human melanoma progression. To investigate the molecular mechanism of its tumor suppressor function, miR-211 was ectopically expressed in nonpigmented melanoma cells. Ectopic expression of miR-211 reduced hypoxia-inducible factor 1α (HIF-1α) protein levels and decreased cell growth during hypoxia. HIF-1α protein loss was correlated with the downregulation of a miR-211 target gene, pyruvate dehydrogenase kinase 4 (PDK4). We present evidence that resumption of miR-211-mediated downregulation of PDK4 in melanoma cells causes inhibition of invasion by nonpigmented melanomas via HIF-1α protein destabilization. Thus, the tumor suppressor miR-211 acts as a metabolic switch, and its loss is expected to promote cancer hallmarks in human melanomas. Melanoma, one of the deadliest forms of skin cancer, kills nearly 10,000 people in the United States per year. We had previously shown that a small noncoding RNA, termed miR-211, suppresses invasion and the growth of aggressive melanoma cells. The results presented here support the hypothesis that miR-211 loss in melanoma cells causes abnormal regulation of energy metabolism, which in turn allows cancer cells to survive under low oxygen concentrations—a condition that generally kills normal cells. These findings highlight a novel mechanism of melanoma formation: miR-211 is a molecular switch that is turned off in melanoma cells, raising the hope that in the future we might be able to turn the switch back on, thus providing a better treatment option for melanoma. PMID:26787841

  9. Adaptive response of human melanoma cells to methylglyoxal injury.

    PubMed

    Amicarelli, F; Bucciarelli, T; Poma, A; Aimola, P; Di Ilio, C; Ragnelli, A M; Miranda, M

    1998-03-01

    The effects of methylglyoxal on the growth of a line of human melanoma cells are investigated. Methylglyoxal inhibits cell growth in a dose-dependent manner and causes an increase in glyceraldehyde 3-phosphate dehydrogenase, and glyoxalase 1 and glyoxalase 2 specific activities. The cellular response to increasing concentrations of methylglyoxal in the culture medium is also studied by measuring L-lactate production, reduced-oxidized glutathione levels and apoptotic cell death. Methylglyoxal seems to promote a change of cell population phenotypic repertoire toward a more monomorphic phenotype. In conclusion, methylglyoxal seems to induce an enzymatic cellular response that lowers methylglyoxal levels and selects the most resistant cells.

  10. MiR-769 promoted cell proliferation in human melanoma by suppressing GSK3B expression.

    PubMed

    Qiu, Hai-Jiang; Lu, Xiao-He; Yang, Sha-Sha; Weng, Chen-Yin; Zhang, E-Keng; Chen, Fang-Chao

    2016-08-01

    MicroRNAs (miRNAs) are short, non-coding RNAs with post-transcriptional regulatory function, playing crucial roles in cancer development and progression of human melanoma. Previous studies have indicated that miR-769 was implicated in diverse biological processes. However, the underlying mechanism of miR-769 in human melanoma has not been intensively investigated. In this present study, we aimed to investigate the role of miR-769 and its target genes in human melanoma. We found that miR-769 expression was strongly increased in human melanoma cells and clinical tissues compared with their corresponding controls. Overexpression of miR-769 promoted cell proliferation in human melanoma cell line A375, whereas miR-769-in reverses the function. Glycogen synthase kinase-3 Beta (GSK3B), a potential target gene of miR-769, and was validated by luciferase assay. Further studies revealed that miR-769 regulated cell proliferation of human melanoma by directly suppressing GSK3B expression and the knockdown of GSK3B expression reversed the effect of miR-769-in on human melanoma cell proliferation. In summary, our data demonstrated that miR-769 might act as a tumor promoter by targeting GSK3B during development of human melanoma.

  11. Human Single-Chain Fv Immunoconjugates Targeted to a Melanoma-Associated Chondroitin Sulfate Proteoglycan Mediate Specific Lysis of Human Melanoma Cells by Natural Killer Cells and Complement

    NASA Astrophysics Data System (ADS)

    Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan

    1999-02-01

    Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.

  12. Dependence On Glycolysis Sensitizes BRAF-mutated Melanomas For Increased Response To Targeted BRAF Inhibition

    PubMed Central

    Hardeman, Keisha N.; Peng, Chengwei; Paudel, Bishal B.; Meyer, Christian T.; Luong, Thong; Tyson, Darren R.; Young, Jamey D.; Quaranta, Vito; Fessel, Joshua P.

    2017-01-01

    Dysregulated metabolism can broadly affect therapy resistance by influencing compensatory signaling and expanding proliferation. Given many BRAF-mutated melanoma patients experience disease progression with targeted BRAF inhibitors, we hypothesized therapeutic response is related to tumor metabolic phenotype, and that altering tumor metabolism could change therapeutic outcome. We demonstrated the proliferative kinetics of BRAF-mutated melanoma cells treated with the BRAF inhibitor PLX4720 fall along a spectrum of sensitivity, providing a model system to study the interplay of metabolism and drug sensitivity. We discovered an inverse relationship between glucose availability and sensitivity to BRAF inhibition through characterization of metabolic phenotypes using nearly a dozen metabolic parameters in Principle Component Analysis. Subsequently, we generated rho0 variants that lacked functional mitochondrial respiration and increased glycolytic metabolism. The rho0 cell lines exhibited increased sensitivity to PLX4720 compared to the respiration-competent parental lines. Finally, we utilized the FDA-approved antiretroviral drug zalcitabine to suppress mitochondrial respiration and to force glycolysis in our cell line panel, resulting in increased PLX4720 sensitivity via shifts in EC50 and Hill slope metrics. Our data suggest that forcing tumor glycolysis in melanoma using zalcitabine or other similar approaches may be an adjunct to increase the efficacy of targeted BRAF therapy. PMID:28205616

  13. The embryonic morphogen, Nodal, is associated with channel-like structures in human malignant melanoma xenografts.

    PubMed

    McAllister, Josephine C; Zhan, Qian; Weishaupt, Carsten; Hsu, Mei-Yu; Murphy, George F

    2010-04-01

    Formation of channel-like structures, also termed vasculogenic mimicry (VM), describes the ability of aggressive melanoma cells to form PAS-positive anastomosing structures that correlate with tumor virulence. This phenomenon may indicate differentiation plasticity, a feature melanoma cells may share with stem cells in the developing embryo. Recent studies have indicated that VM and tumorigenicity of human malignant melanoma may depend on the signaling pathways of an embryonic morphogen, Nodal. However, given the secretory nature of Nodal protein and melanoma cell heterogeneity, it remains unclear whether the Nodal-expressing cells participate directly or indirectly in VM that is potentially related to tumorigenic growth. We have developed a humanized murine xenograft model in which developing human melanomas may be sequentially studied during early stages of tumorigenic growth within a physiological human dermal microenvironment. Nodal protein localized diffusely to melanoma cell membranes, with occasional foci of accentuated reactivity in patterns suggestive of channel formation. Similar findings were detected in a limited number of patient-derived tumors. In situ hybridization confirmed Nodal mRNA to be restricted to tumor cells within xenografts that formed arborizing networks in patterns consistent with VM. These data indicate that Nodal gene expression is associated with formation of VM-like structures in a physiologically relevant model of human melanoma tumorigenesis, and further support a key role for Nodal expression in the formation of channel-like structures. The humanized xenograft model should be useful in future studies to define the mechanistic pathways responsible for VM and melanoma progression.

  14. Development of a human three-dimensional organotypic skin-melanoma spheroid model for in vitro drug testing

    PubMed Central

    Vörsmann, H; Groeber, F; Walles, H; Busch, S; Beissert, S; Walczak, H; Kulms, D

    2013-01-01

    Despite remarkable efforts, metastatic melanoma (MM) still presents with significant mortality. Recently, mono-chemotherapies are increasingly replenished by more cancer-specific combination therapies involving death ligands and drugs interfering with cell signaling. Still, MM remains a fatal disease because tumors rapidly develop resistance to novel therapies thereby regaining tumorigenic capacity. Although genetically engineered mouse models for MM have been developed, at present no model is available that reliably mimics the human disease and is suitable for studying mechanisms of therapeutic obstacles including cell death resistance. To improve the increasing requests on new therapeutic alternatives, reliable human screening models are demanded that translate the findings from basic cellular research into clinical applications. By developing an organotypic full skin equivalent, harboring melanoma tumor spheroids of defined sizes we have invented a cell-based model that recapitulates both the 3D organization and multicellular complexity of an organ/tumor in vivo but at the same time accommodates systematic experimental intervention. By extending our previous findings on melanoma cell sensitization toward TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) by co-application of sublethal doses of ultraviolet-B radiation (UVB) or cisplatin, we show significant differences in the therapeutical outcome to exist between regular two-dimensional (2D) and complex in vivo-like 3D models. Of note, while both treatment combinations killed the same cancer cell lines in 2D culture, skin equivalent-embedded melanoma spheroids are potently killed by TRAIL+cisplatin treatment but remain almost unaffected by the TRAIL+UVB combination. Consequently, we have established an organotypic human skin-melanoma model that will facilitate efforts to improve therapeutic outcomes for malignant melanoma by providing a platform for the investigation of cytotoxic treatments and

  15. Inhibition of the RhoA GTPase Activity Increases Sensitivity of Melanoma Cells to UV Radiation Effects

    PubMed Central

    Espinha, Gisele; Osaki, Juliana Harumi; Costa, Erico Tosoni; Forti, Fabio Luis

    2016-01-01

    Ultraviolet radiation is the main cause of DNA damage to melanocytes and development of melanoma, one of the most lethal human cancers, which leads to metastasis due to uncontrolled cell proliferation and migration. These phenotypes are mediated by RhoA, a GTPase overexpressed or overactivated in highly aggressive metastatic tumors that plays regulatory roles in cell cycle progression and cytoskeleton remodeling. This work explores whether the effects of UV on DNA damage, motility, proliferation, and survival of human metastatic melanoma cells are mediated by the RhoA pathway. Mutant cells expressing dominant-negative (MeWo-RhoA-N19) or constitutively active RhoA (MeWo-RhoA-V14) were generated and subjected to UV radiation. A slight reduction in migration and invasion was observed in MeWo and MeWo-RhoA-V14 cells but not in MeWo-RhoA-N19 cells, which presented inefficient motility and invasiveness associated with stress fibers fragmentation. Proliferation and survival of RhoA-deficient cells were drastically reduced by UV compared to cells displaying normal or high RhoA activity, suggesting increased sensitivity to UV. Loss of RhoA activity also caused less efficient DNA repair, with elevated levels of DNA lesions such as strand breaks and cyclobutane pyrimidine dimers (CPDs). Thus, RhoA mediates genomic stability and represents a potential target for sensitizing metastatic tumors to genotoxic agents. PMID:26823948

  16. Inhibition of the RhoA GTPase Activity Increases Sensitivity of Melanoma Cells to UV Radiation Effects.

    PubMed

    Espinha, Gisele; Osaki, Juliana Harumi; Costa, Erico Tosoni; Forti, Fabio Luis

    2016-01-01

    Ultraviolet radiation is the main cause of DNA damage to melanocytes and development of melanoma, one of the most lethal human cancers, which leads to metastasis due to uncontrolled cell proliferation and migration. These phenotypes are mediated by RhoA, a GTPase overexpressed or overactivated in highly aggressive metastatic tumors that plays regulatory roles in cell cycle progression and cytoskeleton remodeling. This work explores whether the effects of UV on DNA damage, motility, proliferation, and survival of human metastatic melanoma cells are mediated by the RhoA pathway. Mutant cells expressing dominant-negative (MeWo-RhoA-N19) or constitutively active RhoA (MeWo-RhoA-V14) were generated and subjected to UV radiation. A slight reduction in migration and invasion was observed in MeWo and MeWo-RhoA-V14 cells but not in MeWo-RhoA-N19 cells, which presented inefficient motility and invasiveness associated with stress fibers fragmentation. Proliferation and survival of RhoA-deficient cells were drastically reduced by UV compared to cells displaying normal or high RhoA activity, suggesting increased sensitivity to UV. Loss of RhoA activity also caused less efficient DNA repair, with elevated levels of DNA lesions such as strand breaks and cyclobutane pyrimidine dimers (CPDs). Thus, RhoA mediates genomic stability and represents a potential target for sensitizing metastatic tumors to genotoxic agents.

  17. Inhibition of L-tyrosine-induced micronuclei production by phenylthiourea in human melanoma cells.

    PubMed

    Poma, A; Bianchini, S; Miranda, M

    1999-12-13

    It was previously found that L-tyrosine oxidation product(s) are cytotoxic, genotoxic and increase the sister chromatid exchange (SCE) levels in human melanoma cells. In this work, the micronucleus assay has been performed on human melanotic and amelanotic melanoma cell lines (Carl-1 MEL and AMEL) in the presence of 1.0, 0.5 and 0.1 mM L-tyrosine concentrations to investigate if melanin synthesis intermediate(s) increase micronuclei production. L-Tyrosine oxidation product(s) increased the frequency of micronuclei in melanoma cells; 0.1 mM phenylthiourea (PTU), an inhibitor of L-tyrosine oxidation by tyrosinase, lowered the micronucleus production to the control levels. The culture of melanoma cells with high L-tyrosine in the culture medium resulted in a positive response to an ELISA-based apoptotic test. For comparison the effect of L-tyrosine on micronuclei production in human amelanotic melanoma cells was also investigated; the micronucleus production in the presence of 1 mM L-tyrosine in the culture medium was lower than that found with melanotic melanoma cells of the same cell line. The data suggest that melanin synthesis intermediates arising from L-tyrosine oxidation may cause micronuclei production in Carl-1 human melanoma cells; the addition of PTU in the presence of L-tyrosine decreased the frequency of micronuclei to about the control values thus the inhibition of melanogenesis may have some clinical implication in melanotic melanoma.

  18. Lymphatic vessels regulate immune microenvironments in human and murine melanoma

    PubMed Central

    Lund, Amanda W.; Wagner, Marek; Fankhauser, Manuel; Steinskog, Eli S.; Broggi, Maria A.; Spranger, Stefani; Gajewski, Thomas F.; Alitalo, Kari; Eikesdal, Hans P.

    2016-01-01

    Lymphatic remodeling in tumor microenvironments correlates with progression and metastasis, and local lymphatic vessels play complex and poorly understood roles in tumor immunity. Tumor lymphangiogenesis is associated with increased immune suppression, yet lymphatic vessels are required for fluid drainage and immune cell trafficking to lymph nodes, where adaptive immune responses are mounted. Here, we examined the contribution of lymphatic drainage to tumor inflammation and immunity using a mouse model that lacks dermal lymphatic vessels (K14-VEGFR3-Ig mice). Melanomas implanted in these mice grew robustly, but exhibited drastically reduced cytokine expression and leukocyte infiltration compared with those implanted in control animals. In the absence of local immune suppression, transferred cytotoxic T cells more effectively controlled tumors in K14-VEGFR3-Ig mice than in control mice. Furthermore, gene expression analysis of human melanoma samples revealed that patient immune parameters are markedly stratified by levels of lymphatic markers. This work suggests that the establishment of tumor-associated inflammation and immunity critically depends on lymphatic vessel remodeling and drainage. Moreover, these results have implications for immunotherapies, the efficacies of which are regulated by the tumor immune microenvironment. PMID:27525437

  19. Proteomic Analysis of Proton Beam Irradiated Human Melanoma Cells

    PubMed Central

    Kedracka-Krok, Sylwia; Jankowska, Urszula; Elas, Martyna; Sowa, Urszula; Swakon, Jan; Cierniak, Agnieszka; Olko, Pawel; Romanowska-Dixon, Bozena; Urbanska, Krystyna

    2014-01-01

    Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma. PMID:24392146

  20. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice

    PubMed Central

    Hu, Zheng; Xia, Jinxing; Fan, Wei; Wargo, Jennifer; Yang, Yong-Guang

    2016-01-01

    A major factor hindering the exploration of adoptive immunotherapy in preclinical settings is the limited availability of tumor-reactive human T cells. Here we developed a humanized mouse model that permits large-scale production of human T cells expressing the engineered melanoma antigen MART-1-specific TCR. Humanized mice, made by transplantation of human fetal thymic tissue and CD34+ cells virally-transduced with HLA class I-restricted melanoma antigen (MART-1)-specific TCR gene, showed efficient development of MART-1-TCR+ human T cells with predominantly CD8+ cells. Importantly, MART-1-TCR+CD8+ T cells developing in these mice were capable of mounting antigen-specific responses in vivo, as evidenced by their proliferation, phenotypic conversion and IFN-γ production following MART-1 peptide immunization. Moreover, these MART-1-TCR+CD8+ T cells mediated efficient killing of melanoma cells in an HLA/antigen-dependent manner. Adoptive transfer of in vitro expanded MART-1-TCR+CD8+ T cells induced potent antitumor responses that were further enhanced by IL-15 treatment in melanoma-bearing recipients. Finally, a short incubation of MART-1-specific T cells with rapamycin acted synergistically with IL-15, leading to significantly improved tumor-free survival in recipients with metastatic melanoma. These data demonstrate the practicality of using humanized mice to produce potentially unlimited source of tumor-specific human T cells for experimental and preclinical exploration of cancer immunotherapy. This study also suggests that pretreatment of tumor-reactive T cells with rapamycin in combination with IL-15 administration may be a novel strategy to improve the efficacy of adoptive T cell therapy. PMID:26824989

  1. L576P KIT mutation in anal melanomas correlates with KIT protein expression and is sensitive to specific kinase inhibition.

    PubMed

    Antonescu, Cristina R; Busam, Klaus J; Francone, Todd D; Wong, Grace C; Guo, Tianhua; Agaram, Narasimhan P; Besmer, Peter; Jungbluth, Achim; Gimbel, Mark; Chen, Chin-Tung; Veach, Darren; Clarkson, Bayard D; Paty, Philip B; Weiser, Martin R

    2007-07-15

    Activating mutations in either BRAF or NRAS are seen in a significant number of malignant melanomas, but their incidence appears to be dependent to ultraviolet light exposure. Thus, BRAF mutations have the highest incidence in non-chronic sun damaged (CSD), and are uncommon in acral, mucosal and CSD melanomas. More recently, activating KIT mutations have been described in rare cases of metastatic melanoma, without further reference to their clinical phenotypes. This finding is intriguing since KIT expression is downregulated in most melanomas progressing to more aggressive lesions. In this study, we investigated a group of anal melanomas for the presence of BRAF, NRAS, KIT and PDGFRA mutations. A heterozygous KIT exon 11 L576P substitution was identified in 3 of 20 cases tested. The 3 KIT mutation-carrying tumors were strongly immunopositive for KIT protein. No KIT mutations were identified in tumors with less than 4+ KIT immunostaining. NRAS mutation was identified in one tumor. No BRAF or PDGFRA mutations were identified in either KIT positive or negative anal melanomas. In vitro drug testing of stable transformant Ba/F3 KIT(L576P) mutant cells showed sensitivity for dasatinib (previously known as BMS-354825), a dual SRC/ABL kinase inhibitor, and imatinib. However, compared to an imatinib-sensitive KIT mutant, dasatinib was potent at lower doses than imatinib in the KIT(L576P) mutant. These results suggest that a subset of anal melanomas show activating KIT mutations, which are susceptible for therapy with specific kinase inhibitors.

  2. Inhibitory effect of melanoma differentiation associated gene-7/interleukin-24 on invasion in vitro of human melanoma cancer cells.

    PubMed

    Lin, Bi-wen; Jiao, Ze-long; Fan, Jian-feng; Peng, Liang; Li, Lei; Zhao, Zi-gang; Ding, Xiang-yu; Li, Heng-jin

    2013-06-01

    The acquisition of metastasis potential is a critical point for malignant tumors. Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a potential tumor suppress gene and frequently down-regulated in malignant tumors. It has been implicated that overexpression of MDA-7 led to proliferation inhibition in many types of human tumor. Invasion is an important process which is potential to promote tumor metastasis. However, the role and potential molecular mechanism of mda-7/IL-24 to inhibit the invasion of human melanoma cancer is not fully clear. In this report, we identified a solid role for mda-7/IL-24 in invasion inhibition of human melanoma cancer LiBr cells, including decreasing of adhesion and invasion in vitro, blocking cell cycle, down-regulating the expression of ICAM-1, MMP-2/9, CDK1, the phosphorylation of ERK and Akt, NF-κB and AP-1 transcription activity. Meanwhile, there was an increased expression of PTEN in mda-7/IL-24 over-expression LiBr cells. Our results demonstrated that mda-7/IL-24 is a potential invasion suppress gene, which inhibits the invasion of LiBr cells by the down-regulation of ICAM-1, MMP-2/9, PTEN, and CDK1 expression. The molecular pathways involved were the MAPK/ERK, PI3K-Akt, NF-κB, and AP-1. These findings suggest that mda-7/IL-24 may be used as a possible therapeutic strategy for human melanoma cancer.

  3. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells

    PubMed Central

    Skolucka, Nina; Daczewska, Malgorzata; Saczko, Jolanta; Chwilkowska, Agnieszka; Choromanska, Anna; Kotulska, Malgorzata; Kaminska, Iwona; Kulbacka, Julita

    2011-01-01

    Objective To estimate electroporation (EP) influence on malignant and normal cells. Methods Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following: 250, 1 000, 1 750, 2 500 V/cm; 50 µs by 5 impulses for every case. The viability of cells after EP was estimated by MTT assay. The ultrastructural analysis was observed by transmission electron microscope (Zeiss EM 900). Results In the current study we observed the intracellular effect following EP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated by EP. Conversely, we showed that EP in some conditions can stimulate cells to proliferation. Some changes induced by EP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters of EP (250 and 1 000 V/cm). After applying higher electric field intensities (2 500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications after EP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters of EP. Conclusions We can claim that EP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude that EP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells. PMID:23569735

  4. Tumour procurement, DNA extraction, coverage analysis and optimisation of mutation-detection algorithms for human melanoma genomes.

    PubMed

    Wilmott, James S; Field, Matthew A; Johansson, Peter A; Kakavand, Hojabr; Shang, Ping; De Paoli-Iseppi, Ricardo; Vilain, Ricardo E; Pupo, Gulietta M; Tembe, Varsha; Jakrot, Valerie; Shang, Catherine A; Cebon, Jonathan; Shackleton, Mark; Fitzgerald, Anna; Thompson, John F; Hayward, Nicholas K; Mann, Graham J; Scolyer, Richard A

    2015-12-01

    Whole genome sequencing (WGS) of cancer patients' tumours offers the most comprehensive method of identifying both novel and known clinically-actionable genomic targets. However, the practicalities of performing WGS on clinical samples are poorly defined.This study was designed to test sample preparation, sequencing specifications and bioinformatic algorithms for their effect on accuracy and cost-efficiency in a large WGS analysis of human melanoma samples.WGS was performed on melanoma cell lines (n = 15) and melanoma fresh frozen tumours (n = 222). The appropriate level of coverage and the optimal mutation detection algorithm for the project pipeline were determined.An incremental increase in sequencing coverage from 36X to 132X in melanoma tissue samples and 30X to 103X for cell lines only resulted in a small increase (1-2%) in the number of mutations detected, and the quality scores of the additional mutations indicated a low probability that the mutations were real. The results suggest that 60X coverage for melanoma tissue and 40X for melanoma cell lines empower the detection of 98-99% of informative single nucleotide variants (SNVs), a sensitivity level at which clinical decision making or landscape research projects can be carried out with a high degree of confidence in the results. Likewise the bioinformatic mutation analysis methodology strongly influenced the number and quality of SNVs detected. Detecting mutations in the blood genomes separate to the tumour genomes generated 41% more SNVs than if the blood and melanoma tissue genomes were analysed simultaneously. Therefore, simultaneous analysis should be employed on matched melanoma tissue and blood genomes to reduce errors in mutation detection.This study provided valuable insights into the accuracy of SNV with WGS at various coverage levels in human clinical cancer specimens. Additionally, we investigated the accuracy of the publicly available mutation detection algorithms to detect cancer

  5. Functional expression of voltage-gated calcium channels in human melanoma.

    PubMed

    Das, A; Pushparaj, C; Bahí, N; Sorolla, A; Herreros, J; Pamplona, R; Vilella, R; Matias-Guiu, X; Martí, R M; Cantí, C

    2012-03-01

    The expression of voltage-gated calcium channels (VGCCs) has not been reported previously in melanoma cells in spite of increasing evidence of a role of VGCCs in tumorigenesis and tumour progression. To address this issue we have performed an extensive RT-PCR analysis of VGCC expression in human melanocytes and a range of melanoma cell lines and biopsies. In addition, we have tested the functional expression of these channels using Ca(2+) imaging techniques and examined their relevance for the viability and proliferation of the melanoma cells. Our results show that control melanocytes and melanoma cells express channel isoforms belonging to the Ca(v) 1 and Ca(v) 2 gene families. Importantly, the expression of low voltage-activated Ca(v) 3 (T-type) channels is restricted to melanoma. We have confirmed the function of T-type channels as mediators of constitutive Ca(2+) influx in melanoma cells. Finally, pharmacological and gene silencing approaches demonstrate a role for T-type channels in melanoma viability and proliferation. These results encourage the analysis of T-type VGCCs as targets for therapeutic intervention in melanoma tumorigenesis and/or tumour progression.

  6. Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells.

    PubMed

    Slominski, Andrzej; Semak, Igor; Pisarchik, Alexander; Sweatman, Trevor; Szczesniewski, Andre; Wortsman, Jacobo

    2002-01-30

    We showed in human melanoma cells tryptophan hydroxylase (TPH) and hydroxyindole methyltransferase genes expression with the sequential enzymatic activities of TPH, serotonin (Ser) N-acetyltransferase and hydroxyindole methyltransferase. The presence of the products Ser, 5OH-tryptophan, N-acetylserotonin, melatonin (Mel), 5-methoxytryptamine and 5-methoxytryptophol was documented by liquid chromatography-mass spectrometry. Thus, human melanoma cells can synthesize and metabolize Ser and Mel.

  7. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells

    PubMed Central

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M.; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L.; Festuccia, Claudio; Limonta, Patrizia

    2016-01-01

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma. PMID:27461002

  8. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells.

    PubMed

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L; Festuccia, Claudio; Limonta, Patrizia

    2016-07-27

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma.

  9. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways.

    PubMed

    Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Katiyar, Santosh K; Ballestas, Mary E; Athar, Mohammad; Elmets, Craig A; Afaq, Farrukh

    2014-01-01

    Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60-70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5-20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin

  10. HSPB1 deficiency sensitizes melanoma cells to hyperthermia induced cell death

    PubMed Central

    Wang, He-Xiao; Yang, Yang; Guo, Hao; Hou, Dian-Dong; Zheng, Song; Hong, Yu-Xiao; Cai, Yun-Fei; Huo, Wei; Qi, Rui-Qun; Zhang, Li; Chen, Hong-Duo; Gao, Xing-Hua

    2016-01-01

    Hyperthermia has shown clinical potency as a single agent or as adjuvant to other therapies in cancer treatment. However, thermotolerance induced by thermosensitive genes such as the heat shock proteins can limit the efficacy of hyperthermic treatment. In the present study, we identified HSPB1 (HSP27) is hyperthermically inducible or endogenously highly expressed in both murine and human melanoma cell lines. We used a siRNA strategy to reduce HSPB1 levels and showed increased intolerance to hyperthermia via reduced cell viability and/or proliferation of cells. In the investigation of underlying mechanisms, we found knock down of HSPB1 further increased the proportion of apoptotic cells in hyperthermic treated melanoma cells when compared with either single agent alone, and both agents leaded to cell cycle arrest at G0/G1 or G2/M phases. We concluded that hyperthermia combined with silencing of HSPB1 enhanced cell death and resulted in failure to thrive in melanoma cell lines, implying the potential clinical utility of hyperthermia in combination with HSPB1 inhibition in cancer treatment. PMID:27626679

  11. Curcumin Induces Pro-apoptotic Effects Against Human Melanoma Cells and Modulates The Cellular Response to Immunotherapeutic Cytokines

    PubMed Central

    Bill, Matthew A.; Bakan, Courtney; Benson, Don M.; Fuchs, James; Young, Gregory; Lesinski, Gregory B.

    2009-01-01

    Curcumin has potential as a chemopreventative and chemotherapeutic agent however its interactions with clinically relevant cytokines are poorly characterized. Since cytokine immunotherapy is a mainstay of treatment for malignant melanoma, we hypothesized that curcumin could modulate the cellular responsiveness to interferons and interleukins. As a single agent, curcumin induced a dose-dependent increase in apoptosis of human melanoma cell lines, which was most prominent at doses >10 µM. Immunoblot analysis confirmed that curcumin induced apoptosis and revealed caspase-3 processing, PARP cleavage, reduced Bcl-2 and decreased basal phosphorylated STAT3. Despite its pro-apoptotic effects, curcumin pre-treatment of human melanoma cell lines inhibited the phosphorylation of STAT1 protein and downstream gene transcription following IFN-α and IFN-γ as determined by immunoblot analysis and Real Time PCR, respectively. Pre-treatment of peripheral blood mononuclear cells (PBMCs) from healthy donors with curcumin also inhibited the ability of IFN-α, IFN-γ and IL-2 to phosphorylate STAT proteins critical for their anti-tumor activity (STAT1 and STAT5, respectively) and their respective downstream gene expression as measured by Real Time PCR. Finally, stimulation of natural killer (NK) cells with curcumin reduced the level of IL-12-induced IFN-γ secretion, and production of granzyme b or IFN-γ upon co-culture with A375 melanoma cells or NK sensitive K562 cells as targets. These data demonstrate that although curcumin can induce apoptosis of melanoma cells, it can also adversely affect the responsiveness of immune effector cells to clinically relevant cytokines that possess anti-tumor properties. PMID:19723881

  12. Interleukin-32α induces migration of human melanoma cells through downregulation of E-cadherin

    PubMed Central

    Song, Ju Han; Houh, Younkyung; Kim, Tae Sung; Gil, Minchan; Lee, Kyung Jin; Kim, Seonghan; Kim, Daejin; Hur, Dae Young; Yang, Yoolhee; Bang, Sa Ik; Park, Hyun Jeong; Cho, Daeho

    2016-01-01

    Interleukin (IL)-32α, the shortest isoform of proinflammatory cytokine IL-32, is associated with various inflammatory diseases and cancers. However, its involvement in human melanoma is not understood. To determine the effect of IL-32α in melanoma, IL-32α levels were examined in human melanoma cell lines that exhibit different migratory abilities. IL-32α levels were higher in human melanoma cell lines with more migratory ability. An IL-32α-overexpressing G361 human melanoma cell line was generated to investigate the effect of IL-32α on melanoma migration. IL-32α-overexpressing G361 cells (G361-IL-32α) exhibit an increased migratory ability compared to vector control cells (G361-vector). To identify factors involved in IL-32α-induced migration, we compared expression of E-cadherin in G361-vector and G361-IL-32α cells. We observed decreased levels of E-cadherin in G361-IL-32α cells, resulting in F-actin polymerization. To further investigate signaling pathways related to IL-32α-induced migration, we treated G361-vector and G361-IL-32α cells with PD98059, a selective MEK inhibitor. Inhibition of Erk1/2 by PD98059 restored E-cadherin expression and decreased IL-32α-induced migration. In addition, cell invasiveness of G361-IL-32α cells was tested using an in vivo lung metastasis model. As results, lung metastasis was significantly increased by IL-32α overexpression. Taken together, these data indicate that IL-32α induced human melanoma migration via Erk1/2 activation, which repressed E-cadherin expression. Our findings suggest that IL-32α is a novel regulator of migration in melanoma. PMID:27589563

  13. Interleukin-32α induces migration of human melanoma cells through downregulation of E-cadherin.

    PubMed

    Lee, Joohyun; Kim, Kyung Eun; Cheon, Soyoung; Song, Ju Han; Houh, Younkyung; Kim, Tae Sung; Gil, Minchan; Lee, Kyung Jin; Kim, Seonghan; Kim, Daejin; Hur, Dae Young; Yang, Yoolhee; Bang, Sa Ik; Park, Hyun Jeong; Cho, Daeho

    2016-10-04

    Interleukin (IL)-32α, the shortest isoform of proinflammatory cytokine IL-32, is associated with various inflammatory diseases and cancers. However, its involvement in human melanoma is not understood. To determine the effect of IL-32α in melanoma, IL-32α levels were examined in human melanoma cell lines that exhibit different migratory abilities. IL-32α levels were higher in human melanoma cell lines with more migratory ability. An IL-32α-overexpressing G361 human melanoma cell line was generated to investigate the effect of IL-32α on melanoma migration. IL-32α-overexpressing G361 cells (G361-IL-32α) exhibit an increased migratory ability compared to vector control cells (G361-vector). To identify factors involved in IL-32α-induced migration, we compared expression of E-cadherin in G361-vector and G361-IL-32α cells. We observed decreased levels of E-cadherin in G361-IL-32α cells, resulting in F-actin polymerization. To further investigate signaling pathways related to IL-32α-induced migration, we treated G361-vector and G361-IL-32α cells with PD98059, a selective MEK inhibitor. Inhibition of Erk1/2 by PD98059 restored E-cadherin expression and decreased IL-32α-induced migration. In addition, cell invasiveness of G361-IL-32α cells was tested using an in vivo lung metastasis model. As results, lung metastasis was significantly increased by IL-32α overexpression. Taken together, these data indicate that IL-32α induced human melanoma migration via Erk1/2 activation, which repressed E-cadherin expression. Our findings suggest that IL-32α is a novel regulator of migration in melanoma.

  14. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    PubMed

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity.

  15. Tanapoxvirus lacking a neuregulin-like gene regresses human melanoma tumors in nude mice.

    PubMed

    Zhang, Tiantian; Suryawanshi, Yogesh R; Kordish, Dennis H; Woyczesczyk, Helene M; Jeng, David; Essani, Karim

    2017-02-01

    Neuregulin (NRG), an epidermal growth factor is known to promote the growth of various cell types, including human melanoma cells through ErbB family of tyrosine kinases receptors. Tanapoxvirus (TPV)-encoded protein TPV-15L, a functional mimic of NRG, also acts through ErbB receptors. Here, we show that the TPV-15L protein promotes melanoma proliferation. TPV recombinant generated by deleting the 15L gene (TPVΔ15L) showed replication ability similar to that of wild-type TPV (wtTPV) in owl monkey kidney cells, human lung fibroblast (WI-38) cells, and human melanoma (SK-MEL-3) cells. However, a TPV recombinant with both 15L and the thymidine kinase (TK) gene 66R ablated (TPVΔ15LΔ66R) replicated less efficiently compared to TPVΔ15L and the parental virus. TPVΔ15L exhibited more robust tumor regression in the melanoma-bearing nude mice compared to other TPV recombinants. Our results indicate that deletion of TPV-15L gene product which facilitates the growth of human melanoma cells can be an effective strategy to enhance the oncolytic potential of TPV for the treatment of melanoma.

  16. Plasmonic enhanced fs-laser optoporation of human melanoma cells

    NASA Astrophysics Data System (ADS)

    Baumgart, J.; Humbert, L.; St.-Louis Lalonde, B.; Lebrun, J.-J.; Meunier, M.

    2011-03-01

    In this paper, we present the results of in vitro gene transfer by plasmonic enhanced optoporation of human melanoma cells. The fs-laser based optoporation is a gentle and efficient method for transfection. An optimum perforation rate with efficient dye or DNA uptake and high viability of the cells (~90%) was found for different types of nanostructures, spherical and rod shaped. The technique offers a very high selectivity and the low damage induced to the cell leads to a high transfection efficiency. The cell selectivity of this technique on the one hand is realized by using bioconjugated nanostructures, that couple selectively to a special cell type, and on the other hand, the spatial selectivity is due to the fact that only irradiated cells are perforated. In many biological applications a virus free and efficient transfection method is needed, especially in terms of its use in vivo. In cancer cells, the aggressiveness of the cells is shown in the migration and invasion velocity. The laser based and nanostructure enhanced transfection of cells offers the possibility to directly compare the treated and untreated cells. The treatment for migration and invasion assays can be performed by laser-scraping and laser transfection, resulting in a fully non-contact and therefore sterile method where the shape and the size of the scrape is well defined and reproducible. The laser based scrape test therefore offers less uncertainty due to scrape variations, high transfection efficiency, as well as direct comparison of treated and control cells in the same dish.

  17. Human papillomaviruses and non-melanoma skin cancer.

    PubMed

    McLaughlin-Drubin, Margaret E

    2015-04-01

    Human papillomaviruses (HPVs) infect the squamous epithelium and can induce benign and malignant lesions. To date, more than 200 different HPV types have been identified and classified into five genera, α, β, γ, μ, and ν. While high-risk α mucosal HPVs have a well-established role in cervical carcinoma and a significant percentage of other anogenital tract and oral carcinomas, the biology of the cutaneous β HPVs and their contribution to non-melanoma skin cancer (NMSC) has been less studied. Although the association of β HPV infection with NMSC in patients with a rare, genetically determined condition, epidermodysplasia verruciformis has been well established, the role of β HPV infection with NMSC in the normal population remains controversial. In stark contrast to α HPV-associated cancers, the presence of the β HPV genome does not appear to be mandatory for the maintenance of the malignant phenotype. Moreover, the mechanism of action of the β HPV E6 and E7 oncoproteins differs from the β HPV oncoproteins.

  18. The efficacy of dandelion root extract in inducing apoptosis in drug-resistant human melanoma cells.

    PubMed

    Chatterjee, S J; Ovadje, P; Mousa, M; Hamm, C; Pandey, S

    2011-01-01

    Notoriously chemoresistant melanoma has become the most prevalent form of cancer for the 25-29 North American age demographic. Standard treatment after early detection involves surgical excision (recurrence is possible), and metastatic melanoma is refractory to immuno-, radio-, and most harmful chemotherapies. Various natural compounds have shown efficacy in killing different cancers, albeit not always specifically. In this study, we show that dandelion root extract (DRE) specifically and effectively induces apoptosis in human melanoma cells without inducing toxicity in noncancerous cells. Characteristic apoptotic morphology of nuclear condensation and phosphatidylserine flipping to the outer leaflet of the plasma membrane of A375 human melanoma cells was observed within 48 hours. DRE-induced apoptosis activates caspase-8 in A375 cells early on, demonstrating employment of an extrinsic apoptotic pathway to kill A375 cells. Reactive Oxygen Species (ROS) generated from DRE-treated isolated mitochondria indicates that natural compounds in DRE can also directly target mitochondria. Interestingly, the relatively resistant G361 human melanoma cell line responded to DRE when combined with the metabolism interfering antitype II diabetic drug metformin. Therefore, treatment with this common, yet potent extract of natural compounds has proven novel in specifically inducing apoptosis in chemoresistant melanoma, without toxicity to healthy cells.

  19. c-Abl and Arg are activated in human primary melanomas, promote melanoma cell invasion via distinct pathways, and drive metastatic progression.

    PubMed

    Ganguly, S S; Fiore, L S; Sims, J T; Friend, J W; Srinivasan, D; Thacker, M A; Cibull, M L; Wang, C; Novak, M; Kaetzel, D M; Plattner, R

    2012-04-05

    Despite 35 years of clinical trials, there is little improvement in 1-year survival rates for patients with metastatic melanoma, and the disease is essentially untreatable if not cured surgically. The paucity of chemotherapeutic agents that are effective for treating metastatic melanoma indicates a dire need to develop new therapies. Here, we found a previously unrecognized role for c-Abl and Arg in melanoma progression. We demonstrate that the kinase activities of c-Abl and Arg are elevated in primary melanomas (60%), in a subset of benign nevi (33%) and in some human melanoma cell lines. Using siRNA and pharmacological approaches, we show that c-Abl/Arg activation is functionally relevant because it is requiredfor melanoma cell proliferation, survival and invasion. Significantly, we identify the mechanism by which activated c-Abl promotes melanoma invasion by showing that it transcriptionally upregulates matrix metalloproteinase-1 (MMP-1), and using rescue approaches we demonstrate that c-Abl promotes invasion through a STAT3 → MMP-1 pathway. Additionally, we show that c-Abl and Arg are not merely redundant, as active Arg drives invasion in a STAT3-independent manner, and upregulates MMP-3 and MT1-MMP, in addition to MMP-1. Most importantly, c-Abl and Arg not only promote in vitro processes important for melanoma progression, but also promote metastasis in vivo, as inhibition of c-Abl/Arg kinase activity with the c-Abl/Arg inhibitor, nilotinib, dramatically inhibits metastasis in a mouse model. Taken together, these data identify c-Abl and Arg as critical, novel, drug targets in metastatic melanoma, and indicate that nilotinib may be useful in preventing metastasis in patients with melanomas harboring active c-Abl and Arg.

  20. ERBB activation modulates sensitivity to MEK1/2 inhibition in a subset of driver-negative melanoma.

    PubMed

    Hutchinson, Katherine E; Johnson, Douglas B; Johnson, Adam S; Sanchez, Violeta; Kuba, Maria; Lu, Pengcheng; Chen, Xi; Kelley, Mark C; Wang, Qingguo; Zhao, Zhongming; Kris, Mark; Berger, Michael F; Sosman, Jeffrey A; Pao, William

    2015-09-08

    Melanomas are characterized by activating "driver" mutations in BRAF, NRAS, KIT, GNAQ, and GNA11. Resultant mitogen-activated protein kinase (MAPK) pathway signaling makes some melanomas susceptible to BRAF (BRAF V600 mutations), MEK1/2 (BRAF V600, L597, fusions; NRAS mutations), or other kinase inhibitors (KIT), respectively. Among driver-negative ("pan-negative") patients, an unexplained heterogeneity of response to MEK1/2 inhibitors has been observed. Analysis of 16 pan-negative melanoma cell lines revealed that 8 (50%; termed Class I) are sensitive to the MEK1/2 inhibitor, trametinib, similar to BRAF V600E melanomas. A second set (termed Class II) display reduced trametinib sensitivity, paradoxical activation of MEK1/2 and basal activation of ERBBs 1, 2, and 3 (4 lines, 25%). In 3 of these lines, PI3K/AKT and MAPK pathway signaling is abrogated using the ERBB inhibitor, afatinib, and proliferation is even further reduced upon the addition of trametinib. A potential mechanism of ERBB activation in Class II melanomas is minimal expression of the ERK1/2 phosphatase, DUSP4, as ectopic restoration of DUSP4 attenuated ERBB signaling through potential modulation of the ERBB ligand, amphiregulin (AREG). Consistent with these data, immunohistochemical analysis of patient melanomas revealed a trend towards lower overall DUSP4 expression in pan-negative versus BRAF- and NRAS-mutant tumors. This study is the first to demonstrate that differential ERBB activity in pan-negative melanoma may modulate sensitivity to clinically-available MEK1/2 inhibitors and provides rationale for the use of ERBB inhibitors, potentially in combination with MEK1/2 inhibitors, in subsets of this disease.

  1. Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines.

    PubMed

    Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; da Silva Souza, Luciana Gregório; de Lemos, Telma Leda Gomes; Montenegro, Raquel Carvalho; de Arruda Cardoso Smith, Marília; de Vasconcellos, Marne Carvalho

    2016-08-01

    Cancer is a public health problem and the second leading cause of death worldwide. The incidence of cutaneous melanoma has been notably increasing, resulting in high aggressiveness and poor survival rates. Taking into account the antitumor activity of biflorin, a substance isolated from Capraria biflora L. roots that is cytotoxic in vitro and in vivo, this study aimed to demonstrate the action of biflorin against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of genetic alterations and mutations, such as the TP53, NRAS and BRAF genes. The results presented here indicate that biflorin reduces the viability of melanoma cell lines by DNA interactions. Biflorin causes single and double DNA strand breaks, consequently inhibiting cell cycle progression, replication and DNA repair and promoting apoptosis. Our data suggest that biflorin could be considered as a future therapeutic option for managing melanoma.

  2. Tyrosinase overexpression promotes ATM-dependent p53 phosphorylation by quercetin and sensitizes melanoma cells to dacarbazine.

    PubMed

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; Limesand, Kirsten H; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr(+) cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 microM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 microM). Both pcDNA3 and Tyr(+) DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr(+) cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr(+) cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase.

  3. Vaccination with Irradiated Autologous Melanoma Cells Engineered to Secrete Human Granulocyte--Macrophage Colony-Stimulating Factor Generates Potent Antitumor Immunity in Patients with Metastatic Melanoma

    NASA Astrophysics Data System (ADS)

    Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn

    1998-10-01

    We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

  4. Endogenously produced nitric oxide mitigates sensitivity of melanoma cells to cisplatin.

    PubMed

    Godoy, Luiz C; Anderson, Chase T M; Chowdhury, Rajdeep; Trudel, Laura J; Wogan, Gerald N

    2012-12-11

    Melanoma patients experience inferior survival after biochemotherapy when their tumors contain numerous cells expressing the inducible isoform of NO synthase (iNOS) and elevated levels of nitrotyrosine, a product derived from NO. Although several lines of evidence suggest that NO promotes tumor growth and increases resistance to chemotherapy, it is unclear how it shapes these outcomes. Here we demonstrate that modulation of NO-mediated S-nitrosation of cellular proteins is strongly associated with the pattern of response to the anticancer agent cisplatin in human melanoma cells in vitro. Cells were shown to express iNOS constitutively, and to generate sustained nanomolar levels of NO intracellularly. Inhibition of NO synthesis or scavenging of NO enhanced cisplatin-induced apoptotic cell death. Additionally, pharmacologic agents disrupting S-nitrosation markedly increased cisplatin toxicity, whereas treatments favoring stabilization of S-nitrosothiols (SNOs) decreased its cytotoxic potency. Activity of the proapoptotic enzyme caspase-3 was higher in cells treated with a combination of cisplatin and chemicals that decreased NO/SNOs, whereas lower activity resulted from cisplatin combined with stabilization of SNOs. Constitutive protein S-nitrosation in cells was detected by analysis with biotin switch and reduction/chemiluminescence techniques. Moreover, intracellular NO concentration increased significantly in cells that survived cisplatin treatment, resulting in augmented S-nitrosation of caspase-3 and prolyl-hydroxylase-2, the enzyme responsible for targeting the prosurvival transcription factor hypoxia-inducible factor-1α for proteasomal degradation. Because activities of these enzymes are inhibited by S-nitrosation, our data thus indicate that modulation of intrinsic intracellular NO levels substantially affects cisplatin toxicity in melanoma cells. The underlying mechanisms may thus represent potential targets for adjuvant strategies to improve the efficacy

  5. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells.

    PubMed

    Carpi, Sara; Fogli, Stefano; Polini, Beatrice; Montagnani, Valentina; Podestà, Adriano; Breschi, Maria Cristina; Romanini, Antonella; Stecca, Barbara; Nieri, Paola

    2017-04-01

    The role of endocannabinoid system in melanoma development and progression is actually not fully understood. This study was aimed at clarifying whether cannabinoid-type 1 (CB1) receptor may function as tumor-promoting or -suppressing signal in human cutaneous melanoma. CB1 receptor expression was measured in human melanoma cell lines by real-time PCR. A genetic deletion of CB1 receptors in selected melanoma cells was carried out by using three different short hairpin RNAs (shRNAs). Performance of target gene silencing was verified by real-time PCR and Western blot. The effects of CB1 receptor silencing on cell growth, clonogenicity, migration capability, cell cycle progression, and activation of mitogenic signals was tested. Lentiviral shRNAs vectors targeting different regions of the human CB1 gene led to a significant reduction in CB1 receptor mRNA and a near complete loss of CB1 receptor protein, compared to control vector (LV-c). The number of viable cells, the colony-forming ability and cell migration were significantly reduced in cells transduced with CB1 lentiviral shRNAs compared to LV-c. Cell cycle analyses showed arrest at G1/S phase. p-Akt and p-ERK expression were decreased in transduced versus control cells. Findings of this study suggest that CB1 receptor might function as tumor-promoting signal in human cutaneous melanoma.

  6. O{sup 6}-methylguanine DNA-methyltransferase (MGMT) overexpression in melanoma cells induces resistance to nitrosoureas and temozolomide but sensitizes to mitomycin C

    SciTech Connect

    Passagne, Isabelle; Evrard, Alexandre . E-mail: alexandre.evrard@univ-montp1.fr; Depeille, Philippe; Cuq, Pierre; Cupissol, Didier; Vian, Laurence

    2006-03-01

    Alkylating agents play an important role in the chemotherapy of malignant melanomas. The activity of alkylating agents depends on their capacity to form alkyl adducts with DNA, in some cases causing cross-linking of DNA strands. However, the use of these agents is limited by cellular resistance induced by the DNA repair enzyme O{sup 6}-methylguanine DNA-methyltransferase (MGMT) which removes alkyl groups from alkylated DNA strands. To determine to what extent the expression of MGMT in melanoma cells induces resistance to alkylating agents, the human cell line CAL77 Mer- (i.e., MGMT deficient) were transfected with pcMGMT vector containing human MGMT cDNA. Several clones expressing MGMT at a high level were selected to determine their sensitivity to chemotherapeutic drugs. Melanoma-transfected cells were found to be significantly less sensitive to nitrosoureas (carmustine, fotemustine, streptozotocin) and temozolomide with an increase of IC{sub 5} values between 3 and 14 when compared to parent cells. No difference in cell survival rates between MGMT-proficient and -deficient cells was observed for melphalan, chlorambucil, busulphan, thiotepa and cisplatin which preferentially induce N{sup 7} guanine lesions. Surprisingly, MGMT overexpression increased the sensitivity of CAL77 cells to mitomycin C by approximately 10-fold. Treatment of clonal cell lines with buthionine-[S,R]-sulfoximine (BSO), an inhibitor of {gamma}-glutamylcysteine synthetase which depletes cellular glutathione, completely reversed this unexpected increase in sensitivity to mitomycin C. This observation suggests that glutathione is involved in the sensitivity of MGMT-transfected cells to mitomycin C and may act synergistically with MGMT via an unknown mechanism.

  7. In vitro efficiency and mechanistic role of indocyanine green as photodynamic therapy agent for human melanoma

    SciTech Connect

    Mamoon, A.M.; Miller, L.; Gamal-Eldeen, A. M.; Ruppel, M. E.; Smith, R. J.; Tsang, T.; Miller, L. M.

    2009-05-02

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800 nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway. Human skin melanoma cells (Sk-Mel-28) were incubated with ICG and exposed to a low power Ti:Sapphire laser. Synchrotron-assisted Fourier transform infrared microspectroscopy and hierarchical cluster analysis were used to assess the cell damage and changes in lipid, protein, and nucleic acids. The cell death pathway was determined by analysis of cell viability and apoptosis and necrosis markers. In the cell death pathway, {sup 1}O{sub 2} generation evoked rapid multiple consequences that trigger apoptosis after laser exposure for only 15min including the release of cytochrome c, the activation of total caspases, caspase-3, and caspase-9, the inhibition of NF-{Kappa}B P65, and the enhancement of DNA fragmentation, and histone acetylation. ICG/PDT can efficiently and rapidly induce apoptosis in human melanoma cells and it can be considered as a new therapeutic approach for topical treatment of melanoma.

  8. Radiation survival of murine and human melanoma cells utilizing two assay systems: monolayer and soft agar.

    PubMed Central

    Yohem, K. H.; Slymen, D. J.; Bregman, M. D.; Meyskens, F. L.

    1988-01-01

    The radiation response of murine and human melanoma cells assayed in bilayer soft agar and monolayer was examined. Cells from the murine melanoma Cloudman S91 CCL 53.1 cell line and three human melanoma cell strains (C8146C, C8161, and R83-4) developed in our laboratory were irradiated by single dose X-rays and plated either in agar or on plastic. D0 values were the same within 95% confidence intervals for cells from the human melanoma cell strains C8146C, C8161, and R83-4 but were dissimilar for the murine cell line CCL 53.1 Dq values were different for all cells studied. The shape of the survival curve for all four melanomas was not identical for cells assayed in soft agar versus cells grown on plastic. This would indicate that apparent radiosensitivity was influenced by the method of assay although there were no apparent consistent differences between the curves generated by monolayer or bilayer soft agar assays. PMID:3348949

  9. Antiproliferative Activity of Double Point Modified Analogs of 1,25-Dihydroxyvitamin D2 Against Human Malignant Melanoma Cell Lines

    PubMed Central

    Piotrowska, Anna; Wierzbicka, Justyna; Nadkarni, Sharmin; Brown, Geoffrey; Kutner, Andrzej; Żmijewski, Michał A.

    2016-01-01

    Vitamin D is a lipid soluble steroid hormone with pleiotropic biological properties, including regulation of cell proliferation, differentiation and apoptosis. As to these desirable anticancer actions, 1,25-dihydroxyvitamins D and analogs have been reported to inhibit the proliferation and to induce differentiation of a wide variety of cancer cell types, including human malignant melanoma. However, there is a need for novel and more efficacious vitamin D analogs, and how best to design such is still an open issue. A series of double point modified (DPM) analogs of 1,25-dihydroxyvitamin D2 (1,25(OH)2D2) induced differentiation of the vitamin D receptor (VDR) positive A375 and VDR negative SK-MEL 188b human malignant melanoma cell lines. Surprisingly, the dose of 1,25(OH)2D2 required to inhibit the proliferation of the A375 melanoma cell line by was several fold lower than that required in the case of 1,25(OH)2D3. To evaluate the impact of the modification in the side chain (additional 22-hydroxyl) and in the A-ring (5,6-trans modification), the regular side-chain of vitamin D2 or D3 was retained in the structure of our analogs. As expected, 5,6-trans modification was advantageous to enhancing the anti-proliferative activity of analogs, but not as a single point modification (SPM). Very unexpectedly, the additional 22-hydroxyl in the side-chain reduced significantly the anti-proliferative activity of both the natural and 5,6-trans series analogs. Finally, an induction of pigmentation in melanoma SK-MEL 188b cells was observed to sensitized cells to the effect of vitamin D analogs. PMID:26760999

  10. Thiostrepton is an Inducer of Oxidative and Proteotoxic Stress that Impairs Viability of Human Melanoma Cells but not Primary Melanocytes

    PubMed Central

    Qiao, Shuxi; Lamore, Sarah D.; Cabello, Christopher M.; Lesson, Jessica L.; Muñoz-Rodriguez, José L.; Wondrak, Georg T.

    2012-01-01

    Pharmacological induction of oxidative and proteotoxic stress has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Guided by a differential phenotypic drug screen for novel lead compounds that selectively induce melanoma cell apoptosis without compromising viability of primary human melanocytes, we have focused on the cyclic pyridinyl-polythiazolyl peptide-antimicrobial thiostrepton. Using comparative gene expression-array analysis, the early cellular stress response induced by thiostrepton was examined in human A375 metastatic melanoma cells and primary melanocytes. Thiostrepton displayed selective antimelanoma activity causing early induction of proteotoxic stress with massive upregulation of heat shock (HSPA6, HSPA1A, DNAJB4, HSPB1, HSPH1, HSPA1L, CRYAB, HSPA5, DNAJA1), oxidative stress (HMOX1, GSR, SOD1), and ER stress response (DDIT3) gene expression, confirmed by immunodetection (Hsp70, Hsp70B′, HO-1, phospho-eIF2α). Moreover, upregulation of p53, proapoptotic modulation of Bcl-2 family members (Bax, Noxa, Mcl-1, Bcl-2), and induction of apoptotic cell death were observed. Thiostrepton rapidly induced cellular oxidative stress followed by inactivation of chymotrypsin-like proteasomal activity and melanoma cell-directed accumulation of ubiquitinated proteins, not observed in melanocytes that were resistant to thiostrepton-induced apoptosis. Proteotoxic and apoptogenic effects were fully antagonized by antioxidant intervention. In RPMI 8226 multiple myeloma cells, known to be exquisitely sensitive to proteasome inhibition, early proteotoxic and apoptogenic effects of thiostrepton were confirmed by array analysis indicating pronounced upregulation of heat shock response gene expression. Our findings demonstrate that thiostrepton displays dual activity as a selective prooxidant and proteotoxic chemotherapeutic, suggesting feasibility of experimental intervention targeting metastatic melanoma and other

  11. Inhibition of mitochondrial protein translation sensitizes melanoma cells to arsenic trioxide cytotoxicity via a reactive oxygen species dependent mechanism

    PubMed Central

    Bowling, Benjamin D.; Doudican, Nicole; Manga, Prashiela; Orlow, Seth J.

    2009-01-01

    Purpose Current standard chemotherapeutic regimens for malignant melanoma are unsatisfactory. Although in vitro studies of arsenic trioxide (ATO) have demonstrated promise against melanoma, recent phase II clinical trials have failed to show any significant clinical benefit when used as a single agent. To enhance the efficacy of ATO in the treatment of melanoma, we sought to identify compounds that potentiate the cytotoxic effects of ATO in melanoma cells. Through a screen of 2000 marketed drugs and naturally occurring compounds, a variety of antibiotic inhibitors of mitochondrial protein translation were identified. Methods The mechanism of action for the most effective agent identified, thiostrepton, was examined in a panel of melanoma cells. Effects of combinatorial ATO and thiostrepton treatment on cytotoxicity, apoptosis, mitochondrial protein content, and reactive oxygen species (ROS) were assessed. Results Thiostrepton (1μM) sensitized 3 out of 5 melanoma cell lines to ATO-mediated growth inhibition. Treatment with thiostrepton resulted in reduced levels of the mitochondrial-encoded protein cytochrome oxidase I (COX1). Exposure to thiostrepton in combination with ATO resulted in increased levels of cleaved poly (ADP-ribose) polymerase and cellular ROS. The growth inhibitory and pro-apototic effects of addition of the ATO/thiostrepton combination were reversed by the free radical scavenger N-acetyl-l-cysteine. Conculsions Our data suggest that thiostrepton enhances the cytotoxic effects of ATO through a ROS-dependent mechanism. Co-administration of oxidative stress-inducing drugs such as thiostrepton in order to enhance the efficacy of ATO in the treatment of melanoma warrants further investigation. PMID:18297286

  12. Apurinic/Apyrimidinic Endonuclease/Redox Effector Factor-1(APE/Ref-1): A Unique Target for the Prevention and Treatment of Human Melanoma

    PubMed Central

    Yang, Sun

    2009-01-01

    Abstract Management of melanoma is a growing and challenging public health issue requiring novel and multidisciplinary approaches to achieve more efficient prevention and therapeutic benefits. The aim of this article is to show the critical role of APE/Ref-1 on melanomagenesis and progression. APE/Ref-1 serves as a redox-sensitive node of convergence of various signals as well as a DNA-repair enzyme, and its activation protects melanocytes and melanoma cells from chronic oxidative stress and promotes cell survival via mediation of downstream pathways. APE/Ref-1 is a strong candidate as a potential drug-treatable target for the prevention and treatment of human melanoma. Lead compounds exhibiting inhibitory effects on APE/Ref-1 are also reviewed. We anticipate potential clinical benefit in the future through inhibition of APE/Ref-1 and/or Ref-1-mediated signaling. Antioxid. Redox Signal. 11, 639–650. PMID:18715151

  13. Monitoring the Systemic Human Memory B Cell Compartment of Melanoma Patients for Anti-Tumor IgG Antibodies

    PubMed Central

    Gilbert, Amy E.; Karagiannis, Panagiotis; Dodev, Tihomir; Koers, Alexander; Lacy, Katie; Josephs, Debra H.; Takhar, Pooja; Geh, Jenny L. C.; Healy, Ciaran; Harries, Mark; Acland, Katharine M.; Rudman, Sarah M.; Beavil, Rebecca L.; Blower, Philip J.; Beavil, Andrew J.; Gould, Hannah J.; Spicer, James; Nestle, Frank O.; Karagiannis, Sophia N.

    2011-01-01

    Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (P<0.0001). Interestingly, we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21) (P<0.0001). Overall, 28% of melanoma patient-derived B cell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer. PMID:21559411

  14. Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies.

    PubMed

    Gilbert, Amy E; Karagiannis, Panagiotis; Dodev, Tihomir; Koers, Alexander; Lacy, Katie; Josephs, Debra H; Takhar, Pooja; Geh, Jenny L C; Healy, Ciaran; Harries, Mark; Acland, Katharine M; Rudman, Sarah M; Beavil, Rebecca L; Blower, Philip J; Beavil, Andrew J; Gould, Hannah J; Spicer, James; Nestle, Frank O; Karagiannis, Sophia N

    2011-04-29

    Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (P<0.0001). Interestingly, we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21) (P<0.0001). Overall, 28% of melanoma patient-derived B cell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer.

  15. Ophiobolin A Induces Autophagy and Activates the Mitochondrial Pathway of Apoptosis in Human Melanoma Cells

    PubMed Central

    Rodolfo, Carlo; Rocco, Mariapina; Cattaneo, Lucia; Tartaglia, Maria; Sassi, Mauro; Aducci, Patrizia; Scaloni, Andrea; Marra, Mauro

    2016-01-01

    Ophiobolin A, a fungal toxin from Bipolaris species known to affect different cellular processes in plants, has recently been shown to have anti-cancer activity in mammalian cells. In the present study, we investigated the anti-proliferative effect of Ophiobolin A on human melanoma A375 and CHL-1 cell lines. This cellular model was chosen because of the incidence of melanoma malignant tumor on human population and its resistance to chemical treatments. Ophyobolin A strongly reduced cell viability of melanoma cells by affecting mitochondrial functionality. The toxin induced depolarization of mitochondrial membrane potential, reactive oxygen species production and mitochondrial network fragmentation, leading to autophagy induction and ultimately resulting in cell death by activation of the mitochondrial pathway of apoptosis. Finally, a comparative proteomic investigation on A375 cells allowed to identify several Ophiobolin A down-regulated proteins, which are involved in fundamental processes for cell homeostasis and viability. PMID:27936075

  16. Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Jose, Jithin; Grootendorst, Diederik J.; Vijn, Thomas W.; Wouters, Michel W.; van Boven, Hester; van Leeuwen, Ton G.; Steenbergen, Wiendelt; Ruers, Theo J. M.; Manohar, Srirang

    2011-09-01

    The pathological status of the sentinel lymph node is important for accurate melanoma staging, ascertaining prognosis and planning treatment. The standard procedure involves biopsy of the node and histopathological assessment of its status. Drawbacks of this examination include a finite sampling of the node with the likelihood of missing metastases, and a significant time-lag before histopathological results are available to the surgeon. We studied the applicability of photoacoustic computed tomographic imaging as an intraoperative modality for examining the status of resected human sentinel lymph nodes. We first applied the technique to image ex vivo pig lymph nodes carrying metastases-simulating melanoma cells using multiple wavelengths. The experience gained was applied to image a suspect human lymph node. We validated the photoacoustic imaging results by comparing a reconstructed slice with a histopathological section through the node. Our results suggest that photoacoustics has the potential to develop into an intraoperative imaging method to detect melanoma metastases in sentinel lymph nodes.

  17. Detection of melanoma metastases in resected human lymph nodes by noninvasive multispectral photoacoustic imaging.

    PubMed

    Langhout, Gerrit Cornelis; Grootendorst, Diederik Johannes; Nieweg, Omgo Edo; Wouters, Michel Wilhelmus Jacobus Maria; van der Hage, Jos Alexander; Jose, Jithin; van Boven, Hester; Steenbergen, Wiendelt; Manohar, Srirang; Ruers, Theodoor Jacques Marie

    2014-01-01

    Objective. Sentinel node biopsy in patients with cutaneous melanoma improves staging, provides prognostic information, and leads to an increased survival in node-positive patients. However, frozen section analysis of the sentinel node is not reliable and definitive histopathology evaluation requires days, preventing intraoperative decision-making and immediate therapy. Photoacoustic imaging can evaluate intact lymph nodes, but specificity can be hampered by other absorbers such as hemoglobin. Near infrared multispectral photoacoustic imaging is a new approach that has the potential to selectively detect melanin. The purpose of the present study is to examine the potential of multispectral photoacoustic imaging to identify melanoma metastasis in human lymph nodes. Methods. Three metastatic and nine benign lymph nodes from eight melanoma patients were scanned ex vivo using a Vevo LAZR(©) multispectral photoacoustic imager and were spectrally analyzed per pixel. The results were compared to histopathology as gold standard. Results. The nodal volume could be scanned within 20 minutes. An unmixing procedure was proposed to identify melanoma metastases with multispectral photoacoustic imaging. Ultrasound overlay enabled anatomical correlation. The penetration depth of the photoacoustic signal was up to 2 cm. Conclusion. Multispectral three-dimensional photoacoustic imaging allowed for selective identification of melanoma metastases in human lymph nodes.

  18. Targeting melanoma cells with human high molecular weight-melanoma associated antigen-specific antibodies elicited by a peptide mimotope: functional effects.

    PubMed

    Luo, Wei; Ko, Eric; Hsu, Jeff Chi-feng; Wang, Xinhui; Ferrone, Soldano

    2006-05-15

    Human high molecular weight-melanoma associated Ag (HMW-MAA) mimics have been shown to elicit HMW-MAA-specific humoral immune responses that appear to be clinically beneficial. This finding has stimulated interest in characterizing the mechanism(s) underlying the ability of the elicited Abs to exert an anti-tumor effect. To address this question, in the present study, we have generated HMW-MAA-specific Abs by sequentially immunizing rabbits with the peptide P763.74, which mimics the HMW-MAA determinant recognized by mAb 763.74, and with HMW-MAA(+) melanoma cells. HMW-MAA-specific Abs isolated from immunized rabbits mediated cell-dependent cytotoxicity but did not mediate complement-dependent cytotoxicity of HMW-MAA(+) melanoma cells. These Abs also effectively inhibited spreading, migration and Matrigel invasion of HMW-MAA(+) melanoma cells. Besides contributing to our understanding of the role of HMW-MAA in the biology of melanoma cells, these results suggest that both immunological and nonimmunological mechanisms underlie the beneficial clinical effects associated with the induction of HMW-MAA-specific Abs in melanoma patients immunized with a HMW-MAA mimic.

  19. Spectrophotometric Method for Differentiation of Human Skin Melanoma. II. Diagnostic Characteristics

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barunb, V. V.

    2016-05-01

    Experimental data on the spectral dependences of the optical diffuse reflection coefficient for skin from different people with melanoma or nevus are presented in the form of the probability density of the diffuse reflection coefficient for the corresponding pigmented lesions. We propose a noninvasive technique for differentiating between malignant and benign tumors, based on measuring the diffuse reflection coefficient for a specific patient and comparing the value obtained with a pre-set threshold. If the experimental result is below the threshold, then it is concluded that the person has melanoma; otherwise, no melanoma is present. As an example, we consider the wavelength 870 nm. We determine the risk of malignant transformation of a nevus (its transition to melanoma) for different measured diffuse reflection coefficients. We have studied the errors in the method, its operating characteristics and probability characteristics as the threshold diffuse reflection coefficient is varied. We find that the diagnostic confidence, sensitivity, specificity, and effectiveness (accuracy) parameters are maximum (>0.82) for a threshold of 0.45-0.47. The operating characteristics for the proposed technique exceed the corresponding parameters for other familiar optical approaches to melanoma diagnosis. Its distinguishing feature is operation at only one wavelength, and consequently implementation of the experimental technique is simplified and made less expensive.

  20. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy.

    PubMed

    Luan, Qi; Jin, Lei; Jiang, Chen Chen; Tay, Kwang Hong; Lai, Fritz; Liu, Xiao Ying; Liu, Yi Lun; Guo, Su Tang; Li, Chun Ying; Yan, Xu Guang; Tseng, Hsin-Yi; Zhang, Xu Dong

    2015-01-01

    Although RIPK1 (receptor [TNFRSF]-interacting protein kinase 1) is emerging as a critical determinant of cell fate in response to cellular stress resulting from activation of death receptors and DNA damage, its potential role in cell response to endoplasmic reticulum (ER) stress remains undefined. Here we report that RIPK1 functions as an important prosurvival mechanism in melanoma cells undergoing pharmacological ER stress induced by tunicamycin (TM) or thapsigargin (TG) through activation of autophagy. While treatment with TM or TG upregulated RIPK1 and triggered autophagy in melanoma cells, knockdown of RIPK1 inhibited autophagy and rendered the cells sensitive to killing by TM or TG, recapitulating the effect of inhibition of autophagy. Consistently, overexpression of RIPK1 enhanced induction of autophagy and conferred resistance of melanoma cells to TM- or TG-induced cell death. Activation of MAPK8/JNK1 or MAPK9/JNK2, which phosphorylated BCL2L11/BIM leading to its dissociation from BECN1/Beclin 1, was involved in TM- or TG-induced, RIPK1-mediated activation of autophagy; whereas, activation of the transcription factor HSF1 (heat shock factor protein 1) downstream of the ERN1/IRE1-XBP1 axis of the unfolded protein response was responsible for the increase in RIPK1 in melanoma cells undergoing pharmacological ER stress. Collectively, these results identify upregulation of RIPK1 as an important resistance mechanism of melanoma cells to TM- or TG-induced ER stress by protecting against cell death through activation of autophagy, and suggest that targeting the autophagy-activating mechanism of RIPK1 may be a useful strategy to enhance sensitivity of melanoma cells to therapeutic agents that induce ER stress.

  1. Induction of exportin-5 expression during melanoma development supports the cellular behavior of human malignant melanoma cells

    PubMed Central

    Ott, Corinna Anna; Linck, Lisa; Kremmer, Elisabeth; Meister, Gunter; Bosserhoff, Anja Katrin

    2016-01-01

    Regulation of gene expression via microRNAs is known to promote the development of many types of cancer. In melanoma, miRNAs are globally up-regulated, and alterations of miRNA-processing enzymes have already been identified. However, mis-regulation of miRNA transport has not been analyzed in melanoma yet. We hypothesized that alterations in miRNA transport disrupt miRNA processing. Therefore, we investigated whether the pre-miRNA transporter Exportin-5 (XPO5) was involved in altered miRNA maturation and functional consequences in melanoma. We found that XPO5 is significantly over-expressed in melanoma compared with melanocytes. We showed enhanced XPO5 mRNA stability in melanoma cell lines which likely contributes to up-regulated XPO5 protein expression. In addition, we identified MEK signaling as a regulator of XPO5 expression in melanoma. Knockdown of XPO5 expression in melanoma cells led to decreased mature miRNA levels and drastic functional changes. Our data revealed that aberrant XPO5 expression is important for the maturation of miRNAs and the malignant behavior of melanoma cells. We suggest that the high abundance of XPO5 in melanoma leads to enhanced survival, proliferation and metastasis and thereby supports the aggressiveness of melanoma. PMID:27556702

  2. Melanotransferrin induces human melanoma SK-Mel-28 cell invasion in vivo

    SciTech Connect

    Bertrand, Yanick . E-mail: oncomol@nobel.si.uqam.ca

    2007-02-09

    The expression of melanotransferrin (MTf), a membrane-bound glycoprotein highly expressed in melanomas, is correlated with tumor vascularization and progression, suggesting a proinvasive function associated with MTf in malignant tumors. To test this hypothesis, we silenced MTf in human melanoma SK-MEL-28 cells using small interfering RNA (siRNA) and examined the plasmin activity and invasiveness of MTf-silenced melanoma. In vitro, the siRNA-mediated MTf knockdown inhibited by 58% the cell surface activation of plasminogen into plasmin. In addition, decreased expression of MTf in melanoma cells reduced cell migration. In vivo, we used a nude mice invasion model in which tissue factor (TF) induces vascular [{sup 125}I]-fibrin deposition following injection. Using this metastasis model, the invasive potential of MTf-silenced cells into the lungs was reduced by fivefold. Altogether, these findings strongly suggest that MTf overexpression in melanoma cells contributes to tumor progession by stimulating plasmin generation as well as cell migration and invasion.

  3. Dual Processing of FAT1 Cadherin Protein by Human Melanoma Cells Generates Distinct Protein Products*

    PubMed Central

    Sadeqzadeh, Elham; de Bock, Charles E.; Zhang, Xu Dong; Shipman, Kristy L.; Scott, Naomi M.; Song, Chaojun; Yeadon, Trina; Oliveira, Camila S.; Jin, Boquan; Hersey, Peter; Boyd, Andrew W.; Burns, Gordon F.; Thorne, Rick F.

    2011-01-01

    The giant cadherin FAT1 is one of four vertebrate orthologues of the Drosophila tumor suppressor fat. It engages in several functions, including cell polarity and migration, and in Hippo signaling during development. Homozygous deletions in oral cancer suggest that FAT1 may play a tumor suppressor role, although overexpression of FAT1 has been reported in some other cancers. Here we show using Northern blotting that human melanoma cell lines variably but universally express FAT1 and less commonly FAT2, FAT3, and FAT4. Both normal melanocytes and keratinocytes also express comparable FAT1 mRNA relative to melanoma cells. Analysis of the protein processing of FAT1 in keratinocytes revealed that, like Drosophila FAT, human FAT1 is cleaved into a non-covalent heterodimer before achieving cell surface expression. The use of inhibitors also established that such cleavage requires the proprotein convertase furin. However, in melanoma cells, the non-cleaved proform of FAT1 is also expressed at the cell surface together with the furin-cleaved heterodimer. Moreover, furin-independent processing generates a potentially functional proteolytic product in melanoma cells, a persistent 65-kDa membrane-bound cytoplasmic fragment no longer in association with the extracellular fragment. In vitro localization studies of FAT1 showed that melanoma cells display high levels of cytosolic FAT1 protein, whereas keratinocytes, despite comparable FAT1 expression levels, exhibited mainly cell-cell junctional staining. Such differences in protein distribution appear to reconcile with the different protein products generated by dual FAT1 processing. We suggest that the uncleaved FAT1 could promote altered signaling, and the novel products of alternate processing provide a dominant negative function in melanoma. PMID:21680732

  4. Role of the cystathionine γ lyase/hydrogen sulfide pathway in human melanoma progression.

    PubMed

    Panza, Elisabetta; De Cicco, Paola; Armogida, Chiara; Scognamiglio, Giosuè; Gigantino, Vincenzo; Botti, Gerardo; Germano, Domenico; Napolitano, Maria; Papapetropoulos, Andreas; Bucci, Mariarosaria; Cirino, Giuseppe; Ianaro, Angela

    2015-01-01

    In humans, two main metabolic enzymes synthesize hydrogen sulfide (H2 S): cystathionine γ lyase (CSE) and cystathionine β synthase (CBS). A third enzyme, 3-mercaptopyruvate sulfurtransferase (3-MST), synthesizes H2 S in the presence of the substrate 3-mercaptopyruvate (3-MP). The immunohistochemistry analysis performed on human melanoma samples demonstrated that CSE expression was highest in primary tumors, decreased in the metastatic lesions and was almost silent in non-lymph node metastases. The primary role played by CSE was confirmed by the finding that the overexpression of CSE induced spontaneous apoptosis of human melanoma cells. The same effect was achieved using different H2 S donors, the most active of which was diallyl trisulfide (DATS). The main pro-apoptotic mechanisms involved were suppression of nuclear factor-κB activity and inhibition of AKT and extracellular signal-regulated kinase pathways. A proof of concept was obtained in vivo using a murine melanoma model. In fact, either l-cysteine, the CSE substrate, or DATS inhibited tumor growth in mice. In conclusion, we have determined that the l-cysteine/CSE/H2 S pathway is involved in melanoma progression.

  5. The Effect of Sunitinib Treatment in Human Melanoma Xenografts: Associations with Angiogenic Profiles.

    PubMed

    Gaustad, Jon-Vidar; Simonsen, Trude G; Andersen, Lise Mari K; Rofstad, Einar K

    2017-04-01

    The effect of antiangiogenic agents targeting the vascular endothelial growth factor A (VEGF-A) pathway has been reported to vary substantially in preclinical studies. The purpose of this study was to investigate the effect of sunitinib treatment on tumor vasculature and oxygenation in melanoma xenografts with different angiogenic profiles. A-07, U-25, D-12, or R-18 melanoma xenografts were grown in dorsal window chambers and given daily treatments of sunitinib (40 mg/kg) or vehicle. Morphologic parameters of tumor vascular networks were assessed from high-resolution transillumination images, and tumor blood supply times (BSTs) were assessed from first-pass imaging movies. Tumor hypoxia was assessed with immunohistochemistry by using pimonidazole as hypoxia marker, and the gene expression and the protein secretion rate of angiogenic factors were assessed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The melanoma lines differed substantially in the expression of VEGF-A, VEGF-C, and platelet-derived growth factor A. Sunitinib treatment reduced vessel densities and induced hypoxia in all melanoma lines, and the magnitude of the effect was associated with the gene expression and protein secretion rate of VEGF-A. Sunitinib treatment also increased vessel segment lengths, reduced the number of small-diameter vessels, and inhibited growth-induced increases in the diameter of surviving vessels but did not change BST. In conclusion, sunitinib treatment did not improve vascular function but reduced vessel density and induced hypoxia in human melanoma xenografts. The magnitude of the treatment-induced effect was associated with the VEGF-A expression of the melanoma lines.

  6. Inhibition of Src family kinases with dasatinib blocks migration and invasion of human melanoma cells.

    PubMed

    Buettner, Ralf; Mesa, Tania; Vultur, Adina; Lee, Frank; Jove, Richard

    2008-11-01

    Src family kinases (SFK) are involved in regulating a multitude of biological processes, including cell adhesion, migration, proliferation, and survival, depending on the cellular context. Therefore, although SFKs are currently being investigated as potential targets for treatment strategies in various cancers, the biological responses to inhibition of SFK signaling in any given tumor type are not predictable. Dasatinib (BMS-354825) is a dual Src/Abl kinase inhibitor with potent antiproliferative activity against hematologic malignancies harboring activated BCR-ABL. In this study, we show that dasatinib blocks migration and invasion of human melanoma cells without affecting proliferation and survival. Moreover, dasatinib completely inhibits SFK kinase activity at low nanomolar concentrations in all eight human melanoma cell lines investigated. In addition, two known downstream targets of SFKs, focal adhesion kinase and Crk-associated substrate (p130(CAS)), are inhibited with similar concentrations and kinetics. Consistent with inhibition of these signaling pathways and invasion, dasatinib down-regulates expression of matrix metalloproteinase-9. We also provide evidence that dasatinib directly inhibits kinase activity of the EphA2 receptor tyrosine kinase, which is overexpressed and/or overactive in many solid tumors, including melanoma. Thus, SFKs and downstream signaling are implicated as having key roles in migration and invasion of melanoma cells.

  7. TLR2/6 agonists and interferon-gamma induce human melanoma cells to produce CXCL10

    PubMed Central

    Mauldin, Ileana S.; Wang, Ena; Deacon, Donna H.; Olson, Walter C.; Bao, Yongde; Slingluff, Craig L.

    2015-01-01

    Clinical approaches to treat advanced melanoma include immune therapies, whose benefits depend on tumor-reactive T-cell infiltration of metastases. However, most tumors lack significant immune infiltration prior to therapy. Selected chemokines promote T-cell migration into tumors; thus, agents that induce these chemokines in the tumor microenvironment (TME) may improve responses to systemic immune therapy. CXCL10 has been implicated as a critical chemokine supporting T-cell infiltration into the TME. Here we show that toll-like receptor (TLR) agonists can induce chemokine production directly from melanoma cells when combined with IFNγ treatment. We find that TLR2 and TLR6 are widely expressed on human melanoma cells, and that TLR2/6 agonists (MALP-2 or FSL-1) synergize with interferon-gamma (IFNγ) to induce production of CXCL10 from melanoma cells. Furthermore, melanoma cells and immune cells from surgical specimens also respond to TLR2/6 agonists and IFNγ by upregulating CXCL10 production, compared to treatment with either agent alone. Collectively, these data identify a novel mechanism for inducing CXCL10 production directly from melanoma cells, with TLR2/6 agonists +IFNγ and raise the possibility that intratumoral administration of these agents may improve immune signatures in melanoma and have value in combination with other immune therapies, by supporting T-cell migration into melanoma metastases. PMID:25765738

  8. Differential mechanisms of tumor progression in clones from a single heterogeneous human melanoma.

    PubMed

    Croteau, Walburga; Jenkins, Molly H; Ye, Siying; Mullins, David W; Brinckerhoff, Constance E

    2013-04-01

    We used vertical growth phase (VGP) human VMM5 melanoma cells to ask whether the tumor microenvironment could induce matrix metalloproteinase-1 (MMP-1) in vivo, and whether this induction correlated with metastasis. We isolated two clones from parental VMM5 cells: a low MMP-1 producing clone (C4) and high producing clone (C9). When these clones were injected orthotopically (intradermally) into nude mice, both were equally tumorigenic and produced equivalent and abundant amounts of MMP-1. However, the tumors from the C4 clones displayed different growth kinetics and distinct profiles of gene expression from the C9 population. The C4 tumors, which had low MMP-1 levels in vitro, appeared to rely on growth factors and cytokines in the microenvironment to increase MMP-1 expression in vivo, while MMP-1 levels remained constant in the C9 tumors. C9 cells, but not C4 cells, grew as spheres in culture and expressed higher levels of JARID 1B, a marker associated with melanoma initiating cells. We conclude that VMM5 melanoma cells exhibit striking intra-tumor heterogeneity, and that the tumorigenicity of these clones is driven by different molecular pathways. Our data suggest that there are multiple mechanisms for melanoma progression within a tumor, which may require different therapeutic strategies.

  9. Spectrophotometric Method for Differentiation of Human Skin Melanoma. I. Optical Diffuse Reflection Coefficient

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barun, V. V.

    2016-03-01

    We have designed an experimental setup, based on two integrating spheres, that lets us measure the optical diffuse reflectance spectra (diffuse reflection coefficient vs. wavelength) of human skin quickly under clinical conditions in vivo. For the wavelength interval 520-1100 nm, we give the values of the diffuse reflection coefficient for healthy tissue, skin with a benign nevus, and skin with a malignant melanoma for a large group of test subjects. We experimentally established a number of wavelengths in the red-near IR region of the spectrum which can be used for early differential diagnosis of nevi and melanoma in patient cancer screening. According to the Kramer-Welch test, the probability of the diffuse reflection coefficient for skin with melanoma and a nevus having different distributions is >0.94, and at many wavelengths it is >0.999. By solving the inverse problem, we estimated the changes in a number of structural and biophysical parameters of the tissue on going from healthy skin to nevus and melanoma. The results obtained can provide a basis for developing a clinical approach to identifying the risk of malignant transformation of the skin before surgery and histological analysis of the tissue.

  10. Identification of a Cell Surface Protein, p97, in Human Melanomas and Certain Other Neoplasms

    NASA Astrophysics Data System (ADS)

    Woodbury, Richard G.; Brown, Joseph P.; Yeh, Ming-Yang; Hellstrom, Ingegerd; Hellstrom, Karl Erik

    1980-04-01

    BALB/c mice were immunized with a human melanoma cell line, SK-MEL 28, and their spleen cells were fused with mouse NS-1 myeloma cells. Hybrid cells were tested in an indirect 125I-labeled protein A assay for production of antibodies that bound to surface antigens of SK-MEL 28 melanoma cells but not to autologous skin fibroblasts. One hybridoma, designated 4.1, had the required specificity. It was cloned and grown in mice as an ascites tumor. The monoclonal IgG1 antibody produced by the hybridoma was purified from the ascites fluid and labeled with 125I. The labeled antibody bound, at significant levels, to approximately 90% of the melanomas tested and to approximately 55% of other tumor cells, but not to three B-lymphoblastoid cell lines or to cultivated fibroblasts from 15 donors. Immunoprecipitation and sodium dodecyl sulfate gel electrophoresis were used to detect the target antigen in 125I-labeled cell membranes of both cultivated cells and tumor biopsy samples. A protein with a molecular weight of 97,000 was identified. This protein, designated p97, was present in both cultured cells and biopsy material from melanomas and certain other tumors, but it was not detected in eight different samples of normal adult epithelial or mesenchymal tissues obtained from five donors.

  11. Etoposide-Bevacizumab a new strategy against human melanoma cells expressing stem-like traits

    PubMed Central

    Calvani, Maura; Bianchini, Francesca; Taddei, Maria Letizia; Becatti, Matteo; Giannoni, Elisa; Chiarugi, Paola; Calorini, Lido

    2016-01-01

    Tumors contain a sub-population of self-renewing and expanding cells known as cancer stem cells (CSCs). Putative CSCs were isolated from human melanoma cells of a different aggressiveness, Hs294T and A375 cell lines, grown under hypoxia using “sphere-forming assay”, CD133 surface expression and migration ability. We found that a cell sub-population enriched for P1 sphere-initiating ability and CD133 expression also express larger amount of VEGF-R2. Etoposide does not influence phenotype of this sub-population of melanoma cells, while a combined treatment with Etoposide and Bevacizumab significantly abolished P1 sphere-forming ability, an effect associated with apoptosis of this subset of cells. Hypoxic melanoma cells sorted for VEGF-R2/CD133 positivity also undergo apoptosis when exposed to Etoposide and Bevacizumab. When Etoposide and Bevacizumab-treated hypoxic cells were injected intravenously into immunodeficient mice revealed a reduced capacity to induce lung colonies, which also appear with a longer latency period. Hence, our study indicates that a combined exposure to Etoposide and Bevacizumab targets melanoma cells endowed with stem-like properties and might be considered a novel approach to treat cancer-initiating cells. PMID:27303923

  12. Visual Acuity, Contrast Sensitivity and Color Vision Three Years After Iodine-125 Brachytherapy for Choroidal and Ciliary Body Melanoma

    PubMed Central

    Tsui, Irena; Beardsley, Robert M; McCannel, Tara A; Oliver, Scott C; Chun, Melissa W; Lee, Steve P; Chow, Phillip E; Agazaryan, Nzhde; Yu, Fei; Straatsma, Bradley R

    2015-01-01

    Purpose : To report visual acuity, contrast sensitivity and color vision prior to, 1 year after, 2 years after and 3 years after iodine-125 brachytherapy for choroidal and ciliary body melanoma (CCM). Design : Prospective interventional case series. Participants : Thirty-seven patients (37 eyes) with CCM. Methods : Patients had best-corrected Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuity, Pelli-Robson contrast sensitivity and Hardy-Rand-Rittler color vision measurement; comprehensive ophthalmology examination; optical coherence tomography; and ultrasonography at baseline prior to, 1 year after, 2 years after and 3 years after I-125 brachytherapy. Main Outcome Measures : Visual acuity, contrast sensitivity and color vision prior to, 1 year after, 2 years after and 3 years after brachytherapy. Results : Nineteen (19) men and 18 women with mean age of 58 years (SD 13, range 30-78) prior to, 1 year after, 2 years after and 3 years after brachytherapy had mean best-corrected visual acuity of 77 letters (20/32), 65 letters (20/50), 56 letters (20/80) and 47 letters (20/125); contrast sensitivity of 30, 26, 22 and 19 letters; color vision of 26, 20, 17 and 14 test figures, respectively. Decrease in visual acuity, contrast sensitivity and color vision was statistically significant from baseline at 1 year, 2 years, and 3 years after brachytherapy. Decreased acuity at 3 years was associated with mid-choroid and macula melanoma location, ≥ 4.1 mm melanoma height, radiation maculopathy and radiation optic neuropathy. Conclusion : 1, 2 and 3 years after brachytherapy, eyes with CCM had significantly decreased visual acuity, contrast sensitivity and color vision. PMID:26312123

  13. Molecular characterization and chromosomal assignment of equine cartilage derived retinoic acid sensitive protein (CD-RAP)/melanoma inhibitory activity (MIA).

    PubMed

    Berg, Lise C; Mata, Xavier; Thomsen, Preben D

    2008-01-15

    Cartilage-derived retinoic acid sensitive protein (CD-RAP) also known as melanoma inhibitory activity (MIA) has already been established as a marker for chondrocyte differentiation and a number of cancerous conditions in humans. Studies have also shown that CD-RAP/MIA is a potential marker of joint disease. The objective of this study was to characterize the equine CD-RAP/MIA gene and thus make it available as a marker in cartilage research and clinical studies. Gene analysis revealed that the equine gene (GenBank accession no. EF679787) consists of four exons and three introns, and the homology to the human gene is 90% for the translated region. The upstream sequence includes regulatory elements and putative transcription factor binding sites previously described in the human and murine promoter regions. The deduced amino acid sequence consists of 130 aa including a signal peptide of 23 aa, and has a 91% identity to the human protein. Using radiation hybrid mapping, the CD-RAP/MIA gene was localized to the p arm of equine chromosome 10 (ECA10p), which is in accordance with prediction based on the current human-equine comparative map. Gene expression studies showed expression of CD-RAP/MIA mRNA in articular cartilage and chondrocytes from horses with no signs of joint disease. The expression decreased as the cells dedifferentiated in monolayer culture. We also identified an equine CD-RAP/MIA splice variant similar to that reported in humans. The CD-RAP/MIA protein was detected in equine synovial fluid, serum and culture medium from chondrocyte cultures. In conclusion, CD-RAP/MIA is expressed in equine cartilage and chondrocytes, and the protein can be detected in equine serum, synovial fluid and in culture medium from chondrocyte cultures. The equine gene and resulting protein share great homology with the human gene, making future studies on CD-RAP/MIAs potential as a marker in joint disease possible using the equine joint as a model.

  14. A human melanoma metastasis-suppressor locus maps to 6q16.3-q23.

    PubMed

    Miele, M E; Jewett, M D; Goldberg, S F; Hyatt, D L; Morelli, C; Gualandi, F; Rimessi, P; Hicks, D J; Weissman, B E; Barbanti-Brodano, G; Welch, D R

    2000-05-15

    Loss, deletion or rearrangement along large portions of the long arm (q-arm) of chromosome 6 occurs in >80% of late-stage human melanomas, suggesting that genes controlling malignant characteristics are encoded there. Metastasis, but not tumorigenicity, was completely suppressed in the human melanoma cell line C8161 into which an additional intact chromosome 6 had been introduced by microcell-mediated chromosome transfer. Our objective was to refine the location of a putative metastasis suppressor gene. To do this, we transferred an intact (neo6) and a deletion variant [neo6qdel; neo6(del)(q16.3-q23)] of neomycin-tagged human chromosome 6 into metastatic C8161 subclone 9 (C8161.9) by MMCT. Single cell hybrid clones were selected in G-418 and isolated. Following verification that the hybrids retained the expected regions of chromosome 6 using a panel of polymorphic sequence-tagged sites, the hybrids were tested for tumorigenicity and metastasis in athymic mice. As reported previously, intact, normal chromosome 6 suppressed metastasis whether tumor cells were injected i.v. or into an orthotopic (i.e., intradermal) site. In contrast, metastasis was not suppressed in the neo6qdel hybrids. Tumorigenicity was unaffected in hybrids prepared with either chromosome 6 donor. These data strongly suggest that a human melanoma metastasis suppressor locus maps between 6q16.3-q23 ( approximately 40 cM).

  15. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations.

    PubMed

    Chudnovsky, Yakov; Adams, Amy E; Robbins, Paul B; Lin, Qun; Khavari, Paul A

    2005-07-01

    Multiple genetic alterations occur in melanoma, a lethal skin malignancy of increasing incidence. These include mutations that activate Ras and two of its effector cascades, Raf and phosphoinositide 3-kinase (PI3K). Induction of Ras and Raf can be caused by active N-Ras and B-Raf mutants as well as by gene amplification. Activation of PI3K pathway components occurs by PTEN loss and by AKT3 amplification. Melanomas also commonly show impairment of the p16(INK4A)-CDK4-Rb and ARF-HDM2-p53 tumor suppressor pathways. CDKN2A mutations can produce p16(INK4A) and ARF protein loss. Rb bypass can also occur through activating CDK4 mutations as well as by CDK4 amplification. In addition to ARF deletion, p53 pathway disruption can result from dominant negative TP53 mutations. TERT amplification also occurs in melanoma. The extent to which these mutations can induce human melanocytic neoplasia is unknown. Here we characterize pathways sufficient to generate human melanocytic neoplasia and show that genetically altered human tissue facilitates functional analysis of mutations observed in human tumors.

  16. Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells.

    PubMed

    Davids, Lester M; Kleemann, Britta; Kacerovská, Denisa; Pizinger, Karl; Kidson, Susan H

    2008-05-29

    Hypericin, the major component of St. John's Wort, absorbs light in the UV and visible ranges whereupon it becomes phototoxic through the production of reactive oxygen species. Although photodynamic mechanisms (i.e. through endogenous photosensitizers) play a role in UVA phototherapy for the treatment of skin disorders such as eczema and psoriasis, photodynamic therapy employing exogenous photosensitizers are currently being used only for the treatment of certain forms of non-melanoma skin cancers and actinic keratoses. There are few reports however on its use in treating melanomas. This in vitro study analyses the phototoxic effect of UVA (400-315 nm) - activated hypericin in human pigmented and unpigmented melanomas and immortalised keratinocytes and melanocytes. We show that neither hypericin exposure nor UV irradiation alone reduces cell viability. We show that an exposure to 1 microM UVA-activated hypericin does not bring about cell death, while 3 microM activated hypericin induces a necrotic mode of cell death in pigmented melanoma cells and melanocytes and an apoptotic mode of cell death in non-pigmented melanoma cells and keratinocytes. We hypothesis that the necrotic mode of cell death in the pigmented cells is possibly related to the presence of melanin-containing melanosomes in these cells and that the hypericin-induced increase in reactive oxygen species leads to an increase in permeability of melanosomes. This would result in toxic melanin precursors (of an indolic and phenolic nature) leaking into the cytoplasm which in turn leads to cell death. Hypericin localisation in the endoplasmic reticulum in these cells shown by fluorescent microscopy, further support a disruption in cellular processing and induction of cell death. In contrast, this study shows that cells that do not contain melanosomes (non-pigmented melanoma cells and keratinocytes) die by apoptosis. Further, using a mitochondrial-specific fluorescent dye, we show that intracellular

  17. Inhibitor of DNA Binding 4 (ID4) Is Highly Expressed in Human Melanoma Tissues and May Function to Restrict Normal Differentiation of Melanoma Cells

    PubMed Central

    Peretz, Yuval; Wu, Hong; Patel, Shayan; Bellacosa, Alfonso; Katz, Richard A.

    2015-01-01

    Melanoma tissues and cell lines are heterogeneous, and include cells with invasive, proliferative, stem cell-like, and differentiated properties. Such heterogeneity likely contributes to the aggressiveness of the disease and resistance to therapy. One model suggests that heterogeneity arises from rare cancer stem cells (CSCs) that produce distinct cancer cell lineages. Another model suggests that heterogeneity arises through reversible cellular plasticity, or phenotype-switching. Recent work indicates that phenotype-switching may include the ability of cancer cells to dedifferentiate to a stem cell-like state. We set out to investigate the phenotype-switching capabilities of melanoma cells, and used unbiased methods to identify genes that may control such switching. We developed a system to reversibly synchronize melanoma cells between 2D-monolayer and 3D-stem cell-like growth states. Melanoma cells maintained in the stem cell-like state showed a striking upregulation of a gene set related to development and neural stem cell biology, which included SRY-box 2 (SOX2) and Inhibitor of DNA Binding 4 (ID4). A gene set related to cancer cell motility and invasiveness was concomitantly downregulated. Intense and pervasive ID4 protein expression was detected in human melanoma tissue samples, suggesting disease relevance for this protein. SiRNA knockdown of ID4 inhibited switching from monolayer to 3D-stem cell-like growth, and instead promoted switching to a highly differentiated, neuronal-like morphology. We suggest that ID4 is upregulated in melanoma as part of a stem cell-like program that facilitates further adaptive plasticity. ID4 may contribute to disease by preventing stem cell-like melanoma cells from progressing to a normal differentiated state. This interpretation is guided by the known role of ID4 as a differentiation inhibitor during normal development. The melanoma stem cell-like state may be protected by factors such as ID4, thereby potentially identifying a

  18. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation

    SciTech Connect

    Serafino, A. Balestrieri, E.; Pierimarchi, P.; Matteucci, C.; Moroni, G.; Oricchio, E.; Rasi, G.; Mastino, A.; Spadafora, C.; Garaci, E.; Vallebona, P. Sinibaldi

    2009-03-10

    Melanoma development is a multi-step process arising from a series of genetic and epigenetic events. Although the sequential stages involved in progression from melanocytes to malignant melanoma are clearly defined, our current understanding of the mechanisms leading to melanoma onset is still incomplete. Growing evidence show that the activation of endogenous retroviral sequences might be involved in transformation of melanocytes as well as in the increased ability of melanoma cells to escape immune surveillance. Here we show that human melanoma cells in vitro undergo a transition from adherent to a more malignant, non-adherent phenotype when exposed to stress conditions. Melanoma-derived non-adherent cells are characterized by an increased proliferative potential and a decreased expression of both HLA class I molecules and Melan-A/MART-1 antigen, similarly to highly malignant cells. These phenotypic and functional modifications are accompanied by the activation of human endogenous retrovirus K expression (HERV-K) and massive production of viral-like particles. Down-regulation of HERV-K expression by RNA interference prevents the transition from the adherent to the non-adherent growth phenotype in low serum. These results implicate HERV-K in at least some critical steps of melanoma progression.

  19. Specific killing of human melanoma cells with an efficient 10B-compound on monoclonal antibodies

    SciTech Connect

    Komura, A.; Tokuhisa, T.; Nakagawa, T.; Sasase, A.; Ichihashi, M.; Ferrone, S.; Mishima, Y. )

    1989-07-01

    We previously established methods which have enabled us to target a sufficient number of 10B atoms on human melanoma cells to destroy them by thermal neutron irradiation. Monoclonal antibodies were here used as vector of 10B atoms on the target cell. Thermal neutrons require at least 10(9) 10B atoms to destroy the cell. In order to accumulate an adequate number of 10B atoms on target cells, our first approach was to make an effective compound that contains 12 atoms of 10B in a molecule. The second step was to conjugate the compound with an avidin molecule (10B12-avidin). One molecule of the 10B12-avidin carries about 30 atoms of 10B. This 10B12-avidin can be specifically targeted on human melanoma cells by biotinated monoclonal antibodies specific for the cells. Furthermore, the number of 10B atoms on target cells can be augmented by a hapten-antihapten monoclonal antibody system. The cultured human melanoma cells treated with these methods were damaged by thermal neutron irradiation. This is the first study that indicates thermal neutrons do injure target cells boronated by monoclonal antibodies.

  20. Overcoming MITF-conferred drug resistance through dual AURKA/MAPK targeting in human melanoma cells

    PubMed Central

    Pathria, G; Garg, B; Borgdorff, V; Garg, K; Wagner, C; Superti-Furga, G; Wagner, S N

    2016-01-01

    MITF (microphthalmia-associated transcription factor) is a frequently amplified lineage-specific oncogene in human melanoma, whose role in intrinsic drug resistance has not been systematically investigated. Utilizing chemical inhibitors for major signaling pathways/cellular processes, we witness MITF as an elicitor of intrinsic drug resistance. To search kinase(s) targets able to bypass MITF-conferred drug resistance, we employed a multi-kinase inhibitor-directed chemical proteomics-based differential affinity screen in human melanocytes carrying ectopic MITF overexpression. A subsequent methodical interrogation informed mitotic Ser/Thr kinase Aurora Kinase A (AURKA) as a crucial regulator of melanoma cell proliferation and migration, independent of the underlying molecular alterations, including TP53 functional status and MITF levels. Crucially, assessing the efficacy of investigational AURKA inhibitor MLN8237, we pre-emptively witness the procurement of a molecular program consistent with acquired drug resistance. This involved induction of multiple MAPK (mitogen-activated protein kinase) signaling pathway components and their downstream proliferation effectors (Cyclin D1 and c-JUN) and apoptotic regulators (MITF and Bcl-2). A concomitant AURKA/BRAF and AURKA/MEK targeting overcame MAPK signaling activation-associated resistance signature in BRAF- and NRAS-mutated melanomas, respectively, and elicited heightened anti-proliferative activity and apoptotic cell death. These findings reveal a previously unreported MAPK signaling-mediated mechanism of immediate resistance to AURKA inhibitors. These findings could bear significant implications for the application and the success of anti-AURKA approaches that have already entered phase-II clinical trials for human melanoma. PMID:26962685

  1. Vaccination with a human high molecular weight melanoma-associated antigen mimotope induces a humoral response inhibiting melanoma cell growth in vitro.

    PubMed

    Wagner, Stefan; Hafner, Christine; Allwardt, Dorothee; Jasinska, Joanna; Ferrone, Soldano; Zielinski, Christoph C; Scheiner, Otto; Wiedermann, Ursula; Pehamberger, Hubert; Breiteneder, Heimo

    2005-01-15

    Peptide mimics of a conformational epitope that is recognized by a mAb with antitumor activity are promising candidates for formulations of anticancer vaccines. These mimotope vaccines are able to induce a polyclonal Ab response focused to the determinant of the mAb. Such attempts at cancer immunotherapy are of special interest for malignant melanoma that is highly resistant to chemotherapy and radiotherapy. In this study, we describe for the first time the design and immunogenicity of a vaccine containing a mimotope of the human high m.w. melanoma-associated Ag (HMW-MAA) and the biological potential of the induced Abs. Mimotopes were selected from a pVIII-9mer phage display peptide library with the anti-HMW-MAA mAb 225.28S. The mimotope vaccine was then generated by coupling the most suitable candidate mimotope to tetanus toxoid as an immunogenic carrier. Immunization of rabbits with this vaccine induced a specific humoral immune response directed toward the epitope recognized by the mAb 225.28S on the native HMW-MAA. The induced Abs inhibited the in vitro growth of the melanoma cell line 518A2 up to 62%. In addition, the Abs mediated 26% lysis of 518A2 cells in Ab-dependent cellular cytotoxicity. Our results indicate a possible application of this mimotope vaccine as a novel immunotherapeutic agent for the treatment of malignant melanoma.

  2. In Vitro Efficacy and Mechanistic Role of Indocyanine Green as a Photodynamic Therapy Agent for Human Melanoma

    SciTech Connect

    Mamoon, A.; Gamal-Eldeen, A; Ruppel, M; Smith, R; Tsang, T; Miller, L

    2009-01-01

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway.

  3. Physalin B from Physalis angulata triggers the NOXA-related apoptosis pathway of human melanoma A375 cells.

    PubMed

    Hsu, Chia-Chun; Wu, Yang-Chang; Farh, Lynn; Du, Ying-Chi; Tseng, Wei-Kung; Wu, Chau-Chung; Chang, Fang-Rong

    2012-03-01

    Melanoma is a lethal form of skin cancer that can metastasize rapidly. While surgery and radiation therapy provide palliative therapy for local tumor growth, systemic therapy is the mainstay of treatment for metastatic melanoma. However, limited chemotherapeutic agents are available for melanoma treatment. In this study, we investigated the anti-melanoma effect of physalin B, the major active compound from a widely used herb medicine, Physalis angulata L. This study demonstrated that physalin B exhibits cytotoxicity towards v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutated melanoma A375 and A2058 cells (the IC50 values are lower than 4.6 μg/ml). Cytotoxicity is likely resulted from apoptosis since the apoptotic marker phosphatidylserine are detected immediately under physalin B treatment and apoptotic cells formation. Further examination revealed that physalin B induces expression of the proapoptotic protein NOXA within 2 h and later triggers the expression of Bax and caspase-3 in A375 cells. These results indicate that physalin B can induce apoptosis of melanoma cancer cells via the NOXA, caspase-3, and mitochondria-mediated pathways, but not of human skin fibroblast cells and myoblastic cells. Thus, physalin B has the potential to be developed as an effective chemotherapeutic lead compound for the treatment of malignant melanoma.

  4. Basic and clinical aspects of malignant melanoma

    SciTech Connect

    Nathanson, L. )

    1987-01-01

    This book contains the following 10 chapters: The role of oncogenes in the pathogenesis of malignant melanoma; Laminin and fibronectin modulate the metastatic activity of melanoma cells; Structure, function and biosynthesis of ganglioside antigens associated with human tumors derived from the neuroectoderm; Epidemiology of ocular melanoma; Malignant melanoma: Prognostic factors; Endocrine influences on the natural history of human malignant melanoma; Psychosocial factors associated with prognostic indicators, progression, psychophysiology, and tumor-host response in cutaneous malignant melanoma; Central nervous system metastases in malignant melanoma; Interferon trials in the management of malignant melanoma and other neoplasms: an overview; and The treatment of malignant melanoma by fast neutrons.

  5. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells.

    PubMed

    Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian; Thieme, Sebastian

    2013-04-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact.

  6. Adenovirus replication as an in vitro probe for drug sensitivity in human tumors.

    PubMed

    Parsons, P G; Maynard, K R; Little, J H; McLeod, G R

    1986-04-01

    The feasibility of using adenovirus 5 as an in vitro probe for chemosensitivity in short-term cultures of human tumors was evaluated using human melanoma cell lines and primary cultures of melanoma biopsies. A convenient immunoperoxidase method was developed for quantitating viral replication 2 days after infection. Two different approaches were explored: the host cell reactivation assay (HCR) using drug-treated virus; and the viral capacity assay using drug-treated cells. The HCR assay detected sensitivity to 5-(3-methyl-1-triazeno)imidazole-4-carboxamide (MTIC) in Mer- (methyl excision repair deficient) cell lines as decreased ability of the cells to replicate MTIC-treated virus. This test should be applicable to DNA-damaging agents and repair-deficient tumors. Adenovirus replicated readily in nonproliferating primary cultures of melanoma biopsies; application of the HCR assays to this material identified one Mer- sample of 11 tested. Herpes viruses were not suitable for use in HCR because herpes simplex virus type 1 failed to distinguish Mer- from Mer+ melanoma cells; and nonproductive infection of MTIC-sensitive lymphoid cells with Epstein-Barr virus yielded an MTIC-resistant cell line. The second assay (viral capacity) involved determination of the inhibition of replication of untreated virus in treated cells. This approach correctly predicted sensitivity to hydroxyurea and deoxyadenosine in melanoma cell lines when compared with clonogenic survival assay. Viral capacity was also inhibited by cytosine arabinoside, fluorouracil, vincristine, adriamycin, 6-mercaptopurine and ionising radiation, and may therefore be useful for detecting sensitivity to a wide range of antitumor agents.

  7. Melanoma Diagnosis

    NASA Astrophysics Data System (ADS)

    Horsch, Alexander

    The chapter deals with the diagnosis of the malignant melanoma of the skin. This aggressive type of cancer with steadily growing incidence in white populations can hundred percent be cured if it is detected in an early stage. Imaging techniques, in particular dermoscopy, have contributed significantly to improvement of diagnostic accuracy in clinical settings, achieving sensitivities for melanoma experts of beyond 95% at specificities of 90% and more. Automatic computer analysis of dermoscopy images has, in preliminary studies, achieved classification rates comparable to those of experts. However, the diagnosis of melanoma requires a lot of training and experience, and at the time being, average numbers of lesions excised per histology-proven melanoma are around 30, a number which clearly is too high. Further improvements in computer dermoscopy systems and their competent use in clinical settings certainly have the potential to support efforts of improving this situation. In the chapter, medical basics, current state of melanoma diagnosis, image analysis methods, commercial dermoscopy systems, evaluation of systems, and methods and future directions are presented.

  8. Cooperative antiproliferative signaling by aspirin and indole-3-carbinol targets microphthalmia-associated transcription factor gene expression and promoter activity in human melanoma cells.

    PubMed

    Poindexter, Kevin M; Matthew, Susanne; Aronchik, Ida; Firestone, Gary L

    2016-04-01

    Antiproliferative signaling of combinations of the nonsteroidal anti-inflammatory drug acetylsalicylic acid (aspirin) and indole-3-carbinol (I3C), a natural indolecarbinol compound derived from cruciferous vegetables, was investigated in human melanoma cells. Melanoma cell lines with distinct mutational profiles were sensitive to different extents to the antiproliferative response of aspirin, with oncogenic BRAF-expressing G361 cells and wild-type BRAF-expressing SK-MEL-30 cells being the most responsive. I3C triggered a strong proliferative arrest of G361 melanoma cells and caused only a modest decrease in the proliferation of SK-MEL-30 cells. In both cell lines, combinations of aspirin and I3C cooperatively arrested cell proliferation and induced a G1 cell cycle arrest, and nearly ablated protein and transcript levels of the melanocyte master regulator microphthalmia-associated transcription factor isoform M (MITF-M). In melanoma cells transfected with a -333/+120-bp MITF-M promoter-luciferase reporter plasmid, treatment with aspirin and I3C cooperatively disrupted MITF-M promoter activity, which accounted for the loss of MITF-M gene products. Mutational analysis revealed that the aspirin required the LEF1 binding site, whereas I3C required the BRN2 binding site to mediate their combined and individual effects on MITF-M promoter activity. Consistent with LEF1 being a downstream effector of Wnt signaling, aspirin, but not I3C, downregulated protein levels of the Wnt co-receptor LDL receptor-related protein-6 and β-catenin and upregulated the β-catenin destruction complex component Axin. Taken together, our results demonstrate that aspirin-regulated Wnt signaling and I3C-targeted signaling pathways converge at distinct DNA elements in the MITF-M promoter to cooperatively disrupt MITF-M expression and melanoma cell proliferation.

  9. Molecular Mechanism of MART-1+/A*0201+ Human Melanoma Resistance to Specific CTL-Killing Despite Functional Tumor-CTL Interaction

    PubMed Central

    Jazirehi, Ali R.; Baritaki, Stavroula; Koya, Richard C.; Bonavida, Benjamin; Economou, James S.

    2014-01-01

    Durable responses in metastatic melanoma patients remain generally difficult to achieve. Adoptive cell therapy with ex vivo engineered lymphocytes expressing high affinity T cell receptors TCRα/β for the melanoma antigen MART-127-35/HLA A*0201 (recognized by F5 cytotoxic T lymphocytes [F5 CTLs]) has been found to benefit certain patients. However, many other patients are inherently unresponsive and/or relapse for unknown reasons. To analyze the basis for the acquired-resistance and strategies to reverse it, we established F5 CTLresistant (R) human melanoma clones from relatively sensitive parental lines under selective F5 CTL pressure. Surface MART-127-35/HLA-A*0201 in these clones was unaltered and F5 CTLs recognized and interacted with them similarly to the parental lines. Nevertheless, the R clones were resistant to F5 CTL killing, exhibited hyperactivation of the NF-κB survival pathway, and overexpression of the anti-apoptotic genes Bcl-2, Bcl-xL and Mcl-1. Sensitivity to F5 CTL-killing could be increased by pharmacological inhibition of the NF-κB pathway, Bcl-2 family members, or the proteasome, the latter of which reduced NF-κB activity and diminished anti-apoptotic gene expression. Specific gene-silencing (by siRNA) confirmed the protective role of anti-apoptotic factors by reversing R clone resistance. Together, our findings suggest that long-term immunotherapy may impose a selection for the development of resistant cells that are unresponsive to highly avid and specific melanoma-reactive CTLs, despite maintaining expression of functional peptide:MHC complexes, due to activation of anti-apoptotic signaling pathways. Though unresponsive to CTL, our results argue that resistant cells can be re-sensitized to immunotherapy with co-administration of targeted inhibitors to anti-apoptotic survival pathways. PMID:21159666

  10. Differential expression of endoglin in human melanoma cells expressing the V3 isoform of versican by microarray analysis.

    PubMed

    Miquel-Serra, Laia; Hernandez, Daniel; Docampo, María Jose; Bassols, Anna

    2010-01-01

    Versican is a large chondroitin sulfate proteoglycan produced by several tumor types, including malignant melanoma, which exists as four different splice variants. The large isoforms V0 and V1 promote melanoma cell proliferation. We previously described that overexpression of the short V3 isoform in MeWo human melanoma cells markedly reduced tumor cell growth in vitro and in vivo, but favored the appearance of secondary tumors. This study aimed to elucidate the mechanisms of V3 by identifying differentially expressed genes between parental and V3-expressing MeWo melanoma cells using microarray analysis. V3 expression significantly reduced the expression of endoglin, a transforming growth factor-β superfamily co-receptor. Other differentially expressed genes were VEGF and PPP1R14B. Changes in endoglin levels were validated by qRT-PCR and Western blotting.

  11. A melanoma immune response signature including Human Leukocyte Antigen-E.

    PubMed

    Tremante, Elisa; Ginebri, Agnese; Lo Monaco, Elisa; Benassi, Barbara; Frascione, Pasquale; Grammatico, Paola; Cappellacci, Sandra; Catricalà, Caterina; Arcelli, Diego; Natali, Pier Giorgio; Di Filippo, Franco; Mottolese, Marcella; Visca, Paolo; Benevolo, Maria; Giacomini, Patrizio

    2014-01-01

    Paired cultures of early-passage melanoma cells and melanocytes were established from metastatic lesions and the uninvolved skin of five patients. In this stringent autologous setting, cDNA profiling was used to analyze a subset of 1477 genes selected by the Gene Ontology term 'immune response'. Human Leukocyte Antigen E (HLA-E) was ranked 19th among melanoma-overexpressed genes and was embedded in a transformation signature including its preferred peptide ligand donors HLA-A, HLA-B, HLA-C, and HLA-G. Mostly undetectable in normal skin and 39 nevi (including rare and atypical lesions), HLA-E was detected by immunohistochemistry in 17/30 (57%) and 32/48 (67%) primary and metastatic lesions, respectively. Accordingly, surface HLA-E was higher on melanoma cells than on melanocytes and protected the former (6/6 cell lines) from lysis by natural killer (NK) cells, functionally counteracting co-expressed triggering ligands. Although lacking HLA-E, melanocytes (4/4 cultures) were nevertheless (and surprisingly) fully protected from NK cell lysis.

  12. Metabolic bioactivation and toxicity of ethyl 4-hydroxybenzoate in human SK-MEL-28 melanoma cells.

    PubMed

    Vad, Nikhil M; Shaik, Imam H; Mehvar, Reza; Moridani, Majid Y

    2008-05-01

    The metabolism and toxicity of ethyl 4-hydroxybenzoate (4-HEB) were investigated in vitro using tyrosinase enzyme, a melanoma molecular target, and CYP2E1 induced rat liver microsomes, and in human SK-MEL-28 melanoma cells. The results were compared to 4-hydroxyanisole (4-HA). At 90 min, 4-HEB was metabolized 48% by tyrosinase and 26% by liver microsomes while the extent of 4-HA metabolism was 196% and 88%, respectively. The IC50 (day 2) of 4-HEB and 4-HA towards SK-MEL-28 cells were 75 and 50 microM, respectively. Dicoumarol, a diaphorase inhibitor, and 1-bromoheptane, a GSH depleting agent, increased 4-HEB toxicity towards SK-MEL-28 cells indicating o-quinone formation played an important role in 4-HEB induced cell toxicity. Addition of ascorbic acid and GSH to the media was effective in preventing 4-HEB cell toxicity. Cyclosporin A and trifluoperazine, inhibitors of permeability transition pore in mitochondria, were significantly potent in inhibiting 4-HEB cell toxicity. 4-HEB caused time-dependent decline in intracellular GSH concentration which preceded cell death. 4-HEB also led to reactive oxygen species (ROS) formation in melanoma cells which exacerbated by dicoumarol and 1-bromoheptane whereas cyclosporin A and trifluoperazine prevented it. Our findings suggest that the mechanisms of 4-HEB toxicity in SK-MEL-28 were o-quinone formation, intracellular GSH depletion, ROS formation and mitochondrial toxicity.

  13. Anti-Proliferative Effect of Rosmarinus officinalis L. Extract on Human Melanoma A375 Cells.

    PubMed

    Cattaneo, Lucia; Cicconi, Rosella; Mignogna, Giuseppina; Giorgi, Alessandra; Mattei, Maurizio; Graziani, Giulia; Ferracane, Rosalia; Grosso, Alessandro; Aducci, Patrizia; Schininà, M Eugenia; Marra, Mauro

    2015-01-01

    Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary's bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary's anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed.

  14. C-myc oncogene expression in human melanoma and its relationship with tumour antigenicity.

    PubMed

    Grover, R; Ross, D A; Richman, P I; Robinson, B; Wilson, G D

    1996-08-01

    Melanoma produces specific tumour antigens which are capable of eliciting an immune response. However, this tumour evades the immune system, in part, by downregulation of class I HLA antigens on the cell surface, which are required for T cell recognition. It has been suggested that the oncogene c-myc may have a role in effecting this change in vitro, however, the relationship between oncoprotein level and tumour antigenicity has not been established in human tumours. This study measured c-myc oncoprotein in 94 melanoma specimens (46 primary tumours and 48 regional metastases) using flow cytometry and evaluated class I HLA expression with immunohistochemistry. C-myc expression was found in 91 tumours (96%) with higher expression in metastases than primary melanomas (P<0.005). Class I HLA expression was found to show great variation although metastases showed less antigenicity than primary tumours (P<0.01). Analysis of the relationship between these two parameters revealed a highly significant correlation in both primary (P<0.01) and metastatic disease (P<0.01), with high oncoprotein being associated with down regulation of cell surface antigens. Knowledge of the control of tumour antigenicity is likely to provide an objective platform for the development of new strategies for immunotherapy.

  15. Irradiation affects cellular properties and Eph receptor expression in human melanoma cells

    PubMed Central

    Mosch, Birgit; Pietzsch, Doreen; Pietzsch, Jens

    2012-01-01

    X-ray irradiation influences metastatic properties of tumor cells and, moreover, metastasis and cellular motility can be modified by members of the Eph receptor/ephrin family of receptor tyrosine kinases. We hypothesized that irradiation-induced changes in cellular properties relevant for metastasis in melanoma cells could be mediated by Eph receptor/ephrin signaling. In this pilot study, we analyzed one pre-metastatic (Mel-Juso) and three metastatic human melanoma (Mel-Juso-L3, A375, and A2058) cells lines and predominantly found anti-metastatic effects of X-ray irradiation with impaired cell growth, clonal growth and motility. Additionally, we observed an irradiation-induced increase in adhesion paralleled by a decrease in migration in Mel-Juso and Mel-Juso-L3 cells and, in part, also in A375 cells. We further demonstrate a decrease of EphA2 both in expression and activity at 7 d after irradiation paralleled by an upregulation of EphA3. Analyzing downstream signaling after irradiation, we detected decreased Src kinase phosphorylation, but unchanged focal adhesion kinase (FAK) phosphorylation, indicating, in part, irradiation-induced downregulation of signaling via the EphA2-Src-FAK axis in melanoma cells. However, to which extent this finding contributes to the modification of metastasis-relevant cellular properties remains to be elucidated. PMID:22568947

  16. Photoacoustic detection of metastatic melanoma cells in the human circulatory system.

    PubMed

    Weight, Ryan M; Viator, John A; Dale, Paul S; Caldwell, Charles W; Lisle, Allison E

    2006-10-15

    Detection of disseminating tumor cells among patients suffering from various types and stages of cancer can function as an early warning system, alerting the physician of the metastatic spread or recurrence of the disease. Early detection of such cells can result in preventative treatment of the disease, while late stage detection can serve as an indicator of the effectiveness of chemotherapeutics. The prognostic value of exposing disseminating tumor cells poses an urgent need for an efficient, accurate screening method for metastatic cells. We propose a system for the detection of metastatic circulating tumor cells based on the thermoelastic properties of melanoma. The method employs photoacoustic excitation coupled with a detection system capable of determining the presence of disseminating cells within the circulatory system in vitro. Detection trials consisting of tissue phantoms and a human melanoma cell line resulted in a detection threshold of the order of ten individual cells, thus validating the effectiveness of the proposed mechanism. Results imply the potential to assay simple blood draws, from healthy and metastatic patients, for the presence of cancerous melanoma providing an unprecedented method for routine cancer screening.

  17. Photoacoustic detection of metastatic melanoma cells in the human circulatory system

    NASA Astrophysics Data System (ADS)

    Weight, Ryan M.; Viator, John A.; Dale, Paul S.; Caldwell, Charles W.; Lisle, Allison E.

    2006-10-01

    Detection of disseminating tumor cells among patients suffering from various types and stages of cancer can function as an early warning system, alerting the physician of the metastatic spread or recurrence of the disease. Early detection of such cells can result in preventative treatment of the disease, while late stage detection can serve as an indicator of the effectiveness of chemotherapeutics. The prognostic value of exposing disseminating tumor cells poses an urgent need for an efficient, accurate screening method for metastatic cells. We propose a system for the detection of metastatic circulating tumor cells based on the thermoelastic properties of melanoma. The method employs photoacoustic excitation coupled with a detection system capable of determining the presence of disseminating cells within the circulatory system in vitro. Detection trials consisting of tissue phantoms and a human melanoma cell line resulted in a detection threshold of the order of ten individual cells, thus validating the effectiveness of the proposed mechanism. Results imply the potential to assay simple blood draws, from healthy and metastatic patients, for the presence of cancerous melanoma providing an unprecedented method for routine cancer screening.

  18. Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility.

    PubMed Central

    Chu, Y. W.; Seftor, E. A.; Romer, L. H.; Hendrix, M. J.

    1996-01-01

    Intermediate filaments have been used as cell-type-specific markers in differentiation and pathology; however, recent reports have demonstrated the coexpression of vimentin (a mesenchymal marker) and keratins (epithelial markers) in numerous neoplasms, including melanoma, which has been linked to metastatic disease. To test the hypothesis that coexpression of vimentin and keratins by melanoma cells contributes to a more migratory and invasive phenotype, we co-transfected a vimentin-positive human melanoma cell line, A375P (of low invasive ability), with cDNAs for keratins 8 and 18. The resultant stable transfectants expressed vimentin- and keratin-positive intermediate filaments showed a two- to threefold increase in their invasion of basement membrane matrix and migration through gelatin in vitro. These findings were further corroborated by video cinematography. During attachment and spreading on fibronectin, the transfectants containing vimentin and keratins 8 and 18 demonstrated an increase in focal adhesions that stained positive for beta 1 integrin and phosphotyrosine, along with enhanced membrane ruffling and actin stress fiber formation. From these data, we postulate that coexpression of vimentin and keratins results in increased cytoskeletal interactions at focal contacts within extracellular matrices involving integrin cell signaling events, which contributes to a more migratory behavior. Images Figure 1 Figure 2 PMID:8546227

  19. Mutational and Functional Analysis of the Tumor-Suppressor PTPRD in Human Melanoma

    PubMed Central

    Walia, Vijay; Prickett, Todd D.; Kim, Jung-Sik; Gartner, Jared J.; Lin, Jimmy C.; Zhou, Ming; Rosenberg, Steven A.; Elble, Randolph C.; Solomon, David A.; Waldman, Todd; Samuels, Yardena

    2015-01-01

    Protein tyrosine phosphatases (PTPs) tightly regulate tyrosine phosphorylation essential for cell growth, adhesion, migration, and survival. We performed a mutational analysis of the PTP gene family in cutaneous metastatic melanoma and identified 23 phosphatase genes harboring somatic mutations. Among these, receptor-type tyrosine–protein phosphatase delta (PTPRD) was one of the most highly mutated genes, harboring 17 somatic mutations in 79 samples, a prevalence of 21.5%. Functional evaluation of six PTPRD mutations revealed enhanced anchorage-dependent and anchorage-independent growth. Interestingly, melanoma cells expressing mutant PTPRD were significantly more migratory than cells expressing wild-type PTPRD or vector alone, indicating a novel gain-of-function associated with mutant PTPRD. To understand the molecular mechanisms of PTPRD mutations, we searched for its binding partners by converting the active PTPRD enzyme into a “substrate trap” form. Using mass spectrometry and coimmunoprecipitation, we report desmoplakin, a desmosomal protein that is implicated in cell–cell adhesion, as a novel PTPRD substrate. Further analysis showed reduced phosphatase activity of mutant PTPRD against desmoplakin. Our findings identify an essential signaling cascade that is disrupted in melanoma. Moreover, because PTPRD is also mutated in glioblastomas and adenocarcinoma of the colon and lung, our data might be applicable to a large number of human cancers. PMID:25113440

  20. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells.

    PubMed

    Li, Hui; Zhou, Fusheng; Du, Wenhui; Dou, Jinfa; Xu, Yu; Gao, Wanwan; Chen, Gang; Zuo, Xianbo; Sun, Liangdan; Zhang, Xuejun; Yang, Sen

    2016-05-01

    Melanoma, the most aggressive form of skin cancer, causes more than 40,000 deaths each year worldwide. And epidermoid carcinoma is another major form of skin cancer, which could be studied together with melanoma in several aspects. Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine, and its expression is associated with the chemotherapy resistance and prognosis in several human cancers. The present study aims to explore the potential role of ASNS in melanoma cells A375 and human epidermoid carcinoma cell line A431. We applied a lentivirus-mediated RNA interference (RNAi) system to study its function in cell growth of both cells. The results revealed that inhibition of ASNS expression by RNAi significantly suppressed the growth of melanoma cells and epidermoid carcinoma cells, and induced a G0/G1 cell cycle arrest in melanoma cells. Knockdown of ASNS in A375 cells remarkably downregulated the expression levels of CDK4, CDK6, and Cyclin D1, and upregulated the expression of p21. Therefore, our study provides evidence that ASNS may represent a potential therapeutic target for the treatment of melanoma.

  1. Wnt Interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    PubMed Central

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T.; G, Mary; Johlfs, Ronald R. Fiscus; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-01-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤ 40 nm; intermediates ~40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. PMID:23318676

  2. Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines.

    PubMed

    Young, Richard J; Waldeck, Kelly; Martin, Claire; Foo, Jung H; Cameron, Donald P; Kirby, Laura; Do, Hongdo; Mitchell, Catherine; Cullinane, Carleen; Liu, Wendy; Fox, Stephen B; Dutton-Regester, Ken; Hayward, Nicholas K; Jene, Nicholas; Dobrovic, Alexander; Pearson, Richard B; Christensen, James G; Randolph, Sophia; McArthur, Grant A; Sheppard, Karen E

    2014-07-01

    We have investigated the potential for the p16-cyclin D-CDK4/6-retinoblastoma protein pathway to be exploited as a therapeutic target in melanoma. In a cohort of 143 patients with primary invasive melanoma, we used fluorescence in situ hybridization to detect gene copy number variations (CNVs) in CDK4, CCND1, and CDKN2A and immunohistochemistry to determine protein expression. CNVs were common in melanoma, with gain of CDK4 or CCND1 in 37 and 18% of cases, respectively, and hemizygous or homozygous loss of CDKN2A in 56%. Three-quarters of all patients demonstrated a CNV in at least one of the three genes. The combination of CCND1 gain with either a gain of CDK4 and/or loss of CDKN2A was associated with poorer melanoma-specific survival. In 47 melanoma cell lines homozygous loss, methylation or mutation of CDKN2A gene or loss of protein (p16(INK) (4A) ) predicted sensitivity to the CDK4/6 inhibitor PD0332991, while RB1 loss predicted resistance.

  3. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    SciTech Connect

    Sustarsic, Elahu G.; Junnila, Riia K.; Kopchick, John J.

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on

  4. Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib.

    PubMed

    Goodall, Megan L; Wang, Tong; Martin, Katie R; Kortus, Matthew G; Kauffman, Audra L; Trent, Jeffrey M; Gately, Stephen; MacKeigan, Jeffrey P

    2014-06-01

    Autophagy is a dynamic cell survival mechanism by which a double-membrane vesicle, or autophagosome, sequesters portions of the cytosol for delivery to the lysosome for recycling. This process can be inhibited using the antimalarial agent chloroquine (CQ), which impairs lysosomal function and prevents autophagosome turnover. Despite its activity, CQ is a relatively inadequate inhibitor that requires high concentrations to disrupt autophagy, highlighting the need for improved small molecules. To address this, we screened a panel of antimalarial agents for autophagy inhibition and chemically synthesized a novel series of acridine and tetrahydroacridine derivatives. Structure-activity relationship studies of the acridine ring led to the discovery of VATG-027 as a potent autophagy inhibitor with a high cytotoxicity profile. In contrast, the tetrahydroacridine VATG-032 showed remarkably little cytotoxicity while still maintaining autophagy inhibition activity, suggesting that both compounds act as autophagy inhibitors with differential effects on cell viability. Further, knockdown of autophagy-related genes showed no effect on cell viability, demonstrating that the ability to inhibit autophagy is separate from the compound cytotoxicity profiles. Next, we determined that both inhibitors function through lysosomal deacidification mechanisms and ultimately disrupt autophagosome turnover. To evaluate the genetic context in which these lysosomotropic inhibitors may be effective, they were tested in patient-derived melanoma cell lines driven by oncogenic BRAF (v-raf murine sarcoma viral oncogene homolog B). We discovered that both inhibitors sensitized melanoma cells to the BRAF V600E inhibitor vemurafenib. Overall, these autophagy inhibitors provide a means to effectively block autophagy and have the potential to sensitize mutant BRAF melanomas to first-line therapies.

  5. Optimization of radioimmunotherapy using human malignant melanoma multicell spheroids as a model

    SciTech Connect

    Kwok, C.S.; Crivici, A.; MacGregor, W.D.; Unger, M.W. )

    1989-06-15

    In vitro multicell spheroids from a human melanoma cell line and the human colon cancer cell line HT29, used as control, have been established as a model of poorly vascularized micrometastases in vivo. The antimelanoma monoclonal antibody 96.5 was radiolabeled with 131I at specific radioactivities from 1.85 to 3.96 GBq/mg. Cytotoxicity of 131I-96.5 to the spheroids, at an initial size of 300 microns in diameter, was investigated as a function of concentration of 131I-96.5 in the incubation medium, specific radioactivity, and treatment time. Spheroid growth delay and clonogenic survival of cells disaggregated from the spheroids at various times after treatment were used as end points. Therapeutic effects increased with the concentration of 131I-96.5 within the range 0.2 to 2 mg/liter (0.34 to 3.4 GBq/liter) at a fixed specific radioactivity. The effects increased with specific radioactivity at a fixed concentration of 131I-96.5. Difference in therapeutic effect was also observed between treatment times of 8 and 24 h. Radiation doses to the melanoma spheroids varied from 10 to 16 Gy. Unlabeled 96.5 at 2 mg/liter or 131I-iodide at 1.7 GBq/liter did not affect the growth of the melanoma spheroids. The HT29 spheroids, however, only suffered slight cytotoxicity at 1 or 2 mg/liter of 131I-96.5 and for a treatment time of 24 h despite comparable radiosensitivity of HT29 cells and melanoma cells to high-dose-rate radiation. Similar cytotoxicity was observed in the HT29 group treated with 131I-iodide at 1.7 GBq/liter. Present findings therefore demonstrate preferential and adequate killing of the melanoma spheroids by 131I-96.5 at 0.5 mg/liter and 3.96 GBq/mg in 8 h.

  6. Autocrine secretion of 15d-PGJ2 mediates simvastatin-induced apoptotic burst in human metastatic melanoma cells

    PubMed Central

    Wasinger, Christine; Künzl, Martin; Minichsdorfer, Christoph; Höller, Christoph; Zellner, Maria; Hohenegger, Martin

    2014-01-01

    Background and Purpose Despite new therapeutic approaches, metastatic melanomas still have a poor prognosis. Statins reduce low-density lipoprotein cholesterol and exert anti-inflammatory and anti-proliferative actions. We have recently shown that simvastatin triggers an apoptotic burst in human metastatic melanoma cells by the synthesis of an autocrine factor. Experimental Approach The current in vitro study was performed in human metastatic melanoma cell lines (A375, 518a2) and primary human melanocytes and melanoma cells. The secretome of simvastatin-stressed cells was analysed with two-dimensional difference gel electrophoresis and MS. The signalling pathways involved were analysed at the protein and mRNA level using pharmacological approaches and siRNA technology. Key Results Simvastatin was shown to activate a stress cascade, leading to the synthesis of 15-deoxy-12,14-PGJ2 (15d-PGJ2), in a p38- and COX-2-dependent manner. Significant concentrations of 15d-PGJ2 were reached in the medium of melanoma cells, which were sufficient to activate caspase 8 and the mitochondrial pathway of apoptosis. Inhibition of lipocalin-type PGD synthase, a key enzyme for 15d-PGJ2 synthesis, abolished the apoptotic effect of simvastatin. Moreover, 15d-PGJ2 was shown to bind to the fatty acid-binding protein 5 (FABP5), which was up-regulated and predominantly detected in the secretome of simvastatin-stressed cells. Knockdown of FABP5 abolished simvastatin-induced activation of PPAR-γ and amplified the apoptotic response. Conclusions and Implications We characterized simvastatin-induced activation of the 15d-PGJ2/FABP5 signalling cascades, which triggered an apoptotic burst in melanoma cells but did not affect primary human melanocytes. These data support the rationale for the pharmacological targeting of 15d-PGJ2 in metastatic melanoma. PMID:25091578

  7. Terpinen-4-ol, the main component of Melaleuca alternifolia (tea tree) oil inhibits the in vitro growth of human melanoma cells.

    PubMed

    Calcabrini, Annarica; Stringaro, Annarita; Toccacieli, Laura; Meschini, Stefania; Marra, Manuela; Colone, Marisa; Salvatore, Giuseppe; Mondello, Francesca; Arancia, Giuseppe; Molinari, Agnese

    2004-02-01

    The search for innovative therapeutic approaches based on the use of new substances is gaining more interest in clinical oncology. In this in vitro study the potential anti-tumoral activity of tea tree oil, distilled from Melaleuca alternifolia, was analyzed against human melanoma M14 WT cells and their drug-resistant counterparts, M14 adriamicin-resistant cells. Both sensitive and resistant cells were grown in the presence of tea tree oil at concentrations ranging from 0.005 to 0.03%. Both the complex oil (tea tree oil) and its main active component terpinen-4-ol were able to induce caspase-dependent apoptosis of melanoma cells and this effect was more evident in the resistant variant cell population. Freeze-fracturing and scanning electron microscopy analyses suggested that the effect of the crude oil and of the terpinen-4-ol was mediated by their interaction with plasma membrane and subsequent reorganization of membrane lipids. In conclusion, tea tree oil and terpinen-4-ol are able to impair the growth of human M14 melanoma cells and appear to be more effective on their resistant variants, which express high levels of P-glycoprotein in the plasma membrane, overcoming resistance to caspase-dependent apoptosis exerted by P-glycoprotein-positive tumor cells.

  8. Antibody-drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin.

    PubMed

    Falvo, Elisabetta; Tremante, Elisa; Fraioli, Rocco; Leonetti, Carlo; Zamparelli, Carlotta; Boffi, Alberto; Morea, Veronica; Ceci, Pierpaolo; Giacomini, Patrizio

    2013-12-21

    A novel antibody-drug conjugate (ADC) was synthesized incorporating ferritin-based nanoparticles. An average of three molecules of monoclonal antibody (mAb) Ep1 to the human melanoma-specific antigen CSPG4 were conjugated to a single ferritin cage encapsulating about 50 cisplatin molecules (HFt-Pt-Ep1). The HFt-Pt-Ep1 nanoparticle had an estimated molecular size of about 900 kD and 33 nm, and flow cytometry demonstrated specific binding to a CSPG4(+) melanoma cell line, but not to a CSPG4(-) breast carcinoma cell line. As compared to the cisplatin-containing ferritin nanoparticle alone (HFt-Pt), which inhibited thymidine incorporation more efficiently in breast carcinoma than melanoma cells, the mAb-derivatized HFt-Pt-Ep1 nanoparticle had a 25-fold preference for the latter. A similar preference for melanoma was observed upon systemic intravenous administration of HFt-Pt-Ep1 to nude mice xenotransplanted with pre-established, palpable melanoma and breast carcinoma tumors. Thus, we have been able to determine precise combinations and stoichiometric relationships between mAbs and nanoparticle protein cages, whereby the latter lose their tropism for ubiquitously distributed cellular receptors, and acquire instead remarkably lineage-selective binding. HFt-Pt-Ep1 is therefore an interesting model to improve the therapeutic index of antiblastic therapy in a tumor such as melanoma, which at its advanced stages is totally refractory to mono- and combination-chemotherapy.

  9. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    SciTech Connect

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T.; Johlfs, Mary G.; Fiscus, Ronald R.; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1–containing microvesicles in

  10. Detection of a low-molecular-weight antigen on melanoma cells by a human antiserum in leukocyte-dependent antibody assays.

    PubMed

    Hersey, P; Murray, E; Werkmeister, J; McCarthy, W H

    1979-10-01

    Biochemical characterization of serologically detected human melanoma antigens was undertaken for the development of immunodiagnostic assays in melanoma. An antiserum from a human melanoma patient, which detected melanoma antigens expressed on a large proportion of different melanoma cells, was used in leucocyte-dependent cytotoxic antibody (LDA) 51Cr-release assays to monitor the purification of melanoma antigens in urea/acetate extracts of lactoperoxidase 125I-labelled melanoma cell membranes. The separation procedures included affinity chromatography on Concanavalin A, gel filtration on porous polyacrylamide beads and preparative isoelectric focusing. The fractions were also monitored by polyacrylamide electrophoresis in sodium dodecyl sulphate and by measurement of beta 2 microglobulin and carcinoembryonic antigen content. The antigens detected by this antiserum appeared to be acidic (pI 3.5) low-mol.-wt glycoproteins of approximately 15,000 daltons which were resistant to heating at 56 degrees C and digestion with neuraminidase, but susceptible to repeated freeze-thawing and trypsin digestion. They did not appear to be related to HLA antigens, beta 2 microglobulin or known foetal antigens. The nature of the antigens detected in these studies is as yet unknown, but they appear similar to those described in the sera and urine of melanoma patients in previous reports. Thes combined results and the frequent expression of these antigens on melanoma cells from different patients suggest that assays to detect this antigen may provide a valuable immunodiagnostic aid in the management of melanoma.

  11. ANTIPROLIFERATIVE ACTIVITY OF NOVEL ACETYLENIC DERIVATIVES OF BETULIN AGAINST G-361 HUMAN MELANOMA CELLS.

    PubMed

    Bębenek, Ewa; Chodurek, Ewa; Orchel, Arkadiusz; Dzierżewicz, Zofia; Boryczka, Stanisław

    2015-01-01

    Acetylenic derivatives of betulin were tested in vitro for their antiproliferative activity against G-361 human melanoma cells. Two types of betulin derivatives were studied: monoesters, obtained by modification of the hydroxyl group at C-28 position, and diesters modified at both C-28 and C-3 positions. To assess cell proliferation, a colorimetric sulforhodamine B based method was used. All the tested monoesters inhibited cellular growth and 28-O-propynoylbetulin showed the strongest cytotoxic effect. Esterification of the C-3 hydroxyl group of the molecule abolished its growth inhibitory activity.

  12. Amblyomin-X induces ER stress, mitochondrial dysfunction, and caspase activation in human melanoma and pancreatic tumor cell.

    PubMed

    Morais, Katia L P; Pacheco, Mario Thiego Fernandes; Berra, Carolina Maria; Bosch, Rosemary V; Sciani, Juliana Mozer; Chammas, Roger; de Freitas Saito, Renata; Iqbal, Asif; Chudzinski-Tavassi, Ana Marisa

    2016-04-01

    During the last two decades, new insights into proteasome function and its role in several human diseases made it a potential therapeutic target. In this context, Amblyomin-X is a Kunitz-type FXa inhibitor similar to endogenous tissue factor pathway inhibitor (TFPI) and is a novel proteasome inhibitor. Herein, we have demonstrated Amblyomin-X cytotoxicity to different tumor cells lines such as pancreatic (Panc1, AsPC1BxPC3) and melanoma (SK-MEL-5 and SK-MEL-28). Of note, Amblyomin-X was not cytotoxic to normal human fibroblast cells. In addition, Amblyomin-X promoted accumulation of ER stress markers (GRP78 and GADD153) in sensitive (SK-MEL-28) and bortezomib-resistant (Mia-PaCa-2) tumor cells. The intracellular calcium concentration [Ca(2+)] i was slightly modulated in human tumor cells (SK-MEL-28 and Mia-PaCa-2) after 24 h of Amblyomin-X treatment. Furthermore, Amblyomin-X induced mitochondrial dysfunction, cytochrome-c release, PARP cleavage, and activation of caspase cascade in both human tumor (SK-MEL-28 and Mia-PaCa-2) cells. These investigations might help in further understanding of the antitumor properties of Amblyomin-X.

  13. Potentiation of cytotoxicity of paclitaxel in combination with Cl-IB-MECA in human C32 metastatic melanoma cells: A new possible therapeutic strategy for melanoma.

    PubMed

    Soares, Ana S; Costa, Vera M; Diniz, Carmen; Fresco, Paula

    2013-10-01

    Metastatic melanoma monotherapies with drugs such as dacarbazine, cisplatin or paclitaxel (PXT) are associated with significant toxicity and low efficacy rates. These facts reinforce the need for development of novel agents or combinatory strategies. Cl-IB-MECA is a small molecule, orally bioavailable, well tolerated and currently under clinical trials as an anticancer agent. Our aim was to investigate a possible combinatory therapeutic strategy using PXT and Cl-IB-MECA on human C32 melanoma cells and its underlying mechanisms. Cytotoxicity was evaluated using MTT reduction, lactate dehydrogenase leakage and neutral red uptake assays, for different concentrations and combinations of both agents, at 24 and 48 h. Apoptosis was also assessed using fluorescence microscopy and through the evaluation of caspases 8, 9, and 3 activities. We demonstrated, for the first time, that combination of PXT and Cl-IB-MECA significantly increases cytotoxicity for clinically relevant concentrations. This combination seems to act synergistically in disrupting membrane integrity, but also causing lysosomal and mitochondrial dysfunction. When using the lowest PTX concentration (10 ng/mL), co-incubation with CI-IB-MECA (micromolar concentrations) potentiated overall cytotoxic effects and morphological signs of apoptosis. All combinations studied enhanced caspase 8, 9, and 3 activities, suggesting the involvement of both intrinsic and extrinsic apoptotic pathways. The possibility that cytotoxicity elicited by Cl-IB-MECA, alone or in combination with PXT, involves adenosine receptor activation was discarded and results confirmed that oxidative stress is only involved in cytotoxicity after treatment with PXT, alone. Being melanoma a very apoptosis-resistance cancer, this combination seems to hold promise as a new therapeutic strategy for melanoma.

  14. Investigation of the phototoxic effect of ZnO nanorods on fibroblasts and melanoma human cells

    NASA Astrophysics Data System (ADS)

    Kishwar, S.; Siddique, M.; Israr-Qadir, M.; Nur, O.; Willander, M.; Öllinger, K.

    2014-11-01

    Photocytotoxic effects of as-grown and zinc oxide (ZnO) nanorods coated with 5-aminolevulinic acid (ALA) have been studied on human cells, i.e. melanoma and foreskin fibroblast, under dark and ultraviolet light exposures. Zinc oxide nanorods have been grown on the very sharp tip (diameter = 700 nm) of borosilicate glass pipettes and then were coated by the photosensitizer for targeted investigations inside human cells. The coated glass pipette’s tip with photosensitizer has been inserted inside the cells with the help of a micro-manipulator and irradiated through ultraviolet light (UVA), which reduces the membrane potential of the mitochondria leading to cell death. Cell viability loss has been detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay when exposed to the dissolved ZnO nanorods and the production of the reactive oxygen species (ROS) has been detected along with the enhanced cytotoxic effect under UVA irradiation. Additionally, the influence of the lipid soluble antioxidant vitamin E and water-soluble N-acetyl-cysteine toward the enhancement or reduction of the toxicity has been investigated. A comparative analysis of the toxic nature of ZnO nanorods has been drawn between normal human fibroblast and melanoma cells, which can be favorable for understanding the clinical setting for killing tumor cells.

  15. Cerium Oxide Nanoparticles Induce Oxidative Stress and Genotoxicity in Human Skin Melanoma Cells.

    PubMed

    Ali, Daoud; Alarifi, Saud; Alkahtani, Saad; AlKahtane, Abdullah A; Almalik, Abdulaziz

    2015-04-01

    Extensive applications of cerium oxide (CeO2) nanoparticles require a better understanding of their possible effects on human health. However, data demonstrating the effect of CeO2 nanoparticles on the human skin melanoma cell remain scanty. In the current study, we determined the mechanism through which CeO2 nanoparticles (APS <25 nm) induce toxicity in human skin melanoma cells (A375). The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and neutral red uptake assays showed concentration and time-dependent cytotoxicity of CeO2 nanoparticles in A375 cells. CeO2 nanoparticles significantly induced the generation reactive oxygen species (ROS) and malondialdehyde, superoxide dismutase, and decreased glutathione levels in A375 cells. It was also observed that the CeO2 nanoparticles induced chromosomal condensation and caspase-3 activity. CeO2 nanoparticles exposed cells revealed the formation of DNA double-strand breakage as measured by percent tail DNA and olive tail moment through comet assay. The decline of cell viability, production of ROS, and DNA damage in A375 cells specifies that CeO2 nanoparticles have less capable to induce cyto and genotoxicity.

  16. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    PubMed

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors.

  17. A nude rat model for neutron capture therapy of human intracerebral melanoma

    SciTech Connect

    Barth, R.F.; Matalka, K.Z.; Bailey, M.Q.; Staubus, A.E.; Soloway, A.H.; Moeschberger, M.L. ); Coderre, J.A. ); Rofstad, E.K. )

    1994-03-30

    The present study was carried out to determine the efficacy of Boron Neutron Capture Therapy (BNCT) for intracerebral melanoma using nude rats, the human melanoma cell line MRA 27, and boronophenylalanine as the capture agent. MRA 27 cells (2 [times] 10[sup 5]) were implanted intracerebrally, and 30 days later, 120 mg of [sup 10]B-L-BPA were injected intraperitoneally into nude rats. Thirty days following implantation, tumor bearing rats were irradiated at the Brookhaven Medical Research Reactor. Six hours following administration of BPA, tumor, blood, and normal brain boron-10 levels were 23.7, 9.4, and 8.4 [mu]g/g respectively. Median survival time of untreated rats was 44 days compared to 76 days and 93 days for those receiving physical doses of 2.73 Gy and 3.64 Gy, respectively. Rats that have received both [sup 10]B-BPA and physical doses of 1.82, 2.73, or 3.64 Gy had median survival times of 170, 182, and 262 days, respectively. Forty percent of rats that had received the highest tumor dose (10.1 Gy) survived for > 300 days and in a replicate experiment 21% of the rats were longterm survivors (>220 days). Animals that received 12 Gy in a single dose or 18 Gy fractionated (2 Gy [times] 9) of gamma photons from a [sup 137]Cs source had median survival times of 86 and 79 days, respectively, compared to 47 days for untreated animals. Histopathologic examination of the brains of longterm surviving rats, euthanized at 8 or 16 months following BNCT, showed no residual tumor, but dense accumulations of melanin laden macrophages and minimal gliosis were observed. Significant prolongations in median survival time were noted in nude rats with intracerebral human melanoma that had received BNCT, thereby suggesting therapeutic efficacy. Large animal studies should be carried out to further assess BNCT of intracerebral melanoma before any human trials are contemplated. 49 refs., 7 figs., 2 tabs.

  18. Interferon-β gene transfer induces a strong cytotoxic bystander effect on melanoma cells.

    PubMed

    Rossi, Úrsula A; Gil-Cardeza, María L; Villaverde, Marcela S; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2015-05-01

    A local gene therapy scheme for the delivery of type I interferons could be an alternative for the treatment of melanoma. We evaluated the cytotoxic effects of interferon-β (IFNβ) gene lipofection on tumor cell lines derived from three human cutaneous and four canine mucosal melanomas. The cytotoxicity of human IFNβ gene lipofection resulted higher or equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) to human cells. IFNβ gene lipofection was not cytotoxic for only one canine melanoma cell line. When cultured as monolayers, three human and three canine IFNβ-lipofected melanoma cell lines displayed a remarkable bystander effect. As spheroids, the same six cell lines were sensitive to IFNβ gene transfer, two displaying a significant multicell resistance phenotype. The effects of conditioned IFNβ-lipofected canine melanoma cell culture media suggested the release of at least one soluble thermolabile cytotoxic factor that could not be detected in human melanoma cells. By using a secretion signal-free truncated human IFNβ, we showed that its intracellular expression was enough to induce cytotoxicity in two human melanoma cell lines. The lower cytoplasmatic levels of reactive oxygen species detected after intracellular IFNβ expression could be related to the resistance displayed by one human melanoma cell line. As IFNβ gene transfer was effective against most of the assayed melanomas in a way not limited by relatively low lipofection efficiencies, the clinical potential of this approach is strongly supported.

  19. Human fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells

    PubMed Central

    1986-01-01

    The active migration of tumor cells through extracellular matrices has been proposed to play a role in certain aspects of metastasis. Metastatic tumor cells migrate in vitro in response to substratum-bound adhesive glycoproteins such as fibronectin. The present studies use affinity-purified proteolytic fragments of fibronectin to determine the nature of adhesion- and/or motility-promoting domains within the protein. Two distinct fragments were identified with cell adhesion- promoting activities. By a number of criteria, the adhesive activity promoted by these two fragments was distinct. One fragment, a 75-kD tryptic fragment purified by monoclonal antibody chromatography, promoted the adhesion, spreading, and haptotactic motility of melanoma cells. Experiments using a synthetic cell attachment peptide in solution indicated that at least part of the attachment activity exhibited by the 75-kD fragment is mediated by the sequence arg-gly-asp- ser. It was not possible to demonstrate migration-stimulating activity using a small (11.5 kD) peptic fragment containing this sequence (Pierschbacher, M.D., E. G. Hayman, and E. Ruoslahti, 1981, Cell, 26:259-267) suggesting that another cell-binding activity within the 75 kD fragment distinct from arg-gly-asp-ser might be required for motility. The second fragment that stimulated melanoma adhesion was a 33-kD tryptic/catheptic carboxyl-terminal heparin-binding fragment, which is localized to the A chain of fibronectin. This fragment promotes adhesion and spreading but not the motility of these cells. Melanoma adhesion to this heparin-binding fragment was sensitive to the effects of cycloheximide, which contrasted adhesion to the haptotaxis- promoting fragment. Importantly, these studies illustrate that haptotaxis in response to fibronectin is not due to simple adhesion gradients of this protein. The results are discussed in light of a model for multiple distinct cell surface constituents mediating cell adhesion and motility on

  20. Modulation of cartilage differentiation by melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP).

    PubMed

    Schubert, Thomas; Schlegel, Jacqueline; Schmid, Rainer; Opolka, Alfred; Grassel, Susanne; Humphries, Martin; Bosserhoff, Anja-Katrin

    2010-03-31

    Melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP) is a small soluble protein secreted from malignant melanoma cells and from chondrocytes. Recently, we revealed that MIA/CD-RAP can modulate bone morphogenetic protein (BMP)2-induced osteogenic differentiation into a chondrogenic direction. In the current study we aimed to find the molecular details of this MIA/CD-RAP function. Direct influence of MIA on BMP2 by protein-protein-interaction or modulating SMAD signaling was ruled out experimentally. Instead, we revealed inhibition of ERK signaling by MIA/CD-RAP. This inhibition is regulated via binding of MIA/CD-RAP to integrin alpha5 and abolishing its activity. Active ERK signaling is known to block chondrogenic differentiation and we revealed induction of aggrecan expression in chondrocytes by treatment with MIA/CD-RAP or PD098059, an ERK inhibitor. In in vivo models we could support the role of MIA/CD-RAP in influencing osteogenic differentiation negatively. Further, MIA/CD-RAP-deficient mice revealed an enhanced calcified cartilage layer of the articular cartilage of the knee joint and disordered arrangement of chondrocytes. Taken together, our data indicate that MIA/CD-RAP stabilizes cartilage differentiation and inhibits differentiation into bone potentially by regulating signaling processes during differentiation.

  1. c-RET Molecule in Malignant Melanoma from Oncogenic RET-Carrying Transgenic Mice and Human Cell Lines

    PubMed Central

    Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-01-01

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma. PMID:20422010

  2. β- and γ-Actins in the nucleus of human melanoma A375 cells.

    PubMed

    Migocka-Patrzałek, Marta; Makowiecka, Aleksandra; Nowak, Dorota; Mazur, Antonina J; Hofmann, Wilma A; Malicka-Błaszkiewicz, Maria

    2015-11-01

    Actin is a highly conserved protein that is expressed in all eukaryotic cells and has essential functions in the cytoplasm and the nucleus. Nuclear actin is involved in transcription by all three RNA polymerases, chromatin remodelling, RNA processing, intranuclear transport, nuclear export and in maintenance of the nuclear architecture. The nuclear actin level and polymerization state are important factors regulating nuclear processes such as transcription. Our study shows that, in contrast to the cytoplasm, the majority of endogenous nuclear actin is unpolymerized in human melanoma A375 cells. Most mammalian cells express the two non-muscle β- and γ-actin isoforms that differ in only four amino acids. Despite their sequence similarity, studies analysing the cytoplasmic functions of these isoforms demonstrated that β- and γ-actins show differences in localization and function. However, little is known about the involvement of the individual actin isoforms in nuclear processes. Here, we used the human melanoma A375 cell line to analyse actin isoforms in regard to their nuclear localization. We show that both β- and γ-non-muscle actin isoforms are present in nuclei of these cells. Immunolocalization studies demonstrate that both isoforms co-localize with RNA polymerase II and hnRNP U. However, we observe differences in the ratio of cytoplasmic to nuclear actin distribution between the isoforms. We show that β-actin has a significantly higher nucleus-to-cytoplasm ratio than γ-actin.

  3. Synergistic Apoptosis-Inducing Effects on A375 Human Melanoma Cells of Natural Borneol and Curcumin

    PubMed Central

    Chen, Jianping; Li, Lin; Su, Jianyu; Li, Bing; Chen, Tianfeng; Wong, Yum-Shing

    2014-01-01

    This study was to investigate the synergistic effect of NB/Cur on growth and apoptosis in A375 human melanoma cell line by MTT assay, flow cytometry and Western blotting. Our results demonstrated that NB effectively synergized with Cur to enhance its antiproliferative activity on A375 human melanoma cells by induction of apoptosis, as evidenced by an increase in sub-G1 cell population, DNA fragmentation, PARP cleavage and caspase activation. Further mechanistic studies by Western blotting showed that after treatment of the cells with NB/Cur, up-regulation of the expression level of phosphorylated JNK and down-regulation of the expression level of phosphorylated ERK and Akt contributed to A375 cells apoptosis. Moreover, NB also potentiated Cur to trigger intracellular ROS overproduction and the DNA damage with up-regulation of the expression level of phosphorylated ATM, phosphorylated Brca1 and phosphorylated p53. The results indicate the combinational application potential of NB and Cur in treatments of cancers. PMID:24971451

  4. Biologically active monoiodinated alpha-MSH derivatives for receptor binding studies using human melanoma cells

    SciTech Connect

    Eberle, A.N.; Verin, V.J.; Solca, F.; Siegrist, W.; Kueenlin, C.B.; Bagutti, C.; Stutz, S.; Girard, J. , University Hospital, Basel )

    1991-01-01

    Three different monoiodinated radioligands of alpha-MSH (alpha-melanocyte-stimulating hormone) were compared in a binding assay with human D10 melanoma cells: (Tyr(125I)2)-alpha-MSH, (Tyr(125I)2,NIe4)-alpha-MSH, and (Tyr(125I)2,NIe4,D-Phe7)-alpha-MSH. They were prepared either by the classical chloramine T method or by the Enzymobead method. A simple and rapid purification scheme was developed consisting of a primary separation on reversed-phase C18 silica cartridges immediately after the iodination, followed by HPLC purification before each binding experiment. Biological testing of the three radioligands showed that they all retained high melanotropic activity in the B16 melanin assay and the Anolis melanophore assay. However, in human D10 melanoma cells, (Tyr(125I)2,NIe4)-alpha-MSH led to a high degree of non-specific binding to the cells which could not be displaced by excess alpha-MSH and only partially by (NIe4)-alpha-MSH. The (Tyr(125I)2,NIe4,D-Phe7)-alpha-MSH tracer gave similar results but with a much lower proportion of non-specific binding. On the other hand, (Tyr(125I)2)-alpha-MSH proved to be an excellent radioligand whose non-specific binding to the D10 cells was not higher than 20% of the total binding.

  5. Differential expression of TYRP1 in adult human retinal pigment epithelium and uveal melanoma cells

    PubMed Central

    QIU, CHUN; LI, PENG; BI, JIANJUN; WU, QING; LU, LINNA; QIAN, GUANXIANG; JIA, RENBING; JIA, RONG

    2016-01-01

    Uveal melanoma (UM) is the most frequently occurring primary intraocular malignancy in adults. Tyrosinase (TYR) is a copper-containing enzyme and a type I membrane protein that is involved in the generation of melanin, the main pigment in vertebrates. TYR-related protein 1 (TYRP1) is regarded to have a crucial role in the immunotherapy of melanoma. As biomarkers, the TYR-related proteins, TYRP1 and TYRP2, exhibit specific expression in melanocytes, while also contributing to melanin synthesis within melanosomes. In the present study, the differential expression of TYRP1 was investigated at the mRNA, protein and morphological levels in four human UM cell lines (SP6.5, OM431, OCM1 and OCM290) and the human retinal pigment epithelium (RPE) cell line, using polymerase chain reaction, western blotting, immunocytochemistry and immunofluorescence staining. It was found that SP6.5 cells expressed the highest level of TYRP1, in comparison to SP6.5 OCM1 and OM431 cells, which produced less TYRP1, and OCM290 cells, which produced almost no TYRP1. No TYRP1 protein expression was identified in the RPE cell line. These findings indicate the potential use of TYRP1 in the development of therapy for UM. PMID:27073483

  6. Genes involved in cell cycle G1 checkpoint control are frequently mutated in human melanoma metastases.

    PubMed Central

    Platz, A.; Sevigny, P.; Norberg, T.; Ring, P.; Lagerlöf, B.; Ringborg, U.

    1996-01-01

    A common characteristic of cancer cells is unrestrained cell division. This may be caused by mutational changes in genes coding for components of cell cycle-controlling networks. Alterations in genes involved in G1 checkpoint control have been registered in many human tumours, and investigations from several laboratories show that such alterations, taken together, are the most frequent changes detected in cancer cells. The present paper describes mutational analysis by polymerase chain reaction-single-strand conformation polymorphism (PCR/SSCP) and nucleotide sequence analysis of the genes coding for the p15, p53 and N-ras proteins in 26 metastases from 25 melanoma patients. The registered mutation frequencies add together with previously registered mutations in p16 in the same patient samples to a substantial total frequency of 44% of patients with mutation in at least one of the investigated genes. These results show the occurrence of heterogeneous defects among components of the cell cycle controlling machinery in a human melanoma tumour sample collection and demonstrate that the total frequency of detected alterations increases with the number of cell cycle controlling genes included in the screening panel. Images Figure 1 PMID:8826861

  7. Step-down heating of human melanoma xenografts: effects of the tumour microenvironment.

    PubMed Central

    Rofstad, E. K.

    1994-01-01

    Thermosensitisation by step-down heating (SDH) has previously been demonstrated in experimental rodent tumours. The purpose of the study reported here was to investigate whether the SDH effect in tumours in part may be attributed to heat-induced alterations in the capillary network and/or the microenvironment. Two human melanoma xenograft lines differing substantially in vascular parameters were selected for the study. A thermostatically regulated water bath was used for heat treatment. The conditioning treatment (44.5 degrees C or 45.5 degrees C for 15 min) was given in vivo, whereas the test treatment (42.0 degrees C for 45, 90, 135 or 180 min) was given either in vitro or in vivo. Treatment response was measured in vitro using a cell clonogenicity assay. Fraction of occluded vessels following heat treatment was assessed by examination of histological sections from tumours whose vascular network was filled with a contrast agent. Tumour bioenergetic status and tumour pH were measured by 31P magnetic resonance spectroscopy. The conditioning heat treatments caused significant vessel occlusion, decreased tumour bioenergetic status and decreased tumour pH in both tumour lines. The SDH effect measured when the test treatment was given in vivo was significantly increased relative to that measured when the test treatment was given in vitro. The magnitude of the increase showed a close relationship to fraction of occluded vessels, tumour bioenergetic status and tumour pH measured 90 min after treatment with 44.5 degrees C or 45.5 degrees C for 15 min. The increased SDH effect in vivo was probably attributable to tumour cells that were heat sensitive owing to the induction of low nutritional status and pH during the conditioning treatment. Consequently, the SDH effect in some tumours may in part be due to heat-induced alterations in the microenvironment. This suggests that SDH may be exploited clinically to achieve increased cell inactivation in tumours relative to the

  8. Human telomerase reverse transcriptase-transduced human cytotoxic T cells suppress the growth of human melanoma in immunodeficient mice.

    PubMed

    Verra, Natascha C V; Jorritsma, Annelies; Weijer, Kees; Ruizendaal, Janneke J; Voordouw, Arie; Weder, Pauline; Hooijberg, Erik; Schumacher, Ton N M; Haanen, John B A G; Spits, Hergen; Luiten, Rosalie M

    2004-03-15

    Immunotherapy of melanoma by adoptive transfer of tumor-reactive T lymphocytes aims at increasing the number of activated effectors at the tumor site that can mediate tumor regression. The limited life span of human T lymphocytes, however, hampers obtaining sufficient cells for adoptive transfer therapy. We have shown previously that the life span of human T cells can be greatly extended by transduction with the human telomerase reverse transcriptase (hTERT) gene, without altering antigen specificity or effector function. We developed a murine model to evaluate the efficacy of hTERT-transduced human CTLs with antitumor reactivity to eradicate autologous tumor cells in vivo. We transplanted the human melanoma cell line melAKR or melAKR-Flu, transduced with a retrovirus encoding the influenza virus/HLA-A2 epitope, in RAG-2(-/-) IL-2Rgamma (-/-) double knockout mice. Adoptive transfer of the hTERT-transduced influenza virus-specific CTL clone INFA24 or clone INFA13 inhibited the growth of melAKR-Flu tumors in vivo and not of the parental melAKR melanoma cells. Furthermore, the hTERT-transduced CTL clone INFA13 inhibited tumor growth to the same extent in vivo as the untransduced CTL clone, as determined by in vivo imaging of luciferase gene-transduced melAKR-Flu tumors, indicating that hTERT did not affect the in vivo function of CTL. These results demonstrate that hTERT-transduced human CTLs are capable of mediating antitumor activity in vivo in an antigen-specific manner. hTERT-transduced MART-1-specific CTL clones AKR4D8 and AKR103 inhibited the growth of syngeneic melAKR tumors in vivo. Strikingly, melAKR-Flu cells were equally killed by the MART-1-specific CTL clones and influenza virus-specific CTL clones in vitro, but only influenza-specific CTLs were able to mediate tumor regression in vivo. The influenza-specific CTL clones were found to produce higher levels of IFNgamma on tumor cell recognition than the MART-1-specific CTL clones, which may result from the

  9. Differences in lipid characteristics of autologous human melanoma cell lines with distinct biological properties.

    PubMed

    Le Bivic, A; Sari, H; Reynier, M; Lebec, S; Bardin, F

    1987-12-01

    Significant differences in lipid composition were found when six established human melanoma cell lines were compared. A pair of cell lines was initiated from a superficial spreading melanoma and the lymph node of the same patient; four others were also autologous, three of which originated from the same nodular melanoma and the other from its metastasis. Cell lines varied in pigmentation level and ability to grow in nude mice. Cell lines contained similar amounts of total cholesterol, glycerides, and phospholipids but different amounts of free cholesterol and cholesterol esters. In particular, the molar ratio of free cholesterol to phospholipid was increased in highly tumorigenic cell lines. No changes in phospholipid profiles were noted among cell lines, except an increase in sphingomyelin with a concomitant decrease in phosphatidylcholine in one cell line compared to the profiles of its counterpart cell line. The saturated-to-unsaturated fatty acid ratios in phosphatidylcholine and phosphatidylethanolamine were similar in all cell lines, but the monounsaturated-to-polyunsaturated fatty acid ratio in phosphatidylcholine was increased in highly tumorigenic cell lines. A significant variation in the latter ratio in phosphatidylethanolamine was also observed in the pair of autologous cell lines. These changes were unrelated to a depletion in linoleic acid in culture medium. Results obtained by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene were consistent with the differences in lipid composition between two autologous cell lines. The present results indicate that two lipid characteristics were significantly changed in highly tumorigenic cell lines as compared to cell lines with low tumorigenicity, but no correlation was found between either pigmentation level or origin (primary or metastatic) and lipid composition.

  10. Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk

    PubMed Central

    Salerno, Elise P.; Bedognetti, Davide; Mauldin, Ileana S.; Deacon, Donna H.; Shea, Sofia M.; Obeid, Joseph M.; Coukos, George; Gajewski, Thomas F.; Marincola, Francesco M.; Slingluff, Craig L.

    2016-01-01

    ABSTRACT We have identified eight genes whose expression in human melanoma metastases and ovarian cancers is associated with a lack of Th1 immune signatures. They encode molecules with mechanical barrier function in the skin and other normal tissues and include filaggrin (FLG), tumor-associated calcium signal transducer 2 (TACSTD2), and six desmosomal proteins (DST, DSC3, DSP, PPL, PKP3, and JUP). This association has been validated in an independent series of 114 melanoma metastases. In these, DST expression alone is sufficient to identify melanomas without immune signatures, while FLG and the other six putative barrier molecules are overexpressed in a different subset of melanomas lacking immune signatures. Similar associations have been identified in a set of 186 ovarian cancers. RNA-seq data from 471 melanomas and 307 ovarian cancers in the TCGA database further support these findings and also reveal that overexpression of barrier molecules is strongly associated with early patient mortality for melanoma (p = 0.0002) and for ovarian cancer (p < 0.01). Interestingly, this association persists for FLG for melanoma (p = 0.012) and ovarian cancer (p = 0.006), whereas DST overexpression is negatively associated with CD8+ gene expression, but not with patient survival. Thus, overexpression of FLG or DST identifies two distinct patient populations with low immune cell infiltration in these cancers, but with different prognostic implications for each. These data raise the possibility that molecules with mechanical barrier function in skin and other tissues may be used by cancer cells to protect them from immune cell infiltration and immune-mediated destruction. PMID:28123876

  11. Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk.

    PubMed

    Salerno, Elise P; Bedognetti, Davide; Mauldin, Ileana S; Deacon, Donna H; Shea, Sofia M; Pinczewski, Joel; Obeid, Joseph M; Coukos, George; Wang, Ena; Gajewski, Thomas F; Marincola, Francesco M; Slingluff, Craig L

    2016-01-01

    We have identified eight genes whose expression in human melanoma metastases and ovarian cancers is associated with a lack of Th1 immune signatures. They encode molecules with mechanical barrier function in the skin and other normal tissues and include filaggrin (FLG), tumor-associated calcium signal transducer 2 (TACSTD2), and six desmosomal proteins (DST, DSC3, DSP, PPL, PKP3, and JUP). This association has been validated in an independent series of 114 melanoma metastases. In these, DST expression alone is sufficient to identify melanomas without immune signatures, while FLG and the other six putative barrier molecules are overexpressed in a different subset of melanomas lacking immune signatures. Similar associations have been identified in a set of 186 ovarian cancers. RNA-seq data from 471 melanomas and 307 ovarian cancers in the TCGA database further support these findings and also reveal that overexpression of barrier molecules is strongly associated with early patient mortality for melanoma (p = 0.0002) and for ovarian cancer (p < 0.01). Interestingly, this association persists for FLG for melanoma (p = 0.012) and ovarian cancer (p = 0.006), whereas DST overexpression is negatively associated with CD8(+) gene expression, but not with patient survival. Thus, overexpression of FLG or DST identifies two distinct patient populations with low immune cell infiltration in these cancers, but with different prognostic implications for each. These data raise the possibility that molecules with mechanical barrier function in skin and other tissues may be used by cancer cells to protect them from immune cell infiltration and immune-mediated destruction.

  12. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib

    PubMed Central

    Ji, Chao; Zhang, Ziping; Chen, Lihong; Zhou, Kunli; Li, Dongjun; Wang, Ping; Huang, Shuying; Gong, Ting; Cheng, Bo

    2016-01-01

    Melanoma is one of the deadliest skin cancers and accounts for most skin-related deaths due to strong resistance to chemotherapy drugs. In the present study, we investigated the mechanisms of dabrafenib-induced drug resistance in human melanoma cell lines A375 and MEL624. Our studies support that both endoplasmic reticulum (ER) stress and autophagy were induced in the melanoma cells after the treatment with dabrafenib. In addition, ER stress-induced autophagy protects melanoma cells from the toxicity of dabrafenib. Moreover, inhibition of both ER stress and autophagy promote the sensitivity of melanoma cells to dabrafenib. Taken together, the data suggest that ER stress-induced autophagy determines the sensitivity of melanoma cells to dabrafenib. These results provide us with promising evidence that the inhibition of autophagy and ER stress could serve a therapeutic effect for the conventional dabrafenib chemotherapy. PMID:27536070

  13. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib.

    PubMed

    Ji, Chao; Zhang, Ziping; Chen, Lihong; Zhou, Kunli; Li, Dongjun; Wang, Ping; Huang, Shuying; Gong, Ting; Cheng, Bo

    2016-01-01

    Melanoma is one of the deadliest skin cancers and accounts for most skin-related deaths due to strong resistance to chemotherapy drugs. In the present study, we investigated the mechanisms of dabrafenib-induced drug resistance in human melanoma cell lines A375 and MEL624. Our studies support that both endoplasmic reticulum (ER) stress and autophagy were induced in the melanoma cells after the treatment with dabrafenib. In addition, ER stress-induced autophagy protects melanoma cells from the toxicity of dabrafenib. Moreover, inhibition of both ER stress and autophagy promote the sensitivity of melanoma cells to dabrafenib. Taken together, the data suggest that ER stress-induced autophagy determines the sensitivity of melanoma cells to dabrafenib. These results provide us with promising evidence that the inhibition of autophagy and ER stress could serve a therapeutic effect for the conventional dabrafenib chemotherapy.

  14. Aberrant CpG methylation of the TFAP2A gene constitutes a mechanism for loss of TFAP2A expression in human metastatic melanoma

    PubMed Central

    Hallberg, Andrea R; Vorrink, Sabine U; Hudachek, Danielle R; Cramer-Morales, Kimberly; Milhem, Mohammed M; Cornell, Robert A; Domann, Frederick E

    2014-01-01

    Metastatic melanoma is a deadly treatment-resistant form of skin cancer whose global incidence is on the rise. During melanocyte transformation and melanoma progression the expression profile of many genes changes. Among these, a gene implicated in several steps of melanocyte development, TFAP2A, is frequently silenced; however, the molecular mechanism of TFAP2A silencing in human melanoma remains unknown. In this study, we measured TFAP2A mRNA expression in primary human melanocytes compared to 11 human melanoma samples by quantitative real-time RT-PCR. In addition, we assessed CpG DNA methylation of the TFAP2A promoter in these samples using bisulfite sequencing. Compared to primary melanocytes, which showed high TFAP2A mRNA expression and no promoter methylation, human melanoma samples showed decreased TFAP2A mRNA expression and increased promoter methylation. We further show that increased CpG methylation correlates with decreased TFAP2A mRNA expression. Using The Cancer Genome Atlas, we further identified TFAP2A as a gene displaying among the most decreased expression in stage 4 melanomas vs. non-stage 4 melanomas, and whose CpG methylation was frequently associated with lack of mRNA expression. Based on our data, we conclude that TFAP2A expression in human melanomas can be silenced by aberrant CpG methylation of the TFAP2A promoter. We have identified aberrant CpG DNA methylation as an epigenetic mark associated with TFAP2A silencing in human melanoma that could have significant implications for the therapy of human melanoma using epigenetic modifying drugs. PMID:25625848

  15. Differential effects of selenite and selenate on human melanocytes, keratinocytes, and melanoma cells.

    PubMed

    Bandura, Laura; Drukala, Justyna; Wolnicka-Glubisz, Agnieszka; Björnstedt, Mikael; Korohoda, Wlodzimierz

    2005-04-01

    Among the substances that attracted the attention of oncologists in recent years are selenium-containing compounds, both inorganic and organic. Several epidemiological studies have shown an inverse correlation between selenium intake and cancer incidence. In the experiments reported here, we compared the effects of 2 inorganic selenium-containing salts that differed in the level of selenium oxidation, selenite IV and selenate VI. We tested the effects of these 2 compounds on cell survival and growth, cell cycle processing, cell morphology, cytoskeleton, and lipid peroxidation in 3 human skin cell types: normal keratinocytes, melanocytes, and human melanoma cell line HTB140. The different effects of selenite and selenate on the viability, growth, and morphology of normal cells and tumor cells are reported and provide a base for future research and treatment of some neoplastic diseases. The attention is paid to cell apoptosis induced by selenite and not by selenate, and the effects of tested substances on thioredoxin reductase system are postulated.

  16. Comparative transforming potential of different human papillomaviruses associated with non-melanoma skin cancer

    SciTech Connect

    Massimi, Paola; Thomas, Miranda; Bouvard, Veronique; Ruberto, Irene; Campo, M. Saveria; Tommasino, Massimo; Banks, Lawrence

    2008-02-20

    It is well established that high-risk human papillomaviruses (HPVs) that infect mucosal epithelia are the causative agents of cervical cancer. In contrast, the association of cutaneo-tropic HPV types with the development of non-melanoma skin cancer (NMSC) is less well defined. In this study, we have analysed the in vitro transforming potential of various cutaneous HPV types. Using oncogene cooperation assays with activated ras, we have shown that diverse cutaneous types, including 12, 14, 15, 24, 36 and 49, have significant transforming potential. Interestingly, most of this activity appears to be encoded by the E6 gene product. In contrast, the common HPV-10 exhibits no significant transforming potential in these assays. This difference may be a reflection of different patterns of cellular localization, with transforming E6s being nuclear and non-transforming being cytoplasmic. These results provide molecular support for a role of these viruses in the development of certain human malignancies.

  17. 31P and 1H MRS of DB-1 Melanoma Xenografts: Lonidamine Selectively Decreases Tumor Intracellular pH and Energy Status and Sensitizes Tumors to Melphalan

    PubMed Central

    Nath, Kavindra; Nelson, David S.; Ho, Andrew; Lee, Seung-Cheol; Darpolor, Moses M.; Pickup, Stephen; Zhou, Rong; Heitjan, Daniel F.; Leeper, Dennis B.; Glickson, Jerry D.

    2012-01-01

    In vivo 31P MRS demonstrates that human melanoma xenografts in immunosuppressed mice treated with lonidamine (LND, 100 mg/kg, i.p.) exhibit a decrease in intracellular pH (pHi) from 6.90 ± 0.05 to 6.33 ± 0.10 (p < 0.001), a slight decrease in extracellular pH (pHe) from 7.00 ± 0.04 to 6.80 ± 0.07 (p > 0.05), and a monotonic decline in bioenergetics (NTP/Pi) by 66.8 ± 5.7% (p < 0.001) relative to the baseline level. Both bioenergetics and pHi decreases were sustained for at least 3 hr following LND treatment. Liver exhibited a transient intracellular acidification by 0.2 ± 0.1 pH units (p > 0.05) at 20 min post-LND with no significant change in pHe and a small transient decrease in bioenergetics, 32.9 ± 10.6 % (p > 0.05), at 40 min post-LND. No changes in pHi or ATP/Pi were detected in the brain (pHi, bioenergetics; p > 0.1) or skeletal muscle (pHi, pHe, bioenergetics; p > 0.1) for at least 120 min post-LND. Steady-state tumor lactate monitored by 1H MRS with a selective multiquantum pulse sequence with Hadamard localization increased ~3-fold (p = 0.009). Treatment with LND increased systemic melanoma response to melphalan (LPAM; 7.5 mg/kg, i.v.) producing a growth delay of 19.9 ± 2.0 d (tumor doubling time = 6.15 ± 0.31d, log10 cell-kill = 0.975 ± 0.110, cell-kill = 89.4 ± 2.2%) compared to LND alone of 1.1 ± 0.1 d and LPAM alone of 4.0 ± 0.0 d. The study demonstrates that the effects of LND on tumor pHi and bioenergetics may sensitize melanoma to pH-dependent therapeutics such as chemotherapy with alkylating agents or hyperthermia. PMID:22745015

  18. Human melanoma cells express FGFR/Src/Rho signaling that entails an adhesion-independent caveolin-1 membrane association.

    PubMed

    Fecchi, Katia; Travaglione, Sara; Spadaro, Francesca; Quattrini, Adriano; Parolini, Isabella; Piccaro, Giovanni; Raggi, Carla; Fabbri, Alessia; Felicetti, Federica; Carè, Alessandra; Fiorentini, Carla; Sargiacomo, Massimo

    2012-03-15

    Caveolae have been indicated as a center of cytoskeleton regulation for Src kinase/Rho GTPase signaling. In addition, Src recruitment on intact cortical actin cytoskeleton appears to be required for bFGF/FGFR signal activation. Recently, we established a relationship between caveolin-1 (Cav-1) expression and cell migration in human malignant melanoma, constitutively activated by a bFGF autoregulatory loop. This work intends to investigate whether caveolae's asset, through bFGF/FGFR/c-Src/Rho signaling, could be related to melanoma cell anchorage. Accordingly, we revealed the existence of a FGFR/Src kinase pathway in Cav-1 enriched detergent-resistant membranes (DRMs) of Me665/1 metastatic melanoma cells, as confirmed by FGFR silencing. Moreover, we determined the expression and phosphorylation levels of Cav-1/Src/Erk signal pathway as a function of FGFR activation and cell density. A sucrose density gradient ultracentrifugation was employed to monitor Cav-1 membrane association and buoyancy in Me665/1 cells treated for actin fragmentation or for altered phosphorylation signals. As a result, melanoma cells show remarkable resistance to Cav-1 disassembly, together with persisting cell signal activity, being Src and Cav-1 crucial modulators of Rho GTPases. In conclusion, our study primarily highlights, in a metastatic melanoma cell line expressing caveolin, the circumstances whereby caveola structural and functional endurance enables the FGFR/Src/Rho GTPases pathway to keep on cell progression.

  19. Sensitization of melanoma cells to alkylating agent-induced DNA damage and cell death via orchestrating oxidative stress and IKKβ inhibition.

    PubMed

    Tse, Anfernee Kai-Wing; Chen, Ying-Jie; Fu, Xiu-Qiong; Su, Tao; Li, Ting; Guo, Hui; Zhu, Pei-Li; Kwan, Hiu-Yee; Cheng, Brian Chi-Yan; Cao, Hui-Hui; Lee, Sally Kin-Wah; Fong, Wang-Fun; Yu, Zhi-Ling

    2017-04-01

    Nitrosourea represents one of the most active classes of chemotherapeutic alkylating agents for metastatic melanoma. Treatment with nitrosoureas caused severe systemic side effects which hamper its clinical use. Here, we provide pharmacological evidence that reactive oxygen species (ROS) induction and IKKβ inhibition cooperatively enhance nitrosourea-induced cytotoxicity in melanoma cells. We identified SC-514 as a ROS-inducing IKKβ inhibitor which enhanced the function of nitrosoureas. Elevated ROS level results in increased DNA crosslink efficiency triggered by nitrosoureas and IKKβ inhibition enhances DNA damage signals and sensitizes nitrosourea-induced cell death. Using xenograft mouse model, we confirm that ROS-inducing IKKβ inhibitor cooperates with nitrosourea to reduce tumor size and malignancy in vivo. Taken together, our results illustrate a new direction in nitrosourea treatment, and reveal that the combination of ROS-inducing IKKβ inhibitors with nitrosoureas can be potentially exploited for melanoma therapy.

  20. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells

    PubMed Central

    Hofschröer, Verena; Koch, Kevin Alexander; Ludwig, Florian Timo; Friedl, Peter; Oberleithner, Hans; Stock, Christian; Schwab, Albrecht

    2017-01-01

    Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na+/H+ exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix unravelled the efficacy of cell-cell contact loosening and 3D emigration into an environment mimicking physiological confinement. Adhesive interaction strength between individual MV3 cells was quantified using atomic force microscopy and validated by multicellular aggregation assays. Extracellular acidification from pHe7.4 to 6.4 decreases cell migration and invasion but increases single cell detachment from the spheroids. Acidification and NHE1 overexpression both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces and adhesion energies. Multicellular aggregation and spheroid formation are strongly impaired under acidification or NHE1 overexpression. We show a clear dependence of melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects are opposite to cell-matrix interactions that are strengthened by protons extruded via NHE1. We conclude that these opposite effects of NHE1 act synergistically during the metastatic cascade. PMID:28205573

  1. Functional interdependence of NHE1 and merlin in human melanoma cells.

    PubMed

    Frontzek, Fabian; Nitzlaff, Svenja; Horstmann, Malte; Schwab, Albrecht; Stock, Christian

    2014-12-01

    Upregulation of the Na(+)/H(+) exchanger isoform 1 (NHE1) has been correlated with tumor malignancy. In contrast, moesin-radixin-ezrin-like protein (merlin) is a tumor suppressor that protects from cancerogenesis. Merlin is highly related to the members of the ezrin, radixin, and moesin (ERM) protein family that are directly attached to and functionally linked with NHE1. In addition, merlin inhibits the MAPK cascade and the Rho-GTPases known to activate NHE1 activity. The present study investigates whether NHE1 expression and activity affect merlin or, conversely, whether merlin has an impact on NHE1 in human melanoma (MV3) cells. Indeed, features of merlin-deficient MV3 cells point to a functional link: merlin-deficient cells showed a decreased NHE1 expression and, paradoxically, an increase in NHE1 activity as measured upon cytosolic acidification (NH4Cl prepulse method). Loss of merlin also led to an elevated cell motility that could be further increased by NHE1 overexpression, whereas NHE1 overexpression alone had no effect on migration. In contrast, neither NHE1 expression nor its activity had an impact on merlin expression. These results suggest a novel tumor suppressor function of merlin in melanoma cells: the inhibition of the proto-oncogenic NHE1 activity, possibly including its downstream signaling pathways.

  2. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells.

    PubMed

    Hofschröer, Verena; Koch, Kevin Alexander; Ludwig, Florian Timo; Friedl, Peter; Oberleithner, Hans; Stock, Christian; Schwab, Albrecht

    2017-02-13

    Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na(+)/H(+) exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix unravelled the efficacy of cell-cell contact loosening and 3D emigration into an environment mimicking physiological confinement. Adhesive interaction strength between individual MV3 cells was quantified using atomic force microscopy and validated by multicellular aggregation assays. Extracellular acidification from pHe7.4 to 6.4 decreases cell migration and invasion but increases single cell detachment from the spheroids. Acidification and NHE1 overexpression both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces and adhesion energies. Multicellular aggregation and spheroid formation are strongly impaired under acidification or NHE1 overexpression. We show a clear dependence of melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects are opposite to cell-matrix interactions that are strengthened by protons extruded via NHE1. We conclude that these opposite effects of NHE1 act synergistically during the metastatic cascade.

  3. Characterization of a new human melanoma cell line with CD133 expression.

    PubMed

    Gil-Benso, Rosario; Monteagudo, Carlos; Cerdá-Nicolás, Miguel; Callaghan, Robert C; Pinto, Sandra; Martínez-Romero, Alicia; Pellín-Carcelén, Ana; San-Miguel, Teresa; Cigudosa, Juan C; López-Ginés, Concha

    2012-06-01

    A novel human malignant melanoma cell line, designated MEL-RC08, was established from a pericranial metastasis of a malignant melanoma of the skin. The cell line has been subcultured for more than 150 passages and is tumorigenic in nude mice. Growth kinetics, cytogenetics, flow cytometry, and molecular techniques for analysis of the genes implicated in cell cycle control; mutations in BRAF, NRAS, C-KiT, RB, and TP53 genes; and amplification of MDM2, CDK4, and cyclin D1 have been studied. Cytogenetically, the tumor and the cell line showed a hypertriploid karyotype with many clonal numeric and structural abnormalities. DNA flow cytometry showed an aneuploid peak with a DNA index value of 1.5. Mutations in TP53 and BRAF genes were demonstrated in both tumor and cell line. Furthermore, stem cell marker CD133 expression was detected in most cells, together with other stem cell markers, suggesting the presence of cells with tumor-initiating potential in this cell line.

  4. Toward the development of a novel non-RGD cyclic peptide drug conjugate for treatment of human metastatic melanoma

    PubMed Central

    Redko, Boris; Tuchinsky, Helena; Segal, Tamar; Tobi, Dror; Luboshits, Galia; Ashur-Fabian, Osnat; Pinhasov, Albert; Gerlitz, Gabi; Gellerman, Gary

    2017-01-01

    The newly discovered short (9 amino acid) non-RGD S-S bridged cyclic peptide ALOS-4 (H-cycl(Cys-Ser-Ser-Ala-Gly-Ser-Leu-Phe-Cys)-OH), which binds to integrin αvβ3 is investigated as peptide carrier for targeted drug delivery against human metastatic melanoma. ALOS4 binds specifically the αvβ3 overexpressing human metastatic melanoma WM-266-4 cell line both in vitro and in ex vivo assays. Coupling ALOS4 to the topoisomerase I inhibitor Camptothecin (ALOS4-CPT) increases the cytotoxicity of CPT against human metastatic melanoma cells while reduces dramatically the cytotoxicity against non-cancerous cells as measured by the levels of γH2A.X, active caspase 3 and cell viability. Moreover, conjugating ALOS4 to CPT even increases the chemo-stability of CPT under physiological pH. Bioinformatic analysis using Rosetta platform revealed potential docking sites of ALOS4 on the αvβ3 integrin which are distinct from the RGD binding sites. We propose to use this specific non-RGD cyclic peptide as the therapeutic carrier for conjugation of drugs in order to improve efficacy and reduce toxicity of currently available treatments of human malignant melanoma. PMID:27768593

  5. Human melanoma cells derived from lymphatic metastases use integrin alpha v beta 3 to adhere to lymph node vitronectin.

    PubMed Central

    Nip, J; Shibata, H; Loskutoff, D J; Cheresh, D A; Brodt, P

    1992-01-01

    Human melanoma is a highly metastatic cancer and the regional lymph nodes are generally the first site of metastasis. Adhesion to cryostat sections of human lymph nodes was therefore studied using two human melanoma models established from lymph node metastases, namely, MeWo cell lines of diverse metastatic potentials and a highly metastatic cell line of recent origin designated MIM/8. We found a good correlation between the metastatic potentials of the melanoma cells as measured in nude mice and their ability to adhere to cryostat sections of human lymph nodes. When adhesion to immobilized extracellular matrix proteins was measured, a significant increase in adhesion, which correlated with increased metastasis, was seen mainly on vitronectin and to a lesser extent on fibronectin. The adhesion to vitronectin and to the frozen sections were specifically blocked by an RGD-containing peptide, mAb 661 to vitronectin and mAb LM609 to integrin alpha v beta 3. FACS analysis revealed a significant and specific increase in cell surface expression of alpha v beta 3 on the metastatic cells as compared to the parent line. Together these results suggest that the adhesion of melanoma cells to lymph node vitronectin via the alpha v beta 3 receptor plays a role in the process of lymphatic dissemination. Images PMID:1383272

  6. Redirected lysis of human melanoma cells by a MCSP/CD3-bispecific BiTE antibody that engages patient-derived T cells.

    PubMed

    Torisu-Itakura, Hitoe; Schoellhammer, Hans F; Sim, Myung-Shin; Irie, Reiko F; Hausmann, Susanne; Raum, Tobias; Baeuerle, Patrick A; Morton, Donald L

    2011-10-01

    Melanoma-associated chondroitin sulfate proteoglycan (MCSP; also called HMW-MAA, CSPG4, NG2, MSK16, MCSPG, MEL-CSPG, or gp240) is a well characterized melanoma cell-surface antigen. In this study, a new bispecific T-cell engaging (BiTE) antibody that binds to MCSP and human CD3 (MCSP-BiTE) was tested for its cytotoxic activity against human melanoma cell lines. When unstimulated peripheral mononuclear blood cells (PBMCs) derived from healthy donors were cocultured with melanoma cells at effector:target ratios of 1:1, 1:5, or 1:10, and treated with MCSP-BiTE antibody at doses of 10, 100, or 1000 ng/mL, all MCSP-expressing melanoma cell lines (n=23) were lysed in a dose-dependent and effector:target ratio-dependent manner, whereas there was no cytotoxic activity against MCSP-negative melanoma cell lines (n=2). To investigate whether T cells from melanoma patients could act as effector cells, we cocultured unstimulated PBMCs with allogeneic melanoma cells from 13 patients (4 stage I/II, 3 stage III, and 6 stage IV) or with autologous melanoma cells from 2 patients (stage IV). Although cytotoxic activity varied, all 15 PBMC samples mediated significant redirected lysis by the BiTE antibody. When PBMC or CD8 T cells were prestimulated by anti-CD3 antibody OKT-3 and interleukin-2, the MCSP-BiTE concentrations needed for melanoma cell lysis decreased up to 1000-fold. As MCSP is expressed on most human melanomas, immunotherapy with MCSP/CD3-bispecific antibodies merits clinical investigation.

  7. Protein Kinase C Inhibitors Sensitize GNAQ Mutant Uveal Melanoma Cells to Ionizing Radiation

    PubMed Central

    Cerne, Jasmina Ziva; Hartig, Sean Michael; Hamilton, Mark Patrick; Chew, Sue Anne; Mitsiades, Nicholas; Poulaki, Vassiliki; McGuire, Sean Eric

    2014-01-01

    Purpose. Uveal melanoma (UM) tumors require large doses of radiation therapy (RT) to achieve tumor ablation, which frequently results in damage to adjacent normal tissues, leading to vision-threatening complications. Approximately 50% of UM patients present with activating somatic mutations in the gene encoding for G protein αq-subunit (GNAQ), which lead to constitutive activation of downstream pathways, including protein kinase C (PKC). In this study, we investigated the impact of small-molecule PKC inhibitors bisindolylmaleimide I (BIM) and sotrastaurin (AEB071), combined with ionizing radiation (IR), on survival in melanoma cell lines. Methods. Cellular radiosensitivity was determined by using a combination of proliferation, viability, and clonogenic assays. Cell-cycle effects were measured by flow cytometry. Transcriptomic and proteomic profiling were performed by quantitative real-time PCR, reverse-phase protein array analysis, and immunofluorescence. Results. We found that the PKC inhibitors combined with IR significantly decreased the viability, proliferation, and clonogenic potential of GNAQmt, but not GNAQwt/BRAFmt cells, compared with IR alone. Combined treatment increased the antiproliferative and proapoptotic effects of IR in GNAQmt cells through delayed DNA-damage resolution and enhanced induction of proteins involved in cell-cycle arrest, cell-growth arrest, and apoptosis. Conclusions. Our preclinical results suggest that combined modality treatment may allow for reductions in the total RT dose and/or fraction size, which may lead to better functional organ preservation in the treatment of primary GNAQmt UM. These findings suggest future clinical trials combining PKC inhibitors with RT in GNAQmt UM warrant consideration. PMID:24595385

  8. Expression of transcripts for two interleukin 8 receptors in human phagocytes, lymphocytes and melanoma cells.

    PubMed Central

    Moser, B; Barella, L; Mattei, S; Schumacher, C; Boulay, F; Colombo, M P; Baggiolini, M

    1993-01-01

    Two cDNAs coding for distinct interleukin 8 (IL-8) receptors, IL-8R1 [Murphy and Tiffany (1991) Science 253, 1280-1283] and IL-8R2 [Holmes, Lee, Kuang, Rice and Wood (1991) Science 253, 1278-1280] have been reported, and biochemical studies on human neutrophils have revealed two proteins (p70 and p44) that bind IL-8 with high affinity [Moser, Schumacher, von Tscharner, Clark-Lewis and Baggiolini (1991), J. Biol. Chem. 266, 10666-10671]. We have cloned the cDNA coding for IL-8R1 from a library of differentiated HL-60 cells. Transfection of this cDNA into Jurkat cells resulted in the expression of high-affinity binding for IL-8 and two related cytokines, GRO alpha and neutrophil-activating peptide 2 (Kd 0.5-1.0 nM). Northern-blot analysis with the IL-8R1 cDNA as probe revealed abundant expression of transcripts of different size in human neutrophils and low-level expression of a single RNA species in HL-60 cells differentiated with dimethyl sulphoxide and retinoic acid. Because of the extensive nucleotide sequence similarity of the cDNAs for IL-8R1 and IL-8R2, the reverse-transcription PCR method was used for analysis of RNA expression in myeloid and lymphoid cells, 19 cell lines established from human primary melanomas or metastases, two melanocyte and one fibroblast cell lines. IL-8R1 mRNA transcripts were expressed at high levels in neutrophils, and to a lesser extent in blood monocytes and the myeloid cell lines, HL-60 and AML 193, but were not found in THP-1 cells, lymphocytes and Jurkat cells. IL-8R2 mRNA transcripts, by contrast, were found in all blood cells and related cell lines, as well as in all melanoma, melanocyte and fibroblast cell lines tested. As for IL-8R1, IL-8R2 mRNA expression was highest in neutrophils. These results suggest that IL-8R1 and IL-8R2 may both be involved in neutrophil activation by IL-8 and related cytokines, and presumably correspond to p70 and p44, the receptors that were identified biochemically. Possible IL-8 functions on

  9. Evaluation of depigmenting activity by 8-hydroxydaidzein in mouse B16 melanoma cells and human volunteers.

    PubMed

    Tai, Sorgan Shou-Ku; Lin, Ching-Gong; Wu, Mon-Han; Chang, Te-Sheng

    2009-11-20

    In our previous study, 8-hydroxydaidzein (8-OHDe) was demonstrated to be a potent and unique suicide substrate of mushroom tyrosinase. In this study, the compound was evaluated for in vitro cellular tyrosinase and melanogenesis inhibitory activities in mouse B16 melanoma cells and for in vivo skin-whitening activity in human volunteers. Tyrosinase activity and melanogenesis in the cell culture incubated with 10 microM of 8-OHDe were decreased to 20.1% and 51.8% of control, respectively, while no obvious cytotoxicity was observed in this concentration. In contrast, a standard tyrosinase inhibitor, kojic acid, showed 69.9% and 71.3% of control in cellular tyrosinase and melanogenesis activity, respectively, at a concentration as high as 100 microM. Hence, 8-OHDe exhibited more than an inhibitory effects on melanin production in B16 cells 10-fold stronger than kojic acid. In addition, when a cream containing 4% 8-OHDe was applied to human skin in an in vivo study, significant increases in the dL*-values were observed after three weeks. Moreover, the increase in the dL*-values after 8-week treatment with 4% 8-OHDe (from -0.57 to 1.94) is stronger than those of 2% 8-OHDe treatment (from 0.26 to 0.94) and 2% ascorbic acid-2-glucoside treatment (from 0.07 to 1.54). From the results of the study, it was concluded that 8-OHDe, the potent suicide substrate of mushroom tyrosinase, has depigmenting activities in both mouse melanoma cells and in human volunteers. Thus, the compound has significant potential for use in cosmetics as a skin-whitening ingredient.

  10. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    SciTech Connect

    Ungerer, Christopher; Doberstein, Kai; Boehm, Beate; Pfeilschifter, Josef; Mihic-Probst, Daniela; Gutwein, Paul

    2010-10-22

    Research highlights: {yields} Strong ADAM15 expression is found in normal melanocytes. {yields} ADAM15 expression is significantly downregulated in patients with melanoma metastasis. {yields} TGF-{beta} can downregulate ADAM15 expression in melanoma cells. {yields} Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. {yields} Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-{gamma} and TGF-{beta} downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  11. Antibody-drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin

    NASA Astrophysics Data System (ADS)

    Falvo, Elisabetta; Tremante, Elisa; Fraioli, Rocco; Leonetti, Carlo; Zamparelli, Carlotta; Boffi, Alberto; Morea, Veronica; Ceci, Pierpaolo; Giacomini, Patrizio

    2013-11-01

    A novel antibody-drug conjugate (ADC) was synthesized incorporating ferritin-based nanoparticles. An average of three molecules of monoclonal antibody (mAb) Ep1 to the human melanoma-specific antigen CSPG4 were conjugated to a single ferritin cage encapsulating about 50 cisplatin molecules (HFt-Pt-Ep1). The HFt-Pt-Ep1 nanoparticle had an estimated molecular size of about 900 kD and 33 nm, and flow cytometry demonstrated specific binding to a CSPG4+ melanoma cell line, but not to a CSPG4- breast carcinoma cell line. As compared to the cisplatin-containing ferritin nanoparticle alone (HFt-Pt), which inhibited thymidine incorporation more efficiently in breast carcinoma than melanoma cells, the mAb-derivatized HFt-Pt-Ep1 nanoparticle had a 25-fold preference for the latter. A similar preference for melanoma was observed upon systemic intravenous administration of HFt-Pt-Ep1 to nude mice xenotransplanted with pre-established, palpable melanoma and breast carcinoma tumors. Thus, we have been able to determine precise combinations and stoichiometric relationships between mAbs and nanoparticle protein cages, whereby the latter lose their tropism for ubiquitously distributed cellular receptors, and acquire instead remarkably lineage-selective binding. HFt-Pt-Ep1 is therefore an interesting model to improve the therapeutic index of antiblastic therapy in a tumor such as melanoma, which at its advanced stages is totally refractory to mono- and combination-chemotherapy.A novel antibody-drug conjugate (ADC) was synthesized incorporating ferritin-based nanoparticles. An average of three molecules of monoclonal antibody (mAb) Ep1 to the human melanoma-specific antigen CSPG4 were conjugated to a single ferritin cage encapsulating about 50 cisplatin molecules (HFt-Pt-Ep1). The HFt-Pt-Ep1 nanoparticle had an estimated molecular size of about 900 kD and 33 nm, and flow cytometry demonstrated specific binding to a CSPG4+ melanoma cell line, but not to a CSPG4- breast carcinoma cell

  12. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry

    PubMed Central

    Bassani-Sternberg, Michal; Bräunlein, Eva; Klar, Richard; Engleitner, Thomas; Sinitcyn, Pavel; Audehm, Stefan; Straub, Melanie; Weber, Julia; Slotta-Huspenina, Julia; Specht, Katja; Martignoni, Marc E.; Werner, Angelika; Hein, Rüdiger; H. Busch, Dirk; Peschel, Christian; Rad, Roland; Cox, Jürgen; Mann, Matthias; Krackhardt, Angela M.

    2016-01-01

    Although mutations may represent attractive targets for immunotherapy, direct identification of mutated peptide ligands isolated from human leucocyte antigens (HLA) on the surface of native tumour tissue has so far not been successful. Using advanced mass spectrometry (MS) analysis, we survey the melanoma-associated immunopeptidome to a depth of 95,500 patient-presented peptides. We thereby discover a large spectrum of attractive target antigen candidates including cancer testis antigens and phosphopeptides. Most importantly, we identify peptide ligands presented on native tumour tissue samples harbouring somatic mutations. Four of eleven mutated ligands prove to be immunogenic by neoantigen-specific T-cell responses. Moreover, tumour-reactive T cells with specificity for selected neoantigens identified by MS are detected in the patient's tumour and peripheral blood. We conclude that direct identification of mutated peptide ligands from primary tumour material by MS is possible and yields true neoepitopes with high relevance for immunotherapeutic strategies in cancer. PMID:27869121

  13. A new ceramide from Suillus luteus and its cytotoxic activity against human melanoma cells.

    PubMed

    León, Francisco; Brouard, Ignacio; Torres, Fernando; Quintana, José; Rivera, Augusto; Estévez, Francisco; Bermejo, Jaime

    2008-01-01

    A new phytosphingosine-type ceramide, suillumide (1), was isolated from the EtOH extract of the basidiomycete Suillus luteus (L.) S. F. Gray, along with ten known compounds: ergosta-4,6,8(14),22-tetraen-3-one, ergosterol, ergosterol peroxide, suillin, (E)-3,4,5-trimethoxycinnamic alcohol, 5 alpha,6 alpha-epoxyergosta-8,22-diene-3beta,7 beta-diol, (R)-1-palmitoylglycerol, ergosta-7,9(11),22-triene-3beta,5 alpha,6 beta-triol, cerevisterol, and 4-hydroxybenzoic acid. The structure of 1 was determined on the basis of spectroscopic and mass-spectrometric analyses, as well as by chemical methods. Compound 1 and its synthetic diacetyl derivative 2 were tested for their cytotoxic activities against the human melanoma cell line SK-MEL-1. Both drugs showed IC(50) values of ca. 10 microM after 72 h of exposure.

  14. Hypoxia-induced tetraploidisation of a diploid human melanoma cell line in vitro.

    PubMed Central

    Rofstad, E. K.; Johnsen, N. M.; Lyng, H.

    1996-01-01

    Many human tumours are hyperdiploid, particularly in advanced stages of growth. The purpose of the present work was to investigate whether exposure to hypoxia followed by reoxygenation might induce hyperploidisation of diploid human tumour cells in vitro. The investigation was performed by using the diploid melanoma cell line BEX-c (median chromosome number, 46; DNA index, 1.10 +/- 0.04) as test line and the hyperdiploid melanoma cell line SAX-c (median chromosome number, 61; DNA index, 1.42 +/- 0.03) as control line. Cell cultures kept in glass dishes in air-tight steel chambers were exposed to hypoxia (O2 concentrations < 10 p.p.m. or < 100 p.p.m.) at 37 degrees C for 24 h. DNA content was measured by flow cytometry. Metaphase spreads banded with trypsin-Versene-Giemsa were examined to determine the number of chromosomes per cell. An electronic particle counter was used to measure cell volume. The expression of p53 and pRb was studied by Western blot analysis. Transient exposure to hypoxia was found to induce a doubling of the number of chromosomes in BEX-c but not in SAX-c. The fraction of the BEX-c metaphase spreads with 92 chromosomes was approximately 10% at 18 h after reoxygenation, decreased to approximately 2% at 7 days after reoxygenation and then increased gradually with time. The whole cell population became tetraploid within 25 weeks. BEX-c and SAX-c behaved differently during the 24 h hypoxia exposure. Cell volume and fraction of cells in G2 + M increased with time in BEX-c but remained essentially unchanged in SAX-c. On the other hand, the expression of p53 and pRb was similar for the two lines; hypoxia induced increased expression of p53 and hypophosphorylation of pRb. Images Figure 5 PMID:8763866

  15. Lauroside B, a megastigmane glycoside from Laurus nobilis (bay laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation.

    PubMed

    Panza, Elisabetta; Tersigni, Mariaroberta; Iorizzi, Maria; Zollo, Franco; De Marino, Simona; Festa, Carmen; Napolitano, Maria; Castello, Giuseppe; Ialenti, Armando; Ianaro, Angela

    2011-02-25

    Malignant melanoma is a highly aggressive tumor that frequently resists chemotherapy, so the search for new agents for its treatment is of great importance. In the present study, the antiproliferative propensity against human melanoma cell lines of lauroside B (1), a megastigmane glycoside isolated from Laurus nobilis (bay laurel) leaves, was investigated. This compound suppressed the proliferation of three human melanoma cell lines, namely, A375, WM115, and SK-Mel-28. The 1-induced inhibition of human melanoma cell proliferation was due to the induction of apoptosis, as demonstrated by FACS analysis with annexin V/PI staining and confirmed by activation of caspase-3 and by the cleavage of poly(ADP-ribose) polymerase (PARP). Growing evidence implicates NF-κB as an important contributor to metastasis and increased chemoresistance of melanoma. Thus, it was hypothesized that 1-induced apoptosis could be associated with suppression of NF-κB activation. The results showed that exposure of human melanoma cells to 1 inhibited IκB-α degradation and constitutive NF-κB DNA-binding activity as well as the expression, regulated by NF-κB, of two antiapoptotic genes, XIAP and c-FLIP. Induction of apoptosis by 1 in human aggressive melanoma cell lines has a potential high biological value.

  16. Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice

    SciTech Connect

    Giavazzi, R.; Garofalo, A.; Bani, M.R.; Abbate, M.; Ghezzi, P.; Boraschi, D.; Mantovani, A.; Dejana, E. )

    1990-08-01

    This study has examined the effect of the cytokine interleukin 1 (IL-1) on metastasis formation by the human melanoma A375M in nude mice. We have found that human recombinant IL-1 beta (a single injection greater than 0.01 micrograms per mouse i.v. given before tumor cells) induced an augmentation of experimental lung metastases from the A375M tumor cells in nude mice. This effect was rapidly induced and reversible within 24 h after IL-1 injection. A similar effect was induced by human recombinant IL-1 alpha and human recombinant tumor necrosis factor, but not by human recombinant interleukin 6. 5-(125I)odo-2'-deoxyuridine-radiolabeled A375M tumor cells injected i.v. remained at a higher level in the lungs of nude mice receiving IL-1 than in control mice. In addition, IL-1 injected 1 h, but not 24 h, after tumor cells enhanced lung colonization as well, thus suggesting an effect of IL-1 on the vascular transit of tumor cells. These findings may explain the observation of enhanced secondary localization of tumor cells at inflammatory sites and suggest that modulation of secondary spread should be carefully considered when assessing the ability of this cytokine to complement cytoreductive therapies.

  17. Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase

    NASA Astrophysics Data System (ADS)

    Koo, Han-Mo; Vanbrocklin, Matt; McWilliams, Mary Jane; Leppla, Stephan H.; Duesbery, Nicholas S.; Vande Woude, George F.

    2002-03-01

    Lethal factor, the principal virulence factor of Bacillus anthracis, inhibits mitogen-activated protein kinase (MAPK) signaling by proteolytically cleaving MAPK kinases. Edema factor, another component of anthrax toxin, is an adenylate cyclase, which increases intracellular cAMP. Inhibition of MAPK signaling with either anthrax lethal toxin (LeTx) or small molecule MAPK kinase inhibitors triggers apoptosis in human melanoma cells. Normal melanocytes do not undergo apoptosis in response to MAPK inhibition but arrest in the G1 phase of the cell cycle. Importantly, in vivo treatment of human melanoma xenograft tumors in athymic nude mice with LeTx results in significant or complete tumor regression without apparent side effects, suggesting that inhibiting the MAPK signaling pathway may be a useful strategy for treating melanoma. Additionally, interrupting MAPK signaling with LeTx and elevating cAMP with anthrax edema toxin in both melanoma cells and melanocytes lead to dramatic melanin production, perhaps explaining the formation of blackened eschars in cutaneous anthrax.

  18. Investigations on the presence of papova virus in certain forms of human cancer. Note I. Renal tumors and melanomas.

    PubMed

    Stoian, M; Dumitrescu, S M; Athanasiu, P; Nastac, E

    1980-01-01

    Within the framework of their research concerns regarding the presence of papova viruses in the human population of Romania, as well as the relationship between these viruses and certain forms of human cancer, the authors undertook an electron microscopic study of 4 renal tumors and 6 melanomas. No viral particles could be made evident in any of the sections examined. Viral SV-40 antigen was detected by indirect immunofluorescence reaction in kidney sections from a nephrosis case considered as control.

  19. Inducible nitric oxide synthase (iNOS) drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2

    PubMed Central

    Lopez-Rivera, Esther; Jayaraman, Padmini; Parikh, Falguni; Davies, Michael A.; Ekmekcioglu, Suhendan; Izadmehr, Sudeh; Milton, Denái R.; Chipuk, Jerry E.; Grimm, Elizabeth A.; Estrada, Yeriel; Aguirre-Ghiso, Julio; Sikora, Andrew G.

    2014-01-01

    Melanoma is one of the cancers of fastest-rising incidence in the world. iNOS is overexpressed in melanoma and other cancers, and previous data suggest that iNOS and nitric oxide (NO) drive survival and proliferation of human melanoma cells. However, specific mechanisms through which this occurs are poorly defined. One candidate is the PI3K/AKT/mTOR pathway, which plays a major role in proliferation, angiogenesis, and metastasis of melanoma and other cancers. We used the chick embryo chorioallantoic membrane (CAM) assay to test the hypothesis that melanoma growth is regulated by iNOS-dependent mTOR pathway activation. Both pharmacologic inhibition and siRNA-mediated gene silencing of iNOS suppressed melanoma proliferation and in vivo growth on the CAM in human melanoma models. This was associated with strong downregulation of mTOR pathway activation by Western blot analysis of p-mTOR, p-P70S6K, p-S6RP, and p-4EBP1. iNOS expression and NO were associated with reversible nitrosylation of TSC2, and inhibited dimerization of TSC2 with its inhibitory partner TSC1, enhancing GTPase activity of its target Rheb, a critical activator of mTOR signaling. Immunohistochemical analysis of tumor specimens from stage III melanoma patients showed a significant correlation between iNOS expression levels and expression of mTOR pathway members. Exogenously-supplied NO was also sufficient to reverse mTOR pathway inhibition by the B-Raf inhibitor Vemurafenib. In summary, covalent modification of TSC2 by iNOS-derived NO is associated with impaired TSC2/TSC1 dimerization, mTOR pathway activation, and proliferation of human melanoma. This model is consistent with the known association of iNOS overexpression and poor prognosis in melanoma and other cancers. PMID:24398473

  20. Antioxidant enzymes and the mechanism of the bystander effect induced by ultraviolet C irradiation of A375 human melanoma cells.

    PubMed

    Ghosh, Rita; Guha, Dipanjan; Bhowmik, Sudipta; Karmakar, Sayantani

    2013-09-18

    Irradiated cells generate dynamic responses in non-irradiated cells; this signaling phenomenon is known as the bystander effect (BE). Factors secreted by the irradiated cells communicate some of these signals. Conditioned medium from UVC-irradiated A375 human melanoma cells was used to study the BE. Exposure of cells to conditioned medium induce cell-cycle arrest at the G2/M transition. Although conditioned medium treatment, by itself, did not alter cell viability, treated cells were more resistant to the lethal action of UVC or H2O2. This protective effect of conditioned medium was lost within 8h. Apoptotic or autophagic cell death was not involved in this resistance. Exposure to conditioned medium did not influence the rate of DNA repair, as measured by NAD(+) depletion. The activities of catalase and superoxide dismutase were elevated in cells exposed to conditioned medium, but returned to normal levels by 8h post-treatment. These results indicate a close correlation between BE-stimulated antioxidant activity and cellular sensitivity. Cell-cycle arrest and stimulation of antioxidant activity may account for the resistance to killing that was observed in bystander cells exposed to UVC or H2O2 treatment and are consistent with the role of the BE as a natural defense function triggered by UVC irradiation.

  1. NM23 deficiency promotes metastasis in a UV radiation-induced mouse model of human melanoma.

    PubMed

    Jarrett, Stuart G; Novak, Marian; Harris, Nathan; Merlino, Glenn; Slominski, Andrezj; Kaetzel, David M

    2013-01-01

    Cutaneous malignant melanoma is the most lethal form of skin cancer, with 5-year survival rates of <5 % for patients presenting with metastatic disease. Mechanisms underlying metastatic spread of UVR-induced melanoma are not well understood, in part due to a paucity of animal models that accurately recapitulate the disease in its advanced forms. We have employed a transgenic mouse strain harboring a tandem deletion of the nm23-m1 and nm23-m2 genes to assess the combined contribution of these genes to suppression of melanoma metastasis. Crossing of the nm23-h1/nm23-h2 knockout in hemizygous-null form ([m1m2](+/-)) to a transgenic mouse strain (hepatocyte growth factor/scatter factor-overexpressing, or HGF(+) strain) vulnerable to poorly-metastatic, UVR-induced melanomas resulted in UVR-induced melanomas with high metastatic potential. Metastasis to draining lymph nodes was seen in almost all cases of back skin melanomas, while aggressive metastasis to lung, thoracic cavity, liver and bone also occurred. Interestingly, no differences were observed in the invasive characteristics of primary melanomas of HGF(+) and HGF(+) × [m1m2](+/-) strains, with both exhibiting invasion into the dermis and subcutis, indicating factors other than simple invasive activity were responsible for metastasis of HGF(+) × [m1m2](+/-) melanomas. Stable cell lines were established from the primary and metastatic melanoma lesions from these mice, with HGF(+) × [m1m2](+/-) lines exhibiting increased single cell migration and genomic instability. These studies demonstrate for the first time in vivo a potent metastasis suppressor activity of NM23 in UVR-induced melanoma, and have provided new tools for identifying molecular mechanisms that underlie melanoma metastasis.

  2. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells.

    PubMed

    Chen, Tianfeng; Wong, Yum-Shing; Zheng, Wenjie; Bai, Yan; Huang, Liang

    2008-11-15

    Selenium nanoparticle (Nano-Se) is a novel Se species with novel biological activities and low toxicity. In the present study, we demonstrated a simple method for synthesis of size-controlled Nano-Se by adding Undaria pinnatifida polysaccharides to the redox system of selenite and ascorbic acid. A panel of four human cancer cell lines was shown to be susceptible to Nano-Se, with IC(50) values ranging from 3.0 to 14.1 microM. Treatment of A375 human melanoma cells with the Nano-Se resulted in dose-dependent cell apoptosis as indicated by DNA fragmentation and phosphatidylserine translocation. Further investigation on intracellular mechanisms found that Nano-Se treatment triggered apoptotic cell death in A375 cells with the involvement of oxidative stress and mitochondrial dysfunction. Our results suggest that Nano-Se may be a candidate for further evaluation as a chemopreventive and chemotherapeutic agent for human cancers, especially melanoma cancer.

  3. Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line

    PubMed Central

    Merighi, Stefania; Varani, Katia; Gessi, Stefania; Cattabriga, Elena; Iannotta, Valeria; Ulouglu, Canan; Leung, Edward; Borea, Pier Andrea

    2001-01-01

    The present work characterizes, from a pharmacological and biochemical point of view, adenosine receptors in the human malignant melanoma A375 cell line. Adenosine receptors were detected by RT – PCR experiments. A1 receptors were characterized using [3H]-DPCPX binding with a KD of 1.9±0.2 nM and Bmax of 23±7 fmol mg−1 of protein. A2A receptors were studied with [3H]-SCH 58261 binding and revealed a KD of 5.1±0.2 nM and a Bmax of 220±7 fmol mg−1 of protein. A3 receptors were studied with the new A3 adenosine receptor antagonist [3H]-MRE 3008F20, the only A3 selective radioligand currently available. Saturation experiments revealed a single high affinity binding site with KD of 3.3±0.7 nM and Bmax of 291±50 fmol mg−1 of protein. The pharmacological profile of radioligand binding on A375 cells was established using typical adenosine ligands which displayed a rank order of potency typical of the different adenosine receptor subtype. Thermodynamic data indicated that radioligand binding to adenosine receptor subtypes in A375 cells was entropy- and enthalpy-driven. In functional assays the high affinity A2A agonists HE-NECA, CGS 21680 and A2A – A2B agonist NECA were able to increase cyclic AMP accumulation in A375 cells whereas A3 agonists Cl-IB-MECA, IB-MECA and NECA were able to stimulate Ca2+ mobilization. In conclusion, all these data indicate, for the first time, that adenosine receptors with a pharmacological and biochemical profile typical of the A1, A2A, A2B and A3 receptor subtype are present on A375 melanoma cell line. PMID:11704641

  4. sup 211 At-methylene blue for targeted radiotherapy of human melanoma xenografts: Treatment of micrometastases

    SciTech Connect

    Link, E.M.; Carpenter, R.N. )

    1990-05-15

    Treatment of micrometastases of HX34 human melanoma grown as xenografts in nude mice represents an advanced stage of preclinical investigations concerning targeted radiotherapy of this neoplasm using 3,7-(dimethylamino)phenazathionium chloride methylene blue (MTB) labeled with astatine-211 (211At) (alpha-particle emitter). The therapeutic effectiveness of 211At-MTB administered i.v. was determined by a lung colony assay combined with a search for metastases to organs other than the lungs. A single dose of 211At-MTB lowered the HX34 cell surviving fraction in lungs to below 10% almost independently of the time interval between cell inoculation and radioisotope injection and of 211At-MTB radioactivity within its investigated range. Radiation dose and the time of its administration did, however, influence the size of lung colonies. In contrast, the efficacy of 211At-MTB treatment as assessed by both surviving fraction and colony size was significantly dependent on a number of HX34 cells inoculated initially into mice. These results are explained by a short range of alpha-particles emitted by 211At and a mechanism of growth of lung colonies from tumor cells circulating with blood and blocking lung capillaries. Metastases in organs other than lungs and characteristic of control animals were not found in mice treated with 211At-MTB. The high therapeutic efficacy achieved proved that 211At-MTB is a very efficient scavenger of single melanoma cells distributed through blood and micrometastases with sizes below the limit of clinical detection.

  5. Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells.

    PubMed

    Liao, Yu-Pei; Wang, Chun-Chieh; Butterfield, Lisa H; Economou, James S; Ribas, Antoni; Meng, Wilson S; Iwamoto, Keisuke S; McBride, William H

    2004-08-15

    Radiation is generally considered to be an immunosuppressive agent that acts by killing radiosensitive lymphocytes. In this study, we demonstrate the noncytotoxic effects of ionizing radiation on MHC class I Ag presentation by bone marrow-derived dendritic cells (DCs) that have divergent consequences depending upon whether peptides are endogenously processed and loaded onto MHC class I molecules or are added exogenously. The endogenous pathway was examined using C57BL/6 murine DCs transduced with adenovirus to express the human melanoma/melanocyte Ag recognized by T cells (AdVMART1). Prior irradiation abrogated the ability of AdVMART1-transduced DCs to induce MART-1-specific T cell responses following their injection into mice. The ability of these same DCs to generate protective immunity against B16 melanoma, which expresses murine MART-1, was also abrogated by radiation. Failure of AdVMART1-transduced DCs to generate antitumor immunity following irradiation was not due to cytotoxicity or to radiation-induced block in DC maturation or loss in expression of MHC class I or costimulatory molecules. Expression of some of these molecules was affected, but because irradiation actually enhanced the ability of DCs to generate lymphocyte responses to the peptide MART-1(27-35) that is immunodominant in the context of HLA-A2.1, they were unlikely to be critical. The increase in lymphocyte reactivity generated by irradiated DCs pulsed with MART-1(27-35) also protected mice against growth of B16-A2/K(b) tumors in HLA-A2.1/K(b) transgenic mice. Taken together, these results suggest that radiation modulates MHC class I-mediated antitumor immunity by functionally affecting DC Ag presentation pathways.

  6. Acid Ceramidase in Melanoma

    PubMed Central

    Realini, Natalia; Palese, Francesca; Pizzirani, Daniela; Pontis, Silvia; Basit, Abdul; Bach, Anders; Ganesan, Anand; Piomelli, Daniele

    2016-01-01

    Acid ceramidase (AC) is a lysosomal cysteine amidase that controls sphingolipid signaling by lowering the levels of ceramides and concomitantly increasing those of sphingosine and its bioactive metabolite, sphingosine 1-phosphate. In the present study, we evaluated the role of AC-regulated sphingolipid signaling in melanoma. We found that AC expression is markedly elevated in normal human melanocytes and proliferative melanoma cell lines, compared with other skin cells (keratinocytes and fibroblasts) and non-melanoma cancer cells. High AC expression was also observed in biopsies from human subjects with Stage II melanoma. Immunofluorescence studies revealed that the subcellular localization of AC differs between melanocytes (where it is found in both cytosol and nucleus) and melanoma cells (where it is primarily localized to cytosol). In addition to having high AC levels, melanoma cells generate lower amounts of ceramides than normal melanocytes do. This down-regulation in ceramide production appears to result from suppression of the de novo biosynthesis pathway. To test whether AC might contribute to melanoma cell proliferation, we blocked AC activity using a new potent (IC50 = 12 nm) and stable inhibitor. AC inhibition increased cellular ceramide levels, decreased sphingosine 1-phosphate levels, and acted synergistically with several, albeit not all, antitumoral agents. The results suggest that AC-controlled sphingolipid metabolism may play an important role in the control of melanoma proliferation. PMID:26553872

  7. Resveratrol Is Rapidly Metabolized in Athymic (Nu/Nu) Mice and Does Not Inhibit Human Melanoma Xenograft Tumor Growth1

    PubMed Central

    Niles, Richard M.; Cook, Carla P.; Meadows, Gary G.; Fu, Ya-Min; McLaughlin, Jerry L.; Rankin, Gary O.

    2006-01-01

    Resveratrol has been shown to have anticarcinogenic activity. We previously found that resveratrol inhibited growth and induced apoptosis in 2 human melanoma cell lines. In this study we determined whether resveratrol would inhibit human melanoma xenograft growth. Athymic mice received control diets or diets containing 110 μmol/L or 263 μmol/L resveratrol, 2 wk prior to subcutaneous injection of the tumor cells. Tumor growth was measured during a 3-wk period. Metabolism of resveratrol was assayed by bolus gavage of 75 mg/kg resveratrol in tumor-bearing and nontumor-bearing mice. Pellets containing 10–100 mg resveratrol were implanted into the mice, next to newly palpated tumors, and tumor growth determined. We also determined the effect of a major resveratrol metabolite, piceatannol, on experimental lung metastasis. Resveratrol, at any concentration tested, did not have a statistically significant effect on tumor growth. The higher levels of resveratrol tested (0.006% in food or 100 mg in slow-release pellets) tended to stimulate tumor growth (P = 0.08–0.09). Resveratrol and its major metabolites, resveratrol glucuronide and piceatannol, were found in serum, liver, skin, and tumor tissue. Piceatannol did not affect the in vitro growth of a murine melanoma cell line, but significantly stimulated the number of lung metastases when these melanoma cells were directly injected into the tail vein of the mouse. These results suggest that resveratrol is not likely to be useful in the treatment of melanoma and that the effects of phytochemicals on cell cultures may not translate to the whole animal system. PMID:16988123

  8. Aloe-emodin exerts a potent anticancer and immunomodulatory activity on BRAF-mutated human melanoma cells.

    PubMed

    Tabolacci, Claudio; Cordella, Martina; Turcano, Lorenzo; Rossi, Stefania; Lentini, Alessandro; Mariotti, Sabrina; Nisini, Roberto; Sette, Giovanni; Eramo, Adriana; Piredda, Lucia; De Maria, Ruggero; Facchiano, Francesco; Beninati, Simone

    2015-09-05

    Aim of this study was to extend the knowledge on the antineoplastic effect of aloe-emodin (AE), a natural hydroxyanthraquinone compound, both in metastatic human melanoma cell lines and in primary stem-like cells (melanospheres). Treatment with AE caused reduction of cell proliferation and induction of SK-MEL-28 and A375 cells differentiation, characterized by a marked increase of transamidating activity of transglutaminase whose expression remained unmodified. In vitro antimetastatic property of AE was evaluated by adhesion and Boyden chamber invasion assays. The effect of AE on melanoma cytokines/chemokines production was determined by a multiplex assay: interestingly AE showed an immunomodulatory activity through GM-CSF and IFN-γ production. We report also that AE significantly reduced the proliferation, stemness and invasive potential of melanospheres. Moreover, AE treatment significantly enhanced dabrafenib (a BRAF inhibitor) antiproliferative activity in BRAF mutant cell lines. Our results confirm that AE possesses remarkable antineoplastic properties against melanoma cells, indicating this anthraquinone as a promising agent for differentiation therapy of cancer, or as adjuvant in chemotherapy and targeted therapy. Further, its mechanisms of action support a potential efficacy of AE treatment to counteract resistance of BRAF-mutated melanoma cells to target therapy.

  9. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis

    PubMed Central

    Bracalente, Candelaria; Salguero, Noelia; Notcovich, Cintia; Müller, Carolina B.; da Motta, Leonardo L.; Klamt, Fabio; Ibañez, Irene L.; Durán, Hebe

    2016-01-01

    Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy. PMID:27206672

  10. Comparison of a treatment strategy combining CCI-779 plus DTIC versus DTIC monotreatment in human melanoma in SCID mice.

    PubMed

    Thallinger, Christiane; Werzowa, Johannes; Poeppl, Wolfgang; Kovar, Florian M; Pratscher, Barbara; Valent, Peter; Quehenberger, Peter; Joukhadar, Christian

    2007-10-01

    This study compares the antineoplastic potential of a novel treatment strategy combining cell cycle inhibitor-779 (CCI-779) plus dacarbazine (DTIC) versus DTIC monotreatment, the current chemotherapeutic mainstay in combating metastatic melanoma. A controlled four-group parallel study design comprising 24-40 mice per tumor cell line was used in a severe combined immunodeficiency (SCID)-mouse xenotransplantation model. SCID mice were injected with 518A2, Mel-JUSO, or 607B human melanoma cells. After they developed tumors, mice received daily CCI-779 or solvent over 14 days. From treatment day 4-8 mice were additionally injected with DTIC or saline. Treatment with CCI-779 plus DTIC was superior to single agent DTIC in two out of three cell lines (P<0.05). The tumor weight reduction was 44+/-17 and 61+/-6% compared with DTIC monotreatment in Mel-JUSO and 607B melanomas, respectively (P<0.05). In contrast, in 518A2 xenotransplants, CCI-779 plus DTIC treatment was as effective as DTIC monotreatment. CCI-779 monotherapy exerted no statistically significant antitumor effect. Collectively, these data indicate that CCI-779 has the potential to increase the chemotherapeutic efficacy, as the combination of CCI-779 plus DTIC proved to be more efficacious compared to DTIC monotherapy in two out of three melanoma cell lines in vivo.

  11. A Molecular Switch Abrogates Glycoprotein 100 (gp100) T-cell Receptor (TCR) Targeting of a Human Melanoma Antigen*

    PubMed Central

    Bianchi, Valentina; Bulek, Anna; Fuller, Anna; Lloyd, Angharad; Attaf, Meriem; Rizkallah, Pierre J.; Dolton, Garry; Sewell, Andrew K.; Cole, David K.

    2016-01-01

    Human CD8+ cytotoxic T lymphocytes can mediate tumor regression in melanoma through the specific recognition of HLA-restricted peptides. Because of the relatively weak affinity of most anti-cancer T-cell receptors (TCRs), there is growing emphasis on immunizing melanoma patients with altered peptide ligands in order to induce strong anti-tumor immunity capable of breaking tolerance toward these self-antigens. However, previous studies have shown that these immunogenic designer peptides are not always effective. The melanocyte differentiation protein, glycoprotein 100 (gp100), encodes a naturally processed epitope that is an attractive target for melanoma immunotherapies, in particular peptide-based vaccines. Previous studies have shown that substitutions at peptide residue Glu3 have a broad negative impact on polyclonal T-cell responses. Here, we describe the first atomic structure of a natural cognate TCR in complex with this gp100 epitope and highlight the relatively high affinity of the interaction. Alanine scan mutagenesis performed across the gp100280–288 peptide showed that Glu3 was critically important for TCR binding. Unexpectedly, structural analysis demonstrated that the Glu3 → Ala substitution resulted in a molecular switch that was transmitted to adjacent residues, abrogating TCR binding and T-cell recognition. These findings help to clarify the mechanism of T-cell recognition of gp100 during melanoma responses and could direct the development of altered peptides for vaccination. PMID:26917722

  12. Raman spectroscopy detects melanoma and the tissue surrounding melanoma using tissue-engineered melanoma models

    PubMed Central

    Yorucu, Ceyla; Lau, Katherine; Mittar, Shweta; Green, Nicola H.; Raza, Ahtasham; Rehman, Ihtesham Ur; MacNeil, Sheila

    2016-01-01

    ABSTRACT Invasion of melanoma cells from the primary tumor involves interaction with adjacent tissues and extracellular matrix. The extent of this interaction is not fully understood. In this study Raman spectroscopy was applied to cryo-sections of established 3D models of melanoma in human skin. Principal component analysis was used to investigate differences between the tumor and normal tissue and between the peri-tumor area and the normal skin. Two human melanoma cells lines A375SM and C8161 were investigated and compared in 3D melanoma models. Changes were found in protein conformations and tryptophan configurations across the entire melanoma samples, in tyrosine orientation and in more fluid lipid packing only in tumor dense areas, and in increased glycogen content in the peri-tumor areas of melanoma. Raman spectroscopy revealed changes around the perimeter of a melanoma tumor as well as detecting differences between the tumor and the normal tissue. PMID:27158185

  13. Cathepsin B inhibition interferes with metastatic potential of human melanoma: an in vitro and in vivo study

    PubMed Central

    2010-01-01

    Background Cathepsins represent a group of proteases involved in determining the metastatic potential of cancer cells. Among these are cysteinyl- (e.g. cathepsin B and cathepsin L) and aspartyl-proteases (e.g. cathepsin D), normally present inside the lysosomes as inactive proenzymes. Once released in the extracellular space, cathepsins contribute to metastatic potential by facilitating cell migration and invasiveness. Results In the present work we first evaluated, by in vitro procedures, the role of cathepsins B, L and D, in the remodeling, spreading and invasiveness of eight different cell lines: four primary and four metastatic melanoma cell lines. Among these, we considered two cell lines derived from a primary cutaneous melanoma and from a supraclavicular lymph node metastasis of the same patient. To this purpose, the effects of specific chemical inhibitors of these proteases, i.e. CA-074 and CA-074Me for cathepsin B, Cathepsin inhibitor II for cathepsin L, and Pepstatin A for cathepsin D, were evaluated. In addition, we also analyzed the effects of the biological inhibitors of these cathepsins, i.e. specific antibodies, on cell invasiveness. We found that i) cathepsin B, but not cathepsins L and D, was highly expressed at the surface of metastatic but not of primary melanoma cell lines and that ii) CA-074, or specific antibodies to cathepsin B, hindered metastatic cell spreading and dissemination, whereas neither chemical nor biological inhibitors of cathepsins D and L had significant effects. Accordingly, in vivo studies, i.e. in murine xenografts, demonstrated that CA-074 significantly reduced human melanoma growth and the number of artificial lung metastases. Conclusions These results suggest a reappraisal of the use of cathepsin B inhibitors (either chemical or biological) as innovative strategy in the management of metastatic melanoma disease. PMID:20684763

  14. Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets

    PubMed Central

    Litou, Zoi I.; Konstandi, Ourania A.; Giannopoulou, Aikaterini F.; Anastasiadou, Ema; Voutsinas, Gerassimos E.; Tsangaris, George Th.; Stravopodis, Dimitrios J.

    2017-01-01

    Cutaneous melanoma is a malignant tumor of skin melanocytes that are pigment-producing cells located in the basal layer (stratum basale) of epidermis. Accumulation of genetic mutations within their oncogenes or tumor-suppressor genes compels melanocytes to aberrant proliferation and spread to distant organs of the body, thereby resulting in severe and/or lethal malignancy. Metastatic melanoma’s heavy mutational load, molecular heterogeneity and resistance to therapy necessitate the development of novel biomarkers and drug-based protocols that target key proteins involved in perpetuation of the disease. To this direction, we have herein employed a nano liquid chromatography-tandem mass spectrometry (nLC-MS/MS) proteomics technology to profile the deep-proteome landscape of WM-266-4 human metastatic melanoma cells. Our advanced melanoma-specific catalogue proved to contain 6,681 unique proteins, which likely constitute the hitherto largest single cell-line-derived proteomic collection of the disease. Through engagement of UNIPROT, DAVID, KEGG, PANTHER, INTACT, CYTOSCAPE, dbEMT and GAD bioinformatics resources, WM-266-4 melanoma proteins were categorized according to their sub-cellular compartmentalization, function and tumorigenicity, and successfully reassembled in molecular networks and interactomes. The obtained data dictate the presence of plastically inter-converted sub-populations of non-cancer and cancer stem cells, and also indicate the oncoproteomic resemblance of melanoma to glioma and lung cancer. Intriguingly, WM-266-4 cells seem to be subjected to both epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) programs, with 1433G and ADT3 proteins being identified in the EMT/MET molecular interface. Oncogenic addiction of WM-266-4 cells to autocrine/paracrine signaling of IL17-, DLL3-, FGF(2/13)- and OSTP-dependent sub-routines suggests their critical contribution to the metastatic melanoma chemotherapeutic refractoriness. Interestingly, the

  15. Uveal melanoma: estimating prognosis.

    PubMed

    Kaliki, Swathi; Shields, Carol L; Shields, Jerry A

    2015-02-01

    Uveal melanoma is the most common primary malignant tumor of the eye in adults, predominantly found in Caucasians. Local tumor control of uveal melanoma is excellent, yet this malignancy is associated with relatively high mortality secondary to metastasis. Various clinical, histopathological, cytogenetic features and gene expression features help in estimating the prognosis of uveal melanoma. The clinical features associated with poor prognosis in patients with uveal melanoma include older age at presentation, male gender, larger tumor basal diameter and thickness, ciliary body location, diffuse tumor configuration, association with ocular/oculodermal melanocytosis, extraocular tumor extension, and advanced tumor staging by American Joint Committee on Cancer classification. Histopathological features suggestive of poor prognosis include epithelioid cell type, high mitotic activity, higher values of mean diameter of ten largest nucleoli, higher microvascular density, extravascular matrix patterns, tumor-infiltrating lymphocytes, tumor-infiltrating macrophages, higher expression of insulin-like growth factor-1 receptor, and higher expression of human leukocyte antigen Class I and II. Monosomy 3, 1p loss, 6q loss, and 8q and those classified as Class II by gene expression are predictive of poor prognosis of uveal melanoma. In this review, we discuss the prognostic factors of uveal melanoma. A database search was performed on PubMed, using the terms "uvea," "iris," "ciliary body," "choroid," "melanoma," "uveal melanoma" and "prognosis," "metastasis," "genetic testing," "gene expression profiling." Relevant English language articles were extracted, reviewed, and referenced appropriately.

  16. AM251 induces apoptosis and G2/M cell cycle arrest in A375 human melanoma cells.

    PubMed

    Carpi, Sara; Fogli, Stefano; Romanini, Antonella; Pellegrino, Mario; Adinolfi, Barbara; Podestà, Adriano; Costa, Barbara; Da Pozzo, Eleonora; Martini, Claudia; Breschi, Maria Cristina; Nieri, Paola

    2015-08-01

    Human cutaneous melanoma is an aggressive and chemotherapy-resistant type of cancer. AM251 is a cannabinoid type 1 (CB1) receptor antagonist/inverse agonist with off-target antitumor activity against pancreatic and colon cancer cells. The current study aimed to characterize the in-vitro antimelanoma activity of AM251. The BRAF V600E mutant melanoma cell line, A375, was used as an in-vitro model system. Characterization tools included a cell viability assay, nuclear morphology assessment, gene expression, western blot, flow cytometry with Annexin V-FITC/7-AAD double staining, cell cycle analyses, and measurements of changes in intracellular cAMP and calcium concentrations. AM251 exerted a marked cytotoxic effect against A375 human melanoma cells with potency comparable with that observed for cisplatin without significant changes in the human dermal fibroblasts viability. AM251, at a concentration that approximates the IC50, downregulated genes encoding antiapoptotic proteins (BCL2 and survivin) and increased transcription levels of proapoptotic BAX, induced alteration of Annexin V reactivity, DNA fragmentation, chromatin condensation in the cell nuclei, and G2/M phase arrest.AM251 also induced a 40% increase in the basal cAMP levels, but it did not affect intracellular calcium concentrations. The involvement of GPR55, TRPA1, and COX-2 in the AM251 mechanism of action was excluded. The combination of AM251 with celecoxib produced a synergistic antitumor activity, although the mechanism underlying this effect remains to be elucidated. This study provides the first evidence of a proapoptotic effect and G2/M cell cycle arrest of AM251 on A375 cells. This compound may be a potential prototype for the development of promising diarylpyrazole derivatives to be evaluated in human cutaneous melanoma.

  17. CPI-17 drives oncogenic Ras signaling in human melanomas via Ezrin-Radixin-Moesin family proteins

    PubMed Central

    Riecken, Lars Björn; Zoch, Ansgar; Wiehl, Ulrike; Reichert, Sabine; Scholl, Ingmar; Cui, Yan; Ziemer, Mirjana; Anderegg, Ulf; Hagel, Christian; Morrison, Helen

    2016-01-01

    Hyperactive Ras signaling has strong oncogenic effects causing several different forms of cancer. Hyperactivity is frequently induced by mutations within Ras itself, which account for up to 30% of all human cancers. In addition, hyperactive Ras signaling can also be triggered independent of Ras by either mutation or by misexpression of various upstream regulators and immediate downstream effectors. We have previously reported that C-kinase potentiated protein phosphatase-1 inhibitor of 17 kDa (CPI-17) can drive Ras activity and promote tumorigenic transformation by inhibition of the tumor suppressor Merlin. We now describe an additional element of this oncogenic mechanism in the form of the ezrin-radixin-moesin (ERM) protein family, which exhibits opposing roles in Ras activity control. Thus, CPI-17 drives Ras activity and tumorigenesis in a two-fold way; inactivation of the tumor suppressor merlin and activation of the growth promoting ERM family. The in vivo significance of this oncogenic switch is highlighted by demonstrating CPI-17's involvement in human melanoma pathogenesis. PMID:27793041

  18. MicroRNA-155 targets the SKI gene in human melanoma cell lines.

    PubMed

    Levati, Lauretta; Pagani, Elena; Romani, Sveva; Castiglia, Daniele; Piccinni, Eugenia; Covaciu, Claudia; Caporaso, Patrizia; Bondanza, Sergio; Antonetti, Francesca R; Bonmassar, Enzo; Martelli, Fabio; Alvino, Ester; D'Atri, Stefania

    2011-06-01

    The SKI protein is a transcriptional coregulator over-expressed in melanoma. Experimentally induced down-regulation of SKI inhibits melanoma cell growth in vitro and in vivo. MicroRNAs (miRNAs) negatively modulate gene expression and have been implicated in oncogenesis. We previously showed that microRNA-155 (miR-155) is down-regulated in melanoma cells as compared with normal melanocytes and that its ectopic expression impairs proliferation and induces apoptosis. Here, we investigated whether miR-155 could mediate melanoma growth inhibition via SKI gene silencing. Luciferase reporter assays demonstrated that miR-155 interacted with SKI 3'UTR and impaired gene expression. Transfection of melanoma cells with miR-155 reduced SKI levels, while inhibition of endogenous miR-155 up-regulated SKI expression. Specifically designed small interfering RNAs reduced SKI expression and inhibited proliferation. However, melanoma cells over-expressing a 3'UTR-deleted SKI were still susceptible to the antiproliferative effect of miR-155. Our data demonstrate for the first time that SKI is a target of miR-155 in melanoma. However, impairment of SKI expression is not the leading mechanism involved in the growth-suppressive effect of miR-155 found in this malignancy.

  19. Statins Reduce Melanoma Development and Metastasis through MICA Overexpression.

    PubMed

    Pich, Christine; Teiti, Iotefa; Rochaix, Philippe; Mariamé, Bernard; Couderc, Bettina; Favre, Gilles; Tilkin-Mariamé, Anne-Françoise

    2013-01-01

    Survival of melanoma patients after metastases detection remains short. Several clinical trials have shown moderate efficiency in improving patient survival, and the search for pharmacological agents to enhance the immune response and reduce melanoma metastases is still necessary. Statins block the mevalonate pathway, which leads to decreases in GTPase isoprenylation and activity, particularly those of the Ras superfamily. They are widely used as hypocholesterolemic agents in cardiovascular diseases and several studies have shown that they also have protective effects against cancers. Furthermore, we have previously demonstrated that treatment of melanoma cells with inhibitors of the mevalonate pathway, such as statins, favor the development of specific adaptive immune responses against these tumors. In the present study, we tested statin impact on the innate immune response against human metastatic melanoma cells. Our data shows that treatment of two human melanoma cell lines with statins induced a weak but significant increase of MHC class I Chain-related protein A (MICA) membrane expression. Peroxisome Proliferator-Activated Receptor gamma is involved in this statin-induced MICA overexpression, which is independent of Ras and Rho GTPase signaling pathways. Interestingly, this MICA overexpression makes melanoma cells more sensitive to in vitro lysis by NK cells. The impact of statin treatment on in vivo development of melanoma tumors and metastases was investigated in nude mice, because murine NK cells, which express NKG2D receptors, are able to recognize and kill human tumor cells expressing MICA. The results demonstrated that both local tumor growth and pulmonary metastases were strongly inhibited in nude mice injected with statin-treated melanoma cells. These results suggest that statins could be effective in melanoma immunotherapy treatments.

  20. Simulated microgravity reduces mRNA levels of multidrug resistance genes 4 and 5 in non-metastatic human melanoma cells

    NASA Astrophysics Data System (ADS)

    Eiermann, Peter; Tsiockas, Wasiliki; Hauslage, Jens; Hemmersbach, Ruth; Gerzer, Rupert; Ivanova, Krassimira

    Multidrug resistance proteins (MRP) are members of the ATP-binding cassette transporter superfamily that are able to export a large variety of substances into the extracellular space in-cluding nucleoside and nucleotide base analogs used in antiviral and anticancer therapy. MRP4 and 5 (MRP4/5) particularly transport cyclic nucleotides, e.g. guanosine 3',5'-cyclic monophos-phate (cGMP). The second messenger cGMP, which is synthesized by the catalytic activity of the guanylyl cyclase (GC), plays an import role in vasodilatation, smooth muscle relaxation, and nitric oxide (NO)-induced perturbation of melanocyte-extracellular matrix interactions. In previous studies we have reported that different GC isoforms are responsible for cGMP synthe-sis in melanocytic cells. Normal human melanocytes and non-metastatic melanoma cell lines predominantly express the NO-sensitive soluble GC isoform (sGC), a heterodimeric protein consisting of α and β subunits. Metastatic melanoma cells lack the expression of the β sub-unit and show up-regulated activities of the particulate isoforms. We have further found that long-term exposure to hypergravity (5 g for 24 h) induced an increased cGMP export in normal human melanocytes, and non-metastatic, but not in metastatic human melanoma cells as a re-sult of up-regulated MRP4/5 expression. The aim of the present study is to investigate whether simulated microgravity may also alter the expression of MRP4/5 in non-metastatic melanoma cells. Experiments were performed using a fast-rotating clinostat (60 rpm) with one rotation axis. The non-metastatic 1F6 melanoma cells were exposed to simulated microgravity (up to 1.21x10-2 g) for 24 h. The mRNA analyses were performed by a relative calibrator-normalized and efficiency corrected quantitative polymerase chain reaction (Light Cycler R , Roche). Our data show a reduced expression of approximately 35% for MRP4 and of 50% for MRP5 in simulated microgravity in comparison to 1 g controls. Also, the

  1. Ex Vivo and In Vivo Imaging and Biodistribution of Aptamers Targeting the Human Matrix MetalloProtease-9 in Melanomas

    PubMed Central

    Kryza, David; Debordeaux, Frédéric; Azéma, Laurent; Hassan, Aref; Paurelle, Olivier; Schulz, Jürgen; Savona-Baron, Catherine; Charignon, Elsa; Bonazza, Pauline; Taleb, Jacqueline; Fernandez, Philippe; Janier, Marc; Toulmé, Jean Jacques

    2016-01-01

    The human Matrix MetalloProtease-9 (hMMP-9) is overexpressed in tumors where it promotes the release of cancer cells thus contributing to tumor metastasis. We raised aptamers against hMMP-9, which constitutes a validated marker of malignant tumors, in order to design probes for imaging tumors in human beings. A chemically modified RNA aptamer (F3B), fully resistant to nucleases was previously described. This compound was subsequently used for the preparation of F3B-Cy5, F3B-S-acetylmercaptoacetyltriglycine (MAG) and F3B-DOTA. The binding properties of these derivatives were determined by surface plasmon resonance and electrophoretic mobility shift assay. Optical fluorescence imaging confirmed the binding to hMMP-9 in A375 melanoma bearing mice. Quantitative biodistribution studies were performed at 30 min, 1h and 2 h post injection of 99mTc-MAG-aptamer and 111In-DOTA-F3B. 99mTc radiolabeled aptamer specifically detected hMMP-9 in A375 melanoma tumors but accumulation in digestive tract was very high. Following i.v. injection of 111In-DOTA-F3B, high level of radioactivity was observed in kidneys and bladder but digestive tract uptake was very limited. Tumor uptake was significantly (student t test, p<0.05) higher for 111In-DOTA-F3B with 2.0%ID/g than for the 111In-DOTA-control oligonucleotide (0.7%ID/g) with tumor to muscle ratio of 4.0. Such difference in tumor accumulation has been confirmed by ex vivo scintigraphic images performed at 1h post injection and by autoradiography, which revealed the overexpression of hMMP-9 in sections of human melanomas. These results demonstrate that F3B aptamer is of interest for detecting hMMP-9 in melanoma tumor. PMID:26901393

  2. 6-Bromoindirubin-3'-oxime inhibits JAK/STAT3 signaling and induces apoptosis of human melanoma cells.

    PubMed

    Liu, Lucy; Nam, Sangkil; Tian, Yan; Yang, Fan; Wu, Jun; Wang, Yan; Scuto, Anna; Polychronopoulos, Panos; Magiatis, Prokopios; Skaltsounis, Leandros; Jove, Richard

    2011-06-01

    STAT3 is persistently activated and contributes to malignant progression in various cancers. Janus activated kinases (JAK) phosphorylate STAT3 in response to stimulation by cytokines or growth factors. The STAT3 signaling pathway has been validated as a promising target for development of anticancer therapeutics. Small-molecule inhibitors of JAK/STAT3 signaling represent potential molecular-targeted cancer therapeutic agents. In this study, we investigated the role of JAK/STAT3 signaling in 6-bromoindirubin-3'-oxime (6BIO)-mediated growth inhibition of human melanoma cells and assessed 6BIO as a potential anticancer drug candidate. We found that 6BIO is a pan-JAK inhibitor that induces apoptosis of human melanoma cells. 6BIO directly inhibited JAK-family kinase activity, both in vitro and in cancer cells. Apoptosis of human melanoma cells induced by 6BIO was associated with reduced phosphorylation of JAKs and STAT3 in both dose- and time-dependent manners. Consistent with inhibition of STAT3 signaling, expression of the antiapoptotic protein Mcl-1 was downregulated. In contrast to the decreased levels of phosphorylation of JAKs and STAT3, phosphorylation levels of the Akt and mitogen-activated protein kinase (MAPK) signaling proteins were not inhibited in cells treated with 6BIO. Importantly, 6BIO suppressed tumor growth in vivo with low toxicity in a mouse xenograft model of melanoma. Taken together, these results show that 6BIO is a novel pan-JAK inhibitor that can selectively inhibit STAT3 signaling and induces tumor cell apoptosis. Our findings support further development of 6BIO as a potential anticancer therapeutic agent that targets JAK/STAT3 signaling in tumor cells.

  3. Mutational activation of BRAF confers sensitivity to transforming growth factor beta inhibitors in human cancer cells

    PubMed Central

    Spender, Lindsay C.; Ferguson, G. John; Liu, Sijia; Cui, Chao; Girotti, Maria Romina; Sibbet, Gary; Higgs, Ellen B.; Shuttleworth, Morven K.; Hamilton, Tom; Lorigan, Paul; Weller, Michael; Vincent, David F.; Sansom, Owen J.; Frame, Margaret; Dijke, Peter ten; Marais, Richard; Inman, Gareth J.

    2016-01-01

    Recent data implicate elevated transforming growth factor-β (TGFβ) signalling in BRAF inhibitor drug-resistance mechanisms, but the potential for targeting TGFβ signalling in cases of advanced melanoma has not been investigated. We show that mutant BRAFV600E confers an intrinsic dependence on TGFβ/TGFβ receptor 1 (TGFBR1) signalling for clonogenicity of murine melanocytes. Pharmacological inhibition of the TGFBR1 blocked the clonogenicity of human mutant BRAF melanoma cells through SMAD4-independent inhibition of mitosis, and also inhibited metastasis in xenografted zebrafish. When investigating the therapeutic potential of combining inhibitors of mutant BRAF and TGFBR1, we noted that unexpectedly, low-dose PLX-4720 (a vemurafenib analogue) promoted proliferation of drug-naïve melanoma cells. Pharmacological or pharmacogenetic inhibition of TGFBR1 blocked growth promotion and phosphorylation of SRC, which is frequently associated with vemurafenib-resistance mechanisms. Importantly, vemurafenib-resistant patient derived cells retained sensitivity to TGFBR1 inhibition, suggesting that TGFBR1 could be targeted therapeutically to combat the development of vemurafenib drug-resistance. PMID:27835901

  4. Fibroblasts from patients with hereditary cutaneous malignant melanoma are abnormally sensitive to the mutagenic effect of simulated sunlight and 4-nitroquinoline 1-oxide

    SciTech Connect

    Howell, J.N.; Greene, M.H.; Corner, R.C.; Maher, V.M.; McCormick, J.J.

    1984-02-01

    Because of a possible etiologic link between mutations and carcinogenesis, the authors compared fibroblasts derived from skin biopsies of several patients with hereditary cutaneous malignant melanoma and the dysplastic nevus syndrome for sensitivity to the mutagenic and/or cytotoxic effect of broad-spectrum simulated sunlight and of a UV mimetic carcinogen, 4-nitroquinoline 1-oxide (4NQO). The genetic marker was resistant to 6-thioguanine; loss of colony-forming ability was the assay for cytotoxicity. All five strains tested were more sensitive than normal to the killing effect of 4NQO (slopes of survival curves were 2- to 3-fold steeper), but only one strain was hypersensitive to killing by Sun Lamp radiation. Two strains were tested for mutagenicity. The response of each to the mutagenic action of these agents corresponded to its response to cell killing. Both strains were hypermutable after exposure to 4NQO, but only one showed a higher than normal frequency of mutants induced by simulated sunlight. The finding that nonmalignant fibroblasts from patients with a hereditary variant of malignant fibroblasts from patients with a hereditary variant of malignant melanoma are abnormally susceptible to carcinogen-induced mutations suggests that hypersensitivity to mutagens contributes to risk of melanoma in patients. It also supports the somatic cell mutation hypothesis for the origin of cancer. 46 references, 3 figures.

  5. In vitro long-term treatment with MAPK inhibitors induces melanoma cells with resistance plasticity to inhibitors while retaining sensitivity to CD8 T cells

    PubMed Central

    Rowdo, Florencia Paula Madorsky; Barón, Antonela; Von Euw, Erika María; Mordoh, José

    2017-01-01

    The development of BRAF V600 and MEK inhibitors constitutes a breakthrough in the treatment of patients with BRAF-mutated metastatic melanoma. However, although there is an increase in overall survival, these patients generally confront recurrence, and several resistance mechanisms have already been described. In the present study we describe a different resistance mechanism. After several weeks of long-term in vitro treatment of two different V600E BRAF-mutated melanoma cell lines with MARK inhibitors, PLX4032 and/or GDC-0973, the majority of the cells died whereas some remained viable and quiescent (SUR). Markedly, discontinuing treatment of SUR cells with MAPK inhibitors allowed the population to regrow and these cells retained drug sensitivity equal to that of the parental cells. SUR cells had increased expression levels of CD271 and ABCB5 and presented senescence-associated characteristics. Notably, SUR cells were efficiently lysed by cytotoxic T lymphocytes recognizing MART-1 and gp100 melanoma differentiation antigens. We propose quiescent plasticity as a mechanism of resistance to BRAF and MEK inhibitors while retaining sensitivity to immune effectors. PMID:28098866

  6. Spectral regions contributing to melanoma: a personal view.

    PubMed

    Setlow, R B

    1999-09-01

    Although human cutaneous melanoma is a complicated disease, the principal etiologic agent for its incidence in fair skin individuals is exposure to sunlight. In order to understand the epidemiology of melanoma - temporal effects, latitude effects, sunscreen effects, albino susceptibility, and differences from nonmelanoma skin cancer -one must approach the problem by obtaining clues indicating which wavelengths in sunlight are effective in inducing melanomas. One way is to use an animal model. At present, the only suitable model is a backcross hybrid of small tropical fish of the genus Xiphophorus, bred to have only one tumor suppressor gene. Single UV exposures to 7-d-old fish induce melanomas readily observable by 4 mo. The initial slopes of dose-response curves for exposures at 302, 313, 365, 405, 436, and 547 nm yield sensitivity as a function of wavelength. This action spectrum does not look like the spectrum for light absorption by DNA (mostly in the UVB), but has appreciable sensitivities in the UVA and visible regions, and looks like a direct effect of light on DNA plus a large indirect effect on DNA by absorption of light by the intracellular melanin. Because the UVB is only a fraction of solar irradiance, one may calculate that 90% of melanoma induction in humans arises from UVA and visible, assuming the human spectrum is similar to the fish spectrum. The implications of this calculation are that (i) depletion of stratospheric ozone will not affect melanoma incidence, (ii) an increase in sun exposure time as a result of using UVB sunscreens could increase the risk of melanoma, and (iii) the use of high UVA sun tanning devices could increase the risk of melanoma.

  7. Human Mars Ascent Vehicle Performance Sensitivities

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara P.; Thomas, Herbert D.

    2016-01-01

    Human Mars mission architecture studies have shown that the ascent vehicle mass drives performance requirements for the descent and in-space transportation elements. Understanding the sensitivity of Mars ascent vehicle (MAV) mass to various mission and vehicle design choices enables overall transportation system optimization. This paper presents the results of a variety of sensitivity trades affecting MAV performance including: landing site latitude, target orbit, initial thrust to weight ratio, staging options, specific impulse, propellant type and engine design.

  8. Etiology of melanoma.

    PubMed

    Koh, H K; Sinks, T H; Geller, A C; Miller, D R; Lew, R A

    1993-01-01

    Although the precise etiology of melanoma remains unknown, much data link sunlight to melanoma. The imperfect evidence associating sun exposure (particularly UVB radiation) with melanoma emerges from human data, obviating problems inherent in extrapolation from animal and other models. However, the mechanism by which sunlight might possibly initiate or promote melanoma remains obscure. Some clarification should emerge from the potential isolation of genes that carry susceptibility to melanoma in families prone to the disease; such work could serve as a basis to distinguish genetic and environmental influences in melanoma [167]. Continued studies of faulty DNA repair in XP patients may elucidate the steps in mutagenesis and carcinogenesis. Future case-control studies must address the limits on the accuracy of recall and the limits on statistical methods to separate the cluster of phenotypic risk needed in determining biologically effective dose. Animal and in vitro studies must contribute more insight. Further research in the South American opossum models appears promising [72]. Although ozone depletion has been documented, there has been little definitive evidence of subsequent increase of UVB at the Earth's surface. Nevertheless, the threat posed by ozone depletion deserves continued environmental action and public education. The role of precursor lesions, particularly dysplastic nevi/atypical moles, must be clarified with future research. The distribution of melanoma among various work forces suggests that occupational risk factors may play an important role in the etiology of this disease [168-170]. The consistent reports of excess melanoma among accountants, clerical workers, professional workers, and teachers deserve further study. Furthermore, evidence of excesses in printing and press, petrochemical, and the telecommunications industries require follow-up. Carefully planned studies that account for nonoccupational risk factors are recommended. Research over

  9. Melanoma Expressed-CD70 Is Regulated by RhoA and MAPK Pathways without Affecting Vemurafenib Treatment Activity

    PubMed Central

    Sarrabayrouse, Guillaume; Gallardo, Franck; Gence, Rémi; Tilkin-Mariamé, Anne-Françoise

    2016-01-01

    CD70 is a costimulatory molecule member of the Tumor Necrosis Factor family that is expressed on activated immune cells. Its ectopic expression has been described in several types of cancer cells including lymphomas, renal cell carcinomas and glioblastomas. We have recently described its expression in a part of tumor cells from the vast majority of melanoma biopsies and human melanoma cell lines, and found that CD70 expression decreased over time as the disease progressed. Here, we show that RhoA, BRAF and Mitogen Activating Protein Kinase pathways are involved in the positive transcriptional regulation of CD70 expression in melanomas. Interestingly, the clinical inhibitor of the common BRAF V600E/D variants, Vemurafenib (PLX-4032), which is currently used to treat melanoma patients with BRAF V600E/D-mutated metastatic melanomas, decreased CD70 expression in human CD70+ melanoma cell lines. This decrease was seen in melanoma cells both with and without the BRAFV600E/D mutation, although was less efficient in those lacking the mutation. But interestingly, by silencing CD70 in CD70+ melanoma cell lines we show that PLX-4032-induced melanoma cell killing and its inhibitory effect on MAPK pathway activation are unaffected by CD70 expression. Consequently, our work demonstrates that CD70 ectopic expression in melanomas is not a valuable biomarker to predict tumor cells sensitivity to BRAF V600 inhibitors. PMID:26828592

  10. Melanoma Expressed-CD70 Is Regulated by RhoA and MAPK Pathways without Affecting Vemurafenib Treatment Activity.

    PubMed

    Pich, Christine; Teiti, Iotefa; Sarrabayrouse, Guillaume; Gallardo, Franck; Gence, Rémi; Tilkin-Mariamé, Anne-Françoise

    2016-01-01

    CD70 is a costimulatory molecule member of the Tumor Necrosis Factor family that is expressed on activated immune cells. Its ectopic expression has been described in several types of cancer cells including lymphomas, renal cell carcinomas and glioblastomas. We have recently described its expression in a part of tumor cells from the vast majority of melanoma biopsies and human melanoma cell lines, and found that CD70 expression decreased over time as the disease progressed. Here, we show that RhoA, BRAF and Mitogen Activating Protein Kinase pathways are involved in the positive transcriptional regulation of CD70 expression in melanomas. Interestingly, the clinical inhibitor of the common BRAF V600E/D variants, Vemurafenib (PLX-4032), which is currently used to treat melanoma patients with BRAF V600E/D-mutated metastatic melanomas, decreased CD70 expression in human CD70+ melanoma cell lines. This decrease was seen in melanoma cells both with and without the BRAFV600E/D mutation, although was less efficient in those lacking the mutation. But interestingly, by silencing CD70 in CD70+ melanoma cell lines we show that PLX-4032-induced melanoma cell killing and its inhibitory effect on MAPK pathway activation are unaffected by CD70 expression. Consequently, our work demonstrates that CD70 ectopic expression in melanomas is not a valuable biomarker to predict tumor cells sensitivity to BRAF V600 inhibitors.

  11. Mass spectrometric and Edman sequencing of lipocortin I isolated by two-dimensional SDS/PAGE of human melanoma lysates.

    PubMed Central

    Hall, S C; Smith, D M; Masiarz, F R; Soo, V W; Tran, H M; Epstein, L B; Burlingame, A L

    1993-01-01

    We have integrated preparative two-dimensional polyacrylamide gel electrophoresis with high-performance tandem mass spectrometry and Edman degradation. By using this approach, we have isolated and identified, by partial sequencing, a human melanoma protein (34 kDa, pI 6.4) as lipocortin I. To our knowledge, this protein was not previously known to be associated with melanoma cells. The identity of the protein was confirmed by two-dimensional immunoblot analysis. High-energy collision-induced dissociation analysis revealed the sequence and acetylation of the N-terminal tryptic peptide and an acrylamide-modified cysteine in another tryptic peptide. Thus, knowledge concerning both the primary structure and covalent modifications of proteins isolated from two-dimensional gels can be obtained directly by this approach, which is applicable to a broad range of biological problems. Images Fig. 1 Fig. 5 PMID:8446611

  12. Synthesis and shedding of hyaluronan from plasma membranes of human fibroblasts and metastatic and non-metastatic melanoma cells.

    PubMed Central

    Lüke, H J; Prehm, P

    1999-01-01

    The regulation of hyaluronan synthesis and shedding was analysed in human fibroblasts and in two melanoma cells that differed in the metastatic potential and proteolysis of the hyaluronan receptor CD44. Dissociation of nascent hyaluronan from plasma membranes isolated from fibroblasts by high salt concentrations led to activation of hyaluronan synthase. Hyaluronan synthesis was also enhanced in plasma membranes from fibroblasts that had been treated with hyaluronidase or trypsin. Hyaluronan oligosaccharides stimulated hyaluronan production in fibroblast cultures. These results indicated that nascent high-molecular-mass hyaluronan inhibited its own chain elongation, if it was retained in the vicinity of the synthase by cell-surface receptors. The results also indicated that increased hyaluronan synthesis and shedding correlated with proteolysis of CD44 on the melanoma cell lines, which has been observed by others. PMID:10493913

  13. Sunitinib treatment does not improve blood supply but induces hypoxia in human melanoma xenografts

    PubMed Central

    2012-01-01

    Background Antiangiogenic agents that disrupt the vascular endothelial growth factor pathway have been demonstrated to normalize tumor vasculature and improve tumor oxygenation in some studies and to induce hypoxia in others. The aim of this preclinical study was to investigate the effect of sunitinib treatment on the morphology and function of tumor vasculature and on tumor oxygenation. Methods A-07-GFP and R-18-GFP human melanoma xenografts grown in dorsal window chambers were used as preclinical tumor models. Morphologic parameters of tumor vascular networks were assessed from high-resolution transillumination images, and tumor blood supply time was assessed from first-pass imaging movies recorded after a bolus of 155 kDa tetramethylrhodamine isothiocyanate-labeled dextran had been administered intravenously. Tumor hypoxia was assessed from immunohistochemical preparations of the imaged tissue by use of pimonidazole as a hypoxia marker. Results Sunitinib treatment reduced vessel densities, increased vessel segment lengths, did not affect blood supply times, and increased hypoxic area fractions. Conclusion Sunitinib treatment did not improve vascular function but induced hypoxia in A-07-GFP and R-18-GFP tumors. PMID:22947392

  14. Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis.

    PubMed

    Legg, James; Jensen, Uffe B; Broad, Simon; Leigh, Irene; Watt, Fiona M

    2003-12-01

    Human interfollicular epidermis is renewed by stem cells that are clustered in the basal layer in a patterned, non-random distribution. Stem cells can be distinguished from other keratinocytes by high expression of beta1 integrins and lack of expression of terminal differentiation markers; they divide infrequently in vivo but form actively growing colonies in culture. In a search for additional stem cell markers, we observed heterogeneous epidermal expression of melanoma chondroitin sulphate proteoglycan (MCSP). MCSP was expressed by those keratinocytes with the highest beta1 integrin levels. In interfollicular epidermis, expression was confined to non-cycling cells and, in culture, to self-renewing clones. However, fluorescence-activated cell sorting on the basis of MCSP and beta1 integrin expression gave no more enrichment for clonogenic keratinocytes than sorting for beta1 integrins alone. To interfere with endogenous MCSP, we retrovirally infected keratinocytes with a chimera of the CD8 extracellular domain and the MCSP cytoplasmic domain. CD8/MCSP did not affect keratinocyte proliferation or differentiation but the cohesiveness of keratinocytes in isolated clones or reconstituted epidermal sheets was greatly reduced. CD8/MCSP caused stem cell progeny to scatter without differentiating. CD8/MCSP did not alter keratinocyte motility but disturbed cadherin-mediated cell-cell adhesion and the cortical actin cytoskeleton, effects that could be mimicked by inhibiting Rho. We conclude that MCSP is a novel marker for epidermal stem cells that contributes to their patterned distribution by promoting stem cell clustering.

  15. Radiolabeled porphyrin versus gallium-67 citrate for the detection of human melanoma in athymic mice

    SciTech Connect

    Maric, N.; Chan, S. Ming; Hoffer, P.B.; Duray, P.

    1987-01-01

    We performed the biodistribution and imaging studies of /sup 111/In and /sup 67/Ga labeled tetra(4-N-methylpyridyl) porphine, (T4NMPYP), and compared it to that of /sup 67/Ga citrate in athymic mice bearing a human melanoma xenograft. The biodistribution results of both /sup 111/In and /sup 67/Ga labeled T4NMPYP (3, 6, 24, and 48 hours) were similar but differed from that of /sup 67/Ga citrate (48 hours). The optimum tumor uptake of both radiolabeled porphyrins was at 6 hours postinjection and was lower than the tumor uptake of /sup 67/Ga citrate at 48 hours postinjection. Kidney was the only organ showing higher uptake of radiolabeled porphyrin compared to that of /sup 67/Ga citrate. The imaging studies performed with /sup 111/In T4NMPYP and /sup 67/Ga citrate correspond to the biodistribution results. Osteomyelitis present in one mouse showed good localization of /sup 111/In T4NMPYP. 15 refs., 3 figs., 5 tabs.

  16. Protective effect of quercetin and luteolin in human melanoma HMB-2 cells.

    PubMed

    Horváthová, Katarína; Chalupa, Ivan; Sebová, Lívia; Tóthová, Darina; Vachálková, Anna

    2005-01-03

    Multifunctional effects of flavonoids are reported to be markedly connected with their structure and the functional groups in the molecule. The important role in the activity play C2-C3 double bond, hydroxyl group at C3 and the number of hydroxyl groups at phenyl ring (B). In this paper, the DNA protective free radical scavenging potential of quercetin (QU) and luteolin (LU) against H2O2 and their clastogenic effect alone and in combination with melphalan (MH) were investigated in human melanoma HMB-2 cells. Elevated frequency of chromosomal aberrations induced by MH, that at high doses have shown a variety of toxic side effects, was statistically decreased by studied flavonoids regarding to control (QU at the concentration of 50 microM and LU already at the concentration of 20 microM). The results concerning DNA protective potential against free radicals in HMB-2 cells demonstrated that QU and LU have significant effect in dose dependent manner. The percentage of QU protective effect is 40% at the concentration 20 microM, resp. 80% at the concentration 100 microM. Comparable values were obtained with LU. Results are correlated to their structural arrangement and organization of the hydroxyl groups.

  17. Ion therapy for uveal melanoma in new human eye phantom based on GEANT4 toolkit.

    PubMed

    Mahdipour, Seyed Ali; Mowlavi, Ali Asghar

    2016-01-01

    Radiotherapy with ion beams like proton and carbon has been used for treatment of eye uveal melanoma for many years. In this research, we have developed a new phantom of human eye for Monte Carlo simulation of tumors treatment to use in GEANT4 toolkit. Total depth-dose profiles for the proton, alpha, and carbon incident beams with the same ranges have been calculated in the phantom. Moreover, the deposited energy of the secondary particles for each of the primary beams is calculated. The dose curves are compared for 47.8MeV proton, 190.1MeV alpha, and 1060MeV carbon ions that have the same range in the target region reaching to the center of tumor. The passively scattered spread-out Bragg peak (SOBP) for each incident beam as well as the flux curves of the secondary particles including neutron, gamma, and positron has been calculated and compared for the primary beams. The high sharpness of carbon beam׳s Bragg peak with low lateral broadening is the benefit of this beam in hadrontherapy but it has disadvantages of dose leakage in the tail after its Bragg peak and high intensity of neutron production. However, proton beam, which has a good conformation with tumor shape owing to the beam broadening caused by scattering, can be a good choice for the large-size tumors.

  18. Topical Delivery of 5-Fluorouracil from Pheroid™ Formulations and the In Vitro Efficacy Against Human Melanoma.

    PubMed

    Chinembiri, Tawona N; Gerber, Minja; du Plessis, Lissinda; du Preez, Jan; du Plessis, Jeanetta

    2015-12-01

    Drug delivery vehicles can influence the topical delivery and the efficacy of an active pharmaceutical ingredient (API). In this study, the influence of Pheroid™ technology, which is a unique colloidal drug delivery system, on the skin permeation and antimelanoma efficacy of 5-fluorouracil were investigated. Lotions containing Pheroid™ with different concentrations of 5-fluorouracil were formulated then used in Franz cell skin diffusion studies and tape stripping. The in vitro efficacy of 5-fluorouracil against human melanoma cells (A375) was investigated using a flow cytometric apoptosis assay. Statistically significant concentrations of 5-fluorouracil diffused into and through the skin with Pheroid™ formulations resulting in an enhanced in vitro skin permeation from the 4.0% 5-fluorouracil lotion (p < 0.05). The stratum corneum-epidermis and epidermis-dermis retained 5-fluorouracil concentrations of 2.31 and 6.69 μg/ml, respectively, after a diffusion study with the 4.0% Pheroid™ lotion. Subsequent to the apoptosis assay, significant differences were observed between the effect of 13.33 μg/ml 5-fluorouracil in Pheroid™ lotion and the effects of the controls. The results obtained suggest that the Pheroid™ drug delivery system possibly enhances the flux and delivery of 5-fluorouracil into the skin. Therefore, using Pheroid™ could possibly be advantageous with respect to topical delivery of 5-fluorouracil.

  19. Ion therapy for uveal melanoma in new human eye phantom based on GEANT4 toolkit

    SciTech Connect

    Mahdipour, Seyed Ali; Mowlavi, Ali Asghar

    2016-07-01

    Radiotherapy with ion beams like proton and carbon has been used for treatment of eye uveal melanoma for many years. In this research, we have developed a new phantom of human eye for Monte Carlo simulation of tumors treatment to use in GEANT4 toolkit. Total depth−dose profiles for the proton, alpha, and carbon incident beams with the same ranges have been calculated in the phantom. Moreover, the deposited energy of the secondary particles for each of the primary beams is calculated. The dose curves are compared for 47.8 MeV proton, 190.1 MeV alpha, and 1060 MeV carbon ions that have the same range in the target region reaching to the center of tumor. The passively scattered spread-out Bragg peak (SOBP) for each incident beam as well as the flux curves of the secondary particles including neutron, gamma, and positron has been calculated and compared for the primary beams. The high sharpness of carbon beam's Bragg peak with low lateral broadening is the benefit of this beam in hadrontherapy but it has disadvantages of dose leakage in the tail after its Bragg peak and high intensity of neutron production. However, proton beam, which has a good conformation with tumor shape owing to the beam broadening caused by scattering, can be a good choice for the large-size tumors.

  20. Expression of the RNase III enzyme DROSHA is reduced during progression of human cutaneous melanoma

    PubMed Central

    Jafarnejad, Seyed Mehdi; Sjoestroem, Cecilia; Martinka, Magdalena; Li, Gang

    2016-01-01

    Aberrant expression of miRNAs and their biogenesis factors has been frequently observed in different types of cancer. We recently reported that expression of DICER1 is reduced in metastatic melanoma. Nevertheless, so far very little is known about the expression pattern of other miRNA biogenesis factors in this type of malignancy. Here, we investigated the expression pattern of DROSHA in a large set of melanocytic lesions by tissue microarray and immunohistochemistry (n = 409). We found that nuclear expression of DROSHA is markedly reduced in the early stages of melanoma progression (P = 0.0001) and is inversely correlated with melanoma thickness (P = 0.0001), AJCC stages (P = 0.0001), and ulceration status (P = 0.002). We also confirmed the reduced expression of nuclear DROSHA by a second specific antibody raised against a different region of the DROSHA protein. In addition, we observed that the reduced nuclear expression of DROSHA during melanoma progression is accompanied by an increased cytoplasmic expression of this protein (P = 0.0001). Finally, we found that expression pattern of DROSHA varies from that of DICER1 and concomitant loss of expression of both DICER1 and DROSHA confers the worse outcome for melanoma patients. Our results demonstrate a reduced nuclear expression of DROSHA which further highlights a perturbed miRNA biogenesis pathway in melanoma. In addition, the aberrant subcellular localization of DROSHA indicates possible deregulation in the mechanisms responsible for its proper localization in the nucleus. PMID:23370771

  1. Gene expression analysis of terminal differentiation of human melanoma cells highlights global reductions in cell cycle-associated genes.

    PubMed

    Huynh, Kim Mai; Kim, Gyoungmi; Kim, Dong-Joon; Yang, Suk-Jin; Park, Seong-min; Yeom, Young-Il; Fisher, Paul B; Kang, Dongchul

    2009-03-15

    Defects in differentiation are frequently observed in cancer cells. By appropriate treatment specific tumor cell types can be induced to terminally differentiate. Metastatic HO-1 human melanoma cells treated with IFN-beta plus mezerein (MEZ) undergo irreversible growth arrest and terminal differentiation followed by apoptosis. In order to define the molecular changes associated with this process, changes in gene expression were analyzed by cDNA microarray hybridization and by semi-quantitative and quantitative RT-PCRs of representative 44 genes. The expression of 210 genes was changed more than two-fold at either 8 or 24 h post-treatment (166 up and 44 down). Major biological processes associated with the up-regulated genes were response to endogenous/exogenous stimuli (38%), cell proliferation (13%), cell death (16%) and development (30%). Approximately 34% of the down-regulated genes were associated with cell cycle, 9% in DNA replication and 11% in chromosome organization, respectively. Suppression of cell cycle associated genes appeared to directly correlate with growth arrest observed in the terminal differentiation process. Expression of Calpain 3 (CAPN3) variant 6 was suppressed by the combined treatment and maintained high in various melanoma cell lines. However, over-expression of the CAPN3 did not significantly affect growth kinetics and cell viability, suggesting that up-regulation of CAPN3 alone may not be a causative, but an associated change with melanoma development. This analysis provides further insights into the spectrum of up-regulated and the first detailed investigation of down-regulated gene changes associated with and potentially causative of induction of loss of proliferative capacity and terminal differentiation in human melanoma cells.

  2. Relationships among cell survival, O6-alkylguanine-DNA alkyltransferase activity, and reactivation of methylated adenovirus 5 and herpes simplex virus type 1 in human melanoma cell lines

    SciTech Connect

    Maynard, K.; Parsons, P.G.; Cerny, T.; Margison, G.P. )

    1989-09-01

    O6-Alkylguanine-DNA alkyltransferase (ATase) activity and host cell reactivation (HCR) of 5-(3-methyl-1-triazeno)imidazole-4-carboxamide (MTIC)-methylated viruses were compared in human melanoma cell lines that were sensitive or resistant to killing by the antitumor DNA-methylating agent MTIC. Enhanced HCR of adenovirus 5 (defined as the Mer+ phenotype) generally showed a semiquantitative correlation with the natural or induced resistance of the host cells to the toxic effects of MTIC and to the level of ATase activity. However, one MTIC-resistant cell line was found (MM170) which had a low level of ATase and intermediate HCR of adenovirus. The HCR of herpes simplex virus type 1 (HSV-1) was enhanced in the Mer+ cells that had natural resistance to MTIC compared with Mer- cells. On the other hand, HCR of HSV-1 in Mer+ cells with induced resistance to MTIC was similar to that in Mer- cells. Neither adenovirus 5 nor HSV-1 infection induced ATase activity in Mer- cells. This indicates that resistance to the toxic effects of methylating agents is not invariably associated with high levels of ATase activity in human melanoma cells. Furthermore, while induction of the Mer+ phenotype from Mer- cells was usually accompanied by the recovery of ATase activity, induced Mer+ cells had less proficient repair than natural Mer+ cells, as judged quantitatively by slightly lower cellular resistance and qualitatively by deficient HCR response for HSV-1. These results suggest that the Mer- and induced Mer+ cells lack an ATase-independent DNA repair mechanism. No differences in MTIC-induced DNA repair synthesis or strand breaks were found between the Mer-, natural Mer+, and induced Mer+ phenotypes. However, UV-induced DNA repair synthesis was higher in the natural Mer+ than in the Mer- or induced Mer+ cells, both of which had increased cellular sensitivity to the antimetabolites methotrexate and hydroxyurea.

  3. Photodynamic activities of silicon phthalocyanines against achromic M6 melanoma cells and healthy human melanocytes and keratinocytes.

    PubMed

    Decreau, R; Richard, M J; Verrando, P; Chanon, M; Julliard, M

    1999-01-01

    Dichlorosilicon phthalocyanine (Cl2SiPc) and bis(tri-n-hexylsiloxy) silicon phthalocyanine (HexSiPc) have been evaluated in vitro as potential photosensitizers for photodynamic therapy (PDT) against the human amelanotic melanoma cell line M6. Each photosensitizer is dissolved in a solvent-PBS mixture, or entrapped in egg-yolk lecithin liposomes or in Cremophor EL micelles. The cells are incubated for 1 h with the sensitizer and then irradiated for 20 min, 1 h or 2 h (lambda > 480 nm, 10 mW cm-2). The photocytotoxic effect is dependent on the photosensitizer concentration and the light dose. Higher phototoxicity is observed after an irradiation of 2 h: treatment with a solution of photosensitizer (2 x 10(-9) M) leads to 10% (HexSiPc in egg-yolk lecithin liposomes) or 20% (Cl2SiPc in DMF-PBS solution) cell viability. After 1 h incubation and 20 min of light exposure, the photodynamic effect is connected with the type of delivery system used. For HexSiPc, lower cell viability is found when this photosensitizer is entrapped in egg-yolk lecithin instead of solvent-PBS or for Cremophor EL micelles with Cl2SiPc. Liposome-delivered HexSiPc leads to lipid damage in M6 cells, illustrated by an increase of thiobarbituric acid-reacting substances (TBARs), but the change is not significant with Cremophor EL. The same is observed for the antioxidative defences after photodynamic stress. The cells irradiated with HexSiPc entrapped in liposomes display an increase of superoxide dismutase (SOD) activity and a decrease of glutathione (GSH) level, glutathione peroxidase (GSHPx) and catalase (Cat) activities.

  4. Co-stimulation through the CD137/4-1BB pathway protects human melanoma tumor-infiltrating lymphocytes from activation-induced cell death and enhances anti-tumor effector function

    PubMed Central

    Hernandez-Chacon, Jessica Ann; Li, Yufeng; Wu, Richard C.; Bernatchez, Chantale; Wang, Yijun; Weber, Jeffrey; Hwu, Patrick; Radvanyi, Laszlo

    2011-01-01

    Adoptive T-cell therapy (ACT) using expanded tumor-infiltrating lymphocytes (TIL) with high-dose IL-2 is a promising form of immunotherapy for Stage IV melanoma having clinical response rates of 50% or more. One of the major problems preventing further success of this therapy is that the current protocols used to highly expand TIL for infusion drive CD8+ T cells to differentiate into effector cells losing key co-stimulatory molecules such as CD28 and CD27. This has been associated with a lack of persistence in vivo for reasons not entirely clear. In this study, we demonstrate that while human melanoma CD8+ TIL lost CD27 and CD28 expression during the rapid expansion for ACT, they gained expression of the alternative co-stimulatory molecule CD137/4-1BB, and to a lesser extent CD134/OX40. Post-REP TIL were found to be highly sensitive to activation-induced cell death (AICD) when re-activated through the TCR with low levels of OKT3 antibody. However, co-ligation of 4-1BB using two different agonistic anti-4-1BB antibodies potently prevented AICD of post-REP CD8+ TIL, including those specific for MART-1, and facilitated even further cell expansion. This was correlated with increased levels of bcl-2 and bcl-xL together with decreased bim expression. 4-1BB-co-stimulated post-REP TIL also expressed increased levels of the cytolytic granule proteins and exhibited enhanced CTL activity against melanoma cells. Lastly, post-REP CD8+ TIL were protected from cell death by anti-4-1BB ligation when exposed to HLA-matched melanoma cells. Our results indicate that 4-1BB co-stimulation may significantly improve TIL survival during melanoma ACT and boost anti-tumor cytolytic activity. PMID:21389874

  5. Noise-induced sensitization of human brain

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshiharu; Hidaka, Ichiro; Nozaki, Daichi; Iso-o, Noriko; Soma, Rika; Kwak, Shin

    2002-11-01

    In the past decade, it has been recognized that noise can enhance the response of nonlinear systems to weak signals, via a mechanism known as stochastic resonance (SR). Particularly, the concept of SR has generated considerable interest in sensory biology, because it has been shown in several experimental studies that noise can assist neural systems in detecting weak signals which could not be detected in its absence. Recently, we have shown a similar type of noise-induced sensitization of human brain; externally added noise to the brain stem baroreflex centers sensitized their responses in maintaining adequate blood perfusion to the brain itself. Furthermore, the addition of noise has also shown to be useful in compensating for dysfunctions of the baroreflex centers in certain neurological diseases. It is concluded that the statistical physics concept of SR could be useful in sensitizing human brain in health and disease.

  6. Sensitivity of plasma BRAFmutant and NRASmutant cell-free DNA assays to detect metastatic melanoma in patients with low RECIST scores and non-RECIST disease progression.

    PubMed

    Chang, Gregory A; Tadepalli, Jyothirmayee S; Shao, Yongzhao; Zhang, Yilong; Weiss, Sarah; Robinson, Eric; Spittle, Cindy; Furtado, Manohar; Shelton, Dawne N; Karlin-Neumann, George; Pavlick, Anna; Osman, Iman; Polsky, David

    2016-01-01

    Melanoma lacks a clinically useful blood-based biomarker of disease activity to help guide patient management. To determine whether measurements of circulating, cell-free, tumor-associated BRAF(mutant) and NRAS(mutant) DNA (ctDNA) have a higher sensitivity than LDH to detect metastatic disease prior to treatment initiation and upon disease progression we studied patients with unresectable stage IIIC/IV metastatic melanoma receiving treatment with BRAF inhibitor therapy or immune checkpoint blockade and at least 3 plasma samples obtained during their treatment course. Levels of BRAF(mutant) and NRAS(mutant) ctDNA were determined using droplet digital PCR (ddPCR) assays. Among patients with samples available prior to treatment initiation ctDNA and LDH levels were elevated in 12/15 (80%) and 6/20 (30%) (p = 0.006) patients respectively. In patients with RECIST scores <5 cm prior to treatment initiation, ctDNA levels were elevated in 5/7 (71%) patients compared to LDH which was elevated in 1/13 (8%) patients (p = 0.007). Among all disease progression events the modified bootstrapped sensitivities for ctDNA and LDH were 82% and 40% respectively, with a median difference in sensitivity of 42% (95% confidence interval, 27%-58%; P < 0.001). In addition, ctDNA levels were elevated in 13/16 (81%) instances of non-RECIST disease progression, including 10/12 (83%) instances of new brain metastases. In comparison LDH was elevated 8/16 (50%) instances of non-RECIST disease progression, including 6/12 (50%) instances of new brain metastases. Overall, ctDNA had a higher sensitivity than LDH to detect disease progression, including non-RECIST progression events. ctDNA has the potential to be a useful biomarker for monitoring melanoma disease activity.

  7. Role of versican V0/V1 and CD44 in the regulation of human melanoma cell behavior.

    PubMed

    Hernández, Daniel; Miquel-Serra, Laia; Docampo, Maria José; Marco-Ramell, Anna; Bassols, Anna

    2011-02-01

    Versican is a hyaluronan-binding, large extracellular matrix chondroitin sulfate proteoglycan whose expression is increased in malignant melanoma. Binding to hyaluronan allows versican to indirectly interact with the hyaluronan cell surface receptor CD44. The aim of this work was to study the effect of silencing the large versican isoforms (V0 and V1) and CD44 in the SK-mel-131 human melanoma cell line. Versican V0/V1 or CD44 silencing caused a decrease in cell proliferation and migration, both in wound healing assays and in Transwell chambers. Versican V0/V1 silencing also caused an increased adhesion to type I collagen, laminin and fibronectin. These results support the proposed role of versican as a proliferative, anti-adhesive and pro-migratory molecule. On the other hand, CD44 silencing caused a decrease in cell adhesion to vitronectin, fibronectin and hyaluronan. CD44 silencing inhibited the binding of a FITC-hyaluronan complex to the cell surface and its internalization into the cytoplasm. Our results indicate that both versican and CD44 play an important role regulating the behavior of malignant melanoma cells.

  8. The effect of blue light exposure and use of intraocular lenses on human uveal melanoma cell lines.

    PubMed

    Marshall, Jean-Claude A; Gordon, Keith D; McCauley, Cristin S; de Souza Filho, João Pessoa; Burnier, Miguel N

    2006-12-01

    Little is known about the effect of blue light on inducing melanocytic malignant transformation. We chose to investigate the effect of blue light (475 nm wavelength) on the proliferation rates of uveal melanoma cells. In addition, we tested two different intraocular lenses to determine the possible effects of ultraviolet absorbing and blue light filtering intraocular lenses on the changes in proliferation. Four human uveal melanoma cell lines (92.1, MKT-BR, OCM-1, SP6.5) were exposed to blue light with and without the presence of ultraviolet absorbing and blue light filtering intraocular lenses. Cells covered by aluminum foil were used as a control. The proliferation rate of the cells compared with the control was then assessed using the Sulforhodamine-B proliferation assay. Cells exposed to blue light showed a statistically significant (P<0.05) increase in proliferation. Those exposed to blue light through a standard ultraviolet absorbing intraocular lens showed a smaller increase in proliferation, whereas those exposed with a blue light filtering intraocular lens showed no increase in proliferation than the control in all four cell lines. The exposure of cells to blue light led to an increase in proliferation in all cell lines compared with the control. The use of blue light filtering intraocular lenses abolished these increases in proliferation in the four cell lines. These results indicate that blue light filtering intraocular lenses may have a protective effect on the proliferation rates of uveal melanoma cells exposed to blue light.

  9. Experimental models of uveal melanoma.

    PubMed

    Blanco, Paula L; Caissie, Amanda L; Burnier, Miguel N

    2004-06-01

    Over the past several decades, considerable effort has been directed toward developing suitable experimental models for the study of uveal melanoma. Animal models of uveal melanoma have undergone many improvements, leading to the development of experimental systems that better represent the disease in human beings. A major advance has come from the use of human uveal melanoma cell lines capable of inducing tumour growth and metastatic disease in immunodeficient hosts. Knowledge gained from the use of experimental models will ultimately be translated into better diagnostic and therapeutic strategies for patients with uveal melanoma. In this review the authors describe the current state-of-the-art designs of experimental models of uveal melanoma, highlighting the advantages and disadvantages of the available models. Novel findings from a rabbit model of uveal melanoma are also presented.

  10. Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression.

    PubMed Central

    Cornil, I; Theodorescu, D; Man, S; Herlyn, M; Jambrosic, J; Kerbel, R S

    1991-01-01

    It is known from a variety of experimental systems that the ability of tumor cells to grow locally and metastasize can be affected by the presence of adjacent normal tissues and cells, particularly mesenchymally derived stromal cells such as fibroblasts. However, the comparative influence of such normal cell-tumor cell interactions on tumor behavior has not been thoroughly investigated from the perspective of different stages of tumor progression. To address this question we assessed the influence of normal dermal fibroblasts on the growth of human melanoma cells obtained from different stages of tumor progression. We found that the in vitro growth of most (4 out of 5) melanoma cell lines derived from early-stage radial growth phase or vertical growth phase metastatically incompetent primary lesions is repressed by coculture with normal dermal fibroblasts, suggesting that negative homeostatic growth controls are still operative on melanoma cells from early stages of disease. On the other hand, 9 out of 11 melanoma cell lines derived from advanced metastatically competent vertical growth phase primary lesions, or from distant metastases, were found to be consistently stimulated to grow in the presence of dermal fibroblasts. Evidence was obtained to show that this discriminatory fibroblastic influence is mediated by soluble inhibitory and stimulatory growth factor(s). Taken together, these results indicate that fibroblast-derived signals can have antithetical growth effects on metastatic versus metastatically incompetent tumor subpopulations. This resultant conversion in responsiveness to host tissue environmental factors may confer upon small numbers of metastatically competent cells a growth advantage, allowing them to escape local growth constraints both in the primary tumor site and at distant ectopic tissue sites. PMID:2068080

  11. Regulation of pigmentation by substrate elasticity in normal human melanocytes and melanotic MNT1 human melanoma cells.

    PubMed

    Choi, Hyunjung; Kim, Mina; Ahn, Song Ih; Cho, Eun-Gyung; Lee, Tae Ryong; Shin, Jennifer H

    2014-03-01

    The elasticity of the cellular microenvironment is a key regulator of cellular physiology in many cell types. To investigate the effects of substrate stiffness on the pigmentation process, we cultured normal human melanocytes (NHM) and MNT1 melanoma cells on laminin-coated polydimethylsiloxane (PDMS) substrates of different stiffness. The dendricity of NHM and MNT1 cells was reduced as the substrate stiffness decreased, and the degree of melanosome transfer from NHM or MNT1 cells to normal human keratinocytes was decreased on softer substrates with the reduced dendricity. Gene and protein expressions of MITF, tyrosinase, TRP2, and gp100/PMEL17 exhibited a consistent decreasing trend with the decreasing stiffness. Because the stiffness sensing is mediated by focal adhesion complex through integrin receptors, we checked laminin specific integrin alpha 6 and p-FAK for MNT1 cells to observe that the substrate adhesion was weakened as the substrate stiffness decreased. Weaker adhesion on a softer substrate was accompanied by dynamic shape changes in MNT1 cells with higher speed and larger scattering. Dendritic MNT1 cells cultured on a stiffer substrate exhibited lower migration with smaller root mean squared displacement. These results demonstrate the possibility that skin pigmentation can be influenced by mechanical properties of the cellular microenvironment and can increase when the skin becomes stiff.

  12. Lebein, a Snake Venom Disintegrin, Induces Apoptosis in Human Melanoma Cells

    PubMed Central

    Hammouda, Manel B.; Montenegro, María F.; Sánchez-del-Campo, Luis; Zakraoui, Ons; Aloui, Zohra; Riahi-Chebbi, Ichrak; Karoui, Habib; Rodríguez-López, José Neptuno; Essafi-Benkhadir, Khadija

    2016-01-01

    Melanoma, the most threatening form of skin cancer, has a very poor prognosis and is characterized by its very invasive and chemoresistant properties. Despite the recent promising news from the field of immunotherapy, there is an urgent need for new therapeutic approaches that are free of resistance mechanisms and side effects. Anti-neoplasic properties have been highlighted for different disintegrins from snake venom including Lebein; however, the exact effect of Lebein on melanoma has not yet been defined. In this study, we showed that Lebein blocks melanoma cell proliferation and induces a more differentiated phenotype with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and microphthalmia-associated transcription factor (MITF) overexpression. Melanoma cells became detached but were less invasive with upregulation of E-cadherin after Lebein exposure. Lebein induced a caspase-independent apoptotic program with apoptosis inducing factor (AIF), BCL-2-associated X protein (BAX) and Bim overexpression together with downregulation of B-cell lymphoma-2 (BCL-2). It generated a distinct response in reactive oxygen species (ROS) generation and p53 levels depending on the p53 cell line status (wild type or mutant). Therefore, we propose Lebein as a new candidate for development of potential therapies for melanoma. PMID:27399772

  13. Eradication of Human Hepatic and Pulmonary Melanoma Metastases in SCID Mice by Antibody--Interleukin 2 Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Becker, Jurgen C.; Pancook, James D.; Gillies, Stephen D.; Mendelsohn, John; Reisfeld, Ralph A.

    1996-04-01

    Antibody--cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody--interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cγ 1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumorspecific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumorspecific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.

  14. Expression of human papilloma virus type 16 E5 protein in amelanotic melanoma cells regulates endo-cellular pH and restores tyrosinase activity

    PubMed Central

    Di Domenico, Fabio; Foppoli, Cesira; Blarzino, Carla; Perluigi, Marzia; Paolini, Francesca; Morici, Salvatrice; Coccia, Raffaella; Cini, Chiara; De Marco, Federico

    2009-01-01

    Background Melanin synthesis, the elective trait of melanocytes, is regulated by tyrosinase activity. In tyrosinase-positive amelanotic melanomas this rate limiting enzyme is inactive because of acidic endo-melanosomal pH. The E5 oncogene of the Human Papillomavirus Type 16 is a small transmembrane protein with a weak transforming activity and a role during the early steps of viral infections. E5 has been shown to interact with 16 kDa subunit C of the trans-membrane Vacuolar ATPase proton pump ultimately resulting in its functional suppressions. However, the cellular effects of such an interaction are still under debate. With this work we intended to explore whether the HPV16 E5 oncoprotein does indeed interact with the vacuolar ATPase proton pump once expressed in intact human cells and whether this interaction has functional consequences on cell metabolism and phenotype. Methods The expression of the HPV16-E5 oncoproteins was induced in two Tyrosinase-positive amelanotic melanomas (the cell lines FRM and M14) by a retroviral expression construct. Modulation of the intracellular pH was measured with Acridine orange and fluorescence microscopy. Expression of tyrosinase and its activity was followed by RT-PCR, Western Blot and enzyme assay. The anchorage-independence growth and the metabolic activity of E5 expressing cells were also monitored. Results We provide evidence that in the E5 expressing cells interaction between E5 and V-ATPase determines an increase of endo-cellular pH. The cellular alkalinisation in turn leads to the post-translational activation of tyrosinase, melanin synthesis and phenotype modulation. These effects are associated with an increased activation of tyrosine analogue anti-blastic drugs. Conclusion Once expressed within intact human cells the HPV16-E5 oncoprotein does actually interact with the vacuolar V-ATPase proton pump and this interaction induces a number of functional effects. In amelanotic melanomas these effects can modulate the

  15. The Genetics of Sun Sensitivity in Humans

    PubMed Central

    Rees, Jonathan L.

    2004-01-01

    Humans vary >100-fold in their sensitivity to the harmful effects of ultraviolet radiation. The main determinants of sensitivity are melanin pigmentation and less-well-characterized differences in skin inflammation and repair processes. Pigmentation has a high heritability, but susceptibility to cancers of the skin, a key marker of sun sensitivity, is less heritable. Despite a large number of murine coat-color mutations, only one gene in humans, the melanocortin 1 receptor (MC1R), is known to account for substantial variation in skin and hair color and in skin cancer incidence. MC1R encodes a 317–amino acid G-coupled receptor that controls the relative amounts of the two major melanin classes, eumelanin and pheomelanin. Most persons with red hair are homozygous for alleles of the MC1R gene that show varying degrees of diminished function. More than 65 human MC1R alleles with nonsynonymous changes have been identified, and current evidence suggests that many of them vary in their physiological activity, such that a graded series of responses can be achieved on the basis of (i) dosage effects (of one or two alleles) and (ii) individual differences in the pharmacological profile in response to ligand. Thus, a single locus, identified within a Mendelian framework, can contribute significantly to human pigmentary variation. PMID:15372380

  16. Photosensitized rose Bengal-induced phototoxicity on human melanoma cell line under natural sunlight exposure.

    PubMed

    Srivastav, Ajeet K; Mujtaba, Syed Faiz; Dwivedi, Ashish; Amar, Saroj K; Goyal, Shruti; Verma, Ankit; Kushwaha, Hari N; Chaturvedi, Rajnish K; Ray, Ratan Singh

    2016-03-01

    Rose Bengal (RB) is an anionic water-soluble xanthene dye, which used for many years to assess eye cornea and conjunctiva damage. RB showed strong absorption maxima (λmax) under visible light followed by UV-B and UV-A. RB under sunlight exposure showed a time-dependent photodegradation. Our results show that photosensitized RB generates (1)O2 via Type-II photodynamic pathway and induced DNA damage under sunlight/UV-R exposure. 2'dGuO degradation, micronuclei formation, and single- and double-strand breakage were the outcome of photogenotoxicity caused by RB. Quenching studies with NaN3 advocate the involvement of (1)O2 in RB photogenotoxicity. RB induced linoleic acid photoperoxidation, which was parallel to (1)O2-mediated DNA damage. Oxidative stress in A375 cell line (human melanoma cell line) was detected through DCF-DA assay. Photosensitized RB decreased maximum cellular viability under sunlight followed by UV-B and UV-A exposures. Apoptosis was detected as a pattern of cell death through the increased of caspase-3 activity, decreased mitochondrial membrane potential, and PS translocation through inner to outer plasma membrane. Increased cytosolic levels of Bax also advocate the apoptotic cell death. We propose a p53-mediated apoptosis via increased expression of Bax gene and protein. Thus, the exact mechanism behind RB phototoxicity was the involvement of (1)O2, which induced oxidative stress-mediated DNA and membrane damage, finally apoptotic cell death under natural sunlight exposure. The study suggests that after the use of RB, sunlight exposure may avoid to prevent from its harmful effects.

  17. Pericentric characterization of human chromosome 7 in a melanoma cell line

    SciTech Connect

    Fetni, R.; Lemieux, N.; Richer, C.L.

    1994-09-01

    Cytogenetic analyses of an established melanoma cell line show structural abnormalities involving mainly chromosome 7. Molecular cytogenetic examination of the different abnormalities (i(7q), i(7p), t(7;12)) was used to pinpoint the site of the break and to analyse the possible mechanisms by which isochromosomes 7 could be formed. Human chromosome 7 has been shown to contain two distinct alpha satellite arrays: D7Z1 and D7Z2 which are separated by 1Mb. We confirm the order to be short-arm- D7Z2 - D7Z1 - long arm. Both probes were then used to characterize two different types of isochromosomes 7 (one of the long arms and one of the short arms) and a translocation (7;12). Isochromosome 7q showed a single D7Z1 signal and loss of D7Z2. The unique centromeric structure of i(7q), with only the D7Z1 signal, suggests that a breakpoint occurred within D7Z1. Isochromosome 7p showed two distinct D7Z1 and D7Z2 hybridization signals. The distance observed between the two signals suggests that the breakpoint is in the proximal part of the long arms. This chromosome might be considered as a dicentric isochromosome 7p. Translocation (7;12) showed the two arrays of chromosome 7 {alpha} satellite DNA. The three derived chromosomes appeared to result from independent rearrangements. This observation shows that a variety of breaks may occur in the juxtacentromeric region of a given chromosome. It also shows that the functional centromere of chromosome 7 does not need the presence of D7Z2, since only D7Z1 was conserved in all cases, suggesting the importance of this sequence for the centromeric function.

  18. Construction of Ang2-siRNA chitosan magnetic nanoparticles and the effect on Ang2 gene expression in human malignant melanoma cells.

    PubMed

    Liu, Zhao-Liang; You, Cai-Lian; Wang, Biao; Lin, Jian-Hong; Hu, Xue-Feng; Shan, Xiu-Ying; Wang, Mei-Shui; Zheng, Hou-Bing; Zhang, Yan-Ding

    2016-06-01

    The aim of the present study was to construct angiopoietin-2 (Ang2)-small interfering (si)RNA chitosan magnetic nanoparticles and to observe the interference effects of the nanoparticles on the expression of the Ang2 gene in human malignant melanoma cells. Ang2-siRNA chitosan magnetic nanoparticles were constructed and transfected into human malignant melanoma cells in vitro. Red fluorescent protein expression was observed, and the transfection efficiency was analyzed. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to assess the inhibition efficiency of Ang2 gene expression. Ang2-siRNA chitosan magnetic nanoparticles were successfully constructed, and at a mass ratio of plasmid to magnetic chitosan nanoparticles of 1:100, the transfection efficiency into human malignant melanoma cells was the highest of the ratios assessed, reaching 61.17%. RT-qPCR analysis showed that the magnetic chitosan nanoparticles effectively inhibited Ang2 gene expression in cells, and the inhibition efficiency reached 59.56% (P<0.05). Ang2-siRNA chitosan magnetic nanoparticles were successfully constructed. The in vitro studies showed that the nanoparticles inhibited Ang2 gene expression in human malignant melanoma tumor cells, which laid the foundation and provided experimental evidence for additional future in vivo studies of intervention targeting malignant melanoma tumor growth in nude mice.

  19. The role of thioredoxin reductase 1 in melanoma metabolism and metastasis.

    PubMed

    Cassidy, Pamela B; Honeggar, Matthew; Poerschke, Robyn L; White, Karen; Florell, Scott R; Andtbacka, Robert H I; Tross, Joycelyn; Anderson, Madeleine; Leachman, Sancy A; Moos, Philip J

    2015-11-01

    Although significant progress has been made in targeted and immunologic therapeutics for melanoma, many tumors fail to respond, and most eventually progress when treated with the most efficacious targeted combination therapies thus far identified. Therefore, alternative approaches that exploit distinct melanoma phenotypes are necessary to develop new approaches for therapeutic intervention. Tissue microarrays containing human nevi and melanomas were used to evaluate levels of the antioxidant protein thioredoxin reductase 1 (TR1), which was found to increase as a function of disease progression. Melanoma cell lines revealed metabolic differences that correlated with TR1 levels. We used this new insight to design a model treatment strategy that creates a synthetic lethal interaction wherein targeting TR1 sensitizes melanoma to inhibition of glycolytic metabolism, resulting in a decrease in metastases in vivo. This approach holds the promise of a new clinical therapeutic strategy, distinct from oncoprotein inhibition.

  20. The BRAF inhibitor vemurafenib activates mitochondrial metabolism and inhibits hyperpolarized pyruvate-lactate exchange in BRAF mutant human melanoma cells

    PubMed Central

    Delgado-Goni, Teresa; Falck Miniotis, Maria; Wantuch, Slawomir; Parkes, Harold G.; Marais, Richard; Workman, Paul; Leach, Martin O.; Beloueche-Babari, Mounia

    2016-01-01

    Understanding the impact of BRAF signaling inhibition in human melanoma on key disease mechanisms is important for developing biomarkers of therapeutic response and combination strategies to improve long term disease control. This work investigates the downstream metabolic consequences of BRAF inhibition with vemurafenib, the molecular and biochemical processes that underpin them, their significance for antineoplastic activity and potential as non-invasive imaging response biomarkers.1H NMR spectroscopy showed that vemurafenib decreases the glycolytic activity of BRAF mutant (WM266.4 and SKMEL28) but not BRAFWT (CHL-1 and D04) human melanoma cells. In WM266.4 cells, this was associated with increased acetate, glycine and myo-inositol levels and decreased fatty acyl signals, while the bioenergetic status was maintained. 13C NMR metabolic flux analysis of treated WM266.4 cells revealed inhibition of de novo lactate synthesis and glucose utilization, associated with increased oxidative and anaplerotic pyruvate carboxylase mitochondrial metabolism and decreased lipid synthesis. This metabolic shift was associated with depletion of HKII, acyl-CoA dehydrogenase 9, 3-phosphoglycerate dehydrogenase and monocarboxylate transporter (MCT) 1 and 4 in BRAF mutant but not BRAFWT cells and, interestingly, decreased BRAF mutant cell dependency on glucose and glutamine for growth. Further, the reduction in MCT1 expression observed led to inhibition of hyperpolarized 13C-pyruvate-lactate exchange, a parameter that is translatable to in vivo imaging studies, in live WM266.4 cells. In conclusion, our data provide new insights into the molecular and metabolic consequences of BRAF inhibition in BRAF-driven human melanoma cells that may have potential for combinatorial therapeutic targeting as well as non-invasive imaging of response. PMID:27765851

  1. Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma.

    PubMed

    Andreucci, Elena; Bianchini, Francesca; Biagioni, Alessio; Del Rosso, Mario; Papucci, Laura; Schiavone, Nicola; Magnelli, Lucia

    2017-01-01

    Fibroblast growth factor 2 (FGF2) is involved in many physiological and pathological processes. Fgf2 deregulation contributes to the acquisition of malignant features of melanoma and other cancers. FGF2 is an alternative translation product expressed as five isoforms, a low-molecular-weight (18 KDa) and four high-molecular-weight (22, 22.5, 24, 34 KDa) isoforms, with different subcellular distributions. An internal ribosomal entry site (IRES) in its mRNA controls the translation of all the isoforms with the exception for the cap-dependent 34 KDa. The 18-KDa isoform has been extensively studied, while very few is known about the roles of high molecular weight isoforms. FGF2 is known to promote melanoma development and progression. To disclose the differential contribution of FGF2 isoforms in melanoma, we forced the expression of IRES-dependent low-molecular-weight (LMW, 18 KDa) and high-molecular-weight (HMW, 22, 22.5, 24 KDa) isoforms in a human metastatic melanoma cell line. This comparative study highlights that, while LMW isoform confers stem-like features to melanoma cells and promotes angiogenesis, HMW isoforms induce higher migratory ability and contribute to tumor perfusion by promoting vasculogenic mimicry (VM) when endothelial cell-driven angiogenesis is lacking. To conclude, FGF2 isoforms mainly behave in specific, antithetical manners, but can cooperate in different steps of tumor progression, providing melanoma cells with major malignant features.

  2. Interaction of human malignant melanoma (ST-ML-12) tumor spheroids with endothelial cell monolayers. Damage to endothelium by oxygen-derived free radicals.

    PubMed Central

    Offner, F. A.; Wirtz, H. C.; Schiefer, J.; Bigalke, I.; Klosterhalfen, B.; Bittinger, F.; Mittermayer, C.; Kirkpatrick, C. J.

    1992-01-01

    Clinical and experimental observations suggest that tumor-induced endothelial cell injury may be one of several initial events in the establishment of tumor metastases. To test this hypothesis, the authors have analyzed the interaction of malignant melanoma (ST-ML-12) multicenter tumor spheroids with endothelial cell monolayers in a three-dimensional coculture system. After 1.5 hours of interaction, the authors observed a toxic effect on endothelial cells in the perispheroid region. The latter was demonstrated by testing membrane integrity with the fluorescent probes acridine orange/ethidium bromide and resulted in sensitivity to shear stress of the damaged cells. The endothelium then underwent a regenerative cycle to replace the denuded halo. Addition of the oxygen radical-scavenging enzyme superoxide dismutase to the culture medium prevented this endothelial cell damage in a dose-dependent manner for up to 12 hours. By contrast, catalase, deferoxamine mesylate, allopurinol, and the proteinase inhibitors soybean trypsin inhibitor and aprotinin were not protective under the same conditions. The endothelial damage was dependent on the attachment of the spheroids. Medium conditioned by ST-ML-12-spheroids proved to be ineffective. A similar, but less prominent, deleterious effect was seen when human peritoneal mesothelial cells were used in place of the human umbilical vein endothelial cells. Spheroids of the uroepithelial cell line HU-609 were used as control. No toxicity was observed in these cocultures. Melanin biosynthesis is associated with the production of oxygen-derived free radicals. The results suggest a possible implication of these free radicals in metastasis formation of malignant melanoma. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1519667

  3. Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2.

    PubMed

    Lopez-Rivera, Esther; Jayaraman, Padmini; Parikh, Falguni; Davies, Michael A; Ekmekcioglu, Suhendan; Izadmehr, Sudeh; Milton, Denái R; Chipuk, Jerry E; Grimm, Elizabeth A; Estrada, Yeriel; Aguirre-Ghiso, Julio; Sikora, Andrew G

    2014-02-15

    Melanoma is one of the cancers of fastest-rising incidence in the world. Inducible nitric oxide synthase (iNOS) is overexpressed in melanoma and other cancers, and previous data suggest that iNOS and nitric oxide (NO) drive survival and proliferation of human melanoma cells. However, specific mechanisms through which this occurs are poorly defined. One candidate is the PI3K-AKT-mTOR pathway, which plays a major role in proliferation, angiogenesis, and metastasis of melanoma and other cancers. We used the chick embryo chorioallantoic membrane (CAM) assay to test the hypothesis that melanoma growth is regulated by iNOS-dependent mTOR pathway activation. Both pharmacologic inhibition and siRNA-mediated gene silencing of iNOS suppressed melanoma proliferation and in vivo growth on the CAM in human melanoma models. This was associated with strong downregulation of mTOR pathway activation by Western blot analysis of p-mTOR, p70 ribosomal S6 kinase (p-P70S6K), p-S6RP, and p-4EBP1. iNOS expression and NO were associated with reversible nitrosylation of tuberous sclerosis complex (TSC) 2, and inhibited dimerization of TSC2 with its inhibitory partner TSC1, enhancing GTPase activity of its target Ras homolog enriched in brain (Rheb), a critical activator of mTOR signaling. Immunohistochemical analysis of tumor specimens from stage III melanoma patients showed a significant correlation between iNOS expression levels and expression of the mTOR pathway members. Exogenously supplied NO was also sufficient to reverse the mTOR pathway inhibition by the B-Raf inhibitor vemurafenib. In summary, covalent modification of TSC2 by iNOS-derived NO is associated with impaired TSC2/TSC1 dimerization, mTOR pathway activation, and proliferation of human melanoma. This model is consistent with the known association of iNOS overexpression and poor prognosis in melanoma and other cancers.

  4. The Human Antibody Fragment DIATHIS1 Specific for CEACAM1 Enhances Natural Killer Cell Cytotoxicity Against Melanoma Cell Lines In Vitro

    PubMed Central

    Dupuis, Maria L.; Soriani, Alessandra; Ricci, Biancamaria; Dominici, Sabrina; Moricoli, Diego; Ascione, Alessandro; Santoni, Angela; Magnani, Mauro; Cianfriglia, Maurizio

    2015-01-01

    Several lines of evidence show that de novo expression of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is strongly associated with reduced disease-free survival of patients affected by metastatic melanoma. Previously published investigations report that homophilic interactions between CEACAM1 expressed on natural killer (NK) cells and tumors inhibit the NK cell-mediated killing independently of major histocompatibility complex class I recognition. This biological property can be physiologically relevant in metastatic melanoma because of the increased CEACAM1 expression observed on NK cells from some patients. Moreover, this inhibitory mechanism in many cases might hinder the efficacy of immunotherapeutic treatments of CEACAM1+ malignancies because of tumor evasion by activated effector cells. In the present study, we designed an in vitro experimental model showing that the human single-chain variable fragment (scFv) DIATHIS1 specific for CEACAM1 is able to enhance the lytic machinery of NK cells against CEACAM1+ melanoma cells. The coincubation of the scFv DIATHIS1 with CEACAM1+ melanoma cells and NK-92 cell line significantly increases the cell-mediated cytotoxicity. Moreover, pretreatment of melanoma cells with scFv DIATHIS1 promotes the activation and the degranulation capacity of in vitro–expanded NK cells from healthy donors. It is interesting to note that the melanoma cell line MelC and the primary melanoma cells STA that respond better to DIATHIS1 treatment, express higher relative levels of CEACAM1-3L and CEACAM1-3S splice variants isoforms compared with Mel501 cells that are less responsive to DIATHIS1-induced NK cell–mediated cytotoxicity. Taken together, our results suggest that the fully human antibody fragment DIATHIS1 originated by biopanning approach from a phage antibody library may represent a relevant biotechnological platform to design and develop completely human antimelanoma therapeutics of biological origin. PMID

  5. The cytotoxicity and microdosimetry of astatine-211-labeled chimeric monoclonal antibodies in human glioma and melanoma cells in vitro.

    PubMed

    Larsen, R H; Akabani, G; Welsh, P; Zalutsky, M R

    1998-02-01

    The cytotoxicity of alpha-particle-emitting endoradiotherapeutic compounds is of increasing interest because clinical evaluation of these potential therapeutic agents is commencing. Astatine-211 is a radionuclide with a 7.2-h half-life that emits 5.87 and 7.45 MeV alpha particles. In the present work, we have investigated the in vitro cytotoxicity of 211At-labeled chimeric monoclonal antibodies (mAbs) in monolayers of D-247 MG human glioma cells and SK-MEL-28 human melanoma cells. The mAbs studied were 81C6, reactive with the extracellular matrix antigen tenascin, Mel-14, directed against the cell membrane antigen proteoglycan chondroitin sulfate, and a nonspecific control mAb, TPS3.2. Cell uptake increased as a function of activity concentration after a 1-h exposure to the 211At-labeled mAbs. The retention of activity was also measured to calculate cumulative activity associated with the cells and the medium. The clonogenic survival as a function of activity concentration was linear in all cases with no detectable shoulder. Microdosimetric analyses were performed based on measured cell geometry, cumulative activity and Monte Carlo transport of alpha particles. Using 18 kBq/ml activity concentration and 1 h of incubation, a two to five times higher activity bound to the microcolonies was found for the specific mAbs compared to the nonspecific mAb. These calculations indicated that a survival fraction of 0.37 was achieved with 0.24-0.28 Gy for D-247 MG cells and 0.27-0.29 Gy for SK-MEL-28 cells. The microdosimetric cell sensitivity, z0, for D-247 MG cells was significantly lower than for SK-MEL-28 cells (0.08 compared to 0.15 Gy). For both cell lines, reduction in survival to 0.37 required an average of only 1-2 alpha-particle hits to the cell nucleus.

  6. Effective intra-S checkpoint responses to UVC in primary human melanocytes and melanoma cell lines.

    PubMed

    Cordeiro-Stone, Marila; McNulty, John J; Sproul, Christopher D; Chastain, Paul D; Gibbs-Flournoy, Eugene; Zhou, Yingchun; Carson, Craig; Rao, Shangbang; Mitchell, David L; Simpson, Dennis A; Thomas, Nancy E; Ibrahim, Joseph G; Kaufmann, William K

    2016-01-01

    The objective of this study was to assess potential functional attenuation or inactivation of the intra-S checkpoint during melanoma development. Proliferating cultures of skin melanocytes, fibroblasts, and melanoma cell lines were exposed to increasing fluences of UVC and intra-S checkpoint responses were quantified. Melanocytes displayed stereotypic intra-S checkpoint responses to UVC qualitatively and quantitatively equivalent to those previously demonstrated in skin fibroblasts. In comparison with fibroblasts, primary melanocytes displayed reduced UVC-induced inhibition of DNA strand growth and enhanced degradation of p21Waf1 after UVC, suggestive of enhanced bypass of UVC-induced DNA photoproducts. All nine melanoma cell lines examined, including those with activating mutations in BRAF or NRAS oncogenes, also displayed proficiency in activation of the intra-S checkpoint in response to UVC irradiation. The results indicate that bypass of oncogene-induced senescence during melanoma development was not associated with inactivation of the intra-S checkpoint response to UVC-induced DNA replication stress.

  7. Downregulation of discoidin domain receptor 2 in A375 human melanoma cells reduces its experimental liver metastasis ability.

    PubMed

    Badiola, Iker; Villacé, Patricia; Basaldua, Iratxe; Olaso, Elvira

    2011-10-01

    Discoidin domain receptors (DDR1 and DDR2) are tyrosine kinase receptors for fibrillar collagen implicated in postnatal development, tissue repair, and primary and metastatic cancer progression. While DDR1 has been described in tumor cells, DDR2 has been localized in the tumor stroma, but its presence in the tumor cells remains unknown. The aim of this study was to elucidate the role of DDR2 signaling in tumor cells during hepatic metastasis progression. DDR2 expression and phosphorylation in cultured human A375 melanoma cells was documented by Western blot analysis. A375 cells were stably transfected with a small interfering RNA (siRNA) against DDR2 and two clones were selected: A375R2-70 and A375R2-40, with 70 and 40% of the DDR2 protein expression respectively, compared to mock-transfected cells (A375R2-100). Development of experimental liver metastasis by intrasplenic inoculation of A375R2-70 and A37R2-40 clones was reduced by 60 and 75%, respectively, measured as tumor volume, compared to livers injected with A375R2-100 cells. Accordingly, A375R2-70 and A37R2-40 clones showed reduced in vitro gelatinase activity and JNK phosphorylation, compared to mock transfected cells, with maximal inhibition in A375R2-40. Additionally, A375 melanoma, SK-HEP hepatoma and HT-29 colon carcinoma human cell lines transiently transfected with siRNA against DDR2 also showed reduced proliferation and migration rates compared to mock-transfected ones. In conclusion, DDR2 promotes A375 melanoma metastasis to the liver and the underlying mechanism implicates regulation of metalloproteinase release, cell growth and chemotactic invasion of the host tissue.

  8. Monoclonal antibody-induced ErbB3 receptor internalization and degradation inhibits growth and migration of human melanoma cells.

    PubMed

    Belleudi, Francesca; Marra, Emanuele; Mazzetta, Francesca; Fattore, Luigi; Giovagnoli, Maria Rosaria; Mancini, Rita; Aurisicchio, Luigi; Torrisi, Maria Rosaria; Ciliberto, Gennaro

    2012-04-01

    Members of the ErbB receptor family are targets of a growing numbers of small molecules and monoclonal antibodies inhibitors currently under development for the treatment of cancer. Although historical efforts have been directed against ErbB1 (EGFR) and ErbB2 (HER2/neu), emerging evidences have pointed to ErbB3 as a key node in the activation of proliferation/survival pathways from the ErbB receptor family and have fueled enthusiasm toward the clinical development of anti-ErbB3 agents. In this study, we have evaluated the potential therapeutic efficacy of a set of three recently generated anti-human ErbB3 monoclonals, A2, A3 and A4, in human primary melanoma cells. We show that in melanoma cells expressing ErbB1, ErbB3 and ErbB4 but not ErbB2 receptor ligands activate the PI3K/AKT pathway, and this leads to increased cell proliferation and migration. While antibodies A3 and A4 are able to potently inhibit ligand-induced signaling, proliferation and migration, antibody A2 is unable to exert this effect. In attempt to understand the mechanism of action and the basis of this different behavior, we demonstrate, through a series of combined approaches, that antibody efficacy strongly correlates with antibody-induced receptor internalization, degradation and inhibition of receptor recycling to the cell surface. Finally, fine epitope mapping studies through a peptide array show that inhibiting vs. non-inhibiting antibodies have a dramatically different mode of binding to the to the receptor extracellular domain. Our study confirms the key role of ErbB3 and points to exploitation of novel combination therapies for treatment of malignant melanoma.

  9. EPR studies of free radicals in A-2058 human melanoma cells treated by valproic acid and 5,7-dimethoxycoumarin.

    PubMed

    Zdybel, Magdalena; Chodurek, Ewa; Pilawa, Barbara

    2014-01-01

    Free radicals in A-2058 human melanoma cells were studied by the use of electron paramagnetic resonance (EPR) spectroscopy. The aim of this work was to determine the changes in relative free radical concentrations in tumor A-2058 cells after treatment by valproic acid (VPA) and 5,7-dimethoxycoumarin (DMC). The influences of VPA and DMC on free radicals in A-2058 cells were compared with those for human melanoma malignum A-375 and G-361 cells, which were tested by us earlier. Human malignant melanoma A-2058 cells were exposed to interactions with VPA, DMC, and both VPA and DMC. The tumor cells A-2058 were purchased from LGC Standards (Lomianki, Poland), and they were grown in the standard conditions: at 37°C and in an atmosphere containing 95% air and 5% CO2, in the Minimum Essential Medium Eagle (MEM, Sigma-Aldrich). The A-2058 cells were incubated with VPA (1 mM) and DMC (10 μM) for 4 days. The first-derivative EPR spectra of the control A-2058 cells, and the cells treated with VPA, DMC, and both VPA and DMC, were measured by the electron paramagnetic resonance spectrometer of Radiopan (Poznań, Poland) with microwaves from an X-band (9.3 GHz). The parameters of the EPR lines: amplitudes (A), integral intensities (I), line widths (ΔBpp), and g-factors, were analyzed. The changes of amplitudes and line widths with microwave power increasing from 2.2 to 70 mW were drawn evaluated, o-Semiquinone free radicals of melanin biopolymer are mainly responsible for the EPR lines of A-2058 melanoma malignum cells. The amounts of free radicals in A-2058 cells treated with VPA, and both VPA and DMC, were lower than in the untreated control cells. Application of the tested substances (VPA, and both VPA and DMC) as the antitumor compounds was discussed. DMC without VPA did not decrease free radicals concentration in A-2058 cells. The studies con-firmed that EPR spectroscopy may be used to examine interactions of free radicals with antitumor compounds.

  10. Therapeutic Efficacy of a {sup 188}Re-Labeled {alpha}-Melanocyte-Stimulating Hormone Peptide Analog in Murine and Human Melanoma-Bearing Mouse Models

    SciTech Connect

    Miao, Yubin; Owen, Nellie K.; Fisher, Darrell R.; Hoffman, Timothy J.; Quinn, Thomas P.

    2005-01-01

    The purpose of this study was to examine the therapeutic efficacy of {sup 188}Re-(Arg{sup 11})CCMSH in the B16/F1 murine melanoma and TXM13 human melanoma bearing mouse models. Method: (Arg11)CCMSH was synthesized and labeled with {sup 188}Re to form {sup 188}Re-(Agr{sup 11})CCMSH. B16/F1 melanoma tumor bearing mice were administrated with 200 Ci, 600 Ci and 2x400 Ci of {sup 188}Re-(Arg{sup 11})CCMSH via the tail vein, respectively. TXM13 melanoma tumor hearing mice were separately injected with 600 Ci, 2x400 Ci and 1000 Ci of 100Re-(Arg{sup 11})CCMSH through the tail vein. Two groups of 10 mice bearing either B16/F1 or TXM13 tumors were injected with saline as untreated controls. Results: In contrast to the untreated control group, {sup 188}Re(Arg11)CCMSH yielded rapid and lasting therapeutic effects in the treatment groups with either B16/F1 or TXM13 tumors. The tumor growth rate was reduced and the survival rate was prolonged in the treatment groups. Treatment with 2x400 Ci of {sup 188}Re-Arg{sup 11}CCMSH significantly extended the mean life of B16/F1 tumor mice (p<0.05), while the mean life of TXm13 tumor mice was significantly prolonged after treatment with 600 Ci and 1000 Ci doses of {sup 188}Re-(Arg{sup 11})CCMSH (p<0.05 High-dose {sup 188}Re-(Arg{sup 11}))CCMSH produced no observed normal-tissue toxicity. Conclusions: The therapy study results revealed that {sup 188}Re-Arg11 CCMSH yielded significant therapeutic effects in both B16/F1 murine melanoma and TXM13 human melanoma bearing mouse models. {sup 188}Re-(Arg{sup 11})CCMSH appears to be a promising radiolabeled peptide for targeted radionuclide therapy of melanoma.

  11. Human survivin and Trypanosoma cruzi calreticulin act in synergy against a murine melanoma in vivo.

    PubMed

    Aguilar-Guzmán, Lorena; Lobos-González, Lorena; Rosas, Carlos; Vallejos, Gerardo; Falcón, Cristián; Sosoniuk, Eduardo; Coddou, Francisca; Leyton, Lisette; Lemus, David; Quest, Andrew F G; Ferreira, Arturo

    2014-01-01

    Immune-based anti-tumor or anti-angiogenic therapies hold considerable promise for the treatment of cancer. The first approach seeks to activate tumor antigen-specific T lymphocytes while, the second, delays tumor growth by interfering with blood supply. Tumor Associated Antigens are often employed to target tumors with therapeutic drugs, but some are also essential for tumor viability. Survivin (Surv) is a member of the inhibitor of apoptosis protein family that is considered a Tumor Associated Antigen important for cancer cell viability and proliferation. On the other hand, Trypanosoma cruzi (the agent of Chagas' disease) calreticulin (TcCRT) displays remarkable anti-angiogenic properties. Because these molecules are associated with different tumor targets, we reasoned that immunization with a Surv-encoding plasmid (pSurv) and concomitant TcCRT administration should generate a stronger anti-tumor response than application of either treatment separately. To evaluate this possibility, C57BL/6 mice were immunized with pSurv and challenged with an isogenic melanoma cell line that had been pre-incubated with recombinant TcCRT (rTcCRT). Following tumor cell inoculation, mice were injected with additional doses of rTcCRT. For the combined regimen we observed in mice that: i). Tumor growth was impaired, ii). Humoral anti-rTcCRT immunity was induced and, iii). In vitro rTcCRT bound to melanocytes, thereby promoting the incorporation of human C1q and subsequent macrophage phagocytosis of tumor cells. These observations are interpreted to reflect the consequence of the following sequence of events: rTcCRT anti-angiogenic activity leads to stress in tumor cells. Murine CRT is then translocated to the external membrane where, together with rTcCRT, complement C1 is captured, thus promoting tumor phagocytosis. Presentation of the Tumor Associated Antigen Surv induces the adaptive anti-tumor immunity and, independently, mediates anti-endothelial cell immunity leading to an

  12. Simvastatin rises reactive oxygen species levels and induces senescence in human melanoma cells by activation of p53/p21 pathway

    SciTech Connect

    Guterres, Fernanda Augusta de Lima Barbosa; Martinez, Glaucia Regina; Rocha, Maria Eliane Merlin; Winnischofer, Sheila Maria Brochado

    2013-11-15

    Recent studies demonstrated that simvastatin has antitumor properties in several types of cancer cells, mainly by inducing apoptosis and inhibiting growth. The arrest of proliferation is a feature of cellular senescence; however, the occurrence of senescence in melanoma cells upon simvastatin treatment has not been investigated until now. Our results demonstrated that exposure of human metastatic melanoma cells (WM9) to simvastatin induces a senescent phenotype, characterized by G1 arrest, positive staining for senescence-associated β-galactosidase assay, and morphological changes. Also, the main pathways leading to cell senescence were examined in simvastatin-treated human melanoma cells, and the expression levels of phospho-p53 and p21 were upregulated by simvastatin, suggesting that cell cycle regulators and DNA damage pathways are involved in the onset of senescence. Since simvastatin can act as a pro-oxidant agent, and oxidative stress may be related to senescence, we measured the intracellular ROS levels in WM9 cells upon simvastatin treatment. Interestingly, we found an increased amount of intracellular ROS in these cells, which was accompanied by elevated expression of catalase and peroxiredoxin-1. Collectively, our results demonstrated that simvastatin can induce senescence in human melanoma cells by activation of p53/p21 pathway, and that oxidative stress may be related to this process. - Highlights: • Lower concentrations of simvastatin can induce senescent phenotype in melanoma cells. • Simvastatin induces senescence in human melanoma cells via p53/p21 pathway. • Senescent phenotype is related with increased intracellular ROS. • Partial detoxification of ROS by catalase/peroxiredoxin-1 could lead cells to senescence rather than apoptosis.

  13. A novel 7-bromoindirubin with potent anticancer activity suppresses survival of human melanoma cells associated with inhibition of STAT3 and Akt signaling.

    PubMed

    Liu, Lucy; Kritsanida, Marina; Magiatis, Prokopios; Gaboriaud, Nicolas; Wang, Yan; Wu, Jun; Buettner, Ralf; Yang, Fan; Nam, Sangkil; Skaltsounis, Leandros; Jove, Richard

    2012-11-01

    STAT3 and Akt signaling have been validated as potential molecular targets for treatment of cancers including melanoma. These small molecule inhibitors of STAT3 or Akt signaling are promising for developing anti-melanoma therapeutic agents. MLS-2438, a novel 7-bromoindirubin, a derivative of the natural product indirubin, was synthesized with a bromo-group at the 7-position on one indole ring and a hydrophilic group at the 3'-position on the other indole ring. We tested the anticancer activity of MLS-2438 and investigated its mechanism of action in human melanoma cell lines. Here, we show that MLS-2438 inhibits viability and induces apoptosis of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Several pro-apoptotic Bcl-2 family proteins are involved in the MLS-2438 mediated apoptosis. MLS-2438 inhibits Src kinase activity in vitro and phosphorylation of JAK2, Src, STAT3 and Akt in cultured cancer cells. In contrast to the decreased phosphorylation levels of JAK2, Src, STAT3 and Akt, phosphorylation levels of the MAPK (Erk1/2) signaling protein were not reduced in cells treated with MLS-2438. These results demonstrate that MLS-2438, a novel natural product derivative, is a Src inhibitor and potentially regulates kinase activity of JAK2 and Akt in cancer cells. Importantly, MLS-2438 suppressed tumor growth with low toxicity in a mouse xenograft model of human melanoma. Our findings support further development of MLS-2438 as a potential small-molecule therapeutic agent that targets both STAT3 and Akt signaling in human melanoma cells.

  14. Involvement of mitochondrial and B-RAF/ERK signaling pathways in berberine-induced apoptosis in human melanoma cells.

    PubMed

    Burgeiro, Ana; Gajate, Consuelo; Dakir, El Habib; Villa-Pulgarín, Janny A; Oliveira, Paulo J; Mollinedo, Faustino

    2011-07-01

    The natural isoquinoline alkaloid berberine exhibits a wide spectrum of biological activities including antitumor activity, but its mechanism of action remains to be fully elucidated. Here, we report that berberine induced apoptosis in human melanoma cells, through a process that involved mitochondria and caspase activation. Berberine-induced activation of a number of caspases, including caspases 3, 4, 7, 8, and 9. Pan-caspase inhibitor, z-VAD-fmk, and caspase-8 and caspase-9 inhibitors prevented apoptosis. Berberine also led to the generation of the p20 cleavage fragment of BAP31, involved in directing proapoptotic signals between the endoplasmic reticulum and the mitochondria. Treatment of SK-MEL-2 melanoma cells with berberine induced disruption of the mitochondrial transmembrane potential, release of cytochrome c and apoptosis-inducing factor from the mitochondria to the cytosol, generation of reactive oxygen species (ROS), and a decreased ATP/ADP ratio. Overexpression of bcl-xL by gene transfer prevented berberine-induced cell death, mitochondrial transmembrane potential loss, and cytochrome c and apoptosis-inducing factor release, but not ROS generation. N-acetyl-L-cysteine inhibited the production of ROS, but did not abrogate the berberine-induced apoptosis. Inhibition of extracellular signal-regulated kinase (ERK) phosphorylation, by using the mitogen-activated protein kinase/ERK kinase inhibitor PD98059, and reduction of B-RAF levels by silencing RNA induced cell death of SK-MEL-2 cells, and diminished the berberine concentration required to promote apoptosis. These data show that berberine-induced apoptosis in melanoma cells involves mitochondria and caspase activation, but ROS generation was not essential. Our results indicate that inhibition of B-RAF/ERK survival signaling facilitates the cell death response triggered by berberine.

  15. CD40L confers helper functions to human intra-melanoma class-I-restricted CD4+CD8+ double positive T cells

    PubMed Central

    Parrot, Tiphaine; Oger, Romain; Benlalam, Houssem; Raingeard de la Blétière, Diane; Jouand, Nicolas; Coutolleau, Anne; Preisser, Laurence; Khammari, Amir; Dréno, Brigitte; Guardiola, Philippe; Delneste, Yves; Labarrière, Nathalie; Gervois, Nadine

    2016-01-01

    ABSTRACT Although CD4+CD8+ double positive (DP) T cells represent a small fraction of peripheral T lymphocytes in healthy human donors, their frequency is often increased under pathological conditions (in blood and targeted tissues). In solid cancers such as melanoma, we previously demonstrated an enrichment of tumor reactive CD4lowCD8highαβ DP T cells among tumor-infiltrating lymphocytes of unknown function. Similarly to their single positive (SP) CD8+ counterparts, intra-melanoma DP T cells recognized melanoma cell lines in an HLA-class-I restricted context. However, they presented a poor cytotoxic activity but a strong production of diverse Th1 and Th2 cytokines. The aim of this study was to clearly define the role of intra-melanoma CD4lowCD8highαβ DP T cells in the antitumor immune response. Based on a comparative transcriptome analysis between intra-melanoma SP CD4+, SP CD8+ and DP autologous melanoma-infiltrating T-cell compartments, we evidenced an overexpression of the CD40L co-stimulatory molecule on activated DP T cells. We showed that, like SP CD4+ T cells, and through CD40L involvement, DP T cells are able to induce both proliferation and differentiation of B lymphocytes and maturation of functional DCs able to efficiently prime cytotoxic melanoma-specific CD8 T-cell responses. Taken together, these results highlight the helper potential of atypical DP T cells and their role in potentiating antitumor response. PMID:28123891

  16. Molecular profiling of ADAM12 and ADAM17 genes in human malignant melanoma.

    PubMed

    Cireap, Natalia; Narita, Diana

    2013-10-01

    ADAM12 and ADAM17 proteins belong to a family of transmembrane disintegrin-containing metalloproteinases (ADAMs) involved in the proteins ectodomain shedding and cell-cell and cell-matrix interactions. However, the specific biological functions of ADAMs are still unclear and, until now, these proteins were not investigated yet in melanoma. The aim of this study was to analyze the splicing variants of ADAM12 (L and S) and ADAM17 gene expression in melanoma at transcriptional and translational level in comparison with control (non-tumor) tissues. Taking in account that ADAM17 sheddase is involved in the modulation of TNF-α (tumor necrosis factor alpha), we analyzed also this cytokine in the plasma of the same patients before any treatment, and we compared the results with healthy controls. Quantitative-RT-PCR and immunohistochemistry were used to analyze ADAM12 and ADAM17 genes expression and the analysis of TNF-α expression was carried out in the plasma using ELISA. We demonstrated that ADAM12L splicing variant together with ADAM17 gene are strongly overexpressed in melanomas, whereas ADAM12S, although up-regulated when compared with the non-tumor controls, the difference was not statistically significant. When we compared the levels of expression for the ADAMs genes according to the tumor stage, we observed that all three investigated genes were significantly overexpressed in advanced stage in comparison with early stage melanomas. In the plasma of the same patients, the expression of TNF-α was up-regulated and significantly correlated with the expression of ADAM17 and respectively, with the advanced tumor stage.

  17. Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies

    PubMed Central

    2010-01-01

    Cutaneous melanoma is a very aggressive neoplasia of melanocytic origin with constantly growing incidence and mortality rates world-wide. Epigenetic modifications (i.e., alterations of genomic DNA methylation patterns, of post-translational modifications of histones, and of microRNA profiles) have been recently identified as playing an important role in melanoma development and progression by affecting key cellular pathways such as cell cycle regulation, cell signalling, differentiation, DNA repair, apoptosis, invasion and immune recognition. In this scenario, pharmacologic inhibition of DNA methyltransferases and/or of histone deacetylases were demonstrated to efficiently restore the expression of aberrantly-silenced genes, thus re-establishing pathway functions. In light of the pleiotropic activities of epigenetic drugs, their use alone or in combination therapies is being strongly suggested, and a particular clinical benefit might be expected from their synergistic activities with chemo-, radio-, and immuno-therapeutic approaches in melanoma patients. On this path, an important improvement would possibly derive from the development of new generation epigenetic drugs characterized by much reduced systemic toxicities, higher bioavailability, and more specific epigenetic effects. PMID:20540720

  18. A neural mediator of human anxiety sensitivity.

    PubMed

    Harrison, Ben J; Fullana, Miquel A; Soriano-Mas, Carles; Via, Esther; Pujol, Jesus; Martínez-Zalacaín, Ignacio; Tinoco-Gonzalez, Daniella; Davey, Christopher G; López-Solà, Marina; Pérez Sola, Victor; Menchón, José M; Cardoner, Narcís

    2015-10-01

    Advances in the neuroscientific understanding of bodily autonomic awareness, or interoception, have led to the hypothesis that human trait anxiety sensitivity (AS)-the fear of bodily autonomic arousal-is primarily mediated by the anterior insular cortex. Despite broad appeal, few experimental studies have comprehensively addressed this hypothesis. We recruited 55 individuals exhibiting a range of AS and assessed them with functional magnetic resonance imaging (fMRI) during aversive fear conditioning. For each participant, three primary measures of interest were derived: a trait Anxiety Sensitivity Index score; an in-scanner rating of elevated bodily anxiety sensations during fear conditioning; and a corresponding estimate of whole-brain functional activation to the conditioned versus nonconditioned stimuli. Using a voxel-wise mediation analysis framework, we formally tested for 'neural mediators' of the predicted association between trait AS score and in-scanner anxiety sensations during fear conditioning. Contrary to the anterior insular hypothesis, no evidence of significant mediation was observed for this brain region, which was instead linked to perceived anxiety sensations independently from AS. Evidence for significant mediation was obtained for the dorsal anterior cingulate cortex-a finding that we argue is more consistent with the hypothesized role of human cingulofrontal cortex in conscious threat appraisal processes, including threat-overestimation. This study offers an important neurobiological validation of the AS construct and identifies a specific neural substrate that may underlie high AS clinical phenotypes, including but not limited to panic disorder.

  19. Molecular mechanism underlying differential apoptosis between human melanoma cell lines UACC903 and UACC903(+6) revealed by mitochondria-focused cDNA microarrays.

    PubMed

    Zhang, Qiuyang; Wu, Jun; Nguyen, Anhthu; Wang, Bi-Dar; He, Ping; Laurent, Georges St; Rennert, Owen M; Su, Yan A

    2008-08-01

    Human malignant melanoma cell line UACC903 is resistant to apoptosis while chromosome 6-mediated suppressed cell line UACC903(+6) is sensitive. Here, we describe identification of differential molecular pathways underlying this difference. Using our recently developed mitochondria-focused cDNA microarrays, we identified 154 differentially expressed genes including proapoptotic (BAK1 [6p21.3], BCAP31, BNIP1, CASP3, CASP6, FAS, FDX1, FDXR, TNFSF10 and VDAC1) and antiapoptotic (BCL2L1, CLN3 and MCL1) genes. Expression of these pro- and anti-apoptotic genes was higher in UACC903(+6) than in UACC903 before UV treatment and was altered after UV treatment. qRT-PCR and Western blots validated microarray results. Our bioinformatic analysis mapped these genes to differential molecular pathways that predict resistance and sensitivity of UACC903 and UACC903(+6) to apoptosis respectively. The pathways were functionally confirmed by the FAS ligand-induced cell death and by siRNA knockdown of BAK1 protein. These results demonstrated the differential molecular pathways underlying survival and apoptosis of UACC903 and UACC903(+6) cell lines.

  20. ONCOGENIC BRAF(V600E) PROMOTES STROMAL CELL-MEDIATED IMMUNOSUPPRESSION VIA INDUCTION OF INTERLEUKIN-1 IN MELANOMA

    PubMed Central

    Khalili, Jahan S.; Liu, Shujuan; Rodríguez-Cruz, Tania G.; Whittington, Mayra; Wardell, Seth; Liu, Chengwen; Zhang, Minying; Cooper, Zachary A.; Frederick, Dennie T.; Li, Yufeng; Zhang, Min; Joseph, Richard W.; Bernatchez, Chantale; Ekmekcioglu, Suhendan; Grimm, Elizabeth; Radvanyi, Laszlo G.; Davis, Richard E.; Davies, Michael A.; Wargo, Jennifer A.; Hwu, Patrick; Lizée, Gregory

    2012-01-01

    Purpose In this study, we assessed the specific role of BRAF(V600E) signaling in modulating the expression of immune regulatory genes in melanoma, in addition to analyzing downstream induction of immune suppression by primary human melanoma tumor-associated fibroblasts (TAFs). Experimental Design Primary human melanocytes and melanoma cell lines were transduced to express WT or V600E forms of BRAF, followed by gene expression analysis. The BRAF(V600E) inhibitor vemurafenib was used to confirm targets in BRAF(V600E)-positive melanoma cell lines and in tumors from melanoma patients undergoing inhibitor treatment. TAF lines generated from melanoma patient biopsies were tested for their ability to inhibit the function of tumor antigen-specific T-cells, prior to and following treatment with BRAF(V600E)-upregulated immune modulators. Transcriptional analysis of treated TAFs was conducted to identify potential mediators of T-cell suppression. Results Expression of BRAF(V600E) induced transcription of IL-1α and IL-1β in melanocytes and melanoma cell lines. Furthermore, vemurafenib reduced the expression of IL-1 protein in melanoma cell lines and most notably in human tumor biopsies from 11 of 12 melanoma patients undergoing inhibitor treatment. Treatment of melanoma-patient-derived TAFs with IL-1α/β significantly enhanced their ability to suppress the proliferation and function of melanoma-specific cytotoxic T cells, and this inhibition was partially attributable to upregulation by IL-1 of COX-2 and the PD-1 ligands PD-L1 and PD-L2 in TAFs. Conclusions This study reveals a novel mechanism of immune suppression sensitive to BRAF(V600E) inhibition, and suggests that clinical blockade of IL-1 may benefit patients with BRAF wild-type tumors and potentially synergize with immunotherapeutic interventions. PMID:22850568

  1. Interactions between ultraviolet light and interleukin-1 on MSH binding in both mouse melanoma and human squamous carcinoma cells

    SciTech Connect

    Birchall, N.; Orlow, S.J.; Kupper, T.; Pawelek, J. )

    1991-03-29

    Interactions between beta-melanotropin (MSH), interleukin 1-a (IL-1), and ultraviolet light (UV) were examined in Cloudman S91 mouse melanoma and RHEK human squamous carcinoma cell lines. The following points were established: (1) both cell lines produced IL-1 and their production was stimulated by exposure of the cells to UV; (2) both cell lines possessed high affinity binding sites for MSH, and their ability to bind MSH was modulated by IL-1; (3) IL-1 exhibited both stimulatory and inhibitory effects on MSH binding to Cloudman cells; and (4) the stimulatory effect of IL-1 on MSH binding to melanoma cells was reflected in enhanced cellular responsiveness to MSH regarding tyrosinase activity (E.C. 1.14.18.1) and melanin content. The findings raise the possibility that interactions between keratinocytes and melanocytes may be regulated by IL-1 and MSH, and suggest a possible mechanism for stimulation of cutaneous melanogenesis by solar radiation: enhancement of MSH receptor activity by induction of IL-1.

  2. Inhibition of Autophagy Enhances Curcumin United light irradiation-induced Oxidative Stress and Tumor Growth Suppression in Human Melanoma Cells

    PubMed Central

    Niu, Tianhui; Tian, Yan; Mei, Zhusong; Guo, Guangjin

    2016-01-01

    Malignant melanoma is the most aggressive form of skin carcinoma, which possesses fast propagating and highly invasive characteristics. Curcumin is a natural phenol compound that has various biological activities, such as anti-proliferative and apoptosis-accelerating impacts on tumor cells. Unfortunately, the therapeutical activities of Cur are severely hindered due to its extremely low bioavailability. In this study, a cooperative therapy of low concentration Cur combined with red united blue light irradiation was performed to inspect the synergistic effects on the apoptosis, proliferation and autophagy in human melanoma A375 cell. The results showed that red united blue light irradiation efficaciously synergized with Cur to trigger oxidative stress-mediated cell death, induce apoptosis and inhibit cell proliferation. Meanwhile, Western blotting revealed that combined disposure induced the formation of autophagosomes. Conversely, inhibition of the autophagy enhanced apoptosis, obstructed cell cycle arrest and induced reversible proliferation arrest to senescence. These findings suggest that Cur combined with red united blue light irradiation could generate photochemo-preventive effects via enhancing apoptosis and triggering autophagy, and pharmacological inhibition of autophagy convert reversible arrested cells to senescence, therefore reducing the possibility that damaged cells might escape programmed death. PMID:27502897

  3. Identification of a novel subgroup of melanomas with KIT/cyclin-dependent kinase-4 overexpression.

    PubMed

    Smalley, Keiran S M; Contractor, Rooha; Nguyen, Thiennga K; Xiao, Min; Edwards, Robin; Muthusamy, Viswanathan; King, Alastair J; Flaherty, Keith T; Bosenberg, Marcus; Herlyn, Meenhard; Nathanson, Katherine L

    2008-07-15

    Although many melanomas harbor either activating mutations in BRAF or NRAS, there remains a substantial, yet little known, group of tumors without either mutation. Here, we used a genomic strategy to define a novel group of melanoma cell lines with co-overexpression of cyclin-dependent kinase 4 (CDK4) and KIT. Although this subgroup lacked any known KIT mutations, they had high phospho-KIT receptor expression, indicating receptor activity. Quantitative PCR confirmed the existence of a similar KIT/CDK4 subgroup in human melanoma samples. Pharmacologic studies showed the KIT/CDK4-overexpressing subgroup to be resistant to BRAF inhibitors but sensitive to imatinib in both in vitro and in vivo melanoma models. Mechanistically, imatinib treatment led to increased apoptosis and G(1) phase cell cycle arrest associated with the inhibition of phospho-ERK and increased expression of p27(KIP). Other melanoma cell lines, which retained some KIT expression but lacked phospho-KIT, were not sensitive to imatinib, suggesting that KIT expression alone is not predictive of response. We suggest that co-overexpression of KIT/CDK4 is a potential mechanism of oncogenic transformation in some BRAF/NRAS wild-type melanomas. This group of melanomas may be a subpopulation for which imatinib or other KIT inhibitors may constitute optimal therapy.

  4. Uveal melanoma: Estimating prognosis

    PubMed Central

    Kaliki, Swathi; Shields, Carol L; Shields, Jerry A

    2015-01-01

    Uveal melanoma is the most common primary malignant tumor of the eye in adults, predominantly found in Caucasians. Local tumor control of uveal melanoma is excellent, yet this malignancy is associated with relatively high mortality secondary to metastasis. Various clinical, histopathological, cytogenetic features and gene expression features help in estimating the prognosis of uveal melanoma. The clinical features associated with poor prognosis in patients with uveal melanoma include older age at presentation, male gender, larger tumor basal diameter and thickness, ciliary body location, diffuse tumor configuration, association with ocular/oculodermal melanocytosis, extraocular tumor extension, and advanced tumor staging by American Joint Committee on Cancer classification. Histopathological features suggestive of poor prognosis include epithelioid cell type, high mitotic activity, higher values of mean diameter of ten largest nucleoli, higher microvascular density, extravascular matrix patterns, tumor-infiltrating lymphocytes, tumor-infiltrating macrophages, higher expression of insulin-like growth factor-1 receptor, and higher expression of human leukocyte antigen Class I and II. Monosomy 3, 1p loss, 6q loss, and 8q and those classified as Class II by gene expression are predictive of poor prognosis of uveal melanoma. In this review, we discuss the prognostic factors of uveal melanoma. A database search was performed on PubMed, using the terms “uvea,” “iris,” “ciliary body,” “choroid,” “melanoma,” “uveal melanoma” and “prognosis,” “metastasis,” “genetic testing,” “gene expression profiling.” Relevant English language articles were extracted, reviewed, and referenced appropriately. PMID:25827538

  5. Targeting Syndecan-1, a molecule implicated in the process of vasculogenic mimicry, enhances the therapeutic efficacy of the L19-IL2 immunocytokine in human melanoma xenografts

    PubMed Central

    Orecchia, Paola; Conte, Romana; Balza, Enrica; Pietra, Gabriella; Mingari, Maria Cristina; Carnemolla, Barbara

    2015-01-01

    Anti-angiogenic therapy of solid tumors has until now failed to produce the long lasting clinical benefits desired, possibly due to the complexity of the neoangiogenic process. Indeed, a prominent role is played by “vasculogenic” or “vascular” mimicry (VM), a phenomenon in which aggressive cancer cells form an alternative microvascular circulation, independently of endothelial cell angiogenesis. In this study we observed, in melanoma patient cell lines having vasculogenic/stem-cell like phenotype and in melanoma tumors, the syndecan-1 co-expression with VM markers, such as CD144 and VEGFR-2. We show that melanoma cells lose their ability to form tubule-like structures in vitro after blocking syndecan-1 activity by the specific human recombinant antibody, OC-46F2. Moreover, in a human melanoma xenograft model, the combined therapy using OC-46F2 and L19-IL2, an immunocytokine specific for the tumor angiogenic-associated B-fibronectin isoform(B-FN), led to a complete inhibition of tumor growth until day 90 from tumor implantation in 71% of treated mice, with statistically significant differences compared to groups treated with OC-46F2 or L19-IL2 as monotherapy. Furthermore, in the tumors recovered from mice treated with OC-46F2 either as monotherapy or in combination with L19-IL2, we observed a dramatic decrease of vascular density and loss of VM structures. These findings indicate for the first time a role of syndecan-1 in melanoma VM and that targeting syndecan-1, together with B-FN, could be promising in improving the treatment of metastatic melanoma. PMID:26460958

  6. Genetic progression of malignant melanoma.

    PubMed

    Tímár, J; Vizkeleti, L; Doma, V; Barbai, T; Rásó, E

    2016-03-01

    Malignant melanoma of the skin is the most aggressive human cancer given that a primary tumor a few millimeters in diameter frequently has full metastatic competence. In view of that, revealing the genetic background of this potential may also help to better understand tumor dissemination in general. Genomic analyses have established the molecular classification of melanoma based on the most frequent driver oncogenic mutations (BRAF, NRAS, KIT) and have also revealed a long list of rare events, including mutations and amplifications as well as genetic microheterogeneity. At the moment, it is unclear whether any of these rare events have role in the metastasis initiation process since the major drivers do not have such a role. During lymphatic and hematogenous dissemination, the clonal selection process is evidently reflected by differences in oncogenic drivers in the metastases versus the primary tumor. Clonal selection is also evident during lymphatic progression, though the genetic background of this immunoselection is less clear. Genomic analyses of metastases identified further genetic alterations, some of which may correspond to metastasis maintenance genes. The natural genetic progression of melanoma can be modified by targeted (BRAF or MEK inhibitor) or immunotherapies. Some of the rare events in primary tumors may result in primary resistance, while further new genetic lesions develop during the acquired resistance to both targeted and immunotherapies. Only a few genetic lesions of the primary tumor are constant during natural or therapy-modulated progression. EGFR4 and NMDAR2 mutations, MITF and MET amplifications and PTEN loss can be considered as metastasis drivers. Furthermore, BRAF and MITF amplifications as well as PTEN loss are also responsible for resistance to targeted therapies, whereas NRAS mutation is the only founder genetic lesion showing any association with sensitivity to immunotherapies. Unfortunately, there are hardly any data on the

  7. NF-κB activation in melanoma

    PubMed Central

    Ueda, Yukiko; Richmond, Ann

    2009-01-01

    Summary Metastatic melanoma is an aggressive skin cancer that is notoriously resistant to current cancer therapies. In human melanoma, nuclear factor-kappa B (NF-κB) is upregulated, leading to the deregulation of gene transcription. In this review, we discuss (i) the relationship between gene alteration in melanoma and upregulation of NF-κB, (ii) mechanisms by which activated NF-κB switch from pro-apoptotic to anti-apoptotic functions in melanoma and (iii) autocrine mechanisms that promote constitutive activation of NF-κB in metastatic melanoma. PMID:16524427

  8. Molecular pathway activation features linked with transition from normal skin to primary and metastatic melanomas in human

    PubMed Central

    Shepelin, Denis; Korzinkin, Mikhail; Vanyushina, Anna; Aliper, Alexander; Borisov, Nicolas; Vasilov, Raif; Zhukov, Nikolay; Sokov, Dmitry; Prassolov, Vladimir; Gaifullin, Nurshat; Zhavoronkov, Alex; Bhullar, Bhupinder; Buzdin, Anton

    2016-01-01

    Melanoma is the most aggressive and dangerous type of skin cancer, but its molecular mechanisms remain largely unclear. For transcriptomic data of 478 primary and metastatic melanoma, nevi and normal skin samples, we performed high-throughput analysis of intracellular molecular networks including 592 signaling and metabolic pathways. We showed that at the molecular pathway level, the formation of nevi largely resembles transition from normal skin to primary melanoma. Using a combination of bioinformatic machine learning algorithms, we identified 44 characteristic signaling and metabolic pathways connected with the formation of nevi, development of primary melanoma, and its metastases. We created a model describing formation and progression of melanoma at the level of molecular pathway activation. We discovered six novel associations between activation of metabolic molecular pathways and progression of melanoma: for allopregnanolone biosynthesis, L-carnitine biosynthesis, zymosterol biosynthesis (inhibited in melanoma), fructose 2, 6-bisphosphate synthesis and dephosphorylation, resolvin D biosynthesis (activated in melanoma), D-myo-inositol hexakisphosphate biosynthesis (activated in primary, inhibited in metastatic melanoma). Finally, we discovered fourteen tightly coordinated functional clusters of molecular pathways. This study helps to decode molecular mechanisms underlying the development of melanoma. PMID:26624979

  9. Molecular pathway activation features linked with transition from normal skin to primary and metastatic melanomas in human.

    PubMed

    Shepelin, Denis; Korzinkin, Mikhail; Vanyushina, Anna; Aliper, Alexander; Borisov, Nicolas; Vasilov, Raif; Zhukov, Nikolay; Sokov, Dmitry; Prassolov, Vladimir; Gaifullin, Nurshat; Zhavoronkov, Alex; Bhullar, Bhupinder; Buzdin, Anton

    2016-01-05

    Melanoma is the most aggressive and dangerous type of skin cancer, but its molecular mechanisms remain largely unclear. For transcriptomic data of 478 primary and metastatic melanoma, nevi and normal skin samples, we performed high-throughput analysis of intracellular molecular networks including 592 signaling and metabolic pathways. We showed that at the molecular pathway level, the formation of nevi largely resembles transition from normal skin to primary melanoma. Using a combination of bioinformatic machine learning algorithms, we identified 44 characteristic signaling and metabolic pathways connected with the formation of nevi, development of primary melanoma, and its metastases. We created a model describing formation and progression of melanoma at the level of molecular pathway activation. We discovered six novel associations between activation of metabolic molecular pathways and progression of melanoma: for allopregnanolone biosynthesis, L-carnitine biosynthesis, zymosterol biosynthesis (inhibited in melanoma), fructose 2, 6-bisphosphate synthesis and dephosphorylation, resolvin D biosynthesis (activated in melanoma), D-myo-inositol hexakisphosphate biosynthesis (activated in primary, inhibited in metastatic melanoma). Finally, we discovered fourteen tightly coordinated functional clusters of molecular pathways. This study helps to decode molecular mechanisms underlying the development of melanoma.

  10. A2B and A3 Adenosine Receptors Modulate Vascular Endothelial Growth Factor and Interleukin-8 Expression in Human Melanoma Cells Treated with Etoposide and Doxorubicin

    PubMed Central

    Merighi, Stefania; Simioni, Carolina; Gessi, Stefania; Varani, Katia; Mirandola, Prisco; Tabrizi, Mojgan Aghazadeh; Baraldi, Pier Giovanni; Borea, Pier Andrea

    2009-01-01

    Cancer patients undergoing treatment with systemic cancer chemotherapy drugs often have abnormal growth factor and cytokine profiles. Thus, serum levels of interleukin-8 (IL-8) are elevated in patients with malignant melanoma. In addition to IL-8, aggressive melanoma cells secrete, through its transcriptional regulator hypoxia-inducible factor 1 (HIF-1), vascular endothelial growth factor (VEGF), which promotes angiogenesis and metastasis of human cancerous cells. Whether these responses are related to adenosine, a ubiquitous mediator expressed at high concentrations in cancer and implicated in numerous inflammatory processes, is not known and is the focus of this study. We have examined whether the DNA-damaging agents etoposide (VP-16) and doxorubicin can affect IL-8, VEGF, and HIF-1 expressions in human melanoma cancer cells. In particular, we have investigated whether these responses are related to the modulation of the adenosine receptor subtypes, namely, A1, A2A, A2B, and A3. We have demonstrated that A2B receptor blockade can impair IL-8 production, whereas blocking A3 receptors, it is possible to further decrease VEGF secretion in melanoma cells treated with VP-16 and doxorubicin. This understanding may present the possibility of using adenosine antagonists to reduce chemotherapy-induced inflammatory cytokine production and to improve the ability of chemotherapeutic drugs to block angiogenesis. Consequently, we conclude that adenosine receptor modulation may be useful for refining the use of chemotherapeutic drugs to treat human cancer more effectively. PMID:19794965

  11. S100 protein expression in human melanoma cells: Comparison of levels of expression among different cell lines and individual cells in different phases of the cell cycle

    SciTech Connect

    Marks, A.; O'Hanlon, D.; Dunn, R. ); Petsche, D.; Baumal, R. ); Kwong, P.C.; Stead, R. ); Liao, S.K. Biotherapeutics, Inc., Franklin, TN )

    1990-03-01

    The synthesis of S100 protein in cultured human melanoma cells was examined using metabolic labeling with ({sup 35}S)methionine, immunoprecipitation with anti-S100 protein antiserum, and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Six of seven cell lines derived from melanomas synthesized relatively large amounts of S100 protein, whereas three cell lines derived from normal melanocytes synthesized lesser amounts. Synthesis of S100 protein was not detected in 10 human cell lines of non-neuroectodermal origin. Analysis of poly(A{sup +}) RNA form one melanoma cell line by Northern blot hybridization with a probe specific for the {beta} subunit of rat S100 protein revealed a single mRNA species of 1.0 kb coding for the human protein. Flow cytometric analysis of individual cells of two melanoma cell lines and the rat glioma cell line C6 indicated that G0/G1 cells were heterogeneous with respect to S100 protein expression, while almost all the cells in S+G2+M expressed S100 protein. These results suggest that expression of S100 protein in G0/G1 could be a prerequisite for progression of the cells through the cell cycle.

  12. Melanoma-restricted genes

    PubMed Central

    Wang, Ena; Panelli, Monica C; Zavaglia, Katia; Mandruzzato, Susanna; Hu, Nan; Taylor, Phil R; Seliger, Barbara; Zanovello, Paola; Freedman, Ralph S; Marincola, Francesco M

    2004-01-01

    Human metastatic cutaneous melanoma has gained a well deserved reputation for its immune responsiveness. The reason(s) remain(s) unknown. We attempted previously to characterize several variables that may affect the relationship between tumor and host immune cells but, taken one at the time, none yielded a convincing explanation. With explorative purposes, high-throughput technology was applied here to portray transcriptional characteristics unique to metastatic cutaneous melanoma that may or may not be relevant to its immunogenic potential. Several functional signatures could be identified descriptive of immune or other biological functions. In addition, the transcriptional profile of metastatic melanoma was compared with that of primary renal cell cancers (RCC) identifying several genes co-coordinately expressed by the two tumor types. Since RCC is another immune responsive tumor, commonalities between RCC and melanoma may help untangle the enigma of their potential immune responsiveness. This purely descriptive study provides, therefore, a map for the investigation of metastatic melanoma in future clinical trials and at the same time may invite consideration of novel therapeutic targets. PMID:15488140

  13. [Choroidal melanoma].

    PubMed

    Desjardins, Laurence

    2016-03-01

    Choroidal melanoma is the most common form of eye cancer in adults. Treatments enabling the tumour to be destroyed or removed while preserving the eye socket are mainly based on surgery, proton therapy and brachytherapy.

  14. Immunohistochemical analysis of cartilage-derived retinoic acid-sensitive protein (CD-RAP)/melanoma inhibitory activity (MIA) in murine, canine, bovine and equine cerebrospinal tissues.

    PubMed

    Tokunaga, Satoshi; Fujiki, Makoto; Yabuki, Akira; Misumi, Kazuhiro

    2012-04-01

    Cartilage-derived retinoic acid-sensitive protein (CD-RAP)/melanoma inhibitory activity (MIA), which appears abundantly in hypertrophic cartilage at the stage of endochondral ossification, is also detected in cerebrospinal fluid (CSF) following spinal cord injury. In this study, the localization of the CD-RAP/MIA molecule in normal tissues of the spine and brain obtained from mice, rats, dogs, cattle and horses was examined using immunohistochemistry with a specific antibody. The positive signals of CD-RAP/MIA were found at nerve cells in the spinal cords of all species and were especially strong at cerebellar Purkinje cells. The results suggested that CD-RAP/MIA included in normal cerebrospinal tissues could be a biomarker associated with tissue injuries, as the molecules might flow into the CSF.

  15. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated

    PubMed Central

    Berenstein, Ariel; Notcovich, Cintia; Cerda, María B.; Klamt, Fabio; Chernomoretz, Ariel; Durán, Hebe

    2016-01-01

    Reactive oxygen species (ROS) are implicated in tumor transformation. The antioxidant system (AOS) protects cells from ROS damage. However, it is also hijacked by cancers cells to proliferate within the tumor. Thus, identifying proteins altered by redox imbalance in cancer cells is an attractive prognostic and therapeutic tool. Gene expression microarrays in A375 melanoma cells with different ROS levels after overexpressing catalase were performed. Dissimilar phenotypes by differential compensation to hydrogen peroxide scavenging were generated. The melanotic A375-A7 (A7) upregulated TYRP1, CNTN1 and UCHL1 promoting melanogenesis. The metastatic A375-G10 (G10) downregulated MTSS1 and TIAM1, proteins absent in metastasis. Moreover, differential coexpression of AOS genes (EPHX2, GSTM3, MGST1, MSRA, TXNRD3, MGST3 and GSR) was found in A7 and G10. Their increase in A7 improved its AOS ability and therefore, oxidative stress response, resembling less aggressive tumor cells. Meanwhile, their decrease in G10 revealed a disruption in the AOS and therefore, enhanced its metastatic capacity. These gene signatures, not only bring new insights into the physiopathology of melanoma, but also could be relevant in clinical prognostic to classify between non aggressive and metastatic melanomas. PMID:27206673

  16. Genetics of human sensitivity to ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Cleaver, James E.

    1994-07-01

    the major human health effects of solar and artificial UV light occur from the UVB and UVC wavelength ranges and involve a variety of short-term and long-term deleterious changes to the skin and eyes. the more important initial damage to cellular macromolecules involves dimerization of adjacent pyrimidines in DNA to produce cyclobutane pyrimidine dimes, (6-4) pyrimidine- pyrimidone, and (6-4) dewar photoproducts. these photoproducts can be repaired by a genetically regulated enzyme system (nucleotide excision repair) which removes oligonucleotides 29-30 nucleotides long that contain the photoproducts, and synthesizes replacement patches. At least a dozen gene products are involved in the process of recognizing photoproducts in DNA, altering local DNA helicity and cleaving the polynucleotide chain at defined positions either side of a photoproduct. Hereditary mutations in many of these genes are recognized in the human genetic disorders xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). Several of the gene products have other functions involving the regulation of gene transcription which accounts for the complex clinical presentation of repair deficient diseases that involve sensitivity of the skin and eyes to UV light, increased solar carcinogenesis (in XP), demyelination, and ganglial calcification (in CS), hair abnormalities (in TTD), and developmental and neurological abnormalities

  17. Nivolumab for Metastatic Melanoma.

    PubMed

    Gupta, A K; Daigle, D

    2016-03-01

    Melanoma is an aggressive skin cancer with a generally poor prognosis at Stage III-IV disease. Traditionally, metastatic melanoma was treated by surgical resection, when possible, and with systemic chemotherapy. New developments in molecular biology have led to the identification of immune checkpoints which are exploited by malignant cells, allowing them to go undetected by the immune system. Nivolumab (Opdivo®) is a human monoclonal antibody which prevents immune inhibition by interacting with PD-1 on tumor cells; thus, increasing tumor-specific T cell proliferation. Nivolumab has demonstrated efficacy superior to that of standard chemotherapy and relative safety in clinical trials. Indeed, the outcomes for patients with advanced melanoma are being improved by novel biologic agents such as nivolumab.

  18. The anti-proliferative effects of a palm oil-derived product and its mode of actions in human malignant melanoma MeWo cells.

    PubMed

    Komarasamy, Thamil Vaani; Sekaran, Shamala Devi

    2012-01-01

    Melanoma incidence and mortality have risen dramatically in recent years. No effective treatment for metastatic melanoma exists; hence currently, an intense effort for new drug evaluation is being carried out. In this study, we investigated the effects of a palm oil-derived nanopolymer called Bio-12 against human malignant melanoma. The nanopolymers of Bio-12 are lipid esters derived from a range of fatty acids of palm oil. Our study aims to identify the anti-proliferative properties of Bio-12 against human malignant melanoma cell line (MeWo) and to elucidate the mode of actions whereby Bio-12 brings about cell death. Bio-12 significantly inhibited the growth of MeWo cells in a concentration- and time- dependent manner with a median inhibitory concentration (IC₅₀) value of 1/25 dilution after 72 h but was ineffective on human normal skin fibroblasts (CCD-1059sk). We further investigated the mode of actions of Bio-12 on MeWo cells. Cell cycle flow cytometry demonstrated that MeWo cells treated with increasing concentrations of Bio-12 resulted in S-phase arrest, accompanied by the detection of sub-G1 content, indicative of apoptotic cell death. Induction of apoptosis was further confirmed via caspase (substrate) cleavage assay which showed induction of early apoptosis in MeWo cells. In addition, DNA strand breaks which are terminal event in apoptosis were evident through increase of TUNEL positive cells and formation of a characteristic DNA ladder on agarose gel electrophoresis. Moreover, treatment of MeWo cells with Bio-12 induced significant increase in lactate dehydrogenase (LDH) activity. These results show that Bio-12 possesses the ability to suppress proliferation of human malignant melanoma MeWo cells and this suppression is at least partly attributed to the initiation of the S-phase arrest, apoptosis and necrosis, suggesting that it is indeed worth for further investigations.

  19. Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy.

    PubMed

    Chiu, Chun-Tang; Hsuan, Shu-Wen; Lin, Hui-Hsuan; Hsu, Cheng-Chin; Chou, Fen-Pi; Chen, Jing-Hsien

    2015-03-01

    Melanoma is the least common but most fatal form of skin cancer. Previous studies have indicated that an aqueous extract of Hibiscus sabdariffa leaves possess hypoglycemic, hypolipidemic, and antioxidant effects. In this study, we want to investigate the anticancer activity of Hibiscus leaf polyphenolic (HLP) extract in melanoma cells. First, HLP was exhibited to be rich in epicatechin gallate (ECG) and other polyphenols. Apoptotic and autophagic activities of HLP and ECG were further evaluated by DAPI stain, cell-cycle analysis, and acidic vascular organelle (AVO) stain. Our results revealed that both HLP and ECG induced the caspases cleavages, Bcl-2 family proteins regulation, and Fas/FasL activation in A375 cells. In addition, we also revealed that the cells presented AVO-positive after HLP treatments. HLP could increase the expressions of autophagy-related proteins autophagy-related gene 5 (ATG5), Beclin1, and light chain 3-II (LC3-II), and induce autophagic cell death in A375 cells. These data indicated that the anticancer effect of HLP, partly contributed by ECG, in A375 cells. HLP potentially could be developed as an antimelanoma agent.

  20. Epidemiological support for an hypothesis for melanoma induction indicating a role for UVA radiation.

    PubMed

    Moan, J; Dahlback, A; Setlow, R B

    1999-08-01

    An hypothesis for melanoma induction is presented: UV radiation absorbed by melanin in melanocytes generates products that may activate the carcinogenic process. Products formed by UV absorption in the upper layers of the epidermis cannot diffuse down as far as to the melanocytes. Thus, melanin in the upper layer of the skin may be protective, while that in melanocytes may be photocarcinogenic. Observations that support this hypothesis include: (1) Africans with dark skin have a reduced risk of getting all types of skin cancer as compared with Caucasians, but the ratio of their incidence rates of cutaneous malignant melanoma to that of squamous cell carcinoma is larger than the corresponding ratio for Caucasians. (2) Albino Africans, as compared with normally pigmented Africans, seem to have a relatively small risk of getting cutaneous malignant melanomas compared to nonmelanomas. This is probably also true for albino and normally pigmented Caucasians. (3) Among sun-sensitive, poorly tanning persons, frequent UV exposures are associated with increased risk of melanoma, whereas among sun-resistant, well-tanning persons, increased frequency of exposure is associated with decreased melanoma risk. (4) It is likely that UVA, being absorbed by melanin, might have a melanoma-inducing effect. This is in agreement with some epidemiological investigations which indicate that sun-screen lotions may not protect sufficiently against melanoma induction. The relative latitude gradient for UVA is much smaller than that for UVB. The same is true for the relative latitude gradient of cutaneous malignant melanoma as compared with squamous cell carcinoma and basal cell carcinoma. Under the assumption that the average slopes of the curves relating incidence rates with fluences of carcinogenic UV radiation are similar for melanomas and nonmelanomas, these facts are in agreement with the assumption that UVA plays a significant role in the induction of melanomas in humans. This is in

  1. Sensitivity of Selected Arenaviruses to a Human Interferon.

    DTIC Science & Technology

    1979-02-25

    A97 3 5U~ ARMY MEDICAL RESEARCH INST OF INFECTIOUS DISEASES FR-ETC F/6 6/5 I SENSITIVITY OF SELECTED ARENAVIRUSES TO A HUMAN INTERFERON. (U) U FEB 79...TYPEOF REPORT & PERIOD COVERED Sensitivity of Selected Arenaviruses to a Human Interim - Interferon - / - 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR a...Human interferon, interferon sensitivity, human interferon bioassay, BS-C-l cells, Detroit 532 cells, Arenaviruses , vesicular stomatitis virus. O

  2. Structure and regulation of the versican promoter: the versican promoter is regulated by AP-1 and TCF transcription factors in invasive human melanoma cells.

    PubMed

    Domenzain-Reyna, Clelia; Hernández, Daniel; Miquel-Serra, Laia; Docampo, María José; Badenas, Celia; Fabra, Angels; Bassols, Anna

    2009-05-01

    Versican is a large chondroitin sulfate proteoglycan of the extracellular matrix that is involved in a variety of cellular processes. We showed previously that versican, which is overexpressed in cutaneous melanomas as well as in premalignant lesions, contributes to melanoma progression, favoring the detachment of cells and the metastatic dissemination. Here, we investigated the transcriptional regulation of the versican promoter in melanoma cell lines with different levels of biological aggressiveness and stages of differentiation. We show that versican promoter up-regulation accounts for the differential expression levels of mRNA and protein detected in the invasive SK-mel-131 human melanoma cells. The activity of the versican promoter increased 5-fold in these cells in comparison with that measured in non-invasive MeWo melanoma cells. Several transcriptional regulatory elements were identified in the proximal promoter, including AP-1, Sp1, AP-2, and two TCF-4 sites. We show that promoter activation is mediated by the ERK/MAPK and JNK signaling pathways acting on the AP-1 site, suggesting that BRAF mutation present in SK-mel-131 cells impinge upon the up-regulation of the versican gene through signaling elicited by the ERK/MAPK pathway. This is the first time the AP-1 transcription factor family has been shown to be related to the regulation of versican expression. Furthermore, deletion of the TCF-4 binding sites caused a 60% decrease in the promoter activity in SK-mel-131 cells. These results showing that AP-1 and TCF-4 binding sites are the main regulatory regions directing versican production provide new insights into versican promoter regulation during melanoma progression.

  3. Phenotyping of Human Melanoma Cells Reveals a Unique Composition of Receptor Targets and a Subpopulation Co-Expressing ErbB4, EPO-R and NGF-R

    PubMed Central

    Krepler, Clemens; Mikula, Mario; Mechtcheriakova, Diana; Strommer, Sabine; Stella, Alexander; Jensen-Jarolim, Erika; Höller, Christoph; Wacheck, Volker; Pehamberger, Hubert; Valent, Peter

    2014-01-01

    Malignant melanoma is a life-threatening skin cancer increasingly diagnosed in the western world. In advanced disease the prognosis is grave. Growth and metastasis formation in melanomas are regulated by a network of cytokines, cytokine-receptors, and adhesion molecules. However, little is known about surface antigens and target expression profiles in human melanomas. We examined the cell surface antigen profile of human skin melanoma cells by multicolor flow cytometry, and compared their phenotype with 4 melanoma cell lines (A375, 607B, Mel-Juso, SK-Mel28). Melanoma cells were defined as CD45−/CD31− cells co-expressing one or more melanoma-related antigens (CD63, CD146, CD166). In most patients, melanoma cells exhibited ErbB3/Her3, CD44/Pgp-1, ICAM-1/CD54 and IGF-1-R/CD221, but did not express CD20, ErbB2/Her2, KIT/CD117, AC133/CD133 or MDR-1/CD243. Melanoma cell lines were found to display a similar phenotype. In most patients, a distinct subpopulation of melanoma cells (4–40%) expressed the erythropoietin receptor (EPO-R) and ErbB4 together with PD-1 and NGF-R/CD271. Both the EPO-R+ and EPO-R− subpopulations produced melanoma lesions in NOD/SCID IL-2Rgammanull (NSG) mice in first and secondary recipients. Normal skin melanocytes did not express ErbB4 or EPO-R, but expressed a functional KIT receptor (CD117) as well as NGF-R, ErbB3/Her3, IGF-1-R and CD44. In conclusion, melanoma cells display a unique composition of surface target antigens and cytokine receptors. Malignant transformation of melanomas is accompanied by loss of KIT and acquisition of EPO-R and ErbB4, both of which are co-expressed with NGF-R and PD-1 in distinct subfractions of melanoma cells. However, expression of EPO-R/ErbB4/PD-1 is not indicative of a selective melanoma-initiating potential. PMID:24489649

  4. Phenotyping of human melanoma cells reveals a unique composition of receptor targets and a subpopulation co-expressing ErbB4, EPO-R and NGF-R.

    PubMed

    Mirkina, Irina; Hadzijusufovic, Emir; Krepler, Clemens; Mikula, Mario; Mechtcheriakova, Diana; Strommer, Sabine; Stella, Alexander; Jensen-Jarolim, Erika; Höller, Christoph; Wacheck, Volker; Pehamberger, Hubert; Valent, Peter

    2014-01-01

    Malignant melanoma is a life-threatening skin cancer increasingly diagnosed in the western world. In advanced disease the prognosis is grave. Growth and metastasis formation in melanomas are regulated by a network of cytokines, cytokine-receptors, and adhesion molecules. However, little is known about surface antigens and target expression profiles in human melanomas. We examined the cell surface antigen profile of human skin melanoma cells by multicolor flow cytometry, and compared their phenotype with 4 melanoma cell lines (A375, 607B, Mel-Juso, SK-Mel28). Melanoma cells were defined as CD45-/CD31- cells co-expressing one or more melanoma-related antigens (CD63, CD146, CD166). In most patients, melanoma cells exhibited ErbB3/Her3, CD44/Pgp-1, ICAM-1/CD54 and IGF-1-R/CD221, but did not express CD20, ErbB2/Her2, KIT/CD117, AC133/CD133 or MDR-1/CD243. Melanoma cell lines were found to display a similar phenotype. In most patients, a distinct subpopulation of melanoma cells (4-40%) expressed the erythropoietin receptor (EPO-R) and ErbB4 together with PD-1 and NGF-R/CD271. Both the EPO-R+ and EPO-R- subpopulations produced melanoma lesions in NOD/SCID IL-2Rgamma(null) (NSG) mice in first and secondary recipients. Normal skin melanocytes did not express ErbB4 or EPO-R, but expressed a functional KIT receptor (CD117) as well as NGF-R, ErbB3/Her3, IGF-1-R and CD44. In conclusion, melanoma cells display a unique composition of surface target antigens and cytokine receptors. Malignant transformation of melanomas is accompanied by loss of KIT and acquisition of EPO-R and ErbB4, both of which are co-expressed with NGF-R and PD-1 in distinct subfractions of melanoma cells. However, expression of EPO-R/ErbB4/PD-1 is not indicative of a selective melanoma-initiating potential.

  5. Effects of nuclear factor-κB and ERK signaling transduction pathway inhibitors on human melanoma cell proliferation in vitro.

    PubMed

    Huang, Yi-Chuan; Pan, Min; Liu, Ning; Xiao, Jun-Gang; Chen, Hong-Quan

    2015-11-01

    The present study aimed to investigate the effects of blocking nuclear factor (NF)-κB and/or extracellular signal-regulated kinase (ERK) signaling pathways on proliferation and apoptosis of melanoma cells in vitro. A375 Human melanoma cells were treated with U0126 (ERK signaling pathway inhibitor) and BMS-345541 (NF-κB inhibitor), alone or in combination. At 12, 24 and 48 h after treatment, cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle progression and apoptosis were evaluated by flow cytometry, and Bcl-2 protein content was determined by western blot analysis. BMS-345541 and U0126 significantly inhibited A375 cell proliferation in a dose- and time-dependent manner (P<0.01). The rate of proliferation inhibition at 24 h was 35.41±1.38% for BMS-345541 alone, 30.64±2.86% for U0126 alone, and 77.27±2.70% for BMS-345541 and U0126 in combination. The difference between combination and single treatment was significantly different (P<0.01). The proportion of cells in S phase was 14.20, 18.40 and 22.64% following treatment with BMS-345541, U0126, and BMS-345541 and U0126 in combination, respectively; these values were all significantly reduced compared with the untreated control group (P<0.01). The apoptosis rate was 24.98±1.03% in the BMS-345541 group, 13.96±0.96% in the U0126 group and 38.91±1.46% in the combination group; all significantly increased compared with the control group (P<0.01). Bcl-2 protein content in A375 cells was significantly increased following treatment with BMS-345541 and U0126, alone or in combination, when compared with the untreated control group (P<0.01). Therefore, NF-κB and ERK signaling pathway inhibitors may serve as potential therapeutic targets for melanoma.

  6. Mutations in the TP53 gene in human malignant melanomas derived from sun-exposed skin and unexposed mucosal membranes.

    PubMed

    Ragnarsson-Olding, B K; Karsberg, S; Platz, A; Ringborg, U K

    2002-10-01

    Mutations in the p53 tumour suppressor gene ( ) have been linked to several types of cancer. We therefore investigated whether such mutations occur in malignant melanomas and, if so, whether they are linked to ultraviolet (sun) light exposure. For the first time, mutations in mucosal membranes and adjacent tissues shielded from sunlight were compared with those in cutaneous melanomas from sun-exposed skin. Archival tissues were obtained from 35 patients with a primary melanoma taken from unexposed mucosal areas and from 34 patients with a primary melanoma located in chronically sun-exposed head and neck skin. was characterized by means of polymerase chain reaction amplification and single-strand conformation polymorphism assay followed by nucleotide sequencing. The results showed that 17.6% of the primary cutaneous and 28.6% of the primary mucosal melanomas had point mutations in. Among the cutaneous melanomas, one showed three mutations in exon 7, and one had two mutations in exon 5; the mutation was in the same allele in both cases. One mucosal melanoma had two mutations in exon 7, both in the same allele, and another had two mutations, one in exon 7 and one in intron 6, both in the same allele. C<--T mutations at dipyrimidine sites, considered fingerprints for ultraviolet light-induced mutations, were about equally distributed among patients with melanomas from chronically sun-exposed areas (six out of nine; 67%) and those with melanomas from unexposed mucosal areas and adjacent skin (eight out of 14; 57%). Our data, demonstrating the presence of such mutations even in melanomas from mucosal membranes, clearly suggest that factors other than, or additional to, ultraviolet radiation are operational in the induction of mutations in melanomas.

  7. Apigenin Attenuates Melanoma Cell Migration by Inducing Anoikis through Integrin and Focal Adhesion Kinase Inhibition.

    PubMed

    Hasnat, Md Abul; Pervin, Mehnaz; Lim, Ji Hong; Lim, Beong Ou

    2015-11-27

    Apigenin, a nonmutagenic flavonoid, has been found to have antitumor properties and is therefore particularly relevant for the development of chemotherapeutic agents for cancers. In this study, time- and dose-dependent cell viability and cytotoxicity were assessed to determine the effects of apigenin on A2058 and A375 melanoma cells. Melanoma cells were pretreated with different concentrations of apigenin and analyzed for morphological changes, anoikis induction, cell migration, and levels of proteins associated with apoptosis. Apigenin reduced integrin protein levels and inhibited the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK1/2), which induce anoikis in human cutaneous melanoma cells. Apigenin exhibited dose-dependent inhibition of melanoma cell migration, unlike untreated controls. Furthermore, apigenin treatment increased apoptotic factors such as caspase-3 and cleaved poly(ADP-ribose) polymerase in a dose-dependent manner, demonstrating the metastasis of melanoma cells. Our results provide a new insight into the mechanisms by which apigenin prevents melanoma metastasis by sensitizing anoikis induced by the loss of integrin proteins in the FAK/ERK1/2 signaling pathway. These findings elucidate the related mechanisms and suggest the potential of apigenin in developing clinical treatment strategies against malignant melanoma.

  8. A PGC1α-mediated transcriptional axis suppresses melanoma metastasis.

    PubMed

    Luo, Chi; Lim, Ji-Hong; Lee, Yoonjin; Granter, Scott R; Thomas, Ajith; Vazquez, Francisca; Widlund, Hans R; Puigserver, Pere

    2016-09-15

    Melanoma is the deadliest form of commonly encountered skin cancer because of its rapid progression towards metastasis. Although metabolic reprogramming is tightly associated with tumour progression, the effect of metabolic regulatory circuits on metastatic processes is poorly understood. PGC1α is a transcriptional coactivator that promotes mitochondrial biogenesis, protects against oxidative stress and reprograms melanoma metabolism to influence drug sensitivity and survival. Here, we provide data indicating that PGC1α suppresses melanoma metastasis, acting through a pathway distinct from that of its bioenergetic functions. Elevated PGC1α expression inversely correlates with vertical growth in human melanoma specimens. PGC1α silencing makes poorly metastatic melanoma cells highly invasive and, conversely, PGC1α reconstitution suppresses metastasis. Within populations of melanoma cells, there is a marked heterogeneity in PGC1α levels, which predicts their inherent high or low metastatic capacity. Mechanistically, PGC1α directly increases transcription of ID2, which in turn binds to and inactivates the transcription factor TCF4. Inactive TCF4 causes downregulation of metastasis-related genes, including integrins that are known to influence invasion and metastasis. Inhibition of BRAF(V600E) using vemurafenib, independently of its cytostatic effects, suppresses metastasis by acting on the PGC1α-ID2-TCF4-integrin axis. Together, our findings reveal that PGC1α maintains mitochondrial energetic metabolism and suppresses metastasis through direct regulation of parallel acting transcriptional programs. Consequently, components of these circuits define new therapeutic opportunities that may help to curb melanoma metastasis.

  9. Histone deacetylase inhibitors interact with melanoma differentiation associated-7/interleukin-24 to kill primary human glioblastoma cells.

    PubMed

    Hamed, Hossein A; Yacoub, Adly; Park, Margaret A; Archer, Kellie; Das, Swadesh K; Sarkar, Devanand; Grant, Steven; Fisher, Paul B; Dent, Paul

    2013-08-01

    We presently demonstrate that histone deacetylase inhibitors (HDACIs) enhance toxicity of melanoma differentiation-associated gene-7/interleukin 24 (mda-7/IL-24) in invasive primary human glioblastoma multiforme (GBM) cells. Additionally, a method is described to augment the efficacy of adenoviral delivery of mda-7/IL-24 in these cells. HDACIs synergized with melanoma differentiation-associated (MDA)-7/IL-24 killing GBM cells. Enhanced lethality correlated with increased autophagy that was dependent on the expression of ceramide synthase 6. HDACIs interacted with MDA-7/IL-24 prolonging generation of reactive oxygen species and Ca(2+). Quenching of reactive oxygen species and Ca(2+) blocked HDACI and MDA-7/IL-24 killing. In vivo MDA-7/IL-24 prolonged the survival of animals carrying orthotopic tumors, and HDACIs enhanced survival further. A serotype 5/3 adenovirus more effectively delivers mda-7/IL-24 to GBM tumors than a serotype 5 virus. Hence, we constructed a serotype 5/3 adenovirus that conditionally replicates in tumor cells expressing MDA-7/IL-24, in which the adenoviral early region 1A (E1A) gene was driven by the cancer-specific promoter progression elevated gene-3 [Ad.5/3 (INGN 241)-PEG-E1A-mda-7; also called Ad.5/3-CTV (cancer terminator virus)]. Ad.5/3-CTV increased the survival of mice carrying GBM tumors to a significantly greater extent than did a nonreplicative virus Ad.5/3-mda-7. Ad.5/3-CTV exhibited no toxicity in the brains of Syrian hamsters. Collectively our data demonstrate that HDACIs enhance MDA-7/IL-24 lethality, and adenoviral delivery of mda-7/IL-24 combined with tumor-specific viral replication is an effective preclinical GBM therapeutic.

  10. Efficacy of five human melanocytic cell lines in experimental rabbit choroidal melanoma.

    PubMed

    López-Velasco, Rosario; Morilla-Grasa, Antonio; Saornil-Alvarez, María A; Ordóñez, José L; Blanco, Gonzalo; Rábano, Guillermo; Fernández, Nieves; Almaraz, Ana

    2005-02-01

    This study was undertaken to compare the ability of five uveal melanocytic cell lines to produce primary and metastatic uveal melanomas in immunosuppressed rabbits and to determine whether animal survival was improved by antibiotic administration. One hundred albino rabbit eyes, five groups of 20, were implanted in the suprachoroidal space with four melanoma cell lines (MKT-BR, OCM-1, 92-1 and SP 6.5) and one melanocytic line (UW-1). Rabbits were immunosuppressed with cyclosporin A (CsA) at a dosage of 15 mg/kg/day, decreased to 10 mg/kg/day after the fourth week. Prophylactic penicillin G, 10 to 2 x 10 IU, was administered intramuscularly at 5-day intervals. Animals were followed for 12 weeks and the ophthalmoscopic findings, weight and general well-being were recorded weekly. Autopsies were performed to study the eyes, liver and lungs under light microscopy. The mean global survival time in the groups was 43+/-4 days. Ophthalmoscopic intraocular tumours developed in 37% of the MKT-BR group, 50% of the OCM-1 group, 100% of the 92-1 group, 23% of the UW-1 group and 75% of the SP 6.5 group; histologically, tumours appeared in 36.8%, 45%, 100%, 58.8% and 100%, respectively. The 92-1 and SP 6.5 cell lines were associated with the most aggressive local behaviour. Lung metastases developed in the OCM-1 group (5%), 92-1 group (61.1%), UW-1 group (7.1%) and SP 6.5 group (42.1%), but were not present in the MKT-BR group. The 92-1 and SP 6.5 cell lines were the most efficient in local and metastatic tumour production. Prophylactic antibiotic administration did not improve animal survival.

  11. Kojic acid reduces the cytotoxic effects of sulfur mustard on cultures containing human melanoma cells in vitro.

    PubMed

    Smith, C N; Lindsay, C D

    2001-01-01

    In vivo experiments have shown that melanocytes are more sensitive than keratinocytes to the cytotoxic effects of sulfur mustard when it is applied topically to pig skin.1 It has been hypothesized that this is caused by the uncoupling of the melanogenic pathway by depletion of cellular glutathione, resulting in the uncontrolled production of cytotoxic quinone free-radical species by tyrosinase.2. In the present study, the feasibility of blocking the melanogenic pathway as a means of reducing the cytotoxicity of sulfur mustard was evaluated using kojic acid. Kojic acid is a topically applied depigmenting agent that exerts its effect by acting as a slow-binding, competitive inhibitor of tyrosinase.3 Preincubation of G361 pigmented melanoma cells and mixed cultures of G361 cells and SVK keratinocytes with 2.5 mM kojic acid resulted in significant increases in the viability of these cultures as determined by neutral red (NR) and gentian violet (GV) dye binding assays for up to 48 h following exposure to 50 microM sulfur mustard. The highest levels of protection were seen in the G361 cultures, with a 26.8% increase in culture viability (NR assay) compared with the sulfur-mustard-only controls at 24 h. Preincubation of SVK cells alone with kojic acid resulted in lower increases in viability (2.5% at 24 h by the NR assay). Inhibition of the melanogenic pathway reduces the sensitivity of cultures containing pigment cells to sulfur mustard.

  12. Concomitant targeting of programmed death-1 (PD-1) and CD137 improves the efficacy of radiotherapy in a mouse model of human BRAFV600-mutant melanoma.

    PubMed

    Kroon, Paula; Gadiot, Jules; Peeters, Marlies; Gasparini, Alessia; Deken, Marcel A; Yagita, Hideo; Verheij, Marcel; Borst, Jannie; Blank, Christian U; Verbrugge, Inge

    2016-06-01

    T cell checkpoint blockade with antibodies targeting programmed cell death (ligand)-1 (PD-1/PD-L1) and/or cytotoxic T lymphocyte-antigen 4 (CTLA-4) has improved therapy outcome in melanoma patients. However, a considerable proportion of patients does not benefit even from combined α-CTLA-4 and α-PD-1 therapy. We therefore examined to which extent T cell (co)stimulation and/or stereotactic body radiation therapy (SBRT) could further enhance the therapeutic efficacy of T cell checkpoint blockade in a genetically engineered mouse melanoma model that is driven by PTEN-deficiency, and BRAFV600 mutation, as in human, but lacks the sporadic UV-induced mutations. Tumor-bearing mice were treated with different combinations of immunomodulatory antibodies (α-CTLA-4, α-PD-1, α-CD137) or interleukin-2 (IL-2) alone or in combination with SBRT. None of our immunotherapeutic approaches (alone or in combination) had any anti-tumor efficacy, while SBRT alone delayed melanoma outgrowth. However, α-CD137 combined with α-PD-1 antibodies significantly enhanced the anti-tumor effect of SBRT, while the anti-tumor effect of SBRT was not enhanced by interleukin-2, or the combination of α-CTLA-4 and α-PD-1. We conclude that α-CD137 and α-PD-1 antibodies were most effective in enhancing SBRT-induced tumor growth delay in this mouse melanoma model, outperforming the ability of IL-2, or the combination of α-CTLA-4 and α-PD-1 to synergize with SBRT. Given the high mutational load and increased immunogenicity of human melanoma with the same genotype, our findings encourage testing α-CD137 and α-PD-1 alone or in combination with SBRT clinically, particularly in patients refractory to α-CTLA-4 and/or α-PD-1 therapy.

  13. Noxa upregulation by oncogenic activation of MEK/ERK through CREB promotes autophagy in human melanoma cells

    PubMed Central

    Wilmott, James S.; Yan, Xu Guang; Liu, Xiao Ying; Luan, Qi; Guo, Su Tang; Jiang, Chen Chen; Tseng, Hsin-Yi; Scolyer, Richard A.; Jin, Lei; Zhang, Xu Dong

    2014-01-01

    Reduction in the expression of the anti-survival BH3-only proteins PUMA and Bim is associated with the pathogenesis of melanoma. However, we have found that the expression of the other BH3-only protein Noxa is commonly upregulated in melanoma cells, and that this is driven by oncogenic activation of MEK/ERK. Immunohistochemistry studies showed that Noxa was expressed at higher levels in melanomas than nevi. Moreover, the expression of Noxa was increased in metastatic compared to primary melanomas, and in thick primaries compared to thin primaries. Inhibition of oncogenic BRAFV600E or MEK downregulated Noxa, whereas activation of MEK/ERK caused its upregulation. In addition, introduction of BRAFV600E increased Noxa expression in melanocytes. Upregulation of Noxa was due to a transcriptional increase mediated by cAMP responsive element binding protein, activation of which was also increased by MEK/ERK signaling in melanoma cells. Significantly, Noxa appeared necessary for constitutive activation of autophagy, albeit at low levels, by MEK/ERK in melanoma cells. Furthermore, it was required for autophagy activation that delayed apoptosis in melanoma cells undergoing nutrient deprivation. These results reveal that oncogenic activation of MEK/ERK drives Noxa expression to promote autophagy, and suggest that Noxa has an indirect anti-apoptosis role in melanoma cells under nutrient starvation conditions. PMID:25365078

  14. Immunotherapy of metastatic melanoma by reversal of immune suppression

    SciTech Connect

    Biggs, M.W.; Eiselein, J.E.

    1997-01-01

    Beginning with the observation that the human enteorvirus, Poliovirus Sabin 1, will lyse human melanoma cells in culture, clinical trials involving two patients with advance melanoma were performed. Parenteral injection of the viable Poliovirus into cutaneous melanoma metastases followed in 24 hours by oral administration of cyclophosphamide. The results of these two trials are described.

  15. Uveal Melanoma

    PubMed Central

    Papastefanou, Vasilios P.; Cohen, Victoria M. L.

    2011-01-01

    Uveal melanoma is the most common primary intraocular malignancy and the leading primary intraocular disease which can be fatal in adults. In this paper epidemiologic, pathogenetic, and clinical aspects of uveal melanoma are discussed. Despite the advance in local ocular treatments, there has been no change in patient survival for three decades. Development of metastases affects prognosis significantly. Current survival rates, factors predictive of metastatic potential and metastatic screening algorithms are discussed. Proposed and emerging treatments for uveal melanoma metastases are also overviewed. Current advances in genetics and cytogenetics have provided a significant insight in tumours with high metastatic potential and the molecular mechanisms that underlie their development. Biopsy of those lesions may prove to be important for prognostication and to allow further research into genetic mutations and potential new therapeutic targets in the future. PMID:21773036

  16. Mechanisms contributing to differential regulation of PAX3 downstream target genes in normal human epidermal melanocytes versus melanoma cells.

    PubMed

    Bartlett, Danielle; Boyle, Glen M; Ziman, Mel; Medic, Sandra

    2015-01-01

    Melanoma is a highly aggressive and drug resistant form of skin cancer. It arises from melanocytes, the pigment producing cells of the skin. The formation of these melanocytes is driven by the transcription factor PAX3 early during embryonic development. As a result of alternative splicing, the PAX3 gene gives rise to eight different transcripts which encode isoforms that have different structures and activate different downstream target genes involved in pathways of cell proliferation, migration, differentiation and survival. Furthermore, post-translational modifications have also been shown to alter the functions of PAX3. We previously identified PAX3 downstream target genes in melanocytes and melanoma cells. Here we assessed the effects of PAX3 down-regulation on this panel of target genes in primary melanocytes versus melanoma cells. We show that PAX3 differentially regulates various downstream target genes involved in cell proliferation in melanoma cells compared to melanocytes. To determine mechanisms behind this differential downstream target gene regulation, we performed immunoprecipitation to assess post-translational modifications of the PAX3 protein as well as RNAseq to determine PAX3 transcript expression profiles in melanocytes compared to melanoma cells. Although PAX3 was found to be post-translationally modified, there was no qualitative difference in phosphorylation and ubiquitination between melanocytes and melanoma cells, while acetylation of PAX3 was reduced in melanoma cells. Additionally, there were differences in PAX3 transcript expression profiles between melanocytes and melanoma cells. In particular the PAX3E transcript, responsible for reducing melanocyte proliferation and increasing apoptosis, was found to be down-regulated in melanoma cells compared to melanocytes. These results suggest that alternate transcript expression profiles activate different downstream target genes leading to the melanoma phenotype.

  17. Slug Expression during Melanoma Progression

    PubMed Central

    Shirley, Stephanie H.; Greene, Victoria R.; Duncan, Lyn M.; Torres Cabala, Carlos A.; Grimm, Elizabeth A.; Kusewitt, Donna F.

    2012-01-01

    Slug (Snai2), a member of the Snail family of zinc finger transcription factors, plays a role in the epithelial-to-mesenchymal transformation (EMT) that occurs during melanocyte emigration from the neural crest. A role for Slug in the EMT-like loss of cell adhesion and increased cell motility exhibited during melanoma progression has also been proposed. Our immunohistochemical studies of melanoma arrays, however, revealed that Slug expression was actually higher in nevi than in primary or metastatic melanomas. Moreover, Slug expression in melanomas was not associated with decreased expression of E-cadherin, the canonical Slug target in EMT. Comparisons of endogenous Slug and E-cadherin expression in cultured normal human melanocytes and melanoma cell lines supported our immunohistochemical findings. Expression of exogenous Slug in melanocytes and melanoma cells in vitro, however, suppressed E-cadherin expression, enhanced N-cadherin expression, and stimulated cell migration and invasion. Interestingly, both in tumors and cultured cell lines, there was a clear relationship between expression of Slug and MITF, a transcription factor known to regulate Slug expression during development. Taken together, our findings suggest that Slug expression during melanomagenesis is highest early in the process and that persistent Slug expression is not required for melanoma progression. The precise role of Slug in melanomagenesis remains to be elucidated and may be related to its interactions with other drivers of EMT, such as Snail. PMID:22503751

  18. Testing New Drugs for Treatment of Melanoma Patients Applying Connectivity Map Database Analysis with Melanoma Gene Signatures

    DTIC Science & Technology

    2012-10-01

    U133 Plus 2.0 Array; ii) GSE8401: 31 primary melanomas and 52 metastatic melanomas; Affymetrix Human Genome U133A Array; iii) GSE15605: 46 primary...melanomas, 12 regional and distal metastases, 16 normal skins; Affymetrix Human Genome U133 Plus 2.0 Array. Data analysis was executed through the

  19. Prognostic significance of the expression of nuclear eukaryotic translation initiation factor 5A2 in human melanoma.

    PubMed

    Khosravi, Shahram; Martinka, Magdalena; Zhou, Youwen; Ong, Christopher J

    2016-11-01

    Eukaryotic translation initiation factor 5A2 (EIF5A2) expression is upregulated in various cancers. The present authors previously demonstrated that cytoplasmic EIF5A2 expression increases with melanoma progression and inversely correlates with patient survival. Other studies have suggested that nuclear EIF5A2 may also play a role in oncogenesis. The present study used immunohistochemistry and tissue microarray with a large number of melanocytic lesions (n=459) and demonstrated that nuclear EIF5A2 expression was significantly upregulated between common acquired nevi, dysplastic nevi and primary melanomas, and between primary melanomas and metastatic melanomas. Nuclear EIF5A2 expression was inversely associated with overall and disease-specific 5-year survival rate for all (P<0.001) and primary (P=0.014 and P=0.015, respectively) melanoma patients. Nuclear EIF5A2 expression was directly associated with melanoma thickness (P=0.036) and American Joint Committee on Cancer staging (P<0.001), which suggests the possible role of nuclear EIF5A2 in melanoma cell invasion. Subsequently, the present study investigated the association between the expression of nuclear EIF5A2 and matrix metalloproteinase-2 (MMP-2), which is an important factor for promoting cancer cell invasion. Nuclear EIF5A2 and a strong MMP-2 expression were directly associated, and their concurrent expression was significantly associated with a poorer overall and disease-specific 5-year survival rate for all and primary melanoma patients. Nuclear and cytoplasmic EIF5A2 expression were also demonstrated to be significantly associated, and simultaneous expression of the two forms of EIF5A2 was significantly associated with poor overall and disease-specific 5-year survival rates for all and primary melanoma patients. Multivariate Cox regression analysis revealed that nuclear EIF5A2 expression alone and in combination with cytoplasmic EIF5A2 expression was an adverse independent prognostic factor for all and

  20. Prognostic significance of the expression of nuclear eukaryotic translation initiation factor 5A2 in human melanoma

    PubMed Central

    Khosravi, Shahram; Martinka, Magdalena; Zhou, Youwen; Ong, Christopher J.

    2016-01-01

    Eukaryotic translation initiation factor 5A2 (EIF5A2) expression is upregulated in various cancers. The present authors previously demonstrated that cytoplasmic EIF5A2 expression increases with melanoma progression and inversely correlates with patient survival. Other studies have suggested that nuclear EIF5A2 may also play a role in oncogenesis. The present study used immunohistochemistry and tissue microarray with a large number of melanocytic lesions (n=459) and demonstrated that nuclear EIF5A2 expression was significantly upregulated between common acquired nevi, dysplastic nevi and primary melanomas, and between primary melanomas and metastatic melanomas. Nuclear EIF5A2 expression was inversely associated with overall and disease-specific 5-year survival rate for all (P<0.001) and primary (P=0.014 and P=0.015, respectively) melanoma patients. Nuclear EIF5A2 expression was directly associated with melanoma thickness (P=0.036) and American Joint Committee on Cancer staging (P<0.001), which suggests the possible role of nuclear EIF5A2 in melanoma cell invasion. Subsequently, the present study investigated the association between the expression of nuclear EIF5A2 and matrix metalloproteinase-2 (MMP-2), which is an important factor for promoting cancer cell invasion. Nuclear EIF5A2 and a strong MMP-2 expression were directly associated, and their concurrent expression was significantly associated with a poorer overall and disease-specific 5-year survival rate for all and primary melanoma patients. Nuclear and cytoplasmic EIF5A2 expression were also demonstrated to be significantly associated, and simultaneous expression of the two forms of EIF5A2 was significantly associated with poor overall and disease-specific 5-year survival rates for all and primary melanoma patients. Multivariate Cox regression analysis revealed that nuclear EIF5A2 expression alone and in combination with cytoplasmic EIF5A2 expression was an adverse independent prognostic factor for all and

  1. [ Spectrum of oncogene mutations is different in melanoma subtypes].

    PubMed

    Mazurenko, N N; Tsyganova, I V; Lushnikova, A A; Ponkratova, D A; Anurova, O A; Cheremushkin, E A; Mikhailova, I N; Demidov, L V

    2015-01-01

    Melanoma is the most lethal malignancy of skin, which is comprised of clinically relevant molecular subsets defined by specific "driver" mutations in BRAF, NRAS, and KIT genes. Recently, the better results in melanoma treatment were obtained with the mutation-specific inhibitors that have been developed for clinical use and target only patients with particular tumor genotypes. The aim of the study was to characterize the spectrum of "driver" mutations in melanoma subtypes from 137 patients with skin melanoma and 14 patients with mucosal melanoma. In total 151 melanoma cases, the frequency of BRAF, NRAS, KIT, PDGFRA, and KRAS mutations was 55.0, 10.6, 4.0, 0.7, and 0.7%, respectively. BRAF mutations were found in 69% of cutaneous melanoma without UV exposure and in 43% of cutaneous melanoma with chronic UV exposure (p=0.045), rarely in acral and mucosal melanomas. Most of melanomas containing BRAF mutations, V600E (92%) and V600K (6.0%) were potentially sensitive to inhibitors vemurafenib and dabrafenib. NRAS mutations were more common in cutaneous melanoma with chronic UV exposure (26.0%), in acral and mucosal melanomas; the dominant mutations being Q61R/K/L (87.5%). KIT mutations were found in cutaneous melanoma with chronic UV exposure (8.7%) and mucosal one (28.6%), but not in acral melanoma. Most of KIT mutations were identified in exon 11; these tumors being sensitive to tyrosine kinase inhibitors. This is the first monitoring of BRAF, NRAS, KIT, PDGFRA, and KRAS hotspot mutations in different subtypes of melanoma for Russian population. On the base of data obtained, one can suppose that at the molecular level melanomas are heterogeneous tumors that should be tested for "driver" mutations in the each case for evaluation of the potential sensitivity to target therapy. The obtained results were used for treatment of melanoma patients.

  2. Overexpression of Hsp27 in a human melanoma cell line: regulation of E-cadherin, MUC18/MCAM, and plasminogen activator (PA) system

    PubMed Central

    Aldrian, Silke; Kindas-Mügge, Ingela; Trautinger, Franz; Fröhlich, Ilse; Gsur, Andrea; Herbacek, Irene; Berger, Walter; Micksche, Michael

    2003-01-01

    Hsp27 is considered a potential marker for cell differentiation in diverse tissues. Several aspects linked to the differentiation process and to the transition from high to low metastatic potential were analyzed in melanoma cells transfected with Hsp27. E-cadherin plays a central role in cell differentiation, migration, and normal development. Loss of expression or function of E-cadherin has been documented in a variety of human malignancies. We observed by fluorescence-activated cell sorter (FACS) as well as immunofluorescence (IF) analysis a pronounced expression of E-cadherin in Hsp27-transfected A375 melanoma cells compared with control melanoma cells. The expression of the adhesion molecule MUC18/MCAM correlates directly with the metastatic potential of melanoma cells. In contrast to wild-type and neotransfected melanoma cells, in Hsp27-transfected cells the expression of MUC18/MCAM could not be detected by FACS and IF analysis. The plasminogen activator (PA) system plays a central role in mediating extracellular proteolysis and also in nonproteolytic events such as cell adhesion, migration, and transmembrane signaling. Hsp27 transfectants revealed elevated messenger ribonucleic acid expression of the urokinase-type PA (uPA) and its inhibitor, PA inhibitor type 1, which might indicate a neutralization effect of the proteolytic activity of uPA. Control cells failed to express both these molecules. The influence of Hsp27 expression on uPA activity and the involvement of E-cadherin could be demonstrated by use of anti–E-cadherin–blocking antibody. Our data provide evidence for an inhibitory-regulatory role of Hsp27 in tumor progression as found in our system. PMID:14984058

  3. von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans

    PubMed Central

    Bauer, Alexander T.; Suckau, Jan; Frank, Kathrin; Desch, Anna; Goertz, Lukas; Wagner, Andreas H.; Hecker, Markus; Goerge, Tobias; Umansky, Ludmila; Beckhove, Philipp; Utikal, Jochen; Gorzelanny, Christian; Diaz-Valdes, Nancy; Umansky, Viktor

    2015-01-01

    Tumor-mediated procoagulatory activity leads to venous thromboembolism and supports metastasis in cancer patients. A prerequisite for metastasis formation is the interaction of cancer cells with endothelial cells (ECs) followed by their extravasation. Although it is known that activation of ECs and the release of the procoagulatory protein von Willebrand factor (VWF) is essential for malignancy, the underlying mechanisms remain poorly understood. We hypothesized that VWF fibers in tumor vessels promote tumor-associated thromboembolism and metastasis. Using in vitro settings, mouse models, and human tumor samples, we showed that melanoma cells activate ECs followed by the luminal release of VWF fibers and platelet aggregation in tumor microvessels. Analysis of human blood samples and tumor tissue revealed that a promoted VWF release combined with a local inhibition of proteolytic activity and protein expression of ADAMTS13 (a disintegrin-like and metalloproteinase with thrombospondin type I repeats 13) accounts for this procoagulatory milieu. Blocking endothelial cell activation by the low-molecular-weight heparin tinzaparin was accompanied by a lack of VWF networks and inhibited tumor progression in a transgenic mouse model. Our findings implicate a mechanism wherein tumor-derived vascular endothelial growth factor-A (VEGF-A) promotes tumor progression and angiogenesis. Thus, targeting EC activation envisions new therapeutic strategies attenuating tumor-related angiogenesis and coagulation. PMID:25977583

  4. Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma

    SciTech Connect

    Finger, L.R.; Kagan, J.; Christopher, G.; Kurtzberg, J.; Hershfield, M.S.; Nowell, P.C.; Croce, C.M. )

    1989-07-01

    The authors analyzed a t(1;14)(p32;q11) chromosomal translocation in a human lymphohemopoietic stem cell line derived from a patient with acute T-lymphoblastic leukemia. The chromosomal joining on the 1p+ chromosome occurred at the T-cell receptor {delta} diversity (D{delta}{sub 2}) segment, and the reciprocal chromosomal joining on the 14q-chromosome occurred at the T-cell {delta} diversity segment D{delta}{sub 1}. The involvement of {delta} diversity segments at the translocation junction suggests that the translocation occurred during an attempt at D{delta}{sub 1}-D{delta}{sub 2} joining in a stem cell. The segment of chromosome 1 at band p32, adjacent to the chromosomal breakpoint, encodes a transcriptional unit designated TCL5 (T-cell leukemia/lymphoma 5). The differential expression of the TCL5 RNA transcripts in this lymphohemopoietic stem cell line relative to several other T- and B-cell lines suggests that TCL5 gene expression is an integral event in the pathogenesis of the T-cell leukemia. Rearrangement of the TCL5 locus in a human melanoma cell line carrying a del(1p32) further implies that the TCL5 gene may play a role in malignant transformation.

  5. Esculetin, a Coumarin Derivative, Exhibits Anti-proliferative and Pro-apoptotic Activity in G361 Human Malignant Melanoma

    PubMed Central

    Jeon, Young-Joo; Jang, Jeong-Yun; Shim, Jung-Hyun; Myung, Pyung Keun; Chae, Jung-Il

    2015-01-01

    Background: Although esculetin, a coumarin compound, is known to induce apoptosis in human cancer cells, the effects and molecular mechanisms on the apoptosis in human malignant melanoma (HMM) cells are not well understood yet. In this study, we investigated the anti-proliferative effects of esculetin on the G361 HMM cells. Methods: We analyzed the anti-proliferative effects and molecular mechanisms of esculetin on G361 cells by a 3-(4,5-dimethylthiazol- 2-yl)-5-(3-carboxymethoxy phenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, 4′,6-diamidino-2-phenylindole staining and Western blotting. Results: Esculetin exhibited significant anti-proliferative effects on the HMM cells in a dose-dependent manner. Interestingly, we found that esculetin induced nuclear shrinkage and fragmentation, typical apoptosis markers, by suppression of Sp1 transcription factor (Sp1). Notably, esculetin modulated Sp1 downstream target genes including p27, p21 and cyclin D1, resulted in activation of apoptosis signaling molecules such as caspase-3 and PARP in G361 HMM cells. Conclusions: Our results clearly demonstrated that esculetin induced apoptosis in the HMM cells by downregulating Sp1 protein levels. Thus, we suggest that esculetin may be a potential anti-proliferative agent that induces apoptotic cell death in G361 HMM cells. PMID:26151043

  6. Properdistatin inhibits angiogenesis and improves vascular function in human melanoma xenografts with low thrombospondin-1 expression

    PubMed Central

    Gaustad, Jon-Vidar; Simonsen, Trude G.; Andersen, Lise Mari K.; Rofstad, Einar K.

    2016-01-01

    In this study, the effect of properdistatin, a novel peptide derived from the thrombospondin 1 (TSP-1) domain of properdin, was investigated in three melanoma xenograft models with different TSP-1 expression. The tumors were grown in dorsal window chambers and were treated with 80 mg/kg/day properdistatin or vehicle. Morphological parameters of the tumor vasculature were assessed from high resolution transillumination images. Blood supply time (i.e., the time required for arterial blood to flow from a supplying artery to downstream microvessels) and plasma velocities were assessed from first-pass imaging movies recorded after a bolus of fluorescence-labeled dextran had been administered intravenously. Gene and protein expression of TSP-1 were assessed with quantitative PCR and immunohistochemistry, respectively. Properdistatin treatment inhibited angiogenesis in low TSP-1 expressing tumors but did not alter the vasculature in high TSP-1 expressing tumors. In low TSP-1 expressing tumors, properdistatin selectively removed small-diameter capillaries, but did not change the morphology of tumor arterioles or tumor venules. Properdistatin also reduced blood supply times and increased plasma velocities, implying that the treatment reduced the geometric resistance to blood flow and improved vascular function. PMID:27756886

  7. [Vulvar melanoma].

    PubMed

    Chokoeva, A; Tchernev, G; Wollina, U

    2015-01-01

    Malignant melanoma of the vulva is a rare disease with aggressive behavior and poor prognosis. It consist < 5% of all cases of melanoma in females, as the ratio of its manifestation, compared with the cutaneous melanoma is 1:71. Higher risk of developing melanoma of the vulva is established in white women, as the peak of the incidence is between 60 and 70 years of age. Clinically, MM of the vulva manifests as asymptomatic pigmented, rarely a pigmented lesion, as the usual clinical form is superficial spreading MM and much less common nodular MM, which is associated with a poorer prognosis in. general. The diagnosis is confirmed by histological examination. Conduction of PCR and DNA analysis for detection of BRAF mutations, NRAS mutations and KIT amplification is also appropriate. Advanced age, black race, tumor size, tumor thickness, ulceration, presence of satellite lesions, involvement of adjacent organs (vagina, urethra), and the presence of regional or distant metastases are identified as the most important prognostic markers. Radical wide excision followed by bilateral lymphadenectomy id considered as the optimal therapeutic approach.

  8. Treatment of malignant melanoma by selective thermal neutron capture therapy using melanoma-seeking compound

    SciTech Connect

    Mishima, Y.; Ichihashi, M.; Tsuji, M.; Hatta, S.; Ueda, M.; Honda, C.; Suzuki, T.

    1989-05-01

    As pigment cells undergo melanoma genesis, accentuated melanogenesis concurrently occurs in principle. Subsequent to the understanding of intrinsic factors controlling both processes, we found our selective melanoma neutron capture therapy (NCT) using 10B-dopa (melanin substrate) analogue, 10B1-p-boronophenylalanine (10B1-BPA), followed by 10B(n, alpha)7Li reaction, induced by essentially harmless thermal neutrons, which releases energy of 2.33 MeV to 14 mu, the diameter of melanoma cells. In vitro/in vivo radiobiological analysis revealed the highly enhanced melanoma killing effect of 10B1-BPA. Chemical and prompt gamma ray spectrometry assays of 10B accumulated within melanoma cells after 10B1-BPA administration in vitro and in vivo show high affinity, e.g., 10B melanoma/blood ratio of 11.5. After successfully eradicating melanoma transplanted into hamsters with NCT, we advanced to preclinical studies using spontaneously occurring melanoma in Duroc pig skin. We cured three melanoma cases, 4.6 to 12 cm in diameter, by single neutron capture treatment. Complete disappearance of melanoma was obtained without substantial side effects. Acute and subacute toxicity as well as pharmacodynamics of 10B1-BPA have been studied in relation to therapeutic dosage requirements. Clinical radiation dosimetry using human phantom has been carried out. Further preclinical studies using human melanoma transplanted into nude mouse have been a useful model for obtaining optimal results for each melanoma type. We recently treated the first human melanoma patient with our NCT, using essentially the method for Duroc pig melanoma, and obtained similar regression time course leading to cure.

  9. Casticin Induced Apoptosis in A375.S2 Human Melanoma Cells through the Inhibition of NF-[Formula: see text]B and Mitochondria-Dependent Pathways In Vitro and Inhibited Human Melanoma Xenografts in a Mouse Model In Vivo.

    PubMed

    Shiue, Yin-Wen; Lu, Chi-Cheng; Hsiao, Yu-Ping; Liao, Ching-Lung; Lin, Jing-Pin; Lai, Kuang-Chi; Yu, Chien-Chih; Huang, Yi-Ping; Ho, Heng-Chien; Chung, Jing-Gung

    2016-01-01

    Casticin, a polymethoxyflavone occurring in natural plants, has been shown to have anticancer activities. In the present study, we aims to investigate the anti-skin cancer activity of casticin on melanoma cells in vitro and the antitumor effect of casticin on human melanoma xenografts in nu/nu mice in vivo. A flow cytometric assay was performed to detect expression of viable cells, cell cycles, reactive oxygen species production, levels of [Formula: see text] and caspase activity. A Western blotting assay and confocal laser microscope examination were performed to detect expression of protein levels. In the in vitro studies, we found that casticin induced morphological cell changes and DNA condensation and damage, decreased the total viable cells, and induced G2/M phase arrest. Casticin promoted reactive oxygen species (ROS) production, decreased the level of [Formula: see text], and promoted caspase-3 activities in A375.S2 cells. The induced G2/M phase arrest indicated by the Western blotting assay showed that casticin promoted the expression of p53, p21 and CHK-1 proteins and inhibited the protein levels of Cdc25c, CDK-1, Cyclin A and B. The casticin-induced apoptosis indicated that casticin promoted pro-apoptotic proteins but inhibited anti-apoptotic proteins. These findings also were confirmed by the fact that casticin promoted the release of AIF and Endo G from mitochondria to cytosol. An electrophoretic mobility shift assay (EMSA) assay showed that casticin inhibited the NF-[Formula: see text]B binding DNA and that these effects were time-dependent. In the in vivo studies, results from immuno-deficient nu/nu mice bearing the A375.S2 tumor xenograft indicated that casticin significantly suppressed tumor growth based on tumor size and weight decreases. Early G2/M arrest and mitochondria-dependent signaling contributed to the apoptotic A375.S2 cell demise induced by casticin. In in vivo experiments, A375.S2 also efficaciously suppressed tumor volume in a

  10. What Does Melanoma Look Like?

    MedlinePlus

    ... Skin Cancer Skin Cancer Screening Research What Does Melanoma Look Like? Melanoma is a type of cancer ... melanoma is itchy, tender, or painful. Photos of Melanoma A large, asymmetrical melanoma with an uneven color ...

  11. Local tumor control following single dose irradiation of human melanoma xenografts: Relationship to cellular radiosensitivity and influence of an immune response by the athymic mouse

    SciTech Connect

    Rofstad, E.K.

    1989-06-15

    The potential usefulness of untreated congenitally athymic adult mice as hosts for human tumors in radiocurability studies was investigated using five human melanoma xenograft lines (E.E., E.F., G.E., M.F., V.N.). The tumor radiocurability was found to differ considerably among the lines; the radiation doses required to achieve local control of 50% of the tumors irradiated (TCD50 values) ranged from 29.6 +/- 2.1 (SE) to 67.9 +/- 3.5 Gy. Since the clinical relevance of experimentally determined TCD50 values depends on to what extent they are modified by a host immune response, a possible immune reactivity against the melanomas was investigated by comparing the radiocurability data with cell survival data measured in vitro after irradiation in vivo and by performing quantitative tumor transplantability studies. The radiocurability and the cell survival data were found to agree well for the E.F., G.E., and M.F. melanomas. Moreover, the number of tumor cells required to achieve tumors in 50% of the inoculation sites (TD50 values) in untreated and in whole-body irradiated mice were similar, suggesting that the TCD50 values measured for these lines were not significantly influenced by a host immune response. On the other hand, the E.E. and V.N. melanomas showed significantly lower TCD50 values in vivo than predicted theoretically from the in vitro cell survival data and a significantly lower number of tumor cells required to achieve tumors in 50% of the inoculation sites in whole-body irradiated than in untreated mice, suggesting that the radiocurability of these two lines was enhanced due to an immune response by the host. Athymic mice may thus express a significant immune reactivity against some human tumor xenograft lines but not against others.

  12. Tumor immune profiling predicts response to anti–PD-1 therapy in human melanoma

    PubMed Central

    Daud, Adil I.; Loo, Kimberly; Pauli, Mariela L.; Sanchez-Rodriguez, Robert; Sandoval, Priscila Munoz; Taravati, Keyon; Tsai, Katy; Nosrati, Adi; Nardo, Lorenzo; Alvarado, Michael D.; Algazi, Alain P.; Pampaloni, Miguel H.; Lobach, Iryna V.; Hwang, Jimmy; Pierce, Robert H.; Gratz, Iris K.; Krummel, Matthew F.

    2016-01-01

    BACKGROUND. Immune checkpoint blockade is revolutionizing therapy for advanced cancer, but many patients do not respond to treatment. The identification of robust biomarkers that predict clinical response to specific checkpoint inhibitors is critical in order to stratify patients and to rationally select combinations in the context of an expanding array of therapeutic options. METHODS. We performed multiparameter flow cytometry on freshly isolated metastatic melanoma samples from 2 cohorts of 20 patients each prior to treatment and correlated the subsequent clinical response with the tumor immune phenotype. RESULTS. Increasing fractions of programmed cell death 1 high/cytotoxic T lymphocyte–associated protein 4 high (PD-1hiCTLA-4hi) cells within the tumor-infiltrating CD8+ T cell subset strongly correlated with response to therapy (RR) and progression-free survival (PFS). Functional analysis of these cells revealed a partially exhausted T cell phenotype. Assessment of metastatic lesions during anti–PD-1 therapy demonstrated a release of T cell exhaustion, as measured by an accumulation of highly activated CD8+ T cells within tumors, with no effect on Tregs. CONCLUSIONS. Our data suggest that the relative abundance of partially exhausted tumor-infiltrating CD8+ T cells predicts response to anti–PD-1 therapy. This information can be used to appropriately select patients with a high likelihood of achieving a clinical response to PD-1 pathway inhibition. FUNDING. This work was funded by a generous gift provided by Inga-Lill and David Amoroso as well as a generous gift provided by Stephen Juelsgaard and Lori Cook. PMID:27525433

  13. PARP1 inhibitor olaparib (Lynparza) exerts synthetic lethal effect against ligase 4-deficient melanomas

    PubMed Central

    Czyż, Małgorzata; Toma, Monika; Gajos-Michniewicz, Anna; Majchrzak, Kinga; Hoser, Grazyna; Szemraj, Janusz; Nieborowska-Skorska, Margaret; Cheng, Phil; Gritsyuk, Daniel; Levesque, Mitchell; Dummer, Reinhard; Sliwinski, Tomasz; Skorski, Tomasz

    2016-01-01

    Cancer including melanoma may be “addicted” to double strand break (DSB) repair and targeting this process could sensitize them to the lethal effect of DNA damage. PARP1 exerts an important impact on DSB repair as it binds to both single- and double- strand breaks. PARP1 inhibitors might be highly effective drugs triggering synthetic lethality in patients whose tumors have germline or somatic defects in DNA repair genes. We hypothesized that PARP1-dependent synthetic lethality could be induced in melanoma cells displaying downregulation of DSB repair genes. We observed that PARP1 inhibitor olaparib sensitized melanomas with reduced expression of DNA ligase 4 (LIG4) to an alkylatimg agent dacarbazine (DTIC) treatment in vitro, while normal melanocytes remained intact. PARP1 inhibition caused accumulation of DSBs, which was associated with apoptosis in LIG4 deficient melanoma cells. Our hypothesis that olaparib is synthetic lethal with LIG4 deficiency in melanoma cells was supported by selective anti-tumor effects of olaparib used either alone or in combination with dacarbazine (DTIC) in LIG4 deficient, but not LIG4 proficient cells. In addition, olaparib combined with DTIC inhibited the growth of LIG4 deficient human melanoma xenografts. This work for the first time demonstrates the effectiveness of a combination of PARP1 inhibitor olaparib and alkylating agent DTIC for treating LIG4 deficient melanomas. In addition, analysis of the TCGA and transcriptome microarray databases revealed numerous individual melanoma samples potentially displaying specific defects in DSB repair pathways, which may predispose them to synthetic lethality triggered by PARP1 inhibitor combined with a cytotoxic drug. PMID:27705909

  14. Depletion of a discrete nuclear glutathione pool by oxidative stress, but not by buthionine sulfoximine. Correlation with enhanced alkylating agent cytotoxicity to human melanoma cells in vitro.

    PubMed

    Jevtović-Todorović, V; Guenthner, T M

    1992-10-06

    The existence of a distinct pool of glutathione in the nucleus of cultured human melanoma cells was demonstrated. Melanoma cell nuclei contained 13-35 pmol of glutathione/10(6) nuclei, or approximately 0.4-1.3% of the total cellular glutathione. This nuclear glutathione pool resisted depletion by buthionine sulfoximine, an agent that inhibits glutathione synthesis, but was rapidly and reversibly depleted by subtoxic concentrations of Adriamycin plus carmustine, two agents that promote oxidation of glutathione without permitting its regeneration through enzymatic reduction of glutathione disulfide. The ability of Adriamycin plus carmustine to deplete this small but significant pool of glutathione in the cell nucleus may explain why these agents potentiate the cytotoxic effects of the DNA-alkylating agent melphalan to a much higher degree than does buthionine sulfoximine at concentrations that are equipotent in depleting cytosolic glutathione.

  15. Immunomodulatory Effectiveness of Fish Oil and omega-3 Fatty Acids in Human Non-melanoma Skin Carcinoma Cells.

    PubMed

    Rehman, Khurram; Mohd Amin, Mohd Cairul Iqbal; Yuen, Ng Pei; Zulfakar, Mohd Hanif

    2016-01-01

    Fish oil is composed of various fatty acids among which omega-3 fatty acids are considered as most beneficial. The effects of fish oil on the activity of a topical anticancer drug, imiquimod, and the immunomodulatory activity of omega-3 fatty acids was investigated in human basal and squamous cell carcinoma cell lines. Imiquimod-fish oil mixture exhibited higher carcinoma cell growth inhibition and immunomodulatory activity than imiquimod alone, especially against squamous cell carcinoma cells. Omega-3 fatty acids exhibited growth inhibition of both basal cell and squamous cell carcinoma cell lines and modulated the immune response. Omega-3 fatty acids of fish oil serve as inducers of interleukin-10, an anti-inflammatory cytokine, and as suppressors of interleukin-6 and tumor necrosis factor-alpha, which not only depress tumor growth but also adequately control the inflammatory side effects of imiquimod. Thus, imiquimod administration with fish oil could be beneficial for inhibition of non-melanoma skin carcinoma cells but further in vivo studies are needed to understand their role in skin cancer.

  16. Assessment of the chemical changes induced in human melanoma cells by boric acid treatment using infrared imaging

    SciTech Connect

    Acerbo, A.; Miller, L.

    2009-07-01

    Boron is found in everyday foods and drinking water in trace quantities. Boron exists as boric acid (BA) within plants and animals, where low levels have been linked to cancer incidence. However, this correlation is not well characterized. In this study, we examined the chemical and morphological effects of BA on human skin melanoma cells (SK-MEL28) using Fourier Transform InfraRed Imaging (FTIRI) with a Focal Plane Array (FPA) detector. Cells were grown under concentrations of BA ranging from 0 to 50 mM. Cell viability was determined after 1, 2, 3, 5, 7 and 10 days using trypan blue staining. With FTIRI, images of approximately twenty cells per time point per condition were collected. Principal components analysis (PCA) was used to evaluate changes in cell composition, with particular focus on the lipid, protein, and nucleic acid spectral components. Results from trypan blue staining revealed decreased cell viability as BA concentration increased. FTIRI data indicated that the protein and lipid contents (as indicated by the lipid/protein ratio) did not undergo substantial changes due to BA treatment. In contrast, the nucleic acid/protein ratio significantly decreased with BA treatment. PCA results showed an increase in {beta}-sheet protein at higher concentrations of BA (12.5, 25, and 50 mM). Together, these results suggest that high concentrations of BA have an anti-proliferative effect and show signs consistent with apoptosis.

  17. The oncolytic peptide LTX-315 induces cell death and DAMP release by mitochondria distortion in human melanoma cells

    PubMed Central

    Eike, Liv-Marie; Yang, Nannan; Rekdal, Øystein; Sveinbjørnsson, Baldur

    2015-01-01

    Host defense peptides (HDPs) are naturally occurring molecules found in most species, in which they play a significant role in the first line defense against intruding pathogens, and several HDPs have been shown to possess anticancer activity. Structure-activity relationship studies on the HDP bovine lactoferricin revealed a de novo design of a nonamer peptide LTX-315, with oncolytic properties. In the present study, we investigated the oncolytic activity of LTX-315 in human melanoma cells (A375). LTX-315 induced a rapid plasma membrane disruption and cell death within 2 hours. At a low concentration, fluorescence-labeled LTX-315 was internalized and accumulated in cytoplasmic vacuoles in close proximity to the mitochondria. The mitochondrial membrane potential was shown to depolarize as a consequence of LTX-315 treatment and at ultrastructural level, the mitochondria morphology was significantly altered. Release of danger signals (DAMPs) such as ATP, Cytochrome C and HMGB1 into the cell supernatant of cultured cells was evident minutes after peptide treatment. The oncolytic effect of LTX-315 involving perturbation of both the cell membrane and the mitochondria with subsequent release of DAMPs may highlight the ability of LTX-315 to induce complete regression and long-term protective immune responses as previously reported in experimental animal models. PMID:26472184

  18. Local distribution and concentration of intravenously injected sup 131 I-9. 2. 27 monoclonal antibody in human malignant melanoma

    SciTech Connect

    Del Vecchio, S.; Reynolds, J.C.; Carrasquillo, J.A.; Blasberg, R.G.; Neumann, R.D.; Lotze, M.T.; Bryant, G.J.; Farkas, R.J.; Larson, S.M. )

    1989-05-15

    Regional measurements of {sup 131}I-9.2.27 distribution in human melanoma tumors were obtained using quantitative autoradiography. Tumors were removed from patients 72-96 h after they had received an i.v. injection of 9.15 mCi (100 mg) of {sup 131}I-9.2.27. The autoradiographic images showed that the radioactivity reaching the tumor was heterogeneously distributed. Areas of relative high and low uptake were selected in each tumor. Regions of high activity contained from 51 to 1371 nCi/g, while areas with low uptake had radioactivity ranging from 12 to 487 nCi/g. The reliability of the autoradiographic measurements was demonstrated by the strong positive correlation with direct tissue sample counting (r = 0.994 P less than 0.001). Since comparative immunocytochemistry showed a homogeneous and diffuse staining of target antigen on viable tumor cells, variability of monoclonal antibody uptake within individual tumors was not primarily due to heterogeneity of antigen expression in these cases. However, antigen levels accounted for some of the variation from tumor to tumor. When immunoperoxidase staining was repeated on adjacent sections without the addition of 9.2.27, it confirmed the nonuniform distribution of monoclonal antibody found at autoradiography. Thus, quantitative autoradiography gives information about the distribution and the local concentration of radioactive antibody in tumors allowing calculation of the radiation dose delivered to small regions within tumors.

  19. Assessment of the chemical changes induced in human melanoma cells by boric acid treatment using infrared imaging.

    PubMed

    Acerbo, Alvin S; Miller, Lisa M

    2009-08-01

    Boron is found in everyday foods and drinking water in trace quantities. Boron exists as boric acid (BA) within plants and animals, where low levels have been linked to cancer incidence. However, this correlation is not well characterized. In this study, we examined the chemical and morphological effects of BA on human skin melanoma cells (SK-MEL28) using Fourier Transform InfraRed Imaging (FTIRI) with a Focal Plane Array (FPA) detector. Cells were grown under concentrations of BA ranging from 0 to 50 mM. Cell viability was determined after 1, 2, 3, 5, 7 and 10 days using trypan blue staining. With FTIRI, images of approximately twenty cells per time point per condition were collected. Principal components analysis (PCA) was used to evaluate changes in cell composition, with particular focus on the lipid, protein, and nucleic acid spectral components. Results from trypan blue staining revealed decreased cell viability as BA concentration increased. FTIRI data indicated that the protein and lipid contents (as indicated by the lipid/protein ratio) did not undergo substantial changes due to BA treatment. In contrast, the nucleic acid/protein ratio significantly decreased with BA treatment. PCA results showed an increase in beta-sheet protein at higher concentrations of BA (12.5, 25, and 50 mM). Together, these results suggest that high concentrations of BA have an anti-proliferative effect and show signs consistent with apoptosis.

  20. 3-O-methylthespesilactam, a new small-molecule anticancer pan-JAK inhibitor against A2058 human melanoma cells.

    PubMed

    Li, Min-Yi; Tian, Yan; Shen, Li; Buettner, Ralf; Li, Hong-Zhi; Liu, Lucy; Yuan, Yate-Ching; Xiao, Qiang; Wu, Jun; Jove, Richard

    2013-11-15

    Natural product-inspired discovery of new drug leads plays a key role in drug development. Recently, small-molecule JAK inhibitors have been pursued for the development of anticancer therapeutics. However, most of these inhibitors reported up to now are multi-nitrogen polycyclic aromatic heterocycles. Undoubtedly, the discovery of new types of promising JAK-inhibitory leads is pivotal for JAK inhibitor-based anticancer drug development. Herein we report an unprecedented sesquiterpenoid-alkaloid named thespesilactam, containing a benzo[cd]indole scaffold, from the heartwood of the Portia tree, Thespesia populnea. Its 3-O-Me product, i.e. 8-hydroxy-5-isopropyl-3-methoxy-7-methylbenzo[cd]indol-2(1H)-one, named 3-O-methylthespesilactam, of which the structure was identified by NMR investigations and single-crystal X-ray diffraction analysis, was discovered as a new type of small-molecule anticancer pan-JAK inhibitor against A2058 human melanoma cells, and selective and potent inhibitor of JAK1 and TYK2.

  1. Identification of ether à go-go and calcium-activated potassium channels in human melanoma cells.

    PubMed

    Meyer, R; Schönherr, R; Gavrilova-Ruch, O; Wohlrab, W; Heinemann, S H

    1999-09-15

    Ion channels and intracellular Ca2+ are thought to be involved in cell proliferation and may play a role in tumor development. We therefore characterized Ca(2+)-regulated potassium channels in the human melanoma cell lines IGR1, IPC298, and IGR39 using electrophysiological and molecular biological methods. All cell lines expressed outwardly rectifying K+ channels. Rapidly activating delayed rectifier channels were detected in IGR39 cells. The activation kinetics of voltage-gated K+ channels in IRG1 and IPC298 cells displayed characteristics of ether à go-go (eag) channels as they were much slower and depended both on the holding potential and on extracellular Mg2+. In addition, they could be blocked by physiological concentrations of intracellular Ca2+. In accordance with these electrophysiological results, analysis of mRNA revealed the expression of a gene coding for h-eag1 channels in IGR1 and IPC298 cells, but not in IGR39 cells. At elevated Ca2+ concentrations various types of Ca(2+)-activated K+ channels with single-channel characteristics similar to IK and SK channels were detected in IGR1 cells. The whole-cell Ca(2+)-activated K+ currents were not voltage dependent, insensitive for 100 nm apamin and 200 microm d-tubocurarine, but were blocked by charybdotoxin (100 nm) and clotrimazole (50 nm). Analysis of mRNA revealed the expression of hSK1, hSK2, and hIK channels in IGR1 cells.

  2. Different metastasis patterns of a human melanoma cell line in nude mice and rats: Influence of microenvironment

    SciTech Connect

    Kjonniksen, I.; Hoifodt, H.K.; Pihl, A.; Fodstad, O. )

    1991-07-17

    The metastatic capacity of intravenously injected human FEMX-I melanoma cells in athymic nude mice and rats was compared. Young rats given 1 {times} 10(6) ascites tumor cells all died of lung tumors with a life span of 50 {plus minus} 10 days (mean{plus minus} SD). In contrast, in accordance with previous findings, only extrapulmonary metastases developed in mice. This host-dependent difference in metastasis pattern permitted studies on the role of factors that may influence the organ specificity of metastases. The tissue distribution of 125I-labeled FEMX-I cells did not differ in the two nude species during the first 12 hours after cell injection. The plating efficiency of FEMX-I cells in soft agar was increased by the addition of conditioned medium prepared from rat lungs, resulting also in a significant increase in colony size. In contrast, conditioned medium prepared from mouse lungs reduced the clonogenic capacity of the FEMX-I cells in a dose-dependent manner. Conditioned media prepared from rat and mouse liver, kidney, and spleen tissues either inhibited or had no effect on colony formation. The results suggest that the unexpected differential metastatic patterns observed in vivo may reflect differences in the presence of growth-modulating paracrine factors in the host lungs.

  3. α-Solanine inhibits human melanoma cell migration and invasion by reducing matrix metalloproteinase-2/9 activities.

    PubMed

    Lu, Ming-Kun; Shih, Yuan-Wei; Chang Chien, Tzu-Tsung; Fang, Li-Heng; Huang, Hsiang-Ching; Chen, Pin-Shern

    2010-01-01

    α-Solanine, a naturally occurring steroidal glycoalkaloid in potato sprouts, was found to possess anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis of tumor cells. However, the effect of α-solanine on cancer metastasis remains unclear. In the present study, we examined the effect of α-solanine on metastasis in vitro. Data demonstrated that α-solanine inhibited proliferation of human melanoma cell line A2058 in a dose-dependent manner. When treated with non-toxic doses of α-solanine, cell migration and invasion were markedly suppressed. Furthermore, α-solanine reduced the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9, which are involved in the migration and invasion of cancer cells. Our biochemical assays indicated that α-solanine potently suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), phosphatidylinositide-3 kinase (PI3K) and Akt, while it did not affect phosphorylation of extracellular signal regulating kinase (ERK). In addition, α-solanine significantly decreased the nuclear level of nuclear factor kappa B (NF-κB), suggesting that α-solanine inhibited NF-κB activity. Taken together, the results suggested that α-solanine inhibited migration and invasion of A2058 cells by reducing MMP-2/9 activities. It also inhibited JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for α-solanine in anti-metastatic therapy.

  4. Extracts of centipede Scolopendra subspinipes mutilans induce cell cycle arrest and apoptosis in A375 human melanoma cells.

    PubMed

    Ma, Weina; Liu, Rui; Qi, Junpeng; Zhang, Yanmin

    2014-07-01

    Extracts from the centipede Scolopendra genus, have been used in traditional medicine for the treatment of various diseases and have been found to exhibit anticancer activity in tumor cells. To investigate the potential and associated antitumor mechanism of alcohol extracts of the centipede Scolopendra subspinipes mutilans (AECS), cell viability, cell cycle and cell apoptosis were studied and the results revealed that AECS inhibits A375 cell proliferation in a dose- and time-dependent manner. In addition, AECS was found to arrest the cell cycle of A375 cells at the S phase, which was accompanied by a marked increase in the protein levels of cyclin E and a decrease in the protein levels of cyclin D1. In a cell culture system, AECS markedly induced the apoptosis of A375 cells, which was closely associated with the effects on the Bcl-2 family, whereby decreased Bcl-2 and increased Bak, Bax and Bad expression levels were observed. The underlying mechanism of AECS inhibiting A375 cell proliferation was associated with the induction of cell cycle arrest and apoptosis, indicating that AECS may present as a potential therapeutic agent for administration in human melanoma cancer intervention.

  5. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells.

    PubMed

    Lin, Shuw-Yuan; Lai, Wan-Wen; Chou, Chi-Chung; Kuo, Hsiu-Maan; Li, Te-Mao; Chung, Jing-Gung; Yang, Jen-Hung

    2006-12-01

    Vitamin C has been reported to be useful in the treatment and prevention of cancer. Inconsistent effects from growth stimulation to induction of apoptosis of malignant tumor cells, however, have been reported. Melanoma is an increasingly common and potentially lethal malignancy. It was reported that melanoma cells were more susceptible to ascorbate toxicity than any other tumor cells. The mechanisms accounting for ascorbate-induced apoptosis in human melanoma cells, however, have remained unclear. This study was undertaken to investigate the effect of sodium ascorbate on cytotoxicity and apoptosis in human malignant melanoma A375.S2 cells. A375.S2 cells were incubated with a certain range of concentrations of sodium ascorbate for various time periods. In order to examine the effects of sodium ascorbate on cell proliferation, cell cycle, apoptosis and necrosis, we performed 4,6-diamidino-2-phenylindole dihydrochloride assays and flow cytometry analysis. Polymerase chain reaction was used to examine the mRNA levels of p53, p21, p27, cyclin A, cyclin E, CDK2 and CDK4, which are associated with cell cycle S-phase arrest and apoptosis. Flow cytometric analysis showed that sodium ascorbate significantly induced cell cycle arrest and apoptosis in the A375.S2 cell line in a dose-dependent manner. The increased expressions of p53 and p21, and the decreased expressions of cyclin A, cyclin E, CDK2 and CDK4, indicated the cell cycle arrest at G1/S phase after the cells had been treated with sodium ascorbate. Induction of apoptosis involved an increase in the levels of p53, p21 and cellular Ca, and a decrease in mitochondrial membrane potential and activation of caspase 3 before culminating in apoptosis in sodium ascorbate-treated A375.S2 cells.

  6. Arsenic exposure and human papillomavirus response in non-melanoma skin cancer Mexican patients: a pilot study.

    PubMed

    Rosales-Castillo, J Alberto; Acosta-Saavedra, Leonor C; Torres, Rosantina; Ochoa-Fierro, Jesús; Borja-Aburto, Víctor H; Lopez-Carrillo, Lizbeth; Garcia-Vargas, Gonzalo G; Gurrola, Georgina B; Cebrian, Mariano E; Calderón-Aranda, Emma S

    2004-08-01

    We assessed the relationships between chronic arsenic (As) exposure, human papilloma virus (HPV) contact and non-melanoma skin cancer (NMSC) by means of a dermatology clinic-based case-control study (42 cases and 48 controls) in Region Lagunera, Mexico, where chronic As poisoning is endemic. Exposure was determined through detailed history of residence in the As-contaminated area and measurement of As levels in drinking water and urine. We used a consensus epitope from the central region of L1 protein of the HPV family to determine antibodies against HPV. A history of As exposure and HPV seropositivity were associated with increased NMSC risks. A history of exposure to high levels of As increased the risk for NMSC (OR = 4.53; P = 0.11) in the group of seronegative HPV patients. A positive response to HPV significantly increased the OR for NMSC to 9.04 (P = 0.01) when history showed exposure to low levels of As. Interestingly, the OR was significantly increased to 16.5 (P = 0.001) when both exposure to high levels of As and HPV seropositivity were present. In addition, the presence of NMSC increased the OR (5.45; P = 0.03) for a positive response to HPV when history showed exposure to low levels of As, but the OR was increased to 8.0 (P = 0.005) in the cases with high exposure levels. Thus, HPV infection could constitute an additional risk factor for NMSC development in humans chronically exposed to As. However, further studies with additional populations are needed to determine the interaction between HPV and As exposure in NMSC.

  7. UVA, pheomelanin and the carcinogenesis of melanoma.

    PubMed

    Hill, H Z; Hill, G J

    2000-01-01

    Cloudman S91 mouse melanoma cells vary in constitutive and inducible melanin levels. Survival, mutation induction and DNA damage were quantitated after exposure to UVB, UVA and FS20 lamps. Assuming that the observed differences are related to melanin, induced pigment is photo-protective for survival and mutation after UVB and FS20 exposure, and is photosensitizing for survival after UVA exposure. No changes in pyrimidine dimers could be measured. DNA damage in pigmented mouse melanocytes (melan-a and melan-b) was greater than that in albino melanocytes (melan-c) after UVB and FS20, and the pigmented cells were more sensitive to killing. Pigment appears to be protective for killing by UVA in these melanocytes. Human melanocytes from different skin types vary in both melanin amount and composition (eu- and pheomelanin). Effects of pigmentation on UVB responses are unclear. In UVA, heavily pigmented cells have more DNA damage than lightly pigmented cells, but are resistant to killing. Increased pheomelanin photosensitizes DNA damage in lightly pigmented cells. Since eumelanin predominates in the mouse melanoma cells and melanocytes, they are less likely than human cells to provide a satisfactory model for human solar melanomagenesis. In order to understand the mechanism of photocarcinogenesis of melanoma, melanins in human melanocytes from different pigment types should be carefully quantitated and characterized. Mutations induced in them by solar wavelength-emitting lamps with well-characterized spectra should be measured, and mutant DNA should be sequenced to determine the nature of the solar-induced lesions. Research should focus on UVA and pheomelanin.

  8. Animal model for ultraviolet radiation-induced melanoma: platyfish-swordtail hybrid.

    PubMed Central

    Setlow, R B; Woodhead, A D; Grist, E

    1989-01-01

    Sunlight exposure is strongly indicated as one of the important etiologic agents in human cutaneous malignant melanoma. However, because of the absence of good animal models, it has not been possible to estimate the wavelengths or wavelength regions involved. We have developed a useful animal model from crosses and backcrosses of platyfish (Xiphophorus maculatus) and swordtails (Xiphophorus helleri). Two strains of these fish are susceptible to invasive melanoma induction by exposure to filtered radiation from sunlamps in the wavelength ranges lambda greater than 290 nm and lambda greater than 304 nm. Multiple exposures on 5-20 consecutive days beginning on day 5 after birth or a single exposure of approximately 200 J/(m2.day) of lambda greater than 304 nm result in a tumor prevalence of 20% to 40% at 4 months of age compared with a background rate of 12% in one strain and 2% in another. Exposure of the fish to visible light after UV exposure reduces the prevalence to background. The melanomas are similar in many respects to mammalian melanomas, as judged by light and electron microscopy. The genetics of the crosses determined by others and the high sensitivity of the hybrids to melanoma induction indicate that the UV radiation probably inactivates the one tumor repressor gene (or a small number of tumor repressor genes) in the hybrid fish. The small size of the animals and their high susceptibility to melanoma induction make them ideal for action spectroscopy. Images PMID:2813430

  9. Cutavirus in Cutaneous Malignant Melanoma

    PubMed Central

    Fridholm, Helena; Vinner, Lasse; Kjartansdóttir, Kristín Rós; Friis-Nielsen, Jens; Asplund, Maria; Herrera, Jose A.R.; Steiniche, Torben; Mourier, Tobias; Brunak, Søren; Willerslev, Eske; Izarzugaza, Jose M.G.; Hansen, Anders J.; Nielsen, Lars P.

    2017-01-01

    A novel human protoparvovirus related to human bufavirus and preliminarily named cutavirus has been discovered. We detected cutavirus in a sample of cutaneous malignant melanoma by using viral enrichment and high-throughput sequencing. The role of cutaviruses in cutaneous cancers remains to be investigated. PMID:28098541

  10. Tocilizumab unmasks a stage-dependent interleukin-6 component in statin-induced apoptosis of metastatic melanoma cells

    PubMed Central

    Minichsdorfer, Christoph; Wasinger, Christine; Sieczkowski, Evelyn; Atil, Bihter

    2015-01-01

    The interleukin (IL)-6 inhibits the growth of early-stage melanoma cells, but not metastatic cells. Metastatic melanoma cells are susceptible to statin-induced apoptosis, but this is not clear for early-stage melanoma cells. This study aimed to investigate the IL-6 susceptibility of melanoma cells from different stages in the presence of simvastatin to overcome loss of growth arrest. ELISA was used to detect secreted IL-6 in human melanoma cells. The effects of IL-6 were measured by western blots for STAT3 and Bcl-2 family proteins. Apoptosis and proliferation were measured by caspase 3 activity, Annexin V staining, cell cycle analysis, and a wound-healing assay. Human metastatic melanoma cells A375 and 518A2 secrete high amounts of IL-6, in contrast to early-stage WM35 cells. Canonical IL-6 signaling is intact in these cells, documented by transient phosphorylation of STAT3. Although WM35 cells are highly resistant to simvastatin-induced apoptosis, coadministration with IL-6 enhanced the susceptibility to undergo apoptosis. This proapoptotic effect of IL-6 might be explained by a downregulation of Bcl-XL, observed only in WM35 cells. Furthermore, the IL-6 receptor blocking antibody tocilizumab was coadministered and unmasked an IL-6-sensitive proportion in the simvastatin-induced caspase 3 activity of metastatic melanoma cells. These results confirm that simvastatin facilitates apoptosis in combination with IL-6. Although endogenous IL-6 secretion is sufficient in metastatic melanoma cells, exogenously added IL-6 is needed for WM35 cells. This effect may explain the failure of simvastatin to reduce melanoma incidence in clinical trials and meta-analyses. PMID:26020489

  11. Wavelengths effective in induction of malignant melanoma.

    PubMed Central

    Setlow, R B; Grist, E; Thompson, K; Woodhead, A D

    1993-01-01

    It is generally agreed that sunlight exposure is one of the etiologic agents in malignant melanoma of fair-skinned individuals. However, the wavelengths responsible for tumorigenesis are not known, although DNA is assumed to be the target because individuals defective in the repair of UV damage to DNA are several thousandfold more prone to the disease than the average population. Heavily pigmented backcross hybrids of the genus Xiphophorus (platyfish and swordtails) are very sensitive to melanoma induction by single exposures to UV. We irradiated groups of five 6-day-old fish with narrow wavelength bands at 302, 313, 365, 405, and 436 nm and scored the irradiated animals for melanomas 4 months later. We used several exposures at each wavelength to obtain estimates of the sensitivity for melanoma induction as a function of exposure and wavelength. The action spectrum (sensitivity per incident photon as a function of wavelength) for melanoma induction shows appreciable sensitivity at 365, 405, and probably 436 nm, suggesting that wavelengths not absorbed directly in DNA are effective in induction. We interpret the results as indicating that light energy absorbed in melanin is effective in inducing melanomas in this animal model and that, in natural sunlight, 90-95% of melanoma induction may be attributed to wavelengths > 320 nm--the UV-A and visible spectral regions. Images Fig. 4 PMID:8341684

  12. Wavelengths effective in induction of malignant melanoma

    SciTech Connect

    Setlow, R.B.; Grist, E.; Thompson, K.; Woodhead, A.D. )

    1993-07-15

    It is generally agreed that sunlight exposure is one of the etiologic agents in malignant melanoma of fair-skinned individuals. However, the wavelengths responsible for tumorigenesis are not known, although DNA is assumed to be the target because individuals defective in the repair of UV damage to DNA are several thousandfold more prone to the disease than the average population. Heavily pigmented back-cross hybrids of the genus Xiphophorus (platyfish and swordtails) are very sensitive to melanoma induction by single exposures to UV. The authors irradiated groups of five 6-day-old fish with narrow wavelength bands at 302, 313, 365, 405, and 436 nm and score the irradiated animals for melanomas 4 months later. They used several exposures at each wavelength to obtain estimates of the sensitivity for melanoma induction as a function of exposure and wavelength. The action spectrum (sensitivity per incident photon as a function of wavelength) for melanoma induction shows appreciable sensitivity at 365, 405, and probably 436 nm, suggesting that wavelengths not absorbed directly in DNA are effective in induction. They interpret the results as indicating that light energy absorbed in melanin is effective in inducing melanomas in this animal model and that, in natural sunlight, 90-95% of melanoma induction may be attributed to wavelengths >320 nm-the UV-A and visible spectral regions. 25 refs., 4 figs., 1 tab.

  13. The neural guidance receptor Plexin C1 delays melanoma progression

    PubMed Central

    Chen, Y; Soong, J; Mohanty, S; Xu, L; Scott, G

    2013-01-01

    Plexin C1 is a type I transmembrane receptor with intrinsic R-Ras GTPase activity, which regulates cytoskeletal remodeling and adhesion in normal human melanocytes. Melanocytes are pigment-producing cells of the epidermis, precursors for melanoma, and express high levels of Plexin C1, which is lost in melanoma in vitro and in vivo. To determine if Plexin C1 is a tumor suppressor for melanoma, we introduced Plexin C1 into a primary human melanoma cell line, and phenotypes including migration, apoptosis, proliferation and tumor growth in mice were analyzed. Complimentary studies in which Plexin C1 was silenced in human melanocytes were performed. Plexin C1 significantly inhibited migration and proliferation in melanoma, whereas in melanocytes, loss of Plexin C1 increased migration and proliferation. In mouse xenografts, Plexin C1 delayed tumor growth of melanoma at early time points, but tumors eventually escaped the suppressive effects of Plexin C1, due to Plexin C1-dependent activation of the pro-survival protein Akt. R-Ras activation stimulates melanoma migration. Plexin C1 lowered R-Ras activity in melanoma and melanocytes, consistent with inhibitory effects of Plexin C1 on migration of melanocytes and melanoma. To determine if R-Ras is expressed in melanocytic lesions in vivo, staining of tissue microarrays of nevi and melanoma were performed. R-Ras expression was highly limited in melanocytic lesions, being essentially confined to primary melanoma, and almost completely absent in nevi and metastatic melanoma. These data suggest that loss of Plexin C1 in melanoma may promote early steps in melanoma progression through suppression of migration and proliferation, but pro-survival effects of Plexin C1 ultimately abrogate the tumor suppressive effects of Plexin C1. In primary melanoma, loss of Plexin C1 may function in early steps of melanoma progression by releasing inhibition of R-Ras activation, and stimulating migration. PMID:23160370

  14. The neural guidance receptor Plexin C1 delays melanoma progression.

    PubMed

    Chen, Y; Soong, J; Mohanty, S; Xu, L; Scott, G

    2013-10-10

    Plexin C1 is a type I transmembrane receptor with intrinsic R-Ras GTPase activity, which regulates cytoskeletal remodeling and adhesion in normal human melanocytes. Melanocytes are pigment-producing cells of the epidermis, precursors for melanoma, and express high levels of Plexin C1, which is lost in melanoma in vitro and in vivo. To determine if Plexin C1 is a tumor suppressor for melanoma, we introduced Plexin C1 into a primary human melanoma cell line, and phenotypes including migration, apoptosis, proliferation and tumor growth in mice were analyzed. Complimentary studies in which Plexin C1 was silenced in human melanocytes were performed. Plexin C1 significantly inhibited migration and proliferation in melanoma, whereas in melanocytes, loss of Plexin C1 increased migration and proliferation. In mouse xenografts, Plexin C1 delayed tumor growth of melanoma at early time points, but tumors eventually escaped the suppressive effects of Plexin C1, due to Plexin C1-dependent activation of the pro-survival protein Akt. R-Ras activation stimulates melanoma migration. Plexin C1 lowered R-Ras activity in melanoma and melanocytes, consistent with inhibitory effects of Plexin C1 on migration of melanocytes and melanoma. To determine if R-Ras is expressed in melanocytic lesions in vivo, staining of tissue microarrays of nevi and melanoma were performed. R-Ras expression was highly limited in melanocytic lesions, being essentially confined to primary melanoma, and almost completely absent in nevi and metastatic melanoma. These data suggest that loss of Plexin C1 in melanoma may promote early steps in melanoma progression through suppression of migration and proliferation, but pro-survival effects of Plexin C1 ultimately abrogate the tumor suppressive effects of Plexin C1. In primary melanoma, loss of Plexin C1 may function in early steps of melanoma progression by releasing inhibition of R-Ras activation, and stimulating migration.

  15. V3 Versican Isoform Alters the Behavior of Human Melanoma Cells by Interfering with CD44/ErbB-dependent Signaling*

    PubMed Central

    Hernández, Daniel; Miquel-Serra, Laia; Docampo, María-José; Marco-Ramell, Anna; Cabrera, Jennifer; Fabra, Angels; Bassols, Anna

    2011-01-01

    Versican is a hyaluronan-binding, extracellular chondroitin sulfate proteoglycan produced by several tumor types, including malignant melanoma, which exists as four different splice variants. The short V3 isoform contains the G1 and G3 terminal domains of versican that may potentially interact directly or indirectly with the hyaluronan receptor CD44 and the EGFR, respectively. We have previously described that overexpression of V3 in MeWo human melanoma cells markedly reduces tumor cell growth in vitro and in vivo. In this study we have investigated the signaling mechanism of V3 by silencing the expression of CD44 in control and V3-expressing melanoma cells. Suppression of CD44 had the same effects on cell proliferation and cell migration than those provoked by V3 expression, suggesting that V3 acts through a CD44-mediated mechanism. Furthermore, CD44-dependent hyaluronan internalization was blocked by V3 expression and CD44 silencing, leading to an accumulation of this glycosaminoglycan in the pericellular matrix and to changes in cell migration on hyaluronan. Furthermore, ERK1/2 and p38 activation after EGF treatment were decreased in V3-expressing cells suggesting that V3 may also interact with the EGFR through its G3 domain. The existence of a EGFR/ErbB2 receptor complex able to interact with CD44 was identified in MeWo melanoma cells. V3 overexpression resulted in a reduced interaction between EGFR/ErbB2 and CD44 in response to EGF treatment. Our results indicate that the V3 isoform of versican interferes with CD44 and the CD44-EGFR/ErbB2 interaction, altering the signaling pathways, such as ERK1/2 and p38 MAPK, that regulate cell proliferation and migration. PMID:21078678

  16. V3 versican isoform alters the behavior of human melanoma cells by interfering with CD44/ErbB-dependent signaling.

    PubMed

    Hernández, Daniel; Miquel-Serra, Laia; Docampo, María-José; Marco-Ramell, Anna; Cabrera, Jennifer; Fabra, Angels; Bassols, Anna

    2011-01-14

    Versican is a hyaluronan-binding, extracellular chondroitin sulfate proteoglycan produced by several tumor types, including malignant melanoma, which exists as four different splice variants. The short V3 isoform contains the G1 and G3 terminal domains of versican that may potentially interact directly or indirectly with the hyaluronan receptor CD44 and the EGFR, respectively. We have previously described that overexpression of V3 in MeWo human melanoma cells markedly reduces tumor cell growth in vitro and in vivo. In this study we have investigated the signaling mechanism of V3 by silencing the expression of CD44 in control and V3-expressing melanoma cells. Suppression of CD44 had the same effects on cell proliferation and cell migration than those provoked by V3 expression, suggesting that V3 acts through a CD44-mediated mechanism. Furthermore, CD44-dependent hyaluronan internalization was blocked by V3 expression and CD44 silencing, leading to an accumulation of this glycosaminoglycan in the pericellular matrix and to changes in cell migration on hyaluronan. Furthermore, ERK1/2 and p38 activation after EGF treatment were decreased in V3-expressing cells suggesting that V3 may also interact with the EGFR through its G3 domain. The existence of a EGFR/ErbB2 receptor complex able to interact with CD44 was identified in MeWo melanoma cells. V3 overexpression resulted in a reduced interaction between EGFR/ErbB2 and CD44 in response to EGF treatment. Our results indicate that the V3 isoform of versican interferes with CD44 and the CD44-EGFR/ErbB2 interaction, altering the signaling pathways, such as ERK1/2 and p38 MAPK, that regulate cell proliferation and migration.

  17. Inosine strongly enhances proliferation of human C32 melanoma cells through PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways.

    PubMed

    Soares, Ana Sofia; Costa, Vera Marisa; Diniz, Carmen; Fresco, Paula

    2015-01-01

    Malignant melanoma is the most deadly type of skin cancer. The lack of effective pharmacological approaches for this tumour can be related to the incomplete understanding of the pathophysiological mechanisms involved in melanoma cell proliferation. Adenosine has growth-promoting and growth inhibitory effects on tumour cells. We aimed to investigate effects of adenosine and its metabolic product, inosine, on human C32 melanoma cells and the signalling pathways involved. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction and bromodeoxyuridine (BrdU) proliferation assays were used to evaluate adenosine, adenosine deaminase and inosine effects, in the absence or presence of adenosine receptor (AR), A3 AR and P2Y1 R antagonists and PLC, PKC, MEK1/2 and PI3K inhibitors. ERK1/2 levels were determined using an ELISA kit. Adenosine and inosine levels were quantified using an enzyme-coupled assay. Adenosine caused cell proliferation through AR activation. Adenosine deaminase increased inosine levels (nanomolar concentrations) on the extracellular space, in a time-dependent manner, inducing proliferation through A3 AR activation. Micromolar concentrations of inosine enhanced proliferation through A3 AR activation, causing an increase in ERK1/2 levels, and P2Y1 R activation via ENT-dependent mechanisms. We propose the simultaneous activation of PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways as the main mechanism responsible for the proliferative effect elicited by inosine and its significant role in melanoma cancer progression.

  18. Radar sensitivity to human heartbeats and respiration

    NASA Astrophysics Data System (ADS)

    Aardal, Øyvind; Brovoll, Sverre; Paichard, Yoann; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2015-05-01

    Human heartbeats and respiration can be detected from a distance using radar. This can be used for medical applications and human being detection. It is useful to have a system independent measure of how detectable the vital signs are. In radar applications, the Radar Cross Section (RCS) is normally used to characterize the detectability of an object. Since the human vital signs are seen by the radar as movements of the torso, the modulations in the person RCS can be used as a system independent measure of the vital signs detectability. In this paper, measurements of persons seated in an anechoic chamber are presented. The measurements were calibrated using empty room and a metallic calibration sphere. A narrowband radar operating at frequencies from 500 MHz to 18 GHz in discrete steps was used. A turntable provided measurements at precise aspect angles all around the person under test. In an I & Q receiver, the heartbeat and respiration modulation is a combination of amplitude and phase mod- modulations. The measurements were filtered, leaving the modulations from the vital signs in the radar recordings. The procedure for RCS computation was applied to these filtered data, capturing the complex signatures. It was found that both the heartbeat and respiration detectability increase with increasing frequency. The heartbeat signatures are almost equal from the front and the back, while being almost undetectable from the sides of the person. The respiration signatures are slightly higher from the front than from the back, and smaller from the sides. The signature measurements presented in this paper provide an objective system independent measure of the detectability of human vital signs as a function of frequency and aspect angle. These measures are useful for example in system design and in assessing real measurement scenarios.

  19. Human melanoma/NG2 chondroitin sulfate proteoglycan is expressed in the sarcolemma of postnatal human skeletal myofibers. Abnormal expression in merosin-negative and Duchenne muscular dystrophies.

    PubMed

    Petrini, Stefania; Tessa, Alessandra; Carrozzo, Rosalba; Verardo, Margherita; Pierini, Roberta; Rizza, Teresa; Bertini, Enrico

    2003-06-01

    NG2 is the rat homologue of the human melanoma chondroitin sulfate proteoglycan (MCSP) preferentially expressed in dividing progenitor cells of the glial and mesenchymal lineage but downregulated after differentiation. It has recently been demonstrated that MCSP/NG2 expression is not restricted to mitotic or malignant cells. We show that MCSP/NG2 expression is detectable in the sarcolemma, and in the neuromuscular junction of human postnatal skeletal muscle, and it gradually reduces with advancing age. In human and murine myogenic cell lines, we found no clear differences in MCSP/NG2 expression between myoblasts and myotubes. Reduced levels of the core protein were found in merosin-negative congenital muscular dystrophy (MDC1A). Duchenne muscular dystrophy patients muscles exhibited an overexpression of the MCSP/NG2 core protein. In gamma-sarcoglycanopathy and calpainopathy, MCSP/NG2 upregulation was restricted to regenerating myofibers. We demonstrate that MCSP/NG2 is expressed in differentiated myofibers, and appears to have a role in the pathogenesis of MDC1A and severe dystrophinopathies.

  20. Detection of cell surface and intracellular antigens by human monoclonal antibodies. Hybrid cell lines derived from lymphocytes of patients with malignant melanoma

    PubMed Central

    1983-01-01

    This study represents an initial attempt to analyze the humoral immune reactions of patients with malignant melanoma by hybridoma methodology. Using lymphocytes from regional lymph nodes, peripheral blood and tumor infiltrates, 158 fusions were performed with SKO-007 (human myeloma line), LICR-LON-HMy2 (LICR-2), GM 4672 (human lymphoblastoid lines), or NS-1 (mouse myeloma line). Fusion of lymph node lymphocytes with NS-1 resulted in a 3-4 times higher frequency of clones than fusion with LICR-2, and a 10 times higher frequency than fusion with SKO-007 or GM 4672. In the case of peripheral blood lymphocytes, fusion with NS-1 gave greater than 25 times higher frequency of clones than fusion with LICR-2 or SKO-007. Production of human mu, gamma, or alpha heavy chains was detected in 50-80% of wells containing growing clones, and the levels of immunoglobulin ranged from 0.3 micrograms to 40 micrograms/ml. NS-1-derived clones could be easily subcultured, while LICR-2 and SKO-007 clones grew more slowly on subculturing. In this study, Ig secretion appeared to be a more stable property of LICR-2- derived clones than NS-1-derived clones. A panel of 20 human cancer cell lines was used to screen 771 Ig-secreting cultures for antibody to cell surface or intracellular antigens. Reactivity with cell surface antigens was found infrequently (6 cultures), whereas reactivity with intracellular antigens was more common (27 cultures). A new cell surface antigen with properties of a glycolipid was defined with an IgM monoclonal antibody secreted by a tetraploid cell derived from a fusion of LICR-2 with lymphocytes from the axillary lymph node of a patient with melanoma. The hybrid cell line has been subcloned four times and secretes 5 micrograms IgM/ml. The antigen detected by this IgM antibody was found on 5 of 23 melanoma cell lines and 12 of 30 epithelial cancer cell lines. No reactions were found with 11 cultures derived from normal cells. Stable cell lines secreting human

  1. Fully Regressive Melanoma

    PubMed Central

    Ehrsam, Eric; Kallini, Joseph R.; Lebas, Damien; Modiano, Philippe; Cotten, Hervé

    2016-01-01

    Fully regressive melanoma is a phenomenon in which the primary cutaneous melanoma becomes completely replaced by fibrotic components as a result of host immune response. Although 10 to 35 percent of cases of cutaneous melanomas may partially regress, fully regressive melanoma is very rare; only 47 cases have been reported in the literature to date. AH of the cases of fully regressive melanoma reported in the literature were diagnosed in conjunction with metastasis on a patient. The authors describe a case of fully regressive melanoma without any metastases at the time of its diagnosis. Characteristic findings on dermoscopy, as well as the absence of melanoma on final biopsy, confirmed the diagnosis. PMID:27672418

  2. Bonded Cumomer Analysis of Human Melanoma Metabolism Monitored by 13C NMR Spectroscopy of Perfused Tumor Cells*

    PubMed Central

    Shestov, Alexander A.; Mancuso, Anthony; Lee, Seung-Cheol; Guo, Lili; Nelson, David S.; Roman, Jeffrey C.; Henry, Pierre-Gilles; Leeper, Dennis B.; Blair, Ian A.; Glickson, Jerry D.

    2016-01-01

    A network model for the determination of tumor metabolic fluxes from 13C NMR kinetic isotopomer data has been developed and validated with perfused human DB-1 melanoma cells carrying the BRAF V600E mutation, which promotes oxidative metabolism. The model generated in the bonded cumomer formalism describes key pathways of tumor intermediary metabolism and yields dynamic curves for positional isotopic enrichment and spin-spin multiplets. Cells attached to microcarrier beads were perfused with 26 mm [1,6-13C2]glucose under normoxic conditions at 37 °C and monitored by 13C NMR spectroscopy. Excellent agreement between model-predicted and experimentally measured values of the rates of oxygen and glucose consumption, lactate production, and glutamate pool size validated the model. ATP production by glycolytic and oxidative metabolism were compared under hyperglycemic normoxic conditions; 51% of the energy came from oxidative phosphorylation and 49% came from glycolysis. Even though the rate of glutamine uptake was ∼50% of the tricarboxylic acid cycle flux, the rate of ATP production from glutamine was essentially zero (no glutaminolysis). De novo fatty acid production was ∼6% of the tricarboxylic acid cycle flux. The oxidative pentose phosphate pathway flux was 3.6% of glycolysis, and three non-oxidative pentose phosphate pathway exchange fluxes were calculated. Mass spectrometry was then used to compare fluxes through various pathways under hyperglycemic (26 mm) and euglycemic (5 mm) conditions. Under euglycemic conditions glutamine uptake doubled, but ATP production from glutamine did not significantly change. A new parameter measuring the Warburg effect (the ratio of lactate production flux to pyruvate influx through the mitochondrial pyruvate carrier) was calculated to be 21, close to upper limit of oxidative metabolism. PMID:26703469

  3. Evaluating the cytotoxic effects of the water extracts of four anticancer herbs against human malignant melanoma cells

    PubMed Central

    Ling, Binbing; Michel, Deborah; Sakharkar, Meena Kishore; Yang, Jian

    2016-01-01

    Malignant melanoma (MM) is the most dangerous type of skin cancer, killing more than 1,100 people each year in Canada. Prognosis for late stage and recurrent MM is extremely poor due to insensitivity to chemotherapy drugs, and thus many patients seek complementary and alternative medicines. In this study, we examined four commonly used anticancer herbs in traditional Chinese medicine, Hedyotis diffusa, Scutellaria barbata, Lobelia chinensis, and Solanum nigrum, for their in vitro antitumor effects toward human MM cell line A-375. The crude water extract of S. nigrum (1 g of dry herb in 100 mL water) and its 2-fold dilution caused 52.8%±13.0% and 17.3%±2.7% cytotoxicity in A-375 cells, respectively (P<0.01). The crude water extract of H. diffusa caused 11.1%±12.4% cytotoxicity in A-375 cells with no statistical significance (P>0.05). Higher concentrated formulation might be needed for H. diffusa to exert its cytotoxic effect against A-375 cells. No cytotoxicity was observed in A-375 cells treated with crude water extract of S. barbata and L. chinensis. Further high performance liquid chromatography-tandem mass spectroscopy analysis of the herbal extracts implicated that S. nigrum and H. diffusa might have adopted the same bioactive components for their cytotoxic effects in spite of belonging to two different plant families. We also showed that the crude water extract of S. nigrum reduced intracellular reactive oxygen species generation in A-375 cells, which may lead to a cytostatic effect. Furthermore, synergistic effect was achieved when crude water extract of S. nigrum was coadministered with temozolomide, a chemotherapy drug for skin cancer. PMID:27843296

  4. Cutaneous Melanoma in Asians

    PubMed Central

    Kim, Sang Yub

    2016-01-01

    Malignant melanoma is a rare disease in Asians but potentially the most aggressive form of skin cancer worldwide. It can occur in any melanocyte-containing anatomic site. Four main cutaneous melanoma subtypes are recognized: lentigo maligna melanoma, superficial spreading melanoma, acral lentiginous melanoma (ALM), and nodular melanoma. Generally, excessive exposure to ultraviolet (UV) radiation increases the risk of melanoma. The exception is ALM, which is the most common melanoma subtype in Asians and is not associated with UV radiation. ALM presents as dark brownish to black, irregular maculopatches, nodules, or ulcers on the palms, soles, and nails. The lesions may be misdiagnosed as more benign lesions, such as warts, ulcers, hematomas, foreign bodies, or fungal infections, especially in amelanotic acral melanomas where black pigments are absent. The aim of this brief review is to improve understanding and the rate of early detection thereby reducing mortality, especially regarding cutaneous melanoma in Asians. PMID:27689028

  5. Cytotoxicity of new duplex drugs linking 3'-C-ethynylcytidine and 5-fluor-2'-deoxyuridine against human melanoma cells.

    PubMed

    Schott, Sarah; Niessner, Heike; Sinnberg, Tobias; Venturelli, Sascha; Berger, Alexander; Ikenberg, Kristian; Villanueva, Jessie; Meier, Friedegund; Garbe, Claus; Busch, Christian

    2012-11-01

    Melanoma is an increasingly common and potentially fatal malignancy of the skin and some mucous membranes. As no cure exists for metastatic disease, there is an urgent need for novel drugs. 2'-Deoxy-5-fluorouridylyl-(3'-5')-3'-C-ethynylcytidine [5-FdU(3'-5')ECyd] and 3'-C-ethynylcytidinylyl-(5' → 1-O)-2-O-octadecyl-sn-glycerylyl-(3-O → 5')-2'-deoxy-5-fluorouridine [ECyd-lipid-5-FdU] represent cytostatic active duplex drugs, which can be metabolized into various active antimetabolites. We evaluated the cytotoxicity of these heterodinucleoside phosphate analogs, their corresponding monomers ECyd and 5-FdU and combinations thereof on six metastatic melanoma cell lines and six ex vivo patient-derived melanoma cells in comparison to current standard cytostatic agents and the BRAF V600E inhibitor Vemurafenib. In vitro (real-time)-proliferation assays demonstrated that 5-FdU(3'-5')ECyd and ECyd-lipid-5-FdU had a high cytotoxic efficacy causing 75% melanoma cell death at concentrations in the nanomolar and micromolar range. Cytotoxicity was conducted by induction of DNA cleavage indicating apoptotic cells. Chicken embryotoxicity demonstrated that the duplex drugs were less toxic than 5-FdU at 0.01 μM. In vivo the duplex drug 5-FdU(3'-5')ECyd was efficacious in the murine LOX IMVI melanoma xenograph model on administration of 11.2 mg/kg/injection every fourth day. Both duplex drugs are promising novel cytostatic agents for the treatment of malignant melanoma meriting clinical evaluation.

  6. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection.

    PubMed Central

    Kawakami, Y; Eliyahu, S; Delgado, C H; Robbins, P F; Sakaguchi, K; Appella, E; Yannelli, J R; Adema, G J; Miki, T; Rosenberg, S A

    1994-01-01

    The cultured T-cell line TIL1200, established from the tumor-infiltrating lymphocytes (TILs) of a patient with advanced metastatic melanoma, recognized an antigen on most HLA-A2+ melanomas and on all HLA-A2+ cultured neonatal melanocytes in an HLA-A2 restricted manner but not on other types of tissues or cell lines tested. A cDNA encoding an antigen recognized by TIL1200 was isolated by screening an HLA-A2+ breast cancer cell line transfected with an expression cDNA library prepared from an HLA-A2+ melanoma cell line. The nucleotide and amino acid sequences of this cDNA were almost identical to the genes encoding glycoprotein gp100 or Pmel17 previously registered in the GenBank. Expression of this gene was restricted to melanoma and melanocyte cell lines and retina but was not expressed on other fresh or cultured normal tissues or other types of tumor tested. The cell line transfected with this cDNA also expressed antigen recognized by the melanoma-specific antibody HMB45 that bound to gp100. A synthetic 10-amino acid peptide derived from gp100 was recognized by TIL1200 in the context of HLA-A2.1. Since the administration of TIL1200 plus interleukin 2 resulted in regression of metastatic cancer in the autologous patient, gp100 is a possible tumor rejection antigen and may be useful for the development of immunotherapies for patients with melanoma. Images PMID:8022805

  7. Multivariate Models for Prediction of Human Skin Sensitization ...

    EPA Pesticide Factsheets

    One of the lnteragency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens TM assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches , logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine

  8. Effect of inhibition of aloe-emodin on N-acetyltransferase activity and gene expression in human malignant melanoma cells (A375.S2).

    PubMed

    Lin, Shuw-Yuan; Yang, Jen-Hung; Hsia, Te-Chun; Lee, Jau-Hong; Chiu, Tsan-Hung; Wei, Yau-Huei; Chung, Jing-Gung

    2005-12-01

    Arylamine carcinogens and drugs are N-acetylated by cytosolic N-acetyltransferase (NAT), which uses acetyl-coenzyme A as a cofactor. NAT plays an initial role in the metabolism of these arylamine compounds. 2-Aminofluorene is one of the arylamine carcinogens which have been demonstrated to undergo N-acetylation in laboratory animals and humans. Our previous study showed that human cancer cell lines (colon cancer, colo 205; liver cancer, Hep G2; bladder cancer, T24; leukemia, HL-60; prostate cancer, LNCaP; osteogenic sarcoma, U-2 OS; malignant melanoma, A375.S2) displayed NAT activity, which was affected by aloe-emodin in human leukemia cells. The purpose of this study was to determine whether aloe-emodin could affect the enzyme activity and gene expression of NAT at the mRNA and protein levels in malignant human melanoma A375.S2 cells. The results showed that aloe-emodin inhibited NAT1 activity (decreased N-acetylation of 2-aminofluorene) in intact cells in a dose-dependent manner. The effect of aloe-emodin on NAT1 at the protein level was determined by Western blotting and the mRNA levels were examined by polymerase chain reaction (PCR) and cDNA microarray. These results clearly indicate that aloe-emodin inhibits the mRNA expression and enzyme activity of NAT1 in A375.S2 cells.

  9. Novel synthetic derivatives of the natural product berbamine inhibit Jak2/Stat3 signaling and induce apoptosis of human melanoma cells.

    PubMed

    Nam, Sangkil; Xie, Jun; Perkins, Angela; Ma, Yuelong; Yang, Fan; Wu, Jun; Wang, Yan; Xu, Rong-Zhen; Huang, Wendong; Horne, David A; Jove, Richard

    2012-10-01

    Persistent Jak/Stat3 signal transduction plays a crucial role in tumorigenesis and immune development. Activated Jak/Stat3 signaling has been validated as a promising molecular target for cancer therapeutics discovery and development. Berbamine (BBM), a natural bis-benzylisoquinoline alkaloid, was identified from the traditional Chinese herbal medicine Berberis amurensis used for treatment of cancer patients. While BBM has been shown to have potent antitumor activities with low toxicity in various cancer types, the molecular mechanism of action of BBM remains largely unknown. Here, we determine the antitumor activities of 13 synthetic berbamine derivatives (BBMDs) against human solid tumor cells. BBMD3, which is the most potent in this series of novel BBMDs, exhibits over 6-fold increase in biological activity compared to natural BBM. Moreover, BBMD3, directly inhibits Jak2 autophosphorylation kinase activity in vitro with IC(50)0.69 μM. Autophosphorylation of Jak2 kinase at Tyr1007/1008 sites also was strongly inhibited in the range of 15 μM of BBMD3 in human melanoma cells at 4h after treatment. Following inhibition of autophosphorylation of Jak2, BBMD3 blocked constitutive activation of downstream Stat3 signaling in melanoma cells. BBMD3 also down-regulated expression of the Stat3 target proteins Mcl-1and Bcl-x(L), associated with induction of apoptosis. In sum, our findings demonstrate that the novel berbamine derivative BBMD3 is an inhibitor of the Jak2/Stat3 signaling pathway, providing evidence for a molecular mechanism whereby BBMD3 exerts at least in part the apoptosis of human melanoma cells. In addition, BBMD3 represents a promising lead compound for development of new therapeutics for cancer treatment.

  10. Genetics of pigmentation and melanoma predisposition.

    PubMed

    Pho, L N; Leachman, S A

    2010-02-01

    About 5-10% of human cutaneous malignant melanoma is hereditary and known to involve rare germline mutations in highly penetrant, autosomal dominant genes. These genes are important in cell cycle control but are not responsible for all familial cases of melanoma. Epidemiologic studies have linked specific phenotypic traits including fair skin, light-colored eyes, and poor tanning ability to melanoma risks. The ability to visually discern and define pigmentary phenotypes in humans and in animal models has permitted elucidation of many genes involved in pigmentation and melanin biosynthesis. Additional genetic epidemiological studies have recently identified a subset of these pigmentation genes that are associated with risk for melanoma and other cutaneous malignancies as well as photosensitivity. Genome-wide association studies (GWAS) have unveiled single nucleotide polymorphisms (SNPs) or genetic variants in MC1R, TPCN2, ASIP, KITLG, NCKX5, TYR, IRF4, OCA2, and TYRP1 pigmentation genes. These findings emphasize the contribution of pigmentation pathways to melanoma predisposition and tumorigenesis through gene-environment interactions. Since pigmentation genes in the melanin synthesis pathway also confer risk for cutaneous malignancy, a better understanding of the operative molecular mechanisms involved in this relationship has the potential to impact individual risk assessment for cutaneous malignant melanoma in the future. This paper is an overview of our current understanding of pigmentation gene modifications that have been associated with melanoma risk and how these genes can enrich clinical management, prevention, and early detection of malignant melanoma.

  11. Recombinant Interferon Alfa-2b in Treating Patients With Melanoma

    ClinicalTrials.gov

    2016-05-17

    Stage IA Skin Melanoma; Stage IB Skin Melanoma; Stage IIA Skin Melanoma; Stage IIB Skin Melanoma; Stage IIC Skin Melanoma; Stage IIIA Skin Melanoma; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Skin Melanoma

  12. Survival curves after X-ray and heat treatments for melanoma cells derived directly from surgical specimens of tumours in man.

    PubMed

    Rofstad, E K; Wahl, A; Tveit, K M; Monge, O R; Brustad, T

    1985-08-01

    X-ray and heat survival curves were established for melanoma cells derived directly from surgical specimens of tumours in man by using the Courtenay soft agar colony assay. The plating efficiency for 11 of the 14 melanomas studied was sufficiently high (PE = 0.3-58%) to measure cell survival over at least two decades. Experiments repeated with cells stored in liquid nitrogen showed that the survival assay gave highly reproducible results. The melanomas exhibited individual and characteristic survival curves whether exposed to radiation or heat (43.5 degrees C). The Do-values were in the ranges 0.63-1.66 Gy (X-rays) and 33-58 min (heat). The survival curves were similar to those reported previously for human melanoma xenografts. The radiation sensitivity of the cells was not correlated to the heat sensitivity. Since the melanomas appeared to be very heterogeneous in radiation response in vitro as melanomas are known to be clinically, it is suggested that melanomas may be suitable for prospective studies aimed at establishing whether clinical radioresponsiveness somehow is related to in vitro survival curve parameters.

  13. Isolation, structure elucidation, total synthesis, and evaluation of new natural and synthetic ceramides on human SK-MEL-1 melanoma cells.

    PubMed

    León, Francisco; Brouard, Ignacio; Rivera, Augusto; Torres, Fernando; Rubio, Sara; Quintana, José; Estévez, Francisco; Bermejo, Jaime

    2006-09-21

    Two new long-chain ceramides, trametenamides A (1) and B (2), were isolated from the methanolic extract of the fruiting body of the fungus Trametes menziesii. The structures were elucidated by spectroscopic analyses and chemical transformations, and the absolute stereochemistry of trametenamide B (2) was determined by stereoselective total synthesis of four possible diastereomers. The acetyl derivative of the natural ceramide (1a) and synthetic ceramides (24-27) showed cytotoxicity on the human melanoma cell line SK-MEL-1, which was caused by induction of apoptosis as determined by DNA fragmentation, poly(ADP-ribose) polymerase cleavage, and procaspase-9 and -8 processing.

  14. Are Human Tyrosinase and Related Proteins Suitable Targets for Melanoma Therapy?

    PubMed

    Buitrago, Elina; Hardré, Renaud; Haudecoeur, Romain; Jamet, Hélène; Belle, Catherine; Boumendjel, Ahcène; Bubacco, Luigi; Réglier, Marius

    2016-01-01

    Among the human copper-containing monooxygenases, Tyrosinase (Ty) is an important enzyme involved in the determinant step of the biosynthetic pathway of melanin pigment. In this pathway, Ty catalyzes the tyrosine monooxygenation into L-DOPA-quinone, which is the precursor of the skin pigment melanin. Ty inhibitors/activators are a well-established approach for controlling in vivo melanin production, so their development has a huge economical and industrial impact. Moreover, recent publications highlight that targeting tyrosinase with inhibitors/activators to treat melanogenesis disorders is one of many possible approaches, due to the complex biochemical reaction involved in the melanin synthesis.

  15. In vitro activity of hederacolchisid A1 compared with other saponins from Hedera colchica against proliferation of human carcinoma and melanoma cells.

    PubMed

    Barthomeuf, Chantal; Debiton, Eric; Mshvildadze, Vakhtang; Kemertelidze, Etheri; Balansard, Guy

    2002-08-01

    Hederacolchisid A1, a new oleanolic acid monodesmoside, isolated from Hedera colchica K. Koch, an ivy species endemic in Georgia, was evaluated in vitro for antiproliferative activity on cancer cells versus normal cells in comparison to cisplatin. Investigations were made on six human cell lines (colon adenocarcinoma DLD-1, ovarian teratocarcinoma PA 1, lung carcinoma A 549, breast adenocarcinoma MCF7, prostatic adenocarcinoma PC 3 and malignant melanoma M4 Beu) versus normal human fibroblasts, by assaying both cellular metabolic activity (RTT test) and DNA content in living cells (test with Hoechst 33,342) after 48 h continuous contact. Results demonstrated the strong cytotoxicity of hederacolchisid A 1 on all cancer cells (IC50 from 4.5 to 12 microM). The antiproliferative effects on malignant melanoma M4 Beu (IC50 ca 4.5 microM) versus normal cells (IC50 ca 7.5 microM) suggests that, despite a lack of specificity for cancer cells, hederacolchisid A1 has potential anti-tumor applications. Comparison of the cytotoxicity of hederacolchisid A 1 with that of five other saponins from H. colchica, offers some new information about structure-activity relationships. It was observed that i) for a same sugar sequence, monodesmosides with oleanolic acid as aglycone exhibit higher cytotoxicity than those containing hederagenin, ii) the sugar sequence O-alpha-L-rhamnopyranosyl (1 --> 2)-alpha-L-arabinopyranoside at C3 induces strong cytotoxicity and might be identified as a basic sequence for anti-tumor activity of oleanolic acid monodesmosides. iii) a complementary glucopyranosyl moiety branched at C1 of arabinose increases the cytotoxicity against malignant melanoma M4 Beu, prostatic adenocarcinoma PC 3 and normal fibroblasts in a different manner for each type of monodesmoside. A slight increase whose amplitude was quite similar on cancers and normal cells, was observed with oleanolic acid monodesmoside. This increase was much higher with hederagenin monodesmoside and

  16. Efficient ferrocifen anticancer drug and Bcl-2 gene therapy using lipid nanocapsules on human melanoma xenograft in mouse.

    PubMed

    Resnier, Pauline; Galopin, Natacha; Sibiril, Yann; Clavreul, Anne; Cayon, Jérôme; Briganti, Alessandro; Legras, Pierre; Vessières, Anne; Montier, Tristan; Jaouen, Gérard; Benoit, Jean-Pierre; Passirani, Catherine

    2017-01-31

    Metastatic melanoma has been described as a highly aggressive cancer with low sensibility to chemotherapeutic agents. New types of drug, such as metal-based drugs (ferrocifens) have emerged and could represent an alternative for melanoma treatment since they show interesting anticancer potential. Furthermore, molecular analysis has evidenced the role of apoptosis in the low sensibility of melanomas and especially of the key regulator, Bcl-2. The objective of this study was to combine two strategies in the same lipid nanocapsules (LNCs): i) gene therapy to modulate anti-apoptotic proteins by the use of Bcl-2 siRNA, and ii) ferrocifens as a new type of anticancer agent. The efficient gene silencing with LNCs was verified by the specific extinction of Bcl-2 in melanoma cells. The cellular toxicity of ferrocifens (ferrociphenol (FcDiOH) or Ansa-FcDiOH) was demonstrated, showing higher efficacy than dacarbazine. Interestingly, the association of siBcl-2 LNCs with Ansa-FcDiOH demonstrated a significant effect on melanoma cell viability. Moreover, the co-encapsulation of siRNA and ferrocifens was successfully performed into LNCs for animal experiments. A reduction of tumor volume and mass was proved after siBcl-2 LNC treatment and Ansa-FcDiOH LNC treatment, individually (around 25%). Finally, the association of both components into the same LNCs increased the reduction of tumor volume to about 50% compared to the control group. In conclusion, LNCs appeared to provide a promising tool for the co-encapsulation of a metal-based drug and siRNA.

  17. pO{sub 2} Fluctuation Pattern and Cycling Hypoxia in Human Cervical Carcinoma and Melanoma Xenografts

    SciTech Connect

    Ellingsen, Christine; Ovrebo, Kirsti Marie; Galappathi, Kanthi; Mathiesen, Berit; Rofstad, Einar K.

    2012-07-15

    Purpose: Blood perfusion in tumors is spatially and temporally heterogeneous, resulting in local fluctuations in tissue oxygen tension (pO{sub 2}) and tissue regions showing cycling hypoxia. In this study, we investigated whether the pO{sub 2} fluctuation pattern and the extent of cycling hypoxia differ between tumor types showing high (e.g., cervical carcinoma xenograft) and low (e.g., melanoma xenograft) fractions of connective tissue-associated blood vessels. Methods and Materials: Two cervical carcinoma lines (CK-160 and TS-415) and two melanoma lines (A-07 and R-18) transplanted into BALB/c nu/nu mice were included in the study. Tissue pO{sub 2} was measured simultaneously in two positions in each tumor by using a two-channel OxyLite fiber-optic oxygen-sensing device. The extent of acute and chronic hypoxia was assessed by combining a radiobiological and a pimonidazole-based immunohistochemical assay of tumor hypoxia. Results: The proportion of tumor regions showing pO{sub 2} fluctuations, the pO{sub 2} fluctuation frequency in these regions, and the relative amplitude of the pO{sub 2} fluctuations were significantly higher in the melanoma xenografts than in the cervical carcinoma xenografts. Cervical carcinoma and melanoma xenografts did not differ significantly in the fraction of acutely hypoxic cells or the fraction of chronically hypoxic cells. However, the ratio between fraction of acutely hypoxic cells and fraction of chronically hypoxic cells was significantly higher in melanoma than in cervical carcinoma xenografts. Conclusions: Temporal heterogeneity in blood flow and tissue pO{sub 2} in tumors may depend on tumor histology. Connective tissue surrounding microvessels may stabilize blood flow and pO{sub 2} and, thus, protect tumor tissue from cycling hypoxia.

  18. Ursolic acid and resveratrol synergize with chloroquine to reduce melanoma cell viability.

    PubMed

    Junco, Jacob J; Mancha-Ramirez, Anna; Malik, Gunjan; Wei, Sung-Jen; Kim, Dae Joon; Liang, Huiyun; Slaga, Thomas J

    2015-04-01

    Malignant melanoma is associated with a 5-year survival rate of less than 20% once metastasized. Malignant melanoma cells exhibit increased levels of autophagy, a process of intracellular digestion that allows cells to survive various stresses including chemotherapies, resulting in reduced patient survival. Autophagy can be inhibited by chemicals like chloroquine (CQ), which prevents fusion of autophagosomes to lysosomes, resulting in autophagosome accumulation in most systems. Here, we describe how tested CQ to see whether it could sensitize B16F10 metastatic mouse melanoma cells to the anticancer activities of the natural compounds ursolic acid (UA) and resveratrol (RES). CQ with UA or RES strongly and synergistically reduced the viability of B16F10 mouse melanoma and A375 human melanoma cells. Surprisingly, flow cytometry of acridine orange-stained cells showed that UA or RES in combination with CQ significantly reduced autophagosome levels. Western blotting analysis revealed that CQ plus UA or RES paradoxically increased LC3II, indicative of autophagosome accumulation. In addition, CQ plus RES synergistically decreased the levels of both autophagy initiator beclin-1 and autophagy supporter p62. These results indicate that CQ with UA or RES strongly and synergistically reduces the viability of B16F10 and A375 melanoma cells. However, studies on B16F10 cells have shown that the synergistic effect was not mediated by inhibition of autophagy induced by UA or RES. These compounds are well-tolerated in humans, and CQ has shown promise as an adjuvant therapy. These combinations may be valuable treatment strategies for melanoma.

  19. Tea tree oil might combat melanoma.

    PubMed

    Bozzuto, Giuseppina; Colone, Marisa; Toccacieli, Laura; Stringaro, Annarita; Molinari, Agnese

    2011-01-01

    In this study we present new data from experiments focused on the antitumor activity of tea tree oil (TTO), an essential oil distilled from Melaleuca alternifolia. TTO proved to be capable of inhibiting the growth of melanoma cells and of overcoming multidrug resistance (MDR), as we reported in our previous study. Moreover, the survival role of the MDR-marker P-glycoprotein appears to be involved in the mechanism of invasion of melanoma cells. The results reported herein indicate that TTO and its main active component, terpinen-4-ol, can also interfere with the migration and invasion processes of drug-sensitive and drug-resistant melanoma cells.

  20. Antimetastatic effect of recombinant human macrophage-colony-stimulating factor against lung and liver metastatic B16 melanoma.

    PubMed

    Sakurai, T; Yamada, M; Simamura, S; Motoyoshi, K

    1997-03-01

    We studied the effect of recombinant human macrophage-colony-stimulating factor (rhM-CSF) on the formation of lung and liver metastases following the i.v. injection of the B16 melanoma subline (B16 LiLu) into mice. When rhM-CSF was administered before the B16 inoculation, the number of tumor metastases decreased in the lung and liver. However, the administration of rhM-CSF after B16 inoculation did not produce an antimetastatic effect in the lung, but did in the liver, B16 cells labeled with 5-[125I]-iodo-2'-deoxyuridine (125I-dUrd) were injected and the arrest of tumor cell emboli was examined in the capillary beds of the lung and liver of mice treated with either vehicle or rhM-CSF. In both groups, there were the same numbers of B16 cells in both the lung and the liver 3 minutes after the B16 injection, and almost all tumor cells died within 24 h. However, the number of cells surviving in the lung was decreased in mice injected with rhM-CSF (37%). There was no difference in the number of cells in the livers of mice treated either with vehicle or rhM-CSF in the first 24 h after tumor cell injection. The administration of rhM-CSF increased NK 1.1+ cells in the mouse spleen and facilitated NK activity in vivo. At the same time, the administration of an anti-NK 1.1 antibody blocked the antimetastatic effect of rhM-CSF in the lung but not in the liver. The antibody was effective only when it was injected before the B16 inoculation. These results suggest that the antimetastatic effect of rhM-CSF in the lung was mediated by NK 1.1+ cells within 24 h of B16 injection. In contrast, the antimetastatic effect of rhM-CSF in the liver was mediated not only by NK 1.1+ cells but also by other antimetastatic systems such as macrophages.

  1. The E3 ligase APC/C(Cdh1) promotes ubiquitylation-mediated proteolysis of PAX3 to suppress melanocyte proliferation and melanoma growth.

    PubMed

    Cao, Juxiang; Dai, Xiangpeng; Wan, Lixin; Wang, Hongshen; Zhang, Jinfang; Goff, Philip S; Sviderskaya, Elena V; Xuan, Zhenyu; Xu, Zhixiang; Xu, Xiaowei; Hinds, Philip; Flaherty, Keith T; Faller, Douglas V; Goding, Colin R; Wang, Yongjun; Wei, Wenyi; Cui, Rutao

    2015-09-01

    The anaphase-promoting complex or cyclosome with the subunit Cdh1 (APC/C(Cdh1)) is an E3 ubiquitin ligase involved in the control of the cell cycle. Here, we identified sporadic mutations occurring in the genes encoding APC components, including Cdh1, in human melanoma samples and found that loss of APC/C(Cdh1) may promote melanoma development and progression, but not by affecting cell cycle regulatory targets of APC/C. Most of the mutations we found in CDH1 were those associated with ultraviolet light (UV)-induced melanomagenesis. Compared with normal human skin tissue and human or mouse melanocytes, the abundance of Cdh1 was decreased and that of the transcription factor PAX3 was increased in human melanoma tissue and human or mouse melanoma cell lines, respectively; Cdh1 abundance was further decreased with advanced stages of human melanoma. PAX3 was a substrate of APC/C(Cdh1) in melanocytes, and APC/C(Cdh1)-mediated ubiquitylation marked PAX3 for proteolytic degradation in a manner dependent on the D-box motif in PAX3. Either mutating the D-box in PAX3 or knocking down Cdh1 prevented the ubiquitylation and degradation of PAX3 and increased proliferation and melanin production in melanocytes. Knocking down Cdh1 in melanoma cells in culture or before implantation in mice promoted doxorubicin resistance, whereas reexpressing wild-type Cdh1, but not E3 ligase-deficient Cdh1 or a mutant that could not interact with PAX3, restored doxorubicin sensitivity in melanoma cells both in culture and in xenografts. Thus, our findings suggest a tumor suppressor role for APC/C(Cdh1) in melanocytes and that targeting PAX3 may be a strategy for treating melanoma.

  2. Is Multidirectional UV Exposure Responsible for Increasing Melanoma Prevalence with Altitude? A Hypothesis Based on Calculations with a 3D-Human Exposure Model

    PubMed Central

    Schrempf, Michael; Haluza, Daniela; Simic, Stana; Riechelmann, Stefan; Graw, Kathrin; Seckmeyer, Gunther

    2016-01-01

    In a recent study, melanoma incidence rates for Austrian inhabitants living at higher altitudes were found to increase by as much as 30% per 100 m altitude. This strong increase cannot simply be explained by the known increase of erythemally-weighted irradiance with altitude, which ranges between 0.5% and 4% per 100 m. We assume that the discrepancy is partially explainable by upwelling UV radiation; e.g., reflected by snow-covered surfaces. Therefore, we present an approach where the human UV exposure is derived by integrating incident radiation over the 3D geometry of a human body, which enables us to take upwelling radiation into account. Calculating upwelling and downwelling radiance with a radiative transfer model for a snow-free valley and for snow-covered mountain terrain (with albedo of 0.6) yields an increase in UV exposure by 10% per 100 m altitude. The results imply that upwelling radiation plays a significant role in the increase of melanoma incidence with altitude. PMID:27690069

  3. MHC-I restricted Melanoma Antigen Specific TCR Engineered Human CD4+ T Cells Exhibit Multifunctional Effector and Helper Responses, In Vitro

    PubMed Central

    Ray, Swagatam; Chhabra, Arvind; Chakraborty, Nitya G.; Hegde, Upendra; Dorsky, David I.; Chodon, Thinle; von Euw, Erika; Comin-Anduix, Begonya; Koya, Richard C.; Ribas, Antoni; Economou, James S.; Rosenberg, Steven A.; Mukherji, Bijay

    2010-01-01

    MHC class 1-restricted human melanoma epitope MART-127–35 specific TCR engineered CD4+CD25− T cells synthesize Th1 type cytokines and exhibit cytolytic effector function upon cognate stimulation. A detailed characterization of such TCR-engineered CD4+CD25− T cells now reveals that they are multifunctional. For example, they undergo multiple rounds of division, synthesize cytokines (IFN-γ, TNF-α, IL-2, MIP1ß), lyse target cells, and “help” the expansion of the MART-127–35 specific CD8+ T cells when stimulated by the MART-127–35 peptide pulsed DC. Multiparametric analyses reveal that a single TCR-engineered CD4+ T cell can perform as many as five different functions. Nearly 100% MART-127–35 specific TCR expressing CD4+ T cells can be generated through retroviral vector-based transduction and one round of in vitro stimulation by the peptide pulsed DC. MHC class I-restricted tumor epitope specific TCR-transduced CD4+ T cells, therefore, could be useful in immunotherapeutic strategies for melanoma or other human malignancies. PMID:20547105

  4. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    PubMed

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P < 0.00001). Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

  5. Casticin Inhibits A375.S2 Human Melanoma Cell Migration/Invasion through Downregulating NF-κB and Matrix Metalloproteinase-2 and -1.

    PubMed

    Wu, Zih-Yun; Lien, Jin-Cherng; Huang, Yi-Ping; Liao, Ching-Lung; Lin, Jen-Jyh; Fan, Ming-Jen; Ko, Yang-Ching; Hsiao, Yu-Ping; Lu, Hsu-Feng; Chung, Jing-Gung

    2016-03-19

    Casticin is one of the main components from Fructus Viticis, which is widely used as an anti-inflammatory agent. The mechanism of how casticin affects melanoma cell migration and invasion is still not well known. Here we studied the anti-metastasis effects of casticin on A375.S2 melanoma cells by using a non-lethal concentration. First; we used an adhesion assay to test the A375.S2 cells' adhesion ability after treatment with casticin. We next investigated the cell migration ability after casticin treatment by using a wound healing assay to prove that the migration of A375.S2 cells can be inhibited by casticin and double checked the results using the transwell-migration assay. The suppressive effects on matrix metalloproteinase-2; and -9 (MMP-2; and -9) activities were examined by gelatin zymography. Furthermore, western blotting was used to investigate the protein level changes in A375.S2 cells. We found that p-EGFR; Ras and p-ERK1/2 are decreased by casticin, indicating that casticin can down-regulate the migration and invasion ability of A375.S2 cells via the p-EGFR/Ras/p-ERK pathway. The NF-κB p65 and p-ERK levels in nuclear proteins are also decreased by treatment with casticin. An EMSA assay also discovered that the NF-κB p65 and DNA interaction is decreased. NF-κB p65 protein level was examined by immunofluorescence staining and also decreased. Our findings suggest that casticin has anti-metastatic potential by decreasing the invasiveness of A375.S2 cells. We also found that casticin suppressed A375.S2 cell proliferation and cell adhesion ability, but did not affect cell death, as examined using cytometry and a collagen adhesion assay. Based on these observations, casticin could be used as an inhibitor of migration and invasion of human melanoma cells in the future.

  6. CD147 interacts with NDUFS6 in regulating mitochondrial complex I activity and the mitochondrial apoptotic pathway in human malignant melanoma cells.

    PubMed

    Luo, Z; Zeng, W; Tang, W; Long, T; Zhang, J; Xie, X; Kuang, Y; Chen, M; Su, J; Chen, X

    2014-01-01

    Malignant melanoma (MM) is one of the most lethal tumors and is characterized by high invasiveness, frequent metastasis, and resistance to chemotherapy. The risk of metastatic MM is accompanied by disordered energy metabolism involving the oxidative phosphorylation (OXPHOS) process, which is largely carried out in mitochondrial complexes. Complex I is the first and largest mitochondrial enzyme complex associated with this process. CD147 is a transmembrane glycoprotein mainly expressed on the cell surface, and also appears in the cytoplasm in some tumors. We found that CD147 is often translocated to the cytoplasm in metastatic MM specimens as compared to primary MM. We also demonstrated high expression of CD147 in isolated mitochondrial fractions of A375 cells. The yeast two-hybrid (Y2H) assay identified NDUFS6 (which encodes a subunit of mitochondrial respiratory chain complex I) as a candidate that interacts with CD147 and depletion of CD147 in A375 cells significantly decreased complex I enzyme activity. We also showed that CD147 increased the viability of A375 cells exposed to berberine-induced mitochondrial damage, and protected them from apoptosis through a mitochondrial-dependent pathway. This finding was confirmed by adding exogenous Bcl-2 to A375 cell cultures. In summary, our results identify the existence of CD147 in human melanoma cell mitochondria. They indicate that CD147 appears to regulate complex I activity and apoptosis in MM by interacting with mitochondrial NDUFS6. Our findings provide new insight into the function of CD147 and identify it as a promising therapeutic target in melanoma through disruption of the energy metabolism.

  7. Presence of cytoadhesins (IIb-IIIa-like glycoproteins) on human metastatic melanomas but not on benign melanocytes.

    PubMed

    McGregor, B C; McGregor, J L; Weiss, L M; Wood, G S; Hu, C H; Boukerche, H; Warnke, R A

    1989-10-01

    Glycoproteins IIb and IIIa, a heterodimer complex, play a vital role in blood platelet aggregation and are members of a wide family of membrane receptors known as integrins or cytoadhesins. Cellular interaction to extracellular matrix (ECM) adhesive proteins is mediated by integrins. Certain tumor cells are known to interact with ECM and blood platelets in the process of metastasis. However, it is not known if tumor cells, compared with their normal counterparts, acquire IIb-IIIa-like receptors to help them in their metastatic spread. In this study, monoclonal antibodies directed against the IIb-IIIa platelet glycoprotein complex were used on frozen biopsies of normal and various tumor tissues to detect the presence of these integrins. These studies demonstrate the presence of IIb-IIIa-like glycoproteins on the cells of metastatic malignant melanoma but not on benign melanocytes and rarely on other tumors. The presence of integrins on melanomas may help explain their propensity for frequent metastasis.

  8. Humans are sensitive to attention control when predicting others’ actions

    PubMed Central

    Pesquita, Ana; Chapman, Craig S.; Enns, James T.

    2016-01-01

    Studies of social perception report acute human sensitivity to where another’s attention is aimed. Here we ask whether humans are also sensitive to how the other’s attention is deployed. Observers viewed videos of actors reaching to targets without knowing that those actors were sometimes choosing to reach to one of the targets (endogenous control) and sometimes being directed to reach to one of the targets (exogenous control). Experiments 1 and 2 showed that observers could respond more rapidly when actors chose where to reach, yet were at chance when guessing whether the reach was chosen or directed. This implicit sensitivity to attention control held when either actor’s faces or limbs were masked (experiment 3) and when only the earliest actor’s movements were visible (experiment 4). Individual differences in sensitivity to choice correlated with an independent measure of social aptitude. We conclude that humans are sensitive to attention control through an implicit kinematic process linked to empathy. The findings support the hypothesis that social cognition involves the predictive modeling of others’ attentional states. PMID:27436897

  9. Correlation between experimental human and murine skin sensitization induction thresholds.

    PubMed

    Api, Anne Marie; Basketter, David; Lalko, Jon

    2015-01-01

    Quantitative risk assessment for skin sensitization is directed towards the determination of levels of exposure to known sensitizing substances that will avoid the induction of contact allergy in humans. A key component of this work is the predictive identification of relative skin sensitizing potency, achieved normally by the measurement of the threshold (the "EC3" value) in the local lymph node assay (LLNA). In an extended series of studies, the accuracy of this murine induction threshold as the predictor of the absence of a sensitizing effect has been verified by conduct of a human repeated insult patch test (HRIPT). Murine and human thresholds for a diverse set of 57 fragrance chemicals spanning approximately four orders of magnitude variation in potency have been compared. The results confirm that there is a useful correlation, with the LLNA EC3 value helping particularly to identify stronger sensitizers. Good correlation (with half an order of magnitude) was seen with three-quarters of the dataset. The analysis also helps to identify potential outlier types of (fragrance) chemistry, exemplified by hexyl and benzyl salicylates (an over-prediction) and trans-2-hexenal (an under-prediction).

  10. Isolation and molecular characterization of circulating melanoma cells.

    PubMed

    Luo, Xi; Mitra, Devarati; Sullivan, Ryan J; Wittner, Ben S; Kimura, Anya M; Pan, Shiwei; Hoang, Mai P; Brannigan, Brian W; Lawrence, Donald P; Flaherty, Keith T; Sequist, Lecia V; McMahon, Martin; Bosenberg, Marcus W; Stott, Shannon L; Ting, David T; Ramaswamy, Sridhar; Toner, Mehmet; Fisher, David E; Maheswaran, Shyamala; Haber, Daniel A

    2014-05-08

    Melanoma is an invasive malignancy with a high frequency of blood-borne metastases, but circulating tumor cells (CTCs) have not been readily isolated. We adapted microfluidic CTC capture to a tamoxifen-driven B-RAF/PTEN mouse melanoma model. CTCs were detected in all tumor-bearing mice and rapidly declined after B-RAF inhibitor treatment. CTCs were shed early from localized tumors, and a short course of B-RAF inhibition following surgical resection was sufficient to dramatically suppress distant metastases. The large number of CTCs in melanoma-bearing mice enabled a comparison of RNA-sequencing profiles with matched primary tumors. A mouse melanoma CTC-derived signature correlated with invasiveness and cellular motility in human melanoma. CTCs were detected in smaller numbers in patients with metastatic melanoma and declined with successful B-RAF-targeted therapy. Together, the capture and molecular characterization of CTCs provide insight into the hematogenous spread of melanoma.

  11. Melanoma cell lysate induces CCR7 expression and in vivo migration to draining lymph nodes of therapeutic human dendritic cells.

    PubMed

    González, Fermín E; Ortiz, Carolina; Reyes, Montserrat; Dutzan, Nicolás; Patel, Vyomesh; Pereda, Cristián; Gleisner, Maria A; López, Mercedes N; Gutkind, J Silvio; Salazar-Onfray, Flavio

    2014-07-01

    We have previously reported a novel method for the production of tumour-antigen-presenting cells (referred to as TAPCells) that are currently being used in cancer therapy, using an allogeneic melanoma-derived cell lysate (referred to as TRIMEL) as an antigen provider and activation factor. It was recently demonstrated that TAPCell-based immunotherapy induces T-cell-mediated immune responses resulting in improved long-term survival of stage IV melanoma patients. Clinically, dendritic cell (DC) migration from injected sites to lymph nodes is an important requirement for an effective anti-tumour immunization. This mobilization of DCs is mainly driven by the C-C chemokine receptor type 7 (CCR7), which is up-regulated on mature DCs. Using flow cytometry and immunohistochemistry, we investigated if TRIMEL was capable of inducing the expression of the CCR7 on TAPCells and enhancing their migration in vitro, as well as their in vivo relocation to lymph nodes in an ectopic xenograft animal model. Our results confirmed that TRIMEL induces a phenotypic maturation and increases the expression of surface CCR7 on melanoma patient-derived DCs, and also on the monocytic/macrophage cell line THP-1. Moreover, in vitro assays showed that TRIMEL-stimulated DCs and THP-1 cells were capable of migrating specifically in the presence of the CCR7 ligand CCL19. Finally, we demonstrated that TAPCells could migrate in vivo from the injection site into the draining lymph nodes. This work contributes to an increased understanding of the biology of DCs produced ex vivo allowing the design of new strategies for effective DC-based vaccines for treating aggressive melanomas.

  12. Drugs Approved for Melanoma

    MedlinePlus

    ... Ask about Your Treatment Research Drugs Approved for Melanoma This page lists cancer drugs approved by the ... that are not listed here. Drugs Approved for Melanoma Aldesleukin Cobimetinib Cotellic (Cobimetinib) Dabrafenib Dacarbazine DTIC-Dome ( ...

  13. Melanoma - neck (image)

    MedlinePlus

    This melanoma on the neck is variously colored with a very darkly pigmented area found centrally. It has irregular ... be larger than 0.5 cm. Prognosis in melanoma is best defined by its depth on resection.

  14. Molecular Classification of Melanoma

    Cancer.gov

    Tissue-based analyses of precursors, melanoma tumors and metastases within existing study populations to further understanding of the heterogeneity of melanoma and determine a predictive pattern of progression for dysplastic nevi.

  15. Melanoma to the heart

    PubMed Central

    Hall, James A.; Fidone, Erica J.; Mack, Ryan; Metting, Austin L.

    2016-01-01

    Malignant melanoma is the third most common skin cancer yet has the highest mortality rate due to its predilection for metastasis. While the diagnosis of antemortem melanoma with cardiac metastasis is relatively uncommon, diagnosing malignant melanoma itself by first identifying a cardiac metastasis is even more rare. This vignette describes an antemortem diagnosis of melanoma in a 50-year-old woman through identification of metastasis to multiple sites, including the tricuspid valve. PMID:27695188

  16. Melanoma to the heart.

    PubMed

    Durham, Charis G; Hall, James A; Fidone, Erica J; Mack, Ryan; Metting, Austin L

    2016-10-01

    Malignant melanoma is the third most common skin cancer yet has the highest mortality rate due to its predilection for metastasis. While the diagnosis of antemortem melanoma with cardiac metastasis is relatively uncommon, diagnosing malignant melanoma itself by first identifying a cardiac metastasis is even more rare. This vignette describes an antemortem diagnosis of melanoma in a 50-year-old woman through identification of metastasis to multiple sites, including the tricuspid valve.

  17. ORAL AMELANOTIC MELANOMA

    PubMed Central

    Adisa, A.O.; Olawole, W.O.; Sigbeku, O.F.

    2012-01-01

    Malignant melanomas of the mucosal regions of the head and neck are extremely rare neoplasms accounting for less than 1% of all melanomas. Approximately half of all head and neck melanomas occur in the oral cavity. Less than 2% of all melanomas lack pigmentation, in the oral mucosa however, up to 75% of cases are amelanotic. No etiologic factors or risk factors have been recognized for oral melanomas. Some authors have suggested that oral habits and selfmedication may be of etiological significance. Oral melanoma is rare but it is relatively frequent in countries like Japan, Uganda, and India. It is rarely identified under the age of 20 years. In Australia where cutaneous melanomas are relatively common primary melanoma of the oral mucosa is rare. The surface architecture of oral melanomas ranges from macular to ulcerated and nodular. The lesion is said to be asymptomatic in the early stages but may become ulcerated and painful in advanced lesions. The diagnosis of amelanotic melanoma is more difficult than that of pigmented lesions. The neoplasm consists of spindle-shaped cells with many mitotic figures and no cytoplasmic melanin pigmentation. Immunohistochemistry using S-100, HMB-45, Melan-A and MART-1 will help in establishing the correct diagnosis. Radical surgery with ample margins and adjuvant chemotherapy are appropriate management protocol for malignant melanoma. Oral melanoma is associated with poor prognosis but its amelanotic variant has even worse prognosis because it exhibits a more aggressive biology and because of difficulty in diagnosis which leads to delayed treatment. PMID:25161399

  18. Epacadostat and Vaccine Therapy in Treating Patients With Stage III-IV Melanoma

    ClinicalTrials.gov

    2017-01-18

    Mucosal Melanoma; Recurrent Melanoma; Recurrent Uveal Melanoma; Stage IIIA Skin Melanoma; Stage IIIA Uveal Melanoma; Stage IIIB Skin Melanoma; Stage IIIB Uveal Melanoma; Stage IIIC Skin Melanoma; Stage IIIC Uveal Melanoma; Stage IV Skin Melanoma; Stage IV Uveal Melanoma

  19. Bioactive Constituents of Zanthoxylum rhetsa Bark and Its Cytotoxic Potential against B16-F10 Melanoma Cancer and Normal Human Dermal Fibroblast (HDF) Cell Lines.

    PubMed

    Santhanam, Ramesh Kumar; Ahmad, Syahida; Abas, Faridah; Safinar Ismail, Intan; Rukayadi, Yaya; Tayyab Akhtar, Muhammad; Shaari, Khozirah

    2016-05-24

    Zanthoxylum rhetsa is an aromatic tree, known vernacularly as "Indian Prickly Ash". It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS analysis and isolated two tetrahydrofuran lignans (yangambin and kobusin), a berberine alkaloid (columbamine) and a triterpenoid (lupeol) from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF) and mouse melanoma (B16-F10) cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells.

  20. Targeting of indium 111-labeled bivalent hapten to human melanoma mediated by bispecific monoclonal antibody conjugates: Imaging of tumors hosted in nude mice

    SciTech Connect

    Le Doussal, J.M.; Gruaz-Guyon, A.; Martin, M.; Gautherot, E.; Delaage, M.; Barbet, J. )

    1990-06-01

    Antibody conjugates were prepared by coupling F(ab')2 or Fab' fragments of an antibody specific for the human high molecular weight-melanoma associated antigen to Fab' fragments of an antibody specific for indium-diethylenetriaminepentaacetate complexes. Monovalent and bivalent haptens were synthesized by reacting the dipeptide tyrosyl-lysine with diethylenetriaminepentaacetic cyclic anhydride. In vitro, the antibody conjugate mediated binding of the 111In-labeled haptens to melanoma cells. In vivo, it allowed specific localization of the haptens in A375 tumors. The bivalent hapten exhibited much higher efficiency at targeting 111In onto cells, both in vitro and in vivo. Antibody conjugate and hapten doses (2 micrograms and 1 pmol, respectively) and the delay between antibody conjugate and tracer injections (24 h) were adjusted to maximize tumor uptake (4% injected dose/g) and tumor to normal tissue contrast (greater than 3) obtained 3 h after injection of the 111In-labeled bivalent hapten. This two-step technique, when compared to direct targeting of 111In-labeled F(ab')2 fragments, provided lower localization of injected activity into the tumor (x 0.25), but higher tumor/tissue ratios, especially with respect to liver (x 7), spleen (x 8), and kidneys (x 10). In addition, high contrast images were obtained within 3 hours, instead of days. Thus, antibody conjugate-mediated targeting of small bivalent haptens, labeled with short half-life isotopes, is proposed as a general method for improving tumor radioimmunolocalization.

  1. Vaccine Therapy in Treating Patients With Stage IIC-IV Melanoma

    ClinicalTrials.gov

    2014-05-20

    Ciliary Body and Choroid Melanoma, Medium/Large Size; Ciliary Body and Choroid Melanoma, Small Size; Extraocular Extension Melanoma; Iris Melanoma; Metastatic Intraocular Melanoma; Mucosal Melanoma; Recurrent Intraocular Melanoma; Recurrent Melanoma; Stage IIC Melanoma; Stage IIIA Intraocular Melanoma; Stage IIIA Melanoma; Stage IIIB Intraocular Melanoma; Stage IIIB Melanoma; Stage IIIC Intraocular Melanoma; Stage IIIC Melanoma; Stage IV Intraocular Melanoma; Stage IV Melanoma

  2. Oncogenic BRAF fusions in mucosal melanomas activate the MAPK pathway and are sensitive to MEK/PI3K inhibition or MEK/CDK4/6 inhibition.

    PubMed

    Kim, H S; Jung, M; Kang, H N; Kim, H; Park, C-W; Kim, S-M; Shin, S J; Kim, S H; Kim, S G; Kim, E K; Yun, M R; Zheng, Z; Chung, K Y; Greenbowe, J; Ali, S M; Kim, T-M; Cho, B C

    2017-01-16

    Despite remarkable progress in cutaneous melanoma genomic profiling, the mutational landscape of primary mucosal melanomas (PMM) remains unclear. Forty-six PMMs underwent targeted exome sequencing of 111 cancer-associated genes. Seventy-six somatic nonsynonymous mutations in 42 genes were observed, and recurrent mutations were noted on eight genes, including TP53 (13%), NRAS (13%), SNX31 (9%), NF1 (9%), KIT (7%) and APC (7%). Mitogen-activated protein kinase (MAPK; 37%), cell cycle (20%) and phosphatidylinositol 3-kinase (PI3K)-mTOR (15%) pathways were frequently mutated. We biologically characterized a novel ZNF767-BRAF fusion found in a vemurafenib-refractory respiratory tract PMM, from which cell line harboring ZNF767-BRAF fusion were established for further molecular analyses. In an independent data set, NFIC-BRAF fusion was identified in an oral PMM case and TMEM178B-BRAF fusion and DGKI-BRAF fusion were identified in two malignant melanomas with a low mutational burden (number of mutation per megabase, 0.8 and 4, respectively). Subsequent analyses revealed that the ZNF767-BRAF fusion protein promotes RAF dimerization and activation of the MAPK pathway. We next tested the in vitro and in vivo efficacy of vemurafenib, trametinib, BKM120 or LEE011 alone and in combination. Trametinib effectively inhibited tumor cell growth in vitro, but the combination of trametinib and BKM120 or LEE011 yielded more than additive anti-tumor effects both in vitro and in vivo in a melanoma cells harboring the BRAF fusion. In conclusion, BRAF fusions define a new molecular subset of PMM that can be targeted therapeutically by the combination of a MEK inhibitor with PI3K or cyclin-dependent kinase 4/6 inhibitors.Oncogene advance online publication,16 January 2017; doi:10.1038/onc.2016.486.

  3. A SCN10A SNP biases human pain sensitivity

    PubMed Central

    Duan, Guangyou; Han, Chongyang; Wang, Qingli; Guo, Shanna; Zhang, Yuhao; Ying, Ying; Huang, Penghao; Zhang, Li; Macala, Lawrence; Shah, Palak; Zhang, Mi; Li, Ningbo; Dib-Hajj, Sulayman D; Zhang, Xianwei

    2016-01-01

    Background: Nav1.8 sodium channels, encoded by SCN10A, are preferentially expressed in nociceptive neurons and play an important role in human pain. Although rare gain-of-function variants in SCN10A have been identified in individuals with painful peripheral neuropathies, whether more common variants in SCN10A can have an effect at the channel level and at the dorsal root ganglion, neuronal level leading to a pain disorder or an altered normal pain threshold has not been determined. Results: Candidate single nucleotide polymorphism association approach together with experimental pain testing in human subjects was used to explore possible common SCN10A missense variants that might affect human pain sensitivity. We demonstrated an association between rs6795970 (G > A; p.Ala1073Val) and higher thresholds for mechanical pain in a discovery cohort (496 subjects) and confirmed it in a larger replication cohort (1005 female subjects). Functional assessments showed that although the minor allele shifts channel activation by −4.3 mV, a proexcitatory attribute, it accelerates inactivation, an antiexcitatory attribute, with the net effect being reduced repetitive firing of dorsal root ganglion neurons, consistent with lower mechanical pain sensitivity. Conclusions: At the association and mechanistic levels, the SCN10A single nucleotide polymorphism rs6795970 biases human pain sensitivity. PMID:27590072

  4. Effect of SMURF2 Targeting on Susceptibility to MEK Inhibitors in Melanoma

    PubMed Central

    2013-01-01

    Background The mitogen-activated protein–kinase pathway consisting of the kinases RAF, MEK, and ERK is central to cell proliferation and survival and is deregulated in more than 90% of melanomas. MEK inhibitors are currently trialled in the clinic, but despite efficient target inhibition, cytostatic rather than cytotoxic activity limits their efficacy. Methods We assessed the cytotoxicity to MEK inhibitors (PD184352 and selumetinib) in melanoma cells by toluidine-blue staining, caspase 3 cleavage, and melanoma-sphere growth. Western blotting and quantitative real-time polymerase chain reaction were applied to determine SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2), PAX3, and MITF expression. Human melanoma samples (n = 77) from various stages were analyzed for SMURF2 and PAX3 expression. RNA interference was performed to target SMURF2 during MEK inhibition in vivo in melanoma xenografts in mice and zebrafish. All statistical tests were two-sided. Results Activation of transforming growth factor β (TGF-β) signalling sensitized melanoma cells to the cytotoxic effects of MEK inhibition. Melanoma cells resistant to the cytotoxic effects of MEK inhibitors counteracted TGF-β signalling through overexpression of the E3 ubiquitin ligase SMURF2, which resulted in increased expression of the transcription factors PAX3 and MITF. High MITF expression protected melanoma cells against MEK inhibitor cytotoxicity. Depleting SMURF2 reduced MITF expression and substantially lowered the threshold for MEK inhibitor–induced apoptosis. Moreover, SMURF2 depletion sensitized melanoma cells to the cytotoxic effects of selumetinib, leading to cell death at concentrations approximately 100-fold lower than the concentration required to induce cell death in SMURF2-expressing cells. Mice treated with selumetinib alone at a dosage of 10mg/kg body weight once daily produced no response, but in combination with SMURF2 depletion, selumetinib suppressed tumor growth by 97.9% (95

  5. The role of melanin in the induction of oxidative DNA base damage by ultraviolet A irradiation of DNA or melanoma cells.

    PubMed

    Kvam, E; Tyrrell, R M

    1999-08-01

    Highly pigmented, dark skin is more resistant to the harmful effects of solar ultraviolet radiation than light-colored human skin. The extent to which tanning protects skin from harmful effects including induction of skin cancer is not known, however. We have investigated whether the skin pigment, melanin, sensitizes or protects isolated DNA or nuclear DNA in melanoma cells from the induction of the premutagenic oxidative DNA base damage, 8-hydroxy-deoxyguanosine, by ultraviolet A irradiation. Synthetic eumelanin sensitized isolated DNA to induction of the oxidative DNA base damage by ultraviolet A, but it also induced the oxidative DNA base damage in the dark. To study the role of natural melanin in mammalian melanoma cells in the induction of oxidative DNA base damage, melanin synthesis was modulated 5-7-fold in the human melanoma cells GLL19 and IGR1 (which contain both pheomelanin and eumelanin) as well as in the mouse melanoma cells B16 (which contain mainly eumelanin). Increased melanin synthesis clearly did not protect against ultraviolet A-induced oxidative DNA base damage in cells. On the contrary, the human melanoma cells with high melanin content accumulated two times more 8-hydroxy-deoxyguanosine after ultraviolet A irradiation than cells with low melanin content. Furthermore, preirradiation of the human melanoma cells, IGR1, with ultraviolet A 4 h before a second ultraviolet A exposure produced an altered amount of induced 8-hydroxy-deoxyguanosine dependent on the melanin content of the cells. We conclude that stimulation of melanin synthesis, but probably not melanin itself, increases the susceptibility of human melanoma cells to induction of premutagenic oxidative DNA base damage by ultraviolet A irradiation.

  6. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5.

    PubMed

    Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D

    2014-10-06

    ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.

  7. Differential Activity of Nivolumab, Pembrolizumab and MPDL3280A according to the Tumor Expression of Programmed Death-Ligand-1 (PD-L1): Sensitivity Analysis of Trials in Melanoma, Lung and Genitourinary Cancers

    PubMed Central

    Carbognin, Luisa; Pilotto, Sara; Milella, Michele; Vaccaro, Vanja; Brunelli, Matteo; Caliò, Anna; Cuppone, Federica; Sperduti, Isabella; Giannarelli, Diana; Chilosi, Marco; Bronte, Vincenzo; Scarpa, Aldo

    2015-01-01

    Background The potential predictive role of programmed death-ligand-1 (PD-L1) expression on tumor cells in the context of solid tumor treated with checkpoint inhibitors targeting the PD-1 pathway represents an issue for clinical research. Methods Overall response rate (ORR) was extracted from phase I-III trials investigating nivolumab, pembrolizumab and MPDL3280A for advanced melanoma, non-small cell lung cancer (NSCLC) and genitourinary cancer, and cumulated by adopting a fixed and random-effect model with 95% confidence interval (CI). Interaction test according to tumor PD-L1 was accomplished. A sensitivity analysis according to adopted drug, tumor type, PD-L1 cut-off and treatment line was performed. Results Twenty trials (1,475 patients) were identified. A significant interaction (p<0.0001) according to tumor PD-L1 expression was found in the overall sample with an ORR of 34.1% (95% CI 27.6-41.3%) in the PD-L1 positive and 19.9% (95% CI 15.4-25.3%) in the PD-L1 negative population. ORR was significantly higher in PD-L1 positive in comparison to PD-L1 negative patients for nivolumab and pembrolizumab, with an absolute difference of 16.4% and 19.5%, respectively. A significant difference in activity of 22.8% and 8.7% according to PD-L1 was found for melanoma and NSCLC, respectively, with no significant difference for genitourinary cancer. Conclusion Overall, the three antibodies provide a significant differential effect in terms of activity according to PD-L1 expression on tumor cells. The predictive value of PD-L1 on tumor cells seems to be more robust for anti-PD-1 antibody (nivolumab and pembrolizumab), and in the context of advanced melanoma and NSCLC. PMID:26086854

  8. Sensitive Detection of Viral Transcripts in Human Tumor Transcriptomes

    PubMed Central

    Schelhorn, Sven-Eric; Fischer, Matthias; Tolosi, Laura; Altmüller, Janine; Nürnberg, Peter; Pfister, Herbert; Lengauer, Thomas; Berthold, Frank

    2013-01-01

    In excess of % of human cancer incidents have a viral cofactor. Epidemiological studies of idiopathic human cancers indicate that additional tumor viruses remain to be discovered. Recent advances in sequencing technology have enabled systematic screenings of human tumor transcriptomes for viral transcripts. However, technical problems such as low abundances of viral transcripts in large volumes of sequencing data, viral sequence divergence, and homology between viral and human factors significantly confound identification of tumor viruses. We have developed a novel computational approach for detecting viral transcripts in human cancers that takes the aforementioned confounding factors into account and is applicable to a wide variety of viruses and tumors. We apply the approach to conducting the first systematic search for viruses in neuroblastoma, the most common cancer in infancy. The diverse clinical progression of this disease as well as related epidemiological and virological findings are highly suggestive of a pathogenic cofactor. However, a viral etiology of neuroblastoma is currently contested. We mapped transcriptomes of neuroblastoma as well as positive and negative controls to the human and all known viral genomes in order to detect both known and unknown viruses. Analysis of controls, comparisons with related methods, and statistical estimates demonstrate the high sensitivity of our approach. Detailed investigation of putative viral transcripts within neuroblastoma samples did not provide evidence for the existence of any known human viruses. Likewise, de-novo assembly and analysis of chimeric transcripts did not result in expression signatures associated with novel human pathogens. While confounding factors such as sample dilution or viral clearance in progressed tumors may mask viral cofactors in the data, in principle, this is rendered less likely by the high sensitivity of our approach and the number of biological replicates analyzed. Therefore, our

  9. Sensitivity analysis techniques for models of human behavior.

    SciTech Connect

    Bier, Asmeret Brooke

    2010-09-01

    Human and social modeling has emerged as an important research area at Sandia National Laboratories due to its potential to improve national defense-related decision-making in the presence of uncertainty. To learn about which sensitivity analysis techniques are most suitable for models of human behavior, different promising methods were applied to an example model, tested, and compared. The example model simulates cognitive, behavioral, and social processes and interactions, and involves substantial nonlinearity, uncertainty, and variability. Results showed that some sensitivity analysis methods create similar results, and can thus be considered redundant. However, other methods, such as global methods that consider interactions between inputs, can generate insight not gained from traditional methods.

  10. Conditioned and sensitized responses to stimulant drugs in humans.

    PubMed

    Leyton, Marco

    2007-11-15

    In animal models considerable evidence suggests that increased motivation to seek and ingest drugs of abuse are related to conditioned and sensitized activations of the mesolimbic dopamine (DA) system. Direct evidence for these phenomena in humans, though, is sparse. However, recent studies support the following. First, the acute administration of drugs of abuse across pharmacological classes increases extracellular DA levels within the human ventral striatum. Second, individual differences in the magnitude of this response correlate with rewarding effects of the drugs and the personality trait of novelty seeking. Third, transiently diminishing DA transmission in humans decreases drug craving, the propensity to preferentially respond to reward-paired stimuli, and the ability to sustain responding for future drug reward. Finally, very recent studies suggest that repeated exposure to stimulant drugs, either on the street or in the laboratory, can lead to conditioned and sensitized behavioral responses and DA release. In contrast to these findings, though, in individuals with a long history of substance abuse, drug-induced DA release is decreased. This diminished DA release could reflect two different phenomena. First, it is possible that drug withdrawal related decrements in DA cell function persist longer than previously suspected. Second, drug-paired stimuli may gain marked conditioned control over the release of DA and the expression of sensitization leading to reduced DA release when drug-related cues are absent. Based on these observations a two-factor hypothesis of the role of DA in drug abuse is proposed. In the presence of drug cues, conditioned and sensitized DA release would occur leading to focused drug-seeking behavior. In comparison, in the absence of drug-related stimuli DA function would be reduced, diminishing the ability of individuals to sustain goal-directed behavior and long-term objectives. This conditioned control of the expression of sensitized

  11. ERBB3 is required for metastasis formation of melanoma cells

    PubMed Central

    Tiwary, S; Preziosi, M; Rothberg, P G; Zeitouni, N; Corson, N; Xu, L

    2014-01-01

    Melanoma is curable when it is at an early phase but is lethal once it becomes metastatic. The recent development of BRAFV600E inhibitors (BIs) showed great promise in treating metastatic melanoma, but resistance developed quickly in the treated patients, and these inhibitors are not effective on melanomas that express wild-type BRAF. Alternative therapeutic strategies for metastatic melanoma are urgently needed. Here we report that ERBB3, a member of the epidermal growth factor receptor family, is required for the formation of lung metastasis from both the BI-sensitive melanoma cell line, MA-2, and the BI-resistant melanoma cell line, 451Lu-R. Further analyses revealed that ERBB3 does not affect the initial seeding of melanoma cells in lung but is required for their further development into overt metastases, indicating that ERBB3 might be essential for the survival of melanoma cells after they reach the lung. Consistent with this, the ERBB3 ligand, NRG1, is highly expressed in mouse lungs and induces ERBB3-depdnent phosphorylation of AKT in both MA-2 and 451Lu-R cells in vitro. These findings suggest that ERBB3 may serve as a target for treating metastatic melanomas that are resistant to BIs. In support of this, administration of the pan-ERBB inhibitor, canertinib, significantly suppresses the metastasis formation of BI-resistant melanoma cell lines. PMID:25000258

  12. Zebra finches are sensitive to prosodic features of human speech.

    PubMed

    Spierings, Michelle J; ten Cate, Carel

    2014-07-22

    Variation in pitch, amplitude and rhythm adds crucial paralinguistic information to human speech. Such prosodic cues can reveal information about the meaning or emphasis of a sentence or the emotional state of the speaker. To examine the hypothesis that sensitivity to prosodic cues is language independent and not human specific, we tested prosody perception in a controlled experiment with zebra finches. Using a go/no-go procedure, subjects were trained to discriminate between speech syllables arranged in XYXY patterns with prosodic stress on the first syllable and XXYY patterns with prosodic stress on the final syllable. To systematically determine the salience of the various prosodic cues (pitch, duration and amplitude) to the zebra finches, they were subjected to five tests with different combinations of these cues. The zebra finches generalized the prosodic pattern to sequences that consisted of new syllables and used prosodic features over structural ones to discriminate between stimuli. This strong sensitivity to the prosodic pattern was maintained when only a single prosodic cue was available. The change in pitch was treated as more salient than changes in the other prosodic features. These results show that zebra finches are sensitive to the same prosodic cues known to affect human speech perception.

  13. The induction of apoptosis in human melanoma, breast and ovarian cancer cell lines using an essential oil extract from the conifer Tetraclinis articulata.

    PubMed

    Buhagiar, J A; Podesta, M T; Wilson, A P; Micallef, M J; Ali, S

    1999-01-01

    The cytotoxic effect of conifer Tetraclinis articulata essential oil (TAEO) on a number of human cancer cell lines and peripheral blood lymphocytes was assessed at various concentrations and time exposures. The cytotoxic effect showed the hallmarks of apoptosis confirmed by a variety of techniques including flow cytometry, an apoptosis- specific marker combined to fluorescent staining and DNA laddering. All cell lines tested were inhibited in a dose-dependent fashion and within a contact time of less than eight hours for the higher concentrations. Melanoma, breast and ovarian cancer cells gave IC50s of around 80 micrograms/ml whilst the IC50s on peripheral blood lymphocytes was almost double this value. We conclude that the essential oil contains components that are effective at inducing apoptosis. The advantages of using a mixture of monoterpenes (C10) as present in an EO over a single component, are discussed.

  14. A novel fully-humanised 3D skin equivalent to model early melanoma invasion

    PubMed Central

    Hill, David S; Robinson, Neil D P; Caley, Matthew P; Chen, Mei; O’Toole, Edel A; Armstrong, Jane L; Przyborski, Stefan; Lovat, Penny E

    2015-01-01

    Metastatic melanoma remains incurable, emphasising the acute need for improved research models to investigate the underlying biological mechanisms mediating tumour invasion and metastasis, and to develop more effective targeted therapies to improve clinical outcome. Available animal models of melanoma do not accurately reflect human disease and current in vitro human skin equivalent models incorporating melanoma cells are not fully representative of the human skin microenvironment. We have developed a robust and reproducible, fully-humanised 3D skin equivalent comprising a stratified, terminally differentiated epidermis and a dermal compartment consisting of fibroblast-generated extracellular matrix. Melanoma cells incorporated into the epidermis were able to invade through the basement membrane and into the dermis, mirroring early tumour invasion in vivo. Comparison of our novel 3D melanoma skin equivalent with melanoma in situ and metastatic melanoma indicates this model accurately recreates features of disease pathology, making it a physiologically representative model of early radial and vertical growth phase melanoma invasion. PMID:26330548

  15. Lymphadenectomy promotes tumor growth and cancer cell dissemination in the spontaneous RET mouse model of human uveal melanoma

    PubMed Central

    Pin, Yeo Kim; Khoo, Karen; Tham, Muly; Karwai, Tan; Hwee, Thiam Chung; Puaux, Anne-Laure; Cindy Phua, Meow Ling; Kato, Masashi

    2015-01-01

    Resection of infiltrated tumor-draining lymph nodes (TDLNs) is a standard practice for the treatment of several cancers including breast cancer and melanoma. However, many randomized prospective trials have failed to show convincing clinical benefits associated with LN removal and the role of TDLNs in cancer dissemination is poorly understood. Here, we found in a well-characterized spontaneous mouse model of uveal melanoma that the growth of the primary tumor was accompanied by increased lymphangiogenesis and cancer cell colonization in the LNs draining the eyes. But, unexpectedly, early resection of the TDLNs increased the growth of the primary tumor and associated blood vessels as well as promoted cancer cell survival and dissemination. These effects were accompanied by increased tumor cell proliferation and expression of phosphorylated AKT. Topical application of a broad anti-inflammatory agent, Tobradex, or an oral treatment with cyclooxygenase-2 specific inhibitor, Celecoxib, reversed tumor progression observed after complete lymphadenectomy. Our study confirms the importance of tumor homeostasis in cancer progression by showing the enhancing effects of TDLN removal on tumor growth and cancer cell dissemination, and suggests that TDLN resection may only be beneficial if used in combination with anti-inflammatory drugs such as Tobradex and Celecoxib. PMID:26575174

  16. Identification of the human melanoma-associated chondroitin sulfate proteoglycan antigen epitope recognized by the antitumor monoclonal antibody 763.74 from a peptide phage library.

    PubMed

    Geiser, M; Schultz, D; Le Cardinal, A; Voshol, H; García-Echeverría, C

    1999-02-15

    To identify the epitope of the melanoma-associated chondroitin sulfate proteoglycan (MCSP) recognized by the monoclonal antibody (mAb) 763.74, we first expressed random DNA fragments obtained from the complete coding sequence of the MCSP core glycoproteins in phages and selected without success for binders to the murine mAb 763.74. We then used a library of random heptapeptides displayed at the surface of the filamentous M13 phage as fusion protein to the NH2-terminal portion of the minor coat protein III. After three rounds of selection on the bound mAb, several phages displaying related binding peptides were identified, yielding the consensus sequence Val-His-Leu-Asn-Tyr-Glu-His. Competitive ELISA experiments showed that this peptide can be specifically prevented from binding to mAb 763.74 by an anti-idiotypic MK2-23 mouse:human chimeric mAb and by A375 melanoma cells expressing the antigen MCSP. We screened the amino acid sequence of the MCSP molecule for a region of homology to the consensus sequence and found that the amino acid sequence Val-His-Ile-Asn-Ala-His spanning positions 289 and 294 has high homology. Synthetic linear peptides corresponding to the consensus sequence as well as to the MCSP-derived epitope inhibit the binding of mAb 763.74 to the phages displaying the consensus amino acid sequence. Finally, the biotinylated consensus peptide absorbed to streptavidin-microtiter plates can be used for the detection of mAb 763.74 in human serum. These results show clearly that the MCSP epitope defined by mAb 763.74 has been identified.

  17. Geraniin-mediated apoptosis by cleavage of focal adhesion kinase through up-regulation of Fas ligand expression in human melanoma cells.

    PubMed

    Lee, Jang-Chang; Tsai, Chih-Yen; Kao, Jung-Yie; Kao, Ming-Ching; Tsai, Shih-Chang; Chang, Chih-Shiang; Huang, Li-Jiau; Kuo, Sheng-Chu; Lin, Jen-Kun; Way, Tzong-Der

    2008-06-01

    Geraniin, a form of tannin separated from geranium, causes cell death through induction of apoptosis; however, cell death characteristics for geraniin have not yet been elucidated. Here, we investigated the mechanism of geraniin-induced apoptosis in human melanoma cells and demonstrated that geraniin was able to induce cell apoptosis in a concentration- and time-dependent manner. We also examined the signaling pathway related to geraniin-induced apoptosis. To clarify the relationship between focal adhesion kinase (FAK) and geraniin-induced apoptosis, we treated human melanoma cells with geraniin and found that this resulted dose- and time-dependent degradation in FAK. However, FAK cleavage was significantly inhibited when cells were pretreated with a selective inhibitor of caspase-3 (Ac-Asp-Glu-Val-Asp-CHO). Here, we demonstrated for the first time that geraniin triggered cell death by caspase-3-mediated cleavage of FAK. There were two possible mechanisms for activating caspase-3, mitochondria-mediated and receptor-mediated apoptosis. To confirm the geraniin-relevant signaling pathway, using immunoblot analysis we found that geraniin-induced apoptosis was associated with the up-regulation of Fas ligand expression, the activation of caspase-8, the cleavage of Bid, and the induction of cytochrome c release from mitochondria to the cytosol. Treatment with geraniin caused induction of caspase-3 activity in a dose- and time-dependent manner followed by proteolytic cleavage of poly-(ADP-ribose) polymerase, and DNA fragmentation factor 45. The geraniin-induced apoptosis may provide a pivotal mechanism for its cancer-chemopreventive action.

  18. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling.

    PubMed

    Syed, Deeba N; Chamcheu, Jean-Christopher; Khan, Mohammad Imran; Sechi, Mario; Lall, Rahul K; Adhami, Vaqar M; Mukhtar, Hasan

    2014-06-01

    The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways.

  19. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling

    PubMed Central

    Syed, Deeba N.; Chamcheu, Jean-Christopher; Khan, Mohammad Imran; Sechi, Mario; Lall, Rahul K.; Adhami, Vaqar M.; Mukhtar, Hasan

    2014-01-01

    The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways. PMID:24675012

  20. PIM kinases as therapeutic targets against advanced melanoma

    PubMed Central

    Shannan, Batool; Watters, Andrea; Chen, Quan; Mollin, Stefan; Dörr, Markus; Meggers, Eric; Xu, Xiaowei; Gimotty, Phyllis A.; Perego, Michela; Li, Ling; Benci, Joseph; Krepler, Clemens; Brafford, Patricia; Zhang, Jie; Wei, Zhi; Zhang, Gao; Liu, Qin; Yin, Xiangfan; Nathanson, Katherine L.; Herlyn, Meenhard; Vultur, Adina

    2016-01-01

    Therapeutic strategies for the treatment of metastatic melanoma show encouraging results in the clinic; however, not all patients respond equally and tumor resistance still poses a challenge. To identify novel therapeutic targets for melanoma, we screened a panel of structurally diverse organometallic inhibitors against human-derived normal and melanoma cells. We observed that a compound that targets PIM kinases (a family of Ser/Thr kinases) preferentially inhibited melanoma cell proliferation, invasion, and viability in adherent and three-dimensional (3D) melanoma models. Assessment of tumor tissue from melanoma patients showed that PIM kinases are expressed in pre- and post-treatment tumors, suggesting PIM kinases as promising targets in the clinic. Using knockdown studies, we showed that PIM1 contributes to melanoma cell proliferation and tumor growth in vivo; however, the presence of PIM2 and PIM3 could also influence the outcome. The inhibition of all PIM isoforms using SGI-1776 (a clinically-available PIM inhibitor) reduced melanoma proliferation and survival in preclinical models of melanoma. This was potentiated in the presence of the BRAF inhibitor PLX4720 and in the presence of PI3K inhibitors. Our findings suggest that PIM inhibitors provide promising additions to the targeted therapies available to melanoma patients. PMID:27448973

  1. Functional status and relationships of melanocortin 1 receptor signaling to the cAMP and extracellular signal-regulated protein kinases 1 and 2 pathways in human melanoma cells.

    PubMed

    Herraiz, Cecilia; Journé, Fabrice; Ghanem, Ghanem; Jiménez-Cervantes, Celia; García-Borrón, José C

    2012-12-01

    Melanocortin 1 receptor (MC1R), a major determinant of skin phototype frequently mutated in melanoma, is a Gs protein-coupled receptor that regulates pigment production in melanocytes. MC1R stimulation activates cAMP synthesis and the extracellular signal-regulated (ERK) ERK1 and ERK2. In human melanocytes, ERK activation by MC1R relies on cAMP-independent transactivation of the c-KIT receptor. Thus MC1R functional coupling to the cAMP and ERK pathways may involve different structural requirements giving raise to biased effects of skin cancer-associated mutations. We evaluated the impact of MC1R mutations on ERK activation, cAMP production and agonist binding. We found that MC1R mutations impair cAMP production much more often than ERK activation, suggesting less stringent requirements for functional coupling to the ERK pathway. We examined the crosstalk of the cAMP and ERK pathways in HBL human melanoma cells (wild-type for MC1R, NRAS and BRAF). ERK activation by constitutively active upstream effectors or pharmacological inhibition had little effect on MC1R-stimulated cAMP synthesis. High cAMP levels were compatible with normal ERK activation but, surprisingly, the adenylyl cyclase activator forskolin abolished ERK activation by MC1R, most likely by a cAMP-independent mechanism. These results indicate little crosstalk of the cAMP and ERK pathways in HBL melanoma cells. Finally, we studied cAMP accumulation in a panel of 22 human melanoma cell lines stimulated with MC1R agonists or forskolin. cAMP synthesis was often inhibited, even in cells wild-type for MC1R and NRAS. Therefore, the cAMP pathway is more frequently impaired in melanoma than could be predicted by the MC1R or NRAS genotype.

  2. Gamma-Secretase/Notch Signalling Pathway Inhibitor RO4929097 in Treating Patients With Stage IV Melanoma

    ClinicalTrials.gov

    2016-05-06

    Acral Lentiginous Malignant Melanoma; Lentigo Maligna Malignant Melanoma; Nodular Malignant Melanoma; Recurrent Melanoma; Solar Radiation-related Skin Melanoma; Stage IV Melanoma; Superficial Spreading Malignant Melanoma

  3. Immunohistochemical Analysis of Collagen IV and Laminin Expression in Spontaneous Melanoma Regression in the Melanoma-Bearing Libechov Minipig

    PubMed Central

    Planska, Daniela; Burocziova, Monika; Strnadel, Jan; Horak, Vratislav

    2015-01-01

    Spontaneous regression (SR) of human melanoma is a rare, well-documented phenomenon that is not still fully understood. Its detailed study cannot be performed in patients due to ethical reasons. Using the Melanoma-bearing Libechov Minipig (MeLiM) animals of various ages (from 3 weeks to 8 months) we implemented a long-term monitoring of melanoma growth and SR. We focused on immunohistochemical detection of two important extracellular matrix proteins, collagen IV and laminin, which are associated with cancer. We showed that SR of melanoma is a highly dynamic process. The expression of collagen IV and laminin correlated with changes in population of melanoma cells. Tumours of 3-week-old animals consisted primarily of melanoma cells with a granular expression of collagen IV and laminin around them. Thereafter, melanoma cells were gradually destroyed and tumour tissue was rebuilt into the connective tissue. Collagen IV expression slightly increased in tumours of 10-week-old pigs showing extracellular fibrous appearance. In tumours of older animals, areas lacking melanoma cells demonstrated a low expression and areas still containing melanoma cells a high expression of both proteins. We considered the age of 10 weeks as a turning point in the transition between tumour growth and SR of the MeLiM melanoma. PMID:25861134

  4. T-cell receptor gene therapy targeting melanoma-associated antigen-A4 inhibits human tumor growth in non-obese diabetic/SCID/γcnull mice.

    PubMed

    Shirakura, Yoshitaka; Mizuno, Yukari; Wang, Linan; Imai, Naoko; Amaike, Chisaki; Sato, Eiichi; Ito, Mamoru; Nukaya, Ikuei; Mineno, Junichi; Takesako, Kazutoh; Ikeda, Hiroaki; Shiku, Hiroshi

    2012-01-01

    Adoptive cell therapy with lymphocytes that have been genetically engineered to express tumor-reactive T-cell receptors (TCR) is a promising approach for cancer immunotherapy. We have been exploring the development of TCR gene therapy targeting cancer/testis antigens, including melanoma-associated antigen (MAGE) family antigens, that are ideal targets for adoptive T-cell therapy. The efficacy of TCR gene therapy targeting MAGE family antigens, however, has not yet been evaluated in vivo. Here, we demonstrate the in vivo antitumor activity in immunodeficient non-obese diabetic/SCID/γc(null) (NOG) mice of human lymphocytes genetically engineered to express TCR specific for the MAGE-A4 antigen. Polyclonal T cells derived from human peripheral blood mononuclear cells were transduced with the αβ TCR genes specific for MAGE-A4, then adoptively transferred into NOG mice inoculated with MAGE-A4 expressing human tumor cell lines. The transferred T cells maintained their effector function in vivo, infiltrated into tumors, and inhibited tumor growth in an antigen-specific manner. The combination of adoptive cell therapy with antigen peptide vaccination enhanced antitumor activity, with improved multifunctionality of the transferred cells. These data suggest that TCR gene therapy with MAGE-A4-specific TCR is a promising strategy to treat patients with MAGE-A4-expressing tumors; in addition, the acquisition of multifunctionality in vivo is an important factor to predict the quality of the T-cell response during adoptive therapy with human lymphocytes.

  5. Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients

    PubMed Central

    Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola

    2015-01-01

    BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients’ samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAFV600E and BRAFV600K mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method. PMID:26690267

  6. Cutaneous Melanoma in Women

    PubMed Central

    Roh, Mi Ryung; Eliades, Philip; Gupta, Sameer; Tsao, Hensin

    2015-01-01

    The incidence of cutaneous melanoma (CM) continues to increase in the Caucasian population in the United States. In 2014, women only accounted for 42% of the 76,100 new melanoma cases and only 33% of the 9,710 deaths associated with CM in the US.1 These trends are consistently observed in populations around the world. Indeed, gender disparity in melanoma outcome is so consistently observed that gender has been suggested as an important prognostic factor in melanoma, despite not being formerly incorporated in staging algorithms.2 The source of this gender disparity in melanoma remains unclear but likely represents both biological and behavioral etiologies. Herein, we review the current knowledge of how melanoma differs between men and women. PMID:25844396

  7. [Targeted therapies for melanoma].

    PubMed

    Leiter, U; Meier, F; Garbe, C

    2014-07-01

    Since the discovery of activating mutations in the BRAF oncogene and also stimulation of immune mediated antitumor response in melanoma, there has been remarkable progress in the development of targeted therapies for unresectable and metastatic melanoma. This article addresses the latest developments of BRAF/MEK/ERK pathway signaling. In addition, the development of drugs to attack alternative mutations in melanoma, such as NRAS and KIT is described. Strategies for the management of BRAF inhibitor resistance, such as with combination therapy, are outlined. Antitumor immune therapies with monoclonal antibodies such as ipilimumab which acts by promoting T-cell activation or antibody blockade of programmed death-1 (PD-1) led to a long term response in metastatic melanoma. Results of latest clinical studies including the toxicity profile are described. Due to selective kinase inhibitors and immune checkpoint blockade, the therapy of unresectable metastatic melanoma has greatly improved and long-term survival of patients with metastatic melanoma seems a real possibility.

  8. VEGF Trap in Treating Patients With Recurrent Stage III or Stage IV Melanoma That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2015-02-02

    Ciliary Body and Choroid Melanoma, Medium/Large Size; Extraocular Extension Melanoma; Iris Melanoma; Metastatic Intraocular Melanoma; Recurrent Intraocular Melanoma; Recurrent Melanoma; Stage III Melanoma; Stage IV Melanoma

  9. PERK Is a Haploinsufficient Tumor Suppressor: Gene Dose Determines Tumor-Suppressive Versus Tumor Promoting Properties of PERK in Melanoma

    PubMed Central

    Mackiewicz, Katarzyna; Katlinskaya, Yuliya V.; Staschke, Kirk A.; Paredes, Maria C. G.; Yoshida, Akihiro; Qie, Shuo; Zhang, Gao; Chajewski, Olga S.; Majsterek, Ireneusz; Herlyn, Meenhard; Fuchs, Serge Y.; Diehl, J. Alan

    2016-01-01

    The unfolded protein response (UPR) regulates cell fate following exposure of cells to endoplasmic reticulum stresses. PERK, a UPR protein kinase, regulates protein synthesis and while linked with cell survival, exhibits activities associated with both tumor progression and tumor suppression. For example, while cells lacking PERK are sensitive to UPR-dependent cell death, acute activation of PERK triggers both apoptosis and cell cycle arrest, which would be expected to contribute tumor suppressive activity. We have evaluated these activities in the BRAF-dependent melanoma and provide evidence revealing a complex role for PERK in melanoma where a 50% reduction is permissive for BrafV600E-dependent transformation, while complete inhibition is tumor suppressive. Consistently, PERK mutants identified in human melanoma are hypomorphic with dominant inhibitory function. Strikingly, we demonstrate that small molecule PERK inhibitors exhibit single agent efficacy against BrafV600E-dependent tumors highlighting the clinical value of targeting PERK. PMID:27977682

  10. PERK Is a Haploinsufficient Tumor Suppressor: Gene Dose Determines Tumor-Suppressive Versus Tumor Promoting Properties of PERK in Melanoma.

    PubMed

    Pytel, Dariusz; Gao, Yan; Mackiewicz, Katarzyna; Katlinskaya, Yuliya V; Staschke, Kirk A; Paredes, Maria C G; Yoshida, Akihiro; Qie, Shuo; Zhang, Gao; Chajewski, Olga S; Wu, Lawrence; Majsterek, Ireneusz; Herlyn, Meenhard; Fuchs, Serge Y; Diehl, J Alan

    2016-12-01

    The unfolded protein response (UPR) regulates cell fate following exposure of cells to endoplasmic reticulum stresses. PERK, a UPR protein kinase, regulates protein synthesis and while linked with cell survival, exhibits activities associated with both tumor progression and tumor suppression. For example, while cells lacking PERK are sensitive to UPR-dependent cell death, acute activation of PERK triggers both apoptosis and cell cycle arrest, which would be expected to contribute tumor suppressive activity. We have evaluated these activities in the BRAF-dependent melanoma and provide evidence revealing a complex role for PERK in melanoma where a 50% reduction is permissive for BrafV600E-dependent transformation, while complete inhibition is tumor suppressive. Consistently, PERK mutants identified in human melanoma are hypomorphic with dominant inhibitory function. Strikingly, we demonstrate that small molecule PERK inhibitors exhibit single agent efficacy against BrafV600E-dependent tumors highlighting the clinical value of targeting PERK.

  11. Large-Scale Purification of r28M: A Bispecific scFv Antibody Targeting Human Melanoma Produced in Transgenic Cattle

    PubMed Central

    Spiesberger, Katrin; Paulfranz, Florian; Egger, Anton; Reiser, Judith; Vogl, Claus; Rudolf-Scholik, Judith; Mayrhofer, Corina; Grosse-Hovest, Ludger; Brem, Gottfried

    2015-01-01

    Background 30 years ago, the potential of bispecific antibodies to engage cytotoxic T cells for the lysis of cancer cells was discovered. Today a variety of bispecific antibodies against diverse cell surface structures have been developed, the majority of them produced in mammalian cell culture systems. Beside the r28M, described here, no such bispecific antibody is known to be expressed by transgenic livestock, although various biologicals for medical needs are already harvested—mostly from the milk—of these transgenics. In this study we investigated the large-scale purification and biological activity of the bispecific antibody r28M, expressed in the blood of transgenic cattle. This tandem single-chain variable fragment antibody is designed to target human CD28 and the melanoma/glioblastoma-associated cell surface chondroitin sulfate proteoglycan 4 (CSPG4). Results With the described optimized purification protocol an average yield of 30 mg enriched r28M fraction out of 2 liters bovine plasma could be obtained. Separation of this enriched fraction by size exclusion chromatography into monomers, dimers and aggregates and further testing regarding the biological activity revealed the monomer fraction as being the most appropriate one to continue working with. The detailed characterization of the antibody’s activity confirmed its high specificity to induce the killing of CSPG4 positive cells. In addition, first insights into tumor cell death pathways mediated by r28M-activated peripheral blood mononuclear cells were gained. In consideration of possible applications in vivo we also tested the effect of the addition of different excipients to r28M. Conclusion Summing up, we managed to purify monomeric r28M from bovine plasma in a large-scale preparation and could prove that its biological activity is unaffected and still highly specific and thus, might be applicable for the treatment of melanoma. PMID:26469402

  12. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells

    SciTech Connect

    Manzi, A.E.; Sjoberg, E.R.; Diaz, S.; Varki, A.

    1990-08-05

    We and others previously described the melanoma-associated oncofetal glycosphingolipid antigen 9-O-acetyl-GD3, a disialoganglioside O-acetylated at the 9-position of the outer sialic acid residue. We have now developed methods to examine the biosynthesis and turnover of disialogangliosides in cultured melanoma cells and in Golgi-enriched vesicles from these cells. O-Acetylation was selectively expressed on di- and trisialogangliosides, but not on monosialogangliosides, nor on glycoprotein-bound sialic acids. Double-labeling of cells with (3H)acetate and (14C)glucosamine introduced easily detectable labels into each of the components of the ganglioside molecules. Pulse-chase studies of such doubly labeled molecules indicated that the O-acetyl groups turn over faster than the parent molecule. When Golgi-enriched vesicles from these cells were incubated with (acetyl-3H)acetyl-coenzyme A, the major labeled products were disialogangliosides. (Acetyl-3H)O-acetyl groups were found at both the 7- and the 9-positions, indicating that both 7-O-acetyl GD3 and 9-O-acetyl GD3 were synthesized by the action of O-acetyltransferase(s) on endogenous GD3. Analysis of the metabolically labeled molecules confirmed the existence of both 7- and 9-O-acetylated GD3 in the intact cells. Surprisingly, the major 3H-labeled product of the in vitro labeling reaction was not O-acetyl-GD3, but GD3, with the label exclusively in the sialic acid residues. Fragmentation of the labeled sialic acids by enzymatic and chemical methods showed that the 3H-label was exclusively in (3H)N-acetyl groups. Analyses of the double-labeled sialic acids from intact cells also showed that the 3H-label from (3H)acetate was exclusively in the form of (3H)N-acetyl groups, whereas the 14C-label was at the 4-position.

  13. HLA-G expression in melanoma: A way for tumor cells to escape from immunosurveillance

    PubMed Central

    Paul, Pascale; Rouas-Freiss, Nathalie; Khalil-Daher, Iman; Moreau, Philippe; Riteau, Beatrice; Le Gal, Frederique Anne; Avril, Marie Francoise; Dausset, Jean; Guillet, Jean Gerard; Carosella, Edgardo D.

    1998-01-01

    Considering the well established role of nonclassical HLA-G class I molecules in inhibiting natural killer (NK) cell function, the consequence of abnormal HLA-G expression in malignant cells should be the escape of tumors from immunosurveillance. To examine this hypothesis, we analyzed HLA-G expression and NK sensitivity in human malignant melanoma cells. Our analysis of three melanoma cell lines and ex vivo biopsy demonstrated that (i) IGR and M74 human melanoma cell lines exhibit a high level of HLA-G transcription with differential HLA-G isoform transcription and protein expression patterns, (ii) a higher level of HLA-G transcription ex vivo is detected in a skin melanoma metastasis biopsy compared with a healthy skin fragment from the same individual, and (iii) HLA-G protein isoforms other than membrane-bound HLA-G1 protect IGR from NK lysis. It thus appears of critical importance to consider the specific role of HLA-G expression in tumors in the design of future cancer immunotherapies. PMID:9539768

  14. Primary leptomeningeal melanoma.

    PubMed

    Xie, Zhao-Yu; Hsieh, Kevin Li-Chun; Tsang, Yuk-Ming; Cheung, Wing-Keung; Hsieh, Chen-Hsi

    2014-06-01

    Primary melanoma of the central nervous system is a rare melanocytic tumor typically located in the leptomeninges. We report a 57-year-old woman with an intracranial leptomeningeal melanoma who presented with myoclonic seizures. Brain CT scan and MRI revealed a hemorrhagic intracranial tumor. The tumor was completely removed and leptomeningeal melanoma was proven pathologically. Follow-up imaging studies up to 19 months showed no recurrence of the disease. Here we present radiological, gross, and pathological images of leptomeningeal melanoma, discuss its characteristics, and review the relevant literature.

  15. Diagnosis of human sleeping sickness: sense and sensitivity.

    PubMed

    Wastling, Sally L; Welburn, Susan C

    2011-09-01

    In 1997 the World Health Organization (WHO) advocated increased access to diagnosis and treatment, as well as reinforcement of surveillance, for the control of sleeping sickness (human African trypanosomiasis, HAT). This coincided with the end of decades of civil conflicts in several endemic regions and negotiation of a sustainable supply of 'free' curative drugs and, as a result, HAT is at its lowest level in 50 years. However, reported cases underestimate prevalence and downplay HAT when compared with data generated by advanced diagnostic capacity for human immunodeficiency virus (HIV), tuberculosis (TB) and malaria, and, because HAT case numbers fall between epidemics, diagnostics become less commercially appealing. Here recent trends in the development of diagnostics for sleeping sickness are considered and progress towards a much-needed sensitive, specific and affordable point-of-care diagnostic is assessed.

  16. Different detectability of cyclooxygenase-2 (COX-2) protein in standard paraffin sections and tissue microarrays of human melanomas and naevi - comparative study.

    PubMed

    Kuźbicki, Lukasz; Urban, Justyna; Chwirot, Barbara W

    2014-09-01

    Cyclooxygenase-2 (COX-2), overexpressed in many types of human cancer, may be a valuable marker for human melanoma. However, there are discrepancies between expression levels detected by different groups. The majority of the studies were carried out using standard paraffin sections. Tissue microarrays (TMAs) might enable analysis of COX-2 expression in numerous lesions. Our study assesses to what extent reprocessing of tissue samples used for preparing TMAs may influence reproducibility of data obtained for standard sections. The study included TMAs and standard histopathologic sections. COX-2 was detected by immunohistochemistry with two primary antibodies targeting different epitopes. COX-2 expression levels detected with both antibodies in standard sections were similar as in our previous study. Surprisingly, results obtained in TMAs were significantly different. While one of the antibodies yielded for TMAs results similar to standard sections, COX-2 expression levels found with the second antibody were very low and expression patterns strikingly different from those observed for standard sections and for both TMAs studied with the first antibody. Good performance of the antibodies found in standard sections of human skin and melanocytic lesions does not guarantee similar results in TMAs. The finding discloses a new aspect of immunohistochemical assays involving TMAs.

  17. 1,4-Diselenophene-1,4-diketone triggers caspase-dependent apoptosis in human melanoma A375 cells through induction of mitochondrial dysfunction.

    PubMed

    Luo, Yi; Li, Xiaoling; Huang, Xiaochun; Wong, Yum-Shing; Chen, Tianfeng; Zhang, Yibo; Zheng, Wenjie

    2011-01-01

    Epidemiological, preclinical and clinical studies have supported the role of selenocompounds as potential cancer chemopreventive and chemotherapeutic agents. In this study, a novel selenophene-based compound, 1,4-diselenophene-1,4-diketone (DSeD), has been synthesized by Double Friedel-Crafts reaction and identified as a potent antiproliferative agent against a panel of six human caner cell lines. Despite this potency, DSeD was relatively nontoxic toward human normal cells, HS68 fibroblasts and HK-2 kidney cells. These results suggest that DSeD possesses great selectivity between cancer and normal cells. Induction of apoptosis in human melanoma A375 cells by DSeD was evidenced by accumulation of sub-G1 cell population, DNA fragmentation and nuclear condensation. Activation of caspase-9 and depletion of mitochondrial membrane potential indicated the initiation of the mitochondria-mediated apoptosis pathway. Pretreatment of cells with general caspase inhibitor z-VAD-fmk and caspase-9 inhibitor z-LEHD-fmk significantly suppressed the cell apoptosis, demonstrating the important roles of caspase and mitochondria in DSeD-induced apoptotic cell death. Furthermore, DSeD-induced apoptosis was found independent of reactive oxygen species generation. Taken together, our results suggest that DSeD induces caspase-dependent apoptosis in A375 cells through activation of mitochondria-mediated apoptosis pathway.

  18. Quantifying the Sensitivity of Human Immune Cells to Chemoattractant.

    PubMed

    Francis, Emmet A; Heinrich, Volkmar

    2017-03-14

    The efficient recruitment of immune cells is a vital cornerstone of our defense against infections and a key challenge of immunotherapeutic applications. It relies on the ability of chemotaxing cells to prioritize their responses to different stimuli. For example, immune cells are known to abandon gradients of host-cell-produced cytokines in favor of complement-derived anaphylatoxins, which then guide the cells toward nearby pathogen surfaces. The aptitude to triage stimuli depends on the cells' specific sensitivities to different chemoattractants. We here use human neutrophils as uniquely capable biodetectors to map out the anaphylatoxic cloud that surrounds microbes in the presence of host serum. We quantify the neutrophil sensitivity in terms of the ratio between the chemoattractant concentration c and the production rate j0 of the chemoattractant at the source surface. An integrative experimental/theoretical approach allows us to estimate the c/j0-threshold at which human neutrophils first detect nearby β-glucan surfaces as c/j0 ≈ 0.0044 s/μm.

  19. c-Kit-kinase induces a cascade of protein tyrosine phosphorylation in normal human melanocytes in response to mast cell growth factor and stimulates mitogen-activated protein kinase but is down-regulated in melanomas.

    PubMed Central

    Funasaka, Y; Boulton, T; Cobb, M; Yarden, Y; Fan, B; Lyman, S D; Williams, D E; Anderson, D M; Zakut, R; Mishima, Y

    1992-01-01

    The proto-oncogene c-Kit, a transmembrane receptor tyrosine kinase, is an important regulator of cell growth whose constitutively active oncogenic counterpart, v-kit, induces sarcomas in cats. Mutations in murine c-kit that reduce the receptor tyrosine kinase activity cause deficiencies in the migration and proliferation of melanoblasts, hematopoietic stem cells, and primordial germ cells. We therefore investigated whether c-Kit regulates normal human melanocyte proliferation and plays a role in melanomas. We show that normal human melanocytes respond to mast cell growth factor (MGF), the Kit-ligand that stimulates phosphorylation of tyrosyl residues in c-Kit and induces sequential phosphorylation of tyrosyl residues in several other proteins. One of the phosphorylated intermediates in the signal transduction pathway was identified as an early response kinase (mitogen-activated protein [MAP] kinase). Dephosphorylation of a prominent 180-kDa protein suggests that MGF also activates a phosphotyrosine phosphatase. In contrast, MGF did not induce proliferation, the cascade of protein phosphorylations, or MAP kinase activation in the majority of cells cultured from primary nodular and metastatic melanomas that grow independently of exogenous factors. In the five out of eight human melanoma lines expressing c-kit mRNAs, c-Kit was not constitutively activated. Therefore, although c-Kit-kinase is a potent growth regulator of normal human melanocytes, its activity is not positively associated with malignant transformation. Images PMID:1372524

  20. Tumor-tropic endothelial colony forming cells (ECFCs) loaded with near-infrared sensitive Au nanoparticles: A "cellular stove" approach to the photoablation of melanoma.

    PubMed

    Margheri, Giancarlo; Zoppi, Angela; Olmi, Roberto; Trigari, Silvana; Traversi, Rita; Severi, Mirko; Bani, Daniele; Bianchini, Francesca; Torre, Eugenio; Margheri, Francesca; Chillà, Anastasia; Biagioni, Alessio; Calorini, Lido; Laurenzana, Anna; Fibbi, Gabriella; Del Rosso, Mario

    2016-06-28

    In the photothermal treatments (PTs) of tumor, the localization of a high number of near-infrared (NIR) absorbing gold nanoparticles in the tumor mass is still a challenging issue. Here, we propose a promising strategy to deliver therapeutic chitosan-coated gold nanoparticles to tumor cells as hidden cargo of Endothelial Colony Forming Cells (ECFCs) endowed with an innate tumor-tropism. Remarkably, ECFC gold enrichement doesn't affect cell viability and preserves the endothelial lineage characteristics such as capillary morphogenesis and cell migration. We demonstrate that heavily Au-doped ECFCs are able to efficiently warm up the tumor environment, and kill the cancer cells via hyperthermic heating both in vitro as well as in vivo. Thus, we show an excellent thermotransductive property of gold enriched ECFCs and their capability to kill melanoma cells at moderate NIR light intensities.

  1. Tumor-tropic endothelial colony forming cells (ECFCs) loaded with near-infrared sensitive Au nanoparticles: A “cellular stove” approach to the photoablation of melanoma

    PubMed Central

    Margheri, Giancarlo; Zoppi, Angela; Olmi, Roberto; Trigari, Silvana; Traversi, Rita; Severi, Mirko; Bani, Daniele; Bianchini, Francesca; Torre, Eugenio; Margheri, Francesca; Chillà, Anastasia; Biagioni, Alessio; Calorini, Lido; Laurenzana, Anna; Fibbi, Gabriella; Rosso, Mario Del

    2016-01-01

    In the photothermal treatments (PTs) of tumor, the localization of a high number of near-infrared (NIR) absorbing gold nanoparticles in the tumor mass is still a challenging issue. Here, we propose a promising strategy to deliver therapeutic chitosan-coated gold nanoparticles to tumor cells as hidden cargo of Endothelial Colony Forming Cells (ECFCs) endowed with an innate tumor-tropism. Remarkably, ECFC gold enrichement doesn't affect cell viability and preserves the endothelial lineage characteristics such as capillary morphogenesis and cell migration. We demonstrate that heavily Au-doped ECFCs are able to efficiently warm up the tumor environment, and kill the cancer cells via hyperthermic heating both in vitro as well as in vivo. Thus, we show an excellent thermotransductive property of gold enriched ECFCs and their capability to kill melanoma cells at moderate NIR light intensities. PMID:27223433

  2. A new treatment for human malignant melanoma targeting L-type amino acid transporter 1 (LAT1): A pilot study in a canine model

    SciTech Connect

    Fukumoto, Shinya; Hanazono, Kiwamu; Fu, Dah-Renn; Endo, Yoshifumi; Kadosawa, Tsuyoshi; Iwano, Hidetomo; Uchide, Tsuyoshi

    2013-09-13

    Highlights: •LAT1 is highly expressed in tumors but at low levels in normal tissues. •We examine LAT1 expression and function in malignant melanoma (MM). •LAT1 expression in MM tissues and cell lines is higher than those in normal tissues. •LAT1 selective inhibitors inhibit amino acid uptake and cell growth in MM cells. •New chemotherapeutic protocols including LAT1 inhibitors are effective for treatment. -- Abstract: L-type amino acid transporter 1 (LAT1), an isoform of amino acid transport system L, transports branched or aromatic amino acids essential for fundamental cellular activities such as cellular growth, proliferation and maintenance. This amino acid transporter recently has received attention because of its preferential and up-regulated expression in a variety of human tumors in contrast to its limited distribution and low-level expression in normal tissues. In this study, we explored the feasibility of using LAT1 inhibitor as a new therapeutic agent for human malignant melanomas (MM) using canine spontaneous MM as a model for human MM. A comparative study of LAT expression was performed in 48 normal tissues, 25 MM tissues and five cell lines established from MM. The study observed LAT1 mRNA levels from MM tissues and cell lines that were significantly (P < 0.01) higher than in normal tissues. Additionally, MM with distant metastasis showed a higher expression than those without distant metastasis. Functional analysis of LAT1 was performed on one of the five cell lines, CMeC-1. [{sup 3}H]L-Leucine uptake and cellular growth activities in CMeC-1 were inhibited in a dose-dependent manner by selective LAT1 inhibitors (2-amino-2-norbornane-carboxylic acid, BCH and melphalan, LPM). Inhibitory growth activities of various conventional anti-cancer drugs, including carboplatin, cyclophosphamide, dacarbazine, doxorubicin, mitoxantrone, nimustine, vinblastine and vincristine, were significantly (P < 0.05) enhanced by combination use with BCH or LPM