Science.gov

Sample records for human microglial cells

  1. Infection of brain microglial cells by human immunodeficiency virus type 1 is CD4 dependent.

    PubMed Central

    Jordan, C A; Watkins, B A; Kufta, C; Dubois-Dalcq, M

    1991-01-01

    In the central nervous system of AIDS patients, human immunodeficiency virus (HIV) infects primarily microglia, a cell type of bone marrow origin. Moreover, microglial cells isolated from adult human brain support the replication of macrophage-adapted strains of HIV type 1 (HIV-1) (B.A. Watkins, H.H. Dorn, W.B. Kelly, R.C. Armstrong, B. Potts, F. Michaels, C.V. Kufta, and M. Dubois-Dalcq, Science 249:549-553, 1990). To determine whether the CD4 receptor, which is expressed in brain, mediates the entry of HIV-1 in microglial cells, we analyzed CD4 transcript expression in cultured microglia using highly sensitive polymerase chain reaction detection of cDNAs synthesized from RNA. With this method, CD4 transcripts could be detected in cultured microglia--as well as in various human brain regions and cultured macrophages used as positive controls--along with transcripts for the LDL and Fc receptors which are characteristic of cells of the macrophage lineage. We then attempted to block viral entry into microglial cells using anti-CD4 antibodies or soluble CD4 (sCD4), which recognize binding sites on CD4 and HIV-1 glycoprotein gp120, respectively. Cultures were pretreated with blocking antibodies (Leu-3a, OKT4A) or virus was preincubated with sCD4 prior to infection with HIV-1 strain AD87(M) or BaL. With either viral strain, these treatments resulted in the prevention of infection or significant and dose-dependent reduction in the number of infected cells and in the levels of reverse transcriptase or p24 antigen released in the medium. Thus, brain-derived microglial cells, which are the primary target of HIV-1 infection in the brain, express the CD4 receptor and this receptor is effectively used for viral entry in vitro. Images PMID:1702842

  2. Contact-independent cell death of human microglial cells due to pathogenic Naegleria fowleri trophozoites.

    PubMed

    Kim, Jong-Hyun; Kim, Daesik; Shin, Ho-Joon

    2008-12-01

    Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increase of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death.

  3. Delayed activation of human microglial cells by high dose ionizing radiation.

    PubMed

    Chen, Hongxin; Chong, Zhao Zhong; De Toledo, Sonia M; Azzam, Edouard I; Elkabes, Stella; Souayah, Nizar

    2016-09-01

    Recent studies have shown that microglia affects the fate of neural stem cells in response to ionizing radiation, which suggests a role for microglia in radiation-induced degenerative outcomes. We therefore investigated the effects of γ-irradiation on cell survival, proliferation, and activation of microglia and explored associated mechanisms. Specifically, we evaluated cellular and molecular changes associated with exposure of human microglial cells (CHME5) to low and high doses of acute cesium-137 γ rays. Twenty-four hours after irradiation, cell cycle analyses revealed dose-dependent decreases in the fraction of cells in S and G2/M phase, which correlated with significant oxidative stress. By one week after irradiation, 20-30% of the cells exposed to high doses of γ rays underwent apoptosis, which correlated with significant concomitant decrease in metabolic activity as assessed by the MTT assay, and microglial activation as judged by both morphological changes and increased expression of Glut-5 and CR43. These changes were associated with increases in the mRNA levels for IL-1α, IL-10 and TNFα. Together, the results show that human CHME5 microglia are relatively resistant to low and moderate doses of γ rays, but are sensitive to acute high doses, and that CHME5 cells are a useful tool for in vitro study of human microglia. PMID:27265419

  4. Monoclonal antibody to macrophages (EMB/11) labels macrophages and microglial cells in human brain.

    PubMed Central

    Esiri, M M; McGee, J O

    1986-01-01

    Normal and diseased human central nervous system (CNS) tissues were studied immunohistochemically by a monoclonal antibody to human macrophages (EBM/11), antisera to glial fibrillary acidic protein (anti-GFAP), and alpha-1-antichymotrypsin (alpha 1-ACT). EBM/11 reacted with brain macrophages located mainly around blood vessels in normal brain; it also reacted with resting microglia in normal brain and with numerous reactive microglia and macrophages in brain tumours and inflammatory lesions. Microglia did not react with anti-GFAP or alpha 1-ACT. An EBM/11 positive phenotype, therefore, is shared by microglia and macrophages and suggests that microglial cells form a specialised part of the mononuclear phagocyte system. Images PMID:3755142

  5. Intracellular delivery of dendrimer triamcinolone acetonide conjugates into microglial and human retinal pigment epithelial cells

    PubMed Central

    Kambhampati, Siva P.; Mishra, Manoj K.; Mastorakos, Panagiotis; Oh, Yumin; Lutty, Gerard A.; Kannan, Rangaramanujam M.

    2016-01-01

    Triamcinolone acetonide (TA) is a potent, intermediate-acting, steroid that has anti-inflammatory and anti-angiogenic activity. Intravitreal administration of TA has been used for diabetic macular edema, proliferative diabetic retinopathy and exudative age-related macular degeneration (AMD). However, the hydrophobicity, lack of solubility, and the side effects limit its effectiveness in the treatment of retinal diseases. In this study, we explore a PAMAM dendrimer-TA conjugate (D-TA) as a potential strategy to improve intracellular delivery and efficacy of TA to target cells. The conjugates were prepared with a high drug payload (~21%) and were readily soluble in saline. Compared to free TA, D-TA demonstrated a significantly improved toxicity profile in two important target [microglial and human retinal pigment epithelium (RPE)] cells. The D-TA was ~100-fold more effective than free TA in its anti-inflammatory activity (measured in microglia), and in suppressing VEGF production (in hypoxic RPE cells). Dendrimer-based delivery may improve the efficacy of TA towards both its key targets of inflammation and VEGF production, with significant clinical implications. PMID:25701805

  6. The origin of microglial cells.

    PubMed Central

    Boya, J; Calvo, J; Prado, A

    1979-01-01

    The rat brain has been studied between 6 hours after birth and 100 days, using histochemical techniques for acid phosphatase and peroxidase, and silver impregnation for microglial cells. The results indicate that microglia come initially from acid phosphatase-positive cells of the meninges. These invade the nervous parenchyma and transform into ramified microglia. At 3 days of age similar cells are present on the outer surface of the large blood vessels, from which site they migrate into the nervous parenchyma. In 100 days old rats the acid phosphatase-positive cells are practically all pericytes. None of the microglial cells or their precursors give a positive reaction for peroxidase. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:511761

  7. Serotonin 5-HT7 receptors coupled to induction of interleukin-6 in human microglial MC-3 cells.

    PubMed

    Mahé, Cécile; Loetscher, Erika; Dev, Kumlesh K; Bobirnac, Ionel; Otten, Uwe; Schoeffter, Philippe

    2005-07-01

    Brain serotonin 5-HT(7) receptors are known to be expressed in neurons and astrocytes. We now report the presence of these receptors in a third type of cell, microglial cells. 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-MeOT) and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced concentration-dependent stimulations of cAMP accumulation in the human microglial MC-3 cell line. The maximal effect of 5-HT was 3.4+/-0.3-fold stimulation (mean+/-S.E.M., n=5) above basal levels. The rank order of agonist potency (pEC50 values) was 5-CT (7.09)>5-HT (6.13)>or=5-MeOT (5.78)>8-OH-DPAT (ca. 5). The effect of 5-CT was inhibited in a concentration-dependent manner by the selective 5-HT7 receptor antagonist SB-269970 (pA2 value 9.03). Western blot analysis revealed the presence of immunoreactive bands corresponding to the human 5-HT7 receptor in extracts of MC-3 cells. The presence of two splice variants of the 5-HT7 receptor (5-HT7(a/b)) was visualized by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis with specific primers. In real-time PCR studies, the mRNA for interleukin-6 (IL-6) was found to be increased by 2.5-fold in MC-3 cells after 1 h incubation with 5-CT (1 microM) and this effect was fully blocked by the 5-HT7 receptor antagonist SB-269970 (1 microM). These data show that functional 5-HT7 receptors are present in human microglial MC-3 cells, suggesting that they are involved in neuroinflammatory processes. PMID:15992579

  8. Isolation and analysis of mouse microglial cells.

    PubMed

    Garcia, Jenny A; Cardona, Sandra M; Cardona, Astrid E

    2014-01-01

    Microglia are mononuclear phagocytes that make up about 10% of the central nervous system (CNS). They are known for their surveillant behavior, which involves continuous monitoring of neural tissue by extending and retracting their processes. Microglial cells are derived from myeloid progenitor cells and play important roles in homeostasis as well as inflammatory and immune responses in the brain. This unit describes several microglial cell isolation protocols that can be easily adapted for projects requiring a rapid and efficient analysis of mouse microglial cells by flow cytometry. Methods for visualizing microglial cells using in situ immunohistochemistry and immunochemistry in free-floating sections are also included.

  9. Isolation and Analysis of Mouse Microglial Cells

    PubMed Central

    Garcia, Jenny A.; Cardona, Sandra M.

    2014-01-01

    Microglia are mononuclear phagocytes that make up about 10% of the central nervous system (CNS). They are known for their surveillant behavior which comprises continuously monitoring neural tissue by extending and retracting their processes. Microglial cells are derived from myeloid progenitor cells and play important roles in homeostasis, inflammatory and immune responses in the brain. This Unit describes several microglial cell isolation protocols (Basic Protocol 1, Alternate Protocol, and Basic Protocol 2) that can be easily adapted for projects requiring a rapid and efficient analysis of mouse microglial cells by flow cytometry (Support Protocol 1). Methods for visualizing microglial cells using in situ immunohistochemistry (Basic Protocol 3) and immunochemistry in free-floating sections (Basic Protocol 4) are also included. PMID:24510618

  10. Methamphetamine activates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces human immunodeficiency virus (HIV) transcription in human microglial cells.

    PubMed

    Wires, Emily S; Alvarez, David; Dobrowolski, Curtis; Wang, Yun; Morales, Marisela; Karn, Jonathan; Harvey, Brandon K

    2012-10-01

    Human immunodeficiency virus (HIV) primarily infects glial cells in the central nervous system (CNS). Recent evidence suggests that HIV-infected individuals who abuse drugs such as methamphetamine (METH) have higher viral loads and experience more severe neurological complications than HIV-infected individuals who do not abuse drugs. The aim of this study was to determine the effect of METH on HIV expression from the HIV long terminal repeat (LTR) promoter and on an HIV integrated provirus in microglial cells, the primary host cells for HIV in the CNS. Primary human microglial cells immortalized with SV40 T antigen (CHME-5 cells) were cotransfected with an HIV LTR reporter and the HIV Tat gene, a key regulator of viral replication and gene expression, and exposed to METH. Our results demonstrate that METH treatment induced LTR activation, an effect potentiated in the presence of Tat. We also found that METH increased the nuclear translocation of the nuclear factor kappa B (NF-κB), a key cellular transcriptional regulator of the LTR promoter, and the activity of an NF-κB-specific reporter plasmid in CHME-5 cells. The presence of a dominant-negative regulator of NF-κB blocked METH-related activation of the HIV LTR. Furthermore, treatment of HIV-latently infected CHME-5 (CHME-5/HIV) cells with METH induced HIV expression and nuclear translocation of the p65 subunit of NF-κB. These results suggest that METH can stimulate HIV gene expression in microglia cells through activation of the NF-κB signaling pathway. This mechanism may outline the initial biochemical events leading to the observed increased neurodegeneration in HIV-positive individuals who use METH.

  11. Neurotoxicity effects of atrazine-induced SH-SY5Y human dopaminergic neuroblastoma cells via microglial activation.

    PubMed

    Ma, Kun; Wu, Hao-Yu; Zhang, Bo; He, Xi; Li, Bai-Xiang

    2015-11-01

    Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) is a broad-spectrum herbicide with a wide range of applications worldwide. However, ATR is neurotoxic; it reduces dopamine levels in the substantia nigra and corpus striatum in the midbrain, affects the absorption of synaptic vesicles and synaptic bodies, and interferes with dopamine storage and uptake in synaptic vesicles, leading to neurodegenerative disorders. Microglia are resident immunocompetent and phagocytic cells that regulate and participate in the microenvironment in the central nervous system. They demonstrate macrophage characteristics after activation by releasing inflammatory cytokines and neurotoxic substances to increase the inflammatory response, and are thus involved in neurodegeneration. The aim of this study was to investigate the neurotoxic effects of ATR-activated microglia-mediated neuronal damage in terms of human dopaminergic neuroblastoma SH-SY5Y cell death. ATR was administered to BV-2 microglial cells at 12.5, 25, and 50 μM for 1, 6, 12, 24 and 48 h, respectively. ATR increased activated-microglia-induced overexpression of reactive oxygen species, inducible nitric oxide synthase, nitric oxide, gp91(phox), p47(phox), and the inflammatory cytokines tumor necrosis factor α and interleukin-1β, thus reducing SH-SY5Y cell viability. These results suggest that activated microglia may play a critical role in inflammation-mediated dopaminergic neuronal death, and provide the basis for further studies on the mechanisms of ATR-induced dopaminergic system toxicity. PMID:26256823

  12. Neurotoxicity effects of atrazine-induced SH-SY5Y human dopaminergic neuroblastoma cells via microglial activation.

    PubMed

    Ma, Kun; Wu, Hao-Yu; Zhang, Bo; He, Xi; Li, Bai-Xiang

    2015-11-01

    Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) is a broad-spectrum herbicide with a wide range of applications worldwide. However, ATR is neurotoxic; it reduces dopamine levels in the substantia nigra and corpus striatum in the midbrain, affects the absorption of synaptic vesicles and synaptic bodies, and interferes with dopamine storage and uptake in synaptic vesicles, leading to neurodegenerative disorders. Microglia are resident immunocompetent and phagocytic cells that regulate and participate in the microenvironment in the central nervous system. They demonstrate macrophage characteristics after activation by releasing inflammatory cytokines and neurotoxic substances to increase the inflammatory response, and are thus involved in neurodegeneration. The aim of this study was to investigate the neurotoxic effects of ATR-activated microglia-mediated neuronal damage in terms of human dopaminergic neuroblastoma SH-SY5Y cell death. ATR was administered to BV-2 microglial cells at 12.5, 25, and 50 μM for 1, 6, 12, 24 and 48 h, respectively. ATR increased activated-microglia-induced overexpression of reactive oxygen species, inducible nitric oxide synthase, nitric oxide, gp91(phox), p47(phox), and the inflammatory cytokines tumor necrosis factor α and interleukin-1β, thus reducing SH-SY5Y cell viability. These results suggest that activated microglia may play a critical role in inflammation-mediated dopaminergic neuronal death, and provide the basis for further studies on the mechanisms of ATR-induced dopaminergic system toxicity.

  13. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures.

    PubMed

    Seele, Jana; Nau, Roland; Prajeeth, Chittappen K; Stangel, Martin; Valentin-Weigand, Peter; Seitz, Maren

    2016-06-13

    Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes.

  14. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures

    PubMed Central

    Seele, Jana; Nau, Roland; Prajeeth, Chittappen K.; Stangel, Martin; Valentin-Weigand, Peter; Seitz, Maren

    2016-01-01

    Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes. PMID:27304968

  15. Trimethyltin-Induced Microglial Activation via NADPH Oxidase and MAPKs Pathway in BV-2 Microglial Cells

    PubMed Central

    Kim, Da Jung; Kim, Yong Sik

    2015-01-01

    Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells. PMID:26221064

  16. Microglial AGE-albumin is critical in promoting alcohol-induced neurodegeneration in rats and humans.

    PubMed

    Byun, Kyunghee; Bayarsaikhan, Delger; Bayarsaikhan, Enkhjargal; Son, Myeongjoo; Oh, Seyeon; Lee, Jaesuk; Son, Hye-In; Won, Moo-Ho; Kim, Seung U; Song, Byoung-Joon; Lee, Bonghee

    2014-01-01

    Alcohol is a neurotoxic agent, since long-term heavy ingestion of alcohol can cause various neural diseases including fetal alcohol syndrome, cerebellar degeneracy and alcoholic dementia. However, the molecular mechanisms of alcohol-induced neurotoxicity are still poorly understood despite numerous studies. Thus, we hypothesized that activated microglial cells with elevated AGE-albumin levels play an important role in promoting alcohol-induced neurodegeneration. Our results revealed that microglial activation and neuronal damage were found in the hippocampus and entorhinal cortex following alcohol treatment in a rat model. Increased AGE-albumin synthesis and secretion were also observed in activated microglial cells after alcohol exposure. The expressed levels of receptor for AGE (RAGE)-positive neurons and RAGE-dependent neuronal death were markedly elevated by AGE-albumin through the mitogen activated protein kinase pathway. Treatment with soluble RAGE or AGE inhibitors significantly diminished neuronal damage in the animal model. Furthermore, the levels of activated microglial cells, AGE-albumin and neuronal loss were significantly elevated in human brains from alcoholic indivisuals compared to normal controls. Taken together, our data suggest that increased AGE-albumin from activated microglial cells induces neuronal death, and that efficient regulation of its synthesis and secretion is a therapeutic target for preventing alcohol-induced neurodegeneration. PMID:25140518

  17. Automatic counting of microglial cell activation and its applications

    PubMed Central

    Gallego, Beatriz I.; de Gracia, Pablo

    2016-01-01

    Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientific efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neurodegenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images - from several animals - covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from specialized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability.

  18. Automatic counting of microglial cell activation and its applications

    PubMed Central

    Gallego, Beatriz I.; de Gracia, Pablo

    2016-01-01

    Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientific efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neurodegenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images - from several animals - covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from specialized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability. PMID:27651757

  19. Automatic counting of microglial cell activation and its applications.

    PubMed

    Gallego, Beatriz I; de Gracia, Pablo

    2016-08-01

    Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientific efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neurodegenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images - from several animals - covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from specialized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability.

  20. Automatic counting of microglial cell activation and its applications.

    PubMed

    Gallego, Beatriz I; de Gracia, Pablo

    2016-08-01

    Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientific efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neurodegenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images - from several animals - covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from specialized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability. PMID:27651757

  1. Vitamin d deficiency reduces the immune response, phagocytosis rate, and intracellular killing rate of microglial cells.

    PubMed

    Djukic, Marija; Onken, Marie Luise; Schütze, Sandra; Redlich, Sandra; Götz, Alexander; Hanisch, Uwe-Karsten; Bertsch, Thomas; Ribes, Sandra; Hanenberg, Andrea; Schneider, Simon; Bollheimer, Cornelius; Sieber, Cornel; Nau, Roland

    2014-06-01

    Meningitis and meningoencephalitis caused by Escherichia coli are associated with high rates of mortality and neurological sequelae. A high prevalence of neurological disorders has been observed in geriatric populations at risk of hypovitaminosis D. Vitamin D has potent effects on human immunity, including induction of antimicrobial peptides (AMPs) and suppression of T-cell proliferation, but its influence on microglial cells is unknown. The purpose of the present study was to determine the effects of vitamin D deficiency on the phagocytosis rate, intracellular killing, and immune response of murine microglial cultures after stimulation with the Toll-like receptor (TLR) agonists tripalmitoyl-S-glyceryl-cysteine (TLR1/2), poly(I·C) (TLR3), lipopolysaccharide (TLR4), and CpG oligodeoxynucleotide (TLR9). Upon stimulation with high concentrations of TLR agonists, the release of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) was decreased in vitamin D-deficient compared to that in vitamin D-sufficient microglial cultures. Phagocytosis of E. coli K1 after stimulation of microglial cells with high concentrations of TLR3, -4, and -9 agonists and intracellular killing of E. coli K1 after stimulation with high concentrations of all TLR agonists were lower in vitamin D-deficient microglial cells than in the respective control cells. Our observations suggest that vitamin D deficiency may impair the resistance of the brain against bacterial infections. PMID:24686054

  2. Vitamin D Deficiency Reduces the Immune Response, Phagocytosis Rate, and Intracellular Killing Rate of Microglial Cells

    PubMed Central

    Onken, Marie Luise; Schütze, Sandra; Redlich, Sandra; Götz, Alexander; Hanisch, Uwe-Karsten; Bertsch, Thomas; Ribes, Sandra; Hanenberg, Andrea; Schneider, Simon; Bollheimer, Cornelius; Sieber, Cornel; Nau, Roland

    2014-01-01

    Meningitis and meningoencephalitis caused by Escherichia coli are associated with high rates of mortality and neurological sequelae. A high prevalence of neurological disorders has been observed in geriatric populations at risk of hypovitaminosis D. Vitamin D has potent effects on human immunity, including induction of antimicrobial peptides (AMPs) and suppression of T-cell proliferation, but its influence on microglial cells is unknown. The purpose of the present study was to determine the effects of vitamin D deficiency on the phagocytosis rate, intracellular killing, and immune response of murine microglial cultures after stimulation with the Toll-like receptor (TLR) agonists tripalmitoyl-S-glyceryl-cysteine (TLR1/2), poly(I·C) (TLR3), lipopolysaccharide (TLR4), and CpG oligodeoxynucleotide (TLR9). Upon stimulation with high concentrations of TLR agonists, the release of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) was decreased in vitamin D-deficient compared to that in vitamin D-sufficient microglial cultures. Phagocytosis of E. coli K1 after stimulation of microglial cells with high concentrations of TLR3, -4, and -9 agonists and intracellular killing of E. coli K1 after stimulation with high concentrations of all TLR agonists were lower in vitamin D-deficient microglial cells than in the respective control cells. Our observations suggest that vitamin D deficiency may impair the resistance of the brain against bacterial infections. PMID:24686054

  3. [Microglial cells and development of the embryonic central nervous system].

    PubMed

    Legendre, Pascal; Le Corronc, Hervé

    2014-02-01

    Microglia cells are the macrophages of the central nervous system with a crucial function in the homeostasis of the adult brain. However, recent studies showed that microglial cells may also have important functions during early embryonic central nervous system development. In this review we summarize recent works on the extra embryonic origin of microglia, their progenitor niche, the pattern of their invasion of the embryonic central nervous system and on interactions between embryonic microglia and their local environment during invasion. We describe microglial functions during development of embryonic neuronal networks, including their roles in neurogenesis, in angiogenesis and developmental cell death. These recent discoveries open a new field of research on the functions of neural-microglial interactions during the development of the embryonic central nervous system.

  4. Essential Role of MFG-E8 for Phagocytic Properties of Microglial Cells

    PubMed Central

    Guo, Chenying; Nie, Pan; Liu, Yan; Ma, Jie

    2013-01-01

    Milk fat globule factor-E8 (MFG-E8) has been regarded as a key factor involved in the phagocytosis of apoptotic cells. We induced a lentivirus into the microglial cells for the augmentation or abrogation of MFG-E8 expression in mouse microglial cells, and investigated phagocytosis of phosphatidylserine tagged human red blood cells (hRBCs) in co-cultures. Increased MFG-E8 levels were associated with a significant increase in phagocytic activity compared to the controls. Conversely, phagocytosis dramitically decreased due to the abrogation of MFG-E8. In addition, the expression of the inflammatory cytokines, TNF-α and IL-1β, also increased or decreased in the microglial cells with the augmentation or abrogation of MFG-E8, respectively. Our findings indicate that the enhanced expression of MFG-E8 could increase phagocytosis of apoptotic cells; conversely, the rate of phagocytosis and the expression of inflammatory cytokines decreased when MFG-E8 expression was knocked down. Our results confirm that MFG-E8 plays an important role in phagocytosis, and possibly serves as an essential signal molecule for microglial cells. PMID:23405209

  5. Human neuromelanin: an endogenous microglial activator for dopaminergic neuron death

    PubMed Central

    Zhang, Wei; Zecca, Luigi; Wilson, Belinda; Ren, RW; Wang, Yong-jun; Wang, Xiao-min; Hong, Jau-Shyong

    2013-01-01

    Substantial evidence indicates that neuroinflammation caused by over-activation of microglial in the substantia nigra is critical in the pathogenesis of dopaminergic neurodegeneration in Parkinson’s disease (PD). Increasing data demonstrates that environmental factors such as rotenone, paraquat play pivotal roles in the death of dopaminergic neurons. Here, potential role and mechanism of neuromelanin (NM), a major endogenous component in dopaminergic neurons of the substantia nigra, on microglial activation and associated dopaminergic neurotoxicity were investigated. Using multiple well-established primary mesencephalic cultures, we tested whether human NM (HNM) could activate microglia, thereby provoking dopaminergic neurodegeneration. The results demonstrated that in primary mesencephalic neuron-glia cultures, HNM caused dopaminergic neuronal damage characterized by the decreased dopamine uptake and reduced numbers and shorted dendrites of dopaminergic neurons. HNM-induced degeneration was relatively selective to dopaminergic neurons since the other types of neurons determined by either gamma-aminobutyric acid uptake and total neuronal numbers after staining showed smaller decrease. We demonstrated that HNM produced modest dopaminergic neurotoxicity in neuron-enriched cultures; in contrast, much greater neurotoxicity was observed in the presence of microglia. HNM-induced microglial activation was shown by morphological changes and production of proinflammatory and neurotoxic factors. These results suggest that HNM, once released from damaged dopaminergic neurons, can be an potent endogenous activator involved in the reactivation of microglia, which may mediate disease progression. Thus, inhibition of reactive microglia can be a useful strategy for PD therapy. PMID:23276965

  6. A microglial hypothesis of globoid cell leukodystrophy pathology.

    PubMed

    Nicaise, Alexandra M; Bongarzone, Ernesto R; Crocker, Stephen J

    2016-11-01

    Globoid cell leukodystrophy (GLD), also known as Krabbe's disease, is a fatal demyelinating disease accompanied by the formation of giant, multinucleated cells called globoid cells. Previously believed to be a byproduct of inflammation, these cells can be found early in disease before evidence of any damage. The precise mechanism by which these globoid cells cause oligodendrocyte dysfunction is not completely understood, nor is their cell type defined. This Review outlines the idea that microglial cells are transformed into an unknown and undefined novel M3 phenotype in GLD, which is cytotoxic to oligodendrocytes, leading to disease progression. © 2016 Wiley Periodicals, Inc. PMID:27638591

  7. Toll-like receptor 2 ligands promote microglial cell death by inducing autophagy.

    PubMed

    Arroyo, Daniela S; Soria, Javier A; Gaviglio, Emilia A; Garcia-Keller, Constanza; Cancela, Liliana M; Rodriguez-Galan, Maria C; Wang, Ji Ming; Iribarren, Pablo

    2013-01-01

    Microglial cells are phagocytes in the central nervous system (CNS) and become activated in pathological conditions, resulting in microgliosis, manifested by increased cell numbers and inflammation in the affected regions. Thus, controlling microgliosis is important to prevent pathological damage to the brain. Here, we evaluated the contribution of Toll-like receptor 2 (TLR2) to microglial survival. We observed that activation of microglial cells with peptidoglycan (PGN) from Staphylococcus aureus and other TLR2 ligands results in cell activation followed by the induction of autophagy and autophagy-dependent cell death. In C57BL/6J mice, intracerebral injection of PGN increased the autophagy of microglial cells and reduced the microglial/macrophage cell number in brain parenchyma. Our results demonstrate a novel role of TLRs in the regulation of microglial cell activation and survival, which are important for the control of microgliosis and associated inflammatory responses in the CNS. PMID:23073832

  8. Naegleria fowleri lysate induces strong cytopathic effects and pro-inflammatory cytokine release in rat microglial cells.

    PubMed

    Lee, Yang-Jin; Park, Chang-Eun; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Jung, Suk-Yul; Shin, Ho-Joon

    2011-09-01

    Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A (51)Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response. PMID:22072830

  9. Naegleria fowleri lysate induces strong cytopathic effects and pro-inflammatory cytokine release in rat microglial cells.

    PubMed

    Lee, Yang-Jin; Park, Chang-Eun; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Jung, Suk-Yul; Shin, Ho-Joon

    2011-09-01

    Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A (51)Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response.

  10. Naegleria fowleri Lysate Induces Strong Cytopathic Effects and Pro-inflammatory Cytokine Release in Rat Microglial Cells

    PubMed Central

    Lee, Yang-Jin; Park, Chang-Eun; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Jung, Suk-Yul

    2011-01-01

    Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A 51Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response. PMID:22072830

  11. Fractalkine Attenuates Microglial Cell Activation Induced by Prenatal Stress

    PubMed Central

    Ślusarczyk, Joanna; Trojan, Ewa; Głombik, Katarzyna; Chamera, Katarzyna; Roman, Adam; Budziszewska, Bogusława; Basta-Kaim, Agnieszka

    2016-01-01

    The potential contribution of inflammation to the development of neuropsychiatric diseases has recently received substantial attention. In the brain, the main immune cells are the microglia. As they are the main source of inflammatory factors, it is plausible that the regulation of their activation may be a potential therapeutic target. Fractalkine (CX3CL1) and its receptor CX3CR1 play a crucial role in the control of the biological activity of the microglia. In the present study, using microglial cultures we investigated whether fractalkine is able to reverse changes in microglia caused by a prenatal stress procedure. Our study found that the microglia do not express fractalkine. Prenatal stress decreases the expression of the fractalkine receptor, which in turn is enhanced by the administration of exogenous fractalkine. Moreover, treatment with fractalkine diminishes the prenatal stress-induced overproduction of proinflammatory factors such as IL-1β, IL-18, IL-6, TNF-α, CCL2, or NO in the microglial cells derived from prenatally stressed newborns. In conclusion, the present results revealed that the pathological activation of microglia in prenatally stressed newborns may be attenuated by fractalkine administration. Therefore, understanding of the role of the CX3CL1-CX3CR1 system may help to elucidate the mechanisms underlying the neuron-microglia interaction and its role in pathological conditions in the brain. PMID:27239349

  12. Toll-like receptor 2 ligands promote microglial cell death by inducing autophagy

    PubMed Central

    Arroyo, Daniela S.; Soria, Javier A.; Gaviglio, Emilia A.; Garcia-Keller, Constanza; Cancela, Liliana M.; Rodriguez-Galan, Maria C.; Wang, Ji Ming; Iribarren, Pablo

    2013-01-01

    Microglial cells are phagocytes in the central nervous system (CNS) and become activated in pathological conditions, resulting in microgliosis, manifested by increased cell numbers and inflammation in the affected regions. Thus, controlling microgliosis is important to prevent pathological damage to the brain. Here, we evaluated the contribution of Toll-like receptor 2 (TLR2) to microglial survival. We observed that activation of microglial cells with peptidoglycan (PGN) from Staphylococcus aureus and other TLR2 ligands results in cell activation followed by the induction of autophagy and autophagy-dependent cell death. In C57BL/6J mice, intracerebral injection of PGN increased the autophagy of microglial cells and reduced the microglial/macrophage cell number in brain parenchyma. Our results demonstrate a novel role of TLRs in the regulation of microglial cell activation and survival, which are important for the control of microgliosis and associated inflammatory responses in the CNS.—Arroyo, D. S., Soria, J. A., Gaviglio, E. A., Garcia-Keller, C., Cancela, L. M., Rodriguez-Galan, M. C., Wang, J. M., Iribarren, P. Toll-like receptor 2 ligands promote microglial cell death by inducing autophagy. PMID:23073832

  13. Microglial cell dysregulation in brain aging and neurodegeneration

    PubMed Central

    von Bernhardi, Rommy; Eugenín-von Bernhardi, Laura; Eugenín, Jaime

    2015-01-01

    Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergoes phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD). We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide (NO) secretion in microglia from young mice, induction of reactive oxygen species (ROS) predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in the reduction of protective activation and the facilitation of cytotoxic activation of microglia, resulting in the promotion of

  14. Fine-tuning the central nervous system: microglial modelling of cells and synapses.

    PubMed

    Xavier, Anna L; Menezes, João R L; Goldman, Steven A; Nedergaard, Maiken

    2014-10-19

    Microglia constitute as much as 10-15% of all cells in the mammalian central nervous system (CNS) and are the only glial cells that do not arise from the neuroectoderm. As the principal CNS immune cells, microglial cells represent the first line of defence in response to exogenous threats. Past studies have largely been dedicated to defining the complex immune functions of microglial cells. However, our understanding of the roles of microglia has expanded radically over the past years. It is now clear that microglia are critically involved in shaping neural circuits in both the developing and adult CNS, and in modulating synaptic transmission in the adult brain. Intriguingly, microglial cells appear to use the same sets of tools, including cytokine and chemokine release as well as phagocytosis, whether modulating neural function or mediating the brain's innate immune responses. This review will discuss recent developments that have broadened our views of neuro-glial signalling to include the contribution of microglial cells.

  15. Gypenoside Attenuates β Amyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling

    PubMed Central

    Cai, Hui; Liang, Qianlei; Ge, Guanqun

    2016-01-01

    Reducing β amyloid- (Aβ-) induced microglial activation is believed to be effective in treating Alzheimer's disease (AD). Microglia can be activated into classic activated state (M1 state) or alternative activated state (M2 state), and the former is harmful; in contrast, the latter is beneficial. Gypenoside (GP) is the major bioactive constituent of Gynostemma pentaphyllum, a traditional Chinese herb medicine. In this study, we hypothesized that GP attenuates Aβ-induced microglial activation by ameliorating microglial M1/M2 states, and the process may be mediated by suppressor of cell signaling protein 1 (SOCS1). In this study, we found that Aβ exposure increased the levels of microglial M1 markers, including iNOS expression, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6 releases, and coadministration of GP reversed the increase of M1 markers and enhanced the levels of M2 markers, including arginase-1 (Arg-1) expression, IL-10, brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF) releases in the Aβ-treated microglial cells. SOCS1-siRNA, however, significantly abolished the GP-induced effects on the levels of microglial M1 and M2 markers. These findings indicated that GP attenuates Aβ-induced microglial activation by ameliorating M1/M2 states, and the process may be mediated by SOCS1. PMID:27213058

  16. Stress Granules Modulate SYK to Cause Microglial Cell Dysfunction in Alzheimer's Disease.

    PubMed

    Ghosh, Soumitra; Geahlen, Robert L

    2015-11-01

    Microglial cells in the brains of Alzheimer's patients are known to be recruited to amyloid-beta (Aβ) plaques where they exhibit an activated phenotype, but are defective for plaque removal by phagocytosis. In this study, we show that microglia stressed by exposure to sodium arsenite or Aβ(1-42) peptides or fibrils form extensive stress granules (SGs) to which the tyrosine kinase, SYK, is recruited. SYK enhances the formation of SGs, is active within the resulting SGs and stimulates the production of reactive oxygen and nitrogen species that are toxic to neuronal cells. This sequestration of SYK inhibits the ability of microglial cells to phagocytose Escherichia coli or Aβ fibrils. We find that aged microglial cells are more susceptible to the formation of SGs; and SGs containing SYK and phosphotyrosine are prevalent in the brains of patients with severe Alzheimer's disease. Phagocytic activity can be restored to stressed microglial cells by treatment with IgG, suggesting a mechanism to explain the therapeutic efficacy of intravenous IgG. These studies describe a mechanism by which stress, including exposure to Aβ, compromises the function of microglial cells in Alzheimer's disease and suggest approaches to restore activity to dysfunctional microglial cells.

  17. Microglial Cells as a Link between Cannabinoids and the Immune Hypothesis of Psychiatric Disorders

    PubMed Central

    Lisboa, Sabrina F.; Gomes, Felipe V.; Guimaraes, Francisco S.; Campos, Alline C.

    2016-01-01

    Psychiatric disorders are one of the leading causes of disability worldwide. Although several therapeutic options are available, the exact mechanisms responsible for the genesis of these disorders remain to be fully elucidated. In the last decade, a body of evidence has supported the involvement of the immune system in the pathophysiology of these conditions. Microglial cells play a significant role in maintaining brain homeostasis and surveillance. Dysregulation of microglial functions has been associated with several psychiatric conditions. Cannabinoids regulate the brain–immune axis and inhibit microglial cell activation. Here, we summarized evidence supporting the hypothesis that microglial cells could be a target for cannabinoid influence on psychiatric disorders, such as anxiety, depression, schizophrenia, and stress-related disorders. PMID:26858686

  18. Role of orexin A signaling in dietary palmitic acid-activated microglial cells.

    PubMed

    Duffy, Cayla M; Yuan, Ce; Wisdorf, Lauren E; Billington, Charles J; Kotz, Catherine M; Nixon, Joshua P; Butterick, Tammy A

    2015-10-01

    Excess dietary saturated fatty acids such as palmitic acid (PA) induce peripheral and hypothalamic inflammation. Hypothalamic inflammation, mediated in part by microglial activation, contributes to metabolic dysregulation. In rodents, high fat diet-induced microglial activation results in nuclear translocation of nuclear factor-kappa B (NFκB), and increased central pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). The hypothalamic neuropeptide orexin A (OXA, hypocretin 1) is neuroprotective in brain. In cortex, OXA can also reduce inflammation and neurodegeneration through a microglial-mediated pathway. Whether hypothalamic orexin neuroprotection mechanisms depend upon microglia is unknown. To address this issue, we evaluated effects of OXA and PA on inflammatory response in immortalized murine microglial and hypothalamic neuronal cell lines. We demonstrate for the first time in microglial cells that exposure to PA increases gene expression of orexin-1 receptor but not orexin-2 receptor. Pro-inflammatory markers IL-6, TNF-α, and inducible nitric oxide synthase in microglial cells are increased following PA exposure, but are reduced by pretreatment with OXA. The anti-inflammatory marker arginase-1 is increased by OXA. Finally, we show hypothalamic neurons exposed to conditioned media from PA-challenged microglia have increased cell survival only when microglia were pretreated with OXA. These data support the concept that OXA may act as an immunomodulatory regulator of microglia, reducing pro-inflammatory cytokines and increasing anti-inflammatory factors to promote a favorable neuronal microenvironment. PMID:26306651

  19. Role of orexin A signaling in dietary palmitic acid-activated microglial cells.

    PubMed

    Duffy, Cayla M; Yuan, Ce; Wisdorf, Lauren E; Billington, Charles J; Kotz, Catherine M; Nixon, Joshua P; Butterick, Tammy A

    2015-10-01

    Excess dietary saturated fatty acids such as palmitic acid (PA) induce peripheral and hypothalamic inflammation. Hypothalamic inflammation, mediated in part by microglial activation, contributes to metabolic dysregulation. In rodents, high fat diet-induced microglial activation results in nuclear translocation of nuclear factor-kappa B (NFκB), and increased central pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). The hypothalamic neuropeptide orexin A (OXA, hypocretin 1) is neuroprotective in brain. In cortex, OXA can also reduce inflammation and neurodegeneration through a microglial-mediated pathway. Whether hypothalamic orexin neuroprotection mechanisms depend upon microglia is unknown. To address this issue, we evaluated effects of OXA and PA on inflammatory response in immortalized murine microglial and hypothalamic neuronal cell lines. We demonstrate for the first time in microglial cells that exposure to PA increases gene expression of orexin-1 receptor but not orexin-2 receptor. Pro-inflammatory markers IL-6, TNF-α, and inducible nitric oxide synthase in microglial cells are increased following PA exposure, but are reduced by pretreatment with OXA. The anti-inflammatory marker arginase-1 is increased by OXA. Finally, we show hypothalamic neurons exposed to conditioned media from PA-challenged microglia have increased cell survival only when microglia were pretreated with OXA. These data support the concept that OXA may act as an immunomodulatory regulator of microglia, reducing pro-inflammatory cytokines and increasing anti-inflammatory factors to promote a favorable neuronal microenvironment.

  20. Regulation of Macrophage, Dendritic Cell, and Microglial Phenotype and Function by the SOCS Proteins

    PubMed Central

    McCormick, Sarah M.; Heller, Nicola M.

    2015-01-01

    Macrophages are innate immune cells of dynamic phenotype that rapidly respond to external stimuli in the microenvironment by altering their phenotype to respond to and to direct the immune response. The ability to dynamically change phenotype must be carefully regulated to prevent uncontrolled inflammatory responses and subsequently to promote resolution of inflammation. The suppressor of cytokine signaling (SOCS) proteins play a key role in regulating macrophage phenotype. In this review, we summarize research to date from mouse and human studies on the role of the SOCS proteins in determining the phenotype and function of macrophages. We will also touch on the influence of the SOCS on dendritic cell (DC) and microglial phenotype and function. The molecular mechanisms of SOCS function in macrophages and DCs are discussed, along with how dysregulation of SOCS expression or function can lead to alterations in macrophage/DC/microglial phenotype and function and to disease. Regulation of SOCS expression by microRNA is discussed. Novel therapies and unanswered questions with regard to SOCS regulation of monocyte–macrophage phenotype and function are highlighted. PMID:26579124

  1. Constitutive and functional expression of YB-1 in microglial cells.

    PubMed

    Keilhoff, G; Titze, M; Esser, T; Langnaese, K; Ebmeyer, U

    2015-08-20

    Y-box-binding protein (YB-1) is a member of the cold-shock protein family and participates in a wide variety of DNA/RNA-dependent cellular processes including DNA repair, transcription, mRNA splicing, packaging, and translation. At the cellular level, YB-1 is involved in cell proliferation and differentiation, stress responses, and malignant cell transformation. A general role for YB-1 during inflammation has also been well described; however, there are minimal data concerning YB-1 expression in microglia, which are the immune cells of the brain. Therefore, we studied the expression of YB-1 in a clinically relevant global ischemia model for neurological injury following cardiac arrest. This model is characterized by massive neurodegeneration of the hippocampal CA1 region and the subsequent long-lasting activation of microglia. In addition, we studied YB-1 expression in BV-2 cells, which are an accepted microglia culture model. BV-2 cells were stressed by oxygen/glucose deprivation (OGD), OGD-relevant mediators, lipopolysaccharide (LPS), and phagocytosis-inducing cell debris and nanoparticles. Using quantitative polymerase chain reaction (PCR), we show constitutive expression of YB-1 transcripts in unstressed BV-2 cells. The functional upregulation of the YB-1 protein was demonstrated in microglia in vivo and in BV-2 cells in vitro. All stressors except for LPS were potent enhancers of the level of YB-1 protein, which appears to be regulated primarily by proteasomal degradation and, to a lesser extent, by the activation (phosphorylation) of the translation initiation factor eIF4E. The proteasome of BV-2 cells is impaired by OGD, which results in decreased protein degradation and therefore increased levels of YB-1 protein. LPS induces proteasome activity, which enables the level of YB-1 protein to remain at control levels despite enhanced protein ubiquitination. The proteasome inhibitor MG-132 was able to increase YB-1 protein levels in control and LPS

  2. Phagocytosis-dependent and independent mechanisms underlie the microglial cell damage caused by carbon nanotube agglomerates.

    PubMed

    Shigemoto-Mogami, Yukari; Hoshikawa, Kazue; Hirose, Akihiko; Sato, Kaoru

    2016-01-01

    Although carbon nanotubes (CNTs) are used in many fields, including energy, healthcare, environmental technology, materials, and electronics, the adverse effects of CNTs in the brain are poorly understood. In this study, we investigated the effects of CNTs on cultured microglia, as microglia are the first responders to foreign materials. We compared the effects of sonicated suspensions of 5 kinds of CNTs and their flow-through filtered with a 0.22 µm membrane filter on microglial viability. We found that sonicated suspensions caused microglial cell damage, but their flow-through did not. The number of microglial aggregates was well correlated with the extent of the damage. We also determined that the CNT agglomerates consisted of two groups: one was phagocytosed by microglia and caused microglial cell damage, and the other caused cell damage without phagocytosis. These results suggest that phagocytosis-dependent and independent mechanisms underlie the microglial cell damage caused by CNT agglomerates and it is important to conduct studies about the relationships between physical properties of nanomaterial-agglomerates and cell damage. PMID:27432236

  3. Blockade of microglial KATP -channel abrogates suppression of inflammatory-mediated inhibition of neural precursor cells.

    PubMed

    Ortega, Francisco J; Vukovic, Jana; Rodríguez, Manuel J; Bartlett, Perry F

    2014-02-01

    Microglia positively affect neural progenitor cell physiology through the release of inflammatory mediators or trophic factors. We demonstrated previously that reactive microglia foster K(ATP) -channel expression and that blocking this channel using glibenclamide administration enhances striatal neurogenesis after stroke. In this study, we investigated whether the microglial K(ATP) -channel directly influences the activation of neural precursor cells (NPCs) from the subventricular zone using transgenic Csf1r-GFP mice. In vitro exposure of NPCs to lipopolysaccharide and interferon-gamma resulted in a significant decrease in precursor cell number. The complete removal of microglia from the culture or exposure to enriched microglia culture also decreased the precursor cell number. The addition of glibenclamide rescued the negative effects of enriched microglia on neurosphere formation and promoted a ∼20% improvement in precursor cell number. Similar results were found using microglial-conditioned media from isolated microglia. Using primary mixed glial and pure microglial cultures, glibenclamide specifically targeted reactive microglia to restore neurogenesis and increased the microglial production of the chemokine monocyte chemoattractant protein-1 (MCP-1). These findings provide the first direct evidence that the microglial K(ATP) -channel is a regulator of the proliferation of NPCs under inflammatory conditions.

  4. Enhanced detection and study of murine norovirus-1 using a more efficient microglial cell line

    PubMed Central

    Cox, Courtney; Cao, Shengbo; Lu, Yuanan

    2009-01-01

    Background Human Noroviruses are the predominant cause of non-bacterial gastroenteritis worldwide. To facilitate prevention and control, a norovirus isolated from mice can provide a model to understand human noroviruses. To establish optimal viral infectivity conditions for murine noroviruses, several cell lines of hematopoietic lineage, including murine BV-2, RAW 264.7, and TIB, as well as human CHME-5, were tested comparatively for their sensitivity to murine norovirus-1. Results Except for CHME-5, all three murine-derived cell lines were susceptible to MNV infection. Viral infection of these cells was confirmed by RT-PCR. Using both viral plaque and replication assays, BV-2 and RAW 264.7 cells were determined to have comparable sensitivities to MNV-1 infection. Comparisons of cell growth characteristics, general laboratory handling and potential in-field applications suggest the use of BV-2 to be more advantageous. Conclusion Results obtained from these studies demonstrate that an immortalized microglial cell line can support MNV-1 replication and provides a more efficient method to detect and study murine noroviruses, facilitating future investigations using MNV-1 as a model to study, detect, and control Human Norovirus. PMID:19903359

  5. Tocopherol-mediated modulation of age-related changes in microglial cells: turnover of extracellular oxidized protein material.

    PubMed

    Stolzing, Alexandra; Widmer, Rebecca; Jung, Tobias; Voss, Peter; Grune, Tilman

    2006-06-15

    Proteins accumulate during aging and form insoluble protein aggregates. Microglia are responsible for their removal from the brain. During aging, changes within the microglia might play a crucial role in the malfunctioning of these cells. Therefore, we isolated primary microglial cells from adult rats and compared their activation status and their ability to degrade proteins to that of microglial cells isolated from newborn animals. The ability of adult microglial cells to degrade proteins is substantially decreased. However, the preincubation of microglial cells with vitamin E improves significantly the degradation of such modified proteins. The degradation of proteins from apoptotic vesicles is decreased in microglia isolated from adult rats. This might be the result of a suppression of the CD36 receptor due to vitamin E treatment. We concluded that microglial cells isolated from adult organisms have different metabolic properties and seem to be a more valuable model to study age-related diseases.

  6. Fine-tuning the central nervous system: microglial modelling of cells and synapses

    PubMed Central

    Xavier, Anna L.; Menezes, João R. L.; Goldman, Steven A.; Nedergaard, Maiken

    2014-01-01

    Microglia constitute as much as 10–15% of all cells in the mammalian central nervous system (CNS) and are the only glial cells that do not arise from the neuroectoderm. As the principal CNS immune cells, microglial cells represent the first line of defence in response to exogenous threats. Past studies have largely been dedicated to defining the complex immune functions of microglial cells. However, our understanding of the roles of microglia has expanded radically over the past years. It is now clear that microglia are critically involved in shaping neural circuits in both the developing and adult CNS, and in modulating synaptic transmission in the adult brain. Intriguingly, microglial cells appear to use the same sets of tools, including cytokine and chemokine release as well as phagocytosis, whether modulating neural function or mediating the brain's innate immune responses. This review will discuss recent developments that have broadened our views of neuro-glial signalling to include the contribution of microglial cells. PMID:25225087

  7. Effects of Elderberry Juice from Different Genotypes on Oxidative and Inflammatory Responses in Microglial Cells

    PubMed Central

    Jiang, J.M.; Zong, Y.; Chuang, D.Y.; Lei, W.; Lu, C.-H.; Gu, Z.; Fritsche, K.L.; Thomas, A.L.; Lubahn, D.B.; Simonyi, A.; Sun, G.Y.

    2016-01-01

    Many species of berries are nutritious food and offer health benefits. However, among the different types of berries, information on health effects of American elderberries (Sambucus nigra subsp. canadensis) has been lacking and little is known about whether elderberry consumption can confer neuroprotective effects on the central nervous system. Microglial cells constitute a unique class of immune cells and exhibit characteristic properties to carry out multifunctional duties in the brain. Activation of microglial cells has been implicated in brain injury and in many types of neurodegenerative diseases. Our recent studies demonstrated the ability for endotoxin (lipopolysaccharide, LPS) and interferon gamma (IFNγ) to induce reactive oxygen species (ROS) and nitric oxide (NO) in murine microglial cells (BV-2) through activating NADPH oxidase and the MAPK pathways. In this study, BV-2 microglial cells were used to examine effects of elderberry juice obtained from different genotypes on oxidative and inflammatory responses induced by LPS and IFNγ. Results show that ‘Wyldewood’ extract demonstrated antioxidant properties by inhibiting IFNγ-induced ROS production and p-ERK1/2 expression. On the other hand, most juice extracts exerted small effects on LPS-induced NO production and some extracts showed an increase in NO production upon stimulation with IFNγ. The disparity of responses on ROS and NO production from different extracts suggests possible presence of unknown endogenous factor(s) in the extract in promoting the IFNγ-induced iNOS synthesis pathway. PMID:27158184

  8. Iron uptake of the normoxic, anoxic and postanoxic microglial cell line RAW 264.7.

    PubMed

    Widmer, Rebecca; Grune, Tilman

    2005-01-01

    Iron is one of the trace elements playing a key role in the normal brain metabolism. An excess of free iron on the other hand is catalyzing the iron-mediated oxygen radical production. Such a condition might be a harmful event leading perhaps to serious tissue damage and degeneration. Therefore, during evolution a complex iron sequestering apparatus developed, minimizing the amount of redox-reactive free iron. However, this system might be severely disturbed under pathophysiological conditions including hypoxia or anoxia. Since little is known about the non-transferrin-mediated iron metabolism of the brain during anoxia/reoxygenation, we tested the ability of the microglial cell line RAW 264.7 to take up iron independently of transferrin under various oxygen concentrations. Microglial cells are thought to be the major player in the maintenance of the extracellular homeostasis in the brain. Therefore, we investigated the iron metabolism of microglial cells employing radiolabeled ferric chloride. We tested the uptake of iron under normoxic, anoxic and postanoxic conditions. Furthermore, the amount of ferritin was measured by immunoblotting. We were able to show that iron enters the microglial cell line in the absence of extracellular transferrin under normoxic, anoxic and postanoxic conditions. Interestingly, the amount of ferritin is decreasing in the early reoxygenation phase. Therefore, we concluded that microglia is able to contribute to the brain iron homeostasis under anoxic and postanoxic conditions.

  9. Docosahexaenoic acid modulates inflammatory and antineurogenic functions of activated microglial cells.

    PubMed

    Antonietta Ajmone-Cat, Maria; Lavinia Salvatori, Maria; De Simone, Roberta; Mancini, Melissa; Biagioni, Stefano; Bernardo, Antonietta; Cacci, Emanuele; Minghetti, Luisa

    2012-03-01

    The complex process of microglial activation encompasses several functional activation states associated either with neurotoxic/antineurogenic or with neurotrophic/proneurogenic properties, depending mainly on the extent of activation and the nature of the activating stimuli. Several studies have demonstrated that acute exposure to the prototypical activating agent lipopolysaccharide (LPS) confers antineurogenic properties upon microglial cells. Acutely activated microglia ortheir conditioned media (CM) reduce neural stem progenitor cell (NPC) survival and prevent NPC differentiation into neurons. The present study tested the hypothesis that docosahexaenoic acid (DHA), a long-chain polyunsatured fatty acid (L-PUFA) with potent immunomodulatory properties, could dampen microglial proinflammatory functions and modulate their antineurogenic effect. We demonstrate that DHA dose dependently inhibits the synthesis of inflammatory products in activated microglia without inducing an alternative antiinflammatory phenotype. Among the possible DHA mechanisms of action, we propose the inhibition of p38 MAPK phosphorylation and the activation of the nuclear receptor peroxisome proliferator activated receptor (PPAR)-γ. The attenuation of M1 proinflammatory phenotype has relevant consequences for the survival and differentiation of NPC, because DHA reverses the antineurogenic activities of conditioned media from LPS-activated microglia. Our study identifies new relevant potentially protective and proneurogenic functions of DHA, exerted through the modulation of microglial functions, that could be exploited to sustain or promote neuroregenerative processes in damaged/aged brain. PMID:22057807

  10. Data from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with Withaferin A (WA)

    PubMed Central

    Narayan, Malathi; Seeley, Kent W.; Jinwal, Umesh K.

    2016-01-01

    Mass spectrometry data collected in a study analyzing the effect of withaferin A (WA) on a mouse microglial (N9) cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis. The data presented here is related to the published research article on the effect of WA on the differential regulation of proteins in mouse microglial cells [1]. Mass spectrometry data has also been deposited in the ProteomeXchange with the identifier PXD003032. PMID:27054189

  11. TREM2 regulates microglial cell activation in response to demyelination in vivo

    PubMed Central

    Cantoni, Claudia; Bollman, Bryan; Licastro, Danilo; Xie, Mingqiang; Mikesell, Robert; Schmidt, Robert; Yuede, Carla M.; Galimberti, Daniela; Olivecrona, Gunilla; Klein, Robyn S.; Cross, Anne H.; Otero, Karel; Piccio, Laura

    2015-01-01

    Microglia are phagocytic cells that survey the brain and perform neuroprotective functions in response to tissue damage, but their activating receptors are largely unknown. Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial immunoreceptor whose loss-of-function mutations in humans cause presenile dementia, while genetic variants are associated with increased risk of neurodegenerative diseases. In myeloid cells, TREM2 has been involved in the regulation of phagocytosis, cell proliferation and inflammatory responses in vitro. However, it is unknown how TREM2 contributes to microglia function in vivo. Here, we identify a critical role for TREM2 in the activation and function of microglia during cuprizone (CPZ)-induced demyelination. TREM2-deficient (TREM2−/−) mice had defective clearance of myelin debris and more axonal pathology, resulting in impaired clinical performances compared to wild-type (WT) mice. TREM2−/− microglia proliferated less in areas of demyelination and were less activated, displaying a more resting morphology and decreased expression of the activation markers MHC II and inducible nitric oxide synthase as compared to WT. Mechanistically, gene expression and ultrastructural analysis of microglia suggested a defect in myelin degradation and phagosome processing during CPZ intoxication in TREM2−/− microglia. These findings place TREM2 as a key regulator of microglia activation in vivo in response to tissue damage. PMID:25631124

  12. Immunocytochemical localization of 3-methylcrotonyl-CoA carboxylase in cultured ependymal, microglial and oligodendroglial cells.

    PubMed

    Murín, Radovan; Verleysdonk, Stephan; Rapp, Mirna; Hamprecht, Bernd

    2006-06-01

    To evaluate the ability of ependymal, microglial and oligodendroglial cells to degrade leucine, the presence of 3-methylcrotonyl-CoA carboxylase (MCC) was investigated in cultures of these cells. MCC is a biotin-containing heterodimeric enzyme that is specific for the irreversible part of the leucine catabolic pathway. It has been reported previously that in cell culture MCC is expressed in astrocytes and a subpopulation of neurones. In the present study ependymal, microglial and oligodendroglial cell cultures, derived from the brains of newborn rats, were examined for the expression of MCC by RT-PCR, western blotting and immunocytochemistry. The results of RT-PCR and western blotting showed the presence of mRNA as well as protein of both subunits of MCC in ependymal, microglial and oligodendroglial cell cultures. Immunocytochemical investigation of the cellular and subcellular distribution of MCC demonstrated a mitochondrial location of MCC in all neuroglial cell types investigated. The ubiquitous expression of MCC in glial cells demonstrates the ability of the cells to engage in the catabolism of leucine transported into the brain, mainly for the generation of energy.

  13. Microglial derived tumor necrosis factor-α drives Alzheimer's disease-related neuronal cell cycle events.

    PubMed

    Bhaskar, Kiran; Maphis, Nicole; Xu, Guixiang; Varvel, Nicholas H; Kokiko-Cochran, Olga N; Weick, Jason P; Staugaitis, Susan M; Cardona, Astrid; Ransohoff, Richard M; Herrup, Karl; Lamb, Bruce T

    2014-02-01

    Massive neuronal loss is a key pathological hallmark of Alzheimer's disease (AD). However, the mechanisms are still unclear. Here we demonstrate that neuroinflammation, cell autonomous to microglia, is capable of inducing neuronal cell cycle events (CCEs), which are toxic for terminally differentiated neurons. First, oligomeric amyloid-beta peptide (AβO)-mediated microglial activation induced neuronal CCEs via the tumor-necrosis factor-α (TNFα) and the c-Jun Kinase (JNK) signaling pathway. Second, adoptive transfer of CD11b+ microglia from AD transgenic mice (R1.40) induced neuronal cyclin D1 expression via TNFα signaling pathway. Third, genetic deficiency of TNFα in R1.40 mice (R1.40-Tnfα(-/-)) failed to induce neuronal CCEs. Finally, the mitotically active neurons spatially co-exist with F4/80+ activated microglia in the human AD brain and that a portion of these neurons are apoptotic. Together our data suggest a cell-autonomous role of microglia, and identify TNFα as the responsible cytokine, in promoting neuronal CCEs in the pathogenesis of AD.

  14. Calmodulin inhibition regulates morphological and functional changes related to the actin cytoskeleton in pure microglial cells.

    PubMed

    Szabo, Melinda; Dulka, Karolina; Gulya, Karoly

    2016-01-01

    The roles of calmodulin (CaM), a multifunctional intracellular calcium receptor protein, as concerns selected morphological and functional characteristics of pure microglial cells derived from mixed primary cultures from embryonal forebrains of rats, were investigated through use of the CaM antagonists calmidazolium (CALMID) and trifluoperazine (TFP). The intracellular localization of the CaM protein relative to phalloidin, a bicyclic heptapeptide that binds only to filamentous actin, and the ionized calcium-binding adaptor molecule 1 (Iba1), a microglia-specific actin-binding protein, was determined by immunocytochemistry, with quantitative analysis by immunoblotting. In unchallenged and untreated (control) microglia, high concentrations of CaM protein were found mainly perinuclearly in ameboid microglia, while the cell cortex had a smaller CaM content that diminished progressively deeper into the branches in the ramified microglia. The amounts and intracellular distributions of both Iba1 and CaM proteins were altered after lipopolysaccharide (LPS) challenge in activated microglia. CALMID and TFP exerted different, sometimes opposing, effects on many morphological, cytoskeletal and functional characteristics of the microglial cells. They affected the CaM and Iba1 protein expressions and their intracellular localizations differently, inhibited cell proliferation, viability and fluid-phase phagocytosis to different degrees both in unchallenged and in LPS-treated (immunologically challenged) cells, and differentially affected the reorganization of the actin cytoskeleton in the microglial cell cortex, influencing lamellipodia, filopodia and podosome formation. In summary, these CaM antagonists altered different aspects of filamentous actin-based cell morphology and related functions with variable efficacy, which could be important in deciphering the roles of CaM in regulating microglial functions in health and disease.

  15. Cytopathic changes and pro-inflammatory cytokines induced by Naegleria fowleri trophozoites in rat microglial cells and protective effects of an anti-Nfa1 antibody.

    PubMed

    Oh, Y-H; Jeong, S-R; Kim, J-H; Song, K-J; Kim, K; Park, S; Sohn, S; Shin, H-J

    2005-12-01

    Naegleria fowleri, a free-living amoeba, causes fatal primary amoebic meningoencephalitis in experimental animals and humans. The nfa1 gene (360 bp) was previously cloned from a cDNA library of pathogenic N. fowleri by immunoscreening, and produced a 13.1-kDa recombinant protein that showed pseudopodia-specific localization by immunocytochemistry. On the basis of an idea that the pseudopodia-specific Nfa1 protein seems to be involved in the pathogenicity of N. fowleri, the cytopathic activity of N. fowleri trophozoites co-cultured with rat microglial cells was observed, and the effects of an anti-Nfa1 antibody in a co-culture system were elucidated. Using light, scanning and transmission electron microscopy, it was seen that N. fowleri trophozoites in contact with microglial cells produced vigorous pseudopodia and a food-cup structure. Microglial cells were destroyed by N. fowleri trophozoites as seen from necrotic cell death in a time-dependent manner. In a(51)Cr release assay, N. fowleri showed 17.8%, 24.9%, 54.6% and 98% cytotoxicity against microglial cells at 3, 6, 12 and 24 h post-incubation, respectively. However, when anti-Nfa1 antibody was added in a coculture system, N. fowleri cytotoxicity was reduced to 15.5%, 20.3%, 46.7% and 66.9%, respectively. Moreover, microglial cells co-cultured with N. fowleri trophozoites secreted the pro-inflammatory cytokines, TNF-alpha, IL-1beta and IL-6. In the presence of anti-Nfa1 antibody, the secretion of TNF-alpha was slightly, but not significantly, decreased. PMID:16255744

  16. Cytopathic changes and pro-inflammatory cytokines induced by Naegleria fowleri trophozoites in rat microglial cells and protective effects of an anti-Nfa1 antibody.

    PubMed

    Oh, Y-H; Jeong, S-R; Kim, J-H; Song, K-J; Kim, K; Park, S; Sohn, S; Shin, H-J

    2005-12-01

    Naegleria fowleri, a free-living amoeba, causes fatal primary amoebic meningoencephalitis in experimental animals and humans. The nfa1 gene (360 bp) was previously cloned from a cDNA library of pathogenic N. fowleri by immunoscreening, and produced a 13.1-kDa recombinant protein that showed pseudopodia-specific localization by immunocytochemistry. On the basis of an idea that the pseudopodia-specific Nfa1 protein seems to be involved in the pathogenicity of N. fowleri, the cytopathic activity of N. fowleri trophozoites co-cultured with rat microglial cells was observed, and the effects of an anti-Nfa1 antibody in a co-culture system were elucidated. Using light, scanning and transmission electron microscopy, it was seen that N. fowleri trophozoites in contact with microglial cells produced vigorous pseudopodia and a food-cup structure. Microglial cells were destroyed by N. fowleri trophozoites as seen from necrotic cell death in a time-dependent manner. In a(51)Cr release assay, N. fowleri showed 17.8%, 24.9%, 54.6% and 98% cytotoxicity against microglial cells at 3, 6, 12 and 24 h post-incubation, respectively. However, when anti-Nfa1 antibody was added in a coculture system, N. fowleri cytotoxicity was reduced to 15.5%, 20.3%, 46.7% and 66.9%, respectively. Moreover, microglial cells co-cultured with N. fowleri trophozoites secreted the pro-inflammatory cytokines, TNF-alpha, IL-1beta and IL-6. In the presence of anti-Nfa1 antibody, the secretion of TNF-alpha was slightly, but not significantly, decreased.

  17. Interferon γ-dependent migration of microglial cells in the retina after systemic cytomegalovirus infection.

    PubMed

    Zinkernagel, Martin S; Chinnery, Holly R; Ong, Monique L; Petitjean, Claire; Voigt, Valentina; McLenachan, Samuel; McMenamin, Paul G; Hill, Geoffrey R; Forrester, John V; Wikstrom, Matthew E; Degli-Esposti, Mariapia A

    2013-03-01

    Microglial cells are the resident macrophages of the central nervous system and participate in both innate and adaptive immune responses but can also lead to exacerbation of neurodegenerative pathologies after viral infections. Microglia in the outer layers of the retina and the subretinal space are thought to be involved in retinal diseases where low-grade chronic inflammation and oxidative stress play a role. This study investigated the effect of systemic infection with murine cytomegalovirus on the distribution and dynamics of retinal microglia cells. Systemic infection with murine cytomegalovirus elicited a significant increase in the number of microglia in the subretinal space and an accumulation of iris macrophages, along with morphological signs of activation. Interferon γ (IFN-γ)-deficient mice failed to induce changes in microglia distribution. Bone marrow chimera experiments confirmed that microglial cells in the subretinal space were not recruited from the circulating monocyte pool, but rather represented an accumulation of resident microglial cells from within the retina. Our results demonstrate that a systemic viral infection can lead to IFN-γ-mediated accumulation of microglia into the outer retinal layers and offer proof of concept that systemic viral infections alter the ocular microenvironment and therefore, may influence the course of diseases such as macular degeneration, diabetic retinopathy, or autoimmune uveitis, where low-grade inflammation is implicated.

  18. Levo-Tetrahydropalmatine Attenuates Bone Cancer Pain by Inhibiting Microglial Cells Activation

    PubMed Central

    Zhang, Mao-yin; Liu, Yue-peng; Zhang, Lian-yi; Yue, Dong-mei; Qi, Dun-yi; Liu, Gong-jian; Liu, Su

    2015-01-01

    Objective. The present study is to investigate the analgesic roles of L-THP in rats with bone cancer pain caused by tumor cell implantation (TCI). Methods. Thermal hyperalgesia and mechanical allodynia were measured at different time points before and after operation. L-THP (20, 40, and 60 mg/kg) were administrated intragastrically at early phase of postoperation (before pain appearance) and later phase of postoperation (after pain appearance), respectively. The concentrations of TNF-α, IL-1β, and IL-18 in spinal cord were measured by enzyme-linked immunosorbent assay. Western blot was used to test the activation of astrocytes and microglial cells in spinal cord after TCI treatment. Results. TCI treatment induced significant thermal hyperalgesia and mechanical allodynia. Administration of L-THP at high doses significantly prevented and/or reversed bone cancer-related pain behaviors. Besides, TCI-induced activation of microglial cells and the increased levels of TNF-α and IL-18 were inhibited by L-THP administration. However, L-THP failed to affect TCI-induced astrocytes activation and IL-1β increase. Conclusion. This study suggests the possible clinical utility of L-THP in the treatment of bone cancer pain. The analgesic effects of L-THP on bone cancer pain maybe underlying the inhibition of microglial cells activation and proinflammatory cytokines increase. PMID:26819501

  19. Microglial Activation & Chronic Neurodegeneration

    PubMed Central

    Lull, Melinda E.; Block, Michelle L.

    2010-01-01

    Microglia, the resident innate immune cells in the brain, have long been implicated in the pathology of neurodegenerative diseases. Accumulating evidence points to activated microglia as a chronic source of multiple neurotoxic factors, including TNFα, NO, IL1-β, and reactive oxygen species (ROS), driving progressive neuron damage. Microglia can become chronically activated by either a single stimulus (ex. LPS or neuron damage) or multiple stimuli exposures to result in cumulative neuronal loss over time. While the mechanisms driving these phenomena are just beginning to be understood, reactive microgliosis (the microglial response to neuron damage) and ROS have been implicated as key mechanisms of chronic and neurotoxic microglial activation, particularly in the case of Parkinson’s Disease. Here, we review the mechanisms of neurotoxicity associated with chronic microglial activation and discuss the role of neuronal death and microglial ROS driving the chronic and toxic microglial phenotype. PMID:20880500

  20. Effects of aspirin on expression of iron transport and storage proteins in BV-2 microglial cells.

    PubMed

    Xu, Yan Xin; Du, Fang; Jiang, Li Rong; Gong, Jing; Zhou, Yu-Fu; Luo, Qian Qian; Qian, Zhong Ming; Ke, Ya

    2015-12-01

    In the light of recent studies, we hypothesized that aspirin might have the functions to regulate the expression of iron transport proteins and then affect cellular iron levels. To test this hypothesis, we investigated the effects of aspirin on expression of iron uptake protein transferrin receptor 1 (TfR1), iron release protein ferroportin 1 (Fpn1) and iron storage protein ferritin using Western blot analysis and on tumor necrosis factor (TNF)-αlpha, interleukin (IL)-6, interleukin (IL)-10 and hepcidin using quantitative real-time PCR in BV-2 microglial cells treated with lipopolysaccharides (LPS). We found that aspirin significantly down-regulated TfR1, while also up-regulated Fpn1 and ferritin expressions in BV-2 microglial cells in vitro. We also showed that TfR1 and Fpn1 expressions were significantly higher, while ferritin contents, IL-6, TNF-alpha and hepcidin mRNA levels were lower in cells treated with aspirin plus LPS than those in cells treated with LPS only. We concluded that aspirin has a negative effect on cell iron contents under 'normal' conditions and could partly reverse LPS-induced-disruption in cell iron balance under in vitro inflammatory conditions. Our findings also suggested that hepcidin might play a dominant role in the control of TfR1 expression by aspirin in the cells treated with LPS. PMID:26522688

  1. Effects of aspirin on expression of iron transport and storage proteins in BV-2 microglial cells.

    PubMed

    Xu, Yan Xin; Du, Fang; Jiang, Li Rong; Gong, Jing; Zhou, Yu-Fu; Luo, Qian Qian; Qian, Zhong Ming; Ke, Ya

    2015-12-01

    In the light of recent studies, we hypothesized that aspirin might have the functions to regulate the expression of iron transport proteins and then affect cellular iron levels. To test this hypothesis, we investigated the effects of aspirin on expression of iron uptake protein transferrin receptor 1 (TfR1), iron release protein ferroportin 1 (Fpn1) and iron storage protein ferritin using Western blot analysis and on tumor necrosis factor (TNF)-αlpha, interleukin (IL)-6, interleukin (IL)-10 and hepcidin using quantitative real-time PCR in BV-2 microglial cells treated with lipopolysaccharides (LPS). We found that aspirin significantly down-regulated TfR1, while also up-regulated Fpn1 and ferritin expressions in BV-2 microglial cells in vitro. We also showed that TfR1 and Fpn1 expressions were significantly higher, while ferritin contents, IL-6, TNF-alpha and hepcidin mRNA levels were lower in cells treated with aspirin plus LPS than those in cells treated with LPS only. We concluded that aspirin has a negative effect on cell iron contents under 'normal' conditions and could partly reverse LPS-induced-disruption in cell iron balance under in vitro inflammatory conditions. Our findings also suggested that hepcidin might play a dominant role in the control of TfR1 expression by aspirin in the cells treated with LPS.

  2. Ghrelin Inhibits Oligodendrocyte Cell Death by Attenuating Microglial Activation

    PubMed Central

    Lee, Jee Youn

    2014-01-01

    Background Recently, we reported the antiapoptotic effect of ghrelin in spinal cord injury-induced apoptotic cell death of oligodendrocytes. However, how ghrelin inhibits oligodendrocytes apoptosis, is still unknown. Therefore, in the present study, we examined whether ghrelin inhibits microglia activation and thereby inhibits oligodendrocyte apoptosis. Methods Using total cell extracts prepared from BV-2 cells activated by lipopolysaccharide (LPS) with or without ghrelin, the levels of p-p38 phosphor-p38 mitogen-activated protein kinase (p-p38MAPK), phospho-c-Jun N-terminal kinase (pJNK), p-c-Jun, and pro-nerve growth factor (proNGF) were examined by Western blot analysis. Reactive oxygen species (ROS) production was investigated by using dichlorodihydrofluorescein diacetate. To examine the effect of ghrelin on oligodendrocyte cell death, oligodendrocytes were cocultured in transwell chambers of 24-well plates with LPS-stimulated BV-2 cells. After 48 hours incubation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling staining were assessed. Results Ghrelin treatment significantly decreased levels of p-p38MAPK, p-JNK, p-c-Jun, and proNGF in LPS-stimulated BV-2 cells. ROS production increased in LPS-stimulated BV-2 cells was also significantly inhibited by ghrelin treatment. In addition, ghrelin significantly inhibited oligodendrocyte cell death when cocultured with LPS-stimulated BV-2 cells. Conclusion Ghrelin inhibits oligodendrocyte cell death by decreasing proNGF and ROS production as well as p38MAPK and JNK activation in activated microglia as an anti-inflammatory hormone. PMID:25309797

  3. Minocycline, a microglial inhibitor, reduces ‘honey trap’ risk in human economic exchange

    PubMed Central

    Watabe, Motoki; Kato, Takahiro A.; Tsuboi, Sho; Ishikawa, Katsuhiko; Hashiya, Kazuhide; Monji, Akira; Utsumi, Hideo; Kanba, Shigenobu

    2013-01-01

    Recently, minocycline, a tetracycline antibiotic, has been reported to improve symptoms of psychiatric disorders and to facilitate sober decision-making in healthy human subjects. Here we show that minocycline also reduces the risk of the ‘honey trap’ during an economic exchange. Males tend to cooperate with physically attractive females without careful evaluation of their trustworthiness, resulting in betrayal by the female. In this experiment, healthy male participants made risky choices (whether or not to trust female partners, identified only by photograph, who had decided in advance to exploit the male participants). The results show that trusting behaviour in male participants significantly increased in relation to the perceived attractiveness of the female partner, but that attractiveness did not impact trusting behaviour in the minocycline group. Animal studies have shown that minocycline inhibits microglial activities. Therefore, this minocycline effect may shed new light on the unknown roles microglia play in human mental activities. PMID:23595250

  4. The Involvement of Microglial Cells in Japanese Encephalitis Infections

    PubMed Central

    Thongtan, Thananya; Thepparit, Chutima; Smith, Duncan R.

    2012-01-01

    Despite the availability of effective vaccines, Japanese encephalitis virus (JEV) infections remain a leading cause of encephalitis in many Asian countries. The virus is transmitted to humans by Culex mosquitoes, and, while the majority of human infections are asymptomatic, up to 30% of JE cases admitted to hospital die and 50% of the survivors suffer from neurological sequelae. Microglia are brain-resident macrophages that play key roles in both the innate and adaptive immune responses in the CNS and are thus of importance in determining the pathology of encephalitis as a result of JEV infection. PMID:22919405

  5. Development of the microglial phenotype in culture.

    PubMed

    Szabo, M; Gulya, K

    2013-06-25

    Selected morphological, molecular and functional aspects of various microglial cell populations were characterized in cell cultures established from the forebrains of E18 rat embryos. The mixed primary cortical cultures were maintained for up to 28days using routine culturing techniques when the microglial cells in the culture were not stimulated or immunologically challenged. During culturing, expansion of the microglial cell populations was observed, as evidenced by quantitative assessment of selected monocyte/macrophage/microglial cell-specific markers (human leukocyte antigen (HLA) DP, DQ, DR, CD11b/c and Iba1) via immunocyto- and histochemistry and Western blot analysis. The Iba1 immunoreactivity in Western blots steadily increased about 750-fold, and the number of Iba1-immunoreactive cells rose at least 67-fold between one day in vitro (DIV1) and DIV28. Morphometric analysis on binary (digital) silhouettes of the microglia revealed their evolving morphology during culturing. Microglial cells were mainly ameboid in the early stages of in vitro differentiation, while mixed populations of ameboid and ramified cell morphologies were characteristic of older cultures as the average transformation index (TI) increased from 1.96 (DIV1) to 15.17 (DIV28). Multiple immunofluorescence labeling of selected biomarkers revealed different microglial phenotypes during culturing. For example, while HLA DP, DQ, DR immunoreactivity was present exclusively in ameboid microglia (TI<3) between DIV1 and DIV10, CD11b/c- and Iba1-positive microglial cells were moderately (TI<13) and progressively (TI<81) more ramified, respectively, and always present throughout culturing. Regardless of the age of the cultures, proliferating microglia were Ki67-positive and characterized by low TI values (TI<3). The microglial function was assessed by an in vitro phagocytosis assay. Unstimulated microglia with low TI values were significantly more active in phagocytosing fluorescent microspheres than

  6. Tart Cherry Extracts Reduce Inflammatory and Oxidative Stress Signaling in Microglial Cells.

    PubMed

    Shukitt-Hale, Barbara; Kelly, Megan E; Bielinski, Donna F; Fisher, Derek R

    2016-01-01

    Tart cherries contain an array of polyphenols that can decrease inflammation and oxidative stress (OS), which contribute to cognitive declines seen in aging populations. Previous studies have shown that polyphenols from dark-colored fruits can reduce stress-mediated signaling in BV-2 mouse microglial cells, leading to decreases in nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression. Thus, the present study sought to determine if tart cherries-which improved cognitive behavior in aged rats-would be efficacious in reducing inflammatory and OS signaling in HAPI rat microglial cells. Cells were pretreated with different concentrations (0-1.0 mg/mL) of Montmorency tart cherry powder for 1-4 h, then treated with 0 or 100 ng/mL lipopolysaccharide (LPS) overnight. LPS application increased extracellular levels of NO and tumor necrosis factor-alpha (TNF-α), and intracellular levels of iNOS and cyclooxygenase-2 (COX-2). Pretreatment with tart cherry decreased levels of NO, TNF-α, and COX-2 in a dose- and time-dependent manner versus those without pretreatment; the optimal combination was between 0.125 and 0.25 mg/mL tart cherry for 2 h. Higher concentrations of tart cherry powder and longer exposure times negatively affected cell viability. Therefore, tart cherries (like other dark-colored fruits), may be effective in reducing inflammatory and OS-mediated signals. PMID:27669317

  7. Sutherlandia frutescens Ethanol Extracts Inhibit Oxidative Stress and Inflammatory Responses in Neurons and Microglial Cells

    PubMed Central

    Jiang, Jinghua; Chuang, Dennis Y.; Zong, Yijia; Patel, Jayleenkumar; Brownstein, Korey; Lei, Wei; Lu, Chi-Hua; Simonyi, Agnes; Gu, Zezong; Cui, Jiankun; Rottinghaus, George E.; Fritsche, Kevin L.; Lubahn, Dennis B.; Folk, William R.; Sun, Grace Y.

    2014-01-01

    Sutherlandia frutescens (L.) R.Br. (SF) is a medicinal plant indigenous to southern Africa and used in folk and contemporary remedies for stress, chronic diseases, cancer, and HIV/AIDS. While previous studies have focused on physiological effects of SF on cellular and systemic abnormalities associated with these diseases, little is known about its effects in the brain and immune cells in the central nervous system. Results of this study indicate that ethanol extracts of SF (SF-E) suppress NMDA-induced reactive oxygen species (ROS) production in neurons, and LPS- and IFNγ-induced ROS and nitric oxide (NO) production in microglial cells. SF-E’s action on microglial cells appears to be mediated through inhibition of the IFNγ-induced p-ERK1/2 signaling pathway which is central to regulating a number of intracellular metabolic processes including enhancing STAT1α phosphorylation and filopodia formation. The involvement of SF in these pathways suggests the potential for novel therapeutics for stress and prevention, and/or treatment of HIV/AIDS as well as other inflammatory diseases in the brain. PMID:24587007

  8. Neutralization capacity of measles virus H protein specific IgG determines the balance between antibody-enhanced infectivity and protection in microglial cells

    PubMed Central

    Iankov, Ianko D.; Penheiter, Alan R.; Griesmann, Guy E.; Carlson, Stephanie K.; Federspiel, Mark J.; Galanis, Evanthia

    2013-01-01

    Neutralizing antibodies directed against measles virus (MV) surface glycoproteins prevent viral attachment and entry through the natural receptors. H protein specific IgG can enhance MV infectivity in macrophages via Fcγ receptor (FcγR)-dependent mechanism. H-specific IgM, anti-F antibodies and complement cascade activation are protective against antibody-mediated enhancement of MV infection. However, protective role of anti-H IgG against antibody-enhanced infection is not well understood. Here we designed a set of experiments to test the protective effect of H-specific IgG against FcγR-mediated infection in microglial cells. Microglial cells are also potential target of the antibody-mediated enhancement and spread of MV infection in the central nervous system. A partially neutralizing IgG monoclonal antibody (MAb) CL55, specific for MV H protein, at 10 μg/ml enhanced MV infection in mouse microglial cells by 13-14-fold. Infection-enhancing antibody concentrations induced large multinucleated syncytia formation 48-72 h post inoculation. We generated anti-H IgG MAb 20H6 with a strong neutralization capacity >1:80,000 at 1 mg/ml concentration in MV plaque-reduction neutralization assay. In contrast to the partially protective MAb CL55, enhancement of MV infectivity by MAb 20H6 required dilutions below the 1:120 serum titer considered protective against measles infection in humans. At a concentration of 10 μg/ml MAb 20H6 exhibited a dominant protective effect and prevented MAb CL55-mediated enhancement of MV infection and virus-mediated fusion. These results indicate that neutralization capacity of the H-specific IgG determines the balance between antibody enhancement and protection against MV infection in microglial cells. PMID:23266401

  9. Anti-inflammatory effects and antioxidant activity of dihydroasparagusic acid in lipopolysaccharide-activated microglial cells.

    PubMed

    Salemme, Adele; Togna, Anna Rita; Mastrofrancesco, Arianna; Cammisotto, Vittoria; Ottaviani, Monica; Bianco, Armandodoriano; Venditti, Alessandro

    2016-01-01

    The activation of microglia and subsequent release of toxic pro-inflammatory factors are crucially associated with neurodegenerative disease, characterized by increased oxidative stress and neuroinflammation, including Alzheimer and Parkinson diseases and multiple sclerosis. Dihydroasparagusic acid is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. It has two thiolic functions able to coordinate the metal ions, and a carboxylic moiety, a polar function, which may enhance excretion of the complexes. Thiol functions are also present in several biomolecules with important physiological antioxidant role as glutathione. The aim of this study is to evaluate the anti-inflammatory and antioxidant potential effect of dihydroasparagusic acid on microglial activation in an in vitro model of neuroinflammation. We have used lipopolysaccharide to induce an inflammatory response in primary rat microglial cultures. Our results suggest that dihydroasparagusic acid significantly prevented lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators such as nitric oxide, tumor necrosis factor-α, prostaglandin E2, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression and lipoxygenase activity in microglia cells. Moreover it effectively suppressed the level of reactive oxygen species and affected lipopolysaccharide-stimulated activation of mitogen activated protein kinase, including p38, and nuclear factor-kB pathway. These results suggest that dihydroasparagusic acid's neuroprotective properties may be due to its ability to dampen induction of microglial activation. It is a compound that can effectively inhibit inflammatory and oxidative processes that are important factors of the etiopathogenesis of neurodegenerative diseases. PMID:26592472

  10. Prenylated Flavonoids from Cudrania tricuspidata Suppress Lipopolysaccharide-Induced Neuroinflammatory Activities in BV2 Microglial Cells

    PubMed Central

    Kim, Dong-Cheol; Yoon, Chi-Su; Quang, Tran Hong; Ko, Wonmin; Kim, Jong-Su; Oh, Hyuncheol; Kim, Youn-Chul

    2016-01-01

    In Korea and China, Cudrania tricuspidata Bureau (Moraceae) is an important traditional medicinal plant used to treat lumbago, hemoptysis, and contusions. The C. tricuspidata methanol extract suppressed both production of NO and PGE2 in BV2 microglial cells. Cudraflavanone D (1), isolated from this extract, remarkably suppressed the protein expression of inducible NO synthase and cyclooxygenase-2, and decreased the levels of NO and PGE2 in BV2 microglial cells exposed to lipopolysaccharide. Cudraflavanone D (1) also decreased IL-6, TNF-α, IL-12, and IL-1β production, blocked nuclear translocation of NF-κB heterodimers (p50 and p65) by interrupting the degradation and phosphorylation of inhibitor of IκB-α, and inhibited NF-κB binding. In addition, cudraflavanone D (1) suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK pathways. This study indicated that cudraflavanone D (1) can be a potential drug candidate for the cure of neuroinflammation. PMID:26907256

  11. Celecoxib Inhibits Prion Protein 90-231-Mediated Pro-inflammatory Responses in Microglial Cells.

    PubMed

    Villa, Valentina; Thellung, Stefano; Corsaro, Alessandro; Novelli, Federica; Tasso, Bruno; Colucci-D'Amato, Luca; Gatta, Elena; Tonelli, Michele; Florio, Tullio

    2016-01-01

    Activation of microglia is a central event in the atypical inflammatory response occurring during prion encephalopathies. We report that the prion protein fragment encompassing amino acids 90-231 (PrP90-231), a model of the neurotoxic activity of the pathogenic prion protein (PrP(Sc)), causes activation of both primary microglia cultures and N9 microglial cells in vitro. This effect was characterized by cell proliferation arrest and induction of a secretory phenotype, releasing prostaglandin E2 (PGE2) and nitric oxide (NO). Conditioned medium from PrP90-231-treated microglia induced in vitro cytotoxicity of A1 mesencephalic neurons, supporting the notion that soluble mediators released by activated microglia contributes to the neurodegeneration during prion diseases. The neuroinflammatory role of COX activity, and its potential targeting for anti-prion therapies, was tested measuring the effects of ketoprofen and celecoxib (preferential inhibitors of COX1 and COX2, respectively) on PrP90-231-induced microglial activation. Celecoxib, but not ketoprofen significantly reverted the growth arrest as well as NO and PGE2 secretion induced by PrP90-231, indicating that PrP90-231 pro-inflammatory response in microglia is mainly dependent on COX2 activation. Taken together, these data outline the importance of microglia in the neurotoxicity occurring during prion diseases and highlight the potentiality of COX2-selective inhibitors to revert microglia as adjunctive pharmacological approach to contrast the neuroinflammation-dependent neurotoxicity.

  12. 2-Arachidonoylglycerol elicits neuroprotective effects on excitotoxically lesioned dentate gyrus granule cells via abnormal-cannabidiol-sensitive receptors on microglial cells.

    PubMed

    Kreutz, Susanne; Koch, Marco; Böttger, Charlotte; Ghadban, Chalid; Korf, Horst-Werner; Dehghani, Faramarz

    2009-02-01

    Endocannabinoids like 2-arachidonoylglycerol (2-AG) exert neuroprotective effects after brain injuries. According to current concepts, these neuroprotective effects are due to interactions between 2-AG and cannabinoid (CB)1 receptors on neurons. Moreover, 2-AG modulates migration and proliferation of microglial cells which are rapidly activated after brain lesion. This effect is mediated via CB2- and abnormal-cannabidiol (abn-CBD)-sensitive receptors. In the present study, we investigated whether the abn-CBD-sensitive receptor on microglial cells contributes to 2-AG-mediated neuroprotection in organotypic hippocampal slice cultures (OHSCs) after excitotoxic lesion induced by NMDA (50 microM) application for 4 h. This lesion caused neuronal damage and accumulation of microglial cells within the granule cell layer. To analyze the role of abn-CBD-sensitive receptors for neuroprotection and microglial cell accumulation, two agonists of the abn-CBD-sensitive receptor, abn-CBD or 2-AG, two antagonists, 1,3-dimethoxy-5-methyl-2-[(1R,6R)-3-methyl-6-(1-methylethenyl)-2-cyclohexen1-yl]-benzene (O-1918) or cannabidiol (CBD), and the CB1 receptor antagonist AM251, were applied to NMDA-lesioned OHSC. Propidium iodide (PI) labeling was used as a marker of degenerating neurons and isolectin B(4) (IB(4)) as a marker of microglial cells. Application of both, abn-CBD or 2-AG to lesioned OHSC significantly decreased the number of IB(4)(+) microglial cells and PI(+) neurons in the dentate gyrus. In contrast to AM251, application of O-1918 or CBD antagonized these effects. When microglial cells were depleted by preincubation of OHSC with the bisphosphonate clodronate (100 microg/mL) for 5 days before excitotoxic lesion, 2-AG and abn-CBD lost their neuroprotective effects. We therefore propose that the endocannabinoid 2-AG exerts its neuroprotective effects via activation of abn-CBD-sensitive receptors on microglial cells.

  13. Highly permissive infection of microglial cells by Japanese encephalitis virus: a possible role as a viral reservoir.

    PubMed

    Thongtan, Thananya; Cheepsunthorn, Poonlarp; Chaiworakul, Voravasa; Rattanarungsan, Chutima; Wikan, Nitwara; Smith, Duncan R

    2010-01-01

    Japanese encephalitis virus (JEV), a mosquito-borne Flavivirus, is a major cause of acute encephalitis, and neurons have been proposed to be the principle JEV target cells in the central nervous system. However, clinically, infection with JEV leads to increased levels of cytokines and chemokines in the serum and cerebrospinal fluid (CSF) the levels of which correlate with the mortality rate of patients. This research aimed to study the role of microglial cells in JEV infection. Mouse microglial cells (BV-2) supported the replication of JEV with extracellular production of virus by 10h post-infection, and virus titer reached a maximum (2.55x10(10)pfu/ml) by day 3 post-infection. While apoptosis was induced in response to virus infection, no alteration in nitric oxide production was observed. Microglial cells remained productively infected with JEV for up to 16 weeks without significant morphological alterations, and the released virions were infectious to mouse neuroblastoma (NA) cells. The high virus production and long persistence of JEV in microglial cells suggests that these cells may serve as viral reservoirs for the infection of neurons in the CNS.

  14. Inhibition of endotoxin-induced nitric oxide synthase production in microglial cells by the presence of astroglial cells: a role for transforming growth factor beta.

    PubMed

    Vincent, V A; Tilders, F J; Van Dam, A M

    1997-03-01

    In mixed glial cell cultures from cerebral cortices of newborn rats, endotoxin induces inducible nitric oxide (iNOS), nitric oxide (NO), and interleukin-1 beta (IL-1 beta) production in microglial cells. Earlier we demonstrated that endotoxin induced iNOS but not IL-1 beta expression in microglial cells is inhibited by the presence of astroglial cells. In the present paper we describe studies on the mechanism by which astroglial cells exert selective suppressive action on iNOS expression by microglial cells. Expression of iNOS and IL-1 beta was studied by single or double label immunocytochemical techniques and cell identification was performed with GSA-I-B4-isolectin and an antibody against GFAP. Production of IL-1 beta and NO was determined by measurement of IL-1 beta and nitrite concentrations in cell lysates and the culture medium, respectively. TGF beta, a cytokine known to inhibit NO production by endotoxin challenged macrophages, was measured in culture medium of mixed glial cell cultures using a bioassay. Microglial, astroglial, and mixed glial cell cultures produced similar concentrations of TGF beta. The potential effect of TGF beta was studied by using immunoneutralizing antibodies against TGF beta 1 and TGF beta 2 on the induction of iNOS in microglial cells in the presence of astroglial cells. Incubation of the mixed glial cell culture with these TGF beta antibodies (3 micrograms/ml) markedly increased endotoxin-induced NO production and iNOS expression in microglial cells, whereas the production of IL-1 beta was not affected. The antibodies against TGF beta 1 and TGF beta 2 marginally increased NO production in pure microglial cell cultures, nonetheless in cultures of purified microglial cells recombinant TGF beta 1 and TGF beta 2 together with endotoxin inhibited NO production. We conclude that the presence of astroglial cells is essential for the inhibitory effect of TGF beta on NO production by microglial cells (possibly) by activation of TGF beta

  15. Anti-neuro-inflammatory effects of Nardostachys chinensis in lipopolysaccharide-and lipoteichoic acid-stimulated microglial cells.

    PubMed

    Park, Sun Young; Kim, Young Hun; Park, Geuntae

    2016-05-01

    Excessive microglial cell activation is related to the progression of chronic neuro-inflammatory disorders. Heme oxygenase-1 (HO-1) expression mediated by the NFE2-related factor (Nrf-2) pathway is a key regulator of neuro-inflammation. Nardostachys chinensis is used as an anti-malarial, anti-nociceptive, and neurotrophic treatment in traditional Asian medicines. In the present study, we examined the effects of an ethyl acetate extract of N. chinensis (EN) on the anti-neuro-inflammatory effects mediated by HO-1 up-regulation in Salmonella lipopolysaccharide (LPS)- or Staphylococcus aureus lipoteichoic acid (LTA)-stimulated BV2 microglial cells. Our results indicated that EN suppressed pro-inflammatory cytokine production and induced HO-1 transcription and translation through Nrf-2/antioxidant response element (ARE) signaling. EN markedly inhibited LPS- and LTA-induced activation of nuclear factor-kappa B (NF-κB) as well as phosphorylation of mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT). Furthermore, EN protected hippocampal HT22 cells from indirect neuronal toxicity mediated by LPS- and LTA-treated microglial cells. These results suggested that EN impairs LPS- and LTA-induced neuro-inflammatory responses in microglial cells and confers protection against indirect neuronal damage to HT22 cells. In conclusion, our findings indicate that EN could be used as a natural anti-neuro-inflammatory and neuroprotective agent. PMID:27478097

  16. Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells

    PubMed Central

    Tsai, Cheng-Fang; Kuo, Yueh-Hsiung; Yeh, Wei-Lan; Wu, Caren Yu-Ju; Lin, Hsiao-Yun; Lai, Sheng-Wei; Liu, Yu-Shu; Wu, Ling-Hsuan; Lu, Jheng-Kun; Lu, Dah-Yuu

    2015-01-01

    Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE), a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current study intended to probe the effects of CAPE on microglia activation by using in vitro and in vivo models. Western blot and Griess reaction assay revealed CAPE significantly inhibited the expressions of inducible nitric oxide synthase (NOS), cyclooxygenase (COX)-2 and the production of nitric oxide (NO). Administration of CAPE resulted in increased expressions of hemeoxygenase (HO)-1and erythropoietin (EPO) in microglia. The phosphorylated adenosine monophosphate-activated protein kinase (AMPK)-α was further found to regulate the anti-inflammatory effects of caffeic acid. In vivo results from immunohistochemistry along with rotarod test also revealed the anti-neuroinflammatory effects of CAPE in microglia activation. The current study has evidenced several possible molecular determinants, AMPKα, EPO, and HO-1, in mediating anti-neuroinflammatory responses in microglial cells. PMID:25768341

  17. Organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis and upper cervical spinal cord associated with orofacial neuropathic pain.

    PubMed

    Shibuta, Kazuo; Suzuki, Ikuko; Shinoda, Masamichi; Tsuboi, Yoshiyuki; Honda, Kuniya; Shimizu, Noriyoshi; Sessle, Barry J; Iwata, Koichi

    2012-04-27

    The aim of this study was to evaluate spatial organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1), and to clarify the involvement in mechanisms underlying orofacial secondary hyperalgesia following infraorbital nerve injury. We found that the head-withdrawal threshold to non-noxious mechanical stimulation of the maxillary whisker pad skin was significantly reduced in chronic constriction injury of the infraorbital nerve (ION-CCI) rats from day 1 to day 14 after ION-CCI. On day 3 after ION-CCI, mechanical allodynia was obvious in the orofacial skin areas innervated by the 1st and 3rd branches of the trigeminal nerve as well as the 2nd branch area. Hyperactive microglial cells in Vc and C1 were observed on days 3 and 7 after ION-CCI. On day 3 after ION-CCI, a large number of phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) cells were observed in Vc and C1. Many hyperactive microglial cells were also distributed over a wide area of Vc and C1 innervated by the trigeminal nerve. The intraperitoneal administration of minocycline significantly reduced the activation of microglial cells and the number of pERK-IR cells in Vc and C1, and also significantly attenuated the development of mechanical allodynia. Furthermore, enhanced background activity and mechanical evoked responses of Vc wide dynamic range neurons in ION-CCI rats were significantly reversed following minocycline administration. These findings suggest that activation of microglial cells over a wide area of Vc and C1 is involved in the enhancement of Vc and C1 neuronal excitability in the early period after ION-CCI, resulting in the neuropathic pain in orofacial areas innervated by the injured as well as uninjured nerves.

  18. Possible impact of microglial cells and the monocyte-macrophage system on suicidal behavior.

    PubMed

    Steiner, Johann; Gos, Tomasz; Bogerts, Bernhard; Bielau, Hendrik; Drexhage, Hemmo A; Bernstein, Hans-Gert

    2013-11-01

    Immune dysfunction, including monocytosis, increased blood levels of interleukin-1 (IL-1), interleukin-6 (IL- 6) and tumor necrosis factor-alpha (TNF-alpha), as well as an increased microglial density in certain brain areas, have been described in schizophrenia and depression. Interestingly, similar immune alterations have been observed in suicide patients regardless of their underlying psychiatric diagnosis. This review summarizes relevant data from previous studies that have examined peripheral blood, cerebrospinal fluid and human brains (using postmortem histology and in vivo positron emission tomography) to investigate immune mechanisms in suicidal patients. We discuss whether the observed findings indicate that microgliosis and monocyte-macrophage system activation may be a useful marker of disease acuity/severity or whether they instead indicate a distinct neurobiology of suicide. Notably, pathophysiological mechanisms could change during the long-term course of psychiatric diseases. Therefore, different patterns of immune activation may be observed when comparing newly diseased patients with those who are chronically ill.

  19. Infiltrating cells from host brain restore the microglial population in grafted cortical tissue.

    PubMed

    Wang, Cong; Tao, Sijue; Fang, Yukun; Guo, Jing; Zhu, Lirui; Zhang, Shengxiang

    2016-01-01

    Transplantation of embryonic cortical tissue is considered as a promising therapy for brain injury. Grafted neurons can reestablish neuronal network and improve cortical function of the host brain. Microglia is a key player in regulating neuronal survival and plasticity, but its activation and dynamics in grafted cortical tissue remain unknown. Using two-photon intravital imaging and parabiotic model, here we investigated the proliferation and source of microglia in the donor region by transplanting embryonic cortical tissue into adult cortex. Live imaging showed that the endogenous microglia of the grafted tissue were rapidly lost after transplantation. Instead, host-derived microglia infiltrated and colonized the graft. Parabiotic model suggested that the main source of infiltrating cells is the parenchyma of the host brain. Colonized microglia proliferated and experienced an extensive morphological transition and eventually differentiated into resting ramified morphology. Collectively, these results demonstrated that donor tissue has little contribution to the activated microglia and host brain controls the microglial population in the graft.

  20. Microglial NADPH oxidase activation mediates rod cell death in the retinal degeneration in rd mice.

    PubMed

    Zeng, H; Ding, M; Chen, X-X; Lu, Q

    2014-09-01

    Accumulating evidence supports that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase contributes to microglia-mediated neurotoxicity in the CNS neurodegenerative diseases. Several studies, including ours, suggest that microglial activation is involved in the retinal degeneration in the animal models of retinitis pigmentosa (RP). In the present study, we investigated the activation of NADPH oxidase in the rod degeneration in rd mice and further explored its role in the microglia-mediated photoreceptor apoptosis. Expression of gp91phox protein, a major subunit of NAPDH oxidase in the whole retina of rd mice at postnatal days (P) 8, 10, 12, 14, 16 and 18 was assessed by western blot analysis. Location of gp91phox in the rd retina at each age group and its cellular source were studied by immunohistochemical analysis and double labeling respectively. The generation of superoxide radicals in the rd retinas was demonstrated by intraperitoneal injection of hydroethidine. Apocynin was applied intraperitoneally in the rd mice from P8 to P14 to inhibit the activity of NAPDH oxidase and the outer nuclear layer (ONL) thickness was measured before and after apocynin treatment. Our results demonstrated that during the rod degenerative process, the expression of gp91phox started to increase in the outer part of rd retina at P10 and reached a peak at P14. Double labeling of gp91phox with CD11b showed co-localization of gp91phox in the retinal microglial cells. Increasing generation of superoxide radicals visualized by hydroethidine was noted at P8 and reached a peak at P14. Apocynin markedly reduced the production of superoxide radicals and preserved the rod cells. The results suggested that NADPH oxidase might play an important role in the rod degeneration in the rd mice. Inhibition of NAPDH oxidase could be a possible approach to treat RP in the early degenerative stage.

  1. Myeloid/Microglial Driven Autologous Hematopoietic Stem Cell Gene Therapy Corrects a Neuronopathic Lysosomal Disease

    PubMed Central

    Sergijenko, Ana; Langford-Smith, Alexander; Liao, Ai Y; Pickford, Claire E; McDermott, John; Nowinski, Gabriel; Langford-Smith, Kia J; Merry, Catherine LR; Jones, Simon A; Wraith, J Edmond; Wynn, Robert F; Wilkinson, Fiona L; Bigger, Brian W

    2013-01-01

    Mucopolysaccharidosis type IIIA (MPSIIIA) is a lysosomal storage disorder caused by mutations in N-sulfoglucosamine sulfohydrolase (SGSH), resulting in heparan sulfate (HS) accumulation and progressive neurodegeneration. There are no treatments. We previously demonstrated improved neuropathology in MPSIIIA mice using lentiviral vectors (LVs) overexpressing SGSH in wild-type (WT) hematopoietic stem cell (HSC) transplants (HSCTs), achieved via donor monocyte/microglial engraftment in the brain. However, neurological disease was not corrected using LVs in autologous MPSIIIA HSCTs. To improve brain expression via monocyte/microglial specificity, LVs expressing enhanced green fluorescent protein (eGFP) under ubiquitous phosphoglycerate kinase (PGK) or myeloid-specific promoters were compared in transplanted HSCs. LV-CD11b-GFP gave significantly higher monocyte/B-cell eGFP expression than LV-PGK-GFP or LV-CD18-GFP after 6 months. Subsequently, autologous MPSIIIA HSCs were transduced with either LV-PGK-coSGSH or LV-CD11b-coSGSH vectors expressing codon-optimized SGSH and transplanted into MPSIIIA mice. Eight months after HSCT, LV-PGK-coSGSH vectors produced bone marrow SGSH (576% normal activity) similar to LV-CD11b-coSGSH (473%), but LV-CD11b-coSGSH had significantly higher brain expression (11 versus 7%), demonstrating improved brain specificity. LV-CD11b-coSGSH normalized MPSIIIA behavior, brain HS, GM2 ganglioside, and neuroinflammation to WT levels, whereas LV-PGK-coSGSH partly corrected neuropathology but not behavior. We demonstrate compelling evidence of neurological disease correction using autologous myeloid driven lentiviral-HSC gene therapy in MPSIIIA mice. PMID:23748415

  2. Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice

    PubMed Central

    Ricard, Clément; Tchoghandjian, Aurélie; Luche, Hervé; Grenot, Pierre; Figarella-Branger, Dominique; Rougon, Geneviève; Malissen, Marie; Debarbieux, Franck

    2016-01-01

    Inflammatory cells, an integral component of tumor evolution, are present in Glioblastomas multiforme (GBM). To address the cellular basis and dynamics of the inflammatory microenvironment in GBM, we established an orthotopic syngenic model by grafting GL261-DsRed cells in immunocompetent transgenic LysM-EGFP//CD11c-EYFP reporter mice. We combined dynamic spectral two-photon imaging with multiparametric cytometry and multicolor immunostaining to characterize spatio-temporal distribution, morphology and activity of microglia and blood-derived infiltrating myeloid cells in live mice. Early stages of tumor development were dominated by microglial EYFP+ cells invading the tumor, followed by massive recruitment of circulating LysM-EGFP+ cells. Fluorescent invading cells were conventional XCR1+ and monocyte-derived dendritic cells distributed in subpopulations of different maturation stages, located in different areas relative to the tumor core. The lethal stage of the disease was characterized by the progressive accumulation of EGFP+/EYFP+ monocyte-derived dendritic cells. This local phenotypic regulation of monocyte subtypes marked a transition in the immune response. PMID:27193333

  3. β-Arrestin 2 mediates the anti-inflammatory effects of fluoxetine in lipopolysaccharide-stimulated microglial cells.

    PubMed

    Du, Ren-Wei; Du, Ren-Hong; Bu, Wen-Guang

    2014-09-01

    Recent evidence has suggested that microglial activation plays an important role in the pathogenesis of depression. Activated microglia can secrete various pro-inflammatory cytokines, which may contribute to the development and maintenance of depression. Thus, inhibition of microglial activation may have a therapeutic benefit in the treatment of depression. In the present study, we found that fluoxetine significantly inhibited lipopolysaccharide (LPS)-induced production of tumor necrosis factor-alpha (TNF-α), interleukin- 6 (IL-6) and nitric oxide (NO) and reduced the phosphorylation of transforming growth factor-beta-activated kinase 1 (TAK1) and nuclear factor-kappa B (NF-κB) p65 nuclear translocation in microglia. We further found that fluoxetine increased the expression of β-arrestin 2 and enhanced the association of β-arrestin 2 with TAK1-binding protein 1 (TAB1) and disrupted TAK1-TAB1 interaction. Moreover, β-arrestin 2 knock-down abolished the anti-inflammatory effects of fluoxetine in lipopolysaccharide-stimulated microglial cells. Collectively, our findings suggest that β-arrestin 2 is necessary for the anti-inflammatory effects of fluoxetine and offers novel drug targets in the convergent fluoxetine/β-arrestin 2 and inflammatory pathways for treating microglial inflammatory neuropathologies like depression.

  4. Interaction between Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium avium subspecies paratuberculosis with the enteric glia and microglial cells

    PubMed Central

    2011-01-01

    Background We investigated the interaction of Mycobacterium avium subspecies paratuberculosis, M. bovis and M. tuberculosis and different glial cells (enteric glial and microglial cells) in order to evaluate the infecting ability of these microorganisms and the effects produced on these cells, such as the evaluation of cytokines expression. Results Our experiments demonstrated the adhesion of M. paratuberculosis to the enteroglial cells and the induction of IL-1A and IL-6 expression; M. tuberculosis and M. bovis showed a good adhesive capability to the enteric cell line with the expression of the following cytokines: IL-1A and IL-1B, TNF-α, G-CSF and GM-CSF; M. bovis induced the expression of IL-6 too. The experiment performed with the microglial cells confirmed the results obtained with the enteroglial cells after the infection with M. tuberculosis and M. bovis, whereas M. paratuberculosis stimulated the production of IL-1A and IL-1B. Conclusion Enteroglial and microglial cells, could be the target of pathogenic mycobacteria and, even if present in different locations (Enteric Nervous System and Central Nervous System), show to have similar mechanism of immunomodulation. PMID:22151930

  5. Dual RNA Sequencing Reveals the Expression of Unique Transcriptomic Signatures in Lipopolysaccharide-Induced BV-2 Microglial Cells

    PubMed Central

    Kim, Sun Hwa; Park, Kyoung Sun; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2015-01-01

    Microglial cells become rapidly activated through interactions with pathogens, and the persistent activation of these cells is associated with various neurodegenerative diseases. Previous studies have investigated the transcriptomic signatures in microglia or macrophages using microarray technologies. However, this method has numerous restrictions, such as spatial biases, uneven probe properties, low sensitivity, and dependency on the probes spotted. To overcome this limitation and identify novel transcribed genes in response to LPS, we used RNA Sequencing (RNA-Seq) to determine the novel transcriptomic signatures in BV-2 microglial cells. Sequencing assessment and quality evaluation showed that approximately 263 and 319 genes (≥ 1.5 log2-fold), such as cytokines and chemokines, were strongly induced after 2 and 4 h, respectively, and the induction of several genes with unknown immunological functions was also observed. Importantly, we observed that previously unidentified transcription factors (TFs) (irf1, irf7, and irf9), histone demethylases (kdm4a) and DNA methyltransferases (dnmt3l) were significantly and selectively expressed in BV-2 microglial cells. The gene expression levels, transcription start sites (TSS), isoforms, and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation upon infection with LPS. In addition, gene ontology, molecular networks and pathway analyses identified the top significantly regulated functional classification, canonical pathways and network functions at each activation status. Moreover, we further analyzed differentially expressed genes to identify transcription factor (TF) motifs (−950 to +50 bp of the 5’ upstream promoters) and epigenetic mechanisms. Furthermore, we confirmed that the expressions of key inflammatory genes as well as pro-inflammatory mediators in the supernatants were significantly induced in LPS treated primary microglial cells. This

  6. Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation

    PubMed Central

    Cloarec, Robin; Bauer, Sylvian; Luche, Hervé; Buhler, Emmanuelle; Pallesi-Pocachard, Emilie; Salmi, Manal; Courtens, Sandra; Massacrier, Annick; Grenot, Pierre; Teissier, Natacha; Watrin, Françoise; Schaller, Fabienne; Adle-Biassette, Homa; Gressens, Pierre; Malissen, Marie; Stamminger, Thomas; Streblow, Daniel N.; Bruneau, Nadine; Szepetowski, Pierre

    2016-01-01

    Background Congenital cytomegalovirus infections are a leading cause of neurodevelopmental disorders in human and represent a major health care and socio-economical burden. In contrast with this medical importance, the pathophysiological events remain poorly known. Murine models of brain cytomegalovirus infection, mostly neonatal, have brought recent insights into the possible pathogenesis, with convergent evidence for the alteration and possible involvement of brain immune cells. Objectives and Methods In order to confirm and expand those findings, particularly concerning the early developmental stages following infection of the fetal brain, we have created a model of in utero cytomegalovirus infection in the developing rat brain. Rat cytomegalovirus was injected intraventricularly at embryonic day 15 (E15) and the brains analyzed at various stages until the first postnatal day, using a combination of gene expression analysis, immunohistochemistry and multicolor flow cytometry experiments. Results Rat cytomegalovirus infection was increasingly seen in various brain areas including the choroid plexi and the ventricular and subventricular areas and was prominently detected in CD45low/int, CD11b+ microglial cells, in CD45high, CD11b+ cells of the myeloid lineage including macrophages, and in CD45+, CD11b– lymphocytes and non-B non-T cells. In parallel, rat cytomegalovirus infection of the developing rat brain rapidly triggered a cascade of pathophysiological events comprising: chemokines upregulation, including CCL2-4, 7 and 12; infiltration by peripheral cells including B-cells and monocytes at E17 and P1, and T-cells at P1; and microglia activation at E17 and P1. Conclusion In line with previous findings in neonatal murine models and in human specimen, our study further suggests that neuroimmune alterations might play critical roles in the early stages following cytomegalovirus infection of the brain in utero. Further studies are now needed to determine which

  7. Brucella outer membrane protein Omp25 induces microglial cells in vitro to secrete inflammatory cytokines and inhibit apoptosis

    PubMed Central

    Ma, Qiao-Li; Liu, Ai-Cui; Ma, Xiao-Juan; Wang, Yan-Bai; Hou, Yu-Ting; Wang, Zhen-Hai

    2015-01-01

    Omp25 protein, an outer membrane protein of Brucella, can cause damage to the central nervous system. As one type of macrophage, microglial cells play a role in immune surveillance and immune protection in the central nervous system; therefore, they are major targets of bacterial attack. The present study examined BV2 mouse microglial cells that were stimulated with different concentrations of Omp25 recombinant protein, and the secretion of inflammatory cytokines by the BV2 cells as well as their level of apoptosis were observed. The objective of the study was to preliminarily illustrate the possible mechanism that Omp25 uses to damage the central nervous system. Mouse BV2 microglial cells were incubated with different concentrations of Omp25 for 24 h, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of the inflammatory cytokines interleukin (IL)-6, tumour necrosis factor (TNF)-α and HMGB1 (high mobility group box-1 protein); reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression of TLR4 (Toll-like receptor 4) mRNA; Annexin V-fluorescein isothiocyanate (FITC) double staining was used to detect apoptosis in the BV2 cells. After the BV2 cells were stimulated with different concentrations of Omp25, the levels of IL-6, TNF-α and HMGB1 was increased, and the difference was statistically significant compared with the control group (P<0.05). The secretion of TNF-α and HMGB1 showed a trend toward an initial increase followed by a decrease. The expression level of TLR4 mRNA was increased. Omp25 protein can inhibit apoptosis in BV2 cells. The outer membrane protein Omp25 of Brucella promotes microglial cells to secrete inflammatory cytokines and inhibit apoptosis. TLR4 may be involved in the immune response of the central nervous system to Brucella infection. PMID:26770344

  8. In situ Synthesis of Fluorescent Gold Nanoclusters by Nontumorigenic Microglial Cells.

    PubMed

    West, Abby L; Schaeublin, Nicole M; Griep, Mark H; Maurer-Gardner, Elizabeth I; Cole, Daniel P; Fakner, Alexis M; Hussain, Saber M; Karna, Shashi P

    2016-08-24

    To date, the directed in situ synthesis of fluorescent gold nanoclusters (AuNCs) has only been demonstrated in cancerous cells, with the theorized synthesis mechanism prohibiting AuNC formation in nontumorigenic cell lines. This limitation hinders potential biostabilized AuNC-based technology in healthy cells involving both chemical and mechanical analysis, such as the direct sensing of protein function and the elucidation of local mechanical environments. Thus, new synthesis strategies are required to expand the application space of AuNCs beyond cancer-focused cellular studies. In this contribution, we have developed the methodology and demonstrated the direct in situ synthesis of AuNCs in the nontumorigenic neuronal microglial line, C8B4. The as-synthesized AuNCs form in situ and are stabilized by cellular proteins. The clusters exhibit bright green fluorescence and demonstrate low (<10%) toxicity. Interestingly, elevated ROS levels were not required for the in situ formation of AuNCs, although intracellular reductants such as glutamate were required for the synthesis of AuNCs in C8B4 cells. To our knowledge, this is the first-ever demonstration of AuNC synthesis in nontumorigenic cells and, as such, it considerably expands the application space of biostabilized fluorescent AuNCs. PMID:27328035

  9. In situ Synthesis of Fluorescent Gold Nanoclusters by Nontumorigenic Microglial Cells.

    PubMed

    West, Abby L; Schaeublin, Nicole M; Griep, Mark H; Maurer-Gardner, Elizabeth I; Cole, Daniel P; Fakner, Alexis M; Hussain, Saber M; Karna, Shashi P

    2016-08-24

    To date, the directed in situ synthesis of fluorescent gold nanoclusters (AuNCs) has only been demonstrated in cancerous cells, with the theorized synthesis mechanism prohibiting AuNC formation in nontumorigenic cell lines. This limitation hinders potential biostabilized AuNC-based technology in healthy cells involving both chemical and mechanical analysis, such as the direct sensing of protein function and the elucidation of local mechanical environments. Thus, new synthesis strategies are required to expand the application space of AuNCs beyond cancer-focused cellular studies. In this contribution, we have developed the methodology and demonstrated the direct in situ synthesis of AuNCs in the nontumorigenic neuronal microglial line, C8B4. The as-synthesized AuNCs form in situ and are stabilized by cellular proteins. The clusters exhibit bright green fluorescence and demonstrate low (<10%) toxicity. Interestingly, elevated ROS levels were not required for the in situ formation of AuNCs, although intracellular reductants such as glutamate were required for the synthesis of AuNCs in C8B4 cells. To our knowledge, this is the first-ever demonstration of AuNC synthesis in nontumorigenic cells and, as such, it considerably expands the application space of biostabilized fluorescent AuNCs.

  10. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    PubMed

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.

  11. Suppression of LPS-induced inflammatory responses by inflexanin B in BV2 microglial cells.

    PubMed

    Lim, Ji-Youn; Sul, Donggeun; Hwang, Bang Yeon; Hwang, Kwang Woo; Yoo, Ki-Yeol; Park, So-Young

    2013-02-01

    Microglia are a type of resident macrophage that functions as an inflammation modulator in the central nervous system. Over-activation of microglia by a range of stimuli disrupts the physiological homeostasis of the brain, and induces inflammatory response and degenerative processes, such as those implicated in neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Therefore, we investigated the possible anti-inflammatory mechanisms of inflexanin B in murine microglial BV2 cells. Lipopolysaccharide (LPS) activated BV2 cells and induced the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and cytokines (interleukins-1β and -6, and tumour necrosis factor α). The LPS-induced production of pro-inflammatory mediators was associated with the enhancement of nuclear factor-kappaB (NF-κB) nuclear translocation and the activation of mitogen-activated protein kinase (MAPK) including ERK1/2 and JNK. Conversely, pretreatment of cells with inflexanin B (10 and 20 μg/mL) significantly reduced the production of pro-inflammatory mediators. This was accompanied with the reduced nuclear translocation of NF-κB and reduced activation of MAPKs. These results suggest that inflexanin B attenuated the LPS-induced inflammatory process by inhibiting the activation of NF-κB and MAPKs. PMID:23458198

  12. Maternal immune activation evoked by polyinosinic:polycytidylic acid does not evoke microglial cell activation in the embryo

    PubMed Central

    Smolders, Silke; Smolders, Sophie M. T.; Swinnen, Nina; Gärtner, Annette; Rigo, Jean-Michel; Legendre, Pascal; Brône, Bert

    2015-01-01

    Several studies have indicated that inflammation during pregnancy increases the risk for the development of neuropsychiatric disorders in the offspring. Morphological brain abnormalities combined with deviations in the inflammatory status of the brain can be observed in patients of both autism and schizophrenia. It was shown that acute infection can induce changes in maternal cytokine levels which in turn are suggested to affect fetal brain development and increase the risk on the development of neuropsychiatric disorders in the offspring. Animal models of maternal immune activation reproduce the etiology of neurodevelopmental disorders such as schizophrenia and autism. In this study the poly (I:C) model was used to mimic viral immune activation in pregnant mice in order to assess the activation status of fetal microglia in these developmental disorders. Because microglia are the resident immune cells of the brain they were expected to be activated due to the inflammatory stimulus. Microglial cell density and activation level in the fetal cortex and hippocampus were determined. Despite the presence of a systemic inflammation in the pregnant mice, there was no significant difference in fetal microglial cell density or immunohistochemically determined activation level between the control and inflammation group. These data indicate that activation of the fetal microglial cells is not likely to be responsible for the inflammation induced deficits in the offspring in this model. PMID:26300736

  13. NG2 expression in microglial cells affects the expression of neurotrophic and proinflammatory factors by regulating FAK phosphorylation

    PubMed Central

    Zhu, Lie; Su, Qing; Jie, Xiang; Liu, Antang; Wang, Hui; He, Beiping; Jiang, Hua

    2016-01-01

    Neural/glial antigen 2 (NG2), a chondroitin sulfate proteoglycan, is significantly upregulated in a subset of glial cells in the facial motor nucleus (FMN) following CNS injury. NG2 is reported to promote the resulting inflammatory reaction, however, the mechanism by which NG2 mediates these effects is yet to be determined. In this study, we examined the changes in NG2 expressing microglial cells in the FMN in response to facial nerve axotomy (FNA) in mice. Our findings indicated that NG2 expression was progressively induced and upregulated specifically in the ipsilateral facial nucleus following FNA. To further investigate the effects of NG2 expression, in vivo studies in NG2-knockout mice and in vitro studies in rat microglial cells transfected with NG2 shRNAs were performed. Abolition of NG2 expression both in vitro and in vivo resulted in increased expression of neurotrophic factors (nerve growth factor and glial derived neurotrophic factor), decreased expression of inflammatory mediators (tumor necrosis factor-α and interleukin-1β) and decreased apoptosis in the ipsilateral facial nucleus in response to FNA. Furthermore, we demonstrated the role of FAK in these NG2-induced effects. Taken together, our findings suggest that NG2 expression mediates inflammatory reactions and neurodegeneration in microglial cells in response to CNS injury, potentially by regulating FAK phosphorylation. PMID:27306838

  14. Differential Effects of Stress on Microglial Cell Activation in Male and Female Medial Prefrontal Cortex

    PubMed Central

    Bollinger, Justin L.; Bergeon Burns, Christine M.; Wellman, Cara L.

    2016-01-01

    Susceptibility to stress-linked psychological disorders, including post-traumatic stress disorder and depression, differs between men and women. Dysfunction of medial prefrontal cortex (mPFC) has been implicated in many of these disorders. Chronic stress affects mPFC in a sex-dependent manner, differentially remodeling dendritic morphology and disrupting prefrontally mediated behaviors in males and females. Chronic restraint stress induces microglial activation, reflected in altered microglial morphology and immune factor expression, in mPFC in male rats. Unstressed females exhibit increased microglial ramification in several brain regions compared to males, suggesting both heightened basal activation and a potential for sex-dependent effects of stress on microglial activation. Therefore, we assessed microglial density and ramification in the prelimbic region of mPFC, and immune-associated genes in dorsal mPFC in male and female rats following acute or chronic restraint stress. Control rats were left unstressed. On the final day of restraint, brains were collected for either qPCR or visualization of microglia using Iba-1 immunohistochemistry. Microglia in mPFC were classified as ramified, primed, reactive, or amoeboid, and counted stereologically. Expression of microglia-associated genes (MHCII, CD40, IL6, CX3CL1, and CX3CR1) was also assessed using qPCR. Unstressed females showed a greater proportion of primed to ramified microglia relative to males, alongside heightened CX3CL1-CX3CR1 expression. Acute and chronic restraint stress reduced the proportion of primed to ramified microglia and microglial CD40 expression in females, but did not significantly alter microglial activation in males. This sex difference in microglial activation could contribute to the differential effects of stress on mPFC structure and function in males versus females. PMID:26441134

  15. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells. PMID:27169820

  16. Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca(2+) and ROS.

    PubMed

    Duong, Cao Nguyen; Kim, Jae Young

    2016-01-01

    Purpose The aim of this research was to demonstrate the protective effects of electromagnetic field (EMF) exposure on the human microglial cell line, HMO6, against ischemic cell death induced by in vitro oxygen-glucose deprivation (OGD). Materials and methods HMO6 cells were cultured for 4 h under OGD with or without exposure to EMF with different combinations of frequencies and intensities (10, 50, or 100 Hz/1 mT and 50 Hz/0.01, 0.1, or 1 mT). Cell survival, intracellular calcium and reactive oxygen species (ROS) levels were measured. Results OGD caused significant HMO6 cell death as well as elevation of intracellular Ca(2+) and ROS levels. Among different combinations of EMF frequencies and intensities, 50 Hz/1 mT EMF was the most potent to attenuate OGD-induced cell death and intracellular Ca(2+) and ROS levels. A significant but less potent protective effect was also found at 10 Hz/1 mT, whereas no protective effect was found at other combinations of EMF. A xanthine oxidase inhibitor reversed OGD-induced ROS production and cell death, while NADPH oxidase and mitochondrial respiration chain complex II inhibitors did not affect cell death. Conclusions 50 Hz/1 mT EMF protects human microglial cells from OGD-induced cell death by interfering with OGD-induced elevation of intracellular Ca(2+) and ROS levels, and xanthine oxidase is one of the main mediators involved in OGD-induced HMO6 cell death. Non-invasive treatment of EMF radiation may be clinically useful to attenuate hypoxic-ischemic brain injury.

  17. Infiltrating cells from host brain restore the microglial population in grafted cortical tissue

    PubMed Central

    Wang, Cong; Tao, Sijue; Fang, Yukun; Guo, Jing; Zhu, Lirui; Zhang, Shengxiang

    2016-01-01

    Transplantation of embryonic cortical tissue is considered as a promising therapy for brain injury. Grafted neurons can reestablish neuronal network and improve cortical function of the host brain. Microglia is a key player in regulating neuronal survival and plasticity, but its activation and dynamics in grafted cortical tissue remain unknown. Using two-photon intravital imaging and parabiotic model, here we investigated the proliferation and source of microglia in the donor region by transplanting embryonic cortical tissue into adult cortex. Live imaging showed that the endogenous microglia of the grafted tissue were rapidly lost after transplantation. Instead, host-derived microglia infiltrated and colonized the graft. Parabiotic model suggested that the main source of infiltrating cells is the parenchyma of the host brain. Colonized microglia proliferated and experienced an extensive morphological transition and eventually differentiated into resting ramified morphology. Collectively, these results demonstrated that donor tissue has little contribution to the activated microglia and host brain controls the microglial population in the graft. PMID:27615195

  18. Infiltrating cells from host brain restore the microglial population in grafted cortical tissue.

    PubMed

    Wang, Cong; Tao, Sijue; Fang, Yukun; Guo, Jing; Zhu, Lirui; Zhang, Shengxiang

    2016-01-01

    Transplantation of embryonic cortical tissue is considered as a promising therapy for brain injury. Grafted neurons can reestablish neuronal network and improve cortical function of the host brain. Microglia is a key player in regulating neuronal survival and plasticity, but its activation and dynamics in grafted cortical tissue remain unknown. Using two-photon intravital imaging and parabiotic model, here we investigated the proliferation and source of microglia in the donor region by transplanting embryonic cortical tissue into adult cortex. Live imaging showed that the endogenous microglia of the grafted tissue were rapidly lost after transplantation. Instead, host-derived microglia infiltrated and colonized the graft. Parabiotic model suggested that the main source of infiltrating cells is the parenchyma of the host brain. Colonized microglia proliferated and experienced an extensive morphological transition and eventually differentiated into resting ramified morphology. Collectively, these results demonstrated that donor tissue has little contribution to the activated microglia and host brain controls the microglial population in the graft. PMID:27615195

  19. NitroDIGE analysis reveals inhibition of protein S-nitrosylation by epigallocatechin gallates in lipopolysaccharide-stimulated microglial cells

    PubMed Central

    2014-01-01

    Background Nitric oxide (NO) is a signaling molecule regulating numerous cellular functions in development and disease. In the brain, neuronal injury or neuroinflammation can lead to microglial activation, which induces NO production. NO can react with critical cysteine thiols of target proteins forming S-nitroso-proteins. This modification, known as S-nitrosylation, is an evolutionarily conserved redox-based post-translational modification (PTM) of specific proteins analogous to phosphorylation. In this study, we describe a protocol for analyzing S-nitrosylation of proteins using a gel-based proteomic approach and use it to investigate the modes of action of a botanical compound found in green tea, epigallocatechin-3-gallate (EGCG), on protein S-nitrosylation after microglial activation. Methods/Results To globally and quantitatively analyze NO-induced protein S-nitrosylation, the sensitive gel-based proteomic method, termed NitroDIGE, was developed by combining two-dimensional differential in-gel electrophoresis (2-D DIGE) with the modified biotin switch technique (BST) using fluorescence-tagged CyDye™ thiol reactive agents to label S-nitrosothiols. The NitroDIGE method showed high specificity and sensitivity in detecting S-nitrosylated proteins (SNO-proteins). Using this approach, we identified a subset of SNO-proteins ex vivo by exposing immortalized murine BV-2 microglial cells to a physiological NO donor, or in vivo by exposing BV-2 cells to endotoxin lipopolysaccharides (LPS) to induce a proinflammatory response. Moreover, EGCG was shown to attenuate S-nitrosylation of proteins after LPS-induced activation of microglial cells primarily by modulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response. Conclusions These results demonstrate that NitroDIGE is an effective proteomic strategy for “top-down” quantitative analysis of protein S-nitrosylation in multi-group samples in response to nitrosative stress due

  20. Cannabinoids and neuronal damage: differential effects of THC, AEA and 2-AG on activated microglial cells and degenerating neurons in excitotoxically lesioned rat organotypic hippocampal slice cultures.

    PubMed

    Kreutz, Susanne; Koch, Marco; Ghadban, Chalid; Korf, Horst-Werner; Dehghani, Faramarz

    2007-01-01

    Cannabinoids (CBs) are attributed neuroprotective effects in vivo. Here, we determined the neuroprotective potential of CBs during neuronal damage in excitotoxically lesioned organotypic hippocampal slice cultures (OHSCs). OHSCs are the best characterized in vitro model to investigate the function of microglial cells in neuronal damage since blood-borne monocytes and T-lymphocytes are absent and microglial cells represent the only immunocompetent cell type. Excitotoxic neuronal damage was induced by NMDA (50 microM) application for 4 h. Neuroprotective properties of 9-carboxy-11-nor-delta-9-tetrahydrocannabinol (THC), N-arachidonoylethanolamide (AEA) or 2-arachidonoylglycerol (2-AG) in different concentrations were determined after co-application with NMDA by counting degenerating neurons identified by propidium iodide labeling (PI(+)) and microglial cells labeled by isolectin B(4) (IB(4)(+)). All three CBs used significantly decreased the number of IB(4)(+) microglial cells in the dentate gyrus but the number of PI(+) neurons was reduced only after 2-AG treatment. Application of AM630, antagonizing CB2 receptors highly expressed by activated microglial cells, did not counteract neuroprotective effects of 2-AG, but affected THC-mediated reduction of IB(4)(+) microglial cells. Our results indicate that (1) only 2-AG exerts neuroprotective effects in OHSCs; (2) reduction of IB(4)(+) microglial cells is not a neuroprotective event per se and involves other CB receptors than the CB2 receptor; (3) the discrepancy in the neuroprotective effects of CBs observed in vivo and in our in vitro model system may underline the functional relevance of invading monocytes and T-lymphocytes that are absent in OHSCs. PMID:17010339

  1. Ulinastatin suppresses lipopolysaccharide-induced prostaglandin E2 synthesis and nitric oxide production through the downregulation of nuclear factor‑κB in BV2 mouse microglial cells.

    PubMed

    Sung, Yun-Hee; Shin, Mal-Soon; Ko, Il-Gyu; Kim, Sung-Eun; Kim, Chang-Ju; Ahn, Hyun-Jong; Yoon, Hye-Sun; Lee, Bong-Jae

    2013-05-01

    Ulinastatin is an intrinsic serine-protease urinary trypsin inhibitor that can be extracted and purified from human urine. Urinary trypsin inhibitors are widely used to treat patients with acute inflammatory disorders, such as shock and pancreatitis. However, although the anti-inflammatory activities of urinary trypsin inhibitors have been investigated, the mechanisms underlying their actions are not yet fully understood. In the present study, we evaluated the effect of ulinastatin on lipopolysaccharide (LPS)-induced inflammation in relation with nuclear factor-κB (NF-κB) activation using BV2 mouse microglial cells. To accomplish this, we performed a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription-polymerase chain reaction (RT-PCR), western blot analysis, electrophoretic mobility gel shift assay (EMSA), prostaglandin E(2) (PGE(2)) immunoassay and nitric oxide (NO) detection. The results demonstrated that ulinastatin suppressed PGE2 synthesis and NO production by inhibiting the LPS-induced mRNA and protein expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) in BV2 mouse microglial cells. Ulinastatin suppressed the activation of NF-κB in the nucleus. These findings demonstrate that ulinastatin exerts analgesic and anti-inflammatory effects that possibly occur via the suppression of COX-2 and iNOS expression through the downregulation of NF-κB activity.

  2. Involvement of mitogen-activated protein kinase and NF-κB signaling pathways in perfluorooctane sulfonic acid-induced inflammatory reaction in BV2 microglial cells.

    PubMed

    Zhu, Jingying; Qian, Wenyi; Wang, Yixin; Gao, Rong; Wang, Jun; Xiao, Hang

    2015-12-01

    Microglial activation is closely related to the pathogenesis of neurodegenerative diseases by producing proinflammatory cytokines. Perfluorooctane sulfonic acid (PFOS), known as an emerging persistent organic pollutant, is reported to disturb human immune homeostasis; however, whether it affects cytokine production or the immune response in the central nervous system remains unclear. The present study was aimed to explore whether PFOS contributed to inflammatory action and to investigate the corresponding mechanisms in BV2 microglia. PFOS-mediated morphologic changes, cytokine responses and signaling events were examined by light microscopy, real-time polymerase chain reaction, enzyme-linked immunosorbent assay and Western blot assays. Our results indicated that PFOS increased BV2 cells activation and simultaneously increased tumor necrosis factor alpha and interleukin-6 expression. In addition, the c-Jun N-terminal protein kinase inhibitor (SP600125), as well as ERK1/2 blocker (PD98059), transcriptionally at least, displayed anti-inflammatory properties on PFOS-elicited cytokine responses. Moreover, the inflammatory transcription factor NF-κB was specifically activated by PFOS as well. These results, taken together, suggested that PFOS exerts its functional effects on the response of microglial cell activation via, in part, the c-Jun N-terminal protein kinase, ERK and NF-κB signaling pathways with its subsequent influence on proinflammatory action.

  3. Anti-inflammatory effects of thymoquinone in activated BV-2 microglial cells.

    PubMed

    Taka, Equar; Mazzio, Elizabeth A; Goodman, Carl B; Redmon, Natalie; Flores-Rozas, Hernan; Reams, Renee; Darling-Reed, Selina; Soliman, Karam F A

    2015-09-15

    Thymoquinone (TQ), the main pharmacological active ingredient within the black cumin seed (Nigella sativa) is believed to be responsible for the therapeutic effects on chronic inflammatory conditions such as arthritis, asthma and neurodegeneration. In this study, we evaluated the potential anti-inflammatory role of TQ in lipopolysaccharide (LPS)-stimulated BV-2 murine microglia cells. The results obtained indicate that TQ was effective in reducing NO2(-) with an IC50 of 5.04μM, relative to selective iNOS inhibitor LNIL-l-N6-(1-iminoethyl)lysine (IC50 4.09μM). TQ mediated reduction in NO2(-) was found to parallel the decline of iNOS protein expression as confirmed by immunocytochemistry. In addition, we evaluated the anti-inflammatory effects of TQ on ninety-six (96) cytokines using a RayBio AAM-CYT-3 and 4 cytokine antibody protein array. Data obtained establish a baseline protein expression profile characteristic of resting BV-2 cells in the order of osteopontin>MIP-1alpha>MIP-1g>IGF-1 and MCP-I. In the presence of LPS [1ug/ml], activated BV-2 cells produced a sharp rise in specific pro-inflammatory cytokines/chemokine's IL-6, IL-12p40/70, CCL12 /MCP-5, CCL2/MCP-1, and G-CSF which were attenuated by the addition of TQ (10μM). The TQ mediated attenuation of MCP-5, MCP-1 and IL-6 protein in supernatants from activated BV-2 cells were corroborated by independent ELISA. Moreover, the data obtained from the RT(2) PCR demonstrated a similar pattern where the LPS mediated elevation of mRNA for IL-6, CCL12/MCP-5, CCL2/MCP-1 were significantly attenuated by TQ (10μM). Also, in this study, consistent data were obtained for both protein antibody array densitometry and ELISA assays. In addition, TQ was found to reduce LPS mediated elevation in gene expression of Cxcl10 and a number of other cytokines in the panel. These findings demonstrate the significant anti-inflammatory properties of TQ in LPS activated microglial cells. Therefore, the obtained results might indicate

  4. Anti-inflammatory effects of thymoquinone in activated BV-2 microglial cells.

    PubMed

    Taka, Equar; Mazzio, Elizabeth A; Goodman, Carl B; Redmon, Natalie; Flores-Rozas, Hernan; Reams, Renee; Darling-Reed, Selina; Soliman, Karam F A

    2015-09-15

    Thymoquinone (TQ), the main pharmacological active ingredient within the black cumin seed (Nigella sativa) is believed to be responsible for the therapeutic effects on chronic inflammatory conditions such as arthritis, asthma and neurodegeneration. In this study, we evaluated the potential anti-inflammatory role of TQ in lipopolysaccharide (LPS)-stimulated BV-2 murine microglia cells. The results obtained indicate that TQ was effective in reducing NO2(-) with an IC50 of 5.04μM, relative to selective iNOS inhibitor LNIL-l-N6-(1-iminoethyl)lysine (IC50 4.09μM). TQ mediated reduction in NO2(-) was found to parallel the decline of iNOS protein expression as confirmed by immunocytochemistry. In addition, we evaluated the anti-inflammatory effects of TQ on ninety-six (96) cytokines using a RayBio AAM-CYT-3 and 4 cytokine antibody protein array. Data obtained establish a baseline protein expression profile characteristic of resting BV-2 cells in the order of osteopontin>MIP-1alpha>MIP-1g>IGF-1 and MCP-I. In the presence of LPS [1ug/ml], activated BV-2 cells produced a sharp rise in specific pro-inflammatory cytokines/chemokine's IL-6, IL-12p40/70, CCL12 /MCP-5, CCL2/MCP-1, and G-CSF which were attenuated by the addition of TQ (10μM). The TQ mediated attenuation of MCP-5, MCP-1 and IL-6 protein in supernatants from activated BV-2 cells were corroborated by independent ELISA. Moreover, the data obtained from the RT(2) PCR demonstrated a similar pattern where the LPS mediated elevation of mRNA for IL-6, CCL12/MCP-5, CCL2/MCP-1 were significantly attenuated by TQ (10μM). Also, in this study, consistent data were obtained for both protein antibody array densitometry and ELISA assays. In addition, TQ was found to reduce LPS mediated elevation in gene expression of Cxcl10 and a number of other cytokines in the panel. These findings demonstrate the significant anti-inflammatory properties of TQ in LPS activated microglial cells. Therefore, the obtained results might indicate

  5. Miglustat Improves Purkinje Cell Survival and Alters Microglial Phenotype in Feline Niemann-Pick Disease Type C

    PubMed Central

    Stein, Veronika M.; Crooks, Alexandra; Ding, Wenge; Prociuk, Maria; O’Donnell, Patricia; Bryan, Caroline; Sikora, Tracey; Dingemanse, Jasper; Vanier, Marie T.; Walkley, Steven U.; Vite, Charles H.

    2012-01-01

    Niemann-Pick disease type C (NPC disease) is an incurable cellular lipid trafficking disorder characterized by neurodegeneration and intralysosomal accumulation of cholesterol and glycosphingolipids. Treatment with miglustat, a small imino sugar that reversibly inhibits glucosylceramide synthase, which is necessary for glycosphingolipid synthesis, has been shown to benefit patients with NPC disease. The mechanism(s) and extent of brain cellular changes underlying this benefit are not understood. To investigate the basis of the efficacy of miglustat, cats with disease homologous to the juvenile-onset form of human NPC disease received daily miglustat orally beginning at 3 weeks of age. The plasma half-life of miglustat was 6.6 ± 1.1 hours, with a tmax, Cmax, and area under the plasma concentration-time curve of 1.7 ± 0.6 hours, 20.3 ± 4.6 μg/ml, and 104.1 ± 16.6 μg hours/ml, respectively. Miglustat delayed the onset of neurological signs and increased the lifespan of treated cats, and was associated with decreased GM2 ganglioside accumulation in the cerebellum and improved Purkinje cell survival. Ex vivo examination of microglia from the brains of treated cats revealed normalization of CD1c and class II major histocompatibility complex expression, as well as generation of reactive oxygen species. Together, these results suggest that prolonged Purkinje cell survival, reduced glycosphingolipid accumulation, and/or the modulation of microglial immunophenotype and function contribute to miglustat-induced neurological improvement in treated cats. PMID:22487861

  6. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb

    PubMed Central

    Grier, Bryce D.; Belluscio, Leonardo; Cheetham, Claire E. J.

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  7. Anti-neuroinflammatory effect of a novel caffeamide derivative, KS370G, in microglial cells.

    PubMed

    Lu, Dah-Yuu; Huang, Bor-Ren; Yeh, Wei-Lan; Lin, Hsiao-Yun; Huang, Shiang-Suo; Liu, Yu-Shu; Kuo, Yueh-Hsiung

    2013-12-01

    Accumulating evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play important roles in several neurodegenerative disorders. Therefore, development of methods for microglial inhibition is considered an important strategy in the search for neuroprotective agents. Caffeic acid phenethyl ester (CAPE) is distributed wildly in nature, but rapid decomposition by esterase leads to its low bioavailability. In this study, we investigated the effects of KS370G, a novel caffeic acid phenylethyl amide, on microglial activation. KS370G significantly inhibited the release of nitric oxide (NO) and the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Treatment with KS370G also induced heme oxygenase (HO)-1 and suppressors of cytokine signaling (SOCS)-3 expression in the microglia. Furthermore, the anti-inflammatory effects of KS370G were found to be regulated by phosphorylated adenosine monophosphate-activated protein kinase-α (AMPK-α) translocated to the nucleus. Moreover, KS370G showed significant anti-neuroinflammatory effects on microglial activation in vivo and on motor behavior as well. The protective effect of KS370G was weakened by an AMPK inhibitor Compound C. This study focuses on the importance of key molecular determinants of inflammatory homeostasis, AMPK, HO-1, and SOCS-3, and their possible involvement in anti-neuroinflammatory responses.

  8. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb.

    PubMed

    Grier, Bryce D; Belluscio, Leonardo; Cheetham, Claire E J

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  9. A label-free impedance-based whole cell assay revealed a new G protein-coupled receptor ligand for mouse microglial cell migration.

    PubMed

    Fukano, Yasufumi; Okino, Nozomu; Furuya, Shigeki; Ito, Makoto

    2016-09-16

    We report the usefulness of an impedance-based label-free whole cell assay to identify new ligands for G protein-coupled receptors (GPCRs) involved in microglial cell migration. Authentic GPCR ligands were subjected to the impedance-based cell assay in order to examine the responses of ligands for MG5 mouse microglial cells. Complement component 5 (C5a), adenosine 5'-diphosphate (ADP), uridine 5'-triphosphate (UTP), lysophosphatidic acid (LPA), and lysophosphatidylserine (LysoPS) were found to elicit different cellular impedance patterns, i.e. C5a, ADP, and UTP caused a transient increase in cellular impedance, while LPA and LysoPS decreased it. The responses for C5a and ADP were abolished by pertussis toxin (PTX), but not rho-associated protein kinase inhibitor, Y-27632, indicating that C5a and ADP elicited responses through the Gαi pathway. On the other hand, the response for UTP, LPA or LysoPS was not cancelled by PTX or Y-27632. In a modified Boyden chamber assay, C5a and ADP, but not UTP, LPA, or LysoPS, induced the migration of MG5 cells. These results suggest that PTX-sensitive increase in cellular impedance with the assay is characteristic for ligands of GPCRs involved in microglial cell migration. We found using this assay that 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE) is a new chemoattractant inducing microglial cell migration through the activation of Gαi. PMID:27480930

  10. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells

    PubMed Central

    Yang, Ju; Shen, Ting-ting; Chen, Yi; Yang, Xue-Sen

    2016-01-01

    Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer’s disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1–42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP), and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases. PMID:26824354

  11. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells.

    PubMed

    He, Gen-Lin; Luo, Zhen; Yang, Ju; Shen, Ting-Ting; Chen, Yi; Yang, Xue-Sen

    2016-01-01

    Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer's disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1-42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP), and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases.

  12. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells.

    PubMed

    He, Gen-Lin; Luo, Zhen; Yang, Ju; Shen, Ting-Ting; Chen, Yi; Yang, Xue-Sen

    2016-01-01

    Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer's disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1-42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP), and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases. PMID:26824354

  13. Dissecting the effects of endogenous brain IL-2 and normal versus autoreactive T lymphocytes on microglial responsiveness and T cell trafficking in response to axonal injury.

    PubMed

    Huang, Zhi; Meola, Danielle; Petitto, John M

    2012-09-27

    IL-2 is essential for T-helper regulatory (Treg) cell function and self-tolerance, and dysregulation of both endogenous brain and peripheral IL-2 gene expression may have important implications for neuronal injury and repair. We used an experimental approach combining mouse congenic breeding and immune reconstitution to test the hypothesis that the response of motoneurons to injury is modulated by the combined effects of IL2-mediated processes in the brain that modulate its endogenous neuroimmunological milieu, and IL2-mediated processes in the peripheral immune system that regulate T cell function (i.e., normal versus autoreactive Treg-deficient T cells). This experimental strategy enabled us to test our hypothesis by disentangling the effect of normal versus autoreactive T lymphocytes from the effect of endogenous brain IL-2 on microglial responsiveness (microglial phagocytic clusters normally associated with dead motoneurons and MHC2(+) activated microglia) and T cell trafficking, using the facial nerve axotomy model of injury. The results demonstrate that the loss of both brain and peripheral IL-2 had an additive effect on numbers of microglial phagocytic clusters at day 14 following injury, whereas the autoreactive status of peripheral T cells was the primary factor that determined the degree to which T cells entered the injured brain and contributed to increased microglial phagocytic clusters. Changes in activated MHC2(+) microglial in the injured FMN were associated with loss of endogenous brain IL-2 and/or peripheral IL-2. This model may provide greater understanding of the mechanisms involved in determining if T cells entering the injured central nervous system (CNS) have damaging or proregenerative effects.

  14. Anthocyanin-rich acai (Euterpe oleracea mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related increases in oxidative stress and inflammation are associated with loss of cognitive and motor functions. Previous research has shown that supplementation with berry fruits can modulate signaling in primary hippocampal neurons or BV-2 mouse microglial cells. Because of the high polypheno...

  15. Anti-inflammatory properties of tianeptine on lipopolysaccharide-induced changes in microglial cells involve toll-like receptor-related pathways.

    PubMed

    Slusarczyk, Joanna; Trojan, Ewa; Glombik, Katarzyna; Piotrowska, Anna; Budziszewska, Boguslawa; Kubera, Marta; Popiolek-Barczyk, Katarzyna; Lason, Wladyslaw; Mika, Joanna; Basta-Kaim, Agnieszka

    2016-03-01

    Accumulating evidence suggests that activation of microglia plays a key role in the pathogenesis of depression. Activated microglia produce a wide range of factors whose prolonged or excessive release may lead to brain disorders. Thus, the inhibition of microglial cells may be beneficial in the treatment of depressive diseases. Tianeptine is an atypical antidepressant drug with proven clinical efficacy, but its mechanism of action remains still not fully understood. In the present study, using microglial cultures we investigated whether tianeptine modifies microglial activation after lipopolysaccharide (LPS) stimulation and which intracellular pathways are involved in the activity of this antidepressant. Our study shows that tianeptine attenuated the LPS-evoked inflammatory activation of microglia by decreasing the expression of proinflammatory cytokines such as IL-1β, IL-18, IL-6 and tumor necrosis factor α (TNF-α), the release of nitric oxide (NO) and reactive oxygen species (ROS) as well as the expression of inducible nitric oxide synthase. Analyses of signaling pathways demonstrate that tianeptine led to the suppression of LPS-induced TLR4 expression and ERK1/2 phosphorylation. Furthermore, our study reveals the inhibitory impact of tianeptine on caspase-3-induced PKCδ degradation and consequently on the activation of NF-κB factor in microglial cells. Taken together, present results show anti-inflammatory properties of tianeptine in microglial cultures stimulated by LPS. This study provides evidence that the inhibition of microglial activation may underlie the therapeutic activity of tianeptine. Our findings show the anti-inflammatory effect of tianeptine (TIA) in lipopolisaccharide (LPS)-stimulated microglial cells. The beneficial tianeptine action is mediated through the inhibition of Toll-like receptor 4 (TLR4) expression as well as the TLR4-related pathways: extracellular signal-regulated kinase 1/2 (ERK1/2), caspase-3-dependent protein kinase δ (PKC

  16. Anti-inflammatory properties of tianeptine on lipopolysaccharide-induced changes in microglial cells involve toll-like receptor-related pathways.

    PubMed

    Slusarczyk, Joanna; Trojan, Ewa; Glombik, Katarzyna; Piotrowska, Anna; Budziszewska, Boguslawa; Kubera, Marta; Popiolek-Barczyk, Katarzyna; Lason, Wladyslaw; Mika, Joanna; Basta-Kaim, Agnieszka

    2016-03-01

    Accumulating evidence suggests that activation of microglia plays a key role in the pathogenesis of depression. Activated microglia produce a wide range of factors whose prolonged or excessive release may lead to brain disorders. Thus, the inhibition of microglial cells may be beneficial in the treatment of depressive diseases. Tianeptine is an atypical antidepressant drug with proven clinical efficacy, but its mechanism of action remains still not fully understood. In the present study, using microglial cultures we investigated whether tianeptine modifies microglial activation after lipopolysaccharide (LPS) stimulation and which intracellular pathways are involved in the activity of this antidepressant. Our study shows that tianeptine attenuated the LPS-evoked inflammatory activation of microglia by decreasing the expression of proinflammatory cytokines such as IL-1β, IL-18, IL-6 and tumor necrosis factor α (TNF-α), the release of nitric oxide (NO) and reactive oxygen species (ROS) as well as the expression of inducible nitric oxide synthase. Analyses of signaling pathways demonstrate that tianeptine led to the suppression of LPS-induced TLR4 expression and ERK1/2 phosphorylation. Furthermore, our study reveals the inhibitory impact of tianeptine on caspase-3-induced PKCδ degradation and consequently on the activation of NF-κB factor in microglial cells. Taken together, present results show anti-inflammatory properties of tianeptine in microglial cultures stimulated by LPS. This study provides evidence that the inhibition of microglial activation may underlie the therapeutic activity of tianeptine. Our findings show the anti-inflammatory effect of tianeptine (TIA) in lipopolisaccharide (LPS)-stimulated microglial cells. The beneficial tianeptine action is mediated through the inhibition of Toll-like receptor 4 (TLR4) expression as well as the TLR4-related pathways: extracellular signal-regulated kinase 1/2 (ERK1/2), caspase-3-dependent protein kinase δ (PKC

  17. Microglial P2Y12 Receptors Regulate Microglial Activation and Surveillance during Neuropathic Pain

    PubMed Central

    Gu, Nan; Eyo, Ukpong B.; Murugan, Madhuvika; Peng, Jiyun; Matta, Sanjana; Dong, Hailong; Wu, Long-Jun

    2016-01-01

    Microglial cells are critical in the pathogenesis of neuropathic pain and several microglial receptors have been proposed to mediate this process. Of these receptors, the P2Y12 receptor is a unique purinergic receptor that is exclusively expressed by microglia in the central nervous system (CNS). In this study, we set forth to investigate the role of P2Y12 receptors in microglial electrophysiological and morphological (static and dynamic) activation during spinal nerve transection (SNT)-induced neuropathic pain in mice. First, we found that a genetic deficiency of the P2Y12 receptor (P2Y12−/− mice) ameliorated pain hypersensitivities during the initiation phase of neuropathic pain. Next, we characterized both the electrophysiological and morphological properties of microglia in the superficial spinal cord dorsal horn following SNT injury. We show dramatic alterations including a peak at 3 days post injury in microglial electrophysiology while high resolution two-photon imaging revealed significant changes of both static and dynamic microglial morphological properties by 7 days post injury. Finally, in P2Y12−/− mice, these electrophysiological and morphological changes were ameliorated suggesting roles for P2Y12 receptors in SNT-induced microglial activation. Our results therefore indicate that P2Y12 receptors regulate microglial electrophysiological as well as static and dynamic microglial properties after peripheral nerve injury, suggesting that the microglial P2Y12 receptor could be a potential therapeutic target for the treatment of neuropathic pain. PMID:26576724

  18. Active immunotherapy facilitates Aβ plaque removal following through microglial activation without obvious T cells infiltrating the CNS.

    PubMed

    Sha, Sha; Xing, Xiao-Na; Cao, Yun-Peng

    2014-09-15

    Immunization of AD mouse models with Aβ reduced Aβ deposits and improved memory and learning deficits, but some clinical trials of immunization with Aβ were halted due to brain inflammation which was presumably induced by a T cell-mediated autoimmune response. We have developed a "possibly safer" vaccine. Our results demonstrate that pcDNA3.1 vector encoding ten repeats of Aβ3-10 fragments elicited high titers of antibodies which reacted well with not only monomeric but also oligomeric and fibrillar forms of Aβ42 peptide. Induced antibodies strongly reacted with amyloid plaques in the brain, demonstrating functional activity of the antibodies. Immunohistochemical and immunofluorescence showed there was significantly less plaque deposition accomplied with less microglia activation as detected both in the frontal cortex and hippocampus. These data suggested that microglial activation is necessary for efficient removal of compact amyloid deposits with immunotherapy. No obvious inflammation T cell and Prussian blue positive cell was found indicated that inflammation T cell infiltration and microhemmorage can be avoided or at least reduced to the minimum level. PMID:25087756

  19. Vaccination with heat-shocked mononuclear cells as a strategy for treating neurodegenerative disorders driven by microglial inflammation.

    PubMed

    McCarty, Mark F; Al-Harbi, Saleh A

    2013-11-01

    Naturally occurring T regulatory cells targeting epitopes derived from various heat shock proteins escape thymic negative selection and can be activated by vaccination with heat shock proteins; hence, vaccination with such proteins has exerted favorable effects on rodent models of autoimmune disorders. A more elegant way to achieve such vaccination, first evaluated clinically by Al-Harbi in the early 1990s, is to subject mononuclear cells to survivable heat shock ex vivo, incubate them at physiological temperature for a further 24-48 h, and then inject them subcutaneously; anecdotally, beneficial effects were observed with this strategy in a wide range of autoimmune and inflammatory conditions. There is growing evidence that M1-activated microglia play a primary or secondary role in the pathogenesis of numerous neurodegenerative diseases, as well as in major depression. T regulatory cells, by polarizing microglial toward a reparative M2 phenotype, have the potential to aid control of such disorders. It would be appropriate to test the heat-shocked mononuclear cell vaccination strategy in animal models of neurodegeneration and major depression, and to evaluate this approach clinically if such studies yield encouraging results. PMID:23968572

  20. Production of Nfa1-specific monoclonal antibodies that influences the in vitro cytotoxicity of Naegleria fowleri trophozoites on microglial cells.

    PubMed

    Lee, Yang-Jin; Kim, Jong-Hyun; Jeong, Seok-Ryoul; Song, Kyoung-Ju; Kim, Kyongmin; Park, Sun; Park, Moon-Sung; Shin, Ho-Joon

    2007-10-01

    Naegleria fowleri, agent of fatal primary amoebic meningoencephalitis, appears to induce cytotoxicity mechanically through its contact with the cell. The nfa1 gene cloned from a cDNA library of pathogenic N. fowleri by immunoscreening consists of 360 bp and expresses a 13.1-kDa recombinant protein (rNfa1) that demonstrated localization in the pseudopodia when examined using immunocytochemistry. To study the mechanisms involved in N. fowleri cytotoxicity, we developed a large volume of rNfa1-specific monoclonal antibody (McAb) against a 17-kDa His-tag fusion rNfa1 protein using a cell fusion technique. We established eight McAb-producing hybridoma cells. The antibodies were all immunoglobulin G2b and reacted strongly with a 17-kDa band representing the rNfa1 fusion protein in Western blotting, demonstrating immunoreactivity to the Nfa1 protein in pseudopodia (especially in the food cups) of N. fowleri trophozoites. A 51Cr-release assay indicated N. fowleri cytotoxicity by demonstrating that it eliminated 37.8, 60.6, and 98.8% of the target (microglial) cells 6, 12, and 24 h after co-incubation, respectively. When an anti-Nfa1 McAb was added to the coculture system, N. fowleri cytotoxicity decreased to 29.8, 44.1, and 66.3%, respectively.

  1. Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells.

    PubMed

    Jeong, Jin-Woo; Jin, Cheng-Yun; Kim, Gi-Young; Lee, Jae-Dong; Park, Cheol; Kim, Gun-Do; Kim, Wun-Jae; Jung, Won-Kyo; Seo, Su Kil; Choi, Il-Whan; Choi, Yung Hyun

    2010-12-01

    Cordyceps militaris, a traditional medicinal mushroom, produces the bioactive compound cordycepin (3'-deoxyadenosine). Although cordycepin has been shown to have pharmacological, immunological stimulating, anti-cancer, and anti-inflammatory activities, its activities and cellular mechanisms during microglial activation have yet to be elucidated. Thus, we evaluated the anti-inflammatory effect of cordycepin on the production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated murine BV2 microglia. We also investigated the effects of cordycepin on LPS-induced nuclear factor-kappaB (NF-κB) activation and on phosphorylation of mitogen-activated protein kinases (MAPKs). After LPS stimulation, nitric oxide (NO), prostaglandin E₂ (PGE₂), and pro-inflammatory cytokine production was detected in BV2 microglia. However, we found that cordycepin significantly inhibited the excessive production of NO, PGE₂, and pro-inflammatory cytokines in a concentration-dependent manner without causing cytotoxicity. In addition, cordycepin suppressed NF-κB translocation by blocking IkappaB-α (IκB-α) degradation and inhibited the phosphorylation of Akt, ERK-1/2, JNK, and p38 kinase. Our results indicate that the inhibitory effect of cordycepin on LPS-stimulated inflammatory mediator production in BV2 microglia is associated with the suppression of the NF-κB, Akt, and MAPK signaling pathways. Therefore, cordycepin may be useful in treating neurodegenerative diseases by inhibiting inflammatory mediator production in activated microglia. PMID:20937401

  2. Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells

    PubMed Central

    Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup

    2016-01-01

    Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation. PMID:26838068

  3. Sesquiterpenes inhibiting the microglial activation from Laurus nobilis.

    PubMed

    Chen, Hongqiang; Xie, Chunfeng; Wang, Hao; Jin, Da-Qing; Li, Shen; Wang, Meicheng; Ren, Quanhui; Xu, Jing; Ohizumi, Yasushi; Guo, Yuanqiang

    2014-05-21

    The inhibitory reagents to inhibit the activation of microglial cells may be potentially useful for the treatment of neurodegenerative diseases. The leaves of the plant Laurus nobilis belonging to the family Lauraceae, namely, bay leaves, have been used as a popular spice, and their extract showed moderate inhibition on microglial activation. A further phytochemical investigation of the leaves led to the isolation of two new (1, 2) and eight known (3-10) sesquiterpenes. Their structures were elucidated on the basis of extensive 1D and 2D NMR (HMQC, HMBC, (1)H-(1)H COSY, and NOESY) spectroscopic data analyses and Chem3D modeling. The following biological studies disclosed that these isolated compounds showed inhibitory activities on LPS-induced microglial activation. The results of our phytochemical investigation, including two new sesquiterpenes (1 and 2) and the first report of two compounds (3 and 4) from this species, further revealed the chemical composition of bay leaves as a popular spice, and the biological studies implied that bay leaves, containing bioactive substances with the inhibition of microglial activation, were potentially beneficial to human health. PMID:24801989

  4. Sesquiterpenes inhibiting the microglial activation from Laurus nobilis.

    PubMed

    Chen, Hongqiang; Xie, Chunfeng; Wang, Hao; Jin, Da-Qing; Li, Shen; Wang, Meicheng; Ren, Quanhui; Xu, Jing; Ohizumi, Yasushi; Guo, Yuanqiang

    2014-05-21

    The inhibitory reagents to inhibit the activation of microglial cells may be potentially useful for the treatment of neurodegenerative diseases. The leaves of the plant Laurus nobilis belonging to the family Lauraceae, namely, bay leaves, have been used as a popular spice, and their extract showed moderate inhibition on microglial activation. A further phytochemical investigation of the leaves led to the isolation of two new (1, 2) and eight known (3-10) sesquiterpenes. Their structures were elucidated on the basis of extensive 1D and 2D NMR (HMQC, HMBC, (1)H-(1)H COSY, and NOESY) spectroscopic data analyses and Chem3D modeling. The following biological studies disclosed that these isolated compounds showed inhibitory activities on LPS-induced microglial activation. The results of our phytochemical investigation, including two new sesquiterpenes (1 and 2) and the first report of two compounds (3 and 4) from this species, further revealed the chemical composition of bay leaves as a popular spice, and the biological studies implied that bay leaves, containing bioactive substances with the inhibition of microglial activation, were potentially beneficial to human health.

  5. Fasudil inhibits LPS-induced migration of retinal microglial cells via regulating p38-MAPK signaling pathway

    PubMed Central

    Xu, Fan; Xu, Yue; Zhu, Liqiong; Rao, Pinhong; Wen, Jiamin; Sang, Yunyun; Shang, Fu

    2016-01-01

    Purpose To investigate the effect and possible molecular mechanisms of fasudil on retinal microglial (RMG) cell migration. Methods Primary cultured RMG cells were incubated with lipopolysaccharide (LPS), fasudil, and/or SB203580 (a p38 inhibitor). RMG cell motility was determined with the scratch wound assay and the Transwell migration assay. The phosphorylation of p38 and levels of matrix metalloproteinase 2 (MMP-2) and MMP-9 were measured with western blot. Results In the scratch-induced migration assay, as well as in the Transwell migration assay, the results indicated that LPS stimulated the migratory potential of RMG cells and fasudil significantly reduced LPS-stimulated RMG cell migration in a concentration-dependent manner. However, fasudil had no effect on RMG cell migration in the absence of LPS stimulation. Moreover, fasudil reduced the level of phosphor-p38 mitogen-activated protein kinase (p-p38-MAPK) in a concentration-dependent manner, without effects on the levels of phospho-p44/42 (p-ERK1/2) and phospho-c-Jun N-terminal kinase (p-JNK). Cotreatment with SB203580 (a p38 inhibitor) and fasudil resulted in the synergistic reduction of MMP-2, MMP-9, and p-p38-MAPK, as well as a reduction in the LPS-stimulated migration capabilities of the RMG cells, suggesting fasudil suppresses the LPS-stimulated migration of RMG cells via directly downregulating the p38-MAPK signaling pathway. Conclusions Our studies indicated that fasudil inhibited LPS-stimulated RMG cell migration via suppression of the p38-MAPK signaling pathway. PMID:27441000

  6. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    SciTech Connect

    Park, Sun Young; Kim, Ji-Hee; Lee, Sang Joon; Kim, YoungHee

    2013-04-01

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E{sub 2} (PGE{sub 2}), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates

  7. Differential transcriptional profiles mediated by exposure to the cannabinoids cannabidiol and Δ9-tetrahydrocannabinol in BV-2 microglial cells

    PubMed Central

    Juknat, Ana; Pietr, Maciej; Kozela, Ewa; Rimmerman, Neta; Levy, Rivka; Coppola, Giovanni; Geschwind, Daniel; Vogel, Zvi

    2012-01-01

    BACKGROUND AND PURPOSE Apart from their effects on mood and reward, cannabinoids exert beneficial actions such as neuroprotection and attenuation of inflammation. The immunosuppressive activity of cannabinoids has been well established. However, the underlying mechanisms are largely unknown. We previously showed that the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) and the non-psychoactive cannabidiol (CBD) differ in their anti-inflammatory signalling pathways. EXPERIMENTAL APPROACH To characterize the transcriptional effects of CBD and THC, we treated BV-2 microglial cells with these compounds and performed comparative microarray analysis using the Illumina MouseRef-8 BeadChip platform. Ingenuity Pathway Analysis was performed to identify functional subsets of genes and networks regulated by CBD and/or THC. KEY RESULTS Overall, CBD altered the expression of many more genes; from the 1298 transcripts found to be differentially regulated by the treatments, 680 gene probe sets were up-regulated by CBD and 58 by THC, and 524 gene products were down-regulated by CBD and only 36 by THC. CBD-specific gene expression profile showed changes associated with oxidative stress and glutathione depletion, normally occurring under nutrient limiting conditions or proteasome inhibition and involving the GCN2/eIF2α/p8/ATF4/CHOP-TRIB3 pathway. Furthermore, CBD-stimulated genes were shown to be controlled by nuclear factors known to be involved in the regulation of stress response and inflammation, mainly via the (EpRE/ARE)-Nrf2/ATF4 system and the Nrf2/Hmox1 axis. CONCLUSIONS AND IMPLICATIONS These observations indicated that CBD, but much less than THC, induced a cellular stress response in microglial cells and suggested that this effect could underlie its anti-inflammatory activity. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012

  8. Minocycline Effects on IL-6 Concentration in Macrophage and Microglial Cells in a Rat Model of Neuropathic Pain

    PubMed Central

    Moini-Zanjani, Taraneh; Ostad, Seyed-Nasser; Labibi, Farzaneh; Ameli, Haleh; Mosaffa, Nariman; Sabetkasaei, Masoumeh

    2016-01-01

    Background: Evidence indicates that neuropathic pain pathogenesis is not confined to changes in the activity of neuronal systems but involves interactions between neurons, inflammatory immune and immune-like glial cells. Substances released from immune cells during inflammation play an important role in development and maintenance of neuropathic pain. It has been found that minocycline suppresses the development of neuropathic pain. Here, we evaluated the analgesic effect of minocycline in a chronic constriction injury (CCI) model of neuropathic pain in rat and assessed IL-6 concentration from cultured macrophage and microglia cells. Methods: Male Wistar rat (n=6, 150-200 g) were divided into three different groups: 1) CCI+vehicle, 2) sham+vehicle, and 3) CCI+drug. Minocycline (10, 20, and 40 mg/kg) was injected one hour before surgery and continued daily to day 14 post ligation. Von Frey filaments and acetone, as pain behavioral tests, were used for mechanical allodynia and cold allodynia, respectively. Experiments were performed on day 0 (before surgery) and days 1, 3, 5, 7, 10, and 14 post -injury. At day 14, rats were killed and monocyte-derived macrophage from right ventricle and microglia from lumbar part of the spinal cord were isolated and cultured in RPMI and Leibovitz’s media, respectively. IL-6 concentration was evaluated in cell culture supernatant after 24 h. Results: Minocycline (10, 20, and 40 mg/kg) attenuated pain behavior, and a decrease in IL-6 concentration was observed in immune cells compared to CCI vehicle-treated animals. Conclusion: Minocycline reduced pain behavior and decreased IL-6 concentration in macrophage and microglial cells. PMID:27221523

  9. Differential plasticity of microglial cells in the rostrocaudal neuraxis of the accessory olfactory bulb of female mice following mating and stud male exposure.

    PubMed

    Okere, Chuma O

    2012-04-11

    The formation of an olfactory recognition memory by female mice for the stud male pheromones requires two fundamental conditions: incidence of mating and retention of the stud male with the female for a critical 6h interval following mating. This biologically critical recognition memory results from plasticity of reciprocal dendrodendritic synapses in the accessory olfactory bulb (AOB). In this study, a microglia marker antibody (ionized calcium-binding adaptor protein, Iba1) was used to determine how mating and stud pheromones affect microglia in the AOB rostrocaudal axis in female mice. The results showed that compared with estrus and mating only, mating and pheromone exposure significantly increased Iba1 immunoreactivity in the AOB evidenced by increased complexity of ramified microglial processes characteristic of resting microglial morphological phenotype, particularly in the rostral AOB. The density of Iba1 staining after mating and stud pheromone exposure was higher in the rostral - compared to caudal - AOB and was most prevalent in the external plexiform layer, the site of reciprocal mitral-granule dendrodendritic synapses. While cells with activated phenotype were observed in caudal AOB during estrus, mating/pheromone exposure appeared to induce a morphological transformation to the resting microglia phenotype. Since previous evidence implicate the rostral AOB in processing pheromonal signals and microglial cells monitor active synapses, these observations have important functional implications for a potential role for microglia in processing pheromonal signals in the AOB during the formation of olfactory memory.

  10. Neochlorogenic Acid Inhibits Lipopolysaccharide-Induced Activation and Pro-inflammatory Responses in BV2 Microglial Cells.

    PubMed

    Kim, Mina; Choi, Sang-Yoon; Lee, Pyeongjae; Hur, Jinyoung

    2015-09-01

    Microglia is the resident innate immune cells that sense pathogens and tissue injury in the central nervous system. Microglia becomes activated in response to injury, infection, and other stimuli that threaten neuronal survival. Microglia activation plays an important role in neurodegenerative diseases. Neochlorogenic acid (NCA) is a natural polyphenolic compound found in dried fruits and other plants. Although previous studies have shown that phenolic acids including NCA have outstanding antioxidant, antibacterial, antiviral, and antipyretic activities, there has not yet been investigated for anti-inflammatory effects. Therefore, for the first time we have examined the potential of NCA to inhibit microglial activation and pro-inflammatory responses in the brain. We found that lipopolysaccharide-induced inducible nitric oxide synthase, and cyclooxygenase-2 expression, and nitric oxide formation was suppressed by NCA in a dose-dependent manner in BV2 microglia. NCA also inhibited the production of pro-inflammatory mediators, tumor necrosis factor-α and interleukin-1 beta. Furthermore, phosphorylated nuclear factor-kappa B p65 and p38 mitogen-activated protein kinase activation were blocked by NCA. Taken together, these results suggest that NCA exerts neuroprotective effects through the inhibition of pro-inflammatory pathways in activated microglia.

  11. Autologous bone marrow mononuclear cells therapy attenuates activated microglial/macrophage response and improves spatial learning after traumatic brain injury

    PubMed Central

    Bedi, Supinder S.; Walker, Peter A.; Shah, Shinil K.; Jimenez, Fernando; Thomas, Chelsea P.; Smith, Philippa; Hetz, Robert A.; Xue, Hasen; Pati, Shibani; Dash, Pramod K.; Cox, Charles S.

    2014-01-01

    Background Autologous bone marrow-derived mononuclear cells (AMNC) have shown therapeutic promise for central nervous system insults such as stroke and traumatic brain injury (TBI). We hypothesized that intravenous injection of AMNC provides neuroprotection which leads to cognitive improvement after TBI. Methods A controlled cortical impact (CCI) rodent traumatic brain injury (TBI) model was used to examine blood-brain barrier permeability (BBB), neuronal and glial apoptosis and cognitive behavior. Two groups of rats underwent CCI with (CCI-Autologous) or without AMNC treatment (CCI-Alone), consisting of 2 million AMNC/kilogram body weight harvested from the tibia and intravenously injected 72 hr after injury. CCI-Alone animals underwent sham harvests and received vehicle injections. Results 96 hr after injury, AMNC significantly reduced the BBB permeability in injured animals, and there was an increase in apoptosis of pro-inflammatory activated microglia in the ipsilateral hippocampus. At 4 weeks after injury, we examined changes in spatial memory after TBI due to AMNC treatment. There was a significant improvement in probe testing of CCI-Autologous group in comparison to CCI-Alone in the Morris Water Maze paradigm. Conclusions Our data demonstrate that the intravenous injection of AMNC after TBI leads to neuroprotection by preserving early BBB integrity and increasing activated microglial apoptosis. In addition, AMNC also improves cognitive function. PMID:23928737

  12. Intravenous multipotent adult progenitor cell therapy attenuates activated microglial/macrophage response and improves spatial learning after traumatic brain injury.

    PubMed

    Bedi, Supinder S; Hetz, Robert; Thomas, Chelsea; Smith, Philippa; Olsen, Alex B; Williams, Stephen; Xue, Hasen; Aroom, Kevin; Uray, Karen; Hamilton, Jason; Mays, Robert W; Cox, Charles S

    2013-12-01

    We previously demonstrated that the intravenous delivery of multipotent adult progenitor cells (MAPCs) after traumatic brain injury (TBI) in rodents provides neuroprotection by preserving the blood-brain barrier and systemically attenuating inflammation in the acute time frame following cell treatment; however, the long-term behavioral and anti-inflammatory effects of MAPC administration after TBI have yet to be explored. We hypothesized that the intravenous injection of MAPCs after TBI attenuates the inflammatory response (as measured by microglial morphology) and improves performance at motor tasks and spatial learning (Morris water maze [MWM]). MAPCs were administered intravenously 2 and 24 hours after a cortical contusion injury (CCI). We tested four groups at 120 days after TBI: sham (uninjured), injured but not treated (CCI), and injured and treated with one of two concentrations of MAPCs, either 2 million cells per kilogram (CCI-2) or 10 million cells per kilogram (CCI-10). CCI-10 rats showed significant improvement in left hind limb deficit on the balance beam. On the fifth day of MWM trials, CCI-10 animals showed a significant decrease in both latency to platform and distance traveled compared with CCI. Probe trials revealed a significant decrease in proximity measure in CCI-10 compared with CCI, suggesting improved memory retrieval. Neuroinflammation was quantified by enumerating activated microglia in the ipsilateral hippocampus. We observed a significant decrease in the number of activated microglia in the dentate gyrus in CCI-10 compared with CCI. Our results demonstrate that intravenous MAPC treatment after TBI in a rodent model offers long-term improvements in spatial learning as well as attenuation of neuroinflammation.

  13. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    PubMed

    Zhou, Hui; Qu, Zhe; Mossine, Valeri V; Nknolise, Dineo L; Li, Jilong; Chen, Zhenzhou; Cheng, Jianlin; Greenlief, C Michael; Mawhinney, Thomas P; Brown, Paula N; Fritsche, Kevin L; Hannink, Mark; Lubahn, Dennis B; Sun, Grace Y; Gu, Zezong

    2014-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.

  14. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    PubMed

    Zhou, Hui; Qu, Zhe; Mossine, Valeri V; Nknolise, Dineo L; Li, Jilong; Chen, Zhenzhou; Cheng, Jianlin; Greenlief, C Michael; Mawhinney, Thomas P; Brown, Paula N; Fritsche, Kevin L; Hannink, Mark; Lubahn, Dennis B; Sun, Grace Y; Gu, Zezong

    2014-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress. PMID:25420111

  15. Proteomic Analysis of the Effects of Aged Garlic Extract and Its FruArg Component on Lipopolysaccharide-Induced Neuroinflammatory Response in Microglial Cells

    PubMed Central

    Mossine, Valeri V.; Nknolise, Dineo L.; Li, Jilong; Chen, Zhenzhou; Cheng, Jianlin; Greenlief, C. Michael; Mawhinney, Thomas P.; Brown, Paula N.; Fritsche, Kevin L.; Hannink, Mark; Lubahn, Dennis B.; Sun, Grace Y.; Gu, Zezong

    2014-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress. PMID:25420111

  16. Reticulocalbin-1 Facilitates Microglial Phagocytosis

    PubMed Central

    Ding, Ying; Caberoy, Nora B.; Guo, Feiye; LeBlanc, Michelle E.; Zhang, Chenming; Wang, Weiwen; Wang, Feng; Chen, Rui; Li, Wei

    2015-01-01

    Phagocytosis is critical to the clearance of apoptotic cells, cellular debris and deleterious metabolic products for tissue homeostasis. Phagocytosis ligands directly recognizing deleterious cargos are the key to defining the functional roles of phagocytes, but are traditionally identified on a case-by-case basis with technical challenges. As a result, extrinsic regulation of phagocytosis is poorly defined. Here we demonstrate that microglial phagocytosis ligands can be systematically identified by a new approach of functional screening. One of the identified ligands is reticulocalbin-1 (Rcn1), which was originally reported as a Ca2+-binding protein with a strict expression in the endoplasmic reticulum. Our results showed that Rcn1 can be secreted from healthy cells and that secreted Rcn1 selectively bound to the surface of apoptotic neurons, but not healthy neurons. Independent characterization revealed that Rcn1 stimulated microglial phagocytosis of apoptotic but not healthy neurons. Ingested apoptotic cells were targeted to phagosomes and co-localized with phagosome marker Rab7. These data suggest that Rcn1 is a genuine phagocytosis ligand. The new approach described in this study will enable systematic identification of microglial phagocytosis ligands with broad applicability to many other phagocytes. PMID:25992960

  17. Reticulocalbin-1 facilitates microglial phagocytosis.

    PubMed

    Ding, Ying; Caberoy, Nora B; Guo, Feiye; LeBlanc, Michelle E; Zhang, Chenming; Wang, Weiwen; Wang, Feng; Chen, Rui; Li, Wei

    2015-01-01

    Phagocytosis is critical to the clearance of apoptotic cells, cellular debris and deleterious metabolic products for tissue homeostasis. Phagocytosis ligands directly recognizing deleterious cargos are the key to defining the functional roles of phagocytes, but are traditionally identified on a case-by-case basis with technical challenges. As a result, extrinsic regulation of phagocytosis is poorly defined. Here we demonstrate that microglial phagocytosis ligands can be systematically identified by a new approach of functional screening. One of the identified ligands is reticulocalbin-1 (Rcn1), which was originally reported as a Ca2+-binding protein with a strict expression in the endoplasmic reticulum. Our results showed that Rcn1 can be secreted from healthy cells and that secreted Rcn1 selectively bound to the surface of apoptotic neurons, but not healthy neurons. Independent characterization revealed that Rcn1 stimulated microglial phagocytosis of apoptotic but not healthy neurons. Ingested apoptotic cells were targeted to phagosomes and co-localized with phagosome marker Rab7. These data suggest that Rcn1 is a genuine phagocytosis ligand. The new approach described in this study will enable systematic identification of microglial phagocytosis ligands with broad applicability to many other phagocytes.

  18. High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells

    PubMed Central

    Gonzalez Carter, Daniel A.; Motskin, Michael; Pienaar, Ilse S.; Chen, Shu; Hu, Sheng; Ruenraroengsak, Pakatip; Ryan, Mary P.; Shaffer, Milo S. P.; Dexter, David T.

    2016-01-01

    Multi-walled carbon nanotubes (MWNTs) are increasingly being developed both as neuro-therapeutic drug delivery systems to the brain and as neural scaffolds to drive tissue regeneration across lesion sites. MWNTs with different degrees of acid oxidation may have different bioreactivities and propensities to aggregate in the extracellular environment, and both individualised and aggregated MWNTs may be expected to be found in the brain. Before practical application, it is vital to understand how both aggregates and individual MWNTs will interact with local phagocytic immune cells, the microglia, and ultimately to determine their biopersistence in the brain. The processing of extra- and intracellular MWNTs (both pristine and when acid oxidised) by microglia was characterised across multiple length scales by correlating a range of dynamic, quantitative and multi-scale techniques, including: UV-vis spectroscopy, light microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy. Dynamic, live cell imaging revealed the ability of microglia to break apart and internalise micron-sized extracellular agglomerates of acid oxidised MWNT, but not pristine MWNTs. The total amount of MWNTs internalised by, or strongly bound to, microglia was quantified as a function of time. Neither the significant uptake of oxidised MWNTs, nor the incomplete uptake of pristine MWNTs affected microglial viability, pro-inflammatory cytokine release or nitric oxide production. However, after 24 hrs exposure to pristine MWNTs, a significant increase in the production of reactive oxygen species was observed. Small aggregates and individualised oxidised MWNTs were present in the cytoplasm and vesicles, including within multilaminar bodies, after 72 hours. Some evidence of morphological damage to oxidised MWNT structure was observed including highly disordered graphitic structures, suggesting possible biodegradation. This work demonstrates the utility of dynamic

  19. High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells.

    PubMed

    Goode, Angela E; Gonzalez Carter, Daniel A; Motskin, Michael; Pienaar, Ilse S; Chen, Shu; Hu, Sheng; Ruenraroengsak, Pakatip; Ryan, Mary P; Shaffer, Milo S P; Dexter, David T; Porter, Alexandra E

    2015-11-01

    Multi-walled carbon nanotubes (MWNTs) are increasingly being developed both as neuro-therapeutic drug delivery systems to the brain and as neural scaffolds to drive tissue regeneration across lesion sites. MWNTs with different degrees of acid oxidation may have different bioreactivities and propensities to aggregate in the extracellular environment, and both individualised and aggregated MWNTs may be expected to be found in the brain. Before practical application, it is vital to understand how both aggregates and individual MWNTs will interact with local phagocytic immune cells, the microglia, and ultimately to determine their biopersistence in the brain. The processing of extra- and intracellular MWNTs (both pristine and when acid oxidised) by microglia was characterised across multiple length scales by correlating a range of dynamic, quantitative and multi-scale techniques, including: UV-vis spectroscopy, light microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy. Dynamic, live cell imaging revealed the ability of microglia to break apart and internalise micron-sized extracellular agglomerates of acid oxidised MWNTs, but not pristine MWNTs. The total amount of MWNTs internalised by, or strongly bound to, microglia was quantified as a function of time. Neither the significant uptake of oxidised MWNTs, nor the incomplete uptake of pristine MWNTs affected microglial viability, pro-inflammatory cytokine release or nitric oxide production. However, after 24 h exposure to pristine MWNTs, a significant increase in the production of reactive oxygen species was observed. Small aggregates and individualised oxidised MWNTs were present in the cytoplasm and vesicles, including within multilaminar bodies, after 72 h. Some evidence of morphological damage to oxidised MWNT structure was observed including highly disordered graphitic structures, suggesting possible biodegradation. This work demonstrates the utility of dynamic

  20. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells

    PubMed Central

    2010-01-01

    Background In several neuropathological conditions, microglia can become overactivated and cause neurotoxicity by initiating neuronal damage in response to pro-inflammatory stimuli. Our previous studies have shown that exposure to electromagnetic fields (EMF) activates cultured microglia to produce tumor necrosis factor (TNF)-α and nitric oxide (NO) through signal transduction involving the activator of transcription STAT3. Here, we investigated the role of STAT3 signaling in EMF-induced microglial activation and pro-inflammatory responses in more detail than the previous study. Methods N9 microglial cells were treated with EMF exposure or a sham treatment, with or without pretreatment with an inhibitor (Pyridone 6, P6) of the Janus family of tyrosine kinases (JAK). The activation state of microglia was assessed via immunoreaction using the microglial marker CD11b. Levels of inducible nitric oxide synthase (iNOS), TNF-α and NO were measured using real-time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and the nitrate reductase method. Activation of JAKs and STAT3 proteins was evaluated by western blotting for specific tyrosine phosphorylation. The ability of STAT3 to bind to DNA was detected with an electrophoresis mobility shift assay (EMSA). Results EMF was found to significantly induce phosphorylation of JAK2 and STAT3, and DNA-binding ability of STAT3 in N9 microglia. In addition, EMF dramatically increased the expression of CD11b, TNF-α and iNOS, and the production of NO. P6 strongly suppressed the phosphorylation of JAK2 and STAT3 and diminished STAT3 activity in EMF-stimulated microglia. Interestingly, expression of CD11b as well as gene expression and production of TNF-α and iNOS were suppressed by P6 at 12 h, but not at 3 h, after EMF exposure. Conclusions EMF exposure directly triggers initial activation of microglia and produces a significant pro-inflammatory response. Our findings confirm that

  1. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels.

    PubMed

    Roque, Angélica; Ochoa-Zarzosa, Alejandra; Torner, Luz

    2016-07-01

    Adult animals subjected to chronic stress show an inflammatory response in the hippocampus which has been related to cognitive dysfunction and psychopathology. However the immediate consequences of early life stress on hippocampal glial cells have not been studied. Here we analyzed the effects of maternal separation (MS) on astrocyte and microglial cell morphology in the hippocampal hilus, compared the expression of cytokines in the hippocampus and hypothalamus, and the peripheral response of cytokines, on postnatal day (PD) 15. Male rat pups of MS (3h/day, PD1-PD14) and Control (CONT) pups showed similar microglial cell densities in the hilus, but MS pups presented more activated microglia. MS decreased astrocyte density and the number of processes in the hilus. Cytokine mRNA expression (qPCR) was analyzed in MS and CONT groups, sacrificed (i) under basal (B) conditions or (ii) after a single stress event (SS) at PN15. In hippocampal extracts, MS increased IL-1β mRNA, under B and SS conditions while IL-6 and TNF-α did not change. In hypothalamic tissue, MS increased TNF-α and IL-6 mRNA, but not IL-1b, after SS. Peripheral concentrations of IL-1β were decreased under B and SS conditions in MS; IL-6 concentration increased after SS in MS pups, and TNF-α concentration was unchanged. In conclusion, MS activates microglial cells and decreases astrocyte density in the hippocampus. A differential cytokine expression is observed in the hippocampus and the hypothalamus after MS, and after SS. Also, MS triggers an independent response of peripheral cytokines. These specific responses together could contribute to decrease hippocampal neurogenesis and alter the neuroendocrine axis.

  2. Regulation of microglial migration, phagocytosis, and neurite outgrowth by HO-1/CO signaling.

    PubMed

    Scheiblich, Hannah; Bicker, Gerd

    2015-08-01

    Clearance of infected and apoptotic neuronal corpses during inflammatory conditions is a fundamental process to create a favorable environment for neuronal recovery. Microglia are the resident immune cells and the predominant phagocytic cells of the CNS, showing a multitude of cellular responses upon activation. Here, we investigated in functional assays how the CO generating enzyme heme oxygenase 1 (HO-1) influences BV-2 microglial migration, clearance of debris, and neurite outgrowth of human NT2 neurons. Stimulation of HO-1 activity attenuated microglial migration in a scratch wound assay, and phagocytosis in a cell culture model of acute inflammation comprising lipopolysaccharide (LPS)-activated microglia and apoptosis-induced neurons. Application of a CO donor prevented the production of NO during LPS stimulation, and reduced microglial migration and engulfment of neuronal debris. LPS-activated microglia inhibited neurite elongation of human neurons without requiring direct cell-cell surface contact. The inhibition of neurite outgrowth was totally reversed by application of exogenous CO or increased internal CO production through supply of the substrate hemin to HO. Our results point towards a vital cytoprotective role of HO-1/CO signaling after microglial activation. In addition, they support a therapeutic potential of CO releasing chemical agents in the treatment of excessive inflammatory conditions in the CNS.

  3. Acrylamide induces mitochondrial dysfunction and apoptosis in BV-2 microglial cells.

    PubMed

    Liu, Zhigang; Song, Ge; Zou, Chen; Liu, Gongguan; Wu, Wanqiang; Yuan, Tian; Liu, Xuebo

    2015-07-01

    Acrylamide (ACR), a potent neurotoxin, can be produced during food processing at high temperature. This study examined the redox-dependent apoptotic and inflammatory responses of ACR in an immortalized mouse microglia cell line BV2. The exposure of BV2 cells to ACR reduced cell viability and induced apoptosis in a concentration-dependent manner. ACR impaired cell energy metabolism by decreasing mitochondrial respiration, anaerobic glycolysis, and lowering expression of the complex I, III, and IV subunits. Mitochondrial dysfunction was associated with a decrease of the mitochondrial membrane potential and the Bcl-2/Bax ratio, thus resulting in activation of the mitochondrion-driven apoptotic signaling. This was accompanied by (a) the modulation of redox-sensitive signaling, suppressed Akt activation and increased JNK and p38 activation, and (b) increased expression of NFκB and downstream inducible nitric oxide synthase (iNOS) and nitric oxide generation, thus supporting indirectly a proinflammatory effect of ACR. Nrf2 expression was also increased but not its translocation to the nucleus. Expectedly, the electrophilic attack of ACR on GSH resulted in substantial loss of GSH with a minor GSSG formation. These changes in the cell׳s redox status elicited by ACR resulted in increased H2O2 formation. The changes in mitochondrial functionality and complex subunit expression caused by ACR were reversed by N-acetyl-L-cysteine (NAC). Likewise, NAC restored the cell׳s redox status by increasing GSH levels with concomitant attenuation of H2O2 generation; these effects resulted in decreased apoptotic cell death and inflammatory responses. ACR-mediated mitochondrial dysfunction along with a more oxidized redox status seems to be critical events leading to activation of the intrinsic apoptotic pathway and inflammatory responses.

  4. Chronically active: activation of microglial proteolysis in ageing and neurodegeneration.

    PubMed

    Stolzing, Alexandra; Sethe, Sebastian; Grune, Tilman

    2005-01-01

    One of the microglial cell functions is the removal of modified extracellular proteins in the brain. The connection between protein oxidation, proteolysis, and microglial activation is the topic of this review. The effect of various activation agents on microglial cells with regard to changes in substrate uptake, proteolytic capacity and degradation efficiency of different types of oxidized protein materials is reviewed. It is shown that different activation stimuli initiate substrate-specific modulation for uptake and proteolysis, influencing an array of factors including receptor expression, lysosomal pH, and proteasome subunit composition. Age-related alterations in activation and proteolytic capacity in microglial cells are also discussed. In ageing, proteolytic effectiveness is diminished, while microglial cells are chronically activated and lose the oxidative burst ability, possibly supporting a 'vicious circle' of macrophage-induced neurodegeneration.

  5. Lonicera japonica THUNB. Extract Inhibits Lipopolysaccharide-Stimulated Inflammatory Responses by Suppressing NF-κB Signaling in BV-2 Microglial Cells.

    PubMed

    Kwon, Seung-Hwan; Ma, Shi-Xun; Hong, Sa-Ik; Lee, Seok-Yong; Jang, Choon-Gon

    2015-07-01

    In the current study, we evaluated the anti-inflammatory effects of Lonicera japonica THUNB. (LJ) and its underlying molecular mechanism in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Our results indicated that LJ significantly inhibits LPS-stimulated production of nitric oxide (NO) and prostaglandin E2 (PGE2). In addition, LJ inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at both the protein and mRNA levels. In LPS-stimulated BV-2 microglial cells, LJ inhibited proinflammatory cytokines and chemokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-9 (MMP-9) enzymatic activities, and/or mRNA expression, as well as reactive oxygen species (ROS) production. LJ significantly suppressed activation of nuclear factor-κB (NF-κB) and its translocation from the cytosol to the nucleus and suppressed the DNA-binding activity of NF-κB. Furthermore, LJ significantly inhibited phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK 1/2), p38 mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinases (PI3K)/Akt, and Janus kinase 1 (JAK1)/signal transducer and activator of transcription (STAT)1/3. Collectively, our findings indicated that the antineuroinflammatory properties of LJ in LPS-induced BV-2 microglial cells is due to downregulation of proinflammatory cytokines and chemokines downstream of inhibition of NF-κB activation.

  6. Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells

    PubMed Central

    Abbasi Habashi, Soraya; Sabouni, Farzaneh; Moghimi, Ali; Ansari Majd, Saeed

    2016-01-01

    Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. This study examined whether bromelain, the pineapple-derived extract, may exert an anti-inflammatory effect in primary microglia and may be neuroprotective by regulating microglial activation. Methods: Following the isolation of neonatal rat primary microglial cells, the activation profile of microglia was investigated by studying the effects of bromelain (5, 10, 20, and 30 µg/ml) on the levels of NO, inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) in microglia treated with lipopolysaccharide (LPS) (1 µg/ml). Data were analyzed using Student's t-test. P values less than 0.05 were considered to be statistically significant, compared with the LPS-treated group without bromelain. Results: Results showed that pretreatment of rat primary microglia with bromelain, decreased the production of NO induced by LPS (1 µg/ml) treatment in a dose-dependent manner. Bromelain (30 µg/ml) also significantly reduced the expression of iNOS at mRNA level and NF-κB at protein level. Moreover, the study of mitochondrial activity in microglia indicated that bromelain had no cytotoxicity at any of the applied doses, suggesting that the anti-inflammatory effects of bromelain are not due to cell death. Conclusion: Bromelain can be of potential use as an agent for alleviation of symptoms in neurodegenerative diseases. PMID:26459398

  7. Lonicera japonica THUNB. Extract Inhibits Lipopolysaccharide-Stimulated Inflammatory Responses by Suppressing NF-κB Signaling in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Hong, Sa-Ik; Lee, Seok-Yong

    2015-01-01

    Abstract In the current study, we evaluated the anti-inflammatory effects of Lonicera japonica THUNB. (LJ) and its underlying molecular mechanism in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Our results indicated that LJ significantly inhibits LPS-stimulated production of nitric oxide (NO) and prostaglandin E2 (PGE2). In addition, LJ inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at both the protein and mRNA levels. In LPS-stimulated BV-2 microglial cells, LJ inhibited proinflammatory cytokines and chemokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-9 (MMP-9) enzymatic activities, and/or mRNA expression, as well as reactive oxygen species (ROS) production. LJ significantly suppressed activation of nuclear factor-κB (NF-κB) and its translocation from the cytosol to the nucleus and suppressed the DNA-binding activity of NF-κB. Furthermore, LJ significantly inhibited phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK 1/2), p38 mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinases (PI3K)/Akt, and Janus kinase 1 (JAK1)/signal transducer and activator of transcription (STAT)1/3. Collectively, our findings indicated that the antineuroinflammatory properties of LJ in LPS-induced BV-2 microglial cells is due to downregulation of proinflammatory cytokines and chemokines downstream of inhibition of NF-κB activation. PMID:25897683

  8. Changes in phagocytosis and expression of microglial cells in craniocerebral injury mice models.

    PubMed

    Guo, F Y; Liu, T; Chen, J J; Gao, W; Yang, F; Zhou, X Y; Liao, Y L

    2016-01-01

    The objective of this study was to investigate the changes in phagocytic function and expression quantities of CD11b and tumor necrosis factor-α (TNF-α) among microglia cells of craniocerebral injury mice. Modified Feeney method was used to establish the craniocerebral injury mice models. Twenty-one male SPF mice were divided into a control group and a trauma group. The scalp was incised and a bone window was opened in the control group without cerebral injury. In the trauma group, the mice were sacrificed after the craniocerebral injury at 1, 3, 6, 12, 24 and 48 h to make frozen sections of cerebral tissues. The phagocytic rate of microglia cells was observed by using fluorescent microsphere. The changes in the expression quantities of CD11b and TNF-α were detected by enzyme-linked immuno sorbent assay (ELISA). The phagocytic ability of the microglia cells after the craniocerebral injury increased at 1 h after injury compared with that of the control group (P less than 0.01). The expression of surface antigen CD11b of the microglia cells and the expression of TNF-α increased at 1, 3, 6, 12, 24 and 48 h after the injury compared with those of the control group (P less than 0.01). The phagocytic ability of the microglia cells increased. The expressions of CD11b and TNF-α were also gradually enhanced in the acute phase after craniocerebral injury, and then gradually decreased to the normal level. The expressions of CD11b and TNF-α indicated a high consistency with the changing trend of the phagocytic ability, suggesting that the microglia cells may participate in the regulation of the inflammatory process of the central nervous system through absorbing apoptotic cells and increasing and secreting inflammatory and anti-inflammatory factors.

  9. Changes in phagocytosis and expression of microglial cells in craniocerebral injury mice models.

    PubMed

    Guo, F Y; Liu, T; Chen, J J; Gao, W; Yang, F; Zhou, X Y; Liao, Y L

    2016-01-01

    The objective of this study was to investigate the changes in phagocytic function and expression quantities of CD11b and tumor necrosis factor-α (TNF-α) among microglia cells of craniocerebral injury mice. Modified Feeney method was used to establish the craniocerebral injury mice models. Twenty-one male SPF mice were divided into a control group and a trauma group. The scalp was incised and a bone window was opened in the control group without cerebral injury. In the trauma group, the mice were sacrificed after the craniocerebral injury at 1, 3, 6, 12, 24 and 48 h to make frozen sections of cerebral tissues. The phagocytic rate of microglia cells was observed by using fluorescent microsphere. The changes in the expression quantities of CD11b and TNF-α were detected by enzyme-linked immuno sorbent assay (ELISA). The phagocytic ability of the microglia cells after the craniocerebral injury increased at 1 h after injury compared with that of the control group (P less than 0.01). The expression of surface antigen CD11b of the microglia cells and the expression of TNF-α increased at 1, 3, 6, 12, 24 and 48 h after the injury compared with those of the control group (P less than 0.01). The phagocytic ability of the microglia cells increased. The expressions of CD11b and TNF-α were also gradually enhanced in the acute phase after craniocerebral injury, and then gradually decreased to the normal level. The expressions of CD11b and TNF-α indicated a high consistency with the changing trend of the phagocytic ability, suggesting that the microglia cells may participate in the regulation of the inflammatory process of the central nervous system through absorbing apoptotic cells and increasing and secreting inflammatory and anti-inflammatory factors. PMID:27358141

  10. Chronotopographical distribution patterns of cell death and of lectin-positive macrophages/microglial cells during the visual system ontogeny of the small-spotted catshark Scyliorhinus canicula

    PubMed Central

    Bejarano-Escobar, Ruth; Blasco, Manuel; Durán, Ana Carmen; Martín-Partido, Gervasio; Francisco-Morcillo, Javier

    2013-01-01

    The patterns of distribution of TUNEL-positive bodies and of lectin-positive phagocytes were investigated in the developing visual system of the small-spotted catshark Scyliorhinus canicula, from the optic vesicle stage to adulthood. During early stages of development, TUNEL-staining was mainly found in the protruding dorsal part of the optic cup and in the presumptive optic chiasm. Furthermore, TUNEL-positive bodies were also detected during detachment of the embryonic lens. Coinciding with the developmental period during which ganglion cells began to differentiate, an area of programmed cell death occurred in the distal optic stalk and in the retinal pigment epithelium that surrounds the optic nerve head. The topographical distribution of TUNEL-positive bodies in the differentiating retina recapitulated the sequence of maturation of the various layers and cell types following a vitreal-to-scleral gradient. Lectin-positive cells apparently entered the retina by the optic nerve head when the retinal layering was almost complete. As development proceeded, these labelled cells migrated parallel to the axon fascicles of the optic fiber layer and then reached more external layers by radial migration. In the mature retina, lectin-positive cells were confined to the optic fiber layer, ganglion cell layer and inner plexiform layer. No evident correlation was found between the chronotopographical pattern of distribution of TUNEL-positive bodies and the pattern of distribution of lectin-labelled macrophages/microglial cells during the shark′s visual system ontogeny. PMID:23758763

  11. Small-Ruminant Lentivirus Enhances PrP-Sc Accumulation in Cultured Sheep Microglial Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scrapie is the prototype member of the family of transmissible spongiform encephalopathies, fatal neurodegenerative diseases associated with conversion and accumulation of prion proteins in a number of neural and extraneural cell types. Although scrapie has been the focus of research investigations...

  12. Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and Up-Regulate Antioxidant Responses in BV-2 Microglial Cells.

    PubMed

    Sun, Grace Y; Li, Runting; Cui, Jiankun; Hannink, Mark; Gu, Zezong; Fritsche, Kevin L; Lubahn, Dennis B; Simonyi, Agnes

    2016-09-01

    Withania somnifera (L.) Dunal, commonly known as Ashwagandha, has been used in Ayurvedic medicine for promoting health and quality of life. Recent clinical trials together with experimental studies indicated significant neuroprotective effects of Ashwagandha and its constituents. This study is aimed to investigate anti-inflammatory and anti-oxidative properties of this botanical and its two withanolide constituents, namely, Withaferin A and Withanolide A, using the murine immortalized BV-2 microglial cells. Ashwagandha extracts not only effectively inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and reactive oxygen species (ROS) production in BV-2 cells, but also stimulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway, leading to induction of heme oxygenase-1 (HO-1), both in the presence and absence of LPS. Although the withanolides were also capable of inhibiting LPS-induced NO production and stimulating Nrf2/HO-1 pathway, Withaferin A was tenfold more effective than Withanolide A. In serum-free culture, LPS can also induce production of long thin processes (filopodia) between 4 and 8 h in BV-2 cells. This morphological change was significantly suppressed by Ashwagandha and both withanolides at concentrations for suppressing LPS-induced NO production. Taken together, these results suggest an immunomodulatory role for Ashwagandha and its withanolides, and their ability to suppress oxidative and inflammatory responses in microglial cells by simultaneously down-regulating the NF-kB and upregulating the Nrf2 pathways. PMID:27209361

  13. Amyloid β25-35 induced ROS-burst through NADPH oxidase is sensitive to iron chelation in microglial Bv2 cells.

    PubMed

    Part, Kristin; Künnis-Beres, Kai; Poska, Helen; Land, Tiit; Shimmo, Ruth; Zetterström Fernaeus, Sandra

    2015-12-10

    Iron chelation therapy and inhibition of glial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can both represent possible routes for Alzheimer's disease modifying therapies. The metal hypothesis is largely focused on direct binding of metals to the N-terminal hydrophilic 1-16 domain peptides of Amyloid beta (Aβ) and how they jointly give rise to reactive oxygen species (ROS) production. The cytotoxic effects of Aβ through ROS and metals are mainly studied in neuronal cells using full-length Aβ1-40/42 peptides. Here we study cellularly-derived ROS during 2-60min in response to non-metal associated mid domain Aβ25-35 in microglial Bv2 cells by fluorescence based spectroscopy. We analyze if Aβ25-35 induce ROS production through NADPH oxidase and if the production is sensitive to iron chelation. NADPH oxidase inhibitor diphenyliodonium (DPI) is used to confirm the production of ROS through NADPH oxidase. We modulate cellular iron homeostasis by applying cell permeable iron chelators desferrioxamine (DFO) and deferiprone (DFP). NADPH oxidase subunit gp91-phox level was analyzed by Western blotting. Our results show that Aβ25-35 induces strong ROS production through NADPH oxidase in Bv2 microglial cells. Intracellular iron depletion resulted in restrained Aβ25-35 induced ROS.

  14. Anti-inflammatory effects of three-dimensional graphene foams cultured with microglial cells.

    PubMed

    Song, Qin; Jiang, Ziyun; Li, Ning; Liu, Ping; Liu, Liwei; Tang, Mingliang; Cheng, Guosheng

    2014-08-01

    One of the key goals in nerve tissue engineering is to develop new materials which cause less or no neuroinflammation. Despite the rapid advances of using graphene as a neural interface material, it still remains unknown whether graphene could provoke neuroinflammation or not, and whether and how the topographical features of graphene influence the neuroinflammation induction. By immunofluorescence, Elisa technique, western blot, scanning electron microscope (SEM) methods, we investigated the pro- and/or anti-inflammatory responses of microglia in the graphene films (2D-graphene) or graphene foams (3D-graphene) culturing systems. Furthermore, the growth situations of the neural stem cells (NSCs) in the conditioned culture medium produced in the graphene substrates were evaluated. The results show that: 1) neither 2D nor 3D graphene induced distinct neuroinflammation when compared to the tissue culture polystyrene (TCPS) substrates; 2) the topographical structures of the graphene might affect the material/cell interactions, leading to disparate effects on lipopolysaccharide (LPS)-induced neuroinflammation; 3) 3D graphene exhibited a remarkable capability of rescuing LPS-induced neuroinflammation probably through the restriction of microglia morphological transformation by the unique topographical features on the surface, showing the ability of anti-inflammation against external insults, while 2D graphene failed to. These results provide insights into the diverse biological effects of the material's topographical structures and open new opportunity for the applications of graphene in neuroscience. PMID:24875763

  15. Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro.

    PubMed

    Rey, C; Nadjar, A; Buaud, B; Vaysse, C; Aubert, A; Pallet, V; Layé, S; Joffre, C

    2016-07-01

    Sustained inflammation in the brain together with microglia activation can lead to neuronal damage. Hence limiting brain inflammation and activation of microglia is a real therapeutic strategy for inflammatory disease. Resolvin D1 (RvD1) and resolvin E1 (RvE1) derived from n-3 long chain polyunsaturated fatty acids are promising therapeutic compounds since they actively turn off the systemic inflammatory response. We thus evaluated the anti-inflammatory activities of RvD1 and RvE1 in microglia cells in vitro. BV2 cells were pre-incubated with RvD1 or RvE1 before lipopolysaccharide (LPS) treatment. RvD1 and RvE1 both decreased LPS-induced proinflammatory cytokines (TNF-α, IL-6 and IL-1β) gene expression, suggesting their proresolutive activity in microglia. However, the mechanisms involved are distinct as RvE1 regulates NFκB signaling pathway and RvD1 regulates miRNAs expression. Overall, our findings support that pro-resolving lipids are involved in the resolution of brain inflammation and can be considered as promising therapeutic agents for brain inflammation. PMID:26718448

  16. Safflower Yellow regulates microglial polarization and inhibits inflammatory response in LPS-stimulated Bv2 cells.

    PubMed

    Yang, Xing-Wang; Li, Yan-Hua; Zhang, Hui; Zhao, Yong-Fei; Ding, Zhi-Bin; Yu, Jie-Zhong; Liu, Chun-Yun; Liu, Jian-Chun; Jiang, Wei-Jia; Feng, Qian-Jin; Xiao, Bao-Guo; Ma, Cun-Gen

    2016-03-01

    Activated microglia, especially polarized M1 cells, produce pro-inflammatory cytokines and free radicals, thereby contributing directly to neuroinflammation and various brain disorders. Given that excessive or chronic neuroinflammation within the central nervous system (CNS) exacerbates neuronal damage, molecules that modulate neuroinflammation are candidates as neuroprotective agents. In this study, we provide evidence that Safflor yellow (SY), the main active component in the traditional Chinese medicine safflower, modulates inflammatory responses by acting directly on BV2 microglia. LPS stimulated BV2 cells to upregulate expression of TLR4-Myd88 and MAPK-NF-κB signaling pathways and to release IL-1β, IL-6, TNF-α, and COX-2. However, SY treatment inhibited expression of TLR4-Myd88 and p-38/p-JNK-NF-κB, downregulated expression of iNOS, CD16/32, and IL-12, and upregulated CD206 and IL-10. In conclusion, our results demonstrate that SY exerts an anti-inflammatory effect on BV2 microglia, possibly through TLR-4/p-38/p-JNK/NF-κB signaling pathways and the conversion of microglia from inflammatory M1 to an anti-inflammatory M2 phenotype. PMID:26634402

  17. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    PubMed

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  18. [Microglial Phagocytosis in the Neurodegenerative Diseases].

    PubMed

    Cao, Sheng-nan; Bao, Xiu-qi; Sun, Hua; Zhang, Dan

    2016-04-01

    Microglia are the resident innate immune cells in the brain. Under endogenous or exogenous stimulates, they become activated and play an important role in the neurodegenerative diseases. Microglial phagocytosis is a process of receptor-mediated engulfment and degradation of apoptotic cells. In addition, microglia can phagocyte brain-specific cargo, such as myelin debris and abnormal protein aggregation. However, recent studies have shown that microglia can also phagocyte stressed-but-viable neurons, causing loss of neurons in the brain. Thus, whether microglial phagocytosis is beneficial or not in neurodegenerative disease remains controversial. This article reviews microglial phagocytosis related mechanisms and its potential roles in neurodegenerative diseases, with an attempt to provide new insights in the treatment of neurodegenerative diseases. PMID:27181903

  19. [Microglial Phagocytosis in the Neurodegenerative Diseases].

    PubMed

    Cao, Sheng-nan; Bao, Xiu-qi; Sun, Hua; Zhang, Dan

    2016-04-01

    Microglia are the resident innate immune cells in the brain. Under endogenous or exogenous stimulates, they become activated and play an important role in the neurodegenerative diseases. Microglial phagocytosis is a process of receptor-mediated engulfment and degradation of apoptotic cells. In addition, microglia can phagocyte brain-specific cargo, such as myelin debris and abnormal protein aggregation. However, recent studies have shown that microglia can also phagocyte stressed-but-viable neurons, causing loss of neurons in the brain. Thus, whether microglial phagocytosis is beneficial or not in neurodegenerative disease remains controversial. This article reviews microglial phagocytosis related mechanisms and its potential roles in neurodegenerative diseases, with an attempt to provide new insights in the treatment of neurodegenerative diseases.

  20. Effects of a brain-engraftable microglial cell line expressing anti-prion scFv antibodies on survival times of mice infected with scrapie prions.

    PubMed

    Fujita, Koji; Yamaguchi, Yoshitaka; Mori, Tsuyoshi; Muramatsu, Naomi; Miyamoto, Takahito; Yano, Masashi; Miyata, Hironori; Ootsuyama, Akira; Sawada, Makoto; Matsuda, Haruo; Kaji, Ryuji; Sakaguchi, Suehiro

    2011-10-01

    We first verified that a single chain Fv fragment against prion protein (anti-PrP scFv) was secreted by HEK293T cells and prevented prion replication in infected cells. We then stably expressed anti-PrP scFv in brain-engraftable murine microglial cells and intracerebrally injected these cells into mice before or after infection with prions. Interestingly, the injection before or at an early time point after infection attenuated the infection marginally but significantly prolonged survival times of the mice. These suggest that the ex vivo gene transfer of anti-PrP scFvs using brain-engraftable cells could be a possible immunotherapeutic approach against prion diseases.

  1. Myelin-specific T cells induce interleukin-1beta expression in lesion-reactive microglial-like cells in zones of axonal degeneration.

    PubMed

    Grebing, Manuela; Nielsen, Helle H; Fenger, Christina D; T Jensen, Katrine; von Linstow, Christian U; Clausen, Bettina H; Söderman, Martin; Lambertsen, Kate L; Thomassen, Mads; Kruse, Torben A; Finsen, Bente

    2016-03-01

    Infiltration of myelin-specific T cells into the central nervous system induces the expression of proinflammatory cytokines in patients with multiple sclerosis (MS). We have previously shown that myelin-specific T cells are recruited into zones of axonal degeneration, where they stimulate lesion-reactive microglia. To gain mechanistic insight, we used RNA microarray analysis to compare the transcript profile in hippocampi from perforant pathway axonal-lesioned mice with and without adoptively transferred myelin-specific T cells 2 days postlesion, when microglia are clearly lesion reactive. Pathway analysis revealed that, among the 1,447 differently expressed transcripts, the interleukin (IL)-1 pathway including all IL-1 receptor ligands was upregulated in the presence of myelin-specific T cells. Quantitative polymerase chain reaction showed increased mRNA levels of IL-1β, IL-1α, and IL-1 receptor antagonist in the T-cell-infiltrated hippocampi from axonal-lesioned mice. In situ hybridization and immunohistochemistry showed a T-cell-enhanced lesion-specific expression of IL-1β mRNA and protein, respectively, and induction of the apoptosis-associated speck-like protein, ASC, in CD11b(+) cells. Double in situ hybridization showed colocalization of IL-1β mRNA in a subset of CD11b mRNA(+) cells, of which many were part of cellular doublets or clusters, characteristic of proliferating, lesion-reactive microglia. Double-immunofluorescence showed a T-cell-enhanced colocalization of IL-1β to CD11b(+) cells, including lesion-reactive CD11b(+) ramified microglia. These results suggest that myelin-specific T cells stimulate lesion-reactive microglial-like cells to produce IL-1β. These findings are relevant to understand the consequences of T-cell infiltration in white and gray matter lesions in patients with MS.

  2. Auraptene and Other Prenyloxyphenylpropanoids Suppress Microglial Activation and Dopaminergic Neuronal Cell Death in a Lipopolysaccharide-Induced Model of Parkinson’s Disease

    PubMed Central

    Okuyama, Satoshi; Semba, Tomoki; Toyoda, Nobuki; Epifano, Francesco; Genovese, Salvatore; Fiorito, Serena; Taddeo, Vito Alessandro; Sawamoto, Atsushi; Nakajima, Mitsunari; Furukawa, Yoshiko

    2016-01-01

    In patients with Parkinson’s disease (PD), hyperactivated inflammation in the brain, particularly microglial hyperactivation in the substantia nigra (SN), is reported to be one of the triggers for the delayed loss of dopaminergic neurons and sequential motor functional impairments. We previously reported that (1) auraptene (AUR), a natural prenyloxycoumain, suppressed inflammatory responses including the hyperactivation of microglia in the ischemic brain and inflamed brain, thereby inhibiting neuronal cell death; (2) 7-isopentenyloxycoumarin (7-IP), another natural prenyloxycoumain, exerted anti-inflammatory and neuroprotective effects against excitotoxicity; and (3) 4′-geranyloxyferulic acid (GOFA), a natural prenyloxycinnamic acid, also exerted anti-inflammatory effects. In the present study, using an intranigral lipopolysaccharide (LPS)-induced PD-like mouse model, we investigated whether AUR, 7-IP, and GOFA suppress microglial activation and protect against dopaminergic neuronal cell death in the SN. We successfully showed that these prenyloxyphenylpropanoids exhibited these prospective abilities, suggesting the potential of these compounds as neuroprotective agents for patients with PD. PMID:27763495

  3. Hexane fraction of Zingiberis Rhizoma Crudus extract inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated BV2 microglial cells via the NF-kappaB pathway.

    PubMed

    Jung, Hyo Won; Yoon, Cheol-Ho; Park, Kwon Moo; Han, Hyung Soo; Park, Yong-Ki

    2009-06-01

    Excessive production of inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE2), and proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) from activated microglia contributes to uncontrolled inflammation in neurodegenerative diseases. It seems possible that treatment with anti-inflammatory agents, including plants used in Oriental medicine, might delay the progression of neurodegeneration through the inhibition of microglial activation. The present study is focused on the inhibitory effect of the rhizome hexane fraction extract of Zingiber officinale Roscoe (ginger hexan extract; GHE) on the production of inflammatory mediators such as NO, PGE(2), and proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated BV-2 cells, a mouse microglial cell line. GHE significantly inhibited the excessive production of NO, PGE(2), TNF-alpha, and IL-1beta in LPS-stimulated BV2 cells. In addition, GHE attenuated the mRNA expressions and protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines. The molecular mechanisms that underlie GHE-mediated attenuation are related to the inhibition of the phosphorylation of three mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase (JNK), and the activation of nuclear factor-kappaB (NF-kappaB). Our results indicate that GHE exhibits anti-inflammatory properties by suppressing the transcription of inflammatory mediator genes through the MAPK and NF-kappaB signaling pathways. The anti-inflammatory properties of GHE may make it useful as a therapeutic candidate for the treatment of human neurodegenerative diseases. PMID:19233241

  4. Effects of caffeine and paracetamol alone or in combination with acetylsalicylic acid on prostaglandin E(2) synthesis in rat microglial cells.

    PubMed

    Fiebich, B L; Lieb, K; Hüll, M; Aicher, B; van Ryn, J; Pairet, M; Engelhardt, G

    2000-08-23

    Paracetamol has mild analgesic and antipyretic properties and is, along with acetylsalicylic acid, one of the most popular "over the counter" analgesic agents. However, the mechanism underlying its clinical effects is unknown. Another drug whose mechanism of action is unknown is caffeine, which is often used in combination with other analgesics, augmenting their effect. We investigated the inhibitory effect of paracetamol and caffeine on lipopolysaccharide (LPS)-induced cyclooxygenase (COX)- and prostaglandin (PG)E(2)-synthesis in primary rat microglial cells and compared it with the effect of acetylsalicylic acid, salicylic acid, and dipyrone. Furthermore, combinations of these drugs were used to investigate a possible synergistic inhibitory effect on PGE(2)-synthesis. Both paracetamol (IC(50)=7.45 microM) and caffeine (IC(50)=42.5 microM) dose-dependently inhibited microglial PGE(2) synthesis. In combination with acetylsalicylic acid (IC(50)=3.12 microM), both substances augmented the inhibitory effect of acetylsalicylic acid on LPS-induced PGE(2)-synthesis. Whereas paracetamol inhibited only COX enzyme activity, caffeine also inhibited COX-2 protein synthesis. These results are compatible with the view that the clinical activity of paracetamol and caffeine is due to inhibition of COX. Furthermore, these results may help explain the clinical experience of an adjuvant analgesic effect of caffeine and paracetamol when combined with acetylsalicylic acid.

  5. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology

    PubMed Central

    Olmos-Alonso, Adrian; Schetters, Sjoerd T. T.; Sri, Sarmi; Askew, Katharine; Mancuso, Renzo; Vargas-Caballero, Mariana; Holscher, Christian; Perry, V. Hugh

    2016-01-01

    The proliferation and activation of microglial cells is a hallmark of several neurodegenerative conditions. This mechanism is regulated by the activation of the colony-stimulating factor 1 receptor (CSF1R), thus providing a target that may prevent the progression of conditions such as Alzheimer’s disease. However, the study of microglial proliferation in Alzheimer’s disease and validation of the efficacy of CSF1R-inhibiting strategies have not yet been reported. In this study we found increased proliferation of microglial cells in human Alzheimer’s disease, in line with an increased upregulation of the CSF1R-dependent pro-mitogenic cascade, correlating with disease severity. Using a transgenic model of Alzheimer’s-like pathology (APPswe, PSEN1dE9; APP/PS1 mice) we define a CSF1R-dependent progressive increase in microglial proliferation, in the proximity of amyloid-β plaques. Prolonged inhibition of CSF1R in APP/PS1 mice by an orally available tyrosine kinase inhibitor (GW2580) resulted in the blockade of microglial proliferation and the shifting of the microglial inflammatory profile to an anti-inflammatory phenotype. Pharmacological targeting of CSF1R in APP/PS1 mice resulted in an improved performance in memory and behavioural tasks and a prevention of synaptic degeneration, although these changes were not correlated with a change in the number of amyloid-β plaques. Our results provide the first proof of the efficacy of CSF1R inhibition in models of Alzheimer’s disease, and validate the application of a therapeutic strategy aimed at modifying CSF1R activation as a promising approach to tackle microglial activation and the progression of Alzheimer’s disease. PMID:26747862

  6. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology.

    PubMed

    Olmos-Alonso, Adrian; Schetters, Sjoerd T T; Sri, Sarmi; Askew, Katharine; Mancuso, Renzo; Vargas-Caballero, Mariana; Holscher, Christian; Perry, V Hugh; Gomez-Nicola, Diego

    2016-03-01

    The proliferation and activation of microglial cells is a hallmark of several neurodegenerative conditions. This mechanism is regulated by the activation of the colony-stimulating factor 1 receptor (CSF1R), thus providing a target that may prevent the progression of conditions such as Alzheimer's disease. However, the study of microglial proliferation in Alzheimer's disease and validation of the efficacy of CSF1R-inhibiting strategies have not yet been reported. In this study we found increased proliferation of microglial cells in human Alzheimer's disease, in line with an increased upregulation of the CSF1R-dependent pro-mitogenic cascade, correlating with disease severity. Using a transgenic model of Alzheimer's-like pathology (APPswe, PSEN1dE9; APP/PS1 mice) we define a CSF1R-dependent progressive increase in microglial proliferation, in the proximity of amyloid-β plaques. Prolonged inhibition of CSF1R in APP/PS1 mice by an orally available tyrosine kinase inhibitor (GW2580) resulted in the blockade of microglial proliferation and the shifting of the microglial inflammatory profile to an anti-inflammatory phenotype. Pharmacological targeting of CSF1R in APP/PS1 mice resulted in an improved performance in memory and behavioural tasks and a prevention of synaptic degeneration, although these changes were not correlated with a change in the number of amyloid-β plaques. Our results provide the first proof of the efficacy of CSF1R inhibition in models of Alzheimer's disease, and validate the application of a therapeutic strategy aimed at modifying CSF1R activation as a promising approach to tackle microglial activation and the progression of Alzheimer's disease.

  7. Microglial AGE-albumin is critical for neuronal death in Parkinson’s disease: a possible implication for theranostics

    PubMed Central

    Bayarsaikhan, Enkhjargal; Bayarsaikhan, Delger; Lee, Jaesuk; Son, Myeongjoo; Oh, Seyeon; Moon, Jeongsik; Park, Hye-Jeong; Roshini, Arivazhagan; Kim, Seung U; Song, Byoung-Joon; Jo, Seung-Mook; Byun, Kyunghee; Lee, Bonghee

    2015-01-01

    Advanced glycation end products (AGEs) are known to play an important role in the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD), by inducing protein aggregation and cross-link, formation of Lewy body, and neuronal death. In this study, we observed that AGE-albumin, the most abundant AGE product in the human PD brain, is synthesized in activated microglial cells and accumulates in the extracellular space. AGE-albumin synthesis in human-activated microglial cells is distinctly inhibited by ascorbic acid and cytochalasin treatment. Accumulated AGE-albumin upregulates the receptor to AGE, leading to apoptosis of human primary dopamine (DA) neurons. In animal experiments, we observed reduced DA neuronal cell death by treatment with soluble receptor to AGE. Our study provides evidence that activated microglial cells are one of the main contributors in AGE-albumin accumulation, deleterious to DA neurons in human and animal PD brains. Finally, activated microglial AGE-albumin could be used as a diagnostic and therapeutic biomarker with high sensitivity for neurodegenerative disorders, including PD. PMID:27601894

  8. Microglial AGE-albumin is critical for neuronal death in Parkinson’s disease: a possible implication for theranostics

    PubMed Central

    Bayarsaikhan, Enkhjargal; Bayarsaikhan, Delger; Lee, Jaesuk; Son, Myeongjoo; Oh, Seyeon; Moon, Jeongsik; Park, Hye-Jeong; Roshini, Arivazhagan; Kim, Seung U; Song, Byoung-Joon; Jo, Seung-Mook; Byun, Kyunghee; Lee, Bonghee

    2015-01-01

    Advanced glycation end products (AGEs) are known to play an important role in the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD), by inducing protein aggregation and cross-link, formation of Lewy body, and neuronal death. In this study, we observed that AGE-albumin, the most abundant AGE product in the human PD brain, is synthesized in activated microglial cells and accumulates in the extracellular space. AGE-albumin synthesis in human-activated microglial cells is distinctly inhibited by ascorbic acid and cytochalasin treatment. Accumulated AGE-albumin upregulates the receptor to AGE, leading to apoptosis of human primary dopamine (DA) neurons. In animal experiments, we observed reduced DA neuronal cell death by treatment with soluble receptor to AGE. Our study provides evidence that activated microglial cells are one of the main contributors in AGE-albumin accumulation, deleterious to DA neurons in human and animal PD brains. Finally, activated microglial AGE-albumin could be used as a diagnostic and therapeutic biomarker with high sensitivity for neurodegenerative disorders, including PD.

  9. Licochalcone E activates Nrf2/antioxidant response element signaling pathway in both neuronal and microglial cells: therapeutic relevance to neurodegenerative disease.

    PubMed

    Kim, Sa Suk; Lim, Juhee; Bang, Yeojin; Gal, Jiyeong; Lee, Sang-Uk; Cho, Young-Chang; Yoon, Goo; Kang, Bok Yun; Cheon, Seung Hoon; Choi, Hyun Jin

    2012-10-01

    Oxidative stress and neuroinflammation are hallmarks of neurodegenerative diseases, which do not play independently but work synergistically through complex interactions exacerbating neurodegeneration. Therefore, the mechanism that is directly implicated in controlling oxidative stress and inflammatory response could be an attractive strategy to prevent the onset and/or delay the progression of neurodegenerative diseases. The transcription factor nuclear factor-E2-related factor-2 (Nrf2) is the guardian of redox homeostasis by regulating a battery of antioxidant and phase II detoxification genes, which are relevant to defense mechanism against oxidative stress and inflammatory responses. In this study, we show that a recently identified Glycyrrhiza-inflata-derived chalcone, licochalcone E (Lico-E), attenuates lipopolysaccharide-induced inflammatory responses in microglial BV2 cells and protects dopaminergic SH-SY5Y cells from 6-hydroxydopamine cytotoxicity. Lico-E activates Nrf2-antioxidant response element (ARE) system and up-regulates downstream NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1). Anti-inflammatory and cytoprotective effects of Lico-E are attenuated in siRNA-mediated Nrf2-silencing cells as well as in the presence with specific inhibitor of HO-1 or NQO1, respectively. Lico-E also has neuroprotective effect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigrostriatal dopaminergic neurodegeneration in mice, with up-regulation of HO-1 and NQO1 in the substantia nigra of the brain. This study demonstrates that Lico-E is a potential activator of the Nrf2/ARE-dependent pathway and is therapeutically relevant not only to oxidative-stress-related neurodegeneration but also inflammatory responses of microglial cells both in vitro and in vivo.

  10. HNO suppresses LPS-induced inflammation in BV-2 microglial cells via inhibition of NF-κB and p38 MAPK pathways.

    PubMed

    Zhou, Yebo; Wu, Zhiyuan; Cao, Xu; Ding, Lei; Wen, ZhengShun; Bian, Jin-Song

    2016-09-01

    Both hydrogen sulfide (H2S) and nitric oxide (NO) are important gaseous mediators. We and others previously reported that these two gases react with each other to generate a new mediator, nitroxyl (HNO), and regulate cardiovascular functions. In this study, we demonstrated for the first time that the interaction between the two gases also existed in microglia. The biological functions of HNO in microglial cells were further studied with Angeli's salt (AS), an HNO donor. We found that AS attenuated lipopolysaccharide (LPS)-evoked production of reactive oxygen species (ROS) and pro-inflammatory cytokines (e.g. IL-1β and TNFα) through downregulating the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). HNO significantly reduced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and the activation of nuclear factor-κB (NF-κB) through suppression of phosphorylation p65 and IκBα. The above effects were abolished by l-cysteine, an HNO scavenger, but were not mimicked by nitrite, another product of AS during generating HNO. A Cys-179-to-Ala mutation in inhibitory κB kinase β (IKKβ) mimicked the effect of HNO on LPS-induced NF-κB activation. Interestingly, AS abolished the inflammation in cells overexpressing WT-IKKβ, but had no significant effect in cells overexpressing C179A-IKKβ. These data suggest that HNO may act on C179 to prevent IKKβ-dependent inflammation. Taken together, our data demonstrated for the first time that H2S interacts with NO to generate HNO in microglial cells. HNO produces anti-inflammatory effects through suppressing the IKKβ dependent NF-κB activation and p38 MAPK pathways. PMID:27507578

  11. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway.

    PubMed

    Im, Eun Ju; Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu; Rhee, Man Hee

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway. PMID:27563334

  12. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway

    PubMed Central

    Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway. PMID:27563334

  13. Quercetin Attenuates Inflammatory Responses in BV-2 Microglial Cells: Role of MAPKs on the Nrf2 Pathway and Induction of Heme Oxygenase-1

    PubMed Central

    Sun, Grace Y.; Chen, Zihong; Jasmer, Kimberly J.; Chuang, Dennis Y.; Gu, Zezong; Hannink, Mark; Simonyi, Agnes

    2015-01-01

    A large group of flavonoids found in fruits and vegetables have been suggested to elicit health benefits due mainly to their anti-oxidative and anti-inflammatory properties. Recent studies with immune cells have demonstrated inhibition of these inflammatory responses through down-regulation of the pro-inflammatory pathway involving NF-κB and up-regulation of the anti-oxidative pathway involving Nrf2. In the present study, the murine BV-2 microglial cells were used to compare anti-inflammatory activity of quercetin and cyanidin, two flavonoids differing by their alpha, beta keto carbonyl group. Quercetin was 10 folds more potent than cyanidin in inhibition of lipopolysaccharide (LPS)-induced NO production as well as stimulation of Nrf2-induced heme-oxygenase-1 (HO-1) protein expression. In addition, quercetin demonstrated enhanced ability to stimulate HO-1 protein expression when cells were treated with LPS. In an attempt to unveil mechanism(s) for quercetin to enhance Nrf2/HO-1 activity under endotoxic stress, results pointed to an increase in phospho-p38MAPK expression upon addition of quercetin to LPS. In addition, pharmacological inhibitors for phospho-p38MAPK and MEK1/2 for ERK1/2 further showed that these MAPKs target different sites of the Nrf2 pathway that regulates HO-1 expression. However, inhibition of LPS-induced NO by quercetin was not fully reversed by TinPPIX, a specific inhibitor for HO-1 activity. Taken together, results suggest an important role of quercetin to regulate inflammatory responses in microglial cells and its ability to upregulate HO-1 against endotoxic stress through involvement of MAPKs. PMID:26505893

  14. Regulatory effects of fisetin on microglial activation.

    PubMed

    Chuang, Jing-Yuan; Chang, Pei-Chun; Shen, Yi-Chun; Lin, Chingju; Tsai, Cheng-Fang; Chen, Jia-Hong; Yeh, Wei-Lan; Wu, Ling-Hsuan; Lin, Hsiao-Yun; Liu, Yu-Shu; Lu, Dah-Yuu

    2014-06-26

    Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species) production. Treatment with fisetin also effectively inhibited LPS plus IFN-γ-induced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in microglial cells. Furthermore, fisetin also reduced expressions of iNOS and NO by stimulation of peptidoglycan, the major component of the Gram-positive bacterium cell wall. Fisetin also inhibited the enhancement of LPS/IFN-γ- or peptidoglycan-induced inflammatory mediator IL (interlukin)-1 β expression. Besides the antioxidative and anti-inflammatory effects of fisetin, our study also elucidates the manner in fisetin-induced an endogenous anti-oxidative enzyme HO (heme oxygenase)-1 expression. Moreover, the regulatory molecular mechanism of fisetin-induced HO-1 expression operates through the PI-3 kinase/AKT and p38 signaling pathways in microglia. Notably, fisetin also significantly attenuated inflammation-related microglial activation and coordination deficit in mice in vivo. These findings suggest that fisetin may be a candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.

  15. Suppression of Alzheimer-associated inflammation by microglial prostaglandin-E2 EP4 receptor signaling.

    PubMed

    Woodling, Nathaniel S; Wang, Qian; Priyam, Prachi G; Larkin, Paul; Shi, Ju; Johansson, Jenny U; Zagol-Ikapitte, Irene; Boutaud, Olivier; Andreasson, Katrin I

    2014-04-23

    A persistent and nonresolving inflammatory response to accumulating Aβ peptide species is a cardinal feature in the development of Alzheimer's disease (AD). In response to accumulating Aβ peptide species, microglia, the innate immune cells of the brain, generate a toxic inflammatory response that accelerates synaptic and neuronal injury. Many proinflammatory signaling pathways are linked to progression of neurodegeneration. However, endogenous anti-inflammatory pathways capable of suppressing Aβ-induced inflammation represent a relatively unexplored area. Here we report that signaling through the prostaglandin-E2 (PGE2) EP4 receptor potently suppresses microglial inflammatory responses to Aβ42 peptides. In cultured microglial cells, EP4 stimulation attenuated levels of Aβ42-induced inflammatory factors and potentiated phagocytosis of Aβ42. Microarray analysis demonstrated that EP4 stimulation broadly opposed Aβ42-driven gene expression changes in microglia, with enrichment for targets of IRF1, IRF7, and NF-κB transcription factors. In vivo, conditional deletion of microglial EP4 in APPSwe-PS1ΔE9 (APP-PS1) mice conversely increased inflammatory gene expression, oxidative protein modification, and Aβ deposition in brain at early stages of pathology, but not at later stages, suggesting an early anti-inflammatory function of microglial EP4 signaling in the APP-PS1 model. Finally, EP4 receptor levels decreased significantly in human cortex with progression from normal to AD states, suggesting that early loss of this beneficial signaling system in preclinical AD development may contribute to subsequent progression of pathology.

  16. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension.

    PubMed

    Trost, A; Motloch, K; Bruckner, D; Schroedl, F; Bogner, B; Kaser-Eichberger, A; Runge, C; Strohmaier, C; Klein, B; Aigner, L; Reitsamer, H A

    2015-07-01

    Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, and is the second leading cause of blindness worldwide. Elevated intraocular pressure is a well known risk factor for the development of glaucomatous optic neuropathy and pharmacological or surgical lowering of intraocular pressure represents a standard procedure in glaucoma treatment. However, the treatment options are limited and although lowering of intraocular pressure impedes disease progression, glaucoma cannot be cured by the currently available therapy concepts. In an acute short-term ocular hypertension model in rat, we characterize RGC loss, but also microglial cell activation and vascular alterations of the retina at certain time points. The combination of these three parameters might facilitate a better evaluation of the disease progression, and could further serve as a new model to test novel treatment strategies at certain time points. Acute ocular hypertension (OHT) was induced by the injection of magnetic microbeads into the rat anterior chamber angle (n = 22) with magnetic position control, leading to constant elevation of IOP. At certain time points post injection (4d, 7d, 10d, 14d and 21d), RGC loss, microglial activation, and microvascular pericyte (PC) coverage was analyzed using immunohistochemistry with corresponding specific markers (Brn3a, Iba1, NG2). Additionally, the tightness of the retinal vasculature was determined via injections of Texas Red labeled dextran (10 kDa) and subsequently analyzed for vascular leakage. For documentation, confocal laser-scanning microscopy was used, followed by cell counts, capillary length measurements and morphological and statistical analysis. The injection of magnetic microbeads led to a progressive loss of RGCs at the five time points investigated (20.07%, 29.52%, 41.80%, 61.40% and 76.57%). Microglial cells increased in number and displayed an activated morphology

  17. Nicotine contributes to the neural stem cells fate against toxicity of microglial-derived factors induced by Aβ via the Wnt/β-catenin pathway.

    PubMed

    Jiang, De-Qi; Wei, Mei-Dan; Wang, Ke-Wan; Lan, Yan-Xian; Zhu, Ning; Wang, Yong

    2016-01-01

    Recent studies have demonstrated that the molecules secreted from microglias play important roles in the cell fate determination of neural stem cells (NSCs), and nicotinic acetylcholine receptor agonist treatment could reduce neuroinflammation in some neurodegenerative disease models, such as Alzheimer's disease (AD). However, it is not clear how nicotine plays a neuroprotective role in inflammation-mediated central nervous diseases, and its possible mechanisms in the process remain largely elusive. The aim of this study is to improve the survival microenvironment of NSCs co-cultured with microglias in vitro by weakening inflammation that mediated by accumulation of β-amyloid peptide (Aβ). The viability, proliferation, differentiation, apoptosis of NSCs and underlying mechanisms associated with Wnt signaling pathway were investigated. The results showed that Aβ could directly damage NSCs. Furthermore, concomitant to elevated levels of TNF-α, IL-1β derived from microglias, the NSCs had been damaged more severely with the upregulation of Axin 2, p-β-catenin and the downregulation of β-catenin, p-GSK-3β, microtubule-associated protein-2, choline acetyltransferase. However, addition of 10 μmol/L nicotine before microglias treated with Aβ was beneficial to protect the NSCs against neurotoxicity of microglial-derived factors induced by Aβ, which partially rescued proliferation, differentiation and inhibited apoptosis of NSCs via activation of Wnt/β-catenin pathway. Taken together, these data imply that low concentration nicotine attenuates NSCs injury induced by microglial-derived factors via Wnt signaling pathway. Thus, treatment with nicotinic acetylcholine receptor agonist provides a promising research field for neural stem cell fate and therapeutic intervention in neuroinflammation diseases.

  18. Paeonol attenuates inflammation-mediated neurotoxicity and microglial activation☆

    PubMed Central

    Nam, Kyong Nyon; Woo, Byung-Cheol; Moon, Sang-Kwan; Park, Seong-Uk; Park, Joo-young; Hwang, Jae-Woong; Bae, Hyung-Sup; Ko, Chang-Nam; Lee, Eunjoo Hwang

    2013-01-01

    Chronic activation of microglial cells endangers neuronal survival through the release of various proinflammatory and neurotoxic factors. The root of Paeonia lactiflora Pall has been considered useful for the treatment of various disorders in traditional oriental medicine. Paeonol, found in the root of Paeonia lactiflora Pall, has a wide range of pharmacological functions, including anti-oxidative, anti-inflammatory and neuroprotective activities. The objective of this study was to examine the efficacy of paeonol in the repression of inflammation-induced neurotoxicity and microglial cell activation. Organotypic hippocampal slice cultures and primary microglial cells from rat brain were stimulated with bacterial lipopolysaccharide. Paeonol pretreatment was performed for 30 minutes prior to lipopolysaccharide addition. Cell viability and nitrite (the production of nitric oxide), tumor necrosis factor-alpha and interleukin-1beta products were measured after lipopolysaccharide treatment. In organotypic hippocampal slice cultures, paeonol blocked lipopolysaccharide-related hippocampal cell death and inhibited the release of nitrite and interleukin-1beta. Paeonol was effective in inhibiting nitric oxide release from primary microglial cells. It also reduced the lipopolysaccharide-stimulated release of tumor necrosis factor-alpha and interleukin-1β from microglial cells. Paeonol possesses neuroprotective activity in a model of inflammation-induced neurotoxicity and reduces the release of neurotoxic and proinflammatory factors in activated microglial cells. PMID:25206460

  19. Dietary Sutherlandia and Elderberry Mitigate Cerebral Ischemia-Induced Neuronal Damage and Attenuate p47phox and Phospho-ERK1/2 Expression in Microglial Cells

    PubMed Central

    Chuang, Dennis Y.; Cui, Jiankun; Simonyi, Agnes; Engel, Victoria A.; Chen, Shanyan; Fritsche, Kevin L.; Thomas, Andrew L.; Applequist, Wendy L.; Folk, William R.; Lubahn, Dennis B.; Sun, Albert Y.; Sun, Grace Y.

    2014-01-01

    Sutherlandia (Sutherlandia frutescens) and elderberry (Sambucus spp.) are used to promote health and for treatment of a number of ailments. Although studies with cultured cells have demonstrated antioxidative and anti-inflammatory properties of these botanicals, little is known about their ability to mitigate brain injury. In this study, C57BL/6 J male mice were fed AIN93G diets without or with Sutherlandia or American elderberry for 2 months prior to a 30-min global cerebral ischemia induced by occlusion of the bilateral common carotid arteries (BCCAs), followed by reperfusion for 3 days. Accelerating rotarod assessment at 24 h after BCCA occlusion showed amelioration of sensorimotor impairment in the mice fed the supplemented diets as compared with the ischemic mice fed the control diet. Quantitative digital pathology assessment of brain slides stained with cresyl violet at 3 days after ischemia/reperfusion (I/R) revealed significant reduction in neuronal cell death in both dietary groups. Immunohistochemical staining for ionized calcium-binding adapter molecule-1 demonstrated pronounced activation of microglia in the hippocampus and striatum in the ischemic brains 3 days after I/R, and microglial activation was significantly reduced in animals fed supplemented diets. Mitigation of microglial activation by the supplements was further supported by the decrease in expression of p47phox, a cytosolic subunit of NADPH oxidase, and phospho-ERK1/2, a mitogen-activated protein kinase known to mediate a number of cytoplasmic processes including oxidative stress and neuroinflammatory responses. These results demonstrate neuroprotective effect of Sutherlandia and American elderberry botanicals against oxidative and inflammatory responses to cerebral I/R. PMID:25324465

  20. The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Hwang, Ji-Young; Ko, Yong-Hyun; Seo, Ji-Yeon; Lee, Bo-Ram; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase kinase-3β (GSK-3β), and their downstream transcription factor, nuclear factor-kappa B (NF-κB). EUE also blocked the nuclear translocation of NF-κB and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and PGE2 production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and GSK-3β, consequently suppressing NF-κB activation and inducing Nrf2-dependent HO-1 activation. PMID:27068259

  1. Microglial neurotransmitter receptors trigger superoxide production in microglia; consequences for microglial-neuronal interactions.

    PubMed

    Mead, Emma L; Mosley, Angelina; Eaton, Simon; Dobson, Lucianne; Heales, Simon J; Pocock, Jennifer M

    2012-04-01

    Microglia express three isoforms of the NADPH oxidase, Nox1, Nox2 and Nox4, with the potential to produce superoxide (O(2) ˙(-) ). Microglia also express neurotransmitter receptors, which can modulate microglial responses. In this study, microglial activity of Nox1, Nox2 and Nox4 in primary rat cultured microglia or the rodent BV2 cell line were altered by microglial neurotransmitter receptor modulation. Glutamate, GABA or ATP triggered microglial O(2) ˙(-) production via Nox activation. Nox activation was elicited by agonists of metabotropic mGlu3 receptors and by group III receptors, by GABA(A) but not GABA(B) receptors, and by purinergic P2X(7) or P2Y(2/4) receptors but not P2Y(1) receptors, and inhibited by metabotropic glutamate receptor 5 antagonists. The neurotransmitters also modulated Nox mRNA expression and NADPH activity. The activation of Nox by BzATP or GABA promoted a neuroprotective phenotype whilst the activation of Nox by glutamate promoted a neurotoxic phenotype. Taken together, these data indicate that microglial neurotransmitter receptors can signal via Nox to promote neuroprotection or neurotoxicity. This has implications for the subsequent neurotoxic profile of microglia when neurotransmitter levels may become skewed in neurodegeneration. PMID:22243365

  2. Definition of a serum marker panel for glioblastoma discrimination and identification of Interleukin 1β in the microglial secretome as a novel mediator of endothelial cell survival induced by C-reactive protein.

    PubMed

    Nijaguna, Mamatha B; Schröder, Christoph; Patil, Vikas; Shwetha, Shivayogi D; Hegde, Alangar S; Chandramouli, Bangalore A; Arivazhagan, Arimappamagan; Santosh, Vani; Hoheisel, Jörg D; Somasundaram, Kumaravel

    2015-10-14

    Glioblastoma (GBM) is the most common malignant adult primary brain tumor. We profiled 724 cancer-associated proteins in sera of healthy individuals (n=27) and GBM (n=28) using antibody microarray. While 69 proteins exhibited differential abundance in GBM sera, a three-marker panel (LYAM1, BHE40 and CRP) could discriminate GBM sera from that of healthy donors with an accuracy of 89.7% and p<0.0001. The high abundance of C-reactive protein (CRP) in GBM sera was confirmed in 264 independent samples. High levels of CRP protein was seen in GBM but without a change in transcript levels suggesting a non-tumoral origin. Glioma-secreted Interleukin 6 (IL6) was found to induce hepatocytes to secrete CRP, involving JAK-STAT pathway. The culture supernatant from CRP-treated microglial cells induced endothelial cell survival under nutrient-deprivation condition involving CRP-FcγRIII signaling cascade. Transcript profiling of CRP-treated microglial cells identified Interleukin 1β (IL1β) present in the microglial secretome as the key mediator of CRP-induced endothelial cell survival. IL1β neutralization by antibody-binding or siRNA-mediated silencing in microglial cells reduced the ability of the supernatant from CRP-treated microglial cells to induce endothelial cell survival. Thus our study identifies a serum based three-marker panel for GBM diagnosis and provides leads for developing targeted therapies. Biological significance A complex antibody microarray based serum marker profiling identified a three-marker panel - LYAM1, BHE40 and CRP as an accurate discriminator of glioblastoma sera from that of healthy individuals. CRP protein is seen in high levels without a concomitant increase of CRP transcripts in glioblastoma. Glioma-secreted IL6 induced hepatocytes to produce CRP in a JAK-STAT signaling dependent manner. CRP induced microglial cells to release IL1β which in turn promoted endothelial cell survival. This study, besides defining a serum panel for glioblastoma

  3. TAM receptors regulate multiple features of microglial physiology.

    PubMed

    Fourgeaud, Lawrence; Través, Paqui G; Tufail, Yusuf; Leal-Bailey, Humberto; Lew, Erin D; Burrola, Patrick G; Callaway, Perri; Zagórska, Anna; Rothlin, Carla V; Nimmerjahn, Axel; Lemke, Greg

    2016-04-14

    Microglia are damage sensors for the central nervous system (CNS), and the phagocytes responsible for routine non-inflammatory clearance of dead brain cells. Here we show that the TAM receptor tyrosine kinases Mer and Axl regulate these microglial functions. We find that adult mice deficient in microglial Mer and Axl exhibit a marked accumulation of apoptotic cells specifically in neurogenic regions of the CNS, and that microglial phagocytosis of the apoptotic cells generated during adult neurogenesis is normally driven by both TAM receptor ligands Gas6 and protein S. Using live two-photon imaging, we demonstrate that the microglial response to brain damage is also TAM-regulated, as TAM-deficient microglia display reduced process motility and delayed convergence to sites of injury. Finally, we show that microglial expression of Axl is prominently upregulated in the inflammatory environment that develops in a mouse model of Parkinson's disease. Together, these results establish TAM receptors as both controllers of microglial physiology and potential targets for therapeutic intervention in CNS disease. PMID:27049947

  4. Effects of aged garlic extract and FruArg on gene expression and signaling pathways in lipopolysaccharide-activated microglial cells

    PubMed Central

    Song, Hailong; Lu, Yuan; Qu, Zhe; Mossine, Valeri V.; Martin, Matthew B.; Hou, Jie; Cui, Jiankun; Peculis, Brenda A.; Mawhinney, Thomas P.; Cheng, Jianlin; Greenlief, C. Michael; Fritsche, Kevin; Schmidt, Francis J.; Walter, Ronald B.; Lubahn, Dennis B.; Sun, Grace Y.; Gu, Zezong

    2016-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement on account of its protective effects against oxidative stress and inflammation. But less is known about specific molecular targets of AGE and its bioactive components, including N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). Our recent study showed that both AGE and FruArg significantly attenuate lipopolysaccharide (LPS)-induced neuroinflammatory responses in BV-2 microglial cells. This study aims to unveil effects of AGE and FruArg on gene expression regulation in LPS stimulated BV-2 cells. Results showed that LPS treatment significantly altered mRNA levels from 2563 genes. AGE reversed 67% of the transcriptome alteration induced by LPS, whereas FruArg accounted for the protective effect by reversing expression levels of 55% of genes altered by LPS. Key pro-inflammatory canonical pathways induced by the LPS stimulation included toll-like receptor signaling, IL-6 signaling, and Nrf2-mediated oxidative stress pathway, along with elevated expression levels of genes, such as Il6, Cd14, Casp3, Nfkb1, Hmox1, and Tnf. These effects could be modulated by treatment with both AGE and FruArg. These findings suggests that AGE and FruArg are capable of alleviating oxidative stress and neuroinflammatory responses stimulated by LPS in BV-2 cells. PMID:27734935

  5. Neuroprotective and anti-inflammatory effects of flavonoids isolated from Rhus verniciflua in neuronal HT22 and microglial BV2 cell lines.

    PubMed

    Cho, Namki; Choi, Ji Hoon; Yang, Heejung; Jeong, Eun Ju; Lee, Ki Yong; Kim, Young Choong; Sung, Sang Hyun

    2012-06-01

    The neuroprotective and anti-inflammatory activities of the methanolic extract of Rhus verniciflua Stokes (Anacardiaceae) were investigated with mouse hippocampal and microglial cells. Bioactivity-guided isolation yielded 10 flavonoids including fustin (1), fisetin (2), sulfuretin (3), butein (4), butin (5), eriodictyol (6), morin hydrate (7), quercetin (8), kaempferol (9) and isoliquiritigenin (10). Among the isolated flavonoids, compounds 2-5 significantly protected the murine hippocampal HT22 cells against glutamate-induced neurotoxicity and attenuated reactive oxygen species (ROS) generations. In addition, these flavonoids significantly maintained antioxidative defense systems preserving the activities of superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GSH-Px) and the content of glutathione (GSH) decreased by glutamate insult. These compounds also showed significant inhibitory effects on LPS-induced nitric oxide (NO) production in BV2 cells. Especially, compound 4 dose-dependently suppressed the expression of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). These results suggest that these flavonoids possess therapeutic potentials as a multipotent agent against neurodegenerative diseases related to oxidative stress and pathological inflammatory responses.

  6. Inhibitory effect of ent-Sauchinone on amyloidogenesis via inhibition of STAT3-mediated NF-κB activation in cultured astrocytes and microglial BV-2 cells

    PubMed Central

    2014-01-01

    Background ent-Sauchinone is a polyphenolic compound found in plants belonging to the lignan family. ent-Sauchinone has been shown to modulate the expression of inflammatory factors through the nuclear factor-kappa B (NF-κB) signaling pathway. It is well known that neuroinflammation is associated with amyloidogenesis. Thus, in the present study, we investigated whether ent-Sauchinone could have anti-amyloidogenic effects through the inhibition of NF-κB pathways via its anti-inflammatory property. Methods To investigate the potential effect of ent-Sauchinone on anti-neuroinflammation and anti-amyloidogenesis in in vitro studies, we used microglial BV-2 cells and cultured astrocytes treated with ent-Sauchinone (1, 5, and 10 μM) for 24 hours. For the detection of anti-neuro-inflammatory responses, reative oxygen species (ROS) and Nitric oxide (NO) generation and inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were measured with assay kits and western blotting. β-secretase and β-secretase activities and β-amyloid levels were determined for measuring the anti-amyloidogenic effects of ent-Sauchinone by enzyme assay kits. NF-κB and STAT3 signals were detected with electromobility shift assay (EMSA) to study the related signaling pathways. The binding of ent-Sauchinone to STAT3 was evaluated by a pull-down assay and by a docking model using Autodock VINA software (Hoover’s Inc., Texas, United states). Results ent-Sauchinone (1, 5, and 10 μM) effectively decreased lipopolysaccharide (LPS)-(1 μg/ml) induced inflammatory responses through the reduction of ROS and NO generations and iNOS and COX-2 expressions in cultured astrocytes and microglial BV-2 cells. ent-Sauchinone also inhibited LPS-induced amyloidogenesis through the inhibition of β-secretase and β-secretase activity. NF- κB amyloid and STAT3, critical transcriptional factors regulating not only inflammation but also amyloidogenesis, were also inhibited in a

  7. Tubby regulates microglial phagocytosis through MerTK.

    PubMed

    Caberoy, Nora B; Alvarado, Gabriela; Li, Wei

    2012-11-15

    Immunologically-silent microglial phagocytosis of apoptotic cells and cellular debris is critical for CNS homeostasis and innate immune balance. The beneficial and detrimental effects of microglial phagocytosis on neurons remain controversial. Phagocytosis ligands are the key to selecting extracellular cargos, initiating the engulfment process, defining phagocyte functional roles and regulating phagocyte activities with therapeutic potentials. Here we characterized tubby as a new ligand to regulate microglial phagocytosis through MerTK receptor, which is well known for its immunosuppressive signaling. Tubby at 0.1nM significantly induced microglial phagocytosis of apoptotic cells with a maximal activity at 10nM. Tubby activated MerTK with receptor autophosphorylation in a similar dose range. Excessive soluble MerTK extracellular domain blocked tubby-mediated microglial phagocytosis of plasma membrane vesicles as cellular debris. Immunocytochemistry revealed that the ingested cargos were co-localized with MerTK-dependent non-muscle myosin II, whose rearrangement is necessary for cargo engulfment. Phagosome biomarker Rab7 was colocalized with cargos, suggesting that internalized cargos were targeted to phagocytic pathway. Tubby stimulated phagocytosis by neonatal and aged microglia with similar activities, but not by MerTK(-/-) microglia. These results suggest that tubby is a ligand to facilitate microglial phagocytosis through MerTK for the maintenance of CNS homeostasis.

  8. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    PubMed Central

    2013-01-01

    Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM), as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF. PMID:23363775

  9. Microglial action in glioma: a boon turns bane.

    PubMed

    Ghosh, Anirban; Chaudhuri, Swapna

    2010-06-15

    Microglia has the potential to shape the neuroimmune defense with vast array of functional attributes. The cells prime infiltrated lymphocytes to retain their effector functions, play crucial role in controlling microenvironmental milieu and significantly participate in glioma. Reports demonstrate microglial accumulation in glioma and predict their assistance in glioma growth and spreading. Clarification of the 'double-edged' appearance of microglia is necessary to unfold its role in glioma biology. In this article the interpretation of microglial activities has been attempted to reveal their actual function in glioma. Contrary to the trendy acceptance of its glioma promoting infamy, accumulated evidences make an effort to view the state of affairs in favor of the cell. Critical scrutiny indicates that microglial immune assaults are intended to demolish the neoplastic cells in brain. But the weaponry of microglia has been tactically utilized by glioma in their favor as the survival strategy. Hence the defender appears as enemy in advanced glioma. PMID:20338195

  10. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration.

    PubMed

    Zhao, Lian; Zabel, Matthew K; Wang, Xu; Ma, Wenxin; Shah, Parth; Fariss, Robert N; Qian, Haohua; Parkhurst, Christopher N; Gan, Wen-Biao; Wong, Wai T

    2015-07-02

    Retinitis pigmentosa, caused predominantly by mutations in photoreceptor genes, currently lacks comprehensive treatment. We discover that retinal microglia contribute non-cell autonomously to rod photoreceptor degeneration by primary phagocytosis of living rods. Using rd10 mice, we found that the initiation of rod degeneration is accompanied by early infiltration of microglia, upregulation of phagocytic molecules in microglia, and presentation of "eat-me" signals on mutated rods. On live-cell imaging, infiltrating microglia interact dynamically with photoreceptors via motile processes and engage in rapid phagocytic engulfment of non-apoptotic rods. Microglial contribution to rod demise is evidenced by morphological and functional amelioration of photoreceptor degeneration following genetic ablation of retinal microglia. Molecular inhibition of microglial phagocytosis using the vitronectin receptor antagonist cRGD also improved morphological and functional parameters of degeneration. Our findings highlight primary microglial phagocytosis as a contributing mechanism underlying cell death in retinitis pigmentosa and implicate microglia as a potential cellular target for therapy.

  11. Suppression of Alzheimer-Associated Inflammation by Microglial Prostaglandin-E2 EP4 Receptor Signaling

    PubMed Central

    Woodling, Nathaniel S.; Wang, Qian; Priyam, Prachi G.; Larkin, Paul; Shi, Ju; Johansson, Jenny U.; Zagol-Ikapitte, Irene; Boutaud, Olivier

    2014-01-01

    A persistent and nonresolving inflammatory response to accumulating Aβ peptide species is a cardinal feature in the development of Alzheimer's disease (AD). In response to accumulating Aβ peptide species, microglia, the innate immune cells of the brain, generate a toxic inflammatory response that accelerates synaptic and neuronal injury. Many proinflammatory signaling pathways are linked to progression of neurodegeneration. However, endogenous anti-inflammatory pathways capable of suppressing Aβ-induced inflammation represent a relatively unexplored area. Here we report that signaling through the prostaglandin-E2 (PGE2) EP4 receptor potently suppresses microglial inflammatory responses to Aβ42 peptides. In cultured microglial cells, EP4 stimulation attenuated levels of Aβ42-induced inflammatory factors and potentiated phagocytosis of Aβ42. Microarray analysis demonstrated that EP4 stimulation broadly opposed Aβ42-driven gene expression changes in microglia, with enrichment for targets of IRF1, IRF7, and NF-κB transcription factors. In vivo, conditional deletion of microglial EP4 in APPSwe-PS1ΔE9 (APP-PS1) mice conversely increased inflammatory gene expression, oxidative protein modification, and Aβ deposition in brain at early stages of pathology, but not at later stages, suggesting an early anti-inflammatory function of microglial EP4 signaling in the APP-PS1 model. Finally, EP4 receptor levels decreased significantly in human cortex with progression from normal to AD states, suggesting that early loss of this beneficial signaling system in preclinical AD development may contribute to subsequent progression of pathology. PMID:24760848

  12. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation

    PubMed Central

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-01-01

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson’s disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD. PMID:26499517

  13. Comparative Analysis of Protein Tyrosine Phosphatases Regulating Microglial Activation

    PubMed Central

    Song, Gyun Jee; Kim, Jaehong; Kim, Jong-Heon; Song, Seungeun; Park, Hana; Zhang, Zhong-Yin

    2016-01-01

    Protein tyrosine phosphatases (PTPs) are key regulatory factors in inflammatory signaling pathways. Although PTPs have been extensively studied, little is known about their role in neuroinflammation. In the present study, we examined the expression of 6 different PTPs (PTP1B, TC-PTP, SHP2, MEG2, LYP, and RPTPβ) and their role in glial activation and neuroinflammation. All PTPs were expressed in brain and glia. The expression of PTP1B, SHP2, and LYP was enhanced in the inflamed brain. The expression of PTP1B, TC-PTP, and LYP was increased after treating microglia cells with lipopolysaccharide (LPS). To examine the role of PTPs in microglial activation and neuroinflammation, we used specific pharmacological inhibitors of PTPs. Inhibition of PTP1B, TC-PTP, SHP2, LYP, and RPTPβ suppressed nitric oxide production in LPS-treated microglial cells in a dose-dependent manner. Furthermore, intracerebroventricular injection of PTP1B, TC-PTP, SHP2, and RPTPβ inhibitors downregulated microglial activation in an LPS-induced neuroinflammation model. Our results indicate that multiple PTPs are involved in regulating microglial activation and neuroinflammation, with different expression patterns and specific functions. Thus, PTP inhibitors can be exploited for therapeutic modulation of microglial activation in neuroinflammatory diseases. PMID:27790059

  14. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation.

    PubMed

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-10-26

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson's disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD.

  15. Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells

    PubMed Central

    2012-01-01

    Background Microglia, the resident macrophage-like cells in the brain, regulate innate immune responses in the CNS to protect neurons. However, excessive activation of microglia contributes to neurodegenerative diseases. Corticosteroids are potent modulators of inflammation and mediate their effects by binding to mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Here, the coordinated activities of GR and MR on the modulation of the nuclear factor-κB (NF-κB) pathway in murine BV-2 microglial cells were studied. Methods BV-2 cells were treated with different corticosteroids in the presence or absence of MR and GR antagonists. The impact of the glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) was determined by incubating cells with 11-dehydrocorticosterone, with or without selective inhibitors. Expression of interleukin-6 (IL-6), tumor necrosis factor receptor 2 (TNFR2), and 11β-HSD1 mRNA was analyzed by RT-PCR and IL-6 protein expression by ELISA. NF-κB activation and translocation upon treatment with various corticosteroids were visualized by western blotting, immunofluorescence microscopy, and translocation assays. Results GR and MR differentially regulate NF-κB activation and neuroinflammatory parameters in BV-2 cells. By converting inactive 11-dehydrocorticosterone to active corticosterone, 11β-HSD1 essentially modulates the coordinated action of GR and MR. Biphasic effects were observed for 11-dehydrocorticosterone and corticosterone, with an MR-dependent potentiation of IL-6 and tumor necrosis factor-α (TNF-α) expression and NF-κB activation at low/moderate concentrations and a GR-dependent suppression at high concentrations. The respective effects were confirmed using the MR ligand aldosterone and the antagonist spironolactone as well as the GR ligand dexamethasone and the antagonist RU-486. NF-κB activation could be blocked by spironolactone and the inhibitor of NF-κB translocation Cay-10512

  16. Retinoic acid receptor agonist Am80 inhibits CXCL2 production from microglial BV-2 cells via attenuation of NF-κB signaling.

    PubMed

    Takaoka, Yuichiro; Takahashi, Moeka; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Shudo, Koichi; Katsuki, Hiroshi

    2016-09-01

    Accumulating lines of evidence suggest that retinoic acid receptor agonists such as Am80 exerts anti-inflammatory actions in the central nervous system, although detailed mechanisms of the action remain largely unknown. Our previous findings suggest that Am80 provides therapeutic effect on intracerebral hemorrhage in mice via suppression of expression of chemokine (C-X-C motif) ligand 2 (CXCL2). Here we investigated the mechanisms of inhibitory action of Am80 on expression of CXCL2 and other pro-inflammatory factors in microglial BV-2 cells. Pretreatment with Am80 markedly suppressed lipopolysaccharide (LPS)-induced expression of CXCL2 mRNA and release of CXCL2 protein. Am80 had no effect on LPS-induced activation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. On the other hand, Am80 prevented LPS-induced nuclear translocation of p65 subunit of NF-κB complex. In addition, total expression levels of p65 and IκBα proteins, as well as of mRNAs encoding p65 and IκBα, were lowered by Am80. Dependence of CXCL2 expression on NF-κB was confirmed by the effect of an NF-κB inhibitor caffeic acid phenethyl ester that abolished LPS-induced CXCL2 expression. Caffeic acid phenethyl ester also abolished LPS-induced expression of inducible nitric oxide synthase, interleukin-1β and tumor necrosis factor α, which may be relevant to the inhibitory effect of Am80 on expression of these pro-inflammatory factors. We additionally found that Am80 attenuated LPS-induced up-regulation of CD14, a co-receptor for Toll-like receptor 4 (TLR4). These results suggest that inhibitory effect on TLR4 signaling mediated by NF-κB pathway underlies the anti-inflammatory action of retinoic acid receptor agonists in microglia. PMID:27351827

  17. Glioblastoma-derived Macrophage Colony-stimulating Factor (MCSF) Induces Microglial Release of Insulin-like Growth Factor-binding Protein 1 (IGFBP1) to Promote Angiogenesis.

    PubMed

    Nijaguna, Mamatha Bangalore; Patil, Vikas; Urbach, Serge; Shwetha, Shivayogi D; Sravani, Kotha; Hegde, Alangar S; Chandramouli, Bangalore A; Arivazhagan, Arimappamagan; Marin, Philippe; Santosh, Vani; Somasundaram, Kumaravel

    2015-09-18

    Glioblastoma (grade IV glioma/GBM) is the most common primary adult malignant brain tumor with poor prognosis. To characterize molecular determinants of tumor-stroma interaction in GBM, we profiled 48 serum cytokines and identified macrophage colony-stimulating factor (MCSF) as one of the elevated cytokines in sera from GBM patients. Both MCSF transcript and protein were up-regulated in GBM tissue samples through a spleen tyrosine kinase (SYK)-dependent activation of the PI3K-NFκB pathway. Ectopic overexpression and silencing experiments revealed that glioma-secreted MCSF has no role in autocrine functions and M2 polarization of macrophages. In contrast, silencing expression of MCSF in glioma cells prevented tube formation of human umbilical vein endothelial cells elicited by the supernatant from monocytes/microglial cells treated with conditioned medium from glioma cells. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture showed that glioma-derived MCSF induces changes in microglial secretome and identified insulin-like growth factor-binding protein 1 (IGFBP1) as one of the MCSF-regulated proteins secreted by microglia. Silencing IGFBP1 expression in microglial cells or its neutralization by an antibody reduced the ability of supernatants derived from microglial cells treated with glioma cell-conditioned medium to induce angiogenesis. In conclusion, this study shows up-regulation of MCSF in GBM via a SYK-PI3K-NFκB-dependent mechanism and identifies IGFBP1 released by microglial cells as a novel mediator of MCSF-induced angiogenesis, of potential interest for developing targeted therapy to prevent GBM progression.

  18. Systemic inflammation regulates microglial responses to tissue damage in vivo

    PubMed Central

    Gyoneva, Stefka; Davalos, Dimitrios; Biswas, Dipankar; Swanger, Sharon A.; Garnier-Amblard, Ethel; Loth, Francis; Akassoglou, Katerina; Traynelis, Stephen F.

    2015-01-01

    Microglia, the resident immune cells of the central nervous system, exist in either a “resting” state associated with physiological tissue surveillance or an “activated” state in neuroinflammation. We recently showed that ATP is the primary chemoattractor to tissue damage in vivo and elicits opposite effects on the motility of activated microglia in vitro through activation of adenosine A2A receptors. However, whether systemic inflammation affects microglial responses to tissue damage in vivo remains largely unknown. Using in vivo two-photon imaging of mice, we show that injection of lipopolysaccharide (LPS) at levels that can produce both clear neuroinflammation and some features of sepsis significantly reduced the rate of microglial response to laser-induced ablation injury in vivo. Under pro-inflammatory conditions, microglial processes initially retracted from the ablation site, but subsequently moved toward and engulfed the damaged area. Analyzing the process dynamics in 3D cultures of primary microglia indicated that only A2A, but not A1 or A3 receptors, mediate process retraction in LPS-activated microglia. The A2A receptor antagonists caffeine and preladenant reduced adenosine-mediated process retraction in activated microglia in vitro. Finally, administration of preladenant before induction of laser ablation in vivo accelerated the microglial response to injury following systemic inflammation. The regulation of rapid microglial responses to sites of injury by A2A receptors could have implications for their ability to respond to the neuronal death occurring under conditions of neuroinflammation in neurodegenerative disorders. PMID:24807189

  19. Microglial activation and progressive brain changes in schizophrenia.

    PubMed

    Laskaris, L E; Di Biase, M A; Everall, I; Chana, G; Christopoulos, A; Skafidas, E; Cropley, V L; Pantelis, C

    2016-02-01

    Schizophrenia is a debilitating disorder that typically begins in adolescence and is characterized by perceptual abnormalities, delusions, cognitive and behavioural disturbances and functional impairments. While current treatments can be effective, they are often insufficient to alleviate the full range of symptoms. Schizophrenia is associated with structural brain abnormalities including grey and white matter volume loss and impaired connectivity. Recent findings suggest these abnormalities follow a neuroprogressive course in the earliest stages of the illness, which may be associated with episodes of acute relapse. Neuroinflammation has been proposed as a potential mechanism underlying these brain changes, with evidence of increased density and activation of microglia, immune cells resident in the brain, at various stages of the illness. We review evidence for microglial dysfunction in schizophrenia from both neuroimaging and neuropathological data, with a specific focus on studies examining microglial activation in relation to the pathology of grey and white matter. The studies available indicate that the link between microglial dysfunction and brain change in schizophrenia remains an intriguing hypothesis worthy of further examination. Future studies in schizophrenia should: (i) use multimodal imaging to clarify this association by mapping brain changes longitudinally across illness stages in relation to microglial activation; (ii) clarify the nature of microglial dysfunction with markers specific to activation states and phenotypes; (iii) examine the role of microglia and neurons with reference to their overlapping roles in neuroinflammatory pathways; and (iv) examine the impact of novel immunomodulatory treatments on brain structure in schizophrenia. PMID:26455353

  20. Microglial polarization and plasticity: evidence from organotypic hippocampal slice cultures.

    PubMed

    Ajmone-Cat, Maria Antonietta; Mancini, Melissa; De Simone, Roberta; Cilli, Piera; Minghetti, Luisa

    2013-10-01

    Increasing evidence indicates that "functional plasticity" is not solely a neuronal attribute but a hallmark of microglial cells, the main brain resident macrophage population. Far from being a univocal phenomenon, microglial activation can originate a plethora of functional phenotypes, encompassing the classic M1 proinflammatory and the alternative M2 anti-inflammatory phenotypes. This concept overturns the popular view of microglial activation as a synonym of neurotoxicity and neurogenesis failure in brain disorders. The characterization of the alternative programs is a matter of intense investigation, but still scarce information is available on the course of microglial activation, on the reversibility of the different commitments and on the capability of preserving molecular memory of previous priming stimuli. By using organotypic hippocampal slice cultures as a model, we developed paradigms of stimulation aimed at shedding light on some of these aspects. We show that persistent stimulation of TLR4 signaling promotes an anti-inflammatory response and microglial polarization toward M2-like phenotype. Moreover, acute and chronic preconditioning regimens permanently affect the capability to respond to a later challenge, suggesting the onset of mechanisms of molecular memory. Similar phenomena could occur in the intact brain and differently affect the vulnerability of mature and newborn neurons to noxious signals. PMID:23918452

  1. Quantitating the subtleties of microglial morphology with fractal analysis

    PubMed Central

    Karperien, Audrey; Ahammer, Helmut; Jelinek, Herbert F.

    2013-01-01

    It is well established that microglial form and function are inextricably linked. In recent years, the traditional view that microglial form ranges between “ramified resting” and “activated amoeboid” has been emphasized through advancing imaging techniques that point to microglial form being highly dynamic even within the currently accepted morphological categories. Moreover, microglia adopt meaningful intermediate forms between categories, with considerable crossover in function and varying morphologies as they cycle, migrate, wave, phagocytose, and extend and retract fine and gross processes. From a quantitative perspective, it is problematic to measure such variability using traditional methods, but one way of quantitating such detail is through fractal analysis. The techniques of fractal analysis have been used for quantitating microglial morphology, to categorize gross differences but also to differentiate subtle differences (e.g., amongst ramified cells). Multifractal analysis in particular is one technique of fractal analysis that may be useful for identifying intermediate forms. Here we review current trends and methods of fractal analysis, focusing on box counting analysis, including lacunarity and multifractal analysis, as applied to microglial morphology. PMID:23386810

  2. The selective mGluR5 agonist CHPG attenuates SO2-induced oxidative stress and inflammation through TSG-6/NF-κB pathway in BV2 microglial cells.

    PubMed

    Qiu, Jun-Ling; Zhu, Wen-Li; Lu, Yu-Jie; Bai, Zheng-Fa; Liu, Zhi-Gang; Zhao, Pei; Sun, Chao; Zhang, Ya-Bin; Li, Hua; Liu, Wei

    2015-01-01

    Sulfur dioxide (SO2) is a common air pollutant and can cause harmful insults on neurons. Microglial activation has been implicated in the signaling cascades that contribute to neuronal cell death in various neurological disorders. In the present study, we found that SO2 derivatives decreased cell viability via inducing oxidative stress, inflammatory responses and apoptotic cell death in BV2 microglial cells. Pretreatment with (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), an mGluR5 agonist, significantly attenuated the SO2-induced cytotoxicity, which was fully prevented by the mGluR5 antagonist MPEP. CHPG increased the expression of TNF-α stimulated gene/protein 6 (TSG-6), but decreased the activation of nuclear factor-κB (NF-κB) after SO2 derivatives treatment in BV2 cells. In addition, knockdown of TSG-6 expression by specific targeted short interfering RNA (siRNA) partially reversed the protection induced by CHPG. Therefore, our findings reveal a mechanistic basis for exploring the association between SO2 exposure and neurological disorders, and also for opening up therapeutic approaches of ameliorating neuronal injury resulting from exposure in atmospheric polluting environment.

  3. Tomato lectin histochemistry for microglial visualization.

    PubMed

    Villacampa, Nàdia; Almolda, Beatriz; González, Berta; Castellano, Bernardo

    2013-01-01

    The use of different lectins for the study of microglial cells in the central nervous system (CNS) is a valuable tool that has been extensively used in the last years for the selective staining of this glial cell population, not only in normal physiological conditions, but also in a wide range of pathological situations where the normal homeostasis of the parenchyma is disturbed. In this chapter we accurately describe the methodology for the selective labelling of microglial cells by using the tomato lectin (TL), a protein lectin obtained from Lycopersicum esculentum with specific affinity for poly-N-acetyl lactosamine sugar residues which are found on the plasma membrane and in the cytoplasm of microglia. Here we describe how to perform this technique on vibratome, frozen, and paraffin sections for optical microscopy, as well as for transmission electron microscopy (TEM) studies. Using this methodology it is possible to visualize amoeboid microglia in the developing brain, ramified microglia in the adult, and activated/reactive microglia in the experimentally damaged brain. In addition, as TL also recognized sugar residues in endothelial cells, this technique is very useful for the study of the relationship established between microglia and the CNS vasculature. PMID:23813385

  4. The antiviral drug ganciclovir does not inhibit microglial proliferation and activation

    PubMed Central

    Skripuletz, Thomas; Salinas Tejedor, Laura; Prajeeth, Chittappen K.; Hansmann, Florian; Chhatbar, Chintan; Kucman, Valeria; Zhang, Ning; Raddatz, Barbara B.; Detje, Claudia N.; Sühs, Kurt-Wolfram; Pul, Refik; Gudi, Viktoria; Kalinke, Ulrich; Baumgärtner, Wolfgang; Stangel, Martin

    2015-01-01

    Ganciclovir is effective in the treatment of human infections with viruses of the Herpesviridae family. Beside antiviral properties, recently ganciclovir was described to inhibit microglial proliferation and disease severity of experimental autoimmune encephalomyelitis, an inflammatory model of multiple sclerosis. Microglial activation and proliferation are main characteristics of neuroinflammatory CNS diseases and inhibition of microglial functions might be beneficial in autoimmune diseases, or detrimental in infectious diseases. The objective of this study was to determine potential inhibitory effects of ganciclovir in three different murine animal models of CNS neuroinflammation in which microglia play an important role: Theiler´s murine encephalomyelitis, the cuprizone model of de- and remyelination, and the vesicular stomatitis virus encephalitis model. In addition, in vitro experiments with microglial cultures were performed to test the hypothesis that ganciclovir inhibits microglial proliferation. In all three animal models, neither microglial proliferation or recruitment nor disease activity was changed by ganciclovir. In vitro experiments confirmed that microglial proliferation was not affected by ganciclovir. In conclusion, our results show that the antiviral drug ganciclovir does not inhibit microglial activation and proliferation in the murine CNS. PMID:26447351

  5. The antiviral drug ganciclovir does not inhibit microglial proliferation and activation.

    PubMed

    Skripuletz, Thomas; Salinas Tejedor, Laura; Prajeeth, Chittappen K; Hansmann, Florian; Chhatbar, Chintan; Kucman, Valeria; Zhang, Ning; Raddatz, Barbara B; Detje, Claudia N; Sühs, Kurt-Wolfram; Pul, Refik; Gudi, Viktoria; Kalinke, Ulrich; Baumgärtner, Wolfgang; Stangel, Martin

    2015-01-01

    Ganciclovir is effective in the treatment of human infections with viruses of the Herpesviridae family. Beside antiviral properties, recently ganciclovir was described to inhibit microglial proliferation and disease severity of experimental autoimmune encephalomyelitis, an inflammatory model of multiple sclerosis. Microglial activation and proliferation are main characteristics of neuroinflammatory CNS diseases and inhibition of microglial functions might be beneficial in autoimmune diseases, or detrimental in infectious diseases. The objective of this study was to determine potential inhibitory effects of ganciclovir in three different murine animal models of CNS neuroinflammation in which microglia play an important role: Theiler´s murine encephalomyelitis, the cuprizone model of de- and remyelination, and the vesicular stomatitis virus encephalitis model. In addition, in vitro experiments with microglial cultures were performed to test the hypothesis that ganciclovir inhibits microglial proliferation. In all three animal models, neither microglial proliferation or recruitment nor disease activity was changed by ganciclovir. In vitro experiments confirmed that microglial proliferation was not affected by ganciclovir. In conclusion, our results show that the antiviral drug ganciclovir does not inhibit microglial activation and proliferation in the murine CNS. PMID:26447351

  6. C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation.

    PubMed

    Färber, Katrin; Cheung, Giselle; Mitchell, Daniel; Wallis, Russell; Weihe, Eberhard; Schwaeble, Wilhelm; Kettenmann, Helmut

    2009-02-15

    Microglia, central nervous system (CNS) resident phagocytic cells, persistently police the integrity of CNS tissue and respond to any kind of damage or pathophysiological changes. These cells sense and rapidly respond to danger and inflammatory signals by changing their cell morphology; by release of cytokines, chemokines, or nitric oxide; and by changing their MHC expression profile. We have shown previously that microglial biosynthesis of the complement subcomponent C1q may serve as a reliable marker of microglial activation ranging from undetectable levels of C1q biosynthesis in resting microglia to abundant C1q expression in activated, nonramified microglia. In this study, we demonstrate that cultured microglial cells respond to extrinsic C1q with a marked intracellular Ca(2+) increase. A shift toward proinflammatory microglial activation is indicated by the release of interleukin-6, tumor necrosis factor-alpha, and nitric oxide and the oxidative burst in rat primary microglial cells, an activation and differentiation process similar to the proinflammatory response of microglia to exposure to lipopolysaccharide. Our findings indicate 1) that extrinsic plasma C1q is involved in the initiation of microglial activation in the course of CNS diseases with blood-brain barrier impairment and 2) that C1q synthesized and released by activated microglia is likely to contribute in an autocrine/paracrine way to maintain and balance microglial activation in the diseased CNS tissue. PMID:18831010

  7. Microglial VPAC1R mediates a novel mechanism of neuroimmune-modulation of hippocampal precursor cells via IL-4 release

    PubMed Central

    Nunan, Robert; Sivasathiaseelan, Harri; Khan, Damla; Zaben, Malik; Gray, William

    2014-01-01

    Neurogenesis, the production of new neurons from neural stem/progenitor cells (NSPCs), occurs throughout adulthood in the dentate gyrus of the hippocampus, where it supports learning and memory. The innate and adaptive immune systems are increasingly recognized as important modulators of hippocampal neurogenesis under both physiological and pathological conditions. However, the mechanisms by which the immune system regulates hippocampal neurogenesis are incompletely understood. In particular, the role of microglia, the brains resident immune cell is complex, as they have been reported to both positively and negatively regulate neurogenesis. Interestingly, neuronal activity can also regulate the function of the immune system. Here, we show that depleting microglia from hippocampal cultures reduces NSPC survival and proliferation. Furthermore, addition of purified hippocampal microglia, or their conditioned media, is trophic and proliferative to NSPCs. VIP, a neuropeptide released by dentate gyrus interneurons, enhances the proliferative and pro-neurogenic effect of microglia via the VPAC1 receptor. This VIP-induced enhancement is mediated by IL-4 release, which directly targets NSPCs. This demonstrates a potential neuro-immuno-neurogenic pathway, disruption of which may have significant implications in conditions where combined cognitive impairments, interneuron loss, and immune system activation occurs, such as temporal lobe epilepsy and Alzheimer's disease. PMID:24801739

  8. Microglial VPAC1R mediates a novel mechanism of neuroimmune-modulation of hippocampal precursor cells via IL-4 release.

    PubMed

    Nunan, Robert; Sivasathiaseelan, Harri; Khan, Damla; Zaben, Malik; Gray, William

    2014-08-01

    Neurogenesis, the production of new neurons from neural stem/progenitor cells (NSPCs), occurs throughout adulthood in the dentate gyrus of the hippocampus, where it supports learning and memory. The innate and adaptive immune systems are increasingly recognized as important modulators of hippocampal neurogenesis under both physiological and pathological conditions. However, the mechanisms by which the immune system regulates hippocampal neurogenesis are incompletely understood. In particular, the role of microglia, the brains resident immune cell is complex, as they have been reported to both positively and negatively regulate neurogenesis. Interestingly, neuronal activity can also regulate the function of the immune system. Here, we show that depleting microglia from hippocampal cultures reduces NSPC survival and proliferation. Furthermore, addition of purified hippocampal microglia, or their conditioned media, is trophic and proliferative to NSPCs. VIP, a neuropeptide released by dentate gyrus interneurons, enhances the proliferative and pro-neurogenic effect of microglia via the VPAC1 receptor. This VIP-induced enhancement is mediated by IL-4 release, which directly targets NSPCs. This demonstrates a potential neuro-immuno-neurogenic pathway, disruption of which may have significant implications in conditions where combined cognitive impairments, interneuron loss, and immune system activation occurs, such as temporal lobe epilepsy and Alzheimer's disease.

  9. Redox Control of Microglial Function: Molecular Mechanisms and Functional Significance

    PubMed Central

    McBean, Gethin; Cindric, Marina; Egea, Javier; López, Manuela G.; Rada, Patricia; Zarkovic, Neven

    2014-01-01

    Abstract Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain. Antioxid. Redox Signal. 21, 1766–1801. PMID:24597893

  10. Redox control of microglial function: molecular mechanisms and functional significance.

    PubMed

    Rojo, Ana I; McBean, Gethin; Cindric, Marina; Egea, Javier; López, Manuela G; Rada, Patricia; Zarkovic, Neven; Cuadrado, Antonio

    2014-10-20

    Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain.

  11. Neonatal binge alcohol exposure increases microglial activation in the developing rat hippocampus.

    PubMed

    Boschen, K E; Ruggiero, M J; Klintsova, A Y

    2016-06-01

    Aberrant activation of the developing immune system can have long-term negative consequences on cognition and behavior. Teratogens, such as alcohol, activate microglia, the brain's resident immune cells, which could contribute to the lifelong deficits in learning and memory observed in humans with Fetal Alcohol Spectrum Disorders (FASD) and in rodent models of FASD. The current study investigates the microglial response of the brain 24 h following neonatal alcohol exposure (postnatal days (PDs) 4-9, 5.25 g/kg/day). On PD10, microglial cell counts and area of cell territory were assessed using unbiased stereology in the hippocampal subfields CA1, CA3 and dentate gyrus (DG), and hippocampal expression of pro- and anti-inflammatory genes was analyzed. A significant decrease in microglial cell counts in CA1 and DG was found in alcohol-exposed and sham-intubated (SI) animals compared to undisturbed suckle controls (SCs), suggesting overlapping effects of alcohol exposure and intubation alone on the neuroimmune response. Cell territory was decreased in alcohol-exposed animals in CA1, CA3, and DG compared to controls, suggesting the microglia have shifted to a more activated state following alcohol treatment. Furthermore, both alcohol-exposed and SI animals had increased levels of pro-inflammatory cytokines IL-1β, TNF-α, CD11b, and CCL4; in addition, CCL4 was significantly increased in alcohol-exposed animals compared to SI as well. Alcohol-exposed animals also showed increased levels of anti-inflammatory cytokine TGF-β compared to both SI and SCs. In summary, the number and activation of microglia in the neonatal hippocampus are both affected in a rat model of FASD, along with increased gene expression of pro- and anti-inflammatory cytokines. This study shows that alcohol exposure during development induces a neuroimmune response, potentially contributing to long-term alcohol-related changes to cognition, behavior and immune function. PMID:26996510

  12. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors.

    PubMed

    Shytle, R Douglas; Mori, Takashi; Townsend, Kirk; Vendrame, Martina; Sun, Nan; Zeng, Jin; Ehrhart, Jared; Silver, Archie A; Sanberg, Paul R; Tan, Jun

    2004-04-01

    Almost all degenerative diseases of the CNS are associated with chronic inflammation. A central step in this process is the activation of brain mononuclear phagocyte cells, called microglia. While it is recognized that healthy neurons and astrocytes regulate the magnitude of microglia-mediated innate immune responses and limit excessive CNS inflammation, the endogenous signals governing this process are not fully understood. In the peripheral nervous system, recent studies suggest that an endogenous 'cholinergic anti-inflammatory pathway' regulates systemic inflammatory responses via alpha 7 nicotinic acetylcholinergic receptors (nAChR) found on blood-borne macrophages. These data led us to investigate whether a similar cholinergic pathway exists in the brain that could regulate microglial activation. Here we report for the first time that cultured microglial cells express alpha 7 nAChR subunit as determined by RT-PCR, western blot, immunofluorescent, and immunohistochemistry analyses. Acetylcholine and nicotine pre-treatment inhibit lipopolysaccharide (LPS)-induced TNF-alpha release in murine-derived microglial cells, an effect attenuated by alpha 7 selective nicotinic antagonist, alpha-bungarotoxin. Furthermore, this inhibition appears to be mediated by a reduction in phosphorylation of p44/42 and p38 mitogen-activated protein kinase (MAPK). Though preliminary, our findings suggest the existence of a brain cholinergic pathway that regulates microglial activation through alpha 7 nicotinic receptors. Negative regulation of microglia activation may also represent additional mechanism underlying nicotine's reported neuroprotective properties.

  13. Neuronal Regulation of Neuroprotective Microglial Apolipoprotein E Secretion in Rat In Vitro Models of Brain Pathophysiology.

    PubMed

    Polazzi, Elisabetta; Mengoni, Ilaria; Peña-Altamira, Emiliano; Massenzio, Francesca; Virgili, Marco; Petralla, Sabrina; Monti, Barbara

    2015-08-01

    Apolipoprotein E (ApoE) is mainly secreted by glial cells and is involved in many brain functions, including neuronal plasticity, β-amyloid clearance, and neuroprotection. Microglia--the main immune cells of the brain--are one source of ApoE, but little is known about the physiologic regulation of microglial ApoE secretion by neurons and whether this release changes under inflammatory or neurodegenerative conditions. Using rat primary neural cell cultures, we show that microglia release ApoE through a Golgi-mediated secretion pathway and that ApoE progressively accumulates in neuroprotective microglia-conditioned medium. This constitutive ApoE release is negatively affected by microglial activation both with lipopolysaccharide and with ATP. Microglial ApoE release is stimulated by neuron-conditioned media and under coculture conditions. Neuron-stimulated microglial ApoE release is mediated by serine and glutamate through N-methyl-D-aspartate receptors and is differently regulated by activation states (i.e. lipopolysaccharide vs ATP) and by 6-hydroxydopamine. Microglial ApoE silencing abrogated protection of cerebellar granule neurons against 6-hydroxydopamine toxicity in cocultures, indicating that microglial ApoE release is neuroprotective. Our findings shed light on the reciprocal cross-talk between neurons and microglia that is crucial for normal brain functions. They also open the way for the identification of possible pharmacologic targets that can modulate neuroprotective microglial ApoE release under pathologic conditions.

  14. Microglial proliferation in the brain of chronic alcoholics with hepatic encephalopathy

    PubMed Central

    Dennis, Claude V.; Sheahan, Pamela J.; Graeber, Manuel B.; Sheedy, Donna L.; Kril, Jillian J.; Sutherland, Greg T.

    2014-01-01

    Hepatic encephalopathy (HE) is a common complication of chronic alcoholism and patients show neurological symptoms ranging from mild cognitive dysfunction to coma and death. The HE brain is characterized by glial changes, including microglial activation, but the exact pathogenesis of HE is poorly understood. During a study investigating cell proliferation in the subventricular zone of chronic alcoholics, a single case with widespread proliferation throughout their adjacent grey and white matter was noted. This case also had concomitant HE raising the possibility that glial proliferation might be a pathological feature of the disease. In order to explore this possibility fixed postmortem human brain tissue from chronic alcoholics with cirrhosis and HE (n = 9), alcoholics without HE (n = 4) and controls (n = 4) were examined using immunohistochemistry and cytokine assays. In total, 4/9 HE cases had PCNA- and a second proliferative marker, Ki-67-positive cells throughout their brain and these cells co-stained with the microglial marker, Iba1. These cases were termed ‘proliferative HE’ (pHE). The microglia in pHEs displayed an activated morphology with hypertrophied cell bodies and short, thickened processes. In contrast, the microglia in white matter regions of the non-proliferative HE cases were less activated and appeared dystrophic. pHEs were also characterized by higher interleukin-6 levels and a slightly higher neuronal density . These findings suggest that microglial proliferation may form part of an early neuroprotective response in HE that ultimately fails to halt the course of the disease because underlying etiological factors such as high cerebral ammonia and systemic inflammation remain. PMID:24346482

  15. Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling

    PubMed Central

    Nadjar, Agnes; Layé, Sophie; Leyrolle, Quentin; Gómez-Nicola, Diego; Domercq, María; Pérez-Samartín, Alberto; Sánchez-Zafra, Víctor; Savage, Julie C.; Hui, Chin-Wai; Deudero, Juan J. P.; Brewster, Amy L.; Anderson, Anne E.; Zaldumbide, Laura; Galbarriatu, Lara; Marinas, Ainhoa; Vivanco, Maria dM.; Matute, Carlos; Maletic-Savatic, Mirjana

    2016-01-01

    Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance

  16. Role of Microglial Activation in the Pathophysiology of Bacterial Meningitis.

    PubMed

    Barichello, Tatiana; Generoso, Jaqueline S; Simões, Lutiana R; Goularte, Jessica A; Petronilho, Fabricia; Saigal, Priyanka; Badawy, Marwa; Quevedo, João

    2016-04-01

    Bacterial meningitis is a life-threatening infection associated with cognitive impairment in many survivors. The pathogen invades the central nervous system (CNS) by penetrating through the luminal side of the cerebral endothelium, which is an integral part of the blood-brain barrier. The replication of bacteria within the subarachnoid space occurs concomitantly with the release of their compounds that are highly immunogenic. These compounds known as pathogen-associated molecular patterns (PAMPs) may lead to both an increase in the inflammatory response in the host and also microglial activation. Microglia are the resident macrophages of the CNS which, when activated, can trigger a host of immunological pathways. Classical activation increases the production of pro-inflammatory cytokines, chemokines, and reactive oxygen species, while alternative activation is implicated in the inhibition of inflammation and restoration of homeostasis. The inflammatory response from classical microglial activation can facilitate the elimination of invasive microorganisms; however, excessive or extended microglial activation can result in neuronal damage and eventually cell death. This review aims to discuss the role of microglia in the pathophysiology of bacterial meningitis as well as the process of microglial activation by PAMPs and by endogenous constituents that are normally released from damaged cells known as danger-associated molecular patterns (DAMPs). PMID:25744564

  17. Poly I:C induced microglial activation impairs motor activity in adult rats.

    PubMed

    Patro, I K; Amit; Shrivastava, M; Bhumika, S; Patro, N

    2010-02-01

    Polyinosinic:polycytidic acid (poly I:C) is a synthetic double stranded RNA, which mimics with viral genome and mediates immune activation response similar to double stranded RNA virus infection into the brain. Microglial cells are the immune competent cells of the central nervous system having Toll like receptors-3 on their surface. Upon establishing that poly I:C infusion into the brain causes microgliosis by creating a viral infection model, the present study was designed to evaluate the effects of microglial activation following poly I:C infusion on motor activity. We infused 100 microl of 1% solution of Poly I:C in TBE buffer directly into the lateral ventricle and TBE buffer as vehicle to controls. A significantly higher microglial cell count as compared to control on 2, 3 and 7 days post infusion was recorded. Motor activity and microglial cell count was assessed in both controls and poly I:C infused rats on 1, 2, 3, 7, 14, 21 and 28 days post infusion. A significant decrease in motor activity and motor coordination occurred with respect to control. The results clearly demonstrate that microglial activation has a direct relevance with decreased motor activity. Findings could also have their importance in understanding the role of microglial cells on behavioral aspects in viral diseases.

  18. Deciphering Resting Microglial Morphology and Process Motility from a Synaptic Prospect

    PubMed Central

    Hristovska, Ines; Pascual, Olivier

    2016-01-01

    Microglia, the resident immune cells of the central nervous system (CNS), were traditionally believed to be set into action only in case of injury or disease. Accordingly, microglia were assumed to be inactive or resting in the healthy brain. However, recent studies revealed that microglia carry out active tissue sampling in the intact brain by extending and retracting their ramified processes while periodically contacting synapses. Microglial morphology and motility as well as the frequency and duration of physical contacts with synaptic elements were found to be modulated by neuronal activity, sensory experience and neurotransmission; however findings have not been straightforward. Microglial cells are the most morphologically plastic element of the CNS. This unique feature confers them the possibility to locally sense activity, and to respond adequately by establishing synaptic contacts to regulate synaptic inputs by the secretion of signaling molecules. Indeed, microglial cells can hold new roles as critical players in maintaining brain homeostasis and regulating synaptic number, maturation and plasticity. For this reason, a better characterization of microglial cells and cues mediating neuron-to-microglia communication under physiological conditions may help advance our understanding of the microglial behavior and its regulation in the healthy brain. This review highlights recent findings on the instructive role of neuronal activity on microglial motility and microglia-synapse interactions, focusing on the main transmitters involved in this communication and including newly described communication at the tripartite synapse. PMID:26834588

  19. Donepezil Regulates 1-Methyl-4-phenylpyridinium-Induced Microglial Polarization in Parkinson's Disease.

    PubMed

    Chen, Teng; Hou, Ruihua; Xu, Shujun; Wu, Chengyuan

    2015-10-21

    1-Methyl-4-phenylpyridinium (MPP+) induces microglial activation and degeneration of dopaminergic (DAergic) neurons. Donepezil is a well-known acetylcholinesterase inhibitor used clinically to treat cognitive dysfunction in Alzheimer's disease (AD). In the present study, we tested the hypothesis that MPP+ promotes microglial M1 polarization and suppresses M2 polarization and that this can be restored by donepezil. Results indicate that MPP+ treatment in microglial BV2 cells promotes microglial polarization toward the M1 state. However, pretreatment with donepezil inhibited MPP+-induced M1 polarization in microglia by suppressing the release of interleukin (IL)-6, IL-1β, or tumor necrosis factor (TNF)-α. Importantly, we found that MPP+ inhibited microglial M2 polarization by suppressing expression of Arg-1, Fizz1, and Ym1, which was also rescued by pretreatment with donepezil. In addition, IL-4-mediated induction of anti-inflammatory marker genes IL-10, IL-13, and transforming growth factor-β2 (TGF-β2) were significantly attenuated by MPP+ in BV2 cells, which was restored by pretreatment with donepezil in a concentration-dependent manner. Mechanistically, we found that the addition of MPP+ reduced the intensity of phosphorylated signal transducer and activator of transcription 6 (STAT6) but not total STAT6 in IL-4-stimulated BV2 cells. Importantly, pretreatment of microglial BV2 cells with donepezil 3 h prior to administration of MPP+ rescued the reduction of STAT6 phosphorylation induced by MPP+.

  20. Morin downregulates nitric oxide and prostaglandin E2 production in LPS-stimulated BV2 microglial cells by suppressing NF-κB activity and activating HO-1 induction.

    PubMed

    Dilshara, Matharage Gayani; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Seungheon; Choi, Yung Hyun; Kim, Gi-Young

    2016-06-01

    Morin possesses anti-inflammatory activity against septic shock and allergic responses, and prevents acute liver damage. However, the biological mechanism of action of morin in neuroinflammation remains largely unknown. Therefore, the present study investigated whether morin has the ability to attenuate expression of proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Morin inhibited the expression of LPS-induced proinflammatory mediators such as NO and PGE2, without any cytotoxic effects. Furthermore, LPS-induced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) were inhibited both at the mRNA and protein levels in response to morin. Morin also attenuated LPS-induced DNA-binding activity of nuclear transcription factor-κB (NF-κB) and its promoter activity. Pyrrolidine dithiocarbamate (PDTC), a specific NF-κB inhibitor, downregulated the expression of LPS-induced iNOS and COX-2, which suggests that morin-mediated NF-κB inhibition is the main signaling pathway responsible for the inhibition of iNOS and COX-2 expression. Additionally, morin increased induction of heme oxygenase-1 (HO-1) activity, leading to the suppression of NO and PGE2 production. Our results indicate that morin downregulates the expression of proinflammatory genes, such as iNOS and COX-2, involved in the synthesis of NO and PGE2 in LPS-stimulated BV2 microglial cells by suppressing NF-κB activity and activation of HO-1. Taken together, the findings of the present study suggest that morin may have potential as a therapeutic for the prevention of neuroinflammation.

  1. Hippo/MST1 signaling mediates microglial activation following acute cerebral ischemia-reperfusion injury.

    PubMed

    Zhao, Siqi; Yin, Jie; Zhou, Lujun; Yan, Feng; He, Qing; Huang, Li; Peng, Shengyi; Jia, Junying; Cheng, Jinbo; Chen, Hong; Tao, Wufan; Ji, Xunming; Xu, Yun; Yuan, Zengqiang

    2016-07-01

    Cerebral ischemia-reperfusion injury is a major public health concern that causes high rates of disability and mortality in adults. Microglial activation plays a crucial role in ischemic stroke-induced alteration of the immune microenvironment. However, the mechanism underlying the triggering of microglial activation by ischemic stroke remains to be elucidated. Previously, we demonstrated that the protein kinase Hippo/MST1 plays an important role in oxidative stress-induced cell death in mammalian primary neurons and that the protein kinase c-Abl phosphorylates MST1 at Y433, which increases MST1 kinase activity. Microglial activation has been implicated as a secondary detrimental cellular response that contributes to neuronal cell death in ischemic stroke. Here, we are the first, to our knowledge, to demonstrate that MST1 mediates stroke-induced microglial activation by directly phosphorylating IκBα at residues S32 and S36. We further demonstrate that Src kinase functions upstream of MST1-IκB signaling during microglial activation. Specific deletion of MST1 in microglia mitigates stroke-induced brain injury. Therefore, we propose that Src-MST1-IκB signaling plays a critical role in stroke-induced microglial activation. Together with our previous work demonstrating that MST1 is important for oxidative stress-induced neuronal cell death, our results indicate that MST1 could represent a potent therapeutic target for ischemic stroke.

  2. Altered microglial phagocytosis in GPR34-deficient mice.

    PubMed

    Preissler, Julia; Grosche, Antje; Lede, Vera; Le Duc, Diana; Krügel, Katja; Matyash, Vitali; Szulzewsky, Frank; Kallendrusch, Sonja; Immig, Kerstin; Kettenmann, Helmut; Bechmann, Ingo; Schöneberg, Torsten; Schulz, Angela

    2015-02-01

    GPR34 is a Gi/o protein-coupled receptor (GPCR) of the nucleotide receptor P2Y12 -like group. This receptor is highly expressed in microglia, however, the functional relevance of GPR34 in these glial cells is unknown. Previous results suggested an impaired immune response in GPR34-deficient mice infected with Cryptococcus neoformans. Here we show that GPR34 deficiency results in morphological changes in retinal and cortical microglia. RNA sequencing analysis of microglia revealed a number of differentially expressed transcripts involved in cell motility and phagocytosis. We found no differences in microglial motility after entorhinal cortex lesion and in response to laser lesion. However, GPR34-deficient microglia showed reduced phagocytosis activity in both retina and acutely isolated cortical slices. Our study identifies GPR34 as an important signaling component controlling microglial function, morphology and phagocytosis.

  3. Altered microglial phagocytosis in GPR34-deficient mice.

    PubMed

    Preissler, Julia; Grosche, Antje; Lede, Vera; Le Duc, Diana; Krügel, Katja; Matyash, Vitali; Szulzewsky, Frank; Kallendrusch, Sonja; Immig, Kerstin; Kettenmann, Helmut; Bechmann, Ingo; Schöneberg, Torsten; Schulz, Angela

    2015-02-01

    GPR34 is a Gi/o protein-coupled receptor (GPCR) of the nucleotide receptor P2Y12 -like group. This receptor is highly expressed in microglia, however, the functional relevance of GPR34 in these glial cells is unknown. Previous results suggested an impaired immune response in GPR34-deficient mice infected with Cryptococcus neoformans. Here we show that GPR34 deficiency results in morphological changes in retinal and cortical microglia. RNA sequencing analysis of microglia revealed a number of differentially expressed transcripts involved in cell motility and phagocytosis. We found no differences in microglial motility after entorhinal cortex lesion and in response to laser lesion. However, GPR34-deficient microglia showed reduced phagocytosis activity in both retina and acutely isolated cortical slices. Our study identifies GPR34 as an important signaling component controlling microglial function, morphology and phagocytosis. PMID:25142016

  4. MUTYH promotes oxidative microglial activation and inherited retinal degeneration

    PubMed Central

    Nakatake, Shunji; Ikeda, Yasuhiro; Morioka, Noriko; Tachibana, Takashi; Fujiwara, Kohta; Yoshida, Noriko; Notomi, Shoji; Hisatomi, Toshio; Yoshida, Shigeo; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2016-01-01

    Oxidative stress is implicated in various neurodegenerative disorders, including retinitis pigmentosa (RP), an inherited disease that causes blindness. The biological and cellular mechanisms by which oxidative stress mediates neuronal cell death are largely unknown. In a mouse model of RP (rd10 mice), we show that oxidative DNA damage activates microglia through MutY homolog–mediated (MUYTH-mediated) base excision repair (BER), thereby exacerbating retinal inflammation and degeneration. In the early stage of retinal degeneration, oxidative DNA damage accumulated in the microglia and caused single-strand breaks (SSBs) and poly(ADP-ribose) polymerase activation. In contrast, Mutyh deficiency in rd10 mice prevented SSB formation in microglia, which in turn suppressed microglial activation and photoreceptor cell death. Moreover, Mutyh-deficient primary microglial cells attenuated the polarization to the inflammatory and cytotoxic phenotype under oxidative stress. Thus, MUTYH-mediated BER in oxidative microglial activation may be a novel target to dampen the disease progression in RP and other neurodegenerative disorders that are associated with oxidative stress.

  5. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration

    PubMed Central

    Zhao, Lian; Zabel, Matthew K; Wang, Xu; Ma, Wenxin; Shah, Parth; Fariss, Robert N; Qian, Haohua; Parkhurst, Christopher N; Gan, Wen-Biao; Wong, Wai T

    2015-01-01

    Retinitis pigmentosa, caused predominantly by mutations in photoreceptor genes, currently lacks comprehensive treatment. We discover that retinal microglia contribute non-cell autonomously to rod photoreceptor degeneration by primary phagocytosis of living rods. Using rd10 mice, we found that the initiation of rod degeneration is accompanied by early infiltration of microglia, upregulation of phagocytic molecules in microglia, and presentation of “eat-me” signals on mutated rods. On live-cell imaging, infiltrating microglia interact dynamically with photoreceptors via motile processes and engage in rapid phagocytic engulfment of non-apoptotic rods. Microglial contribution to rod demise is evidenced by morphological and functional amelioration of photoreceptor degeneration following genetic ablation of retinal microglia. Molecular inhibition of microglial phagocytosis using the vitronectin receptor antagonist cRGD also improved morphological and functional parameters of degeneration. Our findings highlight primary microglial phagocytosis as a contributing mechanism underlying cell death in retinitis pigmentosa and implicate microglia as a potential cellular target for therapy. PMID:26139610

  6. MUTYH promotes oxidative microglial activation and inherited retinal degeneration

    PubMed Central

    Nakatake, Shunji; Ikeda, Yasuhiro; Morioka, Noriko; Tachibana, Takashi; Fujiwara, Kohta; Yoshida, Noriko; Notomi, Shoji; Hisatomi, Toshio; Yoshida, Shigeo; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2016-01-01

    Oxidative stress is implicated in various neurodegenerative disorders, including retinitis pigmentosa (RP), an inherited disease that causes blindness. The biological and cellular mechanisms by which oxidative stress mediates neuronal cell death are largely unknown. In a mouse model of RP (rd10 mice), we show that oxidative DNA damage activates microglia through MutY homolog–mediated (MUYTH-mediated) base excision repair (BER), thereby exacerbating retinal inflammation and degeneration. In the early stage of retinal degeneration, oxidative DNA damage accumulated in the microglia and caused single-strand breaks (SSBs) and poly(ADP-ribose) polymerase activation. In contrast, Mutyh deficiency in rd10 mice prevented SSB formation in microglia, which in turn suppressed microglial activation and photoreceptor cell death. Moreover, Mutyh-deficient primary microglial cells attenuated the polarization to the inflammatory and cytotoxic phenotype under oxidative stress. Thus, MUTYH-mediated BER in oxidative microglial activation may be a novel target to dampen the disease progression in RP and other neurodegenerative disorders that are associated with oxidative stress. PMID:27699246

  7. Microglial Priming and Alzheimer's Disease: A Possible Role for (Early) Immune Challenges and Epigenetics?

    PubMed

    Hoeijmakers, Lianne; Heinen, Yvonne; van Dam, Anne-Marie; Lucassen, Paul J; Korosi, Aniko

    2016-01-01

    Neuroinflammation is thought to contribute to Alzheimer's disease (AD) pathogenesis that is, to a large extent, mediated by microglia. Given the tight interaction between the immune system and the brain, peripheral immune challenges can profoundly affect brain function. Indeed, both preclinical and clinical studies have indicated that an aberrant inflammatory response can elicit behavioral impairments and cognitive deficits, especially when the brain is in a vulnerable state, e.g., during early development, as a result of aging, or under disease conditions like AD. However, how exactly peripheral immune challenges affect brain function and whether this is mediated by aberrant microglial functioning remains largely elusive. In this review, we hypothesize that: (1) systemic immune challenges occurring during vulnerable periods of life can increase the propensity to induce later cognitive dysfunction and accelerate AD pathology; and (2) that "priming" of microglial cells is instrumental in mediating this vulnerability. We highlight how microglia can be primed by both neonatal infections as well as by aging, two periods of life during which microglial activity is known to be specifically upregulated. Lasting changes in (the ratios of) specific microglial phenotypes can result in an exaggerated pro-inflammatory cytokine response to subsequent inflammatory challenges. While the resulting changes in brain function are initially transient, a continued and/or excess release of such pro-inflammatory cytokines can activate various downstream cellular cascades known to be relevant for AD. Finally, we discuss microglial priming and the aberrant microglial response as potential target for treatment strategies for AD. PMID:27555812

  8. Activation of serotonin receptors promotes microglial injury-induced motility but attenuates phagocytic activity.

    PubMed

    Krabbe, Grietje; Matyash, Vitali; Pannasch, Ulrike; Mamer, Lauren; Boddeke, Hendrikus W G M; Kettenmann, Helmut

    2012-03-01

    Microglia, the brain immune cell, express several neurotransmitter receptors which modulate microglial functions. In this project we studied the impact of serotonin receptor activation on distinct microglial properties as serotonin deficiency not only has been linked to a number of psychiatric disease like depression and anxiety but may also permeate from the periphery through blood-brain barrier openings seen in neurodegenerative disease. First, we tested the impact of serotonin on the microglial response to an insult caused by a laser lesion in the cortex of acute slices from Cx3Cr1-GFP-/+ mice. In the presence of serotonin the microglial processes moved more rapidly towards the laser lesion which is considered to be a chemotactic response to ATP. Similarly, the chemotactic response of cultured microglia to ATP was also enhanced by serotonin. Quantification of phagocytic activity by determining the uptake of microspheres showed that the amoeboid microglia in slices from early postnatal animals or microglia in culture respond to serotonin application with a decreased phagocytic activity whereas we could not detect any significant change in ramified microglia in situ. The presence of microglial serotonin receptors was confirmed by patch-clamp experiments in culture and amoeboid microglia and by qPCR analysis of RNA isolated from primary cultured and acutely isolated adult microglia. These data suggest that microglia express functional serotonin receptors linked to distinct microglial properties. PMID:22198120

  9. Interplay between human microglia and neural stem/progenitor cells in an allogeneic co-culture model.

    PubMed

    Liu, Jia; Hjorth, Erik; Zhu, Mingqin; Calzarossa, Cinzia; Samuelsson, Eva-Britt; Schultzberg, Marianne; Åkesson, Elisabet

    2013-11-01

    Experimental neural cell therapies, including donor neural stem/progenitor cells (NPCs) have been reported to offer beneficial effects on the recovery after an injury and to counteract inflammatory and degenerative processes in the central nervous system (CNS). The interplay between donor neural cells and the host CNS still to a large degree remains unclear, in particular in human allogeneic conditions. Here, we focused our studies on the interaction of human NPCs and microglia utilizing a co-culture model. In co-cultures, both NPCs and microglia showed increased survival and proliferation compared with mono-cultures. In the presence of microglia, a larger subpopulation of NPCs expressed the progenitor cell marker nestin, whereas a smaller group of NPCs expressed the neural markers polysialylated neural cell adhesion molecule, A2B5 and glial fibrillary acidic protein compared with NPC mono-cultures. Microglia thus hindered differentiation of NPCs. The presence of human NPCs increased microglial phagocytosis of latex beads. Furthermore, we observed that the expression of CD200 molecules on NPCs and the CD200 receptor protein on microglia was enhanced in co-cultures, whereas the release of transforming growth factor-β was increased suggesting anti-inflammatory features of the co-cultures. To conclude, the interplay between human allogeneic NPCs and microglia, significantly affected their respective proliferation and phenotype. Neural cell therapy including human donor NPCs may in addition to offering cell replacement, modulate host microglial phenotypes and functions to benefit neuroprotection and repair.

  10. Frataxin Deficiency Promotes Excess Microglial DNA Damage and Inflammation that Is Rescued by PJ34

    PubMed Central

    Shen, Yan; McMackin, Marissa Z.; Shan, Yuxi; Raetz, Alan; David, Sheila; Cortopassi, Gino

    2016-01-01

    An inherited deficiency in the frataxin protein causes neurodegeneration of the dorsal root ganglia and Friedreich's ataxia (FA). Frataxin deficiency leads to oxidative stress and inflammatory changes in cell and animal models; however, the cause of the inflammatory changes, and especially what causes brain microglial activation is unclear. Here we investigated: 1) the mechanism by which frataxin deficiency activates microglia, 2) whether a brain-localized inflammatory stimulus provokes a greater microglial response in FA animal models, and 3) whether an anti-inflammatory treatment improves their condition. Intracerebroventricular administration of LPS induced higher amounts of microglial activation in the FA mouse model vs controls. We also observed an increase in oxidative damage in the form of 8-oxoguanine (8-oxo-G) and the DNA repair proteins MUTYH and PARP-1 in cerebellar microglia of FA mutant mice. We hypothesized that frataxin deficiency increases DNA damage and DNA repair genes specifically in microglia, activating them. siRNA-mediated frataxin knockdown in microglial BV2 cells clearly elevated DNA damage and the expression of DNA repair genes MUTYH and PARP-1. Frataxin knockdown also induced a higher level of PARP-1 in MEF cells, and this was suppressed in MUTYH-/- knockout cells. Administration of the PARP-1 inhibitor PJ34 attenuated the microglial activation induced by intracerebroventricular injection of LPS. The combined administration of LPS and angiotensin II provoke an even stronger activation of microglia and neurobehavioral impairment. PJ34 treatment attenuated the neurobehavioral impairments in FA mice. These results suggest that the DNA repair proteins MUTYH and PARP-1 may form a pathway regulating microglial activation initiated by DNA damage, and inhibition of microglial PARP-1 induction could be an important therapeutic target in Friedreich's ataxia. PMID:26954031

  11. HIV-1 TAT Inhibits Microglial Phagocytosis of Aβ Peptide

    PubMed Central

    Giunta, Brian; Zhou, Yuyan; Hou, Huayan; Rrapo, Elona; Fernandez, Francisco; Tan, Jun

    2008-01-01

    Human immunodeficiency virus (HIV)-associated dementia (HAD) is a subcortical neuropsychiatric syndrome that has increased in prevalence in the era of highly active antiretroviral therapy (HAART). Several studies demonstrated increased amyloidosis in brains of HIV patients and suggested that there may be a significant number of long-term HIV survivors with co-morbid Alzheimer's disease (AD) in the future. We show HIV-1 Tat protein inhibits microglial uptake of Aβ1-42 peptide, a process that is enhanced by interferon-gamma (IFN-γ) and rescued by the STAT1 inhibitor (-)-epigallocatechin-3-gallate (EGCG). It is hypothesized that reduced Aβ uptake occurs through IFN-γ mediated STAT1 activation. This process promotes a switch from a phagocytic to an antigen presenting phenotype in microglia through activation of class II transactivator (CIITA). Additionally, we show that HIV-1 Tat significantly disrupts apolipoprotein-3 (Apo-E3) promoted microglial Aβ uptake. As Tat has been shown to directly interact with the low density lipoprotein (LRP) receptor and thus inhibit the uptake of its ligands including apolipoprotein E4 (Apo-E4) and Aβ peptide in neurons, we further hypothesize that a similar inhibition of LRP may occur in microglia. Future studies will be required to fully characterize the mechanisms underlying IFN-γ enhancement of HIV-1 Tats disruption of microglial phagocytosis of Aβ and Apo-E3. PMID:18784813

  12. Microglial Hv1 proton channel promotes cuprizone-induced demyelination through oxidative damage

    PubMed Central

    Liu, Junli; Tian, Daishi; Murugan, Madhuvika; Eyo, Ukpong B.; Dreyfus, Cheryl F.; Wang, Wei; Wu, Long-Jun

    2016-01-01

    NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) production in inflammatory cells including microglia plays an important role in demyelination and free radical-mediated tissue injury in multiple sclerosis (MS). However, the mechanism underlying microglial ROS production and demyelination remains largely unknown. The voltage-gated proton channel, Hv1, is selectively expressed in microglia and is required for NOX-dependent ROS generation in the brain. In the present study, we sought to determine the role of microglial Hv1 proton channels in a mouse model of cuprizone-induced demyelination, a model for MS. Following cuprizone exposure, wild-type mice presented obvious demyelination, decreased myelin basic protein expression, loss of mature oligodendrocytes, and impaired motor coordination in comparison to mice on a normal chow diet. However, mice lacking Hv1 (Hv1−/−) are partially protected from demyelination and motor deficits compared with those in wild-type mice. These rescued phenotypes in Hv1−/− mice in cuprizone-induced demyelination is accompanied by reduced ROS production, ameliorated microglial activation, increased oligodendrocyte progenitor cell (NG2) proliferation, and increased number of mature oligodendrocytes. These results demonstrate that the Hv1 proton channel is required for cuprizone-induced microglial oxidative damage and subsequent demyelination. Our study suggests that the microglial Hv1 proton channel is a unique target for controlling NOX-dependent ROS production in the pathogenesis of MS. PMID:26173779

  13. Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress.

    PubMed

    Milior, Giampaolo; Lecours, Cynthia; Samson, Louis; Bisht, Kanchan; Poggini, Silvia; Pagani, Francesca; Deflorio, Cristina; Lauro, Clotilde; Alboni, Silvia; Limatola, Cristina; Branchi, Igor; Tremblay, Marie-Eve; Maggi, Laura

    2016-07-01

    Chronic stress is one of the most relevant triggering factors for major depression. Microglial cells are highly sensitive to stress and, more generally, to environmental challenges. However, the role of these brain immune cells in mediating the effects of stress is still unclear. Fractalkine signaling - which comprises the chemokine CX3CL1, mainly expressed by neurons, and its receptor CX3CR1, almost exclusively present on microglia in the healthy brain - has been reported to critically regulate microglial activity. Here, we investigated whether interfering with microglial function by deleting the Cx3cr1 gene affects the brain's response to chronic stress. To this purpose, we housed Cx3cr1 knockout and wild-type adult mice in either control or stressful environments for 2weeks, and investigated the consequences on microglial phenotype and interactions with synapses, synaptic transmission, behavioral response and corticosterone levels. Our results show that hampering neuron-microglia communication via the CX3CR1-CX3CL1 pathway prevents the effects of chronic unpredictable stress on microglial function, short- and long-term neuronal plasticity and depressive-like behavior. Overall, the present findings suggest that microglia-regulated mechanisms may underlie the differential susceptibility to stress and consequently the vulnerability to diseases triggered by the experience of stressful events, such as major depression.

  14. Microglial Hv1 proton channel promotes cuprizone-induced demyelination through oxidative damage.

    PubMed

    Liu, Junli; Tian, Daishi; Murugan, Madhuvika; Eyo, Ukpong B; Dreyfus, Cheryl F; Wang, Wei; Wu, Long-Jun

    2015-10-01

    NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) production in inflammatory cells including microglia plays an important role in demyelination and free radical-mediated tissue injury in multiple sclerosis (MS). However, the mechanism underlying microglial ROS production and demyelination remains largely unknown. The voltage-gated proton channel, Hv1, is selectively expressed in microglia and is required for NOX-dependent ROS generation in the brain. In the present study, we sought to determine the role of microglial Hv1 proton channels in a mouse model of cuprizone-induced demyelination, a model for MS. Following cuprizone exposure, wild-type mice presented obvious demyelination, decreased myelin basic protein expression, loss of mature oligodendrocytes, and impaired motor coordination in comparison to mice on a normal chow diet. However, mice lacking Hv1 (Hv1(-/-) ) are partially protected from demyelination and motor deficits compared with those in wild-type mice. These rescued phenotypes in Hv1(-/-) mice in cuprizone-induced demyelination is accompanied by reduced ROS production, ameliorated microglial activation, increased oligodendrocyte progenitor cell (NG2) proliferation, and increased number of mature oligodendrocytes. These results demonstrate that the Hv1 proton channel is required for cuprizone-induced microglial oxidative damage and subsequent demyelination. Our study suggests that the microglial Hv1 proton channel is a unique target for controlling NOX-dependent ROS production in the pathogenesis of MS.

  15. Sweepers in the CNS: Microglial Migration and Phagocytosis in the Alzheimer Disease Pathogenesis.

    PubMed

    Noda, Mariko; Suzumura, Akio

    2012-01-01

    Microglia are multifunctional immune cells in the central nervous system (CNS). In the neurodegenerative diseases such as Alzheimer's disease (AD), accumulation of glial cells, gliosis, occurs in the lesions. The role of accumulated microglia in the pathophysiology of AD is still controversial. When neuronal damage occurs, microglia exert diversified functions, including migration, phagocytosis, and production of various cytokines and chemokines. Among these, microglial phagocytosis of unwanted neuronal debris is critical to maintain the healthy neuronal networks. Microglia express many surface receptors implicated in phagocytosis. It has been suggested that the lack of microglial phagocytosis worsens pathology of AD and induces memory impairment. The present paper summarizes recent evidences on implication of microglial chemotaxis and phagocytosis in AD pathology and discusses the mechanisms related to chemotaxis toward injured neurons and phagocytosis of unnecessary debris.

  16. Prior Binge Ethanol Exposure Potentiates the Microglial Response in a Model of Alcohol-Induced Neurodegeneration

    PubMed Central

    Marshall, Simon Alex; Geil, Chelsea Rhea; Nixon, Kimberly

    2016-01-01

    Excessive alcohol consumption results in neurodegeneration which some hypothesize is caused by neuroinflammation. One characteristic of neuroinflammation is microglial activation, but it is now well accepted that microglial activation may be pro- or anti-inflammatory. Recent work indicates that the Majchrowicz model of alcohol-induced neurodegeneration results in anti-inflammatory microglia, while intermittent exposure models with lower doses and blood alcohol levels produce microglia with a pro-inflammatory phenotype. To determine the effect of a repeated binge alcohol exposure, rats received two cycles of the four-day Majchrowicz model. One hemisphere was then used to assess microglia via immunohistochemistry and while the other was used for ELISAs of cytokines and growth factors. A single binge ethanol exposure resulted in low-level of microglial activation; however, a second binge potentiated the microglial response. Specifically, double binge rats had greater OX-42 immunoreactivity, increased ionized calcium-binding adapter molecule 1 (Iba-1+) cells, and upregulated tumor necrosis factor-α (TNF-α) compared with the single binge ethanol group. These data indicate that prior ethanol exposure potentiates a subsequent microglia response, which suggests that the initial exposure to alcohol primes microglia. In summary, repeated ethanol exposure, independent of other immune modulatory events, potentiates microglial activity. PMID:27240410

  17. Receptors, Ion Channels, and Signaling Mechanisms Underlying Microglial Dynamics*

    PubMed Central

    Madry, Christian; Attwell, David

    2015-01-01

    Microglia, the innate immune cells of the CNS, play a pivotal role in brain injury and disease. Microglia are extremely motile; their highly ramified processes constantly survey the brain parenchyma, and they respond promptly to brain damage with targeted process movement toward the injury site. Microglia play a key role in brain development and function by pruning synapses during development, phagocytosing apoptotic newborn neurons, and regulating neuronal activity by direct microglia-neuron or indirect microglia-astrocyte-neuron interactions, which all depend on their process motility. This review highlights recent discoveries about microglial dynamics, focusing on the receptors, ion channels, and signaling pathways involved. PMID:25855789

  18. Connexins and Pannexins: New Insights into Microglial Functions and Dysfunctions

    PubMed Central

    Gajardo-Gómez, Rosario; Labra, Valeria C.; Orellana, Juan A.

    2016-01-01

    Under physiological conditions, microglia adopt a resting phenotype associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, these cells shift to an activated phenotype that is necessary for the proper restoration of brain homeostasis. However, when the intensity of a threat is relatively high, microglial activation worsens the progression of damage rather than providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and other brain cells, including astrocytes and neurons, are critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. Gap junction channels (which are exclusively formed by connexins in vertebrates) connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. Hemichannels (HCs) and pannexons (which are formed by connexins and pannexins, respectively) communicate the intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review article, we discuss the available evidence concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contributions to microglial function and dysfunction. Specifically, we focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain. PMID:27713688

  19. Intravenous Administration of Human ES-derived Neural Precursor Cells Attenuates Cuprizone-induced CNS Demyelination

    PubMed Central

    Crocker, Stephen J.; Bajpai, Ruchi; Moore, Craig S.; Frausto, Ricardo F.; Brown, Graham D.; Pagarigan, Roberto R.; Whitton, J. Lindsay; Terskikh, Alexey V.

    2011-01-01

    Aims Previous studies have demonstrated the therapeutic potential for human embryonic stem cell-derived neural precursor cells (hES-NPCs) in autoimmune and genetic animal models of demyelinating diseases. Herein, we tested whether intravenous (i.v) administration of hES-NPCs would impact central nervous system (CNS) demyelination in a cuprizone model of demyelination. Methods C57Bl/6 mice were fed cuprizone (0.2%) for two weeks and then separated into two groups that either received an i.v. injection of hES-NPCs or i.v. administration of media without these cells. After an additional two weeks of dietary cuprizone treatment, CNS tissues were analyzed for detection of transplanted cells and differences in myelination in the region of the corpus callosum (CC). Results Cuprizone-induced demyelination in the CC was significantly reduced in mice treated with hES-NPCs compared with cuprizone-treated controls that did not receive stem cells. hES-NPCs were identified within the brain tissues of treated mice and revealed migration of transplanted cells into the CNS. A limited number of human cells were found to express the mature oligodendrocyte marker, O1, or the astrocyte marker, GFAP. Reduced apoptosis and attenuated microglial and astrocytic responses were also observed in the CC of hES-NPC-treated mice. Conclusions These findings indicated that systemically-administered hES-NPCs migrated from circulation into a demyelinated lesion within the CNS and effectively reduced demyelination. Observed reductions in astrocyte and microglial responses, and (c) the benefit of hES-NPC treatment in this model of myelin injury was not obviously accountable to tissue replacement by exogenously administered cells. PMID:21276029

  20. Microfluidic Chemotaxis Platform for Differentiating the Roles of Soluble and Bound Amyloid-β on Microglial Accumulation

    NASA Astrophysics Data System (ADS)

    Cho, Hansang; Hashimoto, Tadafumi; Wong, Elisabeth; Hori, Yukiko; Wood, Levi B.; Zhao, Lingzhi; Haigis, Kevin M.; Hyman, Bradley T.; Irimia, Daniel

    2013-05-01

    Progressive microglial accumulation at amyloid-β (Aβ) plaques is a well-established signature of the pathology of Alzheimer's disease, but how and why microglia accumulate in the vicinity of Aβ plaques is unknown. To understand the distinct roles of Aβ on microglial accumulation, we quantified microglial responses to week-long lasting gradients of soluble Aβ and patterns of surface-bound Aβ in microfluidic chemotaxis platforms. We found that human microglia chemotaxis in gradients of soluble Aβ42 was most effective at two distinct concentrations of 23 pg.mL-1 and 23 ng.mL-1 Aβ42 in monomers and oligomers. We uncovered that while the chemotaxis at higher Aβ concentrations was exclusively due to Aβ gradients, chemotaxis at lower concentrations was enhanced by Aβ-induced microglial production of MCP-1. Microglial migration was inhibited by surface-bound Aβ42 in oligomers and fibrils above 45 pg.mm-2. Better understanding of microglial migration can provide insights into the pathophysiology of senile plaques in AD.

  1. Isoflurane attenuates mouse microglial engulfment induced by lipopolysaccharide and interferon-γ possibly by inhibition of p38 mitogen-activated protein kinase.

    PubMed

    Ryu, Jung-Hee; Wang, Zhi; Fan, Dan; Han, Sung-Hee; Do, Sang-Hwan; Zuo, Zhiyi

    2016-09-28

    Microglial engulfment is a basic function to clean up dead and injured cells and invaders, such as bacteria. This study was designed to assess the effects of isoflurane on the microglial engulfment induced by lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) and the involvement of p38 mitogen-activated protein kinase (MAPK) in these effects. C8-B4 microglial cells were exposed to 1, 2, and 3% isoflurane at 2 h after the initiation of LPS (100 ng/ml) and IFN-γ (1 ng/ml) stimulation. Fluorescent immunostaining was performed to assess the percentage of cells with engulfment of fluorescent microspheres after stimulation for 24 h. P38 and phosphorylated p38 were determined by Western blotting. Isoflurane concentration dependently decreased microglial engulfment stimulated by LPS and IFN-γ. LPS and IFN-γ increased the phosphorylated p38 in microglial cells. This upregulation was decreased by isoflurane. SB203580, a p38 MAPK inhibitor, abolished the LPS-induced and IFN-γ-induced increase of engulfment activity, whereas anisomycin, a p38 MAPK activator, partly reversed the isoflurane-decreased microglial engulfment activity. These results suggest that isoflurane reduces LPS-induced and IFN-γ-induced microglial engulfment and that these effects may be mediated by inhibiting p38 MAPK. PMID:27513199

  2. Microglial Priming and Alzheimer’s Disease: A Possible Role for (Early) Immune Challenges and Epigenetics?

    PubMed Central

    Hoeijmakers, Lianne; Heinen, Yvonne; van Dam, Anne-Marie; Lucassen, Paul J.; Korosi, Aniko

    2016-01-01

    Neuroinflammation is thought to contribute to Alzheimer’s disease (AD) pathogenesis that is, to a large extent, mediated by microglia. Given the tight interaction between the immune system and the brain, peripheral immune challenges can profoundly affect brain function. Indeed, both preclinical and clinical studies have indicated that an aberrant inflammatory response can elicit behavioral impairments and cognitive deficits, especially when the brain is in a vulnerable state, e.g., during early development, as a result of aging, or under disease conditions like AD. However, how exactly peripheral immune challenges affect brain function and whether this is mediated by aberrant microglial functioning remains largely elusive. In this review, we hypothesize that: (1) systemic immune challenges occurring during vulnerable periods of life can increase the propensity to induce later cognitive dysfunction and accelerate AD pathology; and (2) that “priming” of microglial cells is instrumental in mediating this vulnerability. We highlight how microglia can be primed by both neonatal infections as well as by aging, two periods of life during which microglial activity is known to be specifically upregulated. Lasting changes in (the ratios of) specific microglial phenotypes can result in an exaggerated pro-inflammatory cytokine response to subsequent inflammatory challenges. While the resulting changes in brain function are initially transient, a continued and/or excess release of such pro-inflammatory cytokines can activate various downstream cellular cascades known to be relevant for AD. Finally, we discuss microglial priming and the aberrant microglial response as potential target for treatment strategies for AD. PMID:27555812

  3. Neurons and astroglia govern microglial endotoxin tolerance through macrophage colony-stimulating factor receptor-mediated ERK1/2 signals.

    PubMed

    Chu, Chun-Hsien; Wang, Shijun; Li, Chia-Ling; Chen, Shih-Heng; Hu, Chih-Fen; Chung, Yi-Lun; Chen, Shiou-Lan; Wang, Qingshan; Lu, Ru-Band; Gao, Hui-Ming; Hong, Jau-Shyong

    2016-07-01

    Endotoxin tolerance (ET) is a reduced responsiveness of innate immune cells like macrophages/monocytes to an endotoxin challenge following a previous encounter with the endotoxin. Although ET in peripheral systems has been well studied, little is known about ET in the brain. The present study showed that brain immune cells, microglia, being different from peripheral macrophages, displayed non-cell autonomous mechanisms in ET formation. Specifically, neurons and astroglia were indispensable for microglial ET. Macrophage colony-stimulating factor (M-CSF) secreted from these non-immune cells was essential for governing microglial ET. Neutralization of M-CSF deprived the neuron-glia conditioned medium of its ability to enable microglia to form ET when microglia encountered two lipopolysaccharide (LPS) treatments. Recombinant M-CSF protein rendered enriched microglia refractory to the second LPS challenge leading to microglial ET. Activation of microglial M-CSF receptor (M-CSFR; also known as CSF1R) and the downstream ERK1/2 signals was responsible for M-CSF-mediated microglial ET. Endotoxin-tolerant microglia in neuron-glia cultures displayed M2-like polarized phenotypes, as shown by upregulation of M2 marker Arg-1, elevated production of anti-inflammatory cytokine interleukin 10, and decreased secretion of pro-inflammatory mediators (tumor necrosis factor α, nitric oxide, prostaglandin E2 and interleukin 1β). Endotoxin-tolerant microglia protected neurons against LPS-elicited inflammatory insults, as shown by reduced neuronal damages in LPS pre-treatment group compared with the group without LPS pre-treatment. Moreover, while neurons and astroglia became injured during chronic neuroinflammation, microglia failed to form ET. Thus, this study identified a distinct non-cell autonomous mechanism of microglial ET. Interactions of M-CSF secreted by neurons and astroglia with microglial M-CSFR programed microglial ET. Loss of microglial ET could be an important

  4. Neurons and astroglia govern microglial endotoxin tolerance through macrophage colony-stimulating factor receptor-mediated ERK1/2 signals

    PubMed Central

    Chu, Chun-Hsien; Wang, Shijun; Li, Chia-Ling; Chen, Shih-Heng; Hu, Chih-Fen; Chung, Yi-Lun; Chen, Shiou-Lan; Wang, Qingshan; Lu, Ru-Band; Gao, Hui-Ming; Hong, Jau-Shyong

    2016-01-01

    Endotoxin tolerance (ET) is a reduced responsiveness of innate immune cells like macrophages/monocytes to an endotoxin challenge following a previous encounter with the endotoxin. Although ET in peripheral systems has been well studied, little is known about ET in the brain. The present study showed that brain immune cells, microglia, being different from peripheral macrophages, displayed non-cell autonomous mechanisms in ET formation. Specifically, neurons and astroglia were indispensable for microglial ET. Macrophage colony-stimulating factor (M-CSF) secreted from these non-immune cells was essential for governing microglial ET. Neutralization of M-CSF deprived the neuron-glia conditioned medium of its ability to enable microglia to form ET when microglia encountered two lipopolysaccharide (LPS) treatments. Recombinant M-CSF protein rendered enriched microglia refractory to the second LPS challenge leading to microglial ET. Activation of microglial M-CSF receptor (M-CSFR; also known as CSF1R) and the downstream ERK1/2 signals was responsible for M-CSF-mediated microglial ET. Endotoxin-tolerant microglia in neuron-glia cultures displayed M2-like polarized phenotypes, as shown by upregulation of M2 marker Arg-1, elevated production of anti-inflammatory cytokine interleukin 10, and decreased secretion of pro-inflammatory mediators (tumor necrosis factor α, nitric oxide, prostaglandin E2 and interleukin 1β). Endotoxin-tolerant microglia protected neurons against LPS-elicited inflammatory insults, as shown by reduced neuronal damages in LPS pre-treatment group compared with the group without LPS pre-treatment. Moreover, while neurons and astroglia became injured during chronic neuroinflammation, microglia failed to form ET. Thus, this study identified a distinct non-cell autonomous mechanism of microglial ET. Interactions of M-CSF secreted by neurons and astroglia with microglial M-CSFR programed microglial ET. Loss of microglial ET could be an important

  5. Neurons and astroglia govern microglial endotoxin tolerance through macrophage colony-stimulating factor receptor-mediated ERK1/2 signals.

    PubMed

    Chu, Chun-Hsien; Wang, Shijun; Li, Chia-Ling; Chen, Shih-Heng; Hu, Chih-Fen; Chung, Yi-Lun; Chen, Shiou-Lan; Wang, Qingshan; Lu, Ru-Band; Gao, Hui-Ming; Hong, Jau-Shyong

    2016-07-01

    Endotoxin tolerance (ET) is a reduced responsiveness of innate immune cells like macrophages/monocytes to an endotoxin challenge following a previous encounter with the endotoxin. Although ET in peripheral systems has been well studied, little is known about ET in the brain. The present study showed that brain immune cells, microglia, being different from peripheral macrophages, displayed non-cell autonomous mechanisms in ET formation. Specifically, neurons and astroglia were indispensable for microglial ET. Macrophage colony-stimulating factor (M-CSF) secreted from these non-immune cells was essential for governing microglial ET. Neutralization of M-CSF deprived the neuron-glia conditioned medium of its ability to enable microglia to form ET when microglia encountered two lipopolysaccharide (LPS) treatments. Recombinant M-CSF protein rendered enriched microglia refractory to the second LPS challenge leading to microglial ET. Activation of microglial M-CSF receptor (M-CSFR; also known as CSF1R) and the downstream ERK1/2 signals was responsible for M-CSF-mediated microglial ET. Endotoxin-tolerant microglia in neuron-glia cultures displayed M2-like polarized phenotypes, as shown by upregulation of M2 marker Arg-1, elevated production of anti-inflammatory cytokine interleukin 10, and decreased secretion of pro-inflammatory mediators (tumor necrosis factor α, nitric oxide, prostaglandin E2 and interleukin 1β). Endotoxin-tolerant microglia protected neurons against LPS-elicited inflammatory insults, as shown by reduced neuronal damages in LPS pre-treatment group compared with the group without LPS pre-treatment. Moreover, while neurons and astroglia became injured during chronic neuroinflammation, microglia failed to form ET. Thus, this study identified a distinct non-cell autonomous mechanism of microglial ET. Interactions of M-CSF secreted by neurons and astroglia with microglial M-CSFR programed microglial ET. Loss of microglial ET could be an important

  6. Lack of the scavenger receptor CD36 alters microglial phenotypes after neonatal stroke

    PubMed Central

    Li, Fan; Faustino, Joel; Woo, Moon-Sook; Derugin, Nikita; Vexler, Zinaida S

    2016-01-01

    The stage of brain development at the time of stroke has a major impact on the pathophysiological mechanisms of ischemic damage, including the neuroinflammatory response. Microglial cells have been shown to contribute to acute and sub-chronic injury in adult stroke models, whereas in neonatal rodents we showed that microglial cells serve as endogenous neuroprotectants early following transient middle cerebral artery occlusion (tMCAO), limiting neuroinflammation and injury. In the neonate, microglial depletion or lack of the scavenger receptor CD36 exacerbates injury. In this study we asked if lack of CD36 affects microglial phenotypes after neonatal stroke. Using RT-PCR we characterized the patterns of gene expression in microglia isolated from injured regions following acute tMCAO in postnatal day 10 mice and showed that expression of several pro-inflammatory genes, including Toll-like receptors (TLR), remains largely unaffected in activated microglia in injured regions. Using multiple biochemical assays we demonstrated that lack of CD36 alters several functions of microglia in acutely injured neonatal brain: it further enhances accumulation of the chemokine MCP-1, affects the number of CD11b+/CD45+ cells, along with protein expression of its co-receptor, TLR2, but does not affect accumulation of superoxide in microglia or the cytokines TNFα and IL-1β in injured regions. PMID:26223273

  7. Prevention of inflammation-mediated neurotoxicity by butylidenephthalide and its role in microglial activation.

    PubMed

    Nam, Kyong Nyon; Kim, Kyoo-Pil; Cho, Ki-Ho; Jung, Woo-Sang; Park, Jung-Mi; Cho, Seung-Yeon; Park, Su-Kyung; Park, Tae-Hoon; Kim, Young-Suk; Lee, Eunjoo H

    2013-12-01

    Microglial cells are the prime effectors in immune and inflammatory responses of the central nervous system (CNS). During pathological conditions, the activation of these cells helps restore CNS homeostasis. However, chronic microglial activation endangers neuronal survival through the release of various proinflammatory molecules and neurotoxins. Thus, negative regulators of microglial activation have been considered as potential therapeutic candidates to target neurodegeneration, such as that in Alzheimer's and Parkinson's diseases. The rhizome of Ligusticum chuanxiong Hort. (Ligusticum wallichii Franch) has been widely used for the treatment of vascular diseases in traditional oriental medicine. Butylidenephthalide (BP), a major bioactive component from L. chuanxiong, has been reported to have a variety of pharmacological activities, including vasorelaxant, anti-anginal, anti-platelet and anti-cancer effects. The aim of this study was to examine whether BP represses microglial activation. In rat brain microglia, BP significantly inhibited the lipopolysaccharide (LPS)-induced production of nitric oxide (NO), tumour necrosis factor-α and interleukin-1β. In organotypic hippocampal slice cultures, BP clearly blocked the effect of LPS on hippocampal cell death and inhibited LPS-induced NO production in culture medium. These results newly suggest that BP provide neuroprotection by reducing the release of various proinflammatory molecules from activated microglia. PMID:23400915

  8. Targeting Microglial Activation in Stroke Therapy: Pharmacological Tools and Gender Effects

    PubMed Central

    Chen, Y.; Won, S.J.; Xu, Y.; Swanson, R.A.

    2014-01-01

    Ischemic stroke is caused by critical reductions in blood flow to brain or spinal cord. Microglia are the resident immune cells of the central nervous system, and they respond to stroke by assuming an activated phenotype that releases cytotoxic cytokines, reactive oxygen species, proteases, and other factors. This acute, innate immune response may be teleologically adapted to limit infection, but in stroke this response can exacerbate injury by further damaging or killing nearby neurons and other cell types, and by recruiting infiltration of circulating cytotoxic immune cells. The microglial response requires hours to days to fully develop, and this time interval presents a clinically accessible time window for initiating therapy. Because of redundancy in cytotoxic microglial responses, the most effective therapeutic approach may be to target the global gene expression changes involved in microglial activation. Several classes of drugs can do this, including histone deacetylase inhibitors, minocycline and other PARP inhibitors, corticosteroids, and inhibitors of TNFα and scavenger receptor signaling. Here we review the pre-clinical studies in which these drugs have been used to suppress microglial activation after stroke. We also review recent advances in the understanding of sex differences in the CNS inflammatory response, as these differences are likely to influence the efficacy of drugs targeting post-stroke brain inflammation. PMID:24372213

  9. Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex.

    PubMed

    Hoshiko, Maki; Arnoux, Isabelle; Avignone, Elena; Yamamoto, Nobuhiko; Audinat, Etienne

    2012-10-24

    Accumulative evidence indicates that microglial cells influence the normal development of brain synapses. Yet, the mechanisms by which these immune cells target maturating synapses and influence their functional development at early postnatal stages remain poorly understood. Here, we analyzed the role of CX3CR1, a microglial receptor activated by the neuronal chemokine CX3CL1 (or fractalkine) which controls key functions of microglial cells. In the whisker-related barrel field of the mouse somatosensory cortex, we show that the recruitment of microglia to the sites where developing thalamocortical synapses are concentrated (i.e., the barrel centers) occurs only after postnatal day 5 and is controlled by the fractalkine/CX3CR1 signaling pathway. Indeed, at this developmental stage fractalkine is overexpressed within the barrels and CX3CR1 deficiency delays microglial cell recruitment into the barrel centers. Functional analysis of thalamocortical synapses shows that CX3CR1 deficiency also delays the functional maturation of postsynaptic glutamate receptors which normally occurs at these synapses between the first and second postnatal week. These results show that reciprocal interactions between neurons and microglial cells control the functional maturation of cortical synapses. PMID:23100431

  10. Resveratrol attenuates hypoxia-induced neurotoxicity through inhibiting microglial activation.

    PubMed

    Zhang, Qun; Yuan, Lin; Zhang, Qingrui; Gao, Yan; Liu, Guangheng; Xiu, Meng; Wei, Xiang; Wang, Zhen; Liu, Dexiang

    2015-09-01

    Resveratrol is a natural polyphenol enriched in Polygonum cuspidatum and has been found to afford neuroprotective effects against neuroinflammation in the brain. Activated microglia can secrete various pro-inflammatory cytokines and neurotoxic mediators, which may contribute to hypoxic brain injuries. The aim of this study is to investigate the potential role of resveratrol in attenuating hypoxia-induced neurotoxicity via its anti-inflammatory actions through in vitro models of the BV-2 microglial cell line and primary microglia. We found that resveratrol significantly inhibited hypoxia-induced microglial activation and reduced subsequent release of pro-inflammatory factors. In addition, resveratrol inhibited the hypoxia-induced degradation of IκB-alpha and phosphorylation of p65 NF-κB protein. Hypoxia-induced ERK1/2 and JNK phosphorylation was also strongly inhibited by resveratrol, whereas resveratrol had no effect on hypoxia-stimulated p38 MAPK phosphorylation. Importantly, treating primary cortical neurons with conditioned medium (CM) from hypoxia-stimulated microglia induced neuronal apoptosis, which was reversed by CM co-treated with resveratrol. Taken together, resveratrol exerts neuroprotection against hypoxia-induced neurotoxicity through its anti-inflammatory effects in microglia. These effects were mediated, at least in part, by suppressing the activation of NF-ĸB, ERK and JNK MAPK signaling pathways. PMID:26225925

  11. Quetiapine Inhibits Microglial Activation by Neutralizing Abnormal STIM1-Mediated Intercellular Calcium Homeostasis and Promotes Myelin Repair in a Cuprizone-Induced Mouse Model of Demyelination

    PubMed Central

    Wang, Hanzhi; Liu, Shubao; Tian, Yanping; Wu, Xiyan; He, Yangtao; Li, Chengren; Namaka, Michael; Kong, Jiming; Li, Hongli; Xiao, Lan

    2015-01-01

    Microglial activation has been considered as a crucial process in the pathogenesis of neuroinflammation and psychiatric disorders. Several antipsychotic drugs (APDs) have been shown to display inhibitory effects on microglial activation in vitro, possibly through the suppression of elevated intracellular calcium (Ca2+) concentration. However, the exact underlying mechanisms still remain elusive. In this study, we aimed to investigate the inhibitory effects of quetiapine (Que), an atypical APD, on microglial activation. We utilized a chronic cuprizone (CPZ)-induced demyelination mouse model to determine the direct effect of Que on microglial activation. Our results showed that treatment with Que significantly reduced recruitment and activation of microglia/macrophage in the lesion of corpus callosum and promoted remyelination after CPZ withdrawal. Our in vitro studies also confirmed the direct effect of Que on lipopolysaccharide (LPS)-induced activation of microglial N9 cells, whereby Que significantly inhibited the release of nitric oxide (NO) and tumor necrosis factor α (TNF-α). Moreover, we demonstrated that pretreatment with Que, neutralized the up-regulation of STIM1 induced by LPS and declined both LPS and thapsigargin (Tg)-induced store-operated Ca2+ entry (SOCE). Finally, we found that pretreatment with Que significantly reduced the translocation of nuclear factor kappa B (NF-κB) p65 subunit from cytoplasm to nuclei in LPS-activated primary microglial cells. Overall, our data suggested that Que may inhibit microglial activation by neutralization of the LPS-induced abnormal STIM1-mediated intercellular calcium homeostasis. PMID:26732345

  12. Pomegranate Polyphenols and Extract Inhibit Nuclear Factor of Activated T-Cell Activity and Microglial Activation In Vitro and in a Transgenic Mouse Model of Alzheimer Disease123

    PubMed Central

    Rojanathammanee, Lalida; Puig, Kendra L.; Combs, Colin K.

    2013-01-01

    Alzheimer disease (AD) brain is characterized by extracellular plaques of amyloid β (Aβ) peptide with reactive microglia. This study aimed to determine whether a dietary intervention could attenuate microgliosis. Memory was assessed in 12-mo-old male amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice via Barnes maze testing followed by division into either a control-fed group provided free access to normal chow and water or a treatment group provided free access to normal chow and drinking water supplemented with pomegranate extract (6.25 mL/L) for 3 mo followed by repeat Barnes maze testing for both groups. Three months of pomegranate feeding decreased the path length to escape of mice compared with their initial 12-mo values (P < 0.05) and their control-fed counterparts (P < 0.05). Brains of the 3-mo study pomegranate-fed mice had lower tumor necrosis factor α (TNF-α) concentrations (P < 0.05) and lower nuclear factor of activated T-cell (NFAT) transcriptional activity (P < 0.05) compared with controls. Brains of the 3-mo pomegranate or control mice were also compared with an additional control group of 12-mo-old mice for histologic analysis. Immunocytochemistry showed that pomegranate- but not control-fed mice had attenuated microgliosis (P < 0.05) and Aβ plaque deposition (P < 0.05) compared with 12-mo-old mice. An additional behavioral study again used 12-mo-old male APP/PS1 mice tested by T-maze followed by division into a control group provided with free access to normal chow and sugar supplemented drinking water or a treatment group provided with normal chow and pomegranate extract–supplemented drinking water (6.25 mL/L) for 1 mo followed by repeat T-maze testing in both groups. One month of pomegranate feeding increased spontaneous alternations versus control-fed mice (P < 0.05). Cell culture experiments verified that 2 polyphenol components of pomegranate extract, punicalagin and ellagic acid, attenuated NFAT activity in a reporter

  13. Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro.

    PubMed

    Flavin, M P; Zhao, G; Ho, L T

    2000-02-15

    Several CNS disorders feature microglial activation. Microglia are known to have both restorative and cytotoxic capabilities. Neuronal apoptosis has been noted after an acute insult such as ischemia. Microglia may participate in this event. We previously showed that conditioned medium (CM) harvested from peritoneal macrophages or from activated microglia triggered apoptosis in rat hippocampal neurons in culture. We wished to characterize the factor responsible for triggering neuronal death. Quiescent microglia produced CM that did not disrupt hippocampal neurons. Lipopolysaccharide-activated microglia produced CM which resulted in neuronal death. This effect was blocked by plasminogen activator inhibitor-1, by tPA STOP, and by co-incubation with tPA antibody. Recombinant human tPA exaggerated the neurotoxic effects of microglial CM, while tPA alone was toxic only at very high concentrations. This in vitro system, which probably excludes any significant impact of microglial free radicals, suggests that microglial tPA may contribute significantly to hippocampal neuronal death.

  14. Gene expression changes in human cells after exposure to mobile phone microwaves.

    PubMed

    Remondini, Daniel; Nylund, Reetta; Reivinen, Jukka; Poulletier de Gannes, Florence; Veyret, Bernard; Lagroye, Isabelle; Haro, Emmanuelle; Trillo, M Angeles; Capri, Miriam; Franceschi, Claudio; Schlatterer, Kathrin; Gminski, Richard; Fitzner, Rudolf; Tauber, Rudolf; Schuderer, Jurgen; Kuster, Niels; Leszczynski, Dariusz; Bersani, Ferdinando; Maercker, Christian

    2006-09-01

    Possible biological effects of mobile phone microwaves were investigated in vitro. In this study, which was part of the 5FP EU project REFLEX (Risk Evaluation of Potential Environmental Hazards From Low-Energy Electromagnetic Field Exposure Using Sensitive in vitro Methods), six human cell types, immortalized cell lines and primary cells, were exposed to 900 and 1800 MHz. RNA was isolated from exposed and sham-exposed cells and labeled for transcriptome analysis on whole-genome cDNA arrays. The results were evaluated statistically using bioinformatics techniques and examined for biological relevance with the help of different databases. NB69 neuroblastoma cells, T lymphocytes, and CHME5 microglial cells did not show significant changes in gene expression. In EA.hy926 endothelial cells, U937 lymphoblastoma cells, and HL-60 leukemia cells we found between 12 and 34 up- or down-regulated genes. Analysis of the affected gene families does not point towards a stress response. However, following microwave exposure, some but not all human cells might react with an increase in expression of genes encoding ribosomal proteins and therefore up-regulating the cellular metabolism. PMID:16878293

  15. Blast exposure causes dynamic microglial/macrophage responses and microdomains of brain microvessel dysfunction.

    PubMed

    Huber, B R; Meabon, J S; Hoffer, Z S; Zhang, J; Hoekstra, J G; Pagulayan, K F; McMillan, P J; Mayer, C L; Banks, W A; Kraemer, B C; Raskind, M A; McGavern, D B; Peskind, E R; Cook, D G

    2016-04-01

    Exposure to blast overpressure (BOP) is associated with behavioral, cognitive, and neuroimaging abnormalities. We investigated the dynamic responses of cortical vasculature and its relation to microglia/macrophage activation in mice using intravital two-photon microscopy following mild blast exposure. We found that blast caused vascular dysfunction evidenced by microdomains of aberrant vascular permeability. Microglial/macrophage activation was specifically associated with these restricted microdomains, as evidenced by rapid microglial process retraction, increased ameboid morphology, and escape of blood-borne Q-dot tracers that were internalized in microglial/macrophage cell bodies and phagosome-like compartments. Microdomains of cortical vascular disruption and microglial/macrophage activation were also associated with aberrant tight junction morphology that was more prominent after repetitive (3×) blast exposure. Repetitive, but not single, BOPs also caused TNFα elevation two weeks post-blast. In addition, following a single BOP we found that aberrantly phosphorylated tau rapidly accumulated in perivascular domains, but cleared within four hours, suggesting it was removed from the perivascular area, degraded, and/or dephosphorylated. Taken together these findings argue that mild blast exposure causes an evolving CNS insult that is initiated by discrete disturbances of vascular function, thereby setting the stage for more protracted and more widespread neuroinflammatory responses.

  16. Microglial Contact Prevents Excess Depolarization and Rescues Neurons from Excitotoxicity123

    PubMed Central

    Kato, Go; Wake, Hiroaki; Akiyoshi, Ryohei; Miyamoto, Akiko; Eto, Kei; Ishikawa, Tatsuya; Moorhouse, Andrew J.

    2016-01-01

    Abstract Microglia survey and directly contact neurons in both healthy and damaged brain, but the mechanisms and functional consequences of these contacts are not yet fully elucidated. Combining two-photon imaging and patch clamping, we have developed an acute experimental model for studying the role of microglia in CNS excitotoxicity induced by neuronal hyperactivity. Our model allows us to simultaneously examine the effects of repetitive supramaximal stimulation on axonal morphology, neuronal membrane potential, and microglial migration, using cortical brain slices from Iba-1 eGFP mice. We demonstrate that microglia exert an acute and highly localized neuroprotective action under conditions of neuronal hyperactivity. Evoking repetitive action potentials in individual layer 2/3 pyramidal neurons elicited swelling of axons, but not dendrites, which was accompanied by a large, sustained depolarization of soma membrane potential. Microglial processes migrated to these swollen axons in a mechanism involving both ATP and glutamate release via volume-activated anion channels. This migration was followed by intensive microglial wrapping of affected axons and, in some cases, the removal of axonal debris that induced a rapid soma membrane repolarization back to resting potentials. When the microglial migration was pharmacologically blocked, the activity-induced depolarization continued until cell death ensued, demonstrating that the microglia–axon contact served to prevent pathological depolarization of the soma and maintain neuronal viability. This is a novel aspect of microglia surveillance: detecting, wrapping, and rescuing neuronal soma from damage due to excessive activity. PMID:27390772

  17. Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences.

    PubMed

    Hart, Adam D; Wyttenbach, Andreas; Perry, V Hugh; Teeling, Jessica L

    2012-07-01

    Subtle regional differences in microglial phenotype exist in the adult mouse brain. We investigated whether these differences were amplified during ageing and following systemic challenge with lipopolysaccharide (LPS). We studied microglial morphology and phenotype in young (4mo) and aged (21mo) C57/BL6 mice using immunohistochemistry and quantified the expression levels of surface molecules on microglia in white and grey matter along the rostral-caudal neuraxis. We detected significant regional, age dependent differences in microglial phenotypes, with the microglia of white matter and caudal areas of the CNS exhibiting greater upregulation of CD11b, CD68, CD11c, F4/80 and FcγRI than grey matter and rostral CNS areas. Upregulation of CD11c with age was restricted to the white matter, as was the appearance of multinucleated giant cells. Systemic LPS caused a subtle upregulation of FcγRI after 24 h, but the other markers examined were not affected. Burrowing behaviour and static rod assays were used to assess hippocampal and cerebellar integrity. Aged mice exhibited exaggerated and prolonged burrowing deficits following systemic LPS injection, while in the absence of an inflammatory challenge aged mice performed significantly worse than young mice in the static rod test. Taken together, these findings show that the effects of age on microglial phenotype and functional integrity vary significantly between CNS compartments, as do, albeit to a lesser extent, the effects of systemic LPS.

  18. Carbon Nanotubes and Human Cells?

    ERIC Educational Resources Information Center

    King, G. Angela

    2005-01-01

    Single-walled carbon nanotubes that were chemically altered to be water soluble are shown to enter fibroblasts, T cells, and HL60 cells. Nanoparticles adversely affect immortalized HaCaT human keratinocyte cultures, indicating that they may enter cells.

  19. C9orf72 is required for proper macrophage and microglial function in mice.

    PubMed

    O'Rourke, J G; Bogdanik, L; Yáñez, A; Lall, D; Wolf, A J; Muhammad, A K M G; Ho, R; Carmona, S; Vit, J P; Zarrow, J; Kim, K J; Bell, S; Harms, M B; Miller, T M; Dangler, C A; Underhill, D M; Goodridge, H S; Lutz, C M; Baloh, R H

    2016-03-18

    Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Decreased expression of C9orf72 is seen in expansion carriers, suggesting that loss of function may play a role in disease. We found that two independent mouse lines lacking the C9orf72 ortholog (3110043O21Rik) in all tissues developed normally and aged without motor neuron disease. Instead, C9orf72 null mice developed progressive splenomegaly and lymphadenopathy with accumulation of engorged macrophage-like cells. C9orf72 expression was highest in myeloid cells, and the loss of C9orf72 led to lysosomal accumulation and altered immune responses in macrophages and microglia, with age-related neuroinflammation similar to C9orf72 ALS but not sporadic ALS human patient tissue. Thus, C9orf72 is required for the normal function of myeloid cells, and altered microglial function may contribute to neurodegeneration in C9orf72 expansion carriers. PMID:26989253

  20. kappa opioid receptors in human microglia downregulate human immunodeficiency virus 1 expression.

    PubMed Central

    Chao, C C; Gekker, G; Hu, S; Sheng, W S; Shark, K B; Bu, D F; Archer, S; Bidlack, J M; Peterson, P K

    1996-01-01

    Microglial cells, the resident macrophages of the brain, play an important role in the neuropathogenesis of human immunodeficiency virus type 1 (HIV-1), and recent studies suggest that opioid peptides regulate the function of macrophages from somatic tissues. We report herein the presence of kappa opioid receptors (KORs) in human fetal microglia and inhibition of HIV-1 expression in acutely infected microglial cell cultures treated with KOR ligands. Using reverse transcriptase-polymerase chain reaction and sequencing analyses, we found that mRNA for the KOR was constitutively expressed in microglia and determined that the nucleotide sequence of the open reading frame was identical to that of the human brain KOR gene. The expression of KOR in microglial cells was confirmed by membrane binding of [3H]U69,593, a kappa-selective ligand, and by indirect immunofluorescence. Treatment of microglial cell cultures with U50,488 or U69,593 resulted in a dose-dependent inhibition of expression of the monocytotropic HIV-1 SF162 strain. This antiviral effect of the kappa ligands was blocked by the specific KOR antagonist, nor-binaltrophimine. These findings suggest that kappa opioid agonists have immunomodulatory activity in the brain, and that these compounds could have potential in the treatment of HIV-1-associated encephalopathy. Images Fig. 2 Fig. 4 PMID:8755601

  1. Galantamine-induced amyloid-{beta} clearance mediated via stimulation of microglial nicotinic acetylcholine receptors.

    PubMed

    Takata, Kazuyuki; Kitamura, Yoshihisa; Saeki, Mana; Terada, Maki; Kagitani, Sachiko; Kitamura, Risa; Fujikawa, Yasuhiro; Maelicke, Alfred; Tomimoto, Hidekazu; Taniguchi, Takashi; Shimohama, Shun

    2010-12-17

    Reduction of brain amyloid-β (Aβ) has been proposed as a therapeutic target for Alzheimer disease (AD), and microglial Aβ phagocytosis is noted as an Aβ clearance system in brains. Galantamine is an acetylcholinesterase inhibitor approved for symptomatic treatment of AD. Galantamine also acts as an allosterically potentiating ligand (APL) for nicotinic acetylcholine receptors (nAChRs). APL-binding site is located close to but distinct from that for acetylcholine on nAChRs, and FK1 antibody specifically binds to the APL-binding site without interfering with the acetylcholine-binding site. We found that in human AD brain, microglia accumulated on Aβ deposits and expressed α7 nAChRs including the APL-binding site recognized with FK1 antibody. Treatment of rat microglia with galantamine significantly enhanced microglial Aβ phagocytosis, and acetylcholine competitive antagonists as well as FK1 antibody inhibited the enhancement. Thus, the galantamine-enhanced microglial Aβ phagocytosis required the combined actions of an acetylcholine competitive agonist and the APL for nAChRs. Indeed, depletion of choline, an acetylcholine-competitive α7 nAChR agonist, from the culture medium impeded the enhancement. Similarly, Ca(2+) depletion or inhibition of the calmodulin-dependent pathways for the actin reorganization abolished the enhancement. These results suggest that galantamine sensitizes microglial α7 nAChRs to choline and induces Ca(2+) influx into microglia. The Ca(2+)-induced intracellular signaling cascades may then stimulate Aβ phagocytosis through the actin reorganization. We further demonstrated that galantamine treatment facilitated Aβ clearance in brains of rodent AD models. In conclusion, we propose a further advantage of galantamine in clinical AD treatment and microglial nAChRs as a new therapeutic target. PMID:20947502

  2. Tropomyosin heterogeneity in human cells

    SciTech Connect

    Giometti, C.S.; Anderson, N.L.

    1984-11-25

    Tropomyosin preparations from human platelets, human peripheral blood leukocytes from normal individuals and from a patient with chronic lymphocytic leukemia, human lymphoblastoid cells (GM607), human epithelial cells, and human skin fibroblasts have all been found to contain more than one protein when analyzed by two-dimensional gel electrophoresis. Although the lymphoid cell preparations consistently contain two proteins of almost identical molecular weight (M/sub r/ = 30,000), the platelet, epithelial cell, and fibroblast preparations contain two or more major proteins with molecular weights between 31,000 and 36,000, in addition to a major protein at 30,000. All of these proteins have characteristics in common with tropomyosin including slightly acidic isoelectric point, stability to heat and organic solvents, association with the cytoskeleton, and reactivity with antibody against skeletal muscle tropomyosin. The nonmuscle tropomyosin-like proteins were compared with tropomyosins from human skeletal, cardiac, and smooth muscle by peptide mapping after partial proteolysis. The results showed one of the nonmuscle proteins to be identical to the major smooth muscle tropomyosin in human uterus (myometrium) and another to be similar but not identical to skeletal muscle ..cap alpha..-tropomyosin. The remainder of the proteins with tropomyosin characteristics was unique to nonmuscle cells. In all, nine distinct human proteins with characteristics of tropomyosin are described. Charge variants of two of these proteins have been described previously. 43 references, 7 figures, 2 tables.

  3. Treatment with polyamine oxidase inhibitor reduces microglial activation and limits vascular injury in ischemic retinopathy.

    PubMed

    Patel, C; Xu, Z; Shosha, E; Xing, J; Lucas, R; Caldwell, R W; Caldwell, R B; Narayanan, S P

    2016-09-01

    Retinal vascular injury is a major cause of vision impairment in ischemic retinopathies. Insults such as hyperoxia, oxidative stress and inflammation contribute to this pathology. Previously, we showed that hyperoxia-induced retinal neurodegeneration is associated with increased polyamine oxidation. Here, we are studying the involvement of polyamine oxidases in hyperoxia-induced injury and death of retinal vascular endothelial cells. New-born C57BL6/J mice were exposed to hyperoxia (70% O2) from postnatal day (P) 7 to 12 and were treated with the polyamine oxidase inhibitor MDL 72527 or vehicle starting at P6. Mice were sacrificed after different durations of hyperoxia and their retinas were analyzed to determine the effects on vascular injury, microglial cell activation, and inflammatory cytokine profiling. The results of this analysis showed that MDL 72527 treatment significantly reduced hyperoxia-induced retinal vascular injury and enhanced vascular sprouting as compared with the vehicle controls. These protective effects were correlated with significant decreases in microglial activation as well as levels of inflammatory cytokines and chemokines. In order to model the effects of polyamine oxidation in causing microglial activation in vitro, studies were performed using rat brain microvascular endothelial cells treated with conditioned-medium from rat retinal microglia stimulated with hydrogen peroxide. Conditioned-medium from activated microglial cultures induced cell stress signals and cell death in microvascular endothelial cells. These studies demonstrate the involvement of polyamine oxidases in hyperoxia-induced retinal vascular injury and retinal inflammation in ischemic retinopathy, through mechanisms involving cross-talk between endothelial cells and resident retinal microglia. PMID:27239699

  4. Treatment with polyamine oxidase inhibitor reduces microglial activation and limits vascular injury in ischemic retinopathy

    PubMed Central

    Patel, C.; Xu, Z.; Shosha, E.; Xing, J.; Lucas, R.; Caldwell, R.W.; Caldwell, R.B.; Narayanan, S.P.

    2016-01-01

    Retinal vascular injury is a major cause of vision impairment in ischemic retinopathies. Insults such as hyperoxia, oxidative stress and inflammation contribute to this pathology. Previously, we showed that hyperoxia-induced retinal neurodegeneration is associated with increased polyamine oxidation. Here, we are studying the involvement of polyamine oxidases in hyperoxia-induced injury and death of retinal vascular endothelial cells. Newborn C57BL6/J mice were exposed to hyperoxia (70% O2) from postnatal day (P) 7 to 12 and were treated with the polyamine oxidase inhibitor MDL 72527 or vehicle starting at P6. Mice were sacrificed after different durations of hyperoxia and their retinas were analyzed to determine the effects on vascular injury, microglial cell activation, and inflammatory cytokine profiling. The results of this analysis showed that MDL 72527 treatment significantly reduced hyperoxia-induced retinal vascular injury and enhanced vascular sprouting as compared with the vehicle controls. These protective effects were correlated with significant decreases in microglial activation as well as levels of inflammatory cytokines and chemokines. In order to model the effects of polyamine oxidation in causing microglial activation in vitro, studies were performed using rat brain microvascular endothelial cells treated with conditioned-medium from rat retinal microglia stimulated with hydrogen peroxide. Conditioned-medium from activated microglial cultures induced cell stress signals and cell death in microvascular endothelial cells. These studies demonstrate the involvement of polyamine oxidases in hyperoxia-induced retinal vascular injury and retinal inflammation in ischemic retinopathy, through mechanisms involving cross-talk between endothelial cells and resident retinal microglia. PMID:27239699

  5. Neuronal expression of CD22: novel mechanism for inhibiting microglial proinflammatory cytokine production.

    PubMed

    Mott, Ryan T; Ait-Ghezala, Ghania; Town, Terrence; Mori, Takashi; Vendrame, Martina; Zeng, Jin; Ehrhart, Jared; Mullan, Michae; Tan, Jun

    2004-05-01

    Although considered an immunologically privileged site, the central nervous system (CNS) can display significant inflammatory responses, which may play a pathogenic role in a number of neurological diseases. Microglia appear to be particularly important for initiating and sustaining CNS inflammation. These cells exist in a quiescent form in the normal CNS, but acquire macrophage-like properties (including active phagocytosis, upregulation of proteins necessary for antigen presentation, and production of proinflammatory cytokines) after stimulation with inflammatory substances such as lipopolysaccharide (LPS). Recent studies have focused on elucidating the role of neurons in the regulation of microglial inflammatory responses. In the present study, we demonstrate, using neuron-microglial cocultures, that neurons are capable of inhibiting LPS-induced tumor necrosis factor-alpha (TNF-alpha) production by microglia. This inhibition appears to be dependent on secretion of substances at axon terminals, as treatment with the presynaptic calcium channel blocker omega-conotoxin abolishes this inhibitory effect. Moreover, we show that conditioned medium from neuronal cultures similarly inhibits microglial TNF-alpha production, which provides additional evidence that neurons secrete inhibitory substances. We previously demonstrated that the transmembrane protein-tyrosine phosphatase CD45 plays an important role in negatively regulating microglial activation. The recent characterization of CD22 as an endogenous ligand of this receptor led us to investigate whether neurons express this protein. Indeed, we were able to demonstrate CD22 mRNA and protein expression in cultured neurons and mouse brain, using reverse transcriptase-polymerase chain reaction and antibody-based techniques. Furthermore, we show that neurons secrete CD22, which functions as an inhibitor of microglial proinflammatory cytokine production.

  6. Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons.

    PubMed

    Rajbhandari, Labchan; Tegenge, Million Adane; Shrestha, Shiva; Ganesh Kumar, Nishant; Malik, Adeel; Mithal, Aditya; Hosmane, Suneil; Venkatesan, Arun

    2014-12-01

    Microglia are rapidly activated in the central nervous system (CNS) in response to a variety of injuries, including inflammation, trauma, and stroke. In addition to modulation of the innate immune response, a key function of microglia is the phagocytosis of dying cells and cellular debris, which can facilitate recovery. Despite emerging evidence that axonal debris can pose a barrier to regeneration of new axons in the CNS, little is known of the cellular and molecular mechanisms that underlie clearance of degenerating CNS axons. We utilize a custom micropatterned microfluidic system that enables robust microglial-axon co-culture to explore the role of Toll-like receptors (TLRs) in microglial phagocytosis of degenerating axons. We find that pharmacologic and genetic disruption of TLR4 blocks induction of the Type-1 interferon response and inhibits phagocytosis of axon debris in vitro. Moreover, TLR4-dependent microglial clearance of unmyelinated axon debris facilitates axon outgrowth. In vivo, microglial phagocytosis of CNS axons undergoing Wallerian degeneration in a dorsal root axotomy model is impaired in adult mice in which TLR4 has been deleted. Since purinergic receptors can influence TLR4-mediated signaling, we also explored a role for the microglia P2 receptors and found that the P2X7R contributes to microglial clearance of degenerating axons. Overall, we identify TLR4 as a key player in axonal debris clearance by microglia, thus creating a more permissive environment for axonal outgrowth. Our findings have significant implications for the development of protective and regenerative strategies for the many inflammatory, traumatic, and neurodegenerative conditions characterized by CNS axon degeneration.

  7. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    SciTech Connect

    Guseva, Daria; Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V.; Palotás, András; Islamov, Rustem R.

    2014-09-05

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.

  8. Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure.

    PubMed

    Wang, Yun; Wang, Bing; Zhu, Mo-Tao; Li, Ming; Wang, Hua-Jian; Wang, Meng; Ouyang, Hong; Chai, Zhi-Fang; Feng, Wei-Yue; Zhao, Yu-Liang

    2011-08-10

    Microglia as the resident macrophage-like cells in the central nervous system (CNS) play a pivotal role in the innate immune responses of CNS. Understanding the reactions of microglia cells to nanoparticle exposure is important in the exploration of neurobiology of nanoparticles. Here we provide a systemic mapping of microglia and the corresponding pathological changes in olfactory-transport related brain areas of mice with Fe(2)O(3)-nanoparticle intranasal treatment. We showed that intranasal exposure of Fe(2)O(3) nanoparticle could lead to pathological alteration in olfactory bulb, hippocampus and striatum, and caused microglial proliferation, activation and recruitment in these areas, especially in olfactory bulb. Further experiments with BV2 microglial cells showed the exposure to Fe(2)O(3) nanoparticles could induce cells proliferation, phagocytosis and generation of ROS and NO, but did not cause significant release of inflammatory factors, including IL-1β, IL-6 and TNF-α. Our results indicate that microglial activation may act as an alarm and defense system in the processes of the exogenous nanoparticles invading and storage in brain.

  9. Layer 5 Pyramidal Neurons' Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis.

    PubMed

    Urrego, Diana; Troncoso, Julieta; Múnera, Alejandro

    2015-01-01

    This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3 weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1). It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans.

  10. Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS

    SciTech Connect

    Hu, Zhuqin; Yu, Fengxiang; Gong, Ping; Qiu, Yu; Zhou, Wei; Cui, Yongyao; Li, Juan Chen, Hongzhuan

    2014-04-15

    Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxic concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation

  11. Regulation of rotenone-induced microglial activation by 5-lipoxygenase and cysteinyl leukotriene receptor 1.

    PubMed

    Zhang, Xiao-Yan; Chen, Lu; Yang, Yi; Xu, Dong-Min; Zhang, Si-Ran; Li, Chen-Tan; Zheng, Wei; Yu, Shu-Ying; Wei, Er-Qing; Zhang, Li-Hui

    2014-07-14

    The 5-lipoxygenase (5-LOX) products cysteinyl leukotrienes (CysLTs) are potent pro-inflammatory mediators. CysLTs mediate their biological actions through activating CysLT receptors (CysLT(1)R and CysLT(2)R). We have recently reported that 5-LOX and CysLT(1)R mediated PC12 cell injury induced by high concentrations of rotenone (0.3-10 μM), which was reduced by the selective 5-LOX inhibitor zileuton and CysLT(1)R antagonist montelukast. The purpose of this study was to examine the regulatory roles of the 5-LOX/CysLT(1)R pathway in microglial activation induced by low concentration rotenone. After mouse microglial BV2 cells were stimulated with rotenone (0.3-3 nM), phagocytosis and release of pro-inflammatory cytokine were assayed as indicators of microglial activation. We found that rotenone (1 and 3 nM) increased BV2 microglial phagocytosis and the release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Zileuton and montelukast prevented rotenone (3 nM)-induced phagocytosis and cytokine release. Furthermore, rotenone significantly up-regulated 5-LOX expression, induced 5-LOX translocation to the nuclear envelope, and increased the production of CysLTs. These responses were inhibited by zileuton. Rotenone also increased CysLT(1)R expression and induced nuclear translocation of CysLT(1)R. In primary rat microglia, rotenone (10 nM) increased release of IL-1β and TNF-α, whereas zileuton (0.1 μΜ) and montelukast (0.01 μΜ) significantly inhibited this response. These results indicated that 5-LOX and CysLT(1)R might be key regulators of microglial activation induced by low concentration of rotenone. Interference of 5-LOX/CysLT(1)R pathway may be an effective therapeutic strategy for microglial inflammation.

  12. Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina.

    PubMed

    Wang, Minhua; Wang, Xu; Zhao, Lian; Ma, Wenxin; Rodriguez, Ignacio R; Fariss, Robert N; Wong, Wai T

    2014-03-01

    Chronic retinal inflammation in the form of activated microglia and macrophages are implicated in the etiology of neurodegenerative diseases of the retina, including age-related macular degeneration, diabetic retinopathy, and glaucoma. However, molecular biomarkers and targeted therapies for immune cell activation in these disorders are currently lacking. To address this, we investigated the involvement and role of translocator protein (TSPO), a biomarker of microglial and astrocyte gliosis in brain degeneration, in the context of retinal inflammation. Here, we find that TSPO is acutely and specifically upregulated in retinal microglia in separate mouse models of retinal inflammation and injury. Concomitantly, its endogenous ligand, diazepam-binding inhibitor (DBI), is upregulated in the macroglia of the mouse retina such as astrocytes and Müller cells. In addition, we discover that TSPO-mediated signaling in microglia via DBI-derived ligands negatively regulates features of microglial activation, including reactive oxygen species production, TNF-α expression and secretion, and microglial proliferation. The inducibility and effects of DBI-TSPO signaling in the retina reveal a mechanism of coordinated macroglia-microglia interactions, the function of which is to limit the magnitude of inflammatory responses after their initiation, facilitating a return to baseline quiescence. Our results indicate that TSPO is a promising molecular marker for imaging inflammatory cell activation in the retina and highlight DBI-TSPO signaling as a potential target for immodulatory therapies.

  13. Papaverine inhibits lipopolysaccharide-induced microglial activation by suppressing NF-κB signaling pathway

    PubMed Central

    Dang, Yalong; Mu, Yalin; Wang, Kun; Xu, Ke; Yang, Jing; Zhu, Yu; Luo, Bin

    2016-01-01

    Objective To investigate the effects of papaverine (PAP) on lipopolysaccharide (LPS)-induced microglial activation and its possible mechanisms. Materials and methods BV2 microglial cells were first pretreated with PAP (0, 0.4, 2, 10, and 50 μg/mL) and then received LPS stimulation. Transcription and production of proinflammatory factors (IL1β, TNFα, iNOS, and COX-2) were used to evaluate microglial activation. The transcriptional changes undergone by M1/M2a/M2b markers were used to evaluate phenotype transformation of BV2 cells. Immunofluorescent staining and Western blot were used to detect the location and expression of P65 and p-IKK in the presence or absence of PAP pretreatment. Results Pretreatment with PAP significantly inhibited the expression of IL1β and TNFα, and suppressed the transcription of M1/M2b markers Il1rn, Socs3, Nos2 and Ptgs2, but upregulated the transcription of M2a markers (Arg1 and Mrc1) in a dose-dependent manner. In addition, PAP pretreatment significantly decreased the expression of p-IKK and inhibited the nuclear translocation of P65 after LPS stimulation. Conclusion PAP not only suppressed the LPS-induced microglial activity by inhibiting transcription/production of proinflammatory factors, but also promoted the transformation of activated BV2 cells from cytotoxic phenotypes (M1/M2b) to a neuroprotective phenotype (M2a). These effects were probably mediated by NF-κB signaling pathway. Thus, it would be a promising candidate for the treatment of neurodegenerative diseases. PMID:27013863

  14. Perspectives on human stem cell research.

    PubMed

    Jung, Kyu Won

    2009-09-01

    Human stem cell research draws not only scientists' but the public's attention. Human stem cell research is considered to be able to identify the mechanism of human development and change the paradigm of medical practices. However, there are heated ethical and legal debates about human stem cell research. The core issue is that of human dignity and human life. Some prefer human adult stem cell research or iPS cell research, others hES cell research. We do not need to exclude any type of stem cell research because each has its own merits and issues, and they can facilitate the scientific revolution when working together.

  15. Persistent human immunodeficiency virus type 1 infection in human fetal glial cells reactivated by T-cell factor(s) or by the cytokines tumor necrosis factor alpha and interleukin-1 beta.

    PubMed Central

    Tornatore, C; Nath, A; Amemiya, K; Major, E O

    1991-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection of the brain has been associated with a severe dementing illness in children and adults. However, HIV-1 antigens are most frequently found in macrophages and microglial cells. To determine the extent of susceptibility of neuroglial cells to infection, the HIV-1 genome was introduced into cells cultured from human fetal brain tissue. Astroglial cells rapidly transcribed the viral genome producing high levels of p24 protein and infectious virions which peaked two to three days posttransfection. Thereafter HIV-1 genome expression progressively diminished and a persistent phase of infection developed during which neither virus nor viral proteins could be demonstrated by immunodetection methods. Cocultivation with CD4+ T cells at any time during the persistent infection resulted in resumption of p24 synthesis and virus multiplication. The release of persistence did not require direct cell-cell contact between the glial and T cells, since separation of the two cell types across a permeable membrane resulted in a delayed but similar resumption of p24 synthesis and virus multiplication. The persistently infected glial cells could also be stimulated to produce viral p24 protein if either tumor necrosis factor alpha or interleukin-1 beta was added to the medium without T cells present. These results suggest that astrocytes may serve as an undetected reservoir for HIV-1 and disseminate the virus to other susceptible cells in the brain upon triggering by some cellular or biochemical signal. Images PMID:1920627

  16. Crocin Upregulates CX3CR1 Expression by Suppressing NF-κB/YY1 Signaling and Inhibiting Lipopolysaccharide-Induced Microglial Activation.

    PubMed

    Lv, Bochang; Huo, Fuquan; Zhu, Zhongqiao; Xu, Zhiguo; Dang, Xiaojie; Chen, Tao; Zhang, Ting; Yang, Xinguang

    2016-08-01

    Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and optic nerve fibers. Microglial activation has been shown to be deleterious to RGCs and may participate in the progression of glaucoma. Crocin, one of the major active ingredients in saffron, has been found to inhibit microglial activation. However, the mechanism remains unclear. The aim of this study was to investigate whether crocin can inhibit lipopolysaccharide (LPS)-induced microglial activation and to clarify the mechanisms involved. The influence of crocin on primary RGCs and LPS-stimulated BV2 microglial cells survival was determined by the MTT and lactate dehydrogenase assays, or by flow cytometry. BV2 cells were pretreated with various concentrations of crocin for 2 h followed by 1 μg/mL LPS stimulation. Microglial markers and pro-inflammatory mediators were assessed by real-time PCR, western blot and ELISA. Furthermore, CX3CR1 expression was detected and the underlying mechanism was examined. The concentrations of crocin ranged from 0.1 to 1 μM, and did not show any cytotoxicity in RGC and BV2 cells. After crocin pretreatment, the expression of microglial markers (CD11b and Iba-1) and pro-inflammatory mediators (iNOS, COX-2, IL-1β, and TNF-α) induced by LPS were significantly decreased in a dose-dependent manner. Additionally, CX3CR1 expression was remarkably increased by crocin via the suppression of NF-κB/Yin Yang 1 (YY1) signaling in BV2 cells. In conclusion, crocin effectively suppresses microglial activation and upregulates CX3CR1 expression by suppressing NF-κB/YY1 signaling. PMID:27084772

  17. Microglial Signaling in Chronic Pain with a Special Focus on Caspase 6, p38 MAP Kinase, and Sex Dependence.

    PubMed

    Berta, T; Qadri, Y J; Chen, G; Ji, R R

    2016-09-01

    Microglia are the resident immune cells in the spinal cord and brain. Mounting evidence suggests that activation of microglia plays an important role in the pathogenesis of chronic pain, including chronic orofacial pain. In particular, microglia contribute to the transition from acute pain to chronic pain, as inhibition of microglial signaling reduces pathologic pain after inflammation, nerve injury, and cancer but not baseline pain. As compared with inflammation, nerve injury induces much more robust morphologic activation of microglia, termed microgliosis, as shown by increased expression of microglial markers, such as CD11b and IBA1. However, microglial signaling inhibitors effectively reduce inflammatory pain and neuropathic pain, arguing against the importance of morphologic activation of microglia in chronic pain sensitization. Importantly, microglia enhance pain states via secretion of proinflammatory and pronociceptive mediators, such as tumor necrosis factor α, interleukins 1β and 18, and brain-derived growth factor. Mechanistically, these mediators have been shown to enhance excitatory synaptic transmission and suppress inhibitory synaptic transmission in the pain circuits. While early studies suggested a predominant role of microglia in the induction of chronic pain, further studies have supported a role of microglia in the maintenance of chronic pain. Intriguingly, recent studies show male-dominant microglial signaling in some neuropathic pain and inflammatory pain states, although both sexes show identical morphologic activation of microglia after nerve injury. In this critical review, we provide evidence to show that caspase 6-a secreted protease that is expressed in primary afferent axonal terminals surrounding microglia-is a robust activator of microglia and induces profound release of tumor necrosis factor α from microglia via activation of p38 MAP kinase. The authors also show that microglial caspase 6/p38 signaling is male dominant in some

  18. The human lung mast cell.

    PubMed Central

    Wasserman, S I

    1984-01-01

    Mast cells are present in human lung tissue, pulmonary epithelium, and free in the bronchial lumen. By virtue of their location and their possession of specific receptors for IgE and complement fragments, these cells are sentinel cells in host defense. The preformed granular mediators and newly generated lipid mediators liberated upon activation of mast cells by a variety of secretagogues supply potent vasoactive-spasmogenic mediators, chemotactic factors, active enzymes, and proteoglycans to the local environment. These factors acting together induce an immediate response manifest as edema, smooth muscle constriction, mucus production, and cough. Later these mediators and those provided from plasma and leukocytes generate a tissue infiltrate of inflammatory cells and more prolonged vasoactive-bronchospastic responses. Acute and prolonged responses may be homeostatic and provide for defense of the host, but if excessive in degree or duration may provide a chronic inflammatory substrate upon which such disorders as asthma and pulmonary fibrosis may ensue. PMID:6428878

  19. Botanical Polyphenols Mitigate Microglial Activation and Microglia-Induced Neurotoxicity: Role of Cytosolic Phospholipase A2.

    PubMed

    Chuang, Dennis Y; Simonyi, Agnes; Cui, Jiankun; Lubahn, Dennis B; Gu, Zezong; Sun, Grace Y

    2016-09-01

    Microglia play a significant role in the generation and propagation of oxidative/nitrosative stress, and are the basis of neuroinflammatory responses in the central nervous system. Upon stimulation by endotoxins such as lipopolysaccharides (LPS), these cells release pro-inflammatory factors which can exert harmful effects on surrounding neurons, leading to secondary neuronal damage and cell death. Our previous studies demonstrated the effects of botanical polyphenols to mitigate inflammatory responses induced by LPS, and highlighted an important role for cytosolic phospholipase A2 (cPLA2) upstream of the pro-inflammatory pathways (Chuang et al. in J Neuroinflammation 12(1):199, 2015. doi: 10.1186/s12974-015-0419-0 ). In this study, we investigate the action of botanical compounds and assess whether suppression of cPLA2 in microglia is involved in the neurotoxic effects on neurons. Differentiated SH-SY5Y neuroblastoma cells were used to test the neurotoxicity of conditioned medium from stimulated microglial cells, and WST-1 assay was used to assess for the cell viability of SH-SY5Y cells. Botanicals such as quercetin and honokiol (but not cyanidin-3-O-glucoside, 3CG) were effective in inhibiting LPS-induced nitric oxide (NO) production and phosphorylation of cPLA2. Conditioned medium from BV-2 cells stimulated with LPS or IFNγ caused neurotoxicity to SH-SY5Y cells. Decrease in cell viability could be ameliorated by pharmacological inhibitors for cPLA2 as well as by down-regulating cPLA2 with siRNA. Botanicals effective in inhibition of LPS-induced NO and cPLA2 phosphorylation were also effective in ameliorating microglial-induced neurotoxicity. Results demonstrated cytotoxic factors from activated microglial cells to cause damaging effects to neurons and potential use of botanical polyphenols to ameliorate the neurotoxic effects. PMID:27339657

  20. Human Adrenocortical Carcinoma Cell Lines

    PubMed Central

    Wang, Tao; Rainey, William E.

    2011-01-01

    Summary The human adrenal cortex secretes mineralocorticoids, glucocorticoids and adrenal androgens. These steroids are produced from unique cell types located within the three distinct zones of the adrenal cortex. Disruption of adrenal steroid production results in a variety of diseases that can lead to hypertension, metabolic syndrome, infertility and androgen excess. The adrenal cortex is also a common site for the development of adenomas, and rarely the site for the development of carcinomas. The adenomas can lead to diseases associated with adrenal steroid excess, while the carcinomas are particularly aggressive and have a poor prognosis. In vitro cell culture models provide an important tool to examine molecular and cellular mechanisms controlling both the normal and pathologic function of the adrenal cortex. Herein we discuss the human adrenocortical cell lines and their use as model systems for adrenal studies. PMID:21924324

  1. Allergy Enhances Neurogenesis and Modulates Microglial Activation in the Hippocampus

    PubMed Central

    Klein, Barbara; Mrowetz, Heike; Thalhamer, Josef; Scheiblhofer, Sandra; Weiss, Richard; Aigner, Ludwig

    2016-01-01

    Allergies and their characteristic TH2-polarized inflammatory reactions affect a substantial part of the population. Since there is increasing evidence that the immune system modulates plasticity and function of the central nervous system (CNS), we investigated the effects of allergic lung inflammation on the hippocampus—a region of cellular plasticity in the adult brain. The focus of the present study was on microglia, the resident immune cells of the CNS, and on hippocampal neurogenesis, i.e., the generation of new neurons. C57BL/6 mice were sensitized with a clinically relevant allergen derived from timothy grass pollen (Phl p 5). As expected, allergic sensitization induced high serum levels of allergen-specific immunoglobulins (IgG1 and IgE) and of TH2 cytokines (IL-5 and IL-13). Surprisingly, fewer Iba1+ microglia were found in the granular layer (GL) and subgranular zone (SGZ) of the hippocampal dentate gyrus and also the number of Iba1+MHCII+ cells was lower, indicating a reduced microglial surveillance and activation in the hippocampus of allergic mice. Neurogenesis was analyzed by labeling of proliferating cells with bromodeoxyuridine (BrdU) and determining their fate 4 weeks later, and by quantitative analysis of young immature neurons, i.e., cells expressing doublecortin (DCX). The number of DCX+ cells was clearly increased in the allergy animals. Moreover, there were more BrdU+ cells present in the hippocampus of allergic mice, and these newly born cells had differentiated into neurons as indicated by a higher number of BrdU+NeuN+ cells. In summary, allergy led to a reduced microglia presence and activity and to an elevated level of neurogenesis in the hippocampus. This effect was apparently specific to the hippocampus, as we did not observe these alterations in the subventricular zone (SVZ)/olfactory bulb (OB) system, also a region of high cellular plasticity and adult neurogenesis. PMID:27445696

  2. Attenuation of microglial and neuronal activation in the brain by ICV minocycline following myocardial infarction.

    PubMed

    Dworak, Melissa; Stebbing, Martin; Kompa, Andrew R; Rana, Indrajeetsinh; Krum, Henry; Badoer, Emilio

    2014-10-01

    Following myocardial infarction, microglia, the immune cells in the central nervous system, become activated in the hypothalamic paraventricular nucleus (PVN) suggesting inflammation in this nucleus. Little is known about other brain nuclei. In the present study, we investigated whether the rostral ventrolateral medulla (RVLM), the nucleus tractus solitarius (NTS) and the periaqueductal grey (PAG), regions known to have important cardiovascular regulatory functions, also show increased microglial activation and whether this coincides with increased neuronal activity. We also investigated whether minocycline inhibited microglial activation and whether this also affected neuronal activity and cardiac function. Compared to controls there was a significant increase in the proportion of activated microglia and neuronal activation in the PVN, RVLM, NTS and PAG, 12weeks following myocardial infarction (P<0.001). Intracebroventricular infusion of minocycline (beginning one week prior to infarction) significantly attenuated the increase in microglial activation by at least 50% in the PVN, RVLM, PAG and NTS, and neuronal activation was significantly reduced by 50% in the PVN and virtually abolished in the PAG, RVLM and NTS. Cardiac function (percent fractional shortening) was significantly reduced by 55% following myocardial infarction but this was not ameliorated by minocycline treatment. The results suggest that following myocardial infarction, inflammation occurs in brain nuclei that play key roles in cardiovascular regulation and that attenuation of this inflammation may not be sufficient to ameliorate cardiac function.

  3. Human brain derived cells respond in a type-specific manner after exposure to urban particulate matter (PM).

    PubMed

    Campbell, Arezoo; Daher, Nancy; Solaimani, Parrisa; Mendoza, Kriscelle; Sioutas, Constantinos

    2014-10-01

    Exposure to particulate matter (PM), a component of urban air pollution, may cause adverse effects in the brain. Although the exact mechanisms involved are unknown, both oxidative and inflammatory responses have been reported. Since the main route of exposure to particulate matter is through inhalation, there is a potential for compounds to directly enter the brain and alter normal cellular function. Enhancement in both oxidative stress and neuroinflammatory markers has been observed in neurodegenerative disorders and PM-induced potentiation of these events may accelerate the disease process. The objective of this pilot study was to use normal human brain cells, a model system which has not been previously used, to assess cell-type-specific responses after exposure to ultrafine particles (UFP). Human microglia, neurons, and astrocytes were grown separately or as co-cultures and then exposed to aqueous UFP suspensions. Reactive Oxygen Species (ROS) formation and the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) were measured as markers of oxidative stress or inflammation respectively. Our results revealed that after exposure to 2 μg/ml of particles, normal human neurons exhibit a decrease in ROS formation and an increase in TNF-α. The observed decrease in ROS formation persisted in the presence of glial cells, which contrasts previous studies done in rodent cells reporting that PM-induced microglial activation modulates neuronal responses. Our study indicates that human CNS cells may respond differently compared to rodent cells and that their use may be more predictive in risk assessment.

  4. The association between laminin and microglial morphology in vitro.

    PubMed

    Tam, Wing Yip; Au, Ngan Pan Bennett; Ma, Chi Him Eddie

    2016-01-01

    Microglia are immune cells in the central nervous system (CNS) that contribute to primary innate immune responses. The morphology of microglia is closely associated with their functional activities. The majority of microglial studies have focused on the ramified or amoeboid morphology; however, bipolar/rod-shaped microglia have recently received much attention. Bipolar/rod-shaped microglia form trains with end-to-end alignment in injured brains and retinae, which is proposed as an important mechanism in CNS repair. We previously established a cell culture model system to enrich bipolar/rod-shaped microglia simply by growing primary microglia on scratched poly-D-lysine (PDL)/laminin-coated surfaces. Here, we investigated the role of laminin in morphological changes of microglia. Bipolar/rod-shaped microglia trains were transiently formed on scratched surfaces without PDL/laminin coating, but the microglia alignment disappeared after 3 days in culture. Amoeboid microglia digested the surrounding laminin, and the gene and protein expression of laminin-cleaving genes Adam9 and Ctss was up-regulated. Interestingly, lipopolysaccharide (LPS)-induced transformation from bipolar/rod-shaped into amoeboid microglia increased the expression of Adam9 and Ctss, and the expression of these genes in LPS-treated amoeboid-enriched cultures remained unchanged. These results indicate a strong association between laminin and morphological transformation of microglia, shedding new light on the role of bipolar/rod-shaped microglia in CNS repair. PMID:27334934

  5. The association between laminin and microglial morphology in vitro

    PubMed Central

    Tam, Wing Yip; Au, Ngan Pan Bennett; Ma, Chi Him Eddie

    2016-01-01

    Microglia are immune cells in the central nervous system (CNS) that contribute to primary innate immune responses. The morphology of microglia is closely associated with their functional activities. The majority of microglial studies have focused on the ramified or amoeboid morphology; however, bipolar/rod-shaped microglia have recently received much attention. Bipolar/rod-shaped microglia form trains with end-to-end alignment in injured brains and retinae, which is proposed as an important mechanism in CNS repair. We previously established a cell culture model system to enrich bipolar/rod-shaped microglia simply by growing primary microglia on scratched poly-D-lysine (PDL)/laminin-coated surfaces. Here, we investigated the role of laminin in morphological changes of microglia. Bipolar/rod-shaped microglia trains were transiently formed on scratched surfaces without PDL/laminin coating, but the microglia alignment disappeared after 3 days in culture. Amoeboid microglia digested the surrounding laminin, and the gene and protein expression of laminin-cleaving genes Adam9 and Ctss was up-regulated. Interestingly, lipopolysaccharide (LPS)-induced transformation from bipolar/rod-shaped into amoeboid microglia increased the expression of Adam9 and Ctss, and the expression of these genes in LPS-treated amoeboid-enriched cultures remained unchanged. These results indicate a strong association between laminin and morphological transformation of microglia, shedding new light on the role of bipolar/rod-shaped microglia in CNS repair. PMID:27334934

  6. Human stem cell ethics: beyond the embryo.

    PubMed

    Sugarman, Jeremy

    2008-06-01

    Human embryonic stem cell research has elicited powerful debates about the morality of destroying human embryos. However, there are important ethical issues related to stem cell research that are unrelated to embryo destruction. These include particular issues involving different types of cells used, the procurement of such cells, in vivo use of stem cells, intellectual property, and conflicts of interest.

  7. Embryonic Stem Cell Patents and Human Dignity

    PubMed Central

    Resnik, David B.

    2009-01-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells. PMID:17922198

  8. Culture of human endothelial cells.

    PubMed

    Gallicchio, M A

    2001-01-01

    Endothelial cells line the luminal surface of all blood vessels in the body. The endothelial surface in adult humans is composed of approximately l-6×l0(13) cells and covers an area of 1-7 m(2). Endothelium serves many functions, including fluid and solute exchange through cell contraction, provision of an antithrombogenic surface through tissue plasminogen activator (tPA) and prostacyclin release, synthesis of angiogenic factors such as adenosine, allowance of leukocyte trafficking through adhesion molecule synthesis, presentation of antigens to the immune system, maintenance of vascular tone through nitric oxide and endothelin synthesis, and metabolism of circulating molecules through the release of enzymes such as lipoprotein lipase. PMID:21340938

  9. Annexin-1 Mediates Microglial Activation and Migration via the CK2 Pathway during Oxygen–Glucose Deprivation/Reperfusion

    PubMed Central

    Liu, Shuangxi; Gao, Yan; Yu, Xiaoli; Zhao, Baoming; Liu, Lu; Zhao, Yin; Luo, Zhenzhao; Shi, Jing

    2016-01-01

    Annexin-1 (ANXA1) has shown neuroprotective effects and microglia play significant roles during central nervous system injury, yet the underlying mechanisms remain unclear. This study sought to determine whether ANXA1 regulates microglial response to oxygen–glucose deprivation/reperfusion (OGD/R) treatment and to clarify the downstream molecular mechanism. In rat hippocampal slices, OGD/R treatment enhanced the ANXA1 expression in neuron, the formyl peptide receptor (FPRs) expression in microglia, and the microglial activation in the CA1 region (cornu ammonis 1). These effects were reversed by the FPRs antagonist Boc1. The cell membrane currents amplitude of BV-2 microglia (the microglial like cell-line) was increased when treated with Ac2-26, the N-terminal peptide of ANXA1. Ac2-26 treatment enhanced BV-2 microglial migration whereas Boc1 treatment inhibited the migration. In BV-2 microglia, both the expression of the CK2 target phosphorylated α-E-catenin and the binding of casein kinase II (CK2) with α-E-catenin were elevated by Ac2-26, these effects were counteracted by the CK2 inhibitor TBB and small interfering (si) RNA directed against transcripts of CK2 and FPRs. Moreover, both TBB and siRNA-mediated inhibition of CK2 blocked Ac2-26-mediated BV-2 microglia migration. Our findings indicate that ANXA1 promotes microglial activation and migration during OGD/R via FPRs, and CK2 target α-E-catenin phosphorylation is involved in this process. PMID:27782092

  10. Human glomerular epithelial cell proteoglycans

    SciTech Connect

    Thomas, G.J.; Jenner, L.; Mason, R.M.; Davies, M. )

    1990-04-01

    Proteoglycans synthesized by cultures of human glomerular epithelial cells have been isolated and characterized. Three types of heparan sulfate were detected. Heparan sulfate proteoglycan I (HSPG-I; Kav 6B 0.04) was found in the cell layer and medium and accounted for 12% of the total proteoglycans synthesized. HSPG-II (Kav 6B 0.25) accounted for 18% of the proteoglycans and was located in the medium and cell layer. A third population (9% of the proteoglycan population), heparan sulfate glycosaminoglycan (HS-GAG; Kav 6B 0.4-0.8), had properties consistent with single glycosaminoglycan chains or their fragments and was found only in the cell layer. HSPG-I and HSPG-II from the cell layer had hydrophobic properties; they were released from the cell layer by mild trypsin treatment. HS-GAG lacked these properties, consisted of low-molecular-mass heparan sulfate oligosaccharides, and were intracellular. HSPG-I and -II released to the medium lacked hydrophobic properties. The cells also produced three distinct types of chondroitin sulfates. The major species, chondroitin sulfate proteoglycan I (CSPG-I) eluted in the excluded volume of a Sepharose CL-6B column, accounted for 30% of the proteoglycans detected, and was found in both the cell layer and medium. Cell layer CSPG-I bound to octyl-Sepharose. It was released from the cell layer by mild trypsin treatment. CSPG-II (Kav 6B 0.1-0.23) accounted for 10% of the total 35S-labeled macromolecules and was found predominantly in the culture medium. A small amount of CS-GAG (Kav 6B 0.25-0.6) is present in the cell extract and like HS-GAG is intracellular. Pulse-chase experiments indicated that HSPG-I and -II and CSPG-I and -II are lost from the cell layer either by direct release into the medium or by internalization where they are metabolized to single glycosaminoglycan chains and subsequently to inorganic sulfate.

  11. Distinct Therapeutic Mechanisms of Tau Antibodies: Promoting Microglial Clearance Versus Blocking Neuronal Uptake.

    PubMed

    Funk, Kristen E; Mirbaha, Hilda; Jiang, Hong; Holtzman, David M; Diamond, Marc I

    2015-08-28

    Tauopathies are neurodegenerative diseases characterized by accumulation of Tau amyloids, and include Alzheimer disease and certain frontotemporal dementias. Trans-neuronal propagation of amyloid mediated by extracellular Tau may underlie disease progression. Consistent with this, active and passive vaccination studies in mouse models reduce pathology, although by unknown mechanisms. We previously reported that intracerebroventricular administration of three anti-Tau monoclonal antibodies (HJ8.5, HJ9.3, and HJ9.4) reduces pathology in a model overexpressing full-length mutant (P301S) human Tau. We now study effects of these three antibodies and a negative control antibody (HJ3.4) on Tau aggregate uptake into BV2 microglial-like cells and primary neurons. Antibody-independent Tau uptake into BV2 cells was blocked by heparin, consistent with a previously described role for heparan sulfate proteoglycans. Two therapeutic antibodies (HJ8.5 and HJ9.4) promoted uptake of full-length Tau fibrils into microglia via Fc receptors. Surprisingly, HJ9.3 promoted uptake of fibrils composed of the Tau repeat domain or Alzheimer disease-derived Tau aggregates, but failed to influence full-length recombinant Tau fibrils. Size fractionation of aggregates showed that antibodies preferentially promote uptake of larger oligomers (n ≥ ∼ 20-mer) versus smaller oligomers (n ∼ 10-mer) or monomer. No antibody inhibited uptake of full-length recombinant fibrils into primary neurons, but HJ9.3 blocked neuronal uptake of Tau repeat domain fibrils and Alzheimer disease-derived Tau. Antibodies thus have multiple potential mechanisms, including clearance via microglia and blockade of neuronal uptake. However these effects are epitope- and aggregate size-dependent. Establishing specific mechanisms of antibody activity in vitro may help in design and optimization of agents that are more effective in vivo.

  12. Distinct Therapeutic Mechanisms of Tau Antibodies: Promoting Microglial Clearance Versus Blocking Neuronal Uptake.

    PubMed

    Funk, Kristen E; Mirbaha, Hilda; Jiang, Hong; Holtzman, David M; Diamond, Marc I

    2015-08-28

    Tauopathies are neurodegenerative diseases characterized by accumulation of Tau amyloids, and include Alzheimer disease and certain frontotemporal dementias. Trans-neuronal propagation of amyloid mediated by extracellular Tau may underlie disease progression. Consistent with this, active and passive vaccination studies in mouse models reduce pathology, although by unknown mechanisms. We previously reported that intracerebroventricular administration of three anti-Tau monoclonal antibodies (HJ8.5, HJ9.3, and HJ9.4) reduces pathology in a model overexpressing full-length mutant (P301S) human Tau. We now study effects of these three antibodies and a negative control antibody (HJ3.4) on Tau aggregate uptake into BV2 microglial-like cells and primary neurons. Antibody-independent Tau uptake into BV2 cells was blocked by heparin, consistent with a previously described role for heparan sulfate proteoglycans. Two therapeutic antibodies (HJ8.5 and HJ9.4) promoted uptake of full-length Tau fibrils into microglia via Fc receptors. Surprisingly, HJ9.3 promoted uptake of fibrils composed of the Tau repeat domain or Alzheimer disease-derived Tau aggregates, but failed to influence full-length recombinant Tau fibrils. Size fractionation of aggregates showed that antibodies preferentially promote uptake of larger oligomers (n ≥ ∼ 20-mer) versus smaller oligomers (n ∼ 10-mer) or monomer. No antibody inhibited uptake of full-length recombinant fibrils into primary neurons, but HJ9.3 blocked neuronal uptake of Tau repeat domain fibrils and Alzheimer disease-derived Tau. Antibodies thus have multiple potential mechanisms, including clearance via microglia and blockade of neuronal uptake. However these effects are epitope- and aggregate size-dependent. Establishing specific mechanisms of antibody activity in vitro may help in design and optimization of agents that are more effective in vivo. PMID:26126828

  13. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo.

    PubMed

    Guseva, Daria; Rizvanov, Albert A; Salafutdinov, Ilnur I; Kudryashova, Nezhdana V; Palotás, András; Islamov, Rustem R

    2014-09-01

    Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.

  14. Stem cell differentiation and human liver disease

    PubMed Central

    Zhou, Wen-Li; Medine, Claire N; Zhu, Liang; Hay, David C

    2012-01-01

    Human stem cells are scalable cell populations capable of cellular differentiation. This makes them a very attractive in vitro cellular resource and in theory provides unlimited amounts of primary cells. Such an approach has the potential to improve our understanding of human biology and treating disease. In the future it may be possible to deploy novel stem cell-based approaches to treat human liver diseases. In recent years, efficient hepatic differentiation from human stem cells has been achieved by several research groups including our own. In this review we provide an overview of the field and discuss the future potential and limitations of stem cell technology. PMID:22563188

  15. Neoplastic transformation of human cells

    NASA Technical Reports Server (NTRS)

    Goth-Goldstein, Regine

    1995-01-01

    The goal of this project was to gain a better understanding of the cellular mechanisms of cancer induction by ionizing radiation as a risk assessment for workers subjected to high LET irradiation such as that found in space. The following ions were used for irradiation: Iron, Argon, Neon, and Lanthanum. Two tests were performed: growth in low serum and growth in agar were used as indicators of cell transformation. The specific aims of this project were to: (1) compare the effectiveness of various ions on degree of transformation of a single dose of the same RBE; (2) determine if successive irradiations with the same ion (Ge 600 MeV/u) increases the degree of transformation; (3) test if clones with the greatest degree of transformation produce tumors in nude mice; and (4) construct a cell hybrid of a transformed and control (non-transformed) clone. The cells used for this work are human mammary epithelial cells with an extended lifespan and selected for growth in MEM + 10% serum.

  16. Therapeutic targeting of Krüppel-like factor 4 abrogates microglial activation

    PubMed Central

    2012-01-01

    Background Neuroinflammation occurs as a result of microglial activation in response to invading micro-organisms or other inflammatory stimuli within the central nervous system. According to our earlier findings, Krüppel-like factor 4 (Klf4), a zinc finger transcription factor, is involved in microglial activation and subsequent release of proinflammatory cytokines, tumor necrosis factor alpha, macrophage chemoattractant protein-1 and interleukin-6 as well as proinflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-treated microglial cells. Our current study focuses on finding the molecular mechanism of the anti-inflammatory activities of honokiol in lipopolysaccharide-treated microglia with emphasis on the regulation of Klf4. Methods For in vitro studies, mouse microglial BV-2 cell lines as well as primary microglia were treated with 500 ng/mL lipopolysaccharide as well as 1 μM and 10 μM of honokiol. We cloned full-length Klf4 cDNA in pcDNA3.1 expression vector and transfected BV-2 cells with this construct using lipofectamine for overexpression studies. For in vivo studies, brain tissues were isolated from BALB/c mice treated with 5 mg/kg body weight of lipopolysaccharide either with or without 2.5 or 5 mg/kg body weight of honokiol. Expression of Klf4, cyclooxygenase-2, inducible nitric oxide synthase and phospho-nuclear factor-kappa B was measured using immunoblotting. We also measured the levels of cytokines, reactive oxygen species and nitric oxide in different conditions. Results Our findings suggest that honokiol can substantially downregulate the production of proinflammatory cytokines and inflammatory enzymes in lipopolysaccharide-stimulated microglia. In addition, honokiol downregulates lipopolysaccharide-induced upregulation of both Klf4 and phospho-nuclear factor-kappa B in these cells. We also found that overexpression of Klf4 in BV-2 cells suppresses the anti-inflammatory action of honokiol. Conclusions

  17. Disruption of Fractalkine Signaling Leads to Microglial Activation and Neuronal Damage in the Diabetic Retina

    PubMed Central

    Cardona, Sandra M.; Mendiola, Andrew S.; Yang, Ya-Chin; Adkins, Sarina L.; Torres, Vanessa

    2015-01-01

    Fractalkine (CX3CL1 or FKN) is a membrane-bound chemokine expressed on neuronal membranes and is proteolytically cleaved to shed a soluble chemoattractant domain. FKN signals via its unique receptor CX3CR1 expressed on microglia and other peripheral leukocytes. The aim of this study is to determine the role of CX3CR1 in inflammatory-mediated damage to retinal neurons using a model of diabetic retinopathy. For this, we compared neuronal, microglial, and astroglial densities and inflammatory response in nondiabetic and diabetic (Ins2Akita) CX3CR1-wild-type and CX3CR1-deficient mice at 10 and 20 weeks of age. Our results show that Ins2Akita CX3CR1-knockout mice exhibited (a) decreased neuronal cell counts in the retinal ganglion cell layer, (b) increased microglial cell numbers, and (c) decreased astrocyte responses comparable with Ins2Akita CX3CR1-Wild-type mice at 20 weeks of age. Analyses of the inflammatory response using PCR arrays showed several inflammatory genes differentially regulated in diabetic tissues. From those, the response in Ins2Akita CX3CR1-deficient mice at 10 weeks of age revealed a significant upregulation of IL-1β at the transcript level that was confirmed by enzyme-linked immunosorbent assay in soluble retinal extracts. Overall, IL-1β, VEGF, and nitrite levels as a read out of nitric oxide production were abundant in Ins2Akita CX3CR1-deficient retina. Notably, double immunofluorescence staining shows that astrocytes act as a source of IL-1β in the Ins2Akita retina, and CX3CR1-deficient microglia potentiate the inflammatory response via IL-1β release. Collectively, these data demonstrate that dysregulated microglial responses in absence of CX3CR1 contribute to inflammatory-mediated damage of neurons in the diabetic retina. PMID:26514658

  18. Cell motion predicts human epidermal stemness

    PubMed Central

    Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki

    2015-01-01

    Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083

  19. Vitamin K2 suppresses rotenone-induced microglial activation in vitro

    PubMed Central

    Yu, Yan-xia; Li, Yi-pei; Gao, Feng; Hu, Qing-song; Zhang, Yan; Chen, Dong; Wang, Guang-hui

    2016-01-01

    Aim: Increasing evidence has shown that environmental factors such as rotenone and paraquat induce neuroinflammation, which contributes to the pathogenesis of Parkinson's disease (PD). In this study, we investigated the molecular mechanisms underlying the repression by menaquinone-4 (MK-4), a subtype of vitamin K2, of rotenone-induced microglial activation in vitro. Methods: A microglial cell line (BV2) was exposed to rotenone (1 μmol/L) with or without MK-4 treatment. The levels of TNF-α or IL-1β in 100 μL of cultured media of BV2 cells were measured using ELISA kits. BV2 cells treated with rotenone with or without MK4 were subjected to mitochondrial membrane potential, ROS production, immunofluorescence or immunoblot assays. The neuroblastoma SH-SY5Y cells were treated with conditioned media (CM) of BV2 cells that were exposed to rotenone with or without MK-4 treatment, and the cell viability was assessed using MTT assay. Results: In rotenone-treated BV2 cells, MK-4 (0.5–20 μmol/L) dose-dependently suppressed the upregulation in the expression of iNOS and COX-2 in the cells, as well as the production of TNF-α and IL-1β in the cultured media. MK-4 (5–20 μmol/L) significantly inhibited rotenone-induced nuclear translocation of NF-κB in BV2 cells. MK-4 (5–20 μmol/L) significantly inhibited rotenone-induced p38 activation, ROS production, and caspase-1 activation in BV2 cells. MK-4 (5–20 μmol/L) also restored the mitochondrial membrane potential that had been damaged by rotenone. Exposure to CM from rotenone-treated BV2 cells markedly decreased the viability of SH-SY5Y cells. However, this rotenone-activated microglia-mediated death of SH-SY5Y cells was significantly attenuated when the BV2 cells were co-treated with MK-4 (5–20 μmol/L). Conclusion: Vitamin K2 can directly suppress rotenone-induced activation of microglial BV2 cells in vitro by repressing ROS production and p38 activation. PMID:27498777

  20. Satellite cells in human skeletal muscle plasticity.

    PubMed

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  1. The PPARalpha Agonist Fenofibrate Preserves Hippocampal Neurogenesis and Inhibits Microglial Activation After Whole-Brain Irradiation

    SciTech Connect

    Ramanan, Sriram; Kooshki, Mitra; Zhao Weiling; Hsu, F.-C.; Riddle, David R.; Robbins, Mike E.

    2009-11-01

    Purpose: Whole-brain irradiation (WBI) leads to cognitive impairment months to years after radiation. Numerous studies suggest that decreased hippocampal neurogenesis and microglial activation are involved in the pathogenesis of WBI-induced brain injury. The goal of this study was to investigate whether administration of the peroxisomal proliferator-activated receptor (PPAR) alpha agonist fenofibrate would prevent the detrimental effect of WBI on hippocampal neurogenesis. Methods and Materials: For this study, 129S1/SvImJ wild-type and PPARalpha knockout mice that were fed either regular or 0.2% wt/wt fenofibrate-containing chow received either sham irradiation or WBI (10-Gy single dose of {sup 137}Cs gamma-rays). Mice were injected intraperitoneally with bromodeoxyuridine to label the surviving cells at 1 month after WBI, and the newborn neurons were counted at 2 months after WBI by use of bromodeoxyuridine/neuronal nuclei double immunofluorescence. Proliferation in the subgranular zone and microglial activation were measured at 1 week and 2 months after WBI by use of Ki-67 and CD68 immunohistochemistry, respectively. Results: Whole-brain irradiation led to a significant decrease in the number of newborn hippocampal neurons 2 months after it was performed. Fenofibrate prevented this decrease by promoting the survival of newborn cells in the dentate gyrus. In addition, fenofibrate treatment was associated with decreased microglial activation in the dentate gyrus after WBI. The neuroprotective effects of fenofibrate were abolished in the knockout mice, indicating a PPARalpha-dependent mechanism or mechanisms. Conclusions: These data highlight a novel role for PPARalpha ligands in improving neurogenesis after WBI and offer the promise of improving the quality of life for brain cancer patients receiving radiotherapy.

  2. Cytokines associated with amyloid plaques in Alzheimer's disease brain stimulate human glial and neuronal cell cultures to secrete early complement proteins, but not C1-inhibitor.

    PubMed

    Veerhuis, R; Janssen, I; De Groot, C J; Van Muiswinkel, F L; Hack, C E; Eikelenboom, P

    1999-11-01

    Complement activation products C1q, C4c/d, and C3c/d in amyloid plaques in Alzheimer's disease probably result from direct binding and activation of C1 by amyloid beta peptides. RT-PCR and in situ hybridization studies have shown that several complement factors are produced in the brain parenchyma. In the present study, cytokines that can be detected in amyloid plaques (i.e., interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-alpha) were found to differentially stimulate the expression of C1 subcomponents, C1-Inhibitor (C1-Inh), C4, and C3, by astrocyte and microglial cell cultures derived from postmortem adult, human brain specimens and by neuroblastoma cell lines in culture. C1r and C1s were secreted at low levels by astrocytes and neuroblastoma cell lines. Exposure of cells to IL-1 alpha, IL-1 beta, TNF-alpha and to a far lesser extent IL-6, markedly upregulated C1r, C1s, and C3 production. C4 synthesis increased in response to interferon (IFN)-gamma and IL-6, whereas that of C1-Inh could be stimulated only by IFN-gamma. Thus, C1-Inh production is refractory to stimulation by plaque-associated cytokines, whereas these cytokines do stimulate C1r, C1s, and also C4 and C3 secretion by astrocytes and neuronal cells in culture. In contrast to the amyloid plaque associated cytokines IL-1 beta, IL-1 alpha, and TNF-alpha, the amyloid peptide A beta 1-42 itself did not stimulate C1r and C1s synthesis by astrocytes, microglial cells, or neuroblastoma cell lines. Microglial cells were the only cell type that constitutively expressed C1q. The ability of C1q to reassociate with newly formed C1r and C1s upon activation of C1 and subsequent inactivation by C1-Inh, may enable ongoing complement activation at sites of amyloid deposition, especially when C1-Inh is consumed and not replaced.

  3. Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor alpha-induced neurotoxicity in concert with microglial-derived Fas ligand.

    PubMed

    Taylor, Deanna L; Jones, Fleur; Kubota, Eva S F Chen Seho; Pocock, Jennifer M

    2005-03-16

    Activated microglia may be detrimental to neuronal survival in a number of neurodegenerative diseases. Thus, strategies that reduce microglial neurotoxicity may have therapeutic benefit. Stimulation of group II metabotropic glutamate (mGlu) receptors on rat primary microglia with the specific group II agonist 2S,2'R,3'R-2-(2',3'-dicarboxy-cyclopropyl)glycine for 24 h induced microglial activation and resulted in a neurotoxic microglial phenotype. These effects were attributable to preferential mGlu2 stimulation, because N-acetyl-L-aspartyl-L-glutamate, a specific mGlu3 agonist, did not induce microglial activation or neurotoxicity. Stimulation of microglial mGlu2 but not mGlu3 induced caspase-3 activation in cerebellar granule neurons in culture, using microglial-conditioned media as well as cocultures. Stimulation of microglial mGlu2 induced tumor necrosis factor-alpha (TNFalpha) release, which contributed to microglial neurotoxicity mediated via neuronal TNF receptor 1 and caspase-3 activation. Stimulation of microglial group I or III mGlu receptors did not induce TNFalpha release. TNFalpha was only neurotoxic in the presence of microglia or microglial-conditioned medium. The toxicity of TNFalpha could be prevented by coexposure of neurons to conditioned medium from microglia stimulated by the specific group III agonist L-2-amino-4-phosphono-butyric acid. The neurotoxicity of TNFalpha derived from mGlu2-stimulated microglia was potentiated by microglial-derived Fas ligand (FasL), the death receptor ligand. FasL was constitutively expressed in microglia and shed after mGlu2 stimulation. Our data suggest that selective and inverse modulation of microglial mGlu2 and mGlu3 may prove a therapeutic target in neuroinflammatory diseases such as Alzheimer's disease and multiple sclerosis. PMID:15772355

  4. Endothelial cells derived from human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  5. Is traumatic axonal injury (AI) associated with an early microglial activation? Application of a double-labeling technique for simultaneous detection of microglia and AI.

    PubMed

    Oehmichen, M; Theuerkauf, I; Meissner, C

    1999-05-01

    The aim of the present study was to determine whether axonal injury (AI) induces a microglial reaction within 15 days after brain trauma. In 40 selected cases of confirmed AI, the topographical relation of AI and microglial reaction was assessed using an immunohistochemical double-labeling technique for simultaneous demonstration of AI using beta-amyloid precursor protein (beta-APP) antibody and of microglia using CD68 antibody. Although traumatic injury was usually followed by a moderate early diffuse rise in the number of CD68-reactive cells in the white matter, increases in macrophages in areas of AI accumulation were only sporadic and did not occur until after 4 days. At survival intervals of 5-15 days a moderate microglial reaction in regions of beta-APP-positive injured axons was detected, at maximum, in half of the case material. During this interval AI-associated satellitosis-like clusters or stars described by other authors after a survival time of more than 7 weeks were an isolated phenomenon. The prolonged microglial reaction as well as the reduction of beta-APP-positive AI during longer survival periods supports the hypothesis that AI is not primarily chemotactically attractive and that the damage to a portion of beta-APPstained axons may be partly reversible. Most cases clearly require a prolonged interval of more than 15 days before initiation of the final scavenger reaction. For forensic purposes the increase in the number of microglial cells within the region of AI accumulation after a survival time of more than 5 days and the multiple and distinct demonstration of star-like microglial reactions within the white matter after survival times exceeding 7 weeks may provide valuable postmortem information on the timing of a traumatic event.

  6. Is traumatic axonal injury (AI) associated with an early microglial activation? Application of a double-labeling technique for simultaneous detection of microglia and AI.

    PubMed

    Oehmichen, M; Theuerkauf, I; Meissner, C

    1999-05-01

    The aim of the present study was to determine whether axonal injury (AI) induces a microglial reaction within 15 days after brain trauma. In 40 selected cases of confirmed AI, the topographical relation of AI and microglial reaction was assessed using an immunohistochemical double-labeling technique for simultaneous demonstration of AI using beta-amyloid precursor protein (beta-APP) antibody and of microglia using CD68 antibody. Although traumatic injury was usually followed by a moderate early diffuse rise in the number of CD68-reactive cells in the white matter, increases in macrophages in areas of AI accumulation were only sporadic and did not occur until after 4 days. At survival intervals of 5-15 days a moderate microglial reaction in regions of beta-APP-positive injured axons was detected, at maximum, in half of the case material. During this interval AI-associated satellitosis-like clusters or stars described by other authors after a survival time of more than 7 weeks were an isolated phenomenon. The prolonged microglial reaction as well as the reduction of beta-APP-positive AI during longer survival periods supports the hypothesis that AI is not primarily chemotactically attractive and that the damage to a portion of beta-APPstained axons may be partly reversible. Most cases clearly require a prolonged interval of more than 15 days before initiation of the final scavenger reaction. For forensic purposes the increase in the number of microglial cells within the region of AI accumulation after a survival time of more than 5 days and the multiple and distinct demonstration of star-like microglial reactions within the white matter after survival times exceeding 7 weeks may provide valuable postmortem information on the timing of a traumatic event. PMID:10334486

  7. Microglial ROS production in an electrical rat post-status epilepticus model of epileptogenesis.

    PubMed

    Rettenbeck, Maruja L; von Rüden, Eva-Lotta; Bienas, Silvia; Carlson, Regina; Stein, Veronika M; Tipold, Andrea; Potschka, Heidrun

    2015-07-10

    Reactive oxygen species and inflammatory signaling have been identified as pivotal pathophysiological factors contributing to epileptogenesis. Considering the development of combined anti-inflammatory and antioxidant treatment strategies with antiepileptogenic potential, a characterization of the time course of microglial reactive oxygen species generation during epileptogenesis is of major interest. Thus, we isolated microglia cells and analyzed the generation of reactive oxygen species by flow cytometric analysis in an electrical rat post-status epilepticus model. Two days post status epilepticus, a large-sized cell cluster exhibited a pronounced response with excessive production of reactive oxygen species upon stimulation with phorbol-myristate-acetate. Neither in the latency phase nor in the chronic phase with spontaneous seizures a comparable cell population with induction of reactive oxygen species was identified. We were able to demonstrate in the electrical rat post-status-epilepticus model, that microglial ROS generation reaches a peak after the initial insult, is only marginally increased in the latency phase, and returns to control levels during the chronic epileptic phase. The data suggest that a combination of anti-inflammatory and radical scavenging approaches might only be beneficial during a short time window after an epileptogenic brain insult.

  8. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques

    PubMed Central

    Wang, Yaming; Ulland, Tyler K.; Ulrich, Jason D.; Song, Wilbur; Tzaferis, John A.; Hole, Justin T.; Yuan, Peng; Mahan, Thomas E.; Shi, Yang; Gilfillan, Susan; Cella, Marina; Grutzendler, Jaime; DeMattos, Ronald B.; Cirrito, John R.; Holtzman, David M.

    2016-01-01

    Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial receptor that recognizes changes in the lipid microenvironment, which may occur during amyloid β (Aβ) accumulation and neuronal degeneration in Alzheimer’s disease (AD). Rare TREM2 variants that affect TREM2 function lead to an increased risk of developing AD. In murine models of AD, TREM2 deficiency prevents microglial clustering around Aβ deposits. However, the origin of myeloid cells surrounding amyloid and the impact of TREM2 on Aβ accumulation are a matter of debate. Using parabiosis, we found that amyloid-associated myeloid cells derive from brain-resident microglia rather than from recruitment of peripheral blood monocytes. To determine the impact of TREM2 deficiency on Aβ accumulation, we examined Aβ plaques in the 5XFAD model of AD at the onset of Aβ-related pathology. At this early time point, Aβ accumulation was similar in TREM2-deficient and -sufficient 5XFAD mice. However, in the absence of TREM2, Aβ plaques were not fully enclosed by microglia; they were more diffuse, less dense, and were associated with significantly greater neuritic damage. Thus, TREM2 protects from AD by enabling microglia to surround and alter Aβ plaque structure, thereby limiting neuritic damage. PMID:27091843

  9. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis

    PubMed Central

    Sierra, Amanda; Abiega, Oihane; Shahraz, Anahita; Neumann, Harald

    2012-01-01

    Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease. PMID:23386811

  10. System xC- is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice.

    PubMed

    Mesci, Pinar; Zaïdi, Sakina; Lobsiger, Christian S; Millecamps, Stéphanie; Escartin, Carole; Seilhean, Danielle; Sato, Hideyo; Mallat, Michel; Boillée, Séverine

    2015-01-01

    Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic

  11. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity.

    PubMed

    Palazuelos, Javier; Aguado, Tania; Pazos, M Ruth; Julien, Boris; Carrasco, Carolina; Resel, Eva; Sagredo, Onintza; Benito, Cristina; Romero, Julián; Azcoitia, Iñigo; Fernández-Ruiz, Javier; Guzmán, Manuel; Galve-Roperh, Ismael

    2009-11-01

    Cannabinoid-derived drugs are promising agents for the development of novel neuroprotective strategies. Activation of neuronal CB(1) cannabinoid receptors attenuates excitotoxic glutamatergic neurotransmission, triggers prosurvival signalling pathways and palliates motor symptoms in animal models of neurodegenerative disorders. However, in Huntington's disease there is a very early downregulation of CB(1) receptors in striatal neurons that, together with the undesirable psychoactive effects triggered by CB(1) receptor activation, foster the search for alternative pharmacological treatments. Here, we show that CB(2) cannabinoid receptor expression increases in striatal microglia of Huntington's disease transgenic mouse models and patients. Genetic ablation of CB(2) receptors in R6/2 mice, that express human mutant huntingtin exon 1, enhanced microglial activation, aggravated disease symptomatology and reduced mice lifespan. Likewise, induction of striatal excitotoxicity in CB(2) receptor-deficient mice by quinolinic acid administration exacerbated brain oedema, microglial activation, proinflammatory-mediator state and medium-sized spiny neuron degeneration. Moreover, administration of CB(2) receptor-selective agonists to wild-type mice subjected to excitotoxicity reduced neuroinflammation, brain oedema, striatal neuronal loss and motor symptoms. Studies on ganciclovir-induced depletion of astroglial proliferation in transgenic mice expressing thymidine kinase under the control of the glial fibrillary acidic protein promoter excluded the participation of proliferating astroglia in CB(2) receptor-mediated actions. These findings support a pivotal role for CB(2) receptors in attenuating microglial activation and preventing neurodegeneration that may pave the way to new therapeutic strategies for neuroprotection in Huntington's disease as well as in other neurodegenerative disorders with a significant excitotoxic component.

  12. [Regulatory B cells in human autoimmune diseases].

    PubMed

    Miyagaki, Tomomitsu

    2015-01-01

    B cells have been generally considered to be positive regulators of immune responses because of their ability to produce antigen-specific antibodies and to activate T cells through antigen presentation. Impairment of B cell development and function may cause autoimmune diseases. Recently, specific B cell subsets that can negatively regulate immune responses have been described in mouse models of a wide variety of autoimmune diseases. The concept of those B cells, termed regulatory B cells, is now recognized as important in the murine immune system. Among several regulatory B cell subsets, IL-10-producing regulatory B cells are the most widely investigated. On the basis of discoveries from studies of such mice, human regulatory B cells that produce IL-10 in most cases are becoming an active area of research. There have been emerging data suggesting the importance of human regulatory B cells in various diseases. Revealing the immune regulation mechanisms of human regulatory B cells in human autoimmune diseases could lead to the development of novel B cell targeted therapies. This review highlights the current knowledge on regulatory B cells, mainly IL-10-producing regulatory B cells, in clinical research using human samples. PMID:26725860

  13. Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer's disease mouse model through modulation of neuroinflammation.

    PubMed

    Lee, Hyun Ju; Lee, Jong Kil; Lee, Hyun; Carter, Janet E; Chang, Jong Wook; Oh, Wonil; Yang, Yoon Sun; Suh, Jun-Gyo; Lee, Byoung-Hee; Jin, Hee Kyung; Bae, Jae-Sung

    2012-03-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) have a potential therapeutic role in the treatment of neurological disorders, but their current clinical usage and mechanism of action has yet to be ascertained in Alzheimer's disease (AD). Here we report that hUCB-MSC transplantation into amyloid precursor protein (APP) and presenilin1 (PS1) double-transgenic mice significantly improved spatial learning and memory decline. Furthermore, amyloid-β peptide (Aβ) deposition, β-secretase 1 (BACE-1) levels, and tau hyperphosphorylation were dramatically reduced in hUCB-MSC transplanted APP/PS1 mice. Interestingly, these effects were associated with reversal of disease-associated microglial neuroinflammation, as evidenced by decreased microglia-induced proinflammatory cytokines, elevated alternatively activated microglia, and increased anti-inflammatory cytokines. These findings lead us to suggest that hUCB-MSC produced their sustained neuroprotective effect by inducing a feed-forward loop involving alternative activation of microglial neuroinflammation, thereby ameliorating disease pathophysiology and reversing the cognitive decline associated with Aβ deposition in AD mice.

  14. Stereological and somatotopic analysis of the spinal microglial response to peripheral nerve injury

    PubMed Central

    Beggs, Simon; Salter, Michael W.

    2016-01-01

    The involvement of glia, and glia-neuronal signalling in enhancing nociceptive transmission has become an area of intense scientific interest. In particular, a role has emerged for activated microglia in the development and maintenance of neuropathic pain following peripheral nerve injury. Following activation, spinal microglia proliferate and release many substances which are capable of modulating neuronal excitability within the spinal cord. Here, we the investigated the response of spinal microglia to a unilateral spared nerve injury (SNI) in terms of the quantitative increase in cell number and the spatial distribution of the increase. Design-based stereological techniques were combined with iba-1 immunohistochemistry to estimate the total number of microglia in the spinal dorsal horn in naïve and peripheral nerve-injured adult rats. In addition, by mapping the central terminals of hindlimb nerves, the somatotopic distribution of the microglial response was mapped. Following SNI there was a marked increase in the number of spinal microglia: The total number of microglia (mean ± SD) in the dorsal horn sciatic territory of the naïve rat was estimated to be 28,591 ± 2715. Following SNI the number of microglia was 82,034 ± 8828. While the pattern of microglial activation generally followed somatotopic boundaries, with the majority of microglia within the territory occupied by peripherally axotomised primary afferents, some spread was seen into regions occupied by intact, ‘spared’ central projections of the sural nerve. This study provides a reproducible method of assaying spinal microglial dynamics following peripheral nerve injury both quantitatively and spatially. PMID:17267172

  15. Trophoblast lineage cells derived from human induced pluripotent stem cells

    SciTech Connect

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  16. Generation of Humanized Mice for Analysis of Human Dendritic Cells.

    PubMed

    Saito, Yasuyuki; Ellegast, Jana M; Manz, Markus G

    2016-01-01

    Transplantation of human CD34(+) hematopoietic stem and progenitor cells into severe immunocompromised newborn mice allows the development of a human hemato-lymphoid system (HHLS) including dendritic cells (DCs) in vivo. Therefore, it can be a powerful tool to study human DC subsets, residing in different lymphoid and nonlymphoid organs. We have recently generated novel mouse strains called human cytokine knock-in mice in which human versions of several cytokines are knocked into Rag2(-/-)γC(-/-) strains. In addition, human SIRPα, which is a critical factor to prevent donor cell to be eliminated by host macrophages, is expressed as transgene. These mice efficiently support human myeloid cell development and, indeed, allow the analysis of three major subsets of human DC lineages, plasmacytoid DCs and CD1c(+) and CD141(+) classical DCs. Moreover, these strains also support cytokine-mobilized peripheral blood CD34(+) cell engraftment and subsequent DC development. Here we describe our standard methods to characterize DCs developed in human cytokine knock-in mice.

  17. Chronic Apocynin Treatment Attenuates Beta Amyloid Plaque Size and Microglial Number in hAPP(751)SL Mice

    PubMed Central

    Lull, Melinda E.; Levesque, Shannon; Surace, Michael J.; Block, Michelle L.

    2011-01-01

    Background NADPH oxidase is implicated in neurotoxic microglial activation and the progressive nature of Alzheimer's Disease (AD). Here, we test the ability of two NADPH oxidase inhibitors, apocynin and dextromethorphan (DM), to reduce learning deficits and neuropathology in transgenic mice overexpressing human amyloid precursor protein with the Swedish and London mutations (hAPP(751)SL). Methods Four month old hAPP(751)SL mice were treated daily with saline, 15 mg/kg DM, 7.5 mg/kg DM, or 10 mg/kg apocynin by gavage for four months. Results Only hAPP(751)SL mice treated with apocynin showed reduced plaque size and a reduction in the number of cortical microglia, when compared to the saline treated group. Analysis of whole brain homogenates from all treatments tested (saline, DM, and apocynin) demonstrated low levels of TNFα, protein nitration, lipid peroxidation, and NADPH oxidase activation, indicating a low level of neuroinflammation and oxidative stress in hAPP(751)SL mice at 8 months of age that was not significantly affected by any drug treatment. Despite in vitro analyses demonstrating that apocynin and DM ameliorate Aβ-induced extracellular superoxide production and neurotoxicity, both DM and apocynin failed to significantly affect learning and memory tasks or synaptic density in hAPP(751)SL mice. To discern how apocynin was affecting plaque levels (plaque load) and microglial number in vivo, in vitro analysis of microglia was performed, revealing no apocynin effects on beta-amyloid (Aβ) phagocytosis, microglial proliferation, or microglial survival. Conclusions Together, this study suggests that while hAPP(751)SL mice show increases in microglial number and plaque load, they fail to exhibit elevated markers of neuroinflammation consistent with AD at 8 months of age, which may be a limitation of this animal model. Despite absence of clear neuroinflammation, apocynin was still able to reduce both plaque size and microglial number, suggesting that apocynin

  18. Duloxetine Inhibits Microglial P2X4 Receptor Function and Alleviates Neuropathic Pain after Peripheral Nerve Injury

    PubMed Central

    Yamashita, Tomohiro; Yamamoto, Shota; Zhang, Jiaming; Kometani, Miho; Tomiyama, Daisuke; Kohno, Keita; Tozaki-Saitoh, Hidetoshi; Inoue, Kazuhide; Tsuda, Makoto

    2016-01-01

    P2X4 receptors (P2X4R) are a family of ATP-gated non-selective cation channels. We previously demonstrated that activation of P2X4R in spinal microglia is crucial for neuropathic pain, a highly debilitating chronic pain condition, suggesting that P2X4R is a potential therapeutic target for treating neuropathic pain. Thus, the identification of a compound that has a potent inhibitory effect on P2X4R is an important clinical challenge. In the present study, we screened a chemical library of clinically approved drugs and show for the first time that duloxetine, a serotonin and noradrenaline reuptake inhibitor, has an inhibitory effect on rodent and human P2X4R. In primary cultured microglial cells, duloxetine also inhibited P2X4R-, but not P2X7R-, mediated responses. Moreover, intrathecal administration of duloxetine in a model of neuropathic pain produced a reversal of nerve injury-induced mechanical allodynia, a cardinal symptom of neuropathic pain. In rats that were pretreated with a serotonin-depleting agent and a noradrenaline neurotoxin, the antiallodynic effect of duloxetine was reduced, but still remained. Based on these results, we suggest that, in addition to duloxetine’s primary inhibitory action on serotonin and noradrenaline transporters, an inhibitory effect on P2X4R may be involved at least in part in an antiallodynic effect of intrathecal duloxetine in a model of neuropathic pain. PMID:27768754

  19. Nitric oxide-mediated immunosuppressive effect of human amniotic membrane-derived mesenchymal stem cells on the viability and migration of microglia.

    PubMed

    Yan, Ke; Zhang, Run; Chen, Lei; Chen, Fanfan; Liu, Yi; Peng, Lingmei; Sun, Haitao; Huang, Weiyi; Sun, Chengmei; Lv, Bingke; Li, Feng; Cai, Yingqian; Tang, Yanping; Zou, Yuxi; Du, Mouxuan; Qin, Lingsha; Zhang, Hengzhu; Jiang, Xiaodan

    2014-11-24

    Human amniotic membrane-derived mesenchymal stem cells (AMSCs) are considered a novel and promising source of stem cells for cell replacement-based therapy. Current research is mostly limited to investigating the cellular differentiation potential of AMSCs, while few have focused on their immunosuppressive properties. This study is aimed at exploring and evaluating the immunosuppressive effect of human AMSCs on the viability and migratory properties of microglia. We found, from results of cell viability assays, that AMSCs can reduce the activity of inflammatory cells by secreting nitric oxide (NO). Also, based on results from wound healing and transwell migration assays, we show that AMSCs can inhibit the migration of human microglia as well as the mouse microglial cell line BV2, suggesting that they have the ability to inhibit the recruitment of certain immune cells to injury sites. Furthermore, we found that NO contributes significantly to this inhibitory effect. Our study provides evidence that human AMSCs can have detrimental effects on the viability and migration of microglia, through secretion of NO. This mechanism may contribute to anti-inflammatory processes in the central nervous system.

  20. CD14 is a key organizer of microglial responses to CNS infection and injury.

    PubMed

    Janova, Hana; Böttcher, Chotima; Holtman, Inge R; Regen, Tommy; van Rossum, Denise; Götz, Alexander; Ernst, Anne-Sophie; Fritsche, Christin; Gertig, Ulla; Saiepour, Nasrin; Gronke, Konrad; Wrzos, Claudia; Ribes, Sandra; Rolfes, Simone; Weinstein, Jonathan; Ehrenreich, Hannelore; Pukrop, Tobias; Kopatz, Jens; Stadelmann, Christine; Salinas-Riester, Gabriela; Weber, Martin S; Prinz, Marco; Brück, Wolfgang; Eggen, Bart J L; Boddeke, Hendrikus W G M; Priller, Josef; Hanisch, Uwe-Karsten

    2016-04-01

    Microglia, innate immune cells of the CNS, sense infection and damage through overlapping receptor sets. Toll-like receptor (TLR) 4 recognizes bacterial lipopolysaccharide (LPS) and multiple injury-associated factors. We show that its co-receptor CD14 serves three non-redundant functions in microglia. First, it confers an up to 100-fold higher LPS sensitivity compared to peripheral macrophages to enable efficient proinflammatory cytokine induction. Second, CD14 prevents excessive responses to massive LPS challenges via an interferon β-mediated feedback. Third, CD14 is mandatory for microglial reactions to tissue damage-associated signals. In mice, these functions are essential for balanced CNS responses to bacterial infection, traumatic and ischemic injuries, since CD14 deficiency causes either hypo- or hyperinflammation, insufficient or exaggerated immune cell recruitment or worsened stroke outcomes. While CD14 orchestrates functions of TLR4 and related immune receptors, it is itself regulated by TLR and non-TLR systems to thereby fine-tune microglial damage-sensing capacity upon infectious and non-infectious CNS challenges. PMID:26683584

  1. Cannabinoid effects on β amyloid fibril and aggregate formation, neuronal and microglial-activated neurotoxicity in vitro.

    PubMed

    Janefjord, Emelie; Mååg, Jesper L V; Harvey, Benjamin S; Smid, Scott D

    2014-01-01

    Cannabinoid (CB) ligands have demonstrated neuroprotective properties. In this study we compared the effects of a diverse set of CB ligands against β amyloid-mediated neuronal toxicity and activated microglial-conditioned media-based neurotoxicity in vitro, and compared this with a capacity to directly alter β amyloid (Aβ) fibril or aggregate formation. Neuroblastoma (SH-SY5Y) cells were exposed to Aβ1-42 directly or microglial (BV-2 cells) conditioned media activated with lipopolysaccharide (LPS) in the presence of the CB1 receptor-selective agonist ACEA, CB2 receptor-selective agonist JWH-015, phytocannabinoids Δ(9)-THC and cannabidiol (CBD), the endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide or putative GPR18/GPR55 ligands O-1602 and abnormal-cannabidiol (Abn-CBD). TNF-α and nitrite production was measured in BV-2 cells to compare activation via LPS or albumin with Aβ1-42. Aβ1-42 evoked a concentration-dependent loss of cell viability in SH-SY5Y cells but negligible TNF-α and nitrite production in BV-2 cells compared to albumin or LPS. Both albumin and LPS-activated BV-2 conditioned media significantly reduced neuronal cell viability but were directly innocuous to SH-SY5Y cells. Of those CB ligands tested, only 2-AG and CBD were directly protective against Aβ-evoked SH-SY5Y cell viability, whereas JWH-015, THC, CBD, Abn-CBD and O-1602 all protected SH-SY5Y cells from BV-2 conditioned media activated via LPS. While CB ligands variably altered the morphology of Aβ fibrils and aggregates, there was no clear correlation between effects on Aβ morphology and neuroprotective actions. These findings indicate a neuroprotective action of CB ligands via actions at microglial and neuronal cells.

  2. Hepatic Differentiation from Human Ips Cells Using M15 Cells.

    PubMed

    Umeda, Kahoko; Shiraki, Nobuaki; Kume, Shoen

    2016-01-01

    Here, we describe a procedure of human iPS cells differentiation into the definitive endoderm, further into albumin-expressing and albumin-secreting hepatocyte, using M15, a mesonephros- derived cell line. Approximately 90 % of human iPS cells differentiated into SOX17-positive definitive endoderm then approximately 50 % of cells became albumin-positive cells, and secreted ALB protein. This M15 feeder system for endoderm and hepatic differentiation is a simple and efficient method, and useful for elucidating molecular mechanisms for hepatic fate decision, and could represent an attractive approach for a surrogate cell source for pharmaceutical studies.

  3. Pleiotrophin, an angiogenic and mitogenic growth factor, is expressed in human gliomas.

    PubMed

    Mentlein, Rolf; Held-Feindt, Janka

    2002-11-01

    Pleiotrophin (PTN) is a mitogenic/angiogenic, 15.3 kDa heparin-binding peptide that is found in embryonic or early postnatal, but rarely in adult, tissues. Since developmentally regulated factors often re-appear in malignant cells, we examined PTN expression in human glioma cell lines, cell cultures derived from solid gliomas and glioma sections. PTN mRNA or protein was detected by reverse transcriptase-polymerase chain reaction, immunohistochemistry, western blot or enzyme-linked immunoassay in all WHO III and IV grade gliomas and cells analyzed in vitro or in situ. One WHO II grade glioma investigated was PTN negative. In vitro, PTN was synthesized in perinuclear regions of glioma cells, secreted into the cultivation medium, but its production varied considerably between glioma cells cultivated from different solid gliomas or glioma cell lines. In situ, PTN expression was restricted to distinct parts/cells of the tumour. PTN did not influence the proliferation of glioma cells themselves, but stimulated [3H]thymidine incorporation into DNA of microglial cells. Furthermore, in Boyden chamber assays, PTN showed a strong chemotactic effect on murine BV-2 microglial cells. PTN is supposed to be a paracrine growth/angiogenic factor that is produced by gliomas and contributes to their malignancy by targeting endothelial and microglial cells.

  4. Human skin cells support thymus-independent T cell development.

    PubMed

    Clark, Rachael A; Yamanaka, Kei-ichi; Bai, Mei; Dowgiert, Rebecca; Kupper, Thomas S

    2005-11-01

    Thymic tissue has previously been considered a requirement for the generation of a functional and diverse population of human T cells. We report that fibroblasts and keratinocytes from human skin arrayed on a synthetic 3-dimensional matrix support the development of functional human T cells from hematopoietic precursor cells in the absence of thymic tissue. Newly generated T cells contained T cell receptor excision circles, possessed a diverse T cell repertoire, and were functionally mature and tolerant to self MHC, indicating successful completion of positive and negative selection. Skin cell cultures expressed the AIRE, Foxn1, and Hoxa3 transcription factors and a panel of autoantigens. Skin and bone marrow biopsies can thus be used to generate de novo functional and diverse T cell populations for potential therapeutic use in immunosuppressed patients. PMID:16224538

  5. Human skin cells support thymus-independent T cell development

    PubMed Central

    Clark, Rachael A.; Yamanaka, Kei-ichi; Bai, Mei; Dowgiert, Rebecca; Kupper, Thomas S.

    2005-01-01

    Thymic tissue has previously been considered a requirement for the generation of a functional and diverse population of human T cells. We report that fibroblasts and keratinocytes from human skin arrayed on a synthetic 3-dimensional matrix support the development of functional human T cells from hematopoietic precursor cells in the absence of thymic tissue. Newly generated T cells contained T cell receptor excision circles, possessed a diverse T cell repertoire, and were functionally mature and tolerant to self MHC, indicating successful completion of positive and negative selection. Skin cell cultures expressed the AIRE, Foxn1, and Hoxa3 transcription factors and a panel of autoantigens. Skin and bone marrow biopsies can thus be used to generate de novo functional and diverse T cell populations for potential therapeutic use in immunosuppressed patients. PMID:16224538

  6. Alpha-B-crystallin induces an immune-regulatory and antiviral microglial response in preactive multiple sclerosis lesions.

    PubMed

    Bsibsi, Malika; Holtman, Inge R; Gerritsen, Wouter H; Eggen, Bart J L; Boddeke, Erik; van der Valk, Paul; van Noort, Johannes M; Amor, Sandra

    2013-10-01

    Microglial nodules are frequently observed in the normal-appearing white matter of multiple sclerosis (MS) patients. Previously, we have shown that these clusters, which we call "preactive MS lesions," are closely associated with stressed oligodendrocytes and myelin sheaths that contain markedly elevated levels of the small stress protein alpha-B-crystallin (HspB5). Here, we show that microglia in these lesions express the recently identified receptors for HspB5, that is, CD14, Toll-like receptor family 1 and 2 (TLR1 and TLR2), and several molecular markers of the microglial response to HspB5. These markers were identified by genome-wide transcript profiling of 12 primary human microglial cultures at 2 time points after exposure to HspB5. These data indicate that HspB5 activates production by microglia of an array of chemokines, immune-regulatory mediators, and a striking number of antiviral genes that are generally inducible by type I interferons. Together, our data suggest that preactive MS lesions are at least in part driven by HspB5 derived from stressed oligodendrocytes and may reflect a local attempt to restore tissue homeostasis.

  7. Expression cloning of human B cell immunoglobulins.

    PubMed

    Wardemann, Hedda; Kofer, Juliane

    2013-01-01

    The majority of lymphomas originate from B cells at the germinal center stage or beyond. Preferential selection of B cell clones by a limited set of antigens has been suggested to drive lymphoma development. However, little is known about the specificity of the antibodies expressed by lymphoma cells, and the role of antibody-specificity in lymphomagenesis remains elusive. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire on a single cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells, to the RT-PCR-based amplification of the expressed Igh, Igκ, and Igλ chain genes, and Ig gene expression vector cloning for the in vitro production of monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B cell lymphomas by single cell Ig gene sequencing and on the antibody reactivity of human lymphoma B cells.

  8. Human Cells Display Reduced Apoptotic Function Relative to Chimpanzee Cells

    PubMed Central

    McDonald, John F.

    2012-01-01

    Previously published gene expression analyses suggested that apoptotic function may be reduced in humans relative to chimpanzees and led to the hypothesis that this difference may contribute to the relatively larger size of the human brain and the increased propensity of humans to develop cancer. In this study, we sought to further test the hypothesis that humans maintain a reduced apoptotic function relative to chimpanzees by conducting a series of apoptotic function assays on human, chimpanzee and macaque primary fibroblastic cells. Human cells consistently displayed significantly reduced apoptotic function relative to the chimpanzee and macaque cells. These results are consistent with earlier findings indicating that apoptotic function is reduced in humans relative to chimpanzees. PMID:23029431

  9. The impact of microglial activation on blood-brain barrier in brain diseases

    PubMed Central

    da Fonseca, Anna Carolina Carvalho; Matias, Diana; Garcia, Celina; Amaral, Rackele; Geraldo, Luiz Henrique; Freitas, Catarina; Lima, Flavia Regina Souza

    2014-01-01

    The blood-brain barrier (BBB), constituted by an extensive network of endothelial cells (ECs) together with neurons and glial cells, including microglia, forms the neurovascular unit (NVU). The crosstalk between these cells guarantees a proper environment for brain function. In this context, changes in the endothelium-microglia interactions are associated with a variety of inflammation-related diseases in brain, where BBB permeability is compromised. Increasing evidences indicate that activated microglia modulate expression of tight junctions, which are essential for BBB integrity and function. On the other hand, the endothelium can regulate the state of microglial activation. Here, we review recent advances that provide insights into interactions between the microglia and the vascular system in brain diseases such as infectious/inflammatory diseases, epilepsy, ischemic stroke and neurodegenerative disorders. PMID:25404894

  10. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    PubMed Central

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  11. CXCR7 suppression modulates microglial chemotaxis to ameliorate experimentally-induced autoimmune encephalomyelitis.

    PubMed

    Bao, Jianhong; Zhu, Jinying; Luo, Sheng; Cheng, Ying; Zhou, Saijun

    2016-01-01

    Multiple sclerosis (MS) is the prototypical inflammatory demyelinating disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE), widely used as an animal model of MS, classically manifests as an ascending paralysis that is characterized by extensive infiltration of the CNS by inflammatory cells. Although several studies uncover the significant role of microglia in the development of EAE, the cellular mechanisms of microglia that govern EAE pathogenesis remain unknown. In the current study, we report that CXCR7 expression is dynamic regulated in activated microglia during CNS autoimmunity and positively correlates with the clinical severity of EAE. In addition, microglial chemotaxis is mediated by CXCR7 during CNS autoimmunity, signaling through extracellular signal-regulated kinase (ERK)1/2 activation, whereas p38 mitogen-activated protein kinase (MAPK) and (c-Jun N-terminal kinase) JNK are not involved. Most importantly, CXCR7 neutralizing treatment ameliorates the clinical severity of EAE along with ERK1/2 phosphorylation reduction. Collectively, our data demonstrate that CXCR7 suppression modulates microglial chemotaxis to ameliorate EAE.

  12. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.

    PubMed

    Nam, Min-Kyung; Shin, Hyun-Ah; Han, Ji-Hye; Park, Dae-Wook; Rhim, Hyangshuk

    2013-04-10

    As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease.

  13. Alginate-Derived Oligosaccharide Inhibits Neuroinflammation and Promotes Microglial Phagocytosis of β-Amyloid.

    PubMed

    Zhou, Rui; Shi, Xu-Yang; Bi, De-Cheng; Fang, Wei-Shan; Wei, Gao-Bin; Xu, Xu

    2015-09-16

    Alginate from marine brown algae has been widely applied in biotechnology. In this work, the effects of alginate-derived oligosaccharide (AdO) on lipopolysaccharide (LPS)/β-amyloid (Aβ)-induced neuroinflammation and microglial phagocytosis of Aβ were studied. We found that pretreatment of BV2 microglia with AdO prior to LPS/Aβ stimulation led to a significant inhibition of production of nitric oxide (NO) and prostaglandin E₂ (PGE₂), expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and secretion of proinflammatory cytokines. We further demonstrated that AdO remarkably attenuated the LPS-activated overexpression of toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB in BV2 cells. In addition to the impressive inhibitory effect on neuroinflammation, we also found that AdO promoted the phagocytosis of Aβ through its interaction with TLR4 in microglia. Our results suggested that AdO exerted the inhibitory effect on neuroinflammation and the promotion effect on microglial phagocytosis, indicating its potential as a nutraceutical or therapeutic agent for neurodegenerative diseases, particularly Alzheimer's disease (AD).

  14. Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo.

    PubMed

    Kozai, Takashi D Y; Jaquins-Gerstl, Andrea S; Vazquez, Alberto L; Michael, Adrian C; Cui, X Tracy

    2016-05-01

    Intracortical neural probes enable researchers to measure electrical and chemical signals in the brain. However, penetration injury from probe insertion into living brain tissue leads to an inflammatory tissue response. In turn, microglia are activated, which leads to encapsulation of the probe and release of pro-inflammatory cytokines. This inflammatory tissue response alters the electrical and chemical microenvironment surrounding the implanted probe, which may in turn interfere with signal acquisition. Dexamethasone (Dex), a potent anti-inflammatory steroid, can be used to prevent and diminish tissue disruptions caused by probe implantation. Herein, we report retrodialysis administration of dexamethasone while using in vivo two-photon microscopy to observe real-time microglial reaction to the implanted probe. Microdialysis probes under artificial cerebrospinal fluid (aCSF) perfusion with or without Dex were implanted into the cortex of transgenic mice that express GFP in microglia under the CX3CR1 promoter and imaged for 6 h. Acute morphological changes in microglia were evident around the microdialysis probe. The radius of microglia activation was 177.1 μm with aCSF control compared to 93.0 μm with Dex perfusion. T-stage morphology and microglia directionality indices were also used to quantify the microglial response to implanted probes as a function of distance. Dexamethasone had a profound effect on the microglia morphology and reduced the acute activation of these cells. PMID:26923363

  15. Microglial activation of p38 contributes to scorpion envenomation-induced hyperalgesia.

    PubMed

    Niu, Qing-Shan; Jiang, Feng; Hua, Li-Ming; Fu, Jin; Jiao, Yun-Lu; Ji, Yong-Hua; Ding, Gang

    2013-10-25

    Intraplantar (i.pl.) injection of BmK I, a receptor site 3-specific modulator of voltage-gated sodium channels (VGSCs) from the venom of scorpion Buthus martensi Karsch (BmK), was shown to induce long-lasting and spontaneous nociceptive responses as demonstrated through experiments utilizing primary thermal and mirror-imaged mechanical hypersensitivity with different time course of development in rats. In this study, microglia was activated on both sides of L4-L5 spinal cord by i.pl. injection of BmK I. Meanwhile, the activation of p38/MAPK in L4-L5 spinal cord was found to be co-expressed with OX-42, the cell marker of microglia. The unilateral thermal and bilateral mechanical pain hypersensitivity of rat induced by BmK I was suppressed in a dose-dependent manner following pretreatment with SB203580 (a specific inhibitor of p-p38). Interestingly, microglia activity was also reduced in the presence of SB203580, which suggests that BmK I-induced microglial activation is mediated by p38/MAPK pathway. Combined with previously published literature, the results of this study demonstrate that p38-dependent microglial activation plays a role in scorpion envenomation-induced pain-related behaviors. PMID:24064352

  16. Insulin-Like Growth Factor-1 Abrogates Microglial Oxidative Stress and TNF-α Responses to Spreading Depression

    PubMed Central

    Grinberg, Yelena Y.; Dibbern, Megan E.; Levasseur, Victoria A.; Kraig, Richard P.

    2013-01-01

    Spreading depression (SD), the most likely cause of migraine aura and perhaps migraine, occurs with increased oxidative stress (OS). SD increases reactive oxygen species (ROS), and ROS, in turn, can signal to increase neuronal excitability, which includes increased SD susceptibility (SDS). SD also elevates tumor necrosis factor-α (TNF-α), which increases neuronal excitability. Accordingly, we probed for the cellular origin of OS from SD and its relationship to TNF-α, which might promote SD, using rat hippocampal slice cultures. We observed significantly increased OS from SD in astrocytes and microglia but not in neurons or oligodendrocytes. Since insulin-like growth factor-1 (IGF-1) mitigates OS from SD, we determined the cell types responsible for this effect. We found that IGF-1 significantly decreased microglial but not astrocytic OS from SD. We also show that IGF-1 abrogated the SD-induced TNF-α increase. Furthermore, TNF-α application increased microglial but not astrocytic OS, an effect abrogated by IGF-1. Next, we showed that SD increased SDS, and does so via TNF-α. This work suggests that microglia promote SD via increased and interrelated ROS and TNF-α signaling. Thus, IGF-1 mitigation of microglial ROS and TNF-α responses may be targets for novel therapeutics development to prevent SD, and perhaps migraine. PMID:23586526

  17. Microglial voltage-gated sodium channels modulate cellular response in Alzheimer's disease--a new perspective on an old problem.

    PubMed

    Cătălin, Bogdan; Mitran, Smaranda; Ciorbagiu, Mihai; Osiac, Eugen; Bălşeanu, Tudor Adrian; Mogoantă, LaurenŢiu; Dinescu, Sorin Nicolae; Albu, Carmen Valeria; Mirea, Cecil Sorin; Vîlcea, Ionică Daniel; Iancău, Maria; Sfredel, Veronica

    2015-01-01

    Alzheimer's disease (AD) determines gradual loss of cognition and memory function, eventually leading to clinical manifest dementia. The pathogenic mechanisms of AD remain elusive and treatment options unsatisfactory, targeting only symptoms like memory loss, behavior changes, sleep disorders and seizures. These therapies are not stopping the disease's progression, at their best they can only delay it. Accumulating evidence suggests that AD is associated with a microglial dysfunction. Microglia are resident immune cells that provide continuous surveillance within the brain. When excessively activated, microglial response can also have detrimental effects via the exacerbation of inflammatory processes and release of neurotoxic substances. Recently, it was recognized that microglia express voltage-gated ion channels, in particularly voltage-gated sodium channels (VGSC). Pharmacological block of VGSC has been attempted symptomatically in AD to control the epileptic features often associated with AD, as well as to relieve detrimental behavioral and psychological symptoms of dementia. The success of VGSC treatment in AD was unexpectedly variable, ranging from very beneficial to plain detrimental. This variability could not be satisfactorily explained solely by the neuronal effects. This article will try to discuss possible implication of microglial VGSC dysfunction in AD according to available data, own personal experience of the authors and propose a new way to investigate its possible implications. PMID:25826483

  18. The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function.

    PubMed

    Marsh, Samuel E; Abud, Edsel M; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T; Davtyan, Hayk; Fote, Gianna M; Lau, Lydia; Weinger, Jason G; Lane, Thomas E; Inlay, Matthew A; Poon, Wayne W; Blurton-Jones, Mathew

    2016-03-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer's disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting "Rag-5xfAD" mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive-innate immunity cross talk and accelerated disease progression. PMID:26884167

  19. Cocaine-mediated microglial activation involves the ER stress-autophagy axis.

    PubMed

    Guo, Ming-Lei; Liao, Ke; Periyasamy, Palsamy; Yang, Lu; Cai, Yu; Callen, Shannon E; Buch, Shilpa

    2015-01-01

    Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases.

  20. Cocaine-mediated microglial activation involves the ER stress-autophagy axis.

    PubMed

    Guo, Ming-Lei; Liao, Ke; Periyasamy, Palsamy; Yang, Lu; Cai, Yu; Callen, Shannon E; Buch, Shilpa

    2015-01-01

    Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases. PMID:26043790

  1. The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function.

    PubMed

    Marsh, Samuel E; Abud, Edsel M; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T; Davtyan, Hayk; Fote, Gianna M; Lau, Lydia; Weinger, Jason G; Lane, Thomas E; Inlay, Matthew A; Poon, Wayne W; Blurton-Jones, Mathew

    2016-03-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer's disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting "Rag-5xfAD" mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive-innate immunity cross talk and accelerated disease progression.

  2. Cocaine-mediated microglial activation involves the ER stress-autophagy axis

    PubMed Central

    Guo, Ming-Lei; Liao, Ke; Periyasamy, Palsamy; Yang, Lu; Cai, Yu; Callen, Shannon E; Buch, Shilpa

    2015-01-01

    Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases. PMID:26043790

  3. The effect of propofol on astro- and microglial reactivity in the course of experimental intracerebral haemorrhage in rats.

    PubMed

    Karwacki, Zbigniew; Kowiański, Przemysław; Dziewiatowski, Jerzy; Domaradzka-Pytel, Beata; Ludkiewicz, Beata; Wójcik, Sławomir; Narkiewicz, Olgierd; Moryś, Janusz

    2006-01-01

    The glial cells play an important role in pathophysiology of the intracerebral haemorrhage (ICH). Thus the attempt at evaluating the possible influence of the propofol on the reactivity of astro- and microglial cells in the course of ICH was performed. 50 rats were divided into two groups depending on the applied anaesthesia. All animals were generally anaesthetized with fentanyl, dehydrobenzperidol and midazolam. No additional agents were given to the animals of the control group (group I). In the experimental group (group II), the animals received additionally intraperitoneally propofol in a dose of 50 mg/kg every thirty minutes. ICH was produced through infusion of the blood into the striatum. The astrocytic and microglial cells population was assessed on the 1, 3, 7, 14 and 21 days after producing a haematoma using antibodies anti-GFAP and OX42. The stereological analysis was applied to estimate the numerical density of immunoreactive cells and the distribution of their types. On the 14th and 21st days of observation the density of GFAP-immunoreactivity (ir) cells was significantly higher in group II than that in group I. There were no differences in percentage distribution of GFAP-ir astrocytes between group I and group II. On the 3rd, 14th and 21st days of observation the density of OX42-ir cells was higher in group II in comparison with group I. For the 7th, and 21st days of survival the percentage of the ameboid form of OX42-ir cells was significantly lower in group I than that in group II. The administration of propofol during anaesthesia in the animals with ICH has evoked an increase of the activation of the astro- and microglial cells.

  4. Th17 cells in human disease

    PubMed Central

    Tesmer, Laura A.; Lundy, Steven K.; Sarkar, Sujata; Fox, David A.

    2012-01-01

    Summary Our understanding of the role of T cells in human disease is undergoing revision as a result of the discovery of T-helper 17 (Th17) cells, a unique CD4+ T-cell subset characterized by production of interleukin-17 (IL-17). IL-17 is a highly inflammatory cytokine with robust effects on stromal cells in many tissues. Recent data in humans and mice suggest that Th17 cells play an important role in the pathogenesis of a diverse group of immune-mediated diseases, including psoriasis, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and asthma. Initial reports also propose a role for Th17 cells in tumorigenesis and transplant rejection. Important differences, as well as many similarities, are emerging when the biology of Th17 cells in the mouse is compared with corresponding phenomena in humans. As our understanding of human Th17 biology grows, the mechanisms underlying many diseases are becoming more apparent, resulting in a new appreciation for both previously known and more recently discovered cytokines, chemokines, and feedback mechanisms. Given the strong association between excessive Th17 activity and human disease, new therapeutic approaches targeting Th17 cells are highly promising, but the potential safety of such treatments may be limited by the role of these cells in normal host defenses against infection. PMID:18613831

  5. Human genome project and sickle cell disease.

    PubMed

    Norman, Brenda J; Miller, Sheila D

    2011-01-01

    Sickle cell disease is one of the most common genetic blood disorders in the United States that affects 1 in every 375 African Americans. Sickle cell disease is an inherited condition caused by abnormal hemoglobin in the red blood cells. The Human Genome Project has provided valuable insight and extensive research advances in the understanding of the human genome and sickle cell disease. Significant progress in genetic knowledge has led to an increase in the ability for researchers to map and sequence genes for diagnosis, treatment, and prevention of sickle cell disease and other chronic illnesses. This article explores some of the recent knowledge and advances about sickle cell disease and the Human Genome Project.

  6. Vascular Potential of Human Pluripotent Stem Cells

    PubMed Central

    Iacobas, Ionela; Vats, Archana; Hirschi, Karen K.

    2010-01-01

    Cardiovascular disease is the number one cause of death and disability in the US. Understanding the biological activity of stem and progenitor cells, and their ability to contribute to the repair, regeneration and remodeling of the heart and blood vessels affected by pathologic processes is an essential part of the paradigm in enabling us to achieve a reduction in related deaths. Both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are promising sources of cells for clinical cardiovascular therapies. Additional in vitro studies are needed, however, to understand their relative phenotypes and molecular regulation toward cardiovascular cell fates. Further studies in translational animal models are also needed to gain insights into the potential and function of both human ES- and iPS-derived cardiovascular cells, and enable translation from experimental and pre-clinical studies to human trials. PMID:20453170

  7. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  8. Toxicity of diuron in human cancer cells.

    PubMed

    Huovinen, Marjo; Loikkanen, Jarkko; Naarala, Jonne; Vähäkangas, Kirsi

    2015-10-01

    Diuron is a substituted phenylurea used as a herbicide to control broadleaf and grass weeds and as a biocidal antifouling agent. Diuron is carcinogenic in rat urinary bladder and toxic to the reproductive system of oysters, sea urchins and lizards. The few studies carried out in human cells do not include the genotoxicity of diuron. We have investigated the toxicity of diuron in human breast adenocarcinoma (MCF-7) and human placental choriocarcinoma (BeWo) cells. The production of reactive oxygen species (ROS) was statistically significantly increased in both cell lines but only at the highest 200 μM concentration. Diuron clearly reduced the viability of BeWo, but not MCF-7 cells. The relative cell number was decreased in both cell lines indicative of inhibition of cell proliferation. In the Comet assay, diuron increased DNA fragmentation in MCF-7 but not in BeWo cells. The expressions of p53 protein, a marker for cell stress, and p21 protein, a transcriptional target of p53, were increased, but only in MCF-7 cells. In conclusion, our results suggest that diuron is cytotoxic and potentially genotoxic in a tissue-specific manner and that ROS play a role in its toxicity. Thus, exposure to diuron may exert harmful effects on fetal development and damage human health. PMID:26086120

  9. Inhibition of microglial activity alters spinal wide dynamic range neuron discharge and reduces microglial Toll-like receptor 4 expression in neuropathic rats.

    PubMed

    Nazemi, Samad; Manaheji, Homa; Noorbakhsh, Syyed Mohammad; Zaringhalam, Jalal; Sadeghi, Mehdi; Mohammad-Zadeh, Mohammad; Haghparast, Abbas

    2015-07-01

    It is believed that neuropathic pain results from aberrant neuronal discharges although some evidence suggests that the activation of glia cells contributes to pain after an injury to the nervous system. This study aimed to evaluate the role of microglial activation on the hyper-responsiveness of wide dynamic range neurons (WDR) and Toll-like receptor 4 (TLR4) expressions in a chronic constriction injury (CCI) model of neuropathic pain in rats. Adult male Wistar rats (230 ± 30 g) underwent surgery for induction of CCI neuropathy. Six days after surgery, administration of minocycline (10, 20, and 40 mg/kg, i.p.) was initiated and continued until day 14. After administration of the last dose of minocycline or saline, a behavioral test was conducted, then animals were sacrificed and lumbar segments of the spinal cord were collected for Western blot analysis of TLR4 expression. The electrophysiological properties of WDR neurons were investigated by single unit recordings in separate groups. The findings showed that after CCI, in parallel with thermal hyperalgesia, the expression of TLR4 in the spinal cord and the evoked response of the WDR neurons to electrical, mechanical, and thermal stimulation significantly increased. Post-injury administration of minocycline effectively decreased thermal hyperalgesia, TLR4 expression, and hyper-responsiveness of WDR neurons in CCI rats. The results of this study indicate that post-injury, repeated administration of minocycline attenuated neuropathic pain by suppressing microglia activation and reducing WDR neuron hyper-responsiveness. This study confirms that post-injury modulation of microglial activity is a new strategy for treating neuropathic pain.

  10. The Human Natural Killer Cell Immune Synapse

    NASA Astrophysics Data System (ADS)

    Davis, Daniel M.; Chiu, Isaac; Fassett, Marlys; Cohen, George B.; Mandelboim, Ofer; Strominger, Jack L.

    1999-12-01

    Inhibitory killer Ig-like receptors (KIR) at the surface of natural killer (NK) cells induced clustering of HLA-C at the contacting surface of target cells. In this manner, inhibitory immune synapses were formed as human NK cells surveyed target cells. At target/NK cell synapses, HLA-C/KIR distributed into rings around central patches of intercellular adhesion molecule-1/lymphocyte function-associated antigen-1, the opposite orientation to mature murine T cell-activating synapses. This organization of protein was stable for at least 20 min. Cells could support multiple synapses simultaneously, and clusters of HLA-C moved as NK cells crawled over target cells. Clustering required a divalent metal cation, explaining how metal chelators inhibit KIR function. Surprisingly, however, formation of inhibitory synapses was unaffected by ATP depletion and the cytoskeletal inhibitors, colchicine and cytochalsins B and D. Clearly, supramolecular organization within plasma membranes is critical for NK cell immunosurveillance.

  11. Microglial phospholipase D4 deficiency influences myelination during brain development.

    PubMed

    Chiba, Terumasa; Otani, Yoshinori; Yamaguchi, Yoshihide; Ishibashi, Tomoko; Hayashi, Akiko; Tanaka, Kenji F; Yamazaki, Maya; Sakimura, Kenji; Baba, Hiroko

    2016-01-01

    Phospholipase D4 (PLD4) is expressed in activated microglia that transiently appear in white matter during postnatal brain development. Previous knockdown experiments using cultured microglia showed PLD4 involvement in phagocytosis and proliferation. To elucidate the role of PLD4 in vivo, PLD4-deficient mice were generated and the cerebella were examined at postnatal day 5 (P5) and P7, when PLD4 expression is highest in microglia. Wild type microglia showed strong immunoreactivity for microglial marker CD68 at P5, whereas CD68 signals were weak in PLD4-deficient microglia, suggesting that loss of PLD4 affects microglial activation. At P5 and P7, immunostaining for anti-myelin basic protein (MBP) antibody indicated a mild but significant delay in myelination in PLD4-deficient cerebellum. Similar change was also observed in the corpus callosum at P7. However, this difference was not apparent at P10, suggesting that microglial PLD4-deficiency primarily influences the early myelination stage. Thus, microglia may have a transient role in myelination via a PLD4-related mechanism during development. PMID:27477458

  12. Microglial phospholipase D4 deficiency influences myelination during brain development.

    PubMed

    Chiba, Terumasa; Otani, Yoshinori; Yamaguchi, Yoshihide; Ishibashi, Tomoko; Hayashi, Akiko; Tanaka, Kenji F; Yamazaki, Maya; Sakimura, Kenji; Baba, Hiroko

    2016-01-01

    Phospholipase D4 (PLD4) is expressed in activated microglia that transiently appear in white matter during postnatal brain development. Previous knockdown experiments using cultured microglia showed PLD4 involvement in phagocytosis and proliferation. To elucidate the role of PLD4 in vivo, PLD4-deficient mice were generated and the cerebella were examined at postnatal day 5 (P5) and P7, when PLD4 expression is highest in microglia. Wild type microglia showed strong immunoreactivity for microglial marker CD68 at P5, whereas CD68 signals were weak in PLD4-deficient microglia, suggesting that loss of PLD4 affects microglial activation. At P5 and P7, immunostaining for anti-myelin basic protein (MBP) antibody indicated a mild but significant delay in myelination in PLD4-deficient cerebellum. Similar change was also observed in the corpus callosum at P7. However, this difference was not apparent at P10, suggesting that microglial PLD4-deficiency primarily influences the early myelination stage. Thus, microglia may have a transient role in myelination via a PLD4-related mechanism during development.

  13. Satellite cells in human skeletal muscle plasticity

    PubMed Central

    Snijders, Tim; Nederveen, Joshua P.; McKay, Bryon R.; Joanisse, Sophie; Verdijk, Lex B.; van Loon, Luc J. C.; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models. PMID:26557092

  14. Human progenitor cells for bone engineering applications.

    PubMed

    de Peppo, G M; Thomsen, P; Karlsson, C; Strehl, R; Lindahl, A; Hyllner, J

    2013-06-01

    In this report, the authors review the human skeleton and the increasing burden of bone deficiencies, the limitations encountered with the current treatments and the opportunities provided by the emerging field of cell-based bone engineering. Special emphasis is placed on different sources of human progenitor cells, as well as their pros and cons in relation to their utilization for the large-scale construction of functional bone-engineered substitutes for clinical applications. It is concluded that, human pluripotent stem cells represent a valuable source for the derivation of progenitor cells, which combine the advantages of both embryonic and adult stem cells, and indeed display high potential for the construction of functional substitutes for bone replacement therapies.

  15. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    PubMed

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-01-01

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. PMID:26840224

  16. Human-Mouse Chimerism Validates Human Stem Cell Pluripotency.

    PubMed

    Mascetti, Victoria L; Pedersen, Roger A

    2016-01-01

    Pluripotent stem cells are defined by their capacity to differentiate into all three tissue layers that comprise the body. Chimera formation, generated by stem cell transplantation to the embryo, is a stringent assessment of stem cell pluripotency. However, the ability of human pluripotent stem cells (hPSCs) to form embryonic chimeras remains in question. Here we show using a stage-matching approach that human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) have the capacity to participate in normal mouse development when transplanted into gastrula-stage embryos, providing in vivo functional validation of hPSC pluripotency. hiPSCs and hESCs form interspecies chimeras with high efficiency, colonize the embryo in a manner predicted from classical developmental fate mapping, and differentiate into each of the three primary tissue layers. This faithful recapitulation of tissue-specific fate post-transplantation underscores the functional potential of hPSCs and provides evidence that human-mouse interspecies developmental competency can occur.

  17. Studies on Lipolysis in Human Adipose Cells *

    PubMed Central

    Galton, David J.; Bray, George A.

    1967-01-01

    Epinephrine stimulated lipolysis and the uptake of oxygen by subcutaneous adipose cells of man. When glucose-14C was present in the medium, its utilization was not increased by epinephrine, although lipolysis was accelerated. Insulin did not reduce the production of fatty acids that had been stimulated by epinephrine. The combination of human growth hormone and cortisol stimulated the production of fatty acids by isolated human adipose cells to a lesser extent than epinephrine. When human growth hormone or cortisol was used singly, or when bovine growth hormone was added in combination with cortisol, no effect on fatty acid production was observed. Furthermore, an acetone-dried preparation of human pituitary glands, which was shown to stimulate lipolysis in rat adipose cells, had no effect on fatty acid formation in human adipose cells. This suggested that the human pituitary gland contained no more potent lipolytic agents than growth hormone and was supported by the lack of response of human adipose cells to purified corticotropin. PMID:6021210

  18. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  19. Mitochondria in human pluripotent stem cell apoptosis.

    PubMed

    TeSlaa, Tara; Setoguchi, Kiyoko; Teitell, Michael A

    2016-04-01

    Human pluripotent stem cells (hPSCs) have great potential in regenerative medicine because they can differentiate into any cell type in the body. Genome integrity is vital for human development and for high fidelity passage of genetic information across generations through the germ line. To ensure genome stability, hPSCs maintain a lower rate of mutation than somatic cells and undergo rapid apoptosis in response to DNA damage and additional cell stresses. Furthermore, cellular metabolism and the cell cycle are also differentially regulated between cells in pluripotent and differentiated states and can aid in protecting hPSCs against DNA damage and damaged cell propagation. Despite these safeguards, clinical use of hPSC derivatives could be compromised by tumorigenic potential and possible malignant transformation from failed to differentiate cells. Since hPSCs and mature cells differentially respond to cell stress, it may be possible to specifically target undifferentiated cells for rapid apoptosis in mixed cell populations to enable safer use of hPSC-differentiated cells in patients.

  20. Mitochondria in human pluripotent stem cell apoptosis.

    PubMed

    TeSlaa, Tara; Setoguchi, Kiyoko; Teitell, Michael A

    2016-04-01

    Human pluripotent stem cells (hPSCs) have great potential in regenerative medicine because they can differentiate into any cell type in the body. Genome integrity is vital for human development and for high fidelity passage of genetic information across generations through the germ line. To ensure genome stability, hPSCs maintain a lower rate of mutation than somatic cells and undergo rapid apoptosis in response to DNA damage and additional cell stresses. Furthermore, cellular metabolism and the cell cycle are also differentially regulated between cells in pluripotent and differentiated states and can aid in protecting hPSCs against DNA damage and damaged cell propagation. Despite these safeguards, clinical use of hPSC derivatives could be compromised by tumorigenic potential and possible malignant transformation from failed to differentiate cells. Since hPSCs and mature cells differentially respond to cell stress, it may be possible to specifically target undifferentiated cells for rapid apoptosis in mixed cell populations to enable safer use of hPSC-differentiated cells in patients. PMID:26828436

  1. Paracrine effects of haematopoietic cells on human mesenchymal stem cells

    PubMed Central

    Zhou, Shuanhu

    2015-01-01

    Stem cell function decline during ageing can involve both cell intrinsic and extrinsic mechanisms. Bone and blood formation are intertwined in bone marrow, therefore haematopoietic cells and bone cells could be extrinsic factors for each other. In this study, we assessed the paracrine effects of extrinsic factors from haematopoietic cells on human mesenchymal stem cells (MSCs). Our data showed that haematopoietic cells stimulate proliferation, osteoblast differentiation and inhibit senescence of MSCs; TNF-α, PDGF-β, Wnt1, 4, 6, 7a and 10a, sFRP-3 and sFRP-5 are dominantly expressed in haematopoietic cells; the age-related increase of TNF-α in haematopoietic cells may perform as a negative factor in the interactions of haematopoietic cells on MSCs via TNF-α receptors and then activating NF-κB signaling or Wnt/β-catenin signaling to induce senescence and reduce osteoblast differentiation in MSCs. In conclusion, our data demonstrated that there are paracrine interactions of haematopoietic cells on human MSCs; immunosenescence may be one of the extrinsic mechanisms by which skeletal stem cell function decline during human skeletal ageing. PMID:26030407

  2. Human Stem Cells for Craniomaxillofacial Reconstruction

    PubMed Central

    Kirkpatrick, William Niall Alexander; Cameron, Malcolm Gregor

    2014-01-01

    Human stem cell research represents an exceptional opportunity for regenerative medicine and the surgical reconstruction of the craniomaxillofacial complex. The correct architecture and function of the vastly diverse tissues of this important anatomical region are critical for life supportive processes, the delivery of senses, social interaction, and aesthetics. Craniomaxillofacial tissue loss is commonly associated with inflammatory responses of the surrounding tissue, significant scarring, disfigurement, and psychological sequelae as an inevitable consequence. The in vitro production of fully functional cells for skin, muscle, cartilage, bone, and neurovascular tissue formation from human stem cells, may one day provide novel materials for the reconstructive surgeon operating on patients with both hard and soft tissue deficit due to cancer, congenital disease, or trauma. However, the clinical translation of human stem cell technology, including the application of human pluripotent stem cells (hPSCs) in novel regenerative therapies, faces several hurdles that must be solved to permit safe and effective use in patients. The basic biology of hPSCs remains to be fully elucidated and concerns of tumorigenicity need to be addressed, prior to the development of cell transplantation treatments. Furthermore, functional comparison of in vitro generated tissue to their in vivo counterparts will be necessary for confirmation of maturity and suitability for application in reconstructive surgery. Here, we provide an overview of human stem cells in disease modeling, drug screening, and therapeutics, while also discussing the application of regenerative medicine for craniomaxillofacial tissue deficit and surgical reconstruction. PMID:24564584

  3. Engineering human cells and tissues through pluripotent stem cells.

    PubMed

    Jones, Jeffrey R; Zhang, Su-Chun

    2016-08-01

    The utility of human pluripotent stem cells (hPSCs) depends on their ability to produce functional cells and tissues of the body. Two strategies have been developed: directed differentiation of enriched populations of cells that match a regional and functional profile and spontaneous generation of three-dimensional organoids that resemble tissues in the body. Genomic editing of hPSCs and their differentiated cells broadens the use of the hPSC paradigm in studying human cellular function and disease as well as developing therapeutics.

  4. HLA Engineering of Human Pluripotent Stem Cells

    PubMed Central

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-01-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I–negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8+ T cell responses were reduced in class I–negative cells that had undergone differentiation in embryoid bodies. These B2M−/− ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines. PMID:23629003

  5. Automated adherent human cell culture (mesenchymal stem cells).

    PubMed

    Thomas, Robert; Ratcliffe, Elizabeth

    2012-01-01

    Human cell culture processes developed at research laboratory scale need to be translated to large-scale production processes to achieve commercial application to a large market. To allow this transition of scale with consistent process performance and control of costs, it will be necessary to reduce manual processing and increase automation. There are a number of commercially available platforms that will reduce manual process intervention and improve process control for different culture formats. However, in many human cell-based applications, there is currently a need to remain close to the development format, usually adherent culture on cell culture plastic or matrix-coated wells or flasks due to deterioration of cell quality in other environments, such as suspension. This chapter presents an example method for adherent automated human stem cell culture using a specific automated flask handling platform, the CompacT SelecT.

  6. Interaction of Staphylococci with Human B cells

    PubMed Central

    Nygaard, Tyler K.; Kobayashi, Scott D.; Freedman, Brett; Porter, Adeline R.; Voyich, Jovanka M.; Otto, Michael; Schneewind, Olaf; DeLeo, Frank R.

    2016-01-01

    Staphylococcus aureus is a leading cause of human infections worldwide. The pathogen produces numerous molecules that can interfere with recognition and binding by host innate immune cells, an initial step required for the ingestion and subsequent destruction of microbes by phagocytes. To better understand the interaction of this pathogen with human immune cells, we compared the association of S. aureus and S. epidermidis with leukocytes in human blood. We found that a significantly greater proportion of B cells associated with S. epidermidis relative to S. aureus. Complement components and complement receptors were important for the binding of B cells with S. epidermidis. Experiments using staphylococci inactivated by ultraviolet radiation and S. aureus isogenic deletion mutants indicated that S. aureus secretes molecules regulated by the SaeR/S two-component system that interfere with the ability of human B cells to bind this bacterium. We hypothesize that the relative inability of B cells to bind S. aureus contributes to the microbe’s success as a human pathogen. PMID:27711145

  7. Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans.

    PubMed

    Itani, Hana A; McMaster, William G; Saleh, Mohamed A; Nazarewicz, Rafal R; Mikolajczyk, Tomasz P; Kaszuba, Anna M; Konior, Anna; Prejbisz, Aleksander; Januszewicz, Andrzej; Norlander, Allison E; Chen, Wei; Bonami, Rachel H; Marshall, Andrew F; Poffenberger, Greg; Weyand, Cornelia M; Madhur, Meena S; Moore, Daniel J; Harrison, David G; Guzik, Tomasz J

    2016-07-01

    Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45(+)) and T lymphocytes (CD3(+) and CD4(+)) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3(+)/CD45RO(+)) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4(+) T cells and both CD4(+) and CD8(+) T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II.

  8. Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans.

    PubMed

    Itani, Hana A; McMaster, William G; Saleh, Mohamed A; Nazarewicz, Rafal R; Mikolajczyk, Tomasz P; Kaszuba, Anna M; Konior, Anna; Prejbisz, Aleksander; Januszewicz, Andrzej; Norlander, Allison E; Chen, Wei; Bonami, Rachel H; Marshall, Andrew F; Poffenberger, Greg; Weyand, Cornelia M; Madhur, Meena S; Moore, Daniel J; Harrison, David G; Guzik, Tomasz J

    2016-07-01

    Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45(+)) and T lymphocytes (CD3(+) and CD4(+)) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3(+)/CD45RO(+)) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4(+) T cells and both CD4(+) and CD8(+) T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II. PMID:27217403

  9. Tissue plasminogen activator induces microglial inflammation via a noncatalytic molecular mechanism involving activation of mitogen-activated protein kinases and Akt signaling pathways and AnnexinA2 and Galectin-1 receptors.

    PubMed

    Pineda, David; Ampurdanés, Coral; Medina, Manel G; Serratosa, Joan; Tusell, Josep Maria; Saura, Josep; Planas, Anna M; Navarro, Pilar

    2012-04-01

    Inflammatory responses mediated by glial cells play a critical role in many pathological situations related to neurodegeneration such as Alzheimer's disease. Tissue plasminogen activator (tPA) is a serine protease which best-known function is fibrinolysis, but it is also involved in many other physiological and pathological events as microglial activation. Here, we found that tPA is required for Aβ-mediated microglial inflammatory response and tumor necrosis factor-α release. We further investigated the molecular mechanism responsible for tPA-mediated microglial activation. We found that tPA induces a catalytic-independent rapid and sustained activation of extracellular signal-regulated kinase (ERK)1/2, Jun N-terminal kinase (JNK), Akt, and p38 signaling pathways. Inhibition of ERK1/2 and JNK resulted in a strong inhibition of microglial activation, whereas Akt inhibition led to increased inflammatory response, suggesting specific functions for each signaling pathway in the regulation of microglial activation. Furthermore, we demonstrated that AnnexinA2 and Galectin-1 receptors are involved in tPA signaling and inflammatory response in glial cells. This study provides new evidences supporting that tPA plays a cytokine-like role in glial activation by triggering receptor-mediated intracellular signaling circuits and opens new therapeutic strategies for the treatment of neurological disorders in which neuroinflammation plays a pathogenic role.

  10. Inhibition of microglial activation by elderberry extracts and its phenolic components

    PubMed Central

    Simonyi, Agnes; Chen, Zihong; Jiang, Jinghua; Zong, Yijia; Chuang, Dennis Y.; Gu, Zezong; Lu, Chi-Hua; Fritsche, Kevin L.; Greenlief, C. Michael; Rottinghaus, George E.; Thomas, Andrew L.; Lubahn, Dennis B.; Sun, Grace Y.

    2015-01-01

    Aims Elderberry (Sambucus spp.) is one of the oldest medicinal plants noted for its cardiovascular, anti-inflammatory, and immune-stimulatory properties. In this study, we investigated the anti-inflammatory and anti-oxidant effects of the American elderberry (Sambucus nigra subsp. canadensis) pomace as well as some of the anthocyanins (cyanidin chloride and cyanidin 3-O-glucoside) and flavonols (quercetin and rutin) in bv-2 mouse microglial cells. Main methods The bv-2 cells were pretreated with elderberry pomace (extracted with ethanol or ethyl acetate) or its anthocyanins and flavonols and stimulated by either lipopolysaccharide (LPS) or interferon-γ (IFNγ). Reactive oxygen species (ROS) and nitric oxide (NO) production (indicating oxidative stress and inflammatory response) were measured using the ROS detection reagent DCF-DA and the Griess reaction, respectively. Key findings Analysis of total monomeric anthocyanin (as cyanidin 3-O-glucoside equivalents) indicated five-fold higher amount in the freeze-dried ethanol extract as compared to that of the oven-dried extract; anthocyanin was not detected in the ethyl acetate extracts. Elderberry ethanol extracts (freeze-dried or oven-dried) showed higher anti-oxidant activities and better ability to inhibit LPS or IFNγ-induced NO production as compared with the ethyl acetate extracts. The phenolic compounds strongly inhibited LPS or IFNγ-induced ROS production, but except for quercetin, they were relatively poor in inhibiting NO production. Significance These results demonstrated difference in anti-oxidative and anti-inflammatory effects of elderberry extracts depending on solvents used. Results further identified quercetin as the most active component in suppressing oxidative stress and inflammatory responses on microglial cells. PMID:25744406

  11. HSP60 mediates the neuroprotective effects of curcumin by suppressing microglial activation

    PubMed Central

    Ding, Feijia; Li, Fan; Li, Yunhong; Hou, Xiaolin; Ma, Yi; Zhang, Nan; Ma, Jiao; Zhang, Rui; Lang, Bing; Wang, Hongyan; Wang, Yin

    2016-01-01

    Curcumin has anti-inflammatory and antioxidant properties and has been widely used to treat or prevent neurodegenerative diseases. However, the mechanisms underlying the neuroprotective effects of curcumin are not well known. In the present study, the effect of curcumin on lipopolysaccharide (LPS)-stimulated BV2 mouse microglia cells was investigated using enzyme-linked immunosorbent assays of the culture medium and western blotting of cell lysates. The results showed that curcumin significantly inhibited the LPS-induced expression and release of heat shock protein 60 (HSP60) in the BV2 cells. The level of heat shock factor (HSF)-1 was upregulated in LPS-activated BV2 microglia, indicating that the increased expression of HSP60 was driven by HSF-1 activation. However, the increased HSF-1 level was downregulated by curcumin. Extracellular HSP60 is a ligand of Toll-like receptor 4 (TLR-4), and the level of the latter was increased in the LPS-activated BV2 microglia and inhibited by curcumin. The activation of TLR-4 is known to be associated with the activation of myeloid differentiation primary response 88 (MyD88) and nuclear factor (NF)-κB, with the subsequent production of proinflammatory and neurotoxic factors. In the present study, curcumin demonstrated marked suppression of the LPS-induced expression of MyD88, NF-κB, caspase-3, inducible nitric oxide synthase, tumor necrosis factor-α, interleukin (IL)-1β and IL-6 in the microglia. These results indicate that curcumin may exert its neuroprotective and anti-inflammatory effects by inhibiting microglial activation through the HSP60/TLR-4/MyD88/NF-κB signaling wpathway. Therefore, curcumin may be useful for the treatment of neurodegenerative diseases that are associated with microglial activation. PMID:27446282

  12. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function.

    PubMed

    Bocarsly, Miriam E; Fasolino, Maria; Kane, Gary A; LaMarca, Elizabeth A; Kirschen, Gregory W; Karatsoreos, Ilia N; McEwen, Bruce S; Gould, Elizabeth

    2015-12-22

    Obesity is a major public health problem affecting overall physical and emotional well-being. Despite compelling data suggesting an association between obesity and cognitive dysfunction, this phenomenon has received relatively little attention. Neuroimaging studies in obese humans report reduced size of brain regions involved in cognition, but few studies have investigated the cellular processes underlying cognitive decline in obesity or the influence of obesity on cognition in the absence of obesity-related illnesses. Here, a rat model of diet-induced obesity was used to explore changes in brain regions important for cognition. Obese rats showed deficits on cognitive tasks requiring the prefrontal and perirhinal cortex. Cognitive deficits were accompanied by decreased dendritic spine density and synaptic marker expression in both brain regions. Microglial morphology was also changed in the prefrontal cortex. Detrimental changes in the prefrontal cortex and perirhinal cortex occurred before metabolic syndrome or diabetes, suggesting that these brain regions may be particularly vulnerable to early stage obesity.

  13. Co-transplantation of human hematopoietic stem cells and human breast cancer cells in NSG mice

    PubMed Central

    Wege, Anja K; Schmidt, Marcus; Ueberham, Elke; Ponnath, Marvin; Ortmann, Olaf; Brockhoff, Gero; Lehmann, Jörg

    2014-01-01

    Humanized tumor mice (HTM) were generated by the co-transplantation of human hematopoietic stem cells and human breast cancer cells overexpressing HER2 into neonatal NOD-scid IL2Rγnull (NSG) mice. These mice are characterized by the development of a human immune system in combination with human breast cancer growth. Due to concurrent transplantation into newborn mice, transfer of MHC-mismatched tumor cells resulted in solid coexistence and immune cell activation (CD4+ T cells, natural killer cells, and myeloid cells), but without evidence for rejection. Histological staining of the spleen of HTM revealed co-localization of human antigen-presenting cells together with human T and B cells allowing MHC-dependent interaction, and thereby the generation of T cell-dependent antibody production. Here, we investigated the capability of these mice to generate human tumor-specific antibodies and correlated immunoglobulin titers with tumor outgrowth. We found detectable IgM and also IgG amounts in the serum of HTM, which apparently controlled tumor development when IgG serum concentrations were above 10 µg/ml. Western blot analyses revealed that the tumor-specific antibodies generated in HTM did not recognize HER2/neu antigens, but different, possibly relevant antigens for breast cancer therapy. In conclusion, HTM offer a novel approach to generate complete human monoclonal antibodies that do not require further genetic manipulation (e. g., humanization) for a potential application in humans. In addition, efficacy and safety of the generated antibodies can be tested in the same mouse model under human-like conditions. This might be of particular interest for cancer subtypes with no currently available antibody therapy. PMID:24870377

  14. Identification of cells initiating human melanomas

    PubMed Central

    Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.

    2012-01-01

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660

  15. The human intestinal B-cell response.

    PubMed

    Spencer, J; Sollid, L M

    2016-09-01

    The intestinal immune system is chronically challenged by a huge plethora of antigens derived from the lumen. B-cell responses in organized gut-associated lymphoid tissues and regional lymph nodes that are driven chronically by gut antigens generate the largest population of antibody-producing cells in the body: the gut lamina propria plasma cells. Although animal studies have provided insights into mechanisms that underpin this dynamic process, some very fundamental differences in this system appear to exist between species. Importantly, this prevents extrapolation from mice to humans to inform translational research questions. Therefore, in this review we will describe the structures and mechanisms involved in the propagation, dissemination, and regulation of this immense plasma cell population in man. Uniquely, we will seek our evidence exclusively from studies of human cells and tissues. PMID:27461177

  16. Cell mechanics and human disease states

    NASA Astrophysics Data System (ADS)

    Suresh, Subra

    2006-03-01

    This presentation will provide summary of our very recent studies exploring the effects of biochemical factors, influenced by foreign organisms or in vivo processes, on intracellular structural reorganization, single-cell mechanical response and motility of a population of cells in the context of two human diseases: malaria induced by Plasmodium falciparum merozoites that invade red blood cells, and gastrointestinal cancer metastasis involving epithelial cells. In both cases, particular attention will be devoted to systematic changes induced in specific molecular species in response to controlled alterations in disease state. The role of critical proteins in influencing the mechanical response of human red bloods during the intra-erythrocytic development of P. falciparum merozoites has also been assessed quantitatively using specific protein knock-out experiments by recourse to gene inactivation methods. Single-cell mechanical response characterization entails such tools as optical tweezers and mechanical plate stretchers whereas cell motility assays and cell-population biorheology characterization involves microfluidic channels. The experimental studies are accompanied by three-dimensional computational simulations at the continuum and mesoscopic scales of cell deformation. An outcome of such combined experimental and computational biophysical studies is the realization of how chemical factors influence single-cell mechanical response, cytoadherence, the biorheology of a large population of cells through microchannels representative of in vivo conditions, and the onset and progression of disease states.

  17. Gammaherpesvirus Infection of Human Neuronal Cells

    PubMed Central

    Jha, Hem Chandra; Mehta, Devan; Lu, Jie; El-Naccache, Darine; Shukla, Sanket K.; Kovacsics, Colleen; Kolson, Dennis

    2015-01-01

    ABSTRACT Gammaherpesviruses human herpesvirus 4 (HHV4) and HHV8 are two prominent members of the herpesvirus family associated with a number of human cancers. HHV4, also known as Epstein-Barr virus (EBV), a ubiquitous gammaherpesvirus prevalent in 90 to 95% of the human population, is clinically associated with various neurological diseases such as primary central nervous system lymphoma, multiple sclerosis, Alzheimer’s disease, cerebellar ataxia, and encephalitis. However, the possibility that EBV and Kaposi’s sarcoma-associated herpesvirus (KSHV) can directly infect neurons has been largely overlooked. This study has, for the first time, characterized EBV infection in neural cell backgrounds by using the Sh-Sy5y neuroblastoma cell line, teratocarcinoma Ntera2 neurons, and primary human fetal neurons. Furthermore, we also demonstrated KSHV infection of neural Sh-Sy5y cells. These neuronal cells were infected with green fluorescent protein-expressing recombinant EBV or KSHV. Microscopy, genetic analysis, immunofluorescence, and Western blot analyses for specific viral antigens supported and validated the infection of these cells by EBV and KSHV and showed that the infection was efficient and productive. Progeny virus produced from infected neuronal cells efficiently infected fresh neuronal cells, as well as peripheral blood mononuclear cells. Furthermore, acyclovir was effective at inhibiting the production of virus from neuronal cells similar to lymphoblastoid cell lines; this suggests active lytic replication in infected neurons in vitro. These studies represent a potentially new in vitro model of EBV- and KSHV-associated neuronal disease development and pathogenesis. PMID:26628726

  18. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex.

    PubMed

    Sipe, G O; Lowery, R L; Tremblay, M-È; Kelly, E A; Lamantia, C E; Majewska, A K

    2016-01-01

    Microglia are the resident immune cells of the brain. Increasingly, they are recognized as important mediators of normal neurophysiology, particularly during early development. Here we demonstrate that microglia are critical for ocular dominance plasticity. During the visual critical period, closure of one eye elicits changes in the structure and function of connections underlying binocular responses of neurons in the visual cortex. We find that microglia respond to monocular deprivation during the critical period, altering their morphology, motility and phagocytic behaviour as well as interactions with synapses. To explore the underlying mechanism, we focused on the P2Y12 purinergic receptor, which is selectively expressed in non-activated microglia and mediates process motility during early injury responses. We find that disrupting this receptor alters the microglial response to monocular deprivation and abrogates ocular dominance plasticity. These results suggest that microglia actively contribute to experience-dependent plasticity in the adolescent brain. PMID:26948129

  19. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex

    PubMed Central

    Sipe, G. O.; Lowery,, R. L.; Tremblay, M-È; Kelly, E. A.; Lamantia, C. E.; Majewska, A. K.

    2016-01-01

    Microglia are the resident immune cells of the brain. Increasingly, they are recognized as important mediators of normal neurophysiology, particularly during early development. Here we demonstrate that microglia are critical for ocular dominance plasticity. During the visual critical period, closure of one eye elicits changes in the structure and function of connections underlying binocular responses of neurons in the visual cortex. We find that microglia respond to monocular deprivation during the critical period, altering their morphology, motility and phagocytic behaviour as well as interactions with synapses. To explore the underlying mechanism, we focused on the P2Y12 purinergic receptor, which is selectively expressed in non-activated microglia and mediates process motility during early injury responses. We find that disrupting this receptor alters the microglial response to monocular deprivation and abrogates ocular dominance plasticity. These results suggest that microglia actively contribute to experience-dependent plasticity in the adolescent brain. PMID:26948129

  20. Loss of Interleukin Receptor Associated Kinase 4 Signaling Suppresses Amyloid Pathology and Alters Microglial Phenotype in a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Cameron, Brent; Tse, Wayne; Lamb, Raza; Li, Xiaoxia; Lamb, Bruce T.; Landreth, Gary E.

    2012-01-01

    Alzheimer’s disease (AD) typified the deposition of amyloid in the brain which elicits a robust microglial-mediated inflammatory response that is associated with disease exacerbation and accelerated progression. Microglia are the principal immune effector cells in the brain and interact with fibrillar forms of Aβ (fAβ) through a receptor complex that includes Toll-Like Receptors (TLR) 2/4/6 and their coreceptors. Interleukin receptor-associated kinases (IRAKs) are essential intracellular signaling molecules for transduction of TLR signals. Studies of mouse models of AD in which the individual TLRs are knocked out have produced conflicting results on roles of TLR signaling in amyloid homeostasis. Therefore, we disrupted a common downstream TLR signaling element, IRAK4. We report that microglial IRAK4 is necessary in vitro for fAβ to activate the canonical proinflammatory signaling pathways leading to activation of p38, JNK, and ERK MAP kinases and to generate reactive oxygen species. In vivo the loss of IRAK4 function results in decreased Aβ levels in a murine model of AD. This was associated with diminished microgliosis and astrogliosis in aged mice. Analysis of microglia isolated from the adult mouse brain revealed an altered pattern of gene expression associated with changes in microglial phenotype that were associated with expression of IRF transcription factors that govern microglial phenotype. Further, loss of IRAK4 function also promoted amyloid clearance mechanisms, including elevated expression of insulin degrading enzyme. Finally, blocking IRAK function restored olfactory behavior. These data demonstrate that IRAK4 activation acts normally to regulate microglial activation status and influence amyloid homeostasis in the brain. PMID:23100432

  1. Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats.

    PubMed

    Roh, Dae-Hyun; Seo, Min-Soo; Choi, Hoon-Seong; Park, Sang-Bum; Han, Ho-Jae; Beitz, Alvin J; Kang, Kyung-Sun; Lee, Jang-Hern

    2013-01-01

    Stem cell therapy is a potential treatment for spinal cord injury (SCI), and a variety of different stem cell types have been grafted into humans suffering from spinal cord trauma or into animal models of spinal injury. Although several studies have reported functional motor improvement after transplantation of stem cells into injured spinal cord, the benefit of these cells for treating SCI-induced neuropathic pain is not clear. In this study, we investigated the therapeutic effect of transplanting human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) or amniotic epithelial stem cells (hAESCs) on SCI-induced mechanical allodynia (MA) and thermal hyperalgesia (TH) in T13 spinal cord hemisected rats. Two weeks after SCI, hUCB-MSCs or hAESCs were transplanted around the spinal cord lesion site, and behavioral tests were performed to evaluate changes in SCI-induced MA and TH. Immunohistochemical and Western blot analyses were also performed to evaluate possible therapeutic effects on SCI-induced inflammation and the nociceptive-related phosphorylation of the NMDA NR1 receptor subunit. While transplantation of hUCB-MSCs showed a tendency to reduce MA, transplantation of hAESCs significantly reduced MA. Neither hUCB-MSC nor hAESC transplantation had any effect on SCI-induced TH. Transplantation of hAESCs also significantly reduced the SCI-induced increase in NMDA receptor NR1 subunit phosphorylation (pNR1) expression in the spinal cord. Both hUCB-MSCs and hAESCs reduced the SCI-induced increase in spinal cord expression of the microglial marker, F4/80, but not the increased expression of GFAP or iNOS. Taken together, these findings demonstrate that the transplantation of hAESCs into the injured spinal cord can suppress mechanical allodynia, and this effect seems to be closely associated with the modulation of spinal cord microglia activity and NR1 phosphorylation.

  2. Capsaicin induces immunogenic cell death in human osteosarcoma cells

    PubMed Central

    Jin, Tao; Wu, Hongyan; Wang, Yanlin; Peng, Hao

    2016-01-01

    Immunogenic cell death (ICD) is characterized by the early surface exposure of calreticulin (CRT). As a specific signaling molecule, CRT on the surface of apoptotic tumor cells mediates the recognition and phagocytosis of tumor cells by antigen presenting cells. To date, only a small quantity of anti-cancer chemicals have been found to induce ICD, therefore it is clinically important to identify novel chemicals that may induce ICD. The purpose of the present study is to explore the function of capsaicin in inducing ICD. In the current study, MTT assays were used to examine the growth inhibiting effects of MG-63 cells when they were treated with capsaicin or cisplatin. Mitochondrial membrane potential and western blot analysis were used to investigate capsaicin- and cisplatin-induced apoptosis. In addition, the effects of capsaicin and cisplatin were evaluated for their abilities in inducing calreticulin membrane translocation and mediating ICD in human osteosarcoma cells (MG-63). The results demonstrated that capsaicin and cisplatin can induce the apoptosis of MG-63 cells. However, only capsaicin induced a rapid translocation of CRT from the intracellular space to the cell surface. Treatment with capsaicin increased phagocytosis of MG-63 cells by dendritic cells (DCs), and these MG-63-loaded DCs could efficiently stimulate the secretion of IFN-γ by lymphocytes. These results identify capsaicin as an anti-cancer agent capable of inducing ICD in human osteosarcoma cells in vitro. PMID:27446273

  3. Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo.

    PubMed

    Kim, Hyo Geun; Moon, Minho; Choi, Jin Gyu; Park, Gunhyuk; Kim, Ae-Jung; Hur, Jinyoung; Lee, Kyung-Tae; Oh, Myung Sook

    2014-01-01

    Recent studies on Alzheimer's disease (AD) have focused on soluble oligomeric forms of amyloid-beta (Aβ oligomer, AβO) that are directly associated with AD-related pathologies, such as cognitive decline, neurodegeneration, and neuroinflammation. Donepezil is a well-known anti-dementia agent that increases acetylcholine levels through inhibition of acetylcholinesterase. However, a growing body of experimental and clinical studies indicates that donepezil may also provide neuroprotective and disease-modifying effects in AD. Additionally, donepezil has recently been demonstrated to have anti-inflammatory effects against lipopolysaccharides and tau pathology. However, it remains unknown whether donepezil has anti-inflammatory effects against AβO in cultured microglial cells and the brain in animals. Further, the effects of donepezil against AβO-mediated neuronal death, astrogliosis, and memory impairment have also not yet been investigated. Thus, in the present study, we examined the anti-inflammatory effect of donepezil against AβO and its neuroinflammatory mechanisms. Donepezil significantly attenuated the release of inflammatory mediators (prostaglandin E2, interleukin-1 beta, tumor necrosis factor-α, and nitric oxide) from microglia. Donepezil also decreased AβO-induced up-regulation of inducible nitric oxide synthase and cyclooxygenase-2 protein and phosphorylation of p38 mitogen-activated protein kinase as well as translocation of nuclear factor-kappa B. We next showed that donepezil suppresses activated microglia-mediated toxicity in primary hippocampal cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In intrahippocampal AβO-injected mice, donepezil significantly inhibited microgliosis and astrogliosis. Furthermore, behavioral tests revealed that donepezil (2 mg/kg/day, 5 days, p.o.) significantly ameliorated AβO-induced memory impairment. These results suggest that donepezil directly inhibits microglial activation

  4. Increased microglial catalase activity in multiple sclerosis grey matter.

    PubMed

    Gray, Elizabeth; Kemp, Kevin; Hares, Kelly; Redondo, Julianna; Rice, Claire; Scolding, Neil; Wilkins, Alastair

    2014-04-22

    Chronic demyelination, on-going inflammation, axonal loss and grey matter neuronal injury are likely pathological processes that contribute to disease progression in multiple sclerosis (MS). Although the precise contribution of each process and their aetiological substrates is not fully known, recent evidence has implicated oxidative damage as a major cause of tissue injury in MS. The degree of tissue injury caused by oxidative molecules, such as reactive oxygen species (ROS), is balanced by endogenous anti-oxidant enzymes which detoxify ROS. Understanding endogenous mechanisms which protect the brain against oxidative injury in MS is important, since enhancing anti-oxidant responses is a major therapeutic strategy for preventing irreversible tissue injury in the disease. Our aims were to determine expression and activity levels of the hydrogen peroxide-reducing enzyme catalase in MS grey matter (GM). In MS GM, a catalase enzyme activity was elevated compared to control GM. We measured catalase protein expression by immune dot-blotting and catalase mRNA by a real-time polymerase chain reaction (RT-PCR). Protein analysis studies showed a strong positive correlation between catalase and microglial marker IBA-1 in MS GM. In addition, calibration of catalase mRNA level with reference to the microglial-specific transcript AIF-1 revealed an increase in this transcript in MS. This was reflected by the extent of HLA-DR immunolabeling in MS GM which was significantly elevated compared to control GM. Collectively, these observations provide evidence that microglial catalase activity is elevated in MS grey matter and may be an important endogenous anti-oxidant defence mechanism in MS.

  5. Deciding on human embryonic stem cell research.

    PubMed

    Burgin, Eileen

    2009-03-01

    This paper examines the influences that congressional staff people viewed as important in shaping legislators' voting decisions on the human embryonic stem (ES) cell research bill in the 109th Congress, the first legislation vetoed by President George W. Bush. The analysis illuminates factors that impact congressional decision making on a salient issue with a strong moral component. Constituent concerns, ideology, and a desire to make good public policy all centrally affected members' choices; however, moral overtones permeated considerations relevant to the human ES cell research question. In addition, at least three influences that directly reflect or relate to members' moral claims - religious convictions, personal connections to potential beneficiaries of human ES cell research, and moral pressure from outside interests - were important also. The analysis draws on data gathered from interviews with congressional aides.

  6. 3 CFR - Guidelines for Human Stem Cell Research

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the...

  7. Induced pluripotency of human prostatic epithelial cells.

    PubMed

    Zhao, Hongjuan; Sun, Ning; Young, Sarah R; Nolley, Rosalie; Santos, Jennifer; Wu, Joseph C; Peehl, Donna M

    2013-01-01

    Induced pluripotent stem (iPS) cells are a valuable resource for discovery of epigenetic changes critical to cell type-specific differentiation. Although iPS cells have been generated from other terminally differentiated cells, the reprogramming of normal adult human basal prostatic epithelial (E-PZ) cells to a pluripotent state has not been reported. Here, we attempted to reprogram E-PZ cells by forced expression of Oct4, Sox2, c-Myc, and Klf4 using lentiviral vectors and obtained embryonic stem cell (ESC)-like colonies at a frequency of 0.01%. These E-PZ-iPS-like cells with normal karyotype gained expression of pluripotent genes typical of iPS cells (Tra-1-81, SSEA-3, Nanog, Sox2, and Oct4) and lost gene expression characteristic of basal prostatic epithelial cells (CK5, CK14, and p63). E-PZ-iPS-like cells demonstrated pluripotency by differentiating into ectodermal, mesodermal, and endodermal cells in vitro, although lack of teratoma formation in vivo and incomplete demethylation of pluripotency genes suggested only partial reprogramming. Importantly, E-PZ-iPS-like cells re-expressed basal epithelial cell markers (CD44, p63, MAO-A) in response to prostate-specific medium in spheroid culture. Androgen induced expression of androgen receptor (AR), and co-culture with rat urogenital sinus further induced expression of prostate-specific antigen (PSA), a hallmark of secretory cells, suggesting that E-PZ-iPS-like cells have the capacity to differentiate into prostatic basal and secretory epithelial cells. Finally, when injected into mice, E-PZ-iPS-like cells expressed basal epithelial cell markers including CD44 and p63. When co-injected with rat urogenital mesenchyme, E-PZ-iPS-like cells expressed AR and expression of p63 and CD44 was repressed. DNA methylation profiling identified epigenetic changes in key pathways and genes involved in prostatic differentiation as E-PZ-iPS-like cells converted to differentiated AR- and PSA-expressing cells. Our results suggest that

  8. Human adipose stem cells: current clinical applications.

    PubMed

    Gir, Phanette; Oni, Georgette; Brown, Spencer A; Mojallal, Ali; Rohrich, Rod J

    2012-06-01

    Adipose-derived stem cells are multipotent cells that can easily be extracted from adipose tissue, are capable of expansion in vitro, and have the capacity to differentiate into multiple cell lineages, which have the potential for use in regenerative medicine. However, several issues need to be studied to determine safe human use. For example, there are questions related to isolation and purification of adipose-derived stem cells, their effect on tumor growth, and the enforcement of U.S. Food and Drug Administration regulations. Numerous studies have been published, with the interest in the potential for regenerative medicine continually growing. Several clinical trials using human adipose stem cell therapy are currently being performed around the world, and there has been a rapid evolution and expansion of their number. The purpose of this article was to review the current published basic science evidence and ongoing clinical trials involving the use of adipose-derived stem cells in plastic surgery and in regenerative medicine in general. The results of the studies and clinical trials using adipose-derived stem cells reported in this review seem to be promising not only in plastic surgery but also in a wide variety of other specialties. Nevertheless, those reported showed disparity in the way adipose-derived stem cells were used. Further basic science experimental studies with standardized protocols and larger randomized trials need to be performed to ensure safety and efficacy of adipose-derived stem cells use in accordance with U.S. Food and Drug Administration guidelines.

  9. Antibacterial activity of human natural killer cells

    PubMed Central

    1989-01-01

    The in vitro effects of human NK cells on viability of Gram-negative and Gram-positive bacteria was investigated. PBLs depleted of glass- adherent cells showed a significant antibacterial activity that was increased as the concentration of NK cells became higher. Leu-11- enriched cells exhibited the most efficient bactericidal activity. Stimulation of NK cells with staphylococcal enterotoxin B for 16 h produced a significant increase in the antibacterial activity of all NK cells tested. The antibacterial activity of monocyte-depleted cells and Leu-11-enriched cells was also enhanced after culturing in vitro for 16- 24 h without exogenous cytokines. Dependence of the antibacterial activity on the presence of serum in the culture medium was not found. Ultrastructural studies revealed close contact between NK cell membranes and bacteria, no evidence of phagocytosis, and extracellular bacterial ghosts, after incubation at 37 degrees C. Supernatants from purified NK cells exhibited potent bactericidal activity with kinetics and target specificity similar to that of effector cells. These results document the potent antibacterial activity of purified NK cells and suggest an extracellular mechanism of killing. PMID:2642532

  10. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    PubMed

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  11. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    PubMed

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  12. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    PubMed Central

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  13. Glioma-secreted soluble factors stimulate microglial activation: The role of interleukin-1β and tumor necrosis factor-α.

    PubMed

    Hwang, Ji-Sun; Jung, Eun-Hye; Kwon, Mi-Youn; Han, Inn-Oc

    2016-09-15

    We aimed to elucidate the effect of soluble factors secreted by glioma on microglial activation. Conditioned medium (CM) from glioma cells, CRT-MG and C6, significantly induced nitric oxide (NO) production and stimulated the mRNA expression of inducible NO synthase (iNOS), interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha (TNF-α) and cyclooxygenase 2 (COX-2) in BV2 cells. Glioma CM stimulated p38 mitogen-activated protein kinase (MAPK) phosphorylation, and a p38 MAPK inhibitor, SB203580, suppressed CM-induced NO production in BV2 cells. In addition, CM stimulated nuclear factor-kappaB (NF-κB) DNA binding and transcriptional activity, which was repressed by SB203580. Gliomas displayed higher mRNA expression and release of TNF-α and IL-1β than primary astrocyte cells. Neutralization of TNF-α and IL-1β in C6-CM using a neutralizing antibody inhibited NO/iNOS expression in BV-2 cells. These results indicate potential contribution of diffusible tumor-derived factors to regulate microglial activation and subsequent tumor microenvironment. PMID:27609291

  14. Evidence for Neuroinflammatory and Microglial Changes in the Cerebral Response to Sleep Loss

    PubMed Central

    Wisor, Jonathan P.; Schmidt, Michelle A.; Clegern, William C.

    2011-01-01

    Study Objectives: Sleep loss has pro-inflammatory effects, but the roles of specific cell populations in mediating these effects have not been delineated. We assessed the modulation of the electroencephalographic and molecular responses to sleep deprivation (S-DEP) by minocycline, a compound that attenuates microglial activation occurring in association with neuroinflammatory events. Design: Laboratory rodents were subjected to assessment of sleep and wake in baseline and sleep deprived conditions. Participants: Adult male CD-1 mice (30-35 g) subjected to telemetric electroencephalography. Interventions: Minocycline was administered daily. Mice were subjected to baseline data collection on the first day of minocycline administration and, on subsequent days, 2 S-DEP sessions, 1 and 3 h in duration, followed by recovery sleep. Following EEG studies, mice were euthanized either at the end of a 3 h S-DEP or as time-of day controls for sampling of brain messenger RNAs. Gene expression was measured by real-time polymerase chain reaction. Measurements and Results: Minocycline-treated mice exhibited a reduction in time spent asleep, relative to saline-treated mice, in the 3-h interval immediately after administration. S-DEP resulted in an increase in EEG slow wave activity relative to baseline in saline-treated mice. This response to S-DEP was abolished in animals subjected to chronic minocycline administration. S-DEP suppressed the expression of the microglial-specific transcript cd11b and the neuroinflammation marker peripheral benzodiazepine receptor, in the brain at the mRNA level. Minocycline attenuated the elevation of c-fos expression by S-DEP. Brain levels of pro-inflammatory cytokine mRNAs interleukin-1β (il-1β), interleukin-6 (il-6), and tumor necrosis factor-α (tnfα) were unaffected by S-DEP, but were elevated in minocycline-treated mice relative to saline-treated mice. Conclusions: The anti-neuroinflammatory agent minocycline prevents either the buildup or

  15. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity

    PubMed Central

    Gallina, Donika; Zelinka, Christopher Paul; Cebulla, Colleen; Fischer, Andy J.

    2015-01-01

    Reactive microglia and macrophages are prevalent in damaged retinas. Glucocorticoid signaling is known to suppress inflammation and the reactivity of microglia and macrophages. In the vertebrate retina, the glucocorticoid receptor (GCR) is known to be activated and localized to the nuclei of Müller glia (Gallina et al., 2014). Accordingly, we investigated how signaling through GCR influences the survival of neurons using the chick retina in vivo as a model system. We applied intraocular injections of GCR agonist or antagonist, assessed microglial reactivity, and the survival of retinal neurons following different damage paradigms. Microglial reactivity was increased in retinas from eyes that were injected with vehicle, and this reactivity was decreased by GCR-agonist dexamethasone (Dex) and increased by GCR-antagonist RU486. We found that activation of GCR suppresses the reactivity of microglia and inhibited the loss of retinal neurons resulting from excitotoxicity. We provide evidence that the protection-promoting effects of Dex were maintained when the microglia were selectively ablated. Similarly, intraocular injections of Dex protected ganglion cells from colchicine-treatment and protected photoreceptors from damage caused by retinal detachment. We conclude that activation of GCR promotes the survival of ganglion cells in colchicine-damaged retinas, promotes the survival of amacrine and bipolar cells in excitotoxin-damaged retinas, and promotes the survival of photoreceptors in detached retinas. We propose that suppression of microglial reactivity is secondary to activation of GCR in Müller glia, and this mode of signaling is an effective means to lessen the damage and vision loss resulting from different types of retinal damage. PMID:26272753

  16. Litter size, age-related memory impairments, and microglial changes in rat dentate gyrus: stereological analysis and three dimensional morphometry.

    PubMed

    Viana, L C; Lima, C M; Oliveira, M A; Borges, R P; Cardoso, T T; Almeida, I N F; Diniz, D G; Bento-Torres, J; Pereira, A; Batista-de-Oliveira, M; Lopes, A A C; Silva, R F M; Abadie-Guedes, R; Amâncio Dos Santos, A; Lima, D S C; Vasconcelos, P F C; Cunningham, C; Guedes, R C A; Picanço-Diniz, C W

    2013-05-15

    It has been demonstrated that rat litter size affects the immune cell response, but it is not known whether the long-term effects aggravate age-related memory impairments or microglial-associated changes. To that end, we raised sedentary Wistar rats that were first suckled in small or large litters (6 or 12pups/dam, respectively), then separated into groups of 2-3 rats from the 21st post-natal day to study end. At 4months (young adult) or 23months (aged), all individual rats were submitted to spatial memory and object identity recognition tests, and then sacrificed. Brain sections were immunolabeled with anti-IBA-1 antibodies to selectively identify microglia/macrophages. Microglial morphological changes in the molecular layer of the dentate gyrus were estimated based on three-dimensional reconstructions. The cell number and laminar distribution in the dentate gyrus was estimated with the stereological optical fractionator method. We found that, compared to young rat groups, aged rats from large litters showed significant increases in the number of microglia in all layers of the dentate gyrus. Compared to the microglia in all other groups, microglia in aged individuals from large litters showed a significantly higher degree of tree volume expansion, branch base diameter thickening, and cell soma enlargement. These morphological changes were correlated with an increase in the number of microglia in the molecular layer. Young adult individuals from small litters exhibited preserved intact object identity recognition memory and all other groups showed reduced performance in both spatial and object identity recognition tasks. We found that, in large litters, brain development was, on average, associated with permanent changes in the innate immune system in the brain, with a significant impact on the microglial homeostasis of aged rats.

  17. [Human pluripotent stem cell and neural differentiation].

    PubMed

    Wataya, Takafumi; Muguruma, Keiko; Sasai, Yoshiki

    2008-10-01

    Recovery of lost brain function is an important issue in medical studies because neurons of the central nervous system (CNS) have poor potential for regeneration. Since few CNS diseases can be treated completely by medicines, regenerative therapy by using stem cells should be studied as a new type of therapeutic intervention. The efficacy of cell replacement therapy in Parkinson's disease has been well investigated. Several studies on fetal tissue transplantation have revealed that quantity and purity of transplanted cells are necessary for recovery of symptoms. SFEB (Serum-free floating culture of embryoid body-like aggregates) method is capable of inducing multi-potential CNS progenitors that can be steered to differentiate into region-specific tissues. On the basis of the existing knowledge of embryology, we have succeeded in the generating of various types of neurons such as telencephalic, cerebeller (Purkinje and granule cells), retinal (photoreceptor cells) and hypothalamic neurons. Application of this culture method to human ES (hES) cells is necessary for clinical purpose: however, poor survival of hES cells in SFEB culture might limit the possibility of using these cells for future medical applications. We found that a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, markedly diminished the dissociation-induced apoptosis of hES cells and enabled the cells to form aggregates in SFEB culture. For both mouse and human ES cells, SFEB culture is a favorable method that can generate large amounts of region-specific neurons. However, stem cell-based therapy continues to face several obstacles. It is important that researchers in the basic sciences and clinical medicine should discuss these problems together to overcome both scientific and ethical issues related to stem cells.

  18. Cell-in-cell structures are involved in the competition between cells in human tumors.

    PubMed

    Sun, Qiang; Huang, Hongyan; Overholtzer, Michael

    2015-01-01

    The engulfment of live cells may represent a mechanism of cell death. We reported that E-cadherin (epithelial cadherin) expression in human cancer cells favors the formation of cell-in-cell structures through the mechanism known as entosis, and that entosis contributes to a form of cellular competition in heterogeneous cancer cell populations. PMID:27308493

  19. Characterization of human pluripotent stem cells.

    PubMed

    Gokhale, Paul J; Andrews, Peter W

    2013-12-18

    Human pluripotent stem cells (PSCs), whether embryonic stem cells or induced PSCs, offer enormous opportunities for regenerative medicine and other biomedical applications once we have developed the ability to harness their capacity for extensive differentiation. Central to this is our ability to identify and characterize such PSCs, but this is fraught with potential difficulties that arise from a tension between functional definitions of pluripotency and the more convenient use of 'markers', a problem exacerbated by ethical issues, our lack of knowledge of early human embryonic development, and differences from the mouse paradigm.

  20. The Nurr1 Activator 1,1-Bis(3'-Indolyl)-1-(p-Chlorophenyl)Methane Blocks Inflammatory Gene Expression in BV-2 Microglial Cells by Inhibiting Nuclear Factor κB.

    PubMed

    De Miranda, Briana R; Popichak, Katriana A; Hammond, Sean L; Jorgensen, Bryce A; Phillips, Aaron T; Safe, Stephen; Tjalkens, Ronald B

    2015-06-01

    NR4A family orphan nuclear receptors are an important class of transcription factors for development and homeostasis of dopaminergic neurons that also inhibit expression of inflammatory genes in glial cells. The identification of NR4A2 (Nurr1) as a suppressor of nuclear factor κB (NF-κB)-related neuroinflammatory genes in microglia and astrocytes suggests that this receptor could be a target for pharmacologic intervention in neurologic disease, but compounds that promote this activity are lacking. Selected diindolylmethane compounds (C-DIMs) have been shown to activate or inactivate nuclear receptors, including Nurr1, in cancer cells and also suppress astrocyte inflammatory signaling in vitro. Based upon these data, we postulated that C-DIM12 [1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane] would suppress inflammatory signaling in microglia by a Nurr1-dependent mechanism. C-DIM12 inhibited lipopolysaccharide (LPS)-induced expression of NF-κB-regulated genes in BV-2 microglia including nitric oxide synthase (NOS2), interleukin-6 (IL-6), and chemokine (C-C motif) ligand 2 (CCL2), and the effects were attenuated by Nurr1-RNA interference. Additionally, C-DIM12 decreased NF-κB activation in NF-κB-GFP (green fluorescent protein) reporter cells and enhanced nuclear translocation of Nurr1 primary microglia. Chromatin immunoprecipitation assays indicated that C-DIM12 decreased lipopolysaccharide-induced p65 binding to the NOS2 promoter and concurrently enhanced binding of Nurr1 to the p65-binding site. Consistent with these findings, C-DIM12 also stabilized binding of the Corepressor for Repressor Element 1 Silencing Transcription Factor (CoREST) and the Nuclear Receptor Corepressor 2 (NCOR2). Collectively, these data identify C-DIM12 as a modulator of Nurr1 activity that results in inhibition of NF-κB-dependent gene expression in glial cells by stabilizing nuclear corepressor proteins, which reduces binding of p65 to inflammatory gene promoters.

  1. CLOSTRIDIUM SPORE ATTACHMENT TO HUMAN CELLS

    SciTech Connect

    PANESSA-WARREN,B.; TORTORA,G.; WARREN,J.

    1997-08-10

    This paper uses high resolution scanning electron microscopy (SEM) with a LaB6 gun and the newest commercial field emission guns, to obtain high magnification images of intact clostridial spores throughout the activation/germination/outgrowth process. By high resolution SEM, the clostridial exosporial membrane can be seen to produce numerous delicate projections (following activation), that extend from the exosporial surface to a nutritive substrate (agar), or cell surface when anaerobically incubated in the presence of human cells (embryonic fibroblasts and colon carcinoma cells). Magnifications of 20,000 to 200,000Xs at accelerating voltages low enough to minimize or eliminate specimen damage (1--5 kV) have permitted the entire surface of C.sporogenes and C.difficile endospores to be examined during all stages of germination. The relationships between the spore and the agar or human cell surface were also clearly visible.

  2. Human somatic cell nuclear transfer and cloning.

    PubMed

    2012-10-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer (cloning)," last published in Fertil Steril 2000;74:873-6.

  3. Photomodification of human immunocompetent blood cells

    SciTech Connect

    Krylenkov, V.A.; Ogurtsov, R.P.; Osmanov, M.A.; Kholmogorov, V.E.

    1987-10-01

    In this paper, processes of photomodification of lymphoid cells in human blood, developing immediately after exposure to visible radiation and also in the late stages after irradiation, were investigated by methods of spontaneous and immune rosette formation and the blast transformation test, combined with treatment with the antioxidant alpha-tocopherol and the radioactive assessment of spontaneous and stimulated DNA synthesis by tritium-thymidine-labelled cells.

  4. Human Colon Cancer Cells Cultivated in Space

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  5. Biotinylation of histones in human cells. Effects of cell proliferation.

    PubMed

    Stanley, J S; Griffin, J B; Zempleni, J

    2001-10-01

    An enzymatic mechanism has been proposed by which biotinidase may catalyze biotinylation of histones. Here, human cells were found to covalently bind biotin to histones H1, H2A, H2B, H3, and H4. Cells respond to proliferation with increased biotinylation of histones; biotinylation increases early in the cell cycle and remains increased during the cycle. Notwithstanding the catalytic role of biotinidase in biotinylation of histones, mRNA encoding biotinidase and biotinidase activity did not parallel the increased biotinylation of histones in proliferating cells. Biotinylation of histones might be regulated by enzymes other than biotinidase or by the rate of histone debiotinylation.

  6. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    SciTech Connect

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  7. Genetic Manipulation of Human Embryonic Stem Cells.

    PubMed

    Eiges, Rachel

    2016-01-01

    One of the great advantages of embryonic stem (ES) cells over other cell types is their accessibility to genetic manipulation. They can easily undergo genetic modifications while remaining pluripotent, and can be selectively propagated, allowing the clonal expansion of genetically altered cells in culture. Since the first isolation of ES cells in mice, many effective techniques have been developed for gene delivery and manipulation of ES cells. These include transfection, electroporation, and infection protocols, as well as different approaches for inserting, deleting, or changing the expression of genes. These methods proved to be extremely useful in mouse ES cells, for monitoring and directing differentiation, discovering unknown genes, and studying their function, and are now being extensively implemented in human ES cells (HESCs). This chapter describes the different approaches and methodologies that have been applied for the genetic manipulation of HESCs and their applications. Detailed protocols for generating clones of genetically modified HESCs by transfection, electroporation, and infection will be described, with special emphasis on the important technical details that are required for this purpose. All protocols are equally effective in human-induced pluripotent stem (iPS) cells.

  8. Opioids and differentiation in human cancer cells.

    PubMed

    Zagon, Ian S; McLaughlin, Patricia J

    2005-10-01

    This study was designed to examine the role of opioids on cell differentiation, with an emphasis on the mechanism of opioid growth factor (OGF, [Met5]-enkephalin)-dependent growth inhibition. Three human cancer cell lines (SK-N-SH neuroblastoma and SCC-1 and CAL-27 squamous cell carcinoma of the head and neck), along with OGF and the opioid antagonist naltrexone (NTX) at a dosage (10(-6) M) known to repress or increase, respectively, cell replication, were utilized. The effects on differentiation (neurite formation, process lengths, betaIII-tubulin, involucrin) were investigated in cells exposed to OGF or NTX for up to 6 days. In addition, the influence of a variety of other natural and synthetic opioids on differentiation was examined. OGF, NTX, naloxone, [D-Pen2,5]-enkephalin, dynorphin A1-8, beta-endorphin, endomorphin-1 and -2, [D-Ala2, MePhe4, Glycol5]-enkephalin (DAMGO), morphine, and U69,593 at concentrations of 10(-6) M did not alter cell differentiation of any cancer cell line. In NTX-treated SK-N-SH cells, cellular area was increased 23%, and nuclear area was decreased 17%, from control levels; no changes in cell or nuclear area were recorded in OGF-exposed cells. F-actin concentration was increased 40% from control values in SK-N-SH cells subjected to NTX, whereas alpha-tubulin was decreased 53% in OGF-treated cells. These results indicate that the inhibitory or stimulatory actions of OGF and NTX, respectively, on cell growth in tissue culture are not due to alterations in differentiation pathways. However, exposure to OGF and NTX modified some aspects of cell structure, but this was independent of differentiation. The absence of effects on cancer cell differentiation by a variety of other opioids supports the previously reported lack of growth effects of these compounds.

  9. Enriched retinal ganglion cells derived from human embryonic stem cells.

    PubMed

    Gill, Katherine P; Hung, Sandy S C; Sharov, Alexei; Lo, Camden Y; Needham, Karina; Lidgerwood, Grace E; Jackson, Stacey; Crombie, Duncan E; Nayagam, Bryony A; Cook, Anthony L; Hewitt, Alex W; Pébay, Alice; Wong, Raymond C B

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  10. Enriched retinal ganglion cells derived from human embryonic stem cells

    PubMed Central

    Gill, Katherine P.; Hung, Sandy S. C.; Sharov, Alexei; Lo, Camden Y.; Needham, Karina; Lidgerwood, Grace E.; Jackson, Stacey; Crombie, Duncan E.; Nayagam, Bryony A.; Cook, Anthony L.; Hewitt, Alex W.; Pébay, Alice; Wong, Raymond C. B.

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  11. The Cell Surface Proteome of Human Mesenchymal Stromal Cells

    PubMed Central

    Pursche, Theresia; Bornhäuser, Martin; Corbeil, Denis; Hoflack, Bernard

    2011-01-01

    Background Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers. Methodology/Principal Findings To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously. Conclusions/Significance Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention. PMID:21637820

  12. Centre for human development, stem cells & regeneration.

    PubMed

    Oreffo, Richard O C

    2014-01-01

    The Centre for Human Development, Stem Cells and Regeneration (CHDSCR) was founded in 2004 as a cross-disciplinary research and translational program within the Faculty of Medicine at the University of Southampton. The Centre undertakes fundamental research into early development and stem cells together with applied translational research for patient benefit. The Centre has vibrant and thriving multidisciplinary research programs that harness the translational strength of the Faculty together with an innovative Stem Cell PhD program, outstanding clinical infrastructure and enterprise to deliver on this vision.

  13. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum.

    PubMed

    Ano, Yasuhisa; Kutsukake, Toshiko; Hoshi, Ayaka; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE) as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body by consumption of

  14. Enriched environment induces beneficial effects on memory deficits and microglial activation in the hippocampus of type 1 diabetic rats.

    PubMed

    Piazza, Francele Valente; Segabinazi, Ethiane; Centenaro, Lígia Aline; do Nascimento, Patrícia Severo; Achaval, Matilde; Marcuzzo, Simone

    2014-03-01

    Type 1 diabetes mellitus (T1DM) has been associated with long-term complications in the central nervous system, causing brain cellular dysfunctions and cognitive deficits. On the other hand, enriched environment (EE) induces experience-dependent plasticity, especially in the hippocampus, improving the performance of animals in learning and memory tasks. Thus, our objective was to investigate the influence of the EE on memory deficits, locomotion, corticosterone levels, synaptophysin (SYP) protein immunoreactivity, cell survival and microglial activation in the dentate gyrus (DG) of T1DM rat hippocampus. Male Wistar rats (21-day-old) were exposed to EE or maintained in standard housing (controls, C) for 3 months. At adulthood, the C and EE animals were randomly divided and diabetes was induced in half of them. All the animals received 4 doses of BrdU, 24 h apart. Hippocampus-dependent spatial memory, general locomotion and serum corticosterone levels were evaluated at the end of the experiment. The animals were transcardially perfused 30 days post-BrdU administration. Our results showed that EE was able to prevent/delay the development of memory deficits caused by diabetes in rats, however it did not revert the motor impairment observed in the diabetic group. SYP immunoreactivity was increased in the enriched healthy group. The EE decreased the serum corticosterone levels in diabetic adult rats and attenuated the injurious microglial activation, though without altering the decrease of the survival cell. Thus, EE was shown to help to ameliorate cognitive comorbidities associated with T1DM, possibly by reducing hyperactivity in the hypothalamic-pituitary-adrenal axis and microglial activation in diabetic animals. PMID:24318482

  15. Enriched environment induces beneficial effects on memory deficits and microglial activation in the hippocampus of type 1 diabetic rats.

    PubMed

    Piazza, Francele Valente; Segabinazi, Ethiane; Centenaro, Lígia Aline; do Nascimento, Patrícia Severo; Achaval, Matilde; Marcuzzo, Simone

    2014-03-01

    Type 1 diabetes mellitus (T1DM) has been associated with long-term complications in the central nervous system, causing brain cellular dysfunctions and cognitive deficits. On the other hand, enriched environment (EE) induces experience-dependent plasticity, especially in the hippocampus, improving the performance of animals in learning and memory tasks. Thus, our objective was to investigate the influence of the EE on memory deficits, locomotion, corticosterone levels, synaptophysin (SYP) protein immunoreactivity, cell survival and microglial activation in the dentate gyrus (DG) of T1DM rat hippocampus. Male Wistar rats (21-day-old) were exposed to EE or maintained in standard housing (controls, C) for 3 months. At adulthood, the C and EE animals were randomly divided and diabetes was induced in half of them. All the animals received 4 doses of BrdU, 24 h apart. Hippocampus-dependent spatial memory, general locomotion and serum corticosterone levels were evaluated at the end of the experiment. The animals were transcardially perfused 30 days post-BrdU administration. Our results showed that EE was able to prevent/delay the development of memory deficits caused by diabetes in rats, however it did not revert the motor impairment observed in the diabetic group. SYP immunoreactivity was increased in the enriched healthy group. The EE decreased the serum corticosterone levels in diabetic adult rats and attenuated the injurious microglial activation, though without altering the decrease of the survival cell. Thus, EE was shown to help to ameliorate cognitive comorbidities associated with T1DM, possibly by reducing hyperactivity in the hypothalamic-pituitary-adrenal axis and microglial activation in diabetic animals.

  16. Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity.

    PubMed

    LaVoie, Matthew J; Card, J Patrick; Hastings, Teresa G

    2004-05-01

    Previous studies have demonstrated methamphetamine (METH)-induced toxicity to dopaminergic and serotonergic axons in rat striatum. Although several studies have identified the nature of reactive astrogliosis in this lesion model, the response of microglia has not been examined in detail. In this investigation, we characterized the temporal relationship of reactive microgliosis to neuropathological alterations of dopaminergic axons in striatum following exposure to methamphetamine. Adult male Sprague-Dawley rats were administered a neurotoxic regimen of methamphetamine and survived 12 h, or 1, 2, 4, and 6 days after treatment. Immunohistochemical methods were used to evaluate reactive changes in microglia throughout the brain of methamphetamine-treated rats, with a particular focus upon striatum. Pronounced morphological changes, indicative of reactive microgliosis, were evident in the brains of all methamphetamine-treated animals and were absent in saline-treated control animals. These included hyperplastic changes in cell morphology that substantially increased the size and staining intensity of reactive microglia. Quantitative analysis of reactive microglial changes in striatum demonstrated that these changes were most robust within the ventrolateral region and were maximal 2 days after methamphetamine administration. Analysis of tissue also revealed that microglial activation preceded the appearance of pathological changes in striatal dopamine fibers. Reactive microgliosis was also observed in extra-striatal regions (somatosensory and piriform cortices, and periaqueductal gray). These data demonstrate a consistent, robust, and selective activation of microglia in response to methamphetamine administration that, at least in striatum, precedes the appearance of morphological indicators of axon pathology. These observations raise the possibility that activated microglia may contribute to methamphetamine-induced neurotoxicity.

  17. Isolation of Human Skin Dendritic Cell Subsets.

    PubMed

    Gunawan, Merry; Jardine, Laura; Haniffa, Muzlifah

    2016-01-01

    Dendritic cells (DCs) are specialized leukocytes with antigen-processing and antigen-presenting functions. DCs can be divided into distinct subsets by anatomical location, phenotype and function. In human, the two most accessible tissues to study leukocytes are peripheral blood and skin. DCs are rare in human peripheral blood (<1 % of mononuclear cells) and have a less mature phenotype than their tissue counterparts (MacDonald et al., Blood. 100:4512-4520, 2002; Haniffa et al., Immunity 37:60-73, 2012). In contrast, the skin covering an average total surface area of 1.8 m(2) has approximately tenfold more DCs than the average 5 L of total blood volume (Wang et al., J Invest Dermatol 134:965-974, 2014). DCs migrate spontaneously from skin explants cultured ex vivo, which provide an easy method of cell isolation (Larsen et al., J Exp Med 172:1483-1493, 1990; Lenz et al., J Clin Invest 92:2587-2596, 1993; Nestle et al., J Immunol 151:6535-6545, 1993). These factors led to the extensive use of skin DCs as the "prototype" migratory DCs in human studies. In this chapter, we detail the protocols to isolate DCs and resident macrophages from human skin. We also provide a multiparameter flow cytometry gating strategy to identify human skin DCs and to distinguish them from macrophages. PMID:27142012

  18. Advances in Human B Cell Phenotypic Profiling

    PubMed Central

    Kaminski, Denise A.; Wei, Chungwen; Qian, Yu; Rosenberg, Alexander F.; Sanz, Ignacio

    2012-01-01

    To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation (“Big Biology”), necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort. PMID:23087687

  19. Human norovirus culture in B cells.

    PubMed

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinjé, Jan; Karst, Stephanie M

    2015-12-01

    Human noroviruses (HuNoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HuNoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HuNoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-Sydney HuNoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HuNoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. Analysis of infection or attachment samples, including RNA extraction and RT-qPCR, requires ∼6 h.

  20. Androgen receptor in human endothelial cells

    PubMed Central

    Torres-Estay, Verónica; Carreño, Daniela V; San Francisco, Ignacio F; Sotomayor, Paula; Godoy, Alejandro S; Smith, Gary J

    2015-01-01

    Androgen receptor (AR) is a ligand-inducible transcription factor, and a member of the steroid-thyroid-retinoid receptor superfamily, that mediates the biological effects of androgens in a wide range of physiological and pathological processes. AR expression was identified in vascular cells nearly 20 years ago, and recent research has shown that AR mediates a variety of actions of androgens in endothelial and vascular smooth muscle cells. In this mini-review, we review evidence indicating the importance of AR in human endothelial cell (HUVEC) homeostatic and pathogenic processes. Although a role for AR in the modulation of HUVEC biology is evident, the molecular mechanisms by which AR regulates HUVEC homeostasis and disease processes are not fully understood. Understanding these mechanisms could provide critical insights into the processes of pathogenesis of diseases ranging from cardiovascular disease to cancer that are major causes of human morbidity and mortality. PMID:25563353

  1. Harnessing Human Dendritic Cell Subsets for Medicine

    PubMed Central

    Ueno, Hideki; Schmitt, Nathalie; Klechevsky, Eynav; Pedroza-Gonzales, Alexander; Matsui, Toshimichi; Zurawski, Gerard; Oh, SangKon; Fay, Joseph; Pascual, Virginia; Banchereau, Jacques; Palucka, Karolina

    2010-01-01

    Summary Immunity results from a complex interplay between the antigen-nonspecific innate immune system and the antigen-specific adaptive immune system. The cells and molecules of the innate system employ non-clonal recognition receptors including lectins, Toll-like receptors, NOD-like receptors and helicases. B and T lymphocytes of the adaptive immune system employ clonal receptors recognizing antigens or their derived peptides in a highly specific manner. An essential link between innate and adaptive immunity is provided by dendritic cells (DCs). DCs can induce such contrasting states as immunity and tolerance. The recent years have brought a wealth of information on the biology of DCs revealing the complexity of this cell system. Indeed, DC plasticity and subsets are prominent determinants of the type and quality of elicited immune responses. Here we summarize our recent studies aimed at a better understanding of the DC system to unravel the pathophysiology of human diseases and design novel human vaccines. PMID:20193020

  2. Influence of microglia on retinal progenitor cell turnover and cell replacement.

    PubMed

    Dick, A D

    2009-10-01

    Microglia within the retina are continually replaced from the bone marrow and are the resident myeloid-derived cells within the retina. Throughout life, microglial function is conditioned by the microenvironment affording immunomodulation to control inflammation as well as functioning to enable normal development and, during adulthood, maintain normal retinal function. In adulthood, recent evidence supports the concept that the retina continues to replace cells to maintain optimal function. Although in some cases after injury, degeneration, or inflammation there remains an inextricable decline in visual function inferring a deficit in cell replacement, the deficit could be explained by microglial cell activation influencing the ability of either retinal progenitor cells or recruited progenitor cells to integrate and differentiate appropriately. Myeloid cell response differs depending on insult: it is evident that during inflammation microglia and the infiltrating myeloid cell function are conditioned by the cytokine environment. Indeed, modulating myeloid cell function therapeutically suppresses disease in experimental models of autoimmunity, whereas in non-inflammatory models microglia have little or no effect on the course of degeneration. The extent of myeloid activation can help determine retinal progenitor cell turnover. Retinal progenitor cells may be isolated from adult human retina, which, albeit limited, display mitotic activity and can differentiate. Microglial activation secreting IL-6 limits progenitor cell turnover and the extent to which differentiation to post-mitotic retinal cells occurs. Such experimental data illustrate the need to develop methods to replenish normal retinal myeloid cell function facilitating integration, either by cell transplantation or by encouraging retinal progenitor cells to recover retinal function.

  3. Henipavirus Pathogenesis in Human Respiratory Epithelial Cells

    PubMed Central

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J. Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz

    2013-01-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection. PMID:23302882

  4. Endogenous formation of morphine in human cells.

    PubMed

    Poeaknapo, Chotima; Schmidt, Jürgen; Brandsch, Matthias; Dräger, Birgit; Zenk, Meinhart H

    2004-09-28

    Morphine is a plant (opium poppy)-derived alkaloid and one of the strongest known analgesic compounds. Studies from several laboratories have suggested that animal and human tissue or fluids contain trace amounts of morphine. Its origin in mammals has been believed to be of dietary origin. Here, we address the question of whether morphine is of endogenous origin or derived from exogenous sources. Benzylisoquinoline alkaloids present in human neuroblastoma cells (SH-SY5Y) and human pancreas carcinoma cells (DAN-G) were identified by GC/tandem MS (MS/MS) as norlaudanosoline (DAN-G), reticuline (DAN-G and SH-SY5Y), and morphine (10 nM, SH-SY5Y). The stereochemistry of reticuline was determined to be 1-(S). Growth of the SH-SY5Y cell line in the presence of (18)O(2) led to the [(18)O]-labeled morphine that had the molecular weight 4 mass units higher than if grown in (16)O(2), indicating the presence of two atoms of (18)O per molecule of morphine. Growth of DAN-G cells in an (18)O(2) atmosphere yielded norlaudanosoline and (S)-reticuline, both labeled at only two of the four oxygen atoms. This result clearly demonstrates that all three alkaloids are of biosynthetic origin and suggests that norlaudanosoline and (S)-reticuline are endogenous precursors of morphine. Feeding of [ring-(13)C(6)]-tyramine, [1-(13)C, N-(13)CH(3)]-(S)-reticuline and [N-CD(3)]-thebaine to the neuroblastoma cells led each to the position-specific labeling of morphine, as established by GC/MS/MS. Without doubt, human cells can produce the alkaloid morphine. The studies presented here serve as a platform for the exploration of the function of "endogenous morphine" in the neurosciences and immunosciences.

  5. Primary Bioassay of Human Myeloma Stem Cells

    PubMed Central

    Hamburger, Anne; Salmon, Sydney E.

    1977-01-01

    The ability to clone primary tumors in soft agar has proven useful in the study of the kinetics and biological properties of tumor stem cells. We report the development of an in vitro assay which permits formation of colonies of human monoclonal plasma cells in soft agar. Colony growth has been observed from bone marrow aspirates from 75% of the 70 patients with multiple myeloma or related monoclonal disorders studied. Growth was induced with either 0.02 ml of human type O erythrocytes or 0.25 ml of medium conditioned by the adherent spleen cells of mineral oil-primed BALB/c mice. 5-500 colonies appeared after 2-3 wk in culture yielding a plating efficiency of 0.001-0.1%. The number of myeloma colonies was proportional to the number of cells plated between concentrations of 105-106 and back-extrapolated through zero, suggesting that colonies were clones derived from single myeloma stem cells. Morphological, histochemical, and functional criteria showed the colonies to consist of immature plasmablasts and mature plasma cells. 60-80% of cells picked from colonies contained intracytoplasmic monoclonal immunoglobulin. Colony growth was most easily achieved from the bone marrow cells of untreated patients or those in relapse. Only 50% of bone marrow samples from patients in remission were successfully cultured. Tritiated thymidine suicide studies provided evidence that for most myeloma patients, a very high proportion of myeloma colony-forming cells was actively in transit through the cell cycle. Velocity sedimentation at 1 g showed myeloma stem cells sedimented in a broad band with a peak at 13 mm/h. Antibody to granulocyte colony-stimulating factor did not reduce the number or size of the colonies. Increased numbers of myeloma colonies were seen when the marrow was depleted of colony-stimulating factor elaborating adherent cells before plating. This bioassay should prove useful in studying the in vitro biological behavior of certain bone marrow-derived (B)-cell

  6. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in...

  7. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in...

  8. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in...

  9. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in...

  10. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in...

  11. DNA repair responses in human skin cells

    SciTech Connect

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  12. Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production.

    PubMed

    Spencer, Nicholas G; Schilling, Tom; Miralles, Francesc; Eder, Claudia

    2016-01-01

    Microglial priming and enhanced reactivity to secondary insults cause substantial neuronal damage and are hallmarks of brain aging, traumatic brain injury and neurodegenerative diseases. It is, thus, of particular interest to identify mechanisms involved in microglial priming. Here, we demonstrate that priming of microglia with interferon-γ (IFN γ) substantially enhanced production of reactive oxygen species (ROS) following stimulation of microglia with ATP. Priming of microglial ROS production was substantially reduced by inhibition of p38 MAPK activity with SB203580, by increases in intracellular glutathione levels with N-Acetyl-L-cysteine, by blockade of NADPH oxidase subunit NOX2 activity with gp91ds-tat or by inhibition of nitric oxide production with L-NAME. Together, our data indicate that priming of microglial ROS production involves reduction of intracellular glutathione levels, upregulation of NADPH oxidase subunit NOX2 and increases in nitric oxide production, and suggest that these simultaneously occurring processes result in enhanced production of neurotoxic peroxynitrite. Furthermore, IFNγ-induced priming of microglial ROS production was reduced upon blockade of Kir2.1 inward rectifier K+ channels with ML133. Inhibitory effects of ML133 on microglial priming were mediated via regulation of intracellular glutathione levels and nitric oxide production. These data suggest that microglial Kir2.1 channels may represent novel therapeutic targets to inhibit excessive ROS production by primed microglia in brain pathology. PMID:27598576

  13. Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production

    PubMed Central

    Spencer, Nicholas G.; Schilling, Tom; Miralles, Francesc; Eder, Claudia

    2016-01-01

    Microglial priming and enhanced reactivity to secondary insults cause substantial neuronal damage and are hallmarks of brain aging, traumatic brain injury and neurodegenerative diseases. It is, thus, of particular interest to identify mechanisms involved in microglial priming. Here, we demonstrate that priming of microglia with interferon-γ (IFN γ) substantially enhanced production of reactive oxygen species (ROS) following stimulation of microglia with ATP. Priming of microglial ROS production was substantially reduced by inhibition of p38 MAPK activity with SB203580, by increases in intracellular glutathione levels with N-Acetyl-L-cysteine, by blockade of NADPH oxidase subunit NOX2 activity with gp91ds-tat or by inhibition of nitric oxide production with L-NAME. Together, our data indicate that priming of microglial ROS production involves reduction of intracellular glutathione levels, upregulation of NADPH oxidase subunit NOX2 and increases in nitric oxide production, and suggest that these simultaneously occurring processes result in enhanced production of neurotoxic peroxynitrite. Furthermore, IFNγ-induced priming of microglial ROS production was reduced upon blockade of Kir2.1 inward rectifier K+ channels with ML133. Inhibitory effects of ML133 on microglial priming were mediated via regulation of intracellular glutathione levels and nitric oxide production. These data suggest that microglial Kir2.1 channels may represent novel therapeutic targets to inhibit excessive ROS production by primed microglia in brain pathology. PMID:27598576

  14. Effects of oxaliplatin and oleic acid Gc-protein-derived macrophage-activating factor on murine and human microglia.

    PubMed

    Branca, Jacopo J V; Morucci, Gabriele; Malentacchi, Francesca; Gelmini, Stefania; Ruggiero, Marco; Pacini, Stefania

    2015-09-01

    The biological properties and characteristics of microglia in rodents have been widely described, but little is known about these features in human microglia. Several murine microglial cell lines are used to investigate neurodegenerative and neuroinflammatory conditions; however, the extrapolation of the results to human conditions is frequently met with criticism because of the possibility of species-specific differences. This study compares the effects of oxaliplatin and of oleic acid Gc-protein-derived macrophage-activating factor (OA-GcMAF) on two microglial cell lines, murine BV-2 cells and human C13NJ cells. Cell viability, cAMP levels, microglial activation, and vascular endothelial growth factor (VEGF) expression were evaluated. Our data demonstrate that oxaliplatin induced a significant decrease in cell viability in BV-2 and in C13NJ cells and that this effect was not reversed with OA-GcMAF treatment. The signal transduction pathway involving cAMP/VEGF was activated after treatment with oxaliplatin and/or OA-GcMAF in both cell lines. OA-GcMAF induced a significant increase in microglia activation, as evidenced by the expression of the B7-2 protein, in BV-2 as well as in C13NJ cells that was not associated with a concomitant increase in cell number. Furthermore, the effects of oxaliplatin and OA-GcMAF on coculture morphology and apoptosis were evaluated. Oxaliplatin-induced cell damage and apoptosis were nearly completely reversed by OA-GcMAF treatment in both BV-2/SH-SY5Y and C13NJ/SH-SY5Y cocultures. Our data show that murine and human microglia share common signal transduction pathways and activation mechanisms, suggesting that the murine BV-2 cell line may represent an excellent model for studying human microglia. PMID:25782915

  15. Effects of oxaliplatin and oleic acid Gc-protein-derived macrophage-activating factor on murine and human microglia.

    PubMed

    Branca, Jacopo J V; Morucci, Gabriele; Malentacchi, Francesca; Gelmini, Stefania; Ruggiero, Marco; Pacini, Stefania

    2015-09-01

    The biological properties and characteristics of microglia in rodents have been widely described, but little is known about these features in human microglia. Several murine microglial cell lines are used to investigate neurodegenerative and neuroinflammatory conditions; however, the extrapolation of the results to human conditions is frequently met with criticism because of the possibility of species-specific differences. This study compares the effects of oxaliplatin and of oleic acid Gc-protein-derived macrophage-activating factor (OA-GcMAF) on two microglial cell lines, murine BV-2 cells and human C13NJ cells. Cell viability, cAMP levels, microglial activation, and vascular endothelial growth factor (VEGF) expression were evaluated. Our data demonstrate that oxaliplatin induced a significant decrease in cell viability in BV-2 and in C13NJ cells and that this effect was not reversed with OA-GcMAF treatment. The signal transduction pathway involving cAMP/VEGF was activated after treatment with oxaliplatin and/or OA-GcMAF in both cell