Sample records for human microglial cells

  1. Microglial Dynamics During Human Brain Development

    PubMed Central

    Menassa, David A.; Gomez-Nicola, Diego

    2018-01-01

    Microglial cells are thought to colonize the human cerebrum between the 4th and 24th gestational weeks. Rodent studies have demonstrated that these cells originate from yolk sac progenitors though it is not clear whether this directly pertains to human development. Our understanding of microglial cell dynamics in the developing human brain comes mostly from postmortem studies demonstrating that the beginning of microglial colonization precedes the appearance of the vasculature, the blood–brain barrier, astrogliogenesis, oligodendrogenesis, neurogenesis, migration, and myelination of the various brain areas. Furthermore, migrating microglial populations cluster by morphology and express differential markers within the developing brain and according to developmental age. With the advent of novel technologies such as RNA-sequencing in fresh human tissue, we are beginning to identify the molecular features of the adult microglial signature. However, this is may not extend to the much more dynamic and rapidly changing antenatal microglial population and this is further complicated by the scarcity of tissue resources. In this brief review, we first describe the various historic schools of thought that had debated the origin of microglial cells while examining the evidence supporting the various theories. We then proceed to examine the evidence we have accumulated on microglial dynamics in the developing human brain, present evidence from rodent studies on the functional role of microglia during development and finally identify limitations for the used approaches in human studies and highlight under investigated questions. PMID:29881376

  2. Effects of chronic low dose rotenone treatment on human microglial cells

    PubMed Central

    2009-01-01

    Background Exposure to toxins/chemicals is considered to be a significant risk factor in the pathogenesis of Parkinson's disease (PD); one putative chemical is the naturally occurring herbicide rotenone that is now used widely in establishing PD models. We, and others, have shown that chronic low dose rotenone treatment induces excessive accumulation of Reactive Oxygen Species (ROS), inclusion body formation and apoptosis in dopaminergic neurons of animal and human origin. Some studies have also suggested that microglia enhance the rotenone induced neurotoxicity. While the effects of rotenone on neurons are well established, there is little or no information available on the effect of rotenone on microglial cells, and especially cells of human origin. The aim of the present study was to investigate the effects of chronic low dose rotenone treatment on human microglial CHME-5 cells. Methods We have shown previously that rotenone induced inclusion body formation in human dopaminergic SH-SY5Y cells and therefore used these cells as a control for inclusion body formation in this study. SH-SY5Y and CHME-5 cells were treated with 5 nM rotenone for four weeks. At the end of week 4, both cell types were analysed for the presence of inclusion bodies, superoxide dismutases and cell activation (only in CHME-5 cells) using Haematoxylin and Eosin staining, immunocytochemical and western blotting methods. Levels of active caspases and ROS (both extra and intra cellular) were measured using biochemical methods. Conclusion The results suggest that chronic low dose rotenone treatment activates human microglia (cell line) in a manner similar to microglia of animal origin as shown by others. However human microglia release excessive amounts of ROS extracellularly, do not show excessive amounts of intracellular ROS and active caspases and most importantly do not show any protein aggregation or inclusion body formation. Human microglia appear to be resistant to rotenone (chronic, low

  3. The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP(SW) mice.

    PubMed

    Wegiel, J; Wang, K C; Imaki, H; Rubenstein, R; Wronska, A; Osuchowski, M; Lipinski, W J; Walker, L C; LeVine, H

    2001-01-01

    Ultrastructural reconstruction of 27 fibrillar plaques in different stages of formation and maturation was undertaken to characterize the development of fibrillar plaques in the brains of human APP(SW) transgenic mice (Tg2576). The study suggests that microglial cells are not engaged in Abeta removal and plaque degradation, but in contrast, are a driving force in plaque formation and development. Fibrillar Abeta deposition at the amyloid pole of microglial cells appears to initiate three types of neuropil response: degeneration of neurons, protective activation of astrocytes, and attraction and activation of microglial cells sustaining plaque growth. Enlargement of neuronal processes and synapses with accumulation of degenerated mitochondria, dense bodies, and Hirano-type bodies is the marker of toxic injury of neurons by fibrillar Abeta. Separation of amyloid cores from neurons and degradation of amyloid cores by cytoplasmic processes of hypertrophic astrocytes suggest the protective and defensive character of astrocytic response to fibrillar Abeta. The growth of cored plaque from a small plaque with one microglial cell with an amyloid star and a few dystrophic neurites to a large plaque formed by several dozen microglial cells seen in old mice is the effect of attraction and activation of microglial cells residing outside of the plaque perimeter. This mechanism of growth of plaques appears to be characteristic of cored plaques in transgenic mice. Other features in mouse microglial cells that are absent in human brain are clusters of vacuoles, probably of lysosomal origin. They evolve into circular cisternae and finally into large vacuoles filled with osmiophilic, amorphous material and bundles of fibrils that are poorly labeled with antibody to Abeta. Microglial cells appear to release large amounts of fibrillar Abeta and accumulate traces of fibrillar Abeta in a lysosomal pathway.

  4. Microglial pathology.

    PubMed

    Streit, Wolfgang J; Xue, Qing-Shan; Tischer, Jasmin; Bechmann, Ingo

    2014-09-26

    This paper summarizes pathological changes that affect microglial cells in the human brain during aging and in aging-related neurodegenerative diseases, primarily Alzheimer's disease (AD). It also provides examples of microglial changes that have been observed in laboratory animals during aging and in some experimentally induced lesions and disease models. Dissimilarities and similarities between humans and rodents are discussed in an attempt to generate a current understanding of microglial pathology and its significance during aging and in the pathogenesis of Alzheimer dementia (AD). The identification of dystrophic (senescent) microglia has created an ostensible conflict with prior work claiming a role for activated microglia and neuroinflammation during normal aging and in AD, and this has raised a basic question: does the brain's immune system become hyperactive (inflamed) or does it become weakened (senescent) in elderly and demented people, and what is the impact on neuronal function and cognition? Here we strive to reconcile these seemingly contradictory notions by arguing that both low-grade neuroinflammation and microglial senescence are the result of aging-associated free radical injury. Both processes are damaging for microglia as they synergistically exhaust this essential cell population to the point where the brain's immune system is effete and unable to support neuronal function.

  5. Contact-independent cell death of human microglial cells due to pathogenic Naegleria fowleri trophozoites.

    PubMed

    Kim, Jong-Hyun; Kim, Daesik; Shin, Ho-Joon

    2008-12-01

    Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increase of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death.

  6. Contact-Independent Cell Death of Human Microglial Cells due to Pathogenic Naegleria fowleri Trophozoites

    PubMed Central

    Kim, Jong-Hyun

    2008-01-01

    Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increasse of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death. PMID:19127326

  7. Changes in neocortical and hippocampal microglial cells during hibernation.

    PubMed

    León-Espinosa, Gonzalo; Regalado-Reyes, Mamen; DeFelipe, Javier; Muñoz, Alberto

    2018-05-01

    Mammalian hibernation proceeds alongside a wide range of complex brain adaptive changes that appear to protect the brain from extreme hypoxia and hypothermia. Using immunofluorescence, confocal microscopy, quantitative analysis methods and intracellular injections, we have characterized microglia morphological changes that occur in the neocortex and hippocampus of the Syrian hamster during hibernation. In euthermic hamsters, microglial cells showed the typical ramified/resting morphology with multiple long, thin and highly-branched processes homogeneously immunostained for Iba-1. However, during torpor, microglial cell process numbers increase significantly accompanied by a shortening of the Iba-1 immunoreactive processes, which show a fragmented appearance. Adaptative changes of microglial cells during torpor coursed with no expression of microglial cell activation markers. We discuss the possibility that these morphological changes may contribute to neuronal damage prevention during hibernation.

  8. Trimethyltin-Induced Microglial Activation via NADPH Oxidase and MAPKs Pathway in BV-2 Microglial Cells.

    PubMed

    Kim, Da Jung; Kim, Yong Sik

    2015-01-01

    Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells.

  9. Trimethyltin-Induced Microglial Activation via NADPH Oxidase and MAPKs Pathway in BV-2 Microglial Cells

    PubMed Central

    Kim, Da Jung; Kim, Yong Sik

    2015-01-01

    Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells. PMID:26221064

  10. Naegleria fowleri Lysate Induces Strong Cytopathic Effects and Pro-inflammatory Cytokine Release in Rat Microglial Cells

    PubMed Central

    Lee, Yang-Jin; Park, Chang-Eun; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Jung, Suk-Yul

    2011-01-01

    Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A 51Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response. PMID:22072830

  11. Naegleria fowleri lysate induces strong cytopathic effects and pro-inflammatory cytokine release in rat microglial cells.

    PubMed

    Lee, Yang-Jin; Park, Chang-Eun; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Jung, Suk-Yul; Shin, Ho-Joon

    2011-09-01

    Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A (51)Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response.

  12. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease.

    PubMed

    Streit, Wolfgang J; Braak, Heiko; Xue, Qing-Shan; Bechmann, Ingo

    2009-10-01

    The role of microglial cells in the pathogenesis of Alzheimer's disease (AD) neurodegeneration is unknown. Although several works suggest that chronic neuroinflammation caused by activated microglia contributes to neurofibrillary degeneration, anti-inflammatory drugs do not prevent or reverse neuronal tau pathology. This raises the question if indeed microglial activation occurs in the human brain at sites of neurofibrillary degeneration. In view of the recent work demonstrating presence of dystrophic (senescent) microglia in aged human brain, the purpose of this study was to investigate microglial cells in situ and at high resolution in the immediate vicinity of tau-positive structures in order to determine conclusively whether degenerating neuronal structures are associated with activated or with dystrophic microglia. We used a newly optimized immunohistochemical method for visualizing microglial cells in human archival brain together with Braak staging of neurofibrillary pathology to ascertain the morphology of microglia in the vicinity of tau-positive structures. We now report histopathological findings from 19 humans covering the spectrum from none to severe AD pathology, including patients with Down's syndrome, showing that degenerating neuronal structures positive for tau (neuropil threads, neurofibrillary tangles, neuritic plaques) are invariably colocalized with severely dystrophic (fragmented) rather than with activated microglial cells. Using Braak staging of Alzheimer neuropathology we demonstrate that microglial dystrophy precedes the spread of tau pathology. Deposits of amyloid-beta protein (Abeta) devoid of tau-positive structures were found to be colocalized with non-activated, ramified microglia, suggesting that Abeta does not trigger microglial activation. Our findings also indicate that when microglial activation does occur in the absence of an identifiable acute central nervous system insult, it is likely to be the result of systemic infectious

  13. Novel cell-cell signaling by microglial transmembrane TNFα with implications for neuropathic pain

    PubMed Central

    Zhou, Zhigang; Peng, Xiangmin; Hagshenas, Jafar; Insolera, Ryan; Fink, David J.; Mata, Marina

    2010-01-01

    Neuropathic pain is accompanied by neuroimmune activation in dorsal horn of spinal cord. We have observed that in animal models this activation is characterized by increased expression of transmembrane tumor necrosis factor α (mTNFα) without release of soluble (sTNFα). Here we report that the pain-related neurotransmitter peptide substance P (SP) increases expression of mTNFα without release of sTNFα from primary microglial cells. We modeled this interaction using an immortalized microglial cell line; exposure of these cells to SP also resulted in increased expression of mTNFα but without any increase in expression of the TNF-cleaving enzyme (TACE) and no release of sTNFα. In order to evaluate the biological function of uncleaved mTNFα, we transfected COS-7 cells with a mutant full length TNFα construct resistant to cleavage by TACE. Co-culture of COS-7 cells expressing the mutant TNFα with microglial cells led to microglial cell activation indicated by increased OX-42 immunoreactivity and release of macrophage chemoattractant peptide 1 (CCL2) by direct cell-cell contact. These results suggest a novel pathway through which release of SP by primary afferents activates microglial expression of mTNFα, establishing a feed-forward loop that may contribute to the establishment of chronic pain. PMID:20609516

  14. Pulsed Electromagnetic Field Exposure Reduces Hypoxia and Inflammation Damage in Neuron-Like and Microglial Cells.

    PubMed

    Vincenzi, Fabrizio; Ravani, Annalisa; Pasquini, Silvia; Merighi, Stefania; Gessi, Stefania; Setti, Stefania; Cadossi, Ruggero; Borea, Pier Andrea; Varani, Katia

    2017-05-01

    In the present study, the effect of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) has been investigated by using different cell lines derived from neuron-like cells and microglial cells. In particular, the primary aim was to evaluate the effect of PEMF exposure in inflammation- and hypoxia-induced injury in two different neuronal cell models, the human neuroblastoma-derived SH-SY5Y cells and rat pheochromocytoma PC12 cells and in N9 microglial cells. In neuron-like cells, live/dead and apoptosis assays were performed in hypoxia conditions from 2 to 48 h. Interestingly, PEMF exposure counteracted hypoxia damage significantly reducing cell death and apoptosis. In the same cell lines, PEMFs inhibited the activation of the hypoxia-inducible factor 1α (HIF-1α), the master transcriptional regulator of cellular response to hypoxia. The effect of PEMF exposure on reactive oxygen species (ROS) production in both neuron-like and microglial cells was investigated considering their key role in ischemic injury. PEMFs significantly decreased hypoxia-induced ROS generation in PC12, SH-SY5Y, and N9 cells after 24 or 48 h of incubation. Moreover, PEMFs were able to reduce some of the most well-known pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 release in N9 microglial cells stimulated with different concentrations of LPS for 24 or 48 h of incubation time. These results show a protective effect of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells suggesting that PEMFs could represent a potential therapeutic approach in cerebral ischemic conditions. J. Cell. Physiol. 232: 1200-1208, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism.

    PubMed

    Yuan, Dan; Ma, Bin; Yang, Jing-yu; Xie, Yuan-yuan; Wang, Li; Zhang, Li-jia; Kano, Yoshihiro; Wu, Chun-fu

    2009-12-01

    Excessive production of nitric oxide (NO) and proinflammatory cytokines from activated microglia contributes to human neurodegenerative disorders. Our previous study demonstrated the potent inhibition of lipopolysaccharide (LPS)-induced NO production in rat primary microglial cells by rhynchophylline (RIN) and isorhynchophylline (IRN), a pair of isomeric alkaloids of Uncaria rhynchophylla (Miq.) Jacks. that has been used in China for centuries as a "cognitive enhancer" as well as to treat strokes. We further investigated whether RIN and IRN effectively suppress release of proinflammatory cytokines in LPS-activated microglial cells and the underling molecular mechanism for the inhibition of microglial activation. RIN and IRN concentration-dependently attenuated LPS-induced production of proinflammatory cytokines such as TNF-alpha and IL-1beta as well as NO in mouse N9 microglial cells, with IRN showing more potent inhibition of microglial activation. The western blotting analysis indicated that the potential molecular mechanism for RIN or IRN-mediated attenuation was implicated in suppressions of iNOS protein level, phosphorylation of ERK and p38 MAPKs, and degradation of IkappaBalpha. In addition, the differential regulation of the three signaling pathways by two isomers was shown. Our results suggest that RIN and IRN may be effective therapeutic candidates for use in the treatment of neurodegenerative diseases accompanied by microglial activation.

  16. A Combination of Ontogeny and CNS Environment Establishes Microglial Identity.

    PubMed

    Bennett, F Chris; Bennett, Mariko L; Yaqoob, Fazeela; Mulinyawe, Sara B; Grant, Gerald A; Hayden Gephart, Melanie; Plowey, Edward D; Barres, Ben A

    2018-05-22

    Microglia, the brain's resident macrophages, are dynamic CNS custodians with surprising origins in the extra-embryonic yolk sac. The consequences of their distinct ontogeny are unknown but critical to understanding and treating brain diseases. We created a brain macrophage transplantation system to disentangle how environment and ontogeny specify microglial identity. We find that donor cells extensively engraft in the CNS of microglia-deficient mice, and even after exposure to a cell culture environment, microglia fully regain their identity when returned to the CNS. Though transplanted macrophages from multiple tissues can express microglial genes in the brain, only those of yolk-sac origin fully attain microglial identity. Transplanted macrophages of inappropriate origin, including primary human cells in a humanized host, express disease-associated genes and specific ontogeny markers. Through brain macrophage transplantation, we discover new principles of microglial identity that have broad applications to the study of disease and development of myeloid cell therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. [Facial nerve injuries cause changes in central nervous system microglial cells].

    PubMed

    Cerón, Jeimmy; Troncoso, Julieta

    2016-12-01

    Our research group has described both morphological and electrophysiological changes in motor cortex pyramidal neurons associated with contralateral facial nerve injury in rats. However, little is known about those neural changes, which occur together with changes in surrounding glial cells. To characterize the effect of the unilateral facial nerve injury on microglial proliferation and activation in the primary motor cortex. We performed immunohistochemical experiments in order to detect microglial cells in brain tissue of rats with unilateral facial nerve lesion sacrificed at different times after the injury. We caused two types of lesions: reversible (by crushing, which allows functional recovery), and irreversible (by section, which produces permanent paralysis). We compared the brain tissues of control animals (without surgical intervention) and sham-operated animals with animals with lesions sacrificed at 1, 3, 7, 21 or 35 days after the injury. In primary motor cortex, the microglial cells of irreversibly injured animals showed proliferation and activation between three and seven days post-lesion. The proliferation of microglial cells in reversibly injured animals was significant only three days after the lesion. Facial nerve injury causes changes in microglial cells in the primary motor cortex. These modifications could be involved in the generation of morphological and electrophysiological changes previously described in the pyramidal neurons of primary motor cortex that command facial movements.

  18. Automatic counting of microglial cell activation and its applications

    PubMed Central

    Gallego, Beatriz I.; de Gracia, Pablo

    2016-01-01

    Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientific efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neurodegenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images - from several animals - covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from specialized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability. PMID:27651757

  19. An immortalized microglial cell line (Mocha) derived from rat cochlea.

    PubMed

    Seigel, G M; Manohar, S; Bai, Y Y; Ding, D; Salvi, R

    2017-12-01

    Microglia are glial-immune cells that are essential for the function and survival of the central nervous system. Microglia not only protect neural tissues from immunological insults, but also play a critical role in neural development and repair. However, little is known about the biology of microglia in the cochlea, the auditory portion of the inner ear. In this study, we detected TMEM119+, CD11b+, CD45+ and Iba1+ populations of cells in the rat cochlea, particularly in Rosenthal's canal, inner sulcus and stria vascularis. Next, we isolated and enriched the population of CD11b+ cells from the cochlea and immortalized these cells with the 12S E1A gene of adenovirus in a replication-incompetent retroviral vector to derive a novel microglial cell line, designated Mocha (microglia of the cochlea). The resulting Mocha cells express a number of markers consistent with microglia and respond to lipopolysaccharide (LPS) stimulation by upregulation of genes (Cox2, ICAM-1, Il6r, Ccl2, Il13Ra and Il15Ra) as well as releasing cytokines (IL-1beta, IL-12, IL-13 and RANTES). As evidence of microglial function, Mocha cells phagocytose fluorescent beads at 37°C, but not at 4°C. The expression pattern of microglial markers in Mocha cells suggests that immortalization leads to a more primitive phenotype, a common phenomenon in immortalized cell lines. In summary, Mocha cells display key characteristics of microglia and are now available as a useful model system for the study of cochlear microglial behavior, both in vitro and in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Immortalized sheep microglial cells are permissive to a diverse range of ruminant viruses.

    PubMed

    Stanton, James B; Swanson, Beryl; Orozco, Edith; Muñoz-Gutiérrez, Juan F; Evermann, James F; Ridpath, Julia F

    2017-12-01

    Ruminants, including sheep and goats (small ruminants), are key agricultural animals in many parts of the world. Infectious diseases, including many viral diseases, are significant problems to efficient production of ruminants. Unfortunately, reagents tailored to viruses of ruminants, and especially small ruminants, are lacking compared to other animals more typically used for biomedical research. The purpose of this study was to determine the permissibility of a stably immortalized, sheep microglial cell line to viruses that are reported to infect ruminants: bovine viral diarrhea virus (BVDV), bovine herpesvirus 1 (BoHV-1), small ruminant lentiviruses (SRLV), and bovine respiratory syncytial virus (BRSV). Sublines A and H of previously isolated, immortalized, and characterized (CD14-positive) ovine microglial cells were used. Bovine turbinate cells and goat synovial membrane cells were used for comparison. Cytopathic changes were used to confirm infection of individual wells, which were then counted and used to calculate the 50% tissue culture infectious dose. Uninoculated cells served as negative controls and confirmed that the cells were not previously infected with these viruses using polymerase chain reaction (PCR). Inoculation of the two microglial cell sublines with laboratory and field isolates of BVDV, BoHV-1, and BRSV resulted in viral infection in a manner similar to bovine turbinate cells. Immortalized microglia cells are also permissive to SRLV, similar to goat synovial membrane cells. These immortalized sheep microglial cells provide a new tool for the study of ruminant viruses in ruminant microglial cell line.

  1. Suppression of Brain Mast Cells Degranulation Inhibits Microglial Activation and Central Nervous System Inflammation.

    PubMed

    Dong, Hongquan; Zhang, Xiang; Wang, Yiming; Zhou, Xiqiao; Qian, Yanning; Zhang, Shu

    2017-03-01

    Brain inflammation has a critical role in the pathophysiology of brain diseases. Microglia, the resident immune cells in the brain, play an important role in brain inflammation, while brain mast cells are the "first responder" in the injury rather than microglia. Functional aspects of mast cell-microglia interactions remain poorly understood. Our results demonstrated that site-directed injection of the "mast cell degranulator" compound 48/80 (C48/80) in the hypothalamus induced mast cell degranulation, microglial activation, and inflammatory factor production, which initiated the acute brain inflammatory response. "Mast cell stabilizer" disodium cromoglycate (cromolyn) inhibited this effect, including decrease of inflammatory cytokines, reduced microglial activation, inhibition of MAPK and AKT pathways, and repression of protein expression of histamine receptor 1 (H 1 R), histamine receptor 4 (H 4 R), protease-activated receptor 2 (PAR2), and toll-like receptor 4 (TLR4) in microglia. We also demonstrated that C48/80 had no effect on microglial activation in mast cell-deficient Kit W-sh/W-sh mice. These results implicate that activated brain mast cells trigger microglial activation and stabilization of mast cell inhibits microglial activation-induced central nervous system (CNS) inflammation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS immune inflammation-related diseases.

  2. Correlation of Cytokine Levels and Microglial Cell Infiltration during Retinal Degeneration in RCS Rats

    PubMed Central

    Liu, Yong; Yang, Xuesen; Utheim, Tor Paaaske; Guo, Chenying; Xiao, Mingchun; Liu, Yan; Yin, Zhengqin; Ma, Jie

    2013-01-01

    Microglial cells, which are immunocompetent cells, are involved in all diseases of the central nervous system. During their activation in various diseases, a variety of soluble factors are released. In the present study, the correlation between cytokine levels and microglial cell migration in the course of retinal degeneration of Royal College of Surgeons (RCS) rats was evaluated. MFG-E8 and CD11b were used to confirm the microglial cells. In the retina of RCS rats, the mRNA expression of seven genes (MFG-E8 and its integrins αυ and ß5, CD11b and the cytokines TNF-α, IL-1ß, and MCP-1) formed almost similar bimodal peak distributions, which were centred at P7 and P45 to P60. In contrast, in rdy rats, which comprised the control group, a unimodal peak distribution centred at P14 was observed. The gene expression accompanied the activation and migration of microglial cells from the inner to the outer layer of the retina during the process of degeneration. Principal component analysis and discriminant function analysis revealed that the expression of these seven genes, especially TNF-α and CD11b, positively correlated with retinal degeneration and microglial activity during retinal degeneration in RCS rats, but not in the control rats. Furthermore, linear regression analysis demonstrated a significant correlation between the expression of these genes and the activation of microglial cells in the dystrophic retina. Our findings suggest that the suppression of microglial cells and the blockade of their cytotoxic effects may constitute a novel therapeutic strategy for treating photoreceptor death in various retinal disorders. PMID:24349184

  3. Correlation of cytokine levels and microglial cell infiltration during retinal degeneration in RCS rats.

    PubMed

    Liu, Yong; Yang, Xuesen; Utheim, Tor Paaaske; Guo, Chenying; Xiao, Mingchun; Liu, Yan; Yin, Zhengqin; Ma, Jie

    2013-01-01

    Microglial cells, which are immunocompetent cells, are involved in all diseases of the central nervous system. During their activation in various diseases, a variety of soluble factors are released. In the present study, the correlation between cytokine levels and microglial cell migration in the course of retinal degeneration of Royal College of Surgeons (RCS) rats was evaluated. MFG-E8 and CD11b were used to confirm the microglial cells. In the retina of RCS rats, the mRNA expression of seven genes (MFG-E8 and its integrins αυ and ß5, CD11b and the cytokines TNF-α, IL-1ß, and MCP-1) formed almost similar bimodal peak distributions, which were centred at P7 and P45 to P60. In contrast, in rdy rats, which comprised the control group, a unimodal peak distribution centred at P14 was observed. The gene expression accompanied the activation and migration of microglial cells from the inner to the outer layer of the retina during the process of degeneration. Principal component analysis and discriminant function analysis revealed that the expression of these seven genes, especially TNF-α and CD11b, positively correlated with retinal degeneration and microglial activity during retinal degeneration in RCS rats, but not in the control rats. Furthermore, linear regression analysis demonstrated a significant correlation between the expression of these genes and the activation of microglial cells in the dystrophic retina. Our findings suggest that the suppression of microglial cells and the blockade of their cytotoxic effects may constitute a novel therapeutic strategy for treating photoreceptor death in various retinal disorders.

  4. Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism.

    PubMed

    Zhang, Bo; Yang, Yunfeng; Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Zhi; Feng, Hua; Yang, Liming; Zhu, Gang

    2017-06-27

    The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P < 0.05). The treatment group exhibited the highest OD value among the four groups. The results observed at 5h were consistent with the results at 1 h. Flow cytometry results showed that at 1h after treatment the apoptosis percentages is higher in the control group compared to other three groups (P < 0.05). Mouse brain tissues were collected and primary neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.

  5. Aripiprazole inhibits polyI:C-induced microglial activation possibly via TRPM7.

    PubMed

    Sato-Kasai, Mina; Kato, Takahiro A; Ohgidani, Masahiro; Mizoguchi, Yoshito; Sagata, Noriaki; Inamine, Shogo; Horikawa, Hideki; Hayakawa, Kohei; Shimokawa, Norihiro; Kyuragi, Sota; Seki, Yoshihiro; Monji, Akira; Kanba, Shigenobu

    2016-12-01

    Viral infections during fetal and adolescent periods, as well as during the course of schizophrenia itself have been linked to the onset and/or relapse of a psychosis. We previously reported that the unique antipsychotic aripiprazole, a partial D2 agonist, inhibits the release of tumor necrosis factor (TNF)-α from interferon-γ-activated rodent microglial cells. Polyinosinic-polycytidylic acid (polyI:C) has recently been used as a standard model of viral infections, and recent in vitro studies have shown that microglia are activated by polyI:C. Aripiprazole has been reported to ameliorate behavioral abnormalities in polyI:C-induced mice. To clarify the anti-inflammatory properties of aripiprazole, we investigated the effects of aripiprazole on polyI:C-induced microglial activation in a cellular model of murine microglial cells and possible surrogate cells for human microglia. PolyI:C treatment of murine microglial cells activated the production of TNF-α and enhanced the p38 mitogen-activated protein kinase (MAPK) pathway, whereas aripiprazole inhibited these responses. In addition, polyI:C treatment of possible surrogate cells for human microglia markedly increased TNF-α mRNA expression in cells from three healthy volunteers. Aripiprazole inhibited this increase in cells from two individuals. PolyI:C consistently increased intracellular Ca 2+ concentration ([Ca 2+ ] i ) in murine microglial cells by influx of extracellular Ca 2+ . We demonstrated that transient receptor potential in melastatin 7 (TRPM7) channels contributed to this polyI:C-induced increase in [Ca 2+ ] i . Taken together, these data suggest that aripiprazole may be therapeutic for schizophrenia by reducing microglial inflammatory reactions, and TRPM7 may be a novel therapeutic target for schizophrenia. Further studies are needed to validate these findings. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Microglial dystrophy in the aged and Alzheimer's disease brain is associated with ferritin immunoreactivity.

    PubMed

    Lopes, Kryslaine O; Sparks, D Larry; Streit, Wolfgang J

    2008-08-01

    Degeneration of microglial cells may be important for understanding the pathogenesis of aging-related neurodegeneration and neurodegenerative diseases. In this study, we analyzed the morphological characteristics of microglial cells in the nondemented and Alzheimer's disease (AD) human brain using ferritin immunohistochemistry. The central hypothesis was that expression of the iron storage protein ferritin increases the susceptibility of microglia to degeneration, particularly in the aged brain since senescent microglia might become less efficient in maintaining iron homeostasis and free iron can promote oxidative damage. In a primary set of 24 subjects (age range 34-97 years) examined, microglial cells immunoreactive for ferritin were found to constitute a subpopulation of the larger microglial pool labeled with an antibody for HLA-DR antigens. The majority of these ferritin-positive microglia exhibited aberrant morphological (dystrophic) changes in the aged and particularly in the AD brain. No spatial correlation was found between ferritin-positive dystrophic microglia and senile plaques in AD tissues. Analysis of a secondary set of human postmortem brain tissues with a wide range of postmortem intervals (PMI, average 10.94 +/- 5.69 h) showed that the occurrence of microglial dystrophy was independent of PMI and consequently not a product of tissue autolysis. Collectively, these results suggest that microglial involvement in iron storage and metabolism contributes to their degeneration, possibly through increased exposure of the cells to oxidative stress. We conclude that ferritin immunohistochemistry may be a useful method for detecting degenerating microglia in the human brain. (c) 2008 Wiley-Liss, Inc.

  7. Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis

    PubMed Central

    Sears-Kraxberger, Ilse; Keirstead, Hans S.

    2013-01-01

    The glial scar formed by reactive astrocytes and axon growth inhibitors associated with myelin play important roles in the failure of axonal regeneration following central nervous system (CNS) injury. Our laboratory has previously demonstrated that immunological demyelination of the CNS facilitates regeneration of severed axons following spinal cord injury. In the present study, we evaluate whether immunological demyelination is accompanied with astrogliosis. We compared the astrogliosis and macrophage/microglial cell responses 7 days after either immunological demyelination or a stab injury to the dorsal funiculus. Both lesions induced a strong activated macrophage/microglial cells response which was significantly higher within regions of immunological demyelination. However, immunological demyelination regions were not accompanied by astrogliosis compared to stab injury that induced astrogliosis which extended several millimeters above and below the lesions, evidenced by astroglial hypertrophy, formation of a glial scar, and upregulation of intermediate filaments glial fibrillary acidic protein (GFAP). Moreover, a stab or a hemisection lesion directly within immunological demyelination regions did not induced astrogliosis within the immunological demyelination region. These results suggest that immunological demyelination creates a unique environment in which astrocytes do not form a glial scar and provides a unique model to understand the putative interaction between astrocytes and activated macrophage/microglial cells. PMID:24319469

  8. Methamphetamine Causes Microglial Activation in the Brains of Human Abusers

    PubMed Central

    Sekine, Yoshimoto; Ouchi, Yasuomi; Sugihara, Genichi; Takei, Nori; Yoshikawa, Etsuji; Nakamura, Kazuhiko; Iwata, Yasuhide; Tsuchiya, Kenji J.; Suda, Shiro; Suzuki, Katsuaki; Kawai, Masayoshi; Takebayashi, Kiyokazu; Yamamoto, Shigeyuki; Matsuzaki, Hideo; Ueki, Takatoshi; Mori, Norio; Gold, Mark S.; Cadet, Jean L.

    2008-01-01

    Methamphetamine is a popular addictive drug whose use is associated with multiple neuropsychiatric adverse events and toxic to the dopaminergic and serotonergic systems of the brain. Methamphetamine-induced neuropathology is associated with increased expression of microglial cells that are thought to participate in either pro-toxic or protective mechanisms in the brain. Although reactive microgliosis has been observed in animal models of methamphetamine neurotoxicity, no study has reported on the status of microglial activation in human methamphetamine abusers. The present study reports on 12 abstinent methamphetamine abusers and 12 age-, gender-, education-matched control subjects who underwent positron emission tomography using a radiotracer for activated microglia, [11C](R)-(1-[2-chlorophenyl]-N-methyl-N-[1-methylpropyl]-3-isoquinoline carboxamide) ([11C](R)-PK11195). Compartment analysis was used to estimate quantitative levels of binding potentials of [11C](R)-PK11195 in brain regions with dopaminergic and/or serotonergic innervation. The mean levels of [11C](R)-PK11195 binding were higher in methamphetamine abusers than those in control subjects in all brain regions (> 250% higher, p < 0.01 for all). In addition, the binding levels in the midbrain, striatum, thalamus, and orbitofrontal and insular cortices (p < 0.05) correlated inversely with the duration of methamphetamine abstinence. These results suggest that chronic self-administration of methamphetamine can cause reactive microgliosis in the brains of human methamphetamine abusers, a level of activation that appears to subside over longer periods of abstinence. PMID:18509037

  9. Methamphetamine causes microglial activation in the brains of human abusers.

    PubMed

    Sekine, Yoshimoto; Ouchi, Yasuomi; Sugihara, Genichi; Takei, Nori; Yoshikawa, Etsuji; Nakamura, Kazuhiko; Iwata, Yasuhide; Tsuchiya, Kenji J; Suda, Shiro; Suzuki, Katsuaki; Kawai, Masayoshi; Takebayashi, Kiyokazu; Yamamoto, Shigeyuki; Matsuzaki, Hideo; Ueki, Takatoshi; Mori, Norio; Gold, Mark S; Cadet, Jean L

    2008-05-28

    Methamphetamine is a popular addictive drug whose use is associated with multiple neuropsychiatric adverse events and toxic to the dopaminergic and serotonergic systems of the brain. Methamphetamine-induced neuropathology is associated with increased expression of microglial cells that are thought to participate in either pro-toxic or protective mechanisms in the brain. Although reactive microgliosis has been observed in animal models of methamphetamine neurotoxicity, no study has reported on the status of microglial activation in human methamphetamine abusers. The present study reports on 12 abstinent methamphetamine abusers and 12 age-, gender-, and education-matched control subjects who underwent positron emission tomography using a radiotracer for activated microglia, [(11)C](R)-(1-[2-chlorophenyl]-N-methyl-N-[1-methylpropyl]-3-isoquinoline carboxamide) ([(11)C](R)-PK11195). Compartment analysis was used to estimate quantitative levels of binding potentials of [(11)C](R)-PK11195 in brain regions with dopaminergic and/or serotonergic innervation. The mean levels of [(11)C](R)-PK11195 binding were higher in methamphetamine abusers than those in control subjects in all brain regions (>250% higher; p < 0.01 for all). In addition, the binding levels in the midbrain, striatum, thalamus, and orbitofrontal and insular cortices (p < 0.05) correlated inversely with the duration of methamphetamine abstinence. These results suggest that chronic self-administration of methamphetamine can cause reactive microgliosis in the brains of human methamphetamine abusers, a level of activation that appears to subside over longer periods of abstinence.

  10. The PI3K/Akt pathway is required for LPS activation of microglial cells.

    PubMed

    Saponaro, Concetta; Cianciulli, Antonia; Calvello, Rosa; Dragone, Teresa; Iacobazzi, Francesco; Panaro, Maria Antonietta

    2012-10-01

    Upregulation of inflammatory responses in the brain is associated with a number of neurodegenerative diseases. Microglia are activated in neurodegenerative diseases, producing pro-inflammatory mediators. Critically, lipopolysaccharide (LPS)-induced microglial activation causes dopaminergic neurodegeneration in vitro and in vivo. The signaling mechanisms triggered by LPS to stimulate the release of pro-inflammatory mediators in microglial cells are still incompletely understood. To further explore the mechanisms of LPS-mediated inflammatory response of microglial cells, we studied the role of phosphatidylinositol 3-kinase (PI3K)/Akt signal transduction pathways known to be activated by toll-like receptor-4 signaling through LPS. In the current study, we report that the activation profile of LPS-induced pAkt activation preceded those of LPS-induced NF-κB activation, suggesting a role for PI3K/Akt in the pathway activation of NF-κB-dependent inflammatory responses of activated microglia. These results, providing the first evidence that PI3K dependent signaling is involved in the inflammatory responses of microglial cells following LPS stimulation, may be useful in preventing inflammatory based neurodegenerative processes.

  11. Dextromethorphan inhibition of voltage-gated proton currents in BV2 microglial cells.

    PubMed

    Song, Jin-Ho; Yeh, Jay Z

    2012-05-10

    Dextromethorphan, an antitussive drug, has a neuroprotective property as evidenced by its inhibition of microglial production of pro-inflammatory cytokines and reactive oxygen species. The microglial activation requires NADPH oxidase activity, which is sustained by voltage-gated proton channels in microglia as they dissipate an intracellular acid buildup. In the present study, we examined the effect of dextromethorphan on proton currents in microglial BV2 cells. Dextromethorphan reversibly inhibited proton currents with an IC(50) value of 51.7 μM at an intracellular/extracellular pH gradient of 5.5/7.3. Dextromethorphan did not change the reversal potential or the voltage dependence of the gating. Dextrorphan and 3-hydroxymorphinan, major metabolites of dextromethorphan, and dextromethorphan methiodide were ineffective in inhibiting proton currents. The results indicate that dextromethorphan inhibition of proton currents would suppress NADPH oxidase activity and, eventually, microglial activation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Antipsychotics, chlorpromazine and haloperidol inhibit voltage-gated proton currents in BV2 microglial cells.

    PubMed

    Shin, Hyewon; Song, Jin-Ho

    2014-09-05

    Microglial dysfunction and neuroinflammation are thought to contribute to the pathogenesis of schizophrenia. Some antipsychotic drugs have anti-inflammatory activity and can reduce the secretion of pro-inflammatory cytokines and reactive oxygen species from activated microglial cells. Voltage-gated proton channels on the microglial cells participate in the generation of reactive oxygen species and neuronal toxicity by supporting NADPH oxidase activity. In the present study, we examined the effects of two typical antipsychotics, chlorpromazine and haloperidol, on proton currents in microglial BV2 cells using the whole-cell patch clamp method. Chlorpromazine and haloperidol potently inhibited proton currents with IC50 values of 2.2 μM and 8.4 μM, respectively. Chlorpromazine and haloperidol are weak bases that can increase the intracellular pH, whereby they reduce the proton gradient and affect channel gating. Although the drugs caused a marginal positive shift of the activation voltage, they did not change the reversal potential. This suggested that proton current inhibition was not due to an alteration of the intracellular pH. Chlorpromazine and haloperidol are strong blockers of dopamine receptors. While dopamine itself did not affect proton currents, it also did not alter proton current inhibition by the two antipsychotics, indicating dopamine receptors are not likely to mediate the proton current inhibition. Given that proton channels are important for the production of reactive oxygen species and possibly pro-inflammatory cytokines, the anti-inflammatory and antipsychotic activities of chlorpromazine and haloperidol may be partly derived from their ability to inhibit microglial proton currents. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. TAM receptors regulate multiple features of microglial physiology.

    PubMed

    Fourgeaud, Lawrence; Través, Paqui G; Tufail, Yusuf; Leal-Bailey, Humberto; Lew, Erin D; Burrola, Patrick G; Callaway, Perri; Zagórska, Anna; Rothlin, Carla V; Nimmerjahn, Axel; Lemke, Greg

    2016-04-14

    Microglia are damage sensors for the central nervous system (CNS), and the phagocytes responsible for routine non-inflammatory clearance of dead brain cells. Here we show that the TAM receptor tyrosine kinases Mer and Axl regulate these microglial functions. We find that adult mice deficient in microglial Mer and Axl exhibit a marked accumulation of apoptotic cells specifically in neurogenic regions of the CNS, and that microglial phagocytosis of the apoptotic cells generated during adult neurogenesis is normally driven by both TAM receptor ligands Gas6 and protein S. Using live two-photon imaging, we demonstrate that the microglial response to brain damage is also TAM-regulated, as TAM-deficient microglia display reduced process motility and delayed convergence to sites of injury. Finally, we show that microglial expression of Axl is prominently upregulated in the inflammatory environment that develops in a mouse model of Parkinson's disease. Together, these results establish TAM receptors as both controllers of microglial physiology and potential targets for therapeutic intervention in CNS disease.

  14. Microglial K+ Channel Expression in Young Adult and Aged Mice

    PubMed Central

    Schilling, Tom; Eder, Claudia

    2015-01-01

    The K+ channel expression pattern of microglia strongly depends on the cells' microenvironment and has been recognized as a sensitive marker of the cells' functional state. While numerous studies have been performed on microglia in vitro, our knowledge about microglial K+ channels and their regulation in vivo is limited. Here, we have investigated K+ currents of microglia in striatum, neocortex and entorhinal cortex of young adult and aged mice. Although almost all microglial cells exhibited inward rectifier K+ currents upon membrane hyperpolarization, their mean current density was significantly enhanced in aged mice compared with that determined in young adult mice. Some microglial cells additionally exhibited outward rectifier K+ currents in response to depolarizing voltage pulses. In aged mice, microglial outward rectifier K+ current density was significantly larger than in young adult mice due to the increased number of aged microglial cells expressing these channels. Aged dystrophic microglia exhibited outward rectifier K+ currents more frequently than aged ramified microglia. The majority of microglial cells expressed functional BK-type, but not IK- or SK-type, Ca2+-activated K+ channels, while no differences were found in their expression levels between microglia of young adult and aged mice. Neither microglial K+ channel pattern nor K+ channel expression levels differed markedly between the three brain regions investigated. It is concluded that age-related changes in microglial phenotype are accompanied by changes in the expression of microglial voltage-activated, but not Ca2+-activated, K+ channels. PMID:25472417

  15. Regulation of microglial development: a novel role for thyroid hormone.

    PubMed

    Lima, F R; Gervais, A; Colin, C; Izembart, M; Neto, V M; Mallat, M

    2001-03-15

    The postnatal development of rat microglia is marked by an important increase in the number of microglial cells and the growth of their ramified processes. We studied the role of thyroid hormone in microglial development. The distribution and morphology of microglial cells stained with isolectin B4 or monoclonal antibody ED1 were analyzed in cortical and subcortical forebrain regions of developing rats rendered hypothyroid by prenatal and postnatal treatment with methyl-thiouracil. Microglial processes were markedly less abundant in hypothyroid pups than in age-matched normal animals, from postnatal day 4 up to the end of the third postnatal week of life. A delay in process extension and a decrease in the density of microglial cell bodies, as shown by cell counts in the developing cingulate cortex of normal and hypothyroid animals, were responsible for these differences. Conversely, neonatal rat hyperthyroidism, induced by daily injections of 3,5,3'-triiodothyronine (T3), accelerated the extension of microglial processes and increased the density of cortical microglial cell bodies above physiological levels during the first postnatal week of life. Reverse transcription-PCR and immunological analyses indicated that cultured cortical ameboid microglial cells expressed the alpha1 and beta1 isoforms of nuclear thyroid hormone receptors. Consistent with the trophic and morphogenetic effects of thyroid hormone observed in situ, T3 favored the survival of cultured purified microglial cells and the growth of their processes. These results demonstrate that thyroid hormone promotes the growth and morphological differentiation of microglia during development.

  16. Data from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with Withaferin A (WA).

    PubMed

    Narayan, Malathi; Seeley, Kent W; Jinwal, Umesh K

    2016-06-01

    Mass spectrometry data collected in a study analyzing the effect of withaferin A (WA) on a mouse microglial (N9) cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis. The data presented here is related to the published research article on the effect of WA on the differential regulation of proteins in mouse microglial cells [1]. Mass spectrometry data has also been deposited in the ProteomeXchange with the identifier PXD003032.

  17. Activin A increases phagocytosis of Escherichia coli K1 by primary murine microglial cells activated by toll-like receptor agonists.

    PubMed

    Diesselberg, Catharina; Ribes, Sandra; Seele, Jana; Kaufmann, Annika; Redlich, Sandra; Bunkowski, Stephanie; Hanisch, Uwe-Karsten; Michel, Uwe; Nau, Roland; Schütze, Sandra

    2018-06-07

    Bacterial meningitis is associated with high mortality and long-term neurological sequelae. Increasing the phagocytic activity of microglia could improve the resistance of the CNS against infections. We studied the influence of activin A, a member of the TGF-β family with known immunoregulatory and neuroprotective effects, on the functions of microglial cells in vitro. Primary murine microglial cells were treated with activin A (0.13 ng/ml-13 μg/ml) alone or in combination with agonists of TLR2, 4, and 9. Phagocytosis of Escherichia coli K1 as well as release of TNF-α, IL-6, CXCL1, and NO was assessed. Activin A dose-dependently enhanced the phagocytosis of Escherichia coli K1 by microglial cells activated by agonists of TLR2, 4, and 9 without further increasing NO and proinflammatory cytokine release. Cell viability of microglial cells was not affected by activin A. Priming of microglial cells with activin A could increase the elimination of bacteria in bacterial CNS infections. This preventive strategy could improve the resistance of the brain to infections, particularly in elderly and immunocompromised patients.

  18. Zinc triggers microglial activation.

    PubMed

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  19. Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells

    PubMed Central

    Ma, Li; Sun, Peng; Zhang, Jian-Cheng; Zhang, Qing; Yao, Shang-Long

    2017-01-01

    S100A8/A9, a heterodimer of the two calcium-binding proteins S100A8 and S100A9, has emerged as an important proinflammatory mediator in acute and chronic inflammation. However, whether S100A8/A9 is implicated in microglial-induced neuroinflammatory response remains unclear. Here, we found that S100A8/A9 significantly increased the secretion of proinflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cultured BV-2 microglial cells. Inhibition of the Toll-like receptor 4 (TLR4) and the receptor for advanced glycation end-products (RAGE) with C225 and a RAGE-blocking antibody, respectively significantly reduced the secretion of TNF-α and IL-6 from S100A8/A9-stimulated BV-2 microglial cells. Furthermore, S100A8/A9 markedly enhanced the nuclear translocation of NF-κB p65 and the DNA-binding activities of NF-κB in BV-2 microglial cells, and suppression of ERK and JNK/MAPK signaling pathways by PD98059 or SP600125 significantly inhibited NF-κB activity and the release of TNF-α and IL-6 in the S100A8/A9-treated BV-2 microglial cells. Our data also showed that inhibition of NF-κB with pyrrolidine dithiocarbamate (PDTC) significantly reduced the secretion of TNF-α and IL-6 from BV-2 microglial cells treated with S100A8/A9. Taken together, our data suggest that S100A8/A9 acts directly on BV-2 microglial cells via binding to TLR4 and RAGE on the membrane and then stimulates the secretion of proinflammatory cytokines through ERK and JNK-mediated NF-κB activity in BV-2 microglial cells. Targeting S100A8/A9 may provide a novel therapeutic strategy in microglial-induced neuroinflammatory diseases. PMID:28498464

  20. 4-Hydroxy TEMPO attenuates dichlorvos induced microglial activation and apoptosis.

    PubMed

    Sunkaria, Aditya; Sharma, Deep Raj; Wani, Willayat Yousuf; Gill, Kiran Dip

    2014-02-19

    Microglial cells have been implicated in various neurodegenerative diseases. Previous studies from our lab have shown that dichlorvos (an organophosphate) could induce Parkinson's like features in rats. Recently, we have shown that dichlorvos can induce microglial activation, and if not checked in time could ultimately induce neuronal apoptosis. However, this activation does not always pose a threat to the neurons. Activated microglia also secrete various neuronal growth factors, suggesting that they have beneficial roles in CNS repair. Therefore, it is essential to control their detrimental functions selectively. Here, we tried to find out how microglial cells behave when exposed to dichlorvos in either the presence or absence of potent nitric oxide scavenger and superoxide dismutase mimetic, 4-hydroxy TEMPO (4-HT). Wistar rat pups (1 day) were used to isolate and culture primary microglial cells. We found 4-HT pretreatment successfully attenuated the dichlorvos mediated microglial activation. Moreover, 4-HT pretreatment decreased the up-regulated levels of p53 and its downstream effector, p21. The expression of various cell cycle regulators such as Chk2, CDC25a, and cyclin A remained close to their basal levels when 4-HT pretreatment was given. DNA fragmentation analysis showed significant reduction in the DNA damage of 4-HT pretreated microglia as compared to dichlorvos treated cells. In addition to this, we found 4-HT pretreatment prevented the microglial cells from undergoing apoptotic cell death even after 48 h of dichlorvos exposure. Taken together, our results showed 4-HT pretreatment could successfully ameliorate the dichlorvos induced microglial cell damage.

  1. Zinc triggers microglial activation

    PubMed Central

    Kauppinen, Tiina M.; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A.

    2009-01-01

    Microglia are resident immune cells of the central nervous system. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, “amoeboid” morphology and release matrix metalloproteinases, reactive oxygen species, and other pro-inflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here we show that zinc directly triggers microglial activation. Microglia transfected with an NF-kB reporter gene showed a several-fold increase in NF-kB activity in response to 30 μM zinc. Cultured mouse microglia exposed to 15 – 30 μM zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-κB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-κB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders. PMID:18509044

  2. Orexin Impairs the Phagocytosis and Degradation of Amyloid-β Fibrils by Microglial Cells.

    PubMed

    An, Hoyoung; Cho, Mi-Hyang; Kim, Dong-Hou; Chung, Seockhoon; Yoon, Seung-Yong

    2017-01-01

    Intracranial accumulation of amyloid-β (Aβ) is a characteristic finding of Alzheimer's disease (AD). It is thought to be the result of Aβ overproduction by neurons and impaired clearance by several systems, including degradation by microglia. Sleep disturbance is now considered a risk factor for AD, but studies focusing on how sleep modulates microglial handling of Aβ have been scarce. To determine whether phagocytosis and degradation of extracellular Aβ fibrils by BV2 microglial cells were impaired by treatment with orexin-A/B, a major modulator of the sleep-wake cycle, which may mimic sleep deprivation conditions. BV2 cells were treated with orexin and Aβ for various durations and phagocytic and autophagic processes for degradation of extracellular Aβ were examined. After treatment with orexin, the formation of actin filaments around Aβ fibrils, which is needed for phagocytosis, was impaired, and phagocytosis regulating molecules such as PI3K, Akt, and p38-MAPK were downregulated in BV2 cells. Orexin also suppressed autophagic flux, through disruption of the autophagosome-lysosome fusion process, resulting in impaired Aβ degradation in BV2 cells. Our results demonstrate that orexin can hinder clearance of Aβ through the suppression of phagocytosis and autophagic flux in microglia. This is a novel mechanism linking AD and sleep, and suggests that attenuated microglial function, due to sleep deprivation, may increase Aβ accumulation in the brain.

  3. Differential effects of lipopolysaccharide on energy metabolism in murine microglial N9 and cholinergic SN56 neuronal cells.

    PubMed

    Klimaszewska-Łata, Joanna; Gul-Hinc, Sylwia; Bielarczyk, Hanna; Ronowska, Anna; Zyśk, Marlena; Grużewska, Katarzyna; Pawełczyk, Tadeusz; Szutowicz, Andrzej

    2015-04-01

    There are significant differences between acetyl-CoA and ATP levels, enzymes of acetyl-CoA metabolism, and toll-like receptor 4 contents in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Exposition of N9 cells to lipopolysaccharide caused concentration-dependent several-fold increases of nitrogen oxide synthesis, accompanied by inhibition of pyruvate dehydrogenase complex, aconitase, and α-ketoglutarate dehydrogenase complex activities, and by nearly proportional depletion of acetyl-CoA, but by relatively smaller losses in ATP content and cell viability (about 5%). On the contrary, SN56 cells appeared to be insensitive to direct exposition to high concentration of lipopolysaccharide. However, exogenous nitric oxide resulted in marked inhibition pyruvate dehydrogenase and aconitase activities, depletion of acetyl-CoA, along with respective loss of SN56 cells viability. These data indicate that these two common neurodegenerative signals may differentially affect energy-acetyl-CoA metabolism in microglial and cholinergic neuronal cell compartments in the brain. Moreover, microglial cells appeared to be more resistant than neuronal cells to acetyl-CoA and ATP depletion evoked by these neurodegenerative conditions. Together, these data indicate that differential susceptibility of microglia and cholinergic neuronal cells to neurotoxic signals may result from differences in densities of toll-like receptors and degree of disequilibrium between acetyl-CoA provision in mitochondria and its utilization for energy production and acetylation reactions in each particular group of cells. There are significant differences between acetyl-CoA and ATP levels and enzymes of acetyl-CoA metabolism in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Pathological stimulation of microglial toll-like receptors (TLRs) triggered excessive synthesis of microglia-derived nitric oxide (NO)/NOO radicals that

  4. Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells.

    PubMed

    Ma, Li; Sun, Peng; Zhang, Jian-Cheng; Zhang, Qing; Yao, Shang-Long

    2017-07-01

    S100A8/A9, a heterodimer of the two calcium-binding proteins S100A8 and S100A9, has emerged as an important proinflammatory mediator in acute and chronic inflammation. However, whether S100A8/A9 is implicated in microglial‑induced neuroinflammatory response remains unclear. Here, we found that S100A8/A9 significantly increased the secretion of proinflammatory cytokines inclu-ding tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cultured BV-2 microglial cells. Inhibition of the Toll-like receptor 4 (TLR4) and the receptor for advanced glycation end-products (RAGE) with C225 and a RAGE-blocking antibody, respectively significantly reduced the secretion of TNF-α and IL-6 from S100A8/A9-stimulated BV-2 microglial cells. Furthermore, S100A8/A9 markedly enhanced the nuclear translocation of NF-κB p65 and the DNA-binding activities of NF-κB in BV-2 microglial cells, and suppression of ERK and JNK/MAPK signaling pathways by PD98059 or SP600125 significantly inhibited NF-κB activity and the release of TNF-α and IL-6 in the S100A8/A9-treated BV-2 microglial cells. Our data also showed that inhibition of NF-κB with pyrrolidine dithiocarbamate (PDTC) significantly reduced the secretion of TNF-α and IL-6 from BV-2 microglial cells treated with S100A8/A9. Taken together, our data suggest that S100A8/A9 acts directly on BV-2 microglial cells via binding to TLR4 and RAGE on the membrane and then stimulates the secretion of proinflammatory cytokines through ERK and JNK-mediated NF-κB activity in BV-2 microglial cells. Targeting S100A8/A9 may provide a novel therapeutic strategy in microglial-induced neuroinflammatory diseases.

  5. Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week.

    PubMed

    Nikodemova, Maria; Kimyon, Rebecca S; De, Ishani; Small, Alissa L; Collier, Lara S; Watters, Jyoti J

    2015-01-15

    During postnatal development, microglia, CNS resident innate immune cells, are essential for synaptic pruning, neuronal apoptosis and remodeling. During this period microglia undergo morphological and phenotypic transformations; however, little is known about how microglial number and density is regulated during postnatal CNS development. We found that after an initial increase during the first 14 postnatal days, microglial numbers in mouse brain began declining in the third postnatal week and were reduced by 50% by 6weeks of age; these "adult" levels were maintained until at least 9months of age. Microglial CD11b levels increased, whereas CD45 and ER-MP58 declined between P10 and adulthood, consistent with a maturing microglial phenotype. Our data indicate that both increased microglial apoptosis and a decreased proliferative capacity contribute to the developmental reduction in microglial numbers. We found no correlation between developmental reductions in microglial numbers and brain mRNA levels of Cd200, Cx3Cl1, M-Csf or Il-34. We tested the ability of M-Csf-overexpression, a key growth factor promoting microglial proliferation and survival, to prevent microglial loss in the third postnatal week. Mice overexpressing M-Csf in astrocytes had higher numbers of microglia at all ages tested. However, the developmental decline in microglial numbers still occurred, suggesting that chronically elevated M-CSF is unable to overcome the developmental decrease in microglial numbers. Whereas the identity of the factor(s) regulating microglial number and density during development remains to be determined, it is likely that microglia respond to a "maturation" signal since the reduction in microglial numbers coincides with CNS maturation. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Mitochondrial Lysates Induce Inflammation and Alzheimer’s Disease-Relevant Changes in Microglial and Neuronal Cells

    PubMed Central

    Wilkins, Heather M.; Carl, Steven M.; Weber, Sam G.; Ramanujan, Suruchi A.; Festoff, Barry W.; Linseman, Daniel A.; Swerdlow, Russell H.

    2015-01-01

    Neuroinflammation occurs in AD. While AD genetic studies implicate inflammation-relevant genes and fibrillar amyloid β protein promotes inflammation, our understanding of AD neuroinflammation nevertheless remains incomplete. In this study we hypothesized damage-associated molecular pattern (DAMP) molecules arising from mitochondria, intracellular organelles that resemble bacteria, could contribute to AD neuroinflammation. To preliminarily test this possibility, we exposed neuronal and microglial cell lines to enriched mitochondrial lysates. BV2 microglial cells treated with mitochondrial lysates showed decreased TREM2 mRNA, increased TNFα mRNA, increased MMP-8 mRNA, increased IL-8 mRNA, redistribution of NFκB to the nucleus, and increased p38 MAPK phosphorylation. SH-SY5Y neuronal cells treated with mitochondrial lysates showed increased TNFα mRNA, increased NFκB protein, decreased IκBα protein, increased AβPP mRNA, and increased AβPP protein. Enriched mitochondrial lysates from SH-SY5Y cells lacking detectable mitochondrial DNA (ρ0 cells) failed to induce any of these changes, while mtDNA obtained directly from mitochondria (but not PCR-amplified mtDNA) increased BV2 cell TNFα mRNA. These results indicate at least one mitochondrial-derived DAMP molecule, mtDNA, can induce inflammatory changes in microglial and neuronal cell lines. Our data are consistent with the hypothesis that a mitochondrial-derived DAMP molecule or molecules could contribute to AD neuroinflammation. PMID:25537010

  7. Involvement of microglial cells in infrasonic noise-induced stress via upregulated expression of corticotrophin releasing hormone type 1 receptor.

    PubMed

    Du, F; Yin, L; Shi, M; Cheng, H; Xu, X; Liu, Z; Zhang, G; Wu, Z; Feng, G; Zhao, G

    2010-05-19

    Infrasound is a kind of environmental noise and threatens the public health as a nonspecific biological stressor. Upregulated expression of corticotrophin releasing hormone (CRH) and its receptor CRH-R1 in the neurons of hypothalamic paraventricular nucleus (PVN) was reported to be responsible for infrasonic noise-induced stress and injuries. Recent studies revealed that CRH-R1 is expressed in activated microglial cells, lending support to the hypothesis that microglial cells may be also responsible for infrasonic noise-induced stress. In this work, we exposed Sprague-Dawley rats and in vitro cultured microglial cells to infrasound with a main frequency of 16 Hz and a sound pressure level of 130 dB for 2 h, and examined the changes in the expression of CRH-R1 at different time points after infrasound exposure by immunohistochemistry and semi-quantitative RT-PCR. We found that infrasound exposure resulted in a significant activation of microglia cells and upregulated their expression of CRH-R1 in the PVN in vivo. Upregulated expression of CRH-R1 can be blocked by antalarmin, a selective CRH-R1 antagonist. Our in vitro data further revealed that in the absence of neurons, infrasound can directly induce microglial activation and upregulate their CRH-R1 expression. These findings suggest that in addition to the PVN neurons, microglial cells are the effector cells for infrasound as well, and involve in the infrasound-induced stress through upregulated expression of CRH-R1. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Anti-Inflammatory Effect of Ginsenoside Rg5 in Lipopolysaccharide-Stimulated BV2 Microglial Cells

    PubMed Central

    Lee, Yu Young; Park, Jin-Sun; Jung, Ji-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2013-01-01

    Microglia are resident immune cells in the central nervous system. They play a role in normal brain development and neuronal recovery. However, overactivation of microglia causes neuronal death, which is associated with neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease. Therefore, controlling microglial activation has been suggested as an important target for treatment of neurodegenerative diseases. In the present study, we investigated the anti-inflammatory effect of ginsenoside Rg5 in lipopolysaccharide (LPS)-stimulated BV2 microglial cells and rat primary microglia. The data showed that Rg5 suppressed LPS-induced nitric oxide (NO) production and proinflammatory TNF-α secretion. In addition, Rg5 inhibited the mRNA expressions of iNOS, TNF-α, IL-1β, COX-2 and MMP-9 induced by LPS. Further mechanistic studies revealed that Rg5 inhibited the phophorylations of PI3K/Akt and MAPKs and the DNA binding activities of NF-κB and AP-1, which are upstream molecules controlling inflammatory reactions. Moreover, Rg5 suppressed ROS production with upregulation of hemeoxygenase-1 (HO-1) expression in LPS-stimulated BV2 cells. Overall, microglial inactivation by ginsenoside Rg5 may provide a therapeutic potential for various neuroinflammatory disorders. PMID:23698769

  9. Minocycline Causes Widespread Cell Death and Increases Microglial Labeling in the Neonatal Mouse Brain

    PubMed Central

    Strahan, J. Alex; Walker, William H.; Montgomery, Taylor R.; Forger, Nancy G.

    2016-01-01

    Minocycline, an antibiotic of the tetracycline family, inhibits microglia in many paradigms, and is among the most commonly used tools for examining the role of microglia in physiological processes. Microglia may play an active role in triggering developmental neuronal cell death, although findings have been contradictory. To determine whether microglia influence developmental cell death, we treated perinatal mice with minocycline (45 mg/kg) and quantified effects on dying cells and microglial labeling using immunohistochemistry for activated caspase-3 (AC3) and ionized calcium-binding adapter molecule 1 (Iba1), respectively. Contrary to our expectations, minocycline treatment from embryonic day 18 to postnatal day (P)1 caused a >10-fold increase in cell death 8 h after the last injection in all brain regions examined, including the primary sensory cortex (S1), septum, hippocampus and hypothalamus. Iba1 labeling was also increased in most regions. Similar effects, although of smaller magnitude, were seen when treatment was delayed to P3-P5. Minocycline treatment from P3-P5 also decreased overall cell number in the septum at weaning, suggesting lasting effects of the neonatal exposure. When administered at lower doses (4.5 or 22.5 mg/kg), or at the same dose one week later (P10-P12), minocycline no longer increased microglial markers or cell death. Taken together, the most commonly used microglial “inhibitor” increases cell death and Iba1 labeling in the neonatal mouse brain. Minocycline is used clinically in infant and pediatric populations; caution is warrented when using minocycline in developing animals, or extrapolating the effects of this drug across ages. PMID:27706925

  10. Curcumin is a potent modulator of microglial gene expression and migration

    PubMed Central

    2011-01-01

    Background Microglial cells are important effectors of the neuronal innate immune system with a major role in chronic neurodegenerative diseases. Curcumin, a major component of tumeric, alleviates pro-inflammatory activities of these cells by inhibiting nuclear factor kappa B (NFkB) signaling. To study the immuno-modulatory effects of curcumin on a transcriptomic level, DNA-microarray analyses were performed with resting and LPS-challenged microglial cells after short-term treatment with curcumin. Methods Resting and LPS-activated BV-2 cells were stimulated with curcumin and genome-wide mRNA expression patterns were determined using DNA-microarrays. Selected qRT-PCR analyses were performed to confirm newly identified curcumin-regulated genes. The migration potential of microglial cells was determined with wound healing assays and transwell migration assays. Microglial neurotoxicity was estimated by morphological analyses and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Results Curcumin treatment markedly changed the microglial transcriptome with 49 differentially expressed transcripts in a combined analysis of resting and activated microglial cells. Curcumin effectively triggered anti-inflammatory signals as shown by induced expression of Interleukin 4 and Peroxisome proliferator activated receptor α. Several novel curcumin-induced genes including Netrin G1, Delta-like 1, Platelet endothelial cell adhesion molecule 1, and Plasma cell endoplasmic reticulum protein 1, have been previously associated with adhesion and cell migration. Consequently, curcumin treatment significantly inhibited basal and activation-induced migration of BV-2 microglia. Curcumin also potently blocked gene expression related to pro-inflammatory activation of resting cells including Toll-like receptor 2 and Prostaglandin-endoperoxide synthase 2. Moreover, transcription of NO synthase 2 and Signal transducer and activator

  11. Fractalkine Attenuates Microglial Cell Activation Induced by Prenatal Stress

    PubMed Central

    Ślusarczyk, Joanna; Trojan, Ewa; Głombik, Katarzyna; Chamera, Katarzyna; Roman, Adam; Budziszewska, Bogusława; Basta-Kaim, Agnieszka

    2016-01-01

    The potential contribution of inflammation to the development of neuropsychiatric diseases has recently received substantial attention. In the brain, the main immune cells are the microglia. As they are the main source of inflammatory factors, it is plausible that the regulation of their activation may be a potential therapeutic target. Fractalkine (CX3CL1) and its receptor CX3CR1 play a crucial role in the control of the biological activity of the microglia. In the present study, using microglial cultures we investigated whether fractalkine is able to reverse changes in microglia caused by a prenatal stress procedure. Our study found that the microglia do not express fractalkine. Prenatal stress decreases the expression of the fractalkine receptor, which in turn is enhanced by the administration of exogenous fractalkine. Moreover, treatment with fractalkine diminishes the prenatal stress-induced overproduction of proinflammatory factors such as IL-1β, IL-18, IL-6, TNF-α, CCL2, or NO in the microglial cells derived from prenatally stressed newborns. In conclusion, the present results revealed that the pathological activation of microglia in prenatally stressed newborns may be attenuated by fractalkine administration. Therefore, understanding of the role of the CX3CL1-CX3CR1 system may help to elucidate the mechanisms underlying the neuron-microglia interaction and its role in pathological conditions in the brain. PMID:27239349

  12. Microglial cells and peritoneal macrophages release activin A upon stimulation with Toll-like receptor agonists.

    PubMed

    Ebert, Sandra; Zeretzke, Moritz; Nau, Roland; Michel, Uwe

    2007-02-21

    Activin A levels are elevated in the cerebrospinal fluid (CSF) of patients with meningitis and in the sera of patients with sepsis. The source(s) of the elevated concentrations of activin A in CSF and serum have not yet been discovered. Here we demonstrate that primary mouse microglial cells and peritoneal macrophages release activin A after treatment with agonists of Toll-like receptor (TLR) 2, 4, and 9. These findings provide further evidence for a role of activin in the innate immune response and suggest that microglial cells and macrophages are a source of elevated activin A concentrations observed in the CSF during bacterial meningitis and in the systemic circulation during sepsis.

  13. Minocycline causes widespread cell death and increases microglial labeling in the neonatal mouse brain.

    PubMed

    Strahan, J Alex; Walker, William H; Montgomery, Taylor R; Forger, Nancy G

    2017-06-01

    Minocycline, an antibiotic of the tetracycline family, inhibits microglia in many paradigms and is among the most commonly used tools for examining the role of microglia in physiological processes. Microglia may play an active role in triggering developmental neuronal cell death, although findings have been contradictory. To determine whether microglia influence developmental cell death, we treated perinatal mice with minocycline (45 mg/kg) and quantified effects on dying cells and microglial labeling using immunohistochemistry for activated caspase-3 (AC3) and ionized calcium-binding adapter molecule 1 (Iba1), respectively. Contrary to our expectations, minocycline treatment from embryonic day 18 to postnatal day (P)1 caused a > tenfold increase in cell death 8 h after the last injection in all brain regions examined, including the primary sensory cortex, septum, hippocampus and hypothalamus. Iba1 labeling was also increased in most regions. Similar effects, although of smaller magnitude, were seen when treatment was delayed to P3-P5. Minocycline treatment from P3 to P5 also decreased overall cell number in the septum at weaning, suggesting lasting effects of the neonatal exposure. When administered at lower doses (4.5 or 22.5 mg/kg), or at the same dose 1 week later (P10-P12), minocycline no longer increased microglial markers or cell death. Taken together, the most commonly used microglial "inhibitor" increases cell death and Iba1 labeling in the neonatal mouse brain. Minocycline is used clinically in infant and pediatric populations; caution is warrented when using minocycline in developing animals, or extrapolating the effects of this drug across ages. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 753-766, 2017. © 2016 Wiley Periodicals, Inc.

  14. P2Y12R-Dependent Translocation Mechanisms Gate the Changing Microglial Landscape.

    PubMed

    Eyo, Ukpong B; Mo, Mingshu; Yi, Min-Hee; Murugan, Madhuvika; Liu, Junting; Yarlagadda, Rohan; Margolis, David J; Xu, Pingyi; Wu, Long-Jun

    2018-04-24

    Microglia are an exquisitely tiled and self-contained population in the CNS that do not receive contributions from circulating monocytes in the periphery. While microglia are long-lived cells, the extent to which their cell bodies are fixed and the molecular mechanisms by which the microglial landscape is regulated have not been determined. Using chronic in vivo two-photon imaging to follow the microglial population in young adult mice, we document a daily rearrangement of the microglial landscape. Furthermore, we show that the microglial landscape can be modulated by severe seizures, acute injury, and sensory deprivation. Finally, we demonstrate a critical role for microglial P2Y12Rs in regulating the microglial landscape through cellular translocation independent of proliferation. These findings suggest that microglial patrol the CNS through both process motility and soma translocation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis and upper cervical spinal cord associated with orofacial neuropathic pain.

    PubMed

    Shibuta, Kazuo; Suzuki, Ikuko; Shinoda, Masamichi; Tsuboi, Yoshiyuki; Honda, Kuniya; Shimizu, Noriyoshi; Sessle, Barry J; Iwata, Koichi

    2012-04-27

    The aim of this study was to evaluate spatial organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1), and to clarify the involvement in mechanisms underlying orofacial secondary hyperalgesia following infraorbital nerve injury. We found that the head-withdrawal threshold to non-noxious mechanical stimulation of the maxillary whisker pad skin was significantly reduced in chronic constriction injury of the infraorbital nerve (ION-CCI) rats from day 1 to day 14 after ION-CCI. On day 3 after ION-CCI, mechanical allodynia was obvious in the orofacial skin areas innervated by the 1st and 3rd branches of the trigeminal nerve as well as the 2nd branch area. Hyperactive microglial cells in Vc and C1 were observed on days 3 and 7 after ION-CCI. On day 3 after ION-CCI, a large number of phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) cells were observed in Vc and C1. Many hyperactive microglial cells were also distributed over a wide area of Vc and C1 innervated by the trigeminal nerve. The intraperitoneal administration of minocycline significantly reduced the activation of microglial cells and the number of pERK-IR cells in Vc and C1, and also significantly attenuated the development of mechanical allodynia. Furthermore, enhanced background activity and mechanical evoked responses of Vc wide dynamic range neurons in ION-CCI rats were significantly reversed following minocycline administration. These findings suggest that activation of microglial cells over a wide area of Vc and C1 is involved in the enhancement of Vc and C1 neuronal excitability in the early period after ION-CCI, resulting in the neuropathic pain in orofacial areas innervated by the injured as well as uninjured nerves. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Protective Effects of Curcumin on Manganese-Induced BV-2 Microglial Cell Death.

    PubMed

    Park, Euteum; Chun, Hong Sung

    2017-08-01

    Curcumin, a bioactive component in tumeric, has been shown to exert antioxidant, anti-inflammatory, anticarcinogenic, hepatoprotective, and neuroprotective effects, but the effects of curcumin against manganese (Mn)-mediated neurotoxicity have not been studied. This study examined the protective effects of curcumin on Mn-induced cytotoxicity in BV-2 microglial cells. Curcumin (0.1-10 µM) dose-dependently prevented Mn (250 µM)-induced cell death. Mn-induced mitochondria-related apoptotic characteristics, such as caspase-3 and -9 activation, cytochrome c release, Bax increase, and Bcl-2 decrease, were significantly suppressed by curcumin. In addition, curcumin significantly increased intracellular glutathione (GSH) and moderately potentiated superoxide dismutase (SOD), both which were diminished by Mn treatment. Curcumin pretreatment effectively suppressed Mn-induced upregulation of malondialdehyde (MDA), total reactive oxygen species (ROS). Moreover, curcumin markedly inhibited the Mn-induced mitochondrial membrane potential (MMP) loss. Furthermore, curcumin was able to induce heme oxygenase (HO)-1 expression. Curcumin-mediated inhibition of ROS, down-regulation of caspases, restoration of MMP, and recovery of cell viability were partially reversed by HO-1 inhibitor (SnPP). These results suggest the first evidence that curcumin can prevent Mn-induced microglial cell death through the induction of HO-1 and regulation of oxidative stress, mitochondrial dysfunction, and apoptotic events.

  17. Exposure of cultured astroglial and microglial brain cells to 900 MHz microwave radiation.

    PubMed

    Thorlin, Thorleif; Rouquette, Jean-Michel; Hamnerius, Yngve; Hansson, Elisabeth; Persson, Mikael; Björklund, Ulrika; Rosengren, Lars; Rönnbäck, Lars; Persson, Mikael

    2006-08-01

    The rapid rise in the use of mobile communications has raised concerns about health issues related to low-level microwave radiation. The head and brain are usually the most exposed targets in mobile phone users. In the brain, two types of glial cells, the astroglial and the microglial cells, are interesting in the context of biological effects from microwave exposure. These cells are widely distributed in the brain and are directly involved in the response to brain damage as well as in the development of brain cancer. The aim of the present study was to investigate whether 900 MHz radiation could affect these two different glial cell types in culture by studying markers for damage-related processes in the cells. Primary cultures enriched in astroglial cells were exposed to 900 MHz microwave radiation in a temperature-controlled exposure system at specific absorption rates (SARs) of 3 W/kg GSM modulated wave (mw) for 4, 8 and 24 h or 27 W/kg continuous wave (cw) for 24 h, and the release into the extracellular medium of the two pro-inflammatory cytokines interleukin 6 (Il6) and tumor necrosis factor-alpha (Tnfa) was analyzed. In addition, levels of the astroglial cell-specific reactive marker glial fibrillary acidic protein (Gfap), whose expression dynamics is different from that of cytokines, were measured in astroglial cultures and in astroglial cell-conditioned cell culture medium at SARs of 27 and 54 W/kg (cw) for 4 or 24 h. No significant differences could be detected for any of the parameters studied at any time and for any of the radiation characteristics. Total protein levels remained constant during the experiments. Microglial cell cultures were exposed to 900 MHz radiation at an SAR of 3 W/kg (mw) for 8 h, and I16, Tnfa, total protein and the microglial reactivity marker ED-1 (a macrophage activation antigen) were measured. No significant differences were found. The morphology of the cultured astroglial cells and microglia was studied and appeared to be

  18. Microglial SMAD4 regulated by microRNA-146a promotes migration of microglia which support tumor progression in a glioma environment

    PubMed Central

    Karthikeyan, Aparna; Gupta, Neelima; Tang, Carol; Mallilankaraman, Karthik; Silambarasan, Maskomani; Shi, Meng; Lu, Lei; Ang, Beng Ti; Ling, Eng-Ang; Dheen, S. Thameem

    2018-01-01

    Glioma tumors constitute a significant portion of microglial cells, which are known to support tumor progression. The present study demonstrates that transforming growth factor-β (TGFβ) signaling pathway in microglia in a glioma environment is involved in tumor progression and pathogenesis. It has been shown that the TGFβ level is elevated in higher grades of gliomas and its signaling pathway regulates tumor progression through phosphorylation of SMAD2 and SMAD3, which form a complex with SMAD4 to regulate target gene transcription. In an in vitro cell line-based model increased protein levels of pSMAD2/3, total SMAD2/3 and SMAD4 were observed in murine BV2 microglia cultured in glioma conditioned medium (GCM), indicative of the activated TGFβ signaling pathway in microglia associated with glioma environment. Immunofluorescence labeling further revealed the expression of SMAD4 in microglial and non-microglial cells of human glioblastomas tissue in vivo. Functional analysis through shRNA-mediated stable knockdown of SMAD4 in microglia revealed the downregulation of the expression of matrix metalloproteinase 9 (MMP9), which has been shown to be involved in tumor progression and cell migration. Further, knockdown of SMAD4 in microglia decreased the migration of microglial cells towards GCM, indicating that SMAD4 promotes microglial migration in glioma environment. In addition, SMAD4 has been shown to be post-transcriptionally regulated by microRNA-146a, which was downregulated in microglia treated with GCM. Overexpression of miR-146a resulted in decreased expression of SMAD4 together with tumor supportive gene MMP9 in microglia, and subsequently suppressed microglial migration towards GCM, possibly through regulation of SMAD4. On the other hand, the cell viability assay revealed decreased viability of glioma cells when they were treated with conditioned medium derived from SMAD4 knockdown microglia or miR-146a overexpressed microglia as compared to glioma cells

  19. Regulatory effects of fisetin on microglial activation.

    PubMed

    Chuang, Jing-Yuan; Chang, Pei-Chun; Shen, Yi-Chun; Lin, Chingju; Tsai, Cheng-Fang; Chen, Jia-Hong; Yeh, Wei-Lan; Wu, Ling-Hsuan; Lin, Hsiao-Yun; Liu, Yu-Shu; Lu, Dah-Yuu

    2014-06-26

    Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species) production. Treatment with fisetin also effectively inhibited LPS plus IFN-γ-induced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in microglial cells. Furthermore, fisetin also reduced expressions of iNOS and NO by stimulation of peptidoglycan, the major component of the Gram-positive bacterium cell wall. Fisetin also inhibited the enhancement of LPS/IFN-γ- or peptidoglycan-induced inflammatory mediator IL (interlukin)-1 β expression. Besides the antioxidative and anti-inflammatory effects of fisetin, our study also elucidates the manner in fisetin-induced an endogenous anti-oxidative enzyme HO (heme oxygenase)-1 expression. Moreover, the regulatory molecular mechanism of fisetin-induced HO-1 expression operates through the PI-3 kinase/AKT and p38 signaling pathways in microglia. Notably, fisetin also significantly attenuated inflammation-related microglial activation and coordination deficit in mice in vivo. These findings suggest that fisetin may be a candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.

  20. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells.

    PubMed

    Rimmerman, Neta; Juknat, Ana; Kozela, Ewa; Levy, Rivka; Bradshaw, Heather B; Vogel, Zvi

    2011-08-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed.

  1. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells. PMID:27169820

  2. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells.

    PubMed

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-09-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E₂ (PGE₂), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells.

  3. A novel pleiotropic effect of aspirin: Beneficial regulation of pro- and anti-inflammatory mechanisms in microglial cells.

    PubMed

    Kata, Diana; Földesi, Imre; Feher, Liliana Z; Hackler, Laszlo; Puskas, Laszlo G; Gulya, Karoly

    2017-06-01

    Aspirin, one of the most widely used non-steroidal anti-inflammatory drugs, has extensively studied effects on the cardiovascular system. To reveal further pleiotropic, beneficial effects of aspirin on a number of pro- and anti-inflammatory microglial mechanisms, we performed morphometric and functional studies relating to phagocytosis, pro- and anti-inflammatory cytokine production (IL-1β, tumor necrosis factor-α (TNF-α) and IL-10, respectively) and analyzed the expression of a number of inflammation-related genes, including those related to the above functions, in pure microglial cells. We examined the effects of aspirin (0.1mM and 1mM) in unchallenged (control) and bacterial lipopolysaccharide (LPS)-challenged secondary microglial cultures. Aspirin affected microglial morphology and functions in a dose-dependent manner as it inhibited LPS-elicited microglial activation by promoting ramification and the inhibition of phagocytosis in both concentrations. Remarkably, aspirin strongly reduced the pro-inflammatory IL-1β and TNF-α production, while it increased the anti-inflammatory IL-10 level in LPS-challenged cells. Moreover, aspirin differentially regulated the expression of a number of inflammation-related genes as it downregulated such pro-inflammatory genes as Nos2, Kng1, IL1β, Ptgs2 or Ccr1, while it upregulated some anti-inflammatory genes such as IL10, Csf2, Cxcl1, Ccl5 or Tgfb1. Thus, the use of aspirin could be beneficial for the prophylaxis of certain neurodegenerative disorders as it effectively ameliorates inflammation in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Oligonucleotide microarray analysis of apoptosis induced by 15-methoxypinusolidic acid in microglial BV2 cells

    PubMed Central

    Choi, Y; Lim, SY; Jeong, HS; Koo, KA; Sung, SH; Kim, YC

    2009-01-01

    Background and purpose: We conducted a genome wide gene expression analysis to explore the biological aspects of 15-methoxypinusolidic acid (15-MPA) isolated from Biota orientalis and tried to confirm the suitability of 15-MPA as a therapeutic candidate for CNS injuries focusing on microglia. Experimental approach: Murine microglial BV2 cells were treated with 15-MPA, and their transcriptome was analysed by using oligonucleotide microarrays. Genes differentially expressed upon 15-MPA treatment were selected for RT-PCR (reverse transcription-polymerase chain reaction) analysis to confirm the gene expression. Inhibition of cell proliferation and induction of apoptosis by 15-MPA were examined by bromodeoxyuridine assay, Western blot analysis of poly-ADP-ribose polymerase and flow cytometry. Key results: A total of 514 genes were differentially expressed by 15-MPA treatment. Biological pathway analysis revealed that 15-MPA induced significant changes in expression of genes in the cell cycle pathway. Genes involved in growth arrest and DNA damage [gadd45α, gadd45γ and ddit3 (DNA damage-inducible transcript 3)] and cyclin-dependent kinase inhibitor (cdkn2b) were up-regulated, whereas genes involved in cell cycle progression (ccnd1, ccnd3 and ccne1), DNA replication (mcm4, orc1l and cdc6) and cell proliferation (fos and jun) were down-regulated. RT-PCR analysis for representative genes confirmed the expression levels. 15-MPA significantly reduced bromodeoxyuridine incorporation, increased poly-ADP-ribose polymerase cleavage and the number of apoptotic cells, indicating that 15-MPA induces apoptosis in BV2 cells. Conclusion and implications: 15-MPA induced apoptosis in murine microglial cells, presumably via inhibition of the cell cycle progression. As microglial activation is detrimental in CNS injuries, these data suggest a strong therapeutic potential of 15-MPA. PMID:19466985

  5. Tangeretin exerts anti-neuroinflammatory effects via NF-κB modulation in lipopolysaccharide-stimulated microglial cells.

    PubMed

    Shu, Zunpeng; Yang, Bingyou; Zhao, Hong; Xu, Bingqing; Jiao, Wenjuan; Wang, Qiuhong; Wang, Zhibin; Kuang, Haixue

    2014-04-01

    Increasing evidence suggests that tangeretin, a flavonoid from citrus fruit peels, exhibits anti-inflammatory properties and neuroprotective effects in animal disease models. However, the underlying molecular mechanisms are not clearly understood. In this study, we investigated whether tangeretin suppresses excessive microglial activation implicated in the resulting neurotoxicity following stimulation with lipopolysaccharide (LPS) in primary rat microglia and BV-2 microglial cell culture models. The results showed that tangeretin decreased the production of nitric oxide (NO), prostaglandin E₂ (PGE₂), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), in a dose-dependent manner. Additionally, it inhibited the LPS-induced expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (examined at the protein level) as well as TNF-α, IL-1β, and IL-6 (examined at the mRNA level) in microglial cells. To explore the possible mechanisms underlying these inhibitions by tangeretin, we examined the mitogen-activated protein kinase (MAPK) protein levels and the NF-κB protein signaling pathway. Tangeretin clearly inhibited LPS-induced phosphorylation of ERK, N-terminal Kinase (JNK), and p38. In addition, tangeretin markedly reduced LPS-stimulated phosphorylation of IκB-α and IKK-β, as well as the nuclear translocation of the p65 subunit of pro-inflammatory transcription factor NF-κB. Taken together, these results support further exploration of the therapeutic potential and molecular mechanism of tangeretin in relation to neuroinflammation and neurodegenerative diseases accompanied by microglial activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation.

    PubMed

    Zhang, Fan; Nance, Elizabeth; Alnasser, Yossef; Kannan, Rangaramanujam; Kannan, Sujatha

    2016-03-22

    Microglial cells have been implicated in neuroinflammation-mediated injury in the brain, including neurodevelopmental disorders such as cerebral palsy (CP) and autism. Pro-inflammatory activation of microglial cells results in the impairment of their neuroprotective functions, leading to an exaggerated, ongoing immune dysregulation that can persist long after the initial insult. We have previously shown that dendrimer-mediated delivery of an anti-inflammatory agent can attenuate inflammation in a rabbit model of maternal inflammation-induced CP and significantly improve the motor phenotype, due to the ability of the dendrimer to selectively localize in activated microglia. To elucidate the interactions between dendrimers and microglia, we created an organotypic whole-hemisphere brain slice culture model from newborn rabbits with and without exposure to inflammation in utero. We then used this model to analyze the dynamics of microglial migration and their interactions with dendrimers in the presence of neuroinflammation. Microglial cells in animals with CP had an amoeboid morphology and impaired cell migration, demonstrated by decreased migration distance and velocity when compared to cells in healthy, age-matched controls. However, this decreased migration was associated with a greater, more rapid dendrimer uptake compared to microglial cells from healthy controls. This study demonstrates that maternal intrauterine inflammation is associated with impaired microglial function and movement in the newborn brain. This microglial impairment may play a role in the development of ongoing brain injury and CP in the offspring. Increased uptake of dendrimers by the "impaired" microglia can be exploited to deliver drugs specifically to these cells and modulate their functions. Host tissue and target cell characteristics are important aspects to be considered in the design and evaluation of targeted dendrimer-based nanotherapeutics for improved and sustained efficacy. This ex

  7. Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation.

    PubMed

    Pan, Yinbing; Sun, Xiaodi; Jiang, Lai; Hu, Liang; Kong, Hong; Han, Yuan; Qian, Cheng; Song, Chao; Qian, Yanning; Liu, Wentao

    2016-11-17

    Tolerance seriously impedes the application of morphine in clinical medicine. Thus, it is necessary to investigate the exact mechanisms and efficient treatment. Microglial activation and neuroinflammation in the spinal cord are thought to play pivotal roles on the genesis and maintaining of morphine tolerance. Activation of adenosine monophosphate-activated kinase (AMPK) has been associated with the inhibition of inflammatory nociception. Metformin, a biguanide class of antidiabetic drugs and activator of AMPK, has a potential anti-inflammatory effect. The present study evaluated the effects and potential mechanisms of metformin in inhibiting microglial activation and alleviating the antinociceptive tolerance of morphine. The microglial cell line BV-2 cells and mouse brain-derived endothelial cell line bEnd3 cells were used. Cytokine expression was measured using quantitative polymerase chain reaction. Cell signaling was assayed by western blot and immunohistochemistry. The antinociception and morphine tolerance were assessed in CD-1 mice using tail-flick tests. We found that morphine-activated BV-2 cells, including the upregulation of p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation, pro-inflammatory cytokines, and Toll-like receptor-4 (TLR-4) mRNA expression, which was inhibited by metformin. Metformin suppressed morphine-induced BV-2 cells activation through increasing AMPK phosphorylation, which was reversed by the AMPK inhibitor compound C. Additionally, in BV-2 cells, morphine did not affect the cell viability and the mRNA expression of anti-inflammatory cytokines. In bEnd3 cells, morphine did not affect the mRNA expression of interleukin-1β (IL-1β), but increased IL-6 and tumor necrosis factor-α (TNF-α) mRNA expression; the effect was inhibited by metformin. Morphine also did not affect the mRNA expression of TLR-4 and chemokine ligand 2 (CCL2). Furthermore, systemic administration of metformin significantly blocked morphine

  8. COX-2 contributes to LPS-induced Stat3 activation and IL-6 production in microglial cells

    PubMed Central

    Zhu, Jie; Li, Shuzhen; Zhang, Yue; Ding, Guixia; Zhu, Chunhua; Huang, Songming; Zhang, Aihua; Jia, Zhanjun; Li, Mei

    2018-01-01

    Many stimuli including lipopolysaccharide (LPS) could activate microglial cells to subsequently cause inflammatory nerve injury. However, the mechanism of LPS-induced neuroinflammation in microglial cells is still elusive. Thus, the present study was undertaken to examine the role of COX-2 in mediating the activation of Stat3 and the production of IL-6 in BV2 cells challenged with LPS. After 24 h treatment, LPS dose-dependently enhanced COX-2 expression at both mRNA and protein levels. Meanwhile, IL-6 with other inflammatory cytokines including IL-1β, TNF-α, and MCP-1 were similarly enhanced by LPS. Then a specific COX-2 inhibitor (NS-398) was administered to BV2 before LPS treatment. Significantly, COX-2 inhibition suppressed the upregulation of IL-6 at both mRNA and protein levels in line with the trend blockade on IL-1β, TNF-α, and MCP-1. Stat3 drives proinflammatory signaling pathways and contributes to IL-6 production via a transcriptional mechanism in many diseases. Here we found that inhibition of COX-2 entirely blocked LPS-induced Stat3 phosphorylation, which might contribute to the blockade of IL-6 production to some extent. Meanwhile, COX-2 siRNA approach largely reproduced the phenotypes shown by specific COX-2 inhibitor in LPS-treated BV2 cells. Together, these findings suggested that COX-2 might contribute to LPS-induced IL-6 production possibly through activating Stat3 signaling pathway in microglial cells. PMID:29636886

  9. Inducible nitric oxide synthase is key to peroxynitrite-mediated, LPS-induced protein radical formation in murine microglial BV2 cells

    PubMed Central

    Kumar, Ashutosh; Chen, Shih-Heng; Kadiiska, Maria B.; Hong, Jau-Shyong; Zielonka, Jacek; Kalyanaraman, Balaraman; Mason, Ronald P.

    2014-01-01

    Microglia are the resident immune cells in the brain. Microglial activation is characteristic of several inflammatory and neurodegenerative diseases including Alzheimer’s disease, multiple sclerosis, and Parkinson’s disease. Though LPS-induced microglial activation in models of Parkinson’s disease (PD) is well documented, the free radical-mediated protein radical formation and its underlying mechanism during LPS-induced microglial activation is not known. Here we have used immuno-spin trapping and RNA interference to investigate the role of inducible nitric oxide synthase (iNOS) in peroxynitrite-mediated protein radical formation in murine microglial BV2 cells treated with LPS. Treatment of BV2 cells with LPS resulted in morphological changes, induction of iNOS and increased protein radical formation. Pretreatments with FeTPPS (a peroxynitrite decomposition catalyst), L-NAME (total NOS inhibitor), 1400W (iNOS inhibitor) and apocynin significantly attenuated LPS-induced protein radical formation and tyrosine nitration. Results obtained with coumarin-7-boronic acid, a highly specific probe for peroxynitrite detection, correlated with LPS-induced tyrosine nitration, which demonstrated involvement of peroxynitrite in protein radical formation. A similar degree of protection conferred by 1400W and L-NAME led us to conclude that only iNOS, and no other forms of NOS, are involved in LPS-induced peroxynitrite formation. Subsequently, siRNA for iNOS, the iNOS-specific inhibitor 1400W, the NF-kB inhibitor PDTC and the P38 MAPK inhibitor SB202190 were used to inhibit iNOS directly or indirectly. Inhibition of iNOS precisely correlated with decreased protein radical formation in LPS-treated BV2 cells. The time course of protein radical formation also matched the time course of iNOS expression. Taken together, these results prove the role of iNOS in peroxynitrite-mediated protein radical formation in LPS-treated microglial BV2 cells. PMID:24746617

  10. Regulation of Tau Pathology by the Microglial Fractalkine Receptor

    PubMed Central

    Bhaskar, Kiran; Konerth, Megan; Kokiko-Cochran, Olga N.; Cardona, Astrid; Ransohoff, Richard M.; Lamb, Bruce T.

    2010-01-01

    SUMMARY Aggregates of the hyperphosphorylated microtubule associated protein tau (MAPT) are an invariant neuropathological feature of tauopathies. Here we show that microglial neuroinflammation promotes MAPT phosphorylation and aggregation. First, lipopolysaccharide-induced microglial activation promotes hyperphosphorylation of endogenous mouse MAPT in non-transgenic mice that is further enhanced in mice lacking the microglial-specific fractalkine receptor (CX3CR1) and is dependent upon functional toll-like receptor 4 and interleukin 1 (IL1) receptors. Second, humanized MAPT transgenic mice lacking CX3CR1 exhibited enhanced MAPT phosphorylation and aggregation as well as behavioral impairments that correlated with increased levels of active p38 MAPK. Third, in vitro experiments demonstrate that microglial activation elevates the level of active p38 MAPK and enhances MAPT hyperphosphorylation within neurons that can be blocked by administration of an interleukin 1 receptor antagonist and a specific p38 MAPK inhibitor. Taken together, our results suggest that CX3CR1 and IL1/p38 MAPK may serve as novel therapeutic targets for human tauopathies. PMID:20920788

  11. Microglial Dynamics and Role in the Healthy and Diseased Brain

    PubMed Central

    Perry, V. Hugh

    2015-01-01

    The study of the dynamics and functions of microglia in the healthy and diseased brain is a matter of intense scientific activity. The application of new techniques and new experimental approaches has allowed the identification of novel microglial functions and the redefinition of classic ones. In this review, we propose the study of microglial functions, rather than their molecular profiles, to better understand and define the roles of these cells in the brain. We review current knowledge on the role of surveillant microglia, proliferating microglia, pruning/neuromodulatory microglia, phagocytic microglia, and inflammatory microglia and the molecular profiles that are associated with these functions. In the remodeling scenario of microglial biology, the analysis of microglial functional states will inform about the roles in health and disease and will guide us to a more precise understanding of the multifaceted roles of this never-resting cells. PMID:24722525

  12. Microglial cell dysregulation in brain aging and neurodegeneration

    PubMed Central

    von Bernhardi, Rommy; Eugenín-von Bernhardi, Laura; Eugenín, Jaime

    2015-01-01

    Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergoes phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD). We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide (NO) secretion in microglia from young mice, induction of reactive oxygen species (ROS) predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in the reduction of protective activation and the facilitation of cytotoxic activation of microglia, resulting in the promotion of

  13. Increased Plp1 gene expression leads to massive microglial cell activation and inflammation throughout the brain

    PubMed Central

    Tatar, Carrie L; Appikatla, Sunita; Bessert, Denise A; Paintlia, Ajaib S; Singh, Inderjit; Skoff, Robert P

    2010-01-01

    PMD (Pelizaeus–Merzbacher disease) is a rare neurodegenerative disorder that impairs motor and cognitive functions and is associated with a shortened lifespan. The cause of PMD is mutations of the PLP1 [proteolipid protein 1 gene (human)] gene. Transgenic mice with increased Plp1 [proteolipid protein 1 gene (non-human)] copy number model most aspects of PMD patients with duplications. Hypomyelination and demyelination are believed to cause the neurological abnormalities in mammals with PLP1 duplications. We show, for the first time, intense microglial reactivity throughout the grey and white matter of a transgenic mouse line with increased copy number of the native Plp1 gene. Activated microglia in the white and grey matter of transgenic mice are found as early as postnatal day 7, before myelin commences in normal cerebra. This finding indicates that degeneration of myelin does not cause the microglial response. Microglial numbers are doubled due to in situ proliferation. Compared with the jp (jimpy) mouse, which has much more oligodendrocyte death and hardly any myelin, microglia in the overexpressors show a more dramatic microglial reactivity than jp, especially in the grey matter. Predictably, many classical markers of an inflammatory response, including TNF-α (tumour necrosis factor-α) and IL-6, are significantly up-regulated manyfold. Because inflammation is believed to contribute to axonal degeneration in multiple sclerosis and other neurodegenerative diseases, inflammation in mammals with increased Plp1 gene dosage may also contribute to axonal degeneration described in patients and rodents with PLP1 increased gene dosage. PMID:20885931

  14. Microglial response to Alzheimer's disease is differentially modulated by voluntary wheel running and enriched environments.

    PubMed

    Rodríguez, J J; Noristani, H N; Verkhratsky, A

    2015-03-01

    Alzheimer's disease (AD) is an untreatable neurodegenerative disease that deteriorates memory. Increased physical/cognitive activity reduces dementia risk by promoting neuronal and glial response. Although few studies have investigated microglial response in wild-type rodents following exposure to physical/cognitive stimulation, environmental-induced changes of microglia response to AD have been neglected. We investigated effects of running (RUN) and enriched (ENR) environments on numerical density (N v, #/mm(3)) and morphology of microglia in a triple transgenic (3×Tg-AD) mouse model of AD that closely mimics AD pathology in humans. We used immunohistochemical approach to characterise microglial domain by measuring their overall cell surface, volume and somata volume. 3×Tg-AD mice housed in standard control (STD) environment showed significant increase in microglial N v (11.7 %) in CA1 stratum lacunosum moleculare (S.Mol) of the hippocampus at 12 months compared to non-transgenic (non-Tg) animals. Exposure to combined RUN and ENR environments prevented an increase in microglial N v in 3×Tg-AD and reduced microglial numbers to non-Tg control levels. Interestingly, 3×Tg-AD mice housed solely in ENR environment displayed significant decrease in microglial N v in CA1 subfield (9.3 % decrease), stratum oriens (11.5 % decrease) and S.Mol (7.6 % decrease) of the hippocampus compared to 3×Tg-AD mice housed in STD environment. Morphological analysis revealed microglial hypertrophy due to pronounced increase in microglia surface, volume and somata volume (61, 78 and 41 %) in 3×Tg-AD mice housed in RUN (but not in ENR) compared to STD environment. These results indicate that exposure to RUN and ENR environments have differential effects on microglial density and activation-associated changes in microglial morphology.

  15. Epigallocatechin gallate protects dopaminergic neurons against 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity by inhibiting microglial cell activation.

    PubMed

    Li, Rui; Peng, Ning; Du, Fang; Li, Xu-ping; Le, Wei-dong

    2006-04-01

    To observe whether the dopaminergic neuroprotective effect of (-)-epigallocatechin gallate (EGCG) is associated with its inhibition of microglial cell activation in vivo. The effects of EGCG at different doses on dopaminergic neuronal survival were tested in a methyl-4-phenyl-pyridinium (MPP+)-induced dopaminergic neuronal injury model in the primary mesencephalic cell cultures. With unbiased stereological method, tyrosine hydroxylase-immunoreactive (TH-ir) cells were counted in the A8, A9 and A10 regions of the substantia nigra (SN) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated C57BL/6 mice. The effect of EGCG on microglial activation in the SN was also investigated. Pretreatment with EGCG (1 to 100 micromol/L) significantly attenuated MPP+-induced TH-ir cell loss by 22.2% to 80.5% in the mesencephalic cell cultures. In MPTP-treated C57BL/6 mice, EGCG at a low concentration (1 mg/kg) provided significant protection against MPTP-induced TH-ir cell loss by 50.9% in the whole nigral area and by 71.7% in the A9 region. EGCG at 5 mg/kg showed more prominent protective effect than at 1 or 10 mg/kg. EGCG pretreatment significantly inhibited microglial activation and CD11b expression induced by MPTP. EGCG exerts potent dopaminergic neuroprotective activity by means of microglial inhibition, which shed light on the potential use of EGCG in treatment of Parkinson's disease.

  16. Exosomal miR-9 Released from HIV Tat Stimulated Astrocytes Mediates Microglial Migration.

    PubMed

    Yang, Lu; Niu, Fang; Yao, Honghong; Liao, Ke; Chen, Xufeng; Kook, Yeonhee; Ma, Rong; Hu, Guoku; Buch, Shilpa

    2018-03-01

    Chronic neuroinflammation still remains a common underlying feature of HIV-infected patients on combined anti-retroviral therapy (cART). Previous studies have reported that despite near complete suppression of virus replication by cART, cytotoxic viral proteins such as HIV trans-activating regulatory protein (Tat) continue to persist in tissues such as the brain and the lymph nodes, thereby contributing, in part, to chronic glial activation observed in HIV-associated neurological disorders (HAND). Understanding how the glial cells cross talk to mediate neuropathology is thus of paramount importance. MicroRNAs (miR) also known as regulators of gene expression, have emerged as key paracrine signaling mediators that regulate disease pathogenesis and cellular crosstalk, through their transfer via the extracellular vesicles (EV). In the current study we have identified a novel function of miR-9, that of mediating microglial migration. We demonstrate that miR-9 released from Tat-stimulated astrocytes can be taken up by microglia resulting in their migratory phenotype. Exposure of human astrocytoma (A172) cells to HIV Tat resulted in induction and release of miR-9 in the EVs, which, was taken up by microglia, leading in turn, increased migration of the latter cells, a process that could be blocked by both an exosome inhibitor GW4869 or a specific target protector of miR-9. Furthermore, it was also demonstrated that EV miR-9 mediated inhibition of the expression of target PTEN, via its binding to the 3'UTR seed sequence of the PTEN mRNA, was critical for microglial migration. To validate the role of miR-9 in this process, microglial cells were treated with EVs loaded with miR-9, which resulted in significant downregulation of PTEN expression with a concomitant increase in microglial migration. These findings were corroborated by transfecting microglia with a specific target protector of PTEN, that blocked miR-9-mediated downregulation of PTEN as well as microglial

  17. Doxycycline Suppresses Microglial Activation by Inhibiting the p38 MAPK and NF-kB Signaling Pathways.

    PubMed

    Santa-Cecília, Flávia V; Socias, Benjamin; Ouidja, Mohand O; Sepulveda-Diaz, Julia E; Acuña, Leonardo; Silva, Rangel L; Michel, Patrick P; Del-Bel, Elaine; Cunha, Thiago M; Raisman-Vozari, Rita

    2016-05-01

    In neurodegenerative diseases, the inflammatory response is mediated by activated glial cells, mainly microglia, which are the resident immune cells of the central nervous system. Activated microglial cells release proinflammatory mediators and neurotoxic factors that are suspected to cause or exacerbate these diseases. We recently demonstrated that doxycycline protects substantia nigra dopaminergic neurons in an animal model of Parkinson's disease. This effect was associated with a reduction of microglial cell activation, which suggests that doxycycline may operate primarily as an anti-inflammatory drug. In the present study, we assessed the anti-inflammatory potential of doxycycline using lipopolysaccharide (LPS)-activated primary microglial cells in culture as a model of neuroinflammation. Doxycycline attenuated the expression of key activation markers in LPS-treated microglial cultures in a concentration-dependent manner. More specifically, doxycycline treatment lowered the expression of the microglial activation marker IBA-1 as well as the production of ROS, NO, and proinflammatory cytokines (TNF-α and IL-1β). In primary microglial cells, we also found that doxycycline inhibits LPS-induced p38 MAP kinase phosphorylation and NF-kB nuclear translocation. The present results indicate that the effect of doxycycline on LPS-induced microglial activation probably occurs via the modulation of p38 MAP kinase and NF-kB signaling pathways. These results support the idea that doxycycline may be useful in preventing or slowing the progression of PD and other neurodegenerative diseases that exhibit altered glia function.

  18. Neonatal Subventricular Zone Neural Stem Cells Release Extracellular Vesicles that Act as a Microglial Morphogen.

    PubMed

    Morton, Mary C; Neckles, Victoria N; Seluzicki, Caitlin M; Holmberg, Jennie C; Feliciano, David M

    2018-04-03

    Subventricular zone (SVZ) neural stem cells (NSCs) are the cornerstone of the perinatal neurogenic niche. Microglia are immune cells of the nervous system that are enriched in the neonatal SVZ. Although microglia regulate NSCs, the extent to which this interaction is bi-directional is unclear. Extracellular vesicles (EVs) are cell-derived particles that encase miRNA and proteins. Here, we demonstrate that SVZ NSCs generate and release EVs. Neonatal electroporated fluorescent EV fusion proteins were released by NSCs and subsequently cleared from the SVZ. EVs were preferentially targeted to microglia. Small RNA sequencing identified miRNAs within the EVs that regulate microglia physiology and morphology. EVs induced a transition to a CD11b/Iba1 non-stellate microglial morphology. The transition accompanied a microglial transcriptional state characterized by Let-7-regulated cytokine release and a negative feedback loop that controlled NSC proliferation. These findings implicate an NSC-EV-microglia axis and provide insight to normal and pathophysiological brain development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Effects of 3,3',5-triiodothyronine on microglial functions.

    PubMed

    Mori, Yuki; Tomonaga, Daichi; Kalashnikova, Anastasia; Furuya, Fumihiko; Akimoto, Nozomi; Ifuku, Masataka; Okuno, Yuko; Beppu, Kaoru; Fujita, Kyota; Katafuchi, Toshihiko; Shimura, Hiroki; Churilov, Leonid P; Noda, Mami

    2015-05-01

    L-tri-iodothyronine (3, 3', 5-triiodothyronine; T3) is an active form of the thyroid hormone (TH) essential for the development and function of the CNS. Though nongenomic effect of TH, its plasma membrane-bound receptor, and its signaling has been identified, precise function in each cell type of the CNS remained to be investigated. Clearance of cell debris and apoptotic cells by microglia phagocytosis is a critical step for the restoration of damaged neuron-glia networks. Here we report nongenomic effects of T3 on microglial functions. Exposure to T3 increased migration, membrane ruffling and phagocytosis of primary cultured mouse microglia. Injection of T3 together with stab wound attracted more microglia to the lesion site in vivo. Blocking TH transporters and receptors (TRs) or TRα-knock-out (KO) suppressed T3-induced microglial migration and morphological change. The T3-induced microglial migration or membrane ruffling was attenuated by inhibiting Gi /o -protein as well as NO synthase, and subsequent signaling such as phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK). Inhibitors for Na(+) /K(+) -ATPase, reverse mode of Na(+) /Ca(2+) exchanger (NCX), and small-conductance Ca(2+) -dependent K(+) (SK) channel also attenuated microglial migration or phagocytosis. Interestingly, T3-induced microglial migration, but not phagocytosis, was dependent on GABAA and GABAB receptors, though GABA itself did not affect migratory aptitude. Our results demonstrate that T3 modulates multiple functional responses of microglia via multiple complex mechanisms, which may contribute to physiological and/or pathophysiological functions of the CNS. © 2015 Wiley Periodicals, Inc.

  20. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases

    PubMed Central

    2012-01-01

    Background Activated microglial cells are an important pathological component in brains of patients with neurodegenerative diseases. The purpose of this study was to investigate the effect of He-Ne (632.8 nm, 64.6 mW/cm2) low-level laser therapy (LLLT), a non-damaging physical therapy, on activated microglia, and the subsequent signaling events of LLLT-induced neuroprotective effects and phagocytic responses. Methods To model microglial activation, we treated the microglial BV2 cells with lipopolysaccharide (LPS). For the LLLT-induced neuroprotective study, neuronal cells with activated microglial cells in a Transwell™ cell-culture system were used. For the phagocytosis study, fluorescence-labeled microspheres were added into the treated microglial cells to confirm the role of LLLT. Results Our results showed that LLLT (20 J/cm2) could attenuate toll-like receptor (TLR)-mediated proinflammatory responses in microglia, characterized by down-regulation of proinflammatory cytokine expression and nitric oxide (NO) production. LLLT-triggered TLR signaling inhibition was achieved by activating tyrosine kinases Src and Syk, which led to MyD88 tyrosine phosphorylation, thus impairing MyD88-dependent proinflammatory signaling cascade. In addition, we found that Src activation could enhance Rac1 activity and F-actin accumulation that typify microglial phagocytic activity. We also found that Src/PI3K/Akt inhibitors prevented LLLT-stimulated Akt (Ser473 and Thr308) phosphorylation and blocked Rac1 activity and actin-based microglial phagocytosis, indicating the activation of Src/PI3K/Akt/Rac1 signaling pathway. Conclusions The present study underlines the importance of Src in suppressing inflammation and enhancing microglial phagocytic function in activated microglia during LLLT stimulation. We have identified a new and important neuroprotective signaling pathway that consists of regulation of microglial phagocytosis and inflammation under LLLT treatment. Our research

  1. Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis

    PubMed Central

    2012-01-01

    Background In invertebrates, the medicinal leech is considered to be an interesting and appropriate model to study neuroimmune mechanisms. Indeed, this non-vertebrate animal can restore normal function of its central nervous system (CNS) after injury. Microglia accumulation at the damage site has been shown to be required for axon sprouting and for efficient regeneration. We characterized HmC1q as a novel chemotactic factor for leech microglial cell recruitment. In mammals, a C1q-binding protein (C1qBP alias gC1qR), which interacts with the globular head of C1q, has been reported to participate in C1q-mediated chemotaxis of blood immune cells. In this study, we evaluated the chemotactic activities of a recombinant form of HmC1q and its interaction with a newly characterized leech C1qBP that acts as its potential ligand. Methods Recombinant HmC1q (rHmC1q) was produced in the yeast Pichia pastoris. Chemotaxis assays were performed to investigate rHmC1q-dependent microglia migration. The involvement of a C1qBP-related molecule in this chemotaxis mechanism was assessed by flow cytometry and with affinity purification experiments. The cellular localization of C1qBP mRNA and protein in leech was investigated using immunohistochemistry and in situ hybridization techniques. Results rHmC1q-stimulated microglia migrate in a dose-dependent manner. This rHmC1q-induced chemotaxis was reduced when cells were preincubated with either anti-HmC1q or anti-human C1qBP antibodies. A C1qBP-related molecule was characterized in leech microglia. Conclusions A previous study showed that recruitment of microglia is observed after HmC1q release at the cut end of axons. Here, we demonstrate that rHmC1q-dependent chemotaxis might be driven via a HmC1q-binding protein located on the microglial cell surface. Taken together, these results highlight the importance of the interaction between C1q and C1qBP in microglial activation leading to nerve repair in the medicinal leech. PMID:22356764

  2. Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis.

    PubMed

    Tahtouh, Muriel; Garçon-Bocquet, Annelise; Croq, Françoise; Vizioli, Jacopo; Sautière, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Nagnan-le Meillour, Patricia; Pestel, Joël; Lefebvre, Christophe

    2012-02-22

    In invertebrates, the medicinal leech is considered to be an interesting and appropriate model to study neuroimmune mechanisms. Indeed, this non-vertebrate animal can restore normal function of its central nervous system (CNS) after injury. Microglia accumulation at the damage site has been shown to be required for axon sprouting and for efficient regeneration. We characterized HmC1q as a novel chemotactic factor for leech microglial cell recruitment. In mammals, a C1q-binding protein (C1qBP alias gC1qR), which interacts with the globular head of C1q, has been reported to participate in C1q-mediated chemotaxis of blood immune cells. In this study, we evaluated the chemotactic activities of a recombinant form of HmC1q and its interaction with a newly characterized leech C1qBP that acts as its potential ligand. Recombinant HmC1q (rHmC1q) was produced in the yeast Pichia pastoris. Chemotaxis assays were performed to investigate rHmC1q-dependent microglia migration. The involvement of a C1qBP-related molecule in this chemotaxis mechanism was assessed by flow cytometry and with affinity purification experiments. The cellular localization of C1qBP mRNA and protein in leech was investigated using immunohistochemistry and in situ hybridization techniques. rHmC1q-stimulated microglia migrate in a dose-dependent manner. This rHmC1q-induced chemotaxis was reduced when cells were preincubated with either anti-HmC1q or anti-human C1qBP antibodies. A C1qBP-related molecule was characterized in leech microglia. A previous study showed that recruitment of microglia is observed after HmC1q release at the cut end of axons. Here, we demonstrate that rHmC1q-dependent chemotaxis might be driven via a HmC1q-binding protein located on the microglial cell surface. Taken together, these results highlight the importance of the interaction between C1q and C1qBP in microglial activation leading to nerve repair in the medicinal leech.

  3. Differential General Anesthetic Effects on Microglial Cytokine Expression

    PubMed Central

    Ye, Xuefei; Lian, Qingquan; Eckenhoff, Maryellen F.; Eckenhoff, Roderic G.; Pan, Jonathan Z.

    2013-01-01

    Post-operative cognitive dysfunction has been widely observed, especially in older patients. An association of post-operative cognitive dysfunction with the neurodegenerative diseases, such as Alzheimer's disease, has been suggested. Neuroinflammation contributes to Alzheimer pathology, through elevated pro-inflammatory cytokines and microglial activation in the CNS leading to neuronal damage, synaptic disruption and ultimately cognitive dysfunction. We compare the effects of three different, clinically-used, anesthetics on microglial activation with, and without, the prototypical inflammatory trigger, lipopolysaccharide (LPS). Microglial BV-2 cell cultures were first exposed to isoflurane, sevoflurane (each at 2 concentrations) or propofol for 6 h, and cytokine levels measured in lysates and media. The same experiments were repeated after 1 h LPS pre-treatment. We found; 1) anesthetics alone have either no or only a small effect on cytokine expression; 2) LPS provoked a large increase in microglia cytokine expression; 3) the inhaled anesthetics either had no effect on LPS-evoked responses or enhanced it; 4) propofol nearly eliminated the LPS pro-inflammatory cytokine response and improved cell survival as reflected by lactate dehydrogenase release. These data suggest that propofol may be a preferred anesthetic when it is desirable to minimize neuroinflammation. PMID:23382826

  4. Microglial Dysfunction in Brain Aging and Alzheimer’s Disease

    PubMed Central

    Mosher, Kira Irving; Wyss-Coray, Tony

    2014-01-01

    Microglia, the immune cells of the central nervous system, have long been a subject of study in the Alzheimer’s disease (AD) field due to their dramatic responses to the pathophysiology of the disease. With several large-scale genetic studies in the past year implicating microglial molecules in AD, the potential significance of these cells has become more prominent than ever before. As a disease that is tightly linked to aging, it is perhaps not entirely surprising that microglia of the AD brain share some phenotypes with aging microglia. Yet the relative impacts of both conditions on microglia are less frequently considered in concert. Furthermore, microglial “activation” and “neuroinflammation” are commonly analyzed in studies of neurodegeneration but are somewhat ill-defined concepts that in fact encompass multiple cellular processes. In this review, we have enumerated six distinct functions of microglia and discuss the specific effects of both aging and AD. By calling attention to the commonalities of these two states, we hope to inspire new approaches for dissecting microglial mechanisms. PMID:24445162

  5. Attenuation of microglial RANTES by NEMO-binding domain peptide inhibits the infiltration of CD8(+) T cells in the nigra of hemiparkinsonian monkey.

    PubMed

    Roy, A; Mondal, S; Kordower, J H; Pahan, K

    2015-08-27

    Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Despite intense investigations, little is known about its pathological mediators. Here, we report the marked upregulation of RANTES (regulated on activation, normal T cell expressed and secreted) and eotaxin, chemokines that are involved in T cell trafficking, in the serum of hemiparkinsonian monkeys. Interestingly, 1-methyl-4-phenylpyridinium (MPP(+)), a Parkinsonian toxin, increased the expression of RANTES and eotaxin in mouse microglial cells. The presence of NF-κB binding sites in promoters of RANTES and eotaxin and down-regulation of these genes by NEMO-binding domain (NBD) peptide, selective inhibitor of induced NF-κB activation, in MPP(+)-stimulated microglial cells suggest that the activation of NF-κB plays an important role in the upregulation of these two chemokines. Consistently, serum enzyme-linked immuno assay (ELISA) and nigral immunohistochemistry further confirmed that these chemokines were strongly upregulated in MPTP-induced hemiparkinsonian monkeys and that treatment with NBD peptides effectively inhibited the level of these chemokines. Furthermore, the microglial upregulation of RANTES in the nigra of hemiparkinsonian monkeys could be involved in the altered adaptive immune response in the brain as we observed greater infiltration of CD8(+) T cells around the perivascular niche and deep brain parenchyma of hemiparkinsonian monkeys as compared to control. The treatment of hemiparkinsonian monkeys with NBD peptides decreased the microglial expression of RANTES and attenuated the infiltration of CD8(+) T cells in nigra. These results indicate the possible involvement of chemokine-dependent adaptive immune response in Parkinsonism. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Glioma-mediated microglial activation promotes glioma proliferation and migration: roles of Na+/H+ exchanger isoform 1

    PubMed Central

    Zhu, Wen; Carney, Karen E.; Pigott, Victoria M.; Falgoust, Lindsay M.; Clark, Paul A.; Kuo, John S.; Sun, Dandan

    2016-01-01

    Microglia play important roles in extracellular matrix remodeling, tumor invasion, angiogenesis, and suppression of adaptive immunity in glioma. Na+/H+ exchanger isoform 1 (NHE1) regulates microglial activation and migration. However, little is known about the roles of NHE1 in intratumoral microglial activation and microglia–glioma interactions. Our study revealed up-regulation of NHE1 protein expression in both glioma cells and tumor-associated Iba1+ microglia in glioma xenografts and glioblastoma multiforme microarrays. Moreover, we observed positive correlation of NHE1 expression with Iba1 intensity in microglia/macrophages. Glioma cells, via conditioned medium or non-contact glioma-microglia co-cultures, concurrently upregulated microglial expression of NHE1 protein and other microglial activation markers (iNOS, arginase-1, TGF-β, IL-6, IL-10 and the matrix metalloproteinases MT1-MMP and MMP9). Interestingly, glioma-stimulated microglia reciprocally enhanced glioma proliferation and migration. Most importantly, inhibition of microglial NHE1 activity via small interfering RNA (siRNA) knockdown or the potent NHE1-specific inhibitor HOE642 significantly attenuated microglial activation and abolished microglia-stimulated glioma migration and proliferation. Taken together, our findings provide the first evidence that NHE1 function plays an important role in glioma–microglia interactions, enhancing glioma proliferation and invasion by stimulating microglial release of soluble factors. NHE1 upregulation is a novel marker of the glioma-associated microglial activation phenotype. Inhibition of NHE1 represents a novel glioma therapeutic strategy by targeting tumor-induced microglial activation. PMID:27287871

  7. Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation

    PubMed Central

    Wong, Wai T.

    2013-01-01

    Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and age-related macular degeneration (AMD), share two characteristics in common: (1) a disease prevalence that increases markedly with advancing age, and (2) neuroinflammatory changes in which microglia, the primary resident immune cell of the CNS, feature prominently. These characteristics have led to the hypothesis that pathogenic mechanisms underlying age-related neurodegenerative disease involve aging changes in microglia. If correct, targeting features of microglial senescence may constitute a feasible therapeutic strategy. This review explores this hypothesis and its implications by considering the current knowledge on how microglia undergo change during aging and how the emergence of these aging phenotypes relate to significant alterations in microglial function. Evidence and theories on cellular mechanisms implicated in driving senescence in microglia are reviewed, as are “rejuvenative” measures and strategies that aim to reverse or ameliorate the aging microglial phenotype. Understanding and controlling microglial aging may represent an opportunity for elucidating disease mechanisms and for formulating novel therapies. PMID:23493481

  8. Protective Effect of Cactus Cladode Extracts on Peroxisomal Functions in Microglial BV-2 Cells Activated by Different Lipopolysaccharides.

    PubMed

    Saih, Fatima-Ezzahra; Andreoletti, Pierre; Mandard, Stéphane; Latruffe, Norbert; El Kebbaj, M'Hammed Saïd; Lizard, Gérard; Nasser, Boubker; Cherkaoui-Malki, Mustapha

    2017-01-07

    In this study, we aimed to evaluate the antioxidant and anti-inflammatory properties of Opuntia ficus-indica cactus cladode extracts in microglia BV-2 cells. Inflammation associated with microglia activation in neuronal injury can be achieved by LPS exposure. Using four different structurally and biologically well-characterized LPS serotypes, we revealed a structure-related differential effect of LPS on fatty acid β-oxidation and antioxidant enzymes in peroxisomes: Escherichia coli -LPS decreased ACOX1 activity while Salmonella minnesota -LPS reduced only catalase activity. Different cactus cladode extracts showed an antioxidant effect through microglial catalase activity activation and an anti-inflammatory effect by reducing nitric oxide (NO) LPS-dependent production. These results suggest that cactus extracts may possess a neuroprotective activity through the induction of peroxisomal antioxidant activity and the inhibition of NO production by activated microglial cells.

  9. Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zhuqin; Yu, Fengxiang; Gong, Ping

    2014-04-15

    Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxicmore » concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation

  10. Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS.

    PubMed

    Magnus, Tim; Schreiner, Bettina; Korn, Thomas; Jack, Carolyn; Guo, Hong; Antel, Jack; Ifergan, Igal; Chen, Lieping; Bischof, Felix; Bar-Or, Amit; Wiendl, Heinz

    2005-03-09

    Inflammation of the CNS is usually locally limited to avoid devastating consequences. Critical players involved in this immune regulatory process are the resident immune cells of the brain, the microglia. Interactions between the growing family of B7 costimulatory ligands and their receptors are increasingly recognized as important pathways for costimulation and/or inhibition of immune responses. Human and mouse microglial cells constitutively express B7 homolog 1 (B7-H1) in vitro. However, under inflammatory conditions [presence of interferon-gamma (IFN-gamma) or T-helper 1 supernatants], a significant upregulation of B7-H1 was detectable. Expression levels of B7-H1 protein on microglial cells were substantially higher compared with astrocytes or splenocytes. Coculture experiments of major histocompatibility complex class II-positive antigen-presenting cells (APC) with syngeneic T cells in the presence of antigen demonstrated the functional consequences of B7-H1 expression on T-cell activation. In the presence of a neutralizing anti-B7-H1 antibody, both the production of inflammatory cytokines (IFN-gamma and interleukin-2) and the upregulation of activation markers (inducible costimulatory signal) by T cells were markedly enhanced. Interestingly, this effect was clearly more pronounced when microglial cells were used as APC, compared with astrocytes or splenocytes. Furthermore, B7-H1 was highly upregulated during the course of myelin oligodendrocyte glycoprotein-induced and proteolipid protein-induced experimental allergic encephalomyelitis in vivo. Expression was predominantly localized to areas of strongest inflammation and could be colocalized with microglial cells/macrophages as well as T cells. Together, our data propose microglial B7-H1 as an important immune inhibitory molecule capable of downregulating T-cell activation in the CNS and thus confining immunopathological damage.

  11. A common carcinogen benzo[a]pyrene causes neuronal death in mouse via microglial activation.

    PubMed

    Dutta, Kallol; Ghosh, Debapriya; Nazmi, Arshed; Kumawat, Kanhaiya Lal; Basu, Anirban

    2010-04-01

    Benzo[a]pyrene (B[a]P) belongs to a class of polycyclic aromatic hydrocarbons that serve as micropollutants in the environment. B[a]P has been reported as a probable carcinogen in humans. Exposure to B[a]P can take place by ingestion of contaminated (especially grilled, roasted or smoked) food or water, or inhalation of polluted air. There are reports available that also suggests neurotoxicity as a result of B[a]P exposure, but the exact mechanism of action is unknown. Using neuroblastoma cell line and primary cortical neuron culture, we demonstrated that B[a]P has no direct neurotoxic effect. We utilized both in vivo and in vitro systems to demonstrate that B[a]P causes microglial activation. Using microglial cell line and primary microglial culture, we showed for the first time that B[a]P administration results in elevation of reactive oxygen species within the microglia thereby causing depression of antioxidant protein levels; enhanced expression of inducible nitric oxide synthase, that results in increased production of NO from the cells. Synthesis and secretion of proinflammatory cytokines were also elevated within the microglia, possibly via the p38MAP kinase pathway. All these factors contributed to bystander death of neurons, in vitro. When administered to animals, B[a]P was found to cause microglial activation and astrogliosis in the brain with subsequent increase in proinflammatory cytokine levels. Contrary to earlier published reports we found that B[a]P has no direct neurotoxic activity. However, it kills neurons in a bystander mechanism by activating the immune cells of the brain viz the microglia. For the first time, we have provided conclusive evidence regarding the mechanism by which the micropollutant B[a]P may actually cause damage to the central nervous system. In today's perspective, where rising pollution levels globally are a matter of grave concern, our study throws light on other health hazards that such pollutants may exert.

  12. Inhibitory effects of antihistamines, diphenhydramine and chlorpheniramine, on proton currents in BV2 microglial cells.

    PubMed

    Kim, Jiwon; Song, Jin-Ho

    2017-03-05

    Microglial NADPH oxidase is a major source of toxic reactive oxygen species produced during chronic neuroinflammation. Voltage-gated proton channel (H V 1) functions to maintain the intense activity of NADPH oxidase, and channel inhibition alleviates the pathology of neurodegenerative diseases such as ischemic stroke and multiple sclerosis associated with oxidative neuroinflammation. Antagonists of histamine H 1 receptors have beneficial effects against microglia-mediated oxidative stress and neurotoxicity. We examined the effects of the H 1 antihistamines, diphenhydramine and chlorpheniramine, on proton currents in BV2 microglial cells recorded using the whole-cell patch clamp technique. Diphenhydramine and chlorpheniramine reduced the proton currents with almost the same potency, yielding IC 50 values of 42 and 43μM, respectively. Histamine did not affect proton currents, excluding the involvement of histamine receptors in their action. Neither drug shifted the voltage-dependence of activation or the reversal potential of the proton currents, even though diphenhydramine slowed the activation and deactivation kinetics. The inhibitory effects of the two antihistamines on proton currents could be utilized to develop therapeutic agents for neurodegenerative diseases and other diseases associated with H V 1 proton channel abnormalities. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Bone mesenchymal stem cells attenuate radicular pain by inhibiting microglial activation in a rat noncompressive disk herniation model.

    PubMed

    Huang, Xiaodong; Wang, Weiheng; Liu, Xilin; Xi, Yanhai; Yu, Jiangming; Yang, Xiangqun; Ye, Xiaojian

    2018-06-01

    Spinal disk herniation can induce radicular pain through chemical irritation caused by proinflammatory and immune responses. Bone marrow mesenchymal stem cells (BMSCs) are a unique type of adult stem cell with the functions of suppressing inflammation and modulating immune responses. This study was undertaken to observe the effect of intrathecal BMSCs on the treatment of mechanical allodynia and the suppression of microglial activation in a rat noncompressive disk herniation model. The model was induced by the application of nucleus pulposus (NP) to the L5 dorsal root ganglion (DRG). The study found that the use of NP in the DRG can induce abnormal mechanical pain, increase the contents of the proinflammatory factors TNF-α and IL-1β, decrease the content of the anti-inflammatory cytokine TGF-β1 and activate microglia in the spinal dorsal horns (L5) (P < 0.05). BMSC administration could increase the mechanical withdrawal thresholds dramatically, decrease the contents of IL-1β and TNF-α, increase the content of TGF-β1 significantly (P < 0.05) and inhibit microglial activation in the bilateral spinal dorsal horn. Our results indicate that BMSC administration can reduce mechanical allodynia and downregulate the expression of proinflammatory cytokines by inhibiting microglial activation in the spinal dorsal horn in a rat noncompressive disk herniation model.

  14. Cannabidiol enhances microglial phagocytosis via transient receptor potential (TRP) channel activation

    PubMed Central

    Hassan, Samia; Eldeeb, Khalil; Millns, Paul J; Bennett, Andrew J; Alexander, Stephen P H; Kendall, David A

    2014-01-01

    Background and Purpose Microglial cells are important mediators of the immune response in the CNS. The phytocannabinoid, cannabidiol (CBD), has been shown to have central anti-inflammatory properties, and the purpose of the present study was to investigate the effects of CBD and other phytocannabinoids on microglial phagocytosis. Experimental Approach Phagocytosis was assessed by measuring ingestion of fluorescently labelled latex beads by cultured microglial cells. Drug effects were probed using single-cell Ca2+ imaging and expression of mediator proteins by immunoblotting and immunocytochemistry. Key Results CBD (10 μM) enhanced bead phagocytosis to 175 ± 7% control. Other phytocannabinoids, synthetic and endogenous cannabinoids were without effect. The enhancement was dependent upon Ca2+ influx and was abolished in the presence of EGTA, the Ca2+ channel inhibitor SKF96365, the transient receptor potential (TRP) channel blocker ruthenium red, and the TRPV1 antagonists capsazepine and AMG9810. CBD produced a sustained increase in intracellular Ca2+ concentration in BV-2 microglia and this was abolished by ruthenium red. CBD rapidly increased the expression of TRPV2 and TRPV1 proteins and caused a translocation of TRPV2 to the cell membrane. Wortmannin blocked CBD enhancement of BV-2 cell phagocytosis, suggesting that it is mediated by PI3K signalling downstream of the Ca2+ influx. Conclusions and Implications The TRPV-dependent phagocytosis-enhancing effect of CBD suggests that pharmacological modification of TRPV channel activity could be a rational approach to treating neuroinflammatory disorders involving changes in microglial function and that CBD is a potential starting point for future development of novel therapeutics acting on the TRPV receptor family. PMID:24641282

  15. Microglial Morphology and Dynamic Behavior Is Regulated by Ionotropic Glutamatergic and GABAergic Neurotransmission

    PubMed Central

    Fontainhas, Aurora M.; Wang, Minhua; Liang, Katharine J.; Chen, Shan; Mettu, Pradeep; Damani, Mausam; Fariss, Robert N.; Li, Wei; Wong, Wai T.

    2011-01-01

    Purpose Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or “resting” conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates “resting” microglial morphology and behavior. Methods We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia. Results Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels. Conclusions Our

  16. Gabapentin decreases microglial cells and reverses bilateral hyperalgesia and allodynia in rats with chronic myositis.

    PubMed

    Rosa, A S; Freitas, M F; Rocha, I R C; Chacur, M

    2017-03-15

    In the present work, we investigated the antinociceptive effect of gabapentin in a chronic myositis model and its interference in spinal glial cells. Chronic myositis was induced by injection of Complete Freund Adjuvant (CFA) into the right gastrocnemius (GS) muscle of rats and tests for evaluating mechanical hyperalgesia, thermal hyperalgesia and tactile allodynia were performed. Pharmacological treatment with gabapentin was administrated intrathecally and 100μg and 200μg doses were tested. For analyzing astrocytes and microglia in the spinal cord, immunochemistry assay was performed. It was found that gabapentin 200μg reverted CFA-induced chronic muscle pain bilaterally, in all applied tests and it was able to attenuate microglial but not astrocytes activation in the dorsal horn of spinal cord. In conclusion, gabapentin was able to inhibit hyperalgesia and allodynia in chronic myositis and also to attenuate spinal microglial activation. Therefore, gabapentin could be used as treatment for targeting chronic muscle pain. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Pesticides, Microglial NOX2, and Parkinson's disease

    PubMed Central

    Taetzsch, Thomas; Block, Michelle L.

    2013-01-01

    Accumulating evidence indicates that pesticide exposure is associated with an increased risk for developing Parkinson's disease (PD). Several pesticides known to damage dopaminergic (DA) neurons, such as paraquat, rotenone, lindane, and dieldrin also demonstrate the ability to activate microglia, the resident innate immune cell in the brain. While each of these environmental toxicants may impact microglia through unique mechanisms, they all appear to converge on a common final pathway of microglial activation: NADPH oxidase 2 (NOX2) activation. This review will detail the role of microglia in selective DA neurotoxicity, highlight what is currently known about the mechanism of microglial NOX2 activation in these key pesticides, and describe the importance for DA neuron survival and PD etiology. PMID:23349115

  18. Celecoxib Inhibits Prion Protein 90-231-Mediated Pro-inflammatory Responses in Microglial Cells.

    PubMed

    Villa, Valentina; Thellung, Stefano; Corsaro, Alessandro; Novelli, Federica; Tasso, Bruno; Colucci-D'Amato, Luca; Gatta, Elena; Tonelli, Michele; Florio, Tullio

    2016-01-01

    Activation of microglia is a central event in the atypical inflammatory response occurring during prion encephalopathies. We report that the prion protein fragment encompassing amino acids 90-231 (PrP90-231), a model of the neurotoxic activity of the pathogenic prion protein (PrP(Sc)), causes activation of both primary microglia cultures and N9 microglial cells in vitro. This effect was characterized by cell proliferation arrest and induction of a secretory phenotype, releasing prostaglandin E2 (PGE2) and nitric oxide (NO). Conditioned medium from PrP90-231-treated microglia induced in vitro cytotoxicity of A1 mesencephalic neurons, supporting the notion that soluble mediators released by activated microglia contributes to the neurodegeneration during prion diseases. The neuroinflammatory role of COX activity, and its potential targeting for anti-prion therapies, was tested measuring the effects of ketoprofen and celecoxib (preferential inhibitors of COX1 and COX2, respectively) on PrP90-231-induced microglial activation. Celecoxib, but not ketoprofen significantly reverted the growth arrest as well as NO and PGE2 secretion induced by PrP90-231, indicating that PrP90-231 pro-inflammatory response in microglia is mainly dependent on COX2 activation. Taken together, these data outline the importance of microglia in the neurotoxicity occurring during prion diseases and highlight the potentiality of COX2-selective inhibitors to revert microglia as adjunctive pharmacological approach to contrast the neuroinflammation-dependent neurotoxicity.

  19. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases

    PubMed Central

    2017-01-01

    Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity. PMID:28154473

  20. Toll-like receptor prestimulation increases phagocytosis of Escherichia coli DH5alpha and Escherichia coli K1 strains by murine microglial cells.

    PubMed

    Ribes, Sandra; Ebert, Sandra; Czesnik, Dirk; Regen, Tommy; Zeug, Andre; Bukowski, Stephanie; Mildner, Alexander; Eiffert, Helmut; Hanisch, Uwe-Karsten; Hammerschmidt, Sven; Nau, Roland

    2009-01-01

    Meningitis and meningoencephalitis caused by Escherichia coli are associated with high rates of mortality. When an infection occurs, Toll-like receptors (TLRs) expressed by microglial cells can recognize pathogen-associated molecular patterns and activate multiple steps in the inflammatory response that coordinate the brain's local defense, such as phagocytosis of invading pathogens. An upregulation of the phagocytic ability of reactive microglia could improve the host defense in immunocompromised patients against pathogens such as E. coli. Here, murine microglial cultures were stimulated with the TLR agonists Pam(3)CSK(4) (TLR1/TLR2), lipopolysaccharide (TLR4), and CpG oligodeoxynucleotide (TLR9) for 24 h. Upon stimulation, levels of tumor necrosis factor alpha and the neutrophil chemoattractant CXCL1 were increased, indicating microglial activation. Phagocytic activity was studied after adding either E. coli DH5alpha or E. coli K1 strains. After 60 and 90 min of bacterial exposure, the number of ingested bacteria was significantly higher in cells prestimulated with TLR agonists than in unstimulated controls (P < 0.01). Addition of cytochalasin D, an inhibitor of actin polymerization, blocked >90% of phagocytosis. We also analyzed the ability of microglia to kill the ingested E. coli strains. Intracellularly surviving bacteria were quantified at different time points (90, 150, 240, and 360 min) after 90 min of phagocytosis. The number of bacteria killed intracellularly after 6 h was higher in cells primed with the different TLR agonists than in unstimulated microglia. Our data suggest that microglial stimulation by the TLR system can increase bacterial phagocytosis and killing. This approach could improve central nervous system resistance to infections in immunocompromised patients.

  1. Microglial Dysregulation in OCD, Tourette Syndrome, and PANDAS

    PubMed Central

    2016-01-01

    There is accumulating evidence that immune dysregulation contributes to the pathophysiology of obsessive-compulsive disorder (OCD), Tourette syndrome, and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS). The mechanistic details of this pathophysiology, however, remain unclear. Here we focus on one particular component of the immune system: microglia, the brain's resident immune cells. The role of microglia in neurodegenerative diseases has been understood in terms of classic, inflammatory activation, which may be both a consequence and a cause of neuronal damage. In OCD and Tourette syndrome, which are not characterized by frank neural degeneration, the potential role of microglial dysregulation is much less clear. Here we review the evidence for a neuroinflammatory etiology and microglial dysregulation in OCD, Tourette syndrome, and PANDAS. We also explore new hypotheses as to the potential contributions of microglial abnormalities to pathophysiology, beyond neuroinflammation, including failures in neuroprotection, lack of support for neuronal survival, and abnormalities in synaptic pruning. Recent advances in neuroimaging and animal model work are creating new opportunities to elucidate these issues. PMID:28053994

  2. Microglial Dysregulation in OCD, Tourette Syndrome, and PANDAS.

    PubMed

    Frick, Luciana; Pittenger, Christopher

    2016-01-01

    There is accumulating evidence that immune dysregulation contributes to the pathophysiology of obsessive-compulsive disorder (OCD), Tourette syndrome, and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS). The mechanistic details of this pathophysiology, however, remain unclear. Here we focus on one particular component of the immune system: microglia, the brain's resident immune cells. The role of microglia in neurodegenerative diseases has been understood in terms of classic, inflammatory activation, which may be both a consequence and a cause of neuronal damage. In OCD and Tourette syndrome, which are not characterized by frank neural degeneration, the potential role of microglial dysregulation is much less clear. Here we review the evidence for a neuroinflammatory etiology and microglial dysregulation in OCD, Tourette syndrome, and PANDAS. We also explore new hypotheses as to the potential contributions of microglial abnormalities to pathophysiology, beyond neuroinflammation, including failures in neuroprotection, lack of support for neuronal survival, and abnormalities in synaptic pruning. Recent advances in neuroimaging and animal model work are creating new opportunities to elucidate these issues.

  3. Adjudin attenuates lipopolysaccharide (LPS)- and ischemia-induced microglial activation

    PubMed Central

    Shao, Jiaxiang; Liu, Tengyuan; Xie, Qian Reuben; Zhang, Tingting; Yu, Hemei; Wang, Boshi; Ying, Weihai; Mruk, Dolores D.; Silvestrini, Bruno; Cheng, C. Yan; Xia, Weiliang

    2014-01-01

    Neuroinflammation caused by microglial activation plays a key role in ischemia, neurodegeneration and many other CNS diseases. In this study, we found that Adjudin, a potential non-hormonal male contraceptive, exhibits additional function to reduce the production of proinflammatory mediators. Adjudin significantly inhibited LPS-induced IL-6 release and IL-6, IL-1β, TNF-α expression in BV2 microglial cells. Furthermore, Adjudin exhibited anti-inflammatory properties by suppression of NF-κB p65 nuclear translocation and DNA binding activity as well as ERK MAPK phosphorylation. To determine the in vivo effect of Adjudin, we used a permanent middle cerebral artery occlusion (pMCAO) mouse model and found that Adjudin could reduce ischemia-induced CD11b expression, a marker of microglial activation. Furthermore, Adjudin treatment attenuated brain edema and neurological deficits after ischemia but did not reduce infarct volume. Thus, our data suggest that Adjudin may be useful for mitigating neuroinflammation. PMID:23084372

  4. Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation.

    PubMed

    Thomas, David M; Walker, Paul D; Benjamins, Joyce A; Geddes, Timothy J; Kuhn, Donald M

    2004-10-01

    Methamphetamine intoxication causes long-lasting damage to dopamine nerve endings in the striatum. The mechanisms underlying this neurotoxicity are not known but oxidative stress has been implicated. Microglia are the major antigen-presenting cells in brain and when activated, they secrete an array of factors that cause neuronal damage. Surprisingly, very little work has been directed at the study of microglial activation as part of the methamphetamine neurotoxic cascade. We report here that methamphetamine activates microglia in a dose-related manner and along a time course that is coincident with dopamine nerve ending damage. Prevention of methamphetamine toxicity by maintaining treated mice at low ambient temperature prevents drug-induced microglial activation. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), which damages dopamine nerve endings and cell bodies, causes extensive microglial activation in striatum as well as in the substantia nigra. In contrast, methamphetamine causes neither microglial activation in the substantia nigra nor dopamine cell body damage. Dopamine transporter antagonists (cocaine, WIN 35,428 [(-)-2-beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane 1,5-naphthalenedisulfonate], and nomifensine), selective D1 (SKF 82958 [(+/-)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide]), D2 (quinpirole), or mixed D1/D2 receptor agonists (apomorphine) do not mimic the effect of methamphetamine on microglia. Hyperthermia, a prominent and dangerous clinical response to methamphetamine intoxication, was also ruled out as the cause of microglial activation. Together, these data suggest that microglial activation represents an early step in methamphetamine-induced neurotoxicity. Other neurochemical effects resulting from methamphetamine-induced overflow of DA into the synapse, but which are not neurotoxic, do not play a role in this response.

  5. Redox Control of Microglial Function: Molecular Mechanisms and Functional Significance

    PubMed Central

    McBean, Gethin; Cindric, Marina; Egea, Javier; López, Manuela G.; Rada, Patricia; Zarkovic, Neven

    2014-01-01

    Abstract Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain. Antioxid. Redox Signal. 21, 1766–1801. PMID:24597893

  6. Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines.

    PubMed

    Thomas, David M; Dowgiert, Jennifer; Geddes, Timothy J; Francescutti-Verbeem, Dina; Liu, Xiuli; Kuhn, Donald M

    2004-09-09

    Neurotoxic amphetamines cause damage to monoamine nerve terminals of the striatum by unknown mechanisms. Microglial activation contributes to the neuronal damage that accompanies injury, disease, and inflammation, but a role for these cells in amphetamine-induced neurotoxicity has received little attention. We show presently that D-methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), D-amphetamine, and p-chloroamphetamine, each of which has been linked to dopamine (DA) or serotonin nerve terminal damage, result in microglial activation in the striatum. The non-neurotoxic amphetamines l-methamphetamine, fenfluramine, and DOI do not have this effect. All drugs that cause microglial activation also increase expression of glial fibrillary acidic protein (GFAP). At a minimum, microglial activation serves as a pharmacologically specific marker for striatal nerve terminal damage resulting only from those amphetamines that exert neurotoxicity. Because microglia are known to produce many of the reactive species (e.g., nitric oxide, superoxide, cytokines) that mediate the neurotoxicity of the amphetamine-class of drugs, their activation could represent an early and essential event in the neurotoxic cascade associated with high-dose amphetamine intoxication.

  7. Dystrophic microglia in the aging human brain.

    PubMed

    Streit, Wolfgang J; Sammons, Nicole W; Kuhns, Amanda J; Sparks, D Larry

    2004-01-15

    We have studied microglial morphology in the human cerebral cortex of two nondemented subjects using high-resolution LN-3 immunohistochemistry. Several abnormalities in microglial cytoplasmic structure, including deramification, spheroid formation, gnarling, and fragmentation of processes, were identified. These changes were determined to be different from the morphological changes that occur during microglial activation and they were designated collectively as microglial dystrophy. Quantitative evaluation of dystrophic changes in microglia revealed that these were much more prevalent in the older subject (68-year-old) than in the younger one (38-year-old). Thus, we conclude that microglial dystrophy is a sign of microglial cell senescence. We hypothesize that microglial senescence could be important for understanding age-related declines in cognitive function. Copyright 2003 Wiley-Liss, Inc.

  8. Three-dimensional morphometric analysis of microglial changes in a mouse model of virus encephalitis: age and environmental influences.

    PubMed

    de Sousa, Aline A; Dos Reis, Renata R; de Lima, Camila M; de Oliveira, Marcus A; Fernandes, Taiany N; Gomes, Giovanni F; Diniz, Daniel G; Magalhães, Nara M; Diniz, Cristovam G; Sosthenes, Marcia C K; Bento-Torres, João; Diniz, José Antonio P; Vasconcelos, Pedro F da C; Diniz, Cristovam Wanderley P

    2015-08-01

    Many RNA virus CNS infections cause neurological disease. Because Piry virus has a limited human pathogenicity and exercise reduces activation of microglia in aged mice, possible influences of environment and aging on microglial morphology and behavior in mice sublethal encephalitis were investigated. Female albino Swiss mice were raised either in standard (S) or in enriched (EE) cages from age 2 to 6 months (young - Y), or from 2 to 16 months (aged - A). After behavioral tests, mice nostrils were instilled with Piry-virus-infected or with normal brain homogenates. Brain sections were immunolabeled for virus antigens or microglia at 8 days post-infection (dpi), when behavioral changes became apparent, and at 20 and 40 dpi, after additional behavioral testing. Young infected mice from standard (SYPy) and enriched (EYPy) groups showed similar transient impairment in burrowing activity and olfactory discrimination, whereas aged infected mice from both environments (EAPy, SAPy) showed permanent reduction in both tasks. The beneficial effects of an enriched environment were smaller in aged than in young mice. Six-hundred and forty microglial cells, 80 from each group were reconstructed. An unbiased, stereological sampling approach and multivariate statistical analysis were used to search for microglial morphological families. This procedure allowed distinguishing between microglial morphology of infected and control subjects. More severe virus-associated microglial changes were observed in young than in aged mice, and EYPy seem to recover microglial homeostatic morphology earlier than SYPy . Because Piry-virus encephalitis outcomes were more severe in aged mice, it is suggested that the reduced inflammatory response in those individuals may aggravate encephalitis outcomes. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation.

    PubMed

    Jung, Hwan Yong; Nam, Kyong Nyon; Woo, Byung-Choel; Kim, Kyoo-Pil; Kim, Sung-Ok; Lee, Eunjoo H

    2013-01-01

    Chronic microglial activation endangers neuronal survival through the release of various pro-inflammatory and neurotoxic factors. As such, negative regulators of microglial activation have been considered as potential therapeutic candidates to reduce the risk of neurodegeneration associated with inflammation. Uncaria rhynchophylla (U. rhynchophylla) is a traditional oriental herb that has been used for treatment of disorders of the cardiovascular and central nervous systems. Hirsutine (HS), one of the major indole alkaloids of U. rhynchophylla, has demonstrated neuroprotective potential. The aim of the present study was to examine the efficacy of HS in the repression of inflammation-induced neurotoxicity and microglial cell activation. In organotypic hippocampal slice cultures, HS blocked lipopolysaccharide (LPS)-related hippocampal cell death and production of nitric oxide (NO), prostaglandin (PG) E2 and interleukin-1β. HS was demonstrated to effectively inhibit LPS-induced NO release from cultured rat brain microglia. The compound reduced the LPS-stimulated production of PGE2 and intracellular reactive oxygen species. HS significantly decreased LPS-induced phosphorylation of the mitogen-activated protein kinases and Akt signaling proteins. In conclusion, HS reduces the production of various neurotoxic factors in activated microglial cells and possesses neuroprotective activity in a model of inflammation-induced neurotoxicity.

  10. Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide-induced neuroinflammation.

    PubMed

    Fan, Kai; Wu, Xuefei; Fan, Bin; Li, Ning; Lin, Yongzhong; Yao, Yiwen; Ma, Jianmei

    2012-05-20

    Cathepsin C (Cat C) functions as a central coordinator for activation of many serine proteases in inflammatory cells. It has been recognized that Cat C is responsible for neutrophil recruitment and production of chemokines and cytokines in many inflammatory diseases. However, Cat C expression and its functional role in the brain under normal conditions or in neuroinflammatory processes remain unclear. Our previous study showed that Cat C promoted the progress of brain demyelination in cuprizone-treated mice. The present study further investigated the Cat C expression and activity in lipopolysaccharide (LPS)-induced neuroinflammation in vivo and in vitro. C57BL/6 J mice were intraperitoneally injected with either 0.9% saline or lipopolysaccharide (LPS, 5 mg/kg). Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to analyze microglial activation, TNF-α, IL-1β, IL-6, iNOS mRNAs expressions and cellular localization of Cat C in the brain. Nitrite assay was used to examine microglial activation in vitro; RT-PCR and ELISA were used to determine the expression and release of Cat C. Cat C activity was analyzed by cellular Cat C assay kit. Data were evaluated for statistical significance with paired t test. Cat C was predominantly expressed in hippocampal CA2 neurons in C57BL/6 J mice under normal conditions. Six hours after LPS injection, Cat C expression was detected in cerebral cortical neurons; whereas, twenty-four hours later, Cat C expression was captured in activated microglial cells throughout the entire brain. The duration of induced Cat C expression in neurons and in microglial cells was ten days and three days, respectively. In vitro, LPS, IL-1β and IL-6 treatments increased microglial Cat C expression in a dose-dependent manner and upregulated Cat C secretion and its activity. Taken together, these data indicate that LPS and proinflammatory cytokines IL-1β, IL-6 induce the expression, release and upregulate enzymatic activity of Cat C in

  11. Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide-induced neuroinflammation

    PubMed Central

    2012-01-01

    Background Cathepsin C (Cat C) functions as a central coordinator for activation of many serine proteases in inflammatory cells. It has been recognized that Cat C is responsible for neutrophil recruitment and production of chemokines and cytokines in many inflammatory diseases. However, Cat C expression and its functional role in the brain under normal conditions or in neuroinflammatory processes remain unclear. Our previous study showed that Cat C promoted the progress of brain demyelination in cuprizone-treated mice. The present study further investigated the Cat C expression and activity in lipopolysaccharide (LPS)-induced neuroinflammation in vivo and in vitro. Methods C57BL/6 J mice were intraperitoneally injected with either 0.9% saline or lipopolysaccharide (LPS, 5 mg/kg). Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to analyze microglial activation, TNF-α, IL-1β, IL-6, iNOS mRNAs expressions and cellular localization of Cat C in the brain. Nitrite assay was used to examine microglial activation in vitro; RT-PCR and ELISA were used to determine the expression and release of Cat C. Cat C activity was analyzed by cellular Cat C assay kit. Data were evaluated for statistical significance with paired t test. Results Cat C was predominantly expressed in hippocampal CA2 neurons in C57BL/6 J mice under normal conditions. Six hours after LPS injection, Cat C expression was detected in cerebral cortical neurons; whereas, twenty-four hours later, Cat C expression was captured in activated microglial cells throughout the entire brain. The duration of induced Cat C expression in neurons and in microglial cells was ten days and three days, respectively. In vitro, LPS, IL-1β and IL-6 treatments increased microglial Cat C expression in a dose-dependent manner and upregulated Cat C secretion and its activity. Conclusions Taken together, these data indicate that LPS and proinflammatory cytokines IL-1β, IL-6 induce the expression, release and

  12. Galectin-3 controls the response of microglial cells to limit cuprizone-induced demyelination.

    PubMed

    Hoyos, H C; Rinaldi, M; Mendez-Huergo, S P; Marder, M; Rabinovich, G A; Pasquini, J M; Pasquini, L A

    2014-02-01

    Galectin-3 (Gal-3) is a β-galactoside-binding lectin that plays an important role in inflammatory and neurodegenerative diseases. Cuprizone (CPZ)-induced demyelination is characterized by the loss of mature oligodendrocytes (OLG) by apoptosis, myelin sheath degeneration and recruitment of microglia and astrocytes to the lesioned area. We compared CPZ-induced demyelination of 8-week-old Lgals3(-/-) vs WT mice. Lgals3(-/-) mice displayed a similar susceptibility to CPZ-induced demyelination up to the fifth week, as evaluated by MBP immunostaining and electronic microscopy. However, OLG progenitors (OPC) generated in CPZ-treated Lgals3(-/-) mice showed diminished arborization, suggesting decreased ability of these cells to differentiate. Surprisingly, while WT mice experienced spontaneous remyelination in the fifth week of CPZ treatment-even though the CPZ diet was maintained up to sixth week-Lgals3(-/-) mice lacked this capacity and suffered continuous demyelination up to the sixth week, accompanied by pronounced astroglial activation. Moreover, after 2weeks of CPZ treatment, WT and Lgals3(-/-) mice showed lower innate anxiety as compared with respective naive mice, but only CPZ-treated Lgals3(-/-) mice showed decreased locomotor activity and exhibited spatial working memory impairment. Expression of Gal-3 increased during CPZ-induced demyelination in microglia but not in astrocytes. While CPZ-treated WT mice displayed heightened microglial activation associated with ED1 expression and pronounced upregulation of the phagocytic receptor TREM-2b, this effect was not observed in CPZ-treated Lgals3(-/-) mice which, in spite of showing an increased number of microglia, these cells evidenced caspase-3 activation. Our results indicate that Gal-3 is expressed in microglial cells to modulate their phenotype, facilitating the onset of remyelination and OLG differentiation. © 2013.

  13. Effects of hypnotic bromovalerylurea on microglial BV2 cells.

    PubMed

    Kawasaki, Shun; Abe, Naoki; Ohtake, Fumito; Islam, Afsana; Choudhury, Mohammed Emamussalehin; Utsunomiya, Ryo; Kikuchi, Satoshi; Nishihara, Tasuku; Kuwabara, Jun; Yano, Hajime; Watanabe, Yuji; Aibiki, Mayuki; Yorozuya, Toshihiro; Tanaka, Junya

    2017-06-01

    An old sedative and hypnotic bromovalerylurea (BU) has anti-inflammatory effects. BU suppressed nitric oxide (NO) release and proinflammatory cytokine expression by lipopolysaccharide (LPS)-treated BV2 cells, a murine microglial cell line. However, BU did not inhibit LPS-induced nuclear translocation of nuclear factor-κB and subsequent transcription. BU suppressed LPS-induced phosphorylation of signal transducer and activator of transcription 1 (STAT1) and expression of interferon regulatory factor 1 (IRF1). The Janus kinase 1 (JAK1) inhibitor filgotinib suppressed the NO release much more weakly than that of BU, although filgotinib almost completely prevented LPS-induced STAT1 phosphorylation. Knockdown of JAK1, STAT1, or IRF1 did not affect the suppressive effects of BU on LPS-induced NO release by BV2 cells. A combination of BU and filgotinib synergistically suppressed the NO release. The mitochondrial complex I inhibitor rotenone, which did not prevent STAT1 phosphorylation or IRF1 expression, suppressed proinflammatory mediator expression less significantly than BU. BU and rotenone reduced intracellular ATP (iATP) levels to a similar extent. A combination of rotenone and filgotinib suppressed NO release by LPS-treated BV2 cells as strongly as BU. These results suggest that anti-inflammatory actions of BU may be attributable to the synergism of inhibition of JAK1/STAT1-dependent pathways and reduction in iATP level. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  14. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells

    PubMed Central

    2010-01-01

    Background In several neuropathological conditions, microglia can become overactivated and cause neurotoxicity by initiating neuronal damage in response to pro-inflammatory stimuli. Our previous studies have shown that exposure to electromagnetic fields (EMF) activates cultured microglia to produce tumor necrosis factor (TNF)-α and nitric oxide (NO) through signal transduction involving the activator of transcription STAT3. Here, we investigated the role of STAT3 signaling in EMF-induced microglial activation and pro-inflammatory responses in more detail than the previous study. Methods N9 microglial cells were treated with EMF exposure or a sham treatment, with or without pretreatment with an inhibitor (Pyridone 6, P6) of the Janus family of tyrosine kinases (JAK). The activation state of microglia was assessed via immunoreaction using the microglial marker CD11b. Levels of inducible nitric oxide synthase (iNOS), TNF-α and NO were measured using real-time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and the nitrate reductase method. Activation of JAKs and STAT3 proteins was evaluated by western blotting for specific tyrosine phosphorylation. The ability of STAT3 to bind to DNA was detected with an electrophoresis mobility shift assay (EMSA). Results EMF was found to significantly induce phosphorylation of JAK2 and STAT3, and DNA-binding ability of STAT3 in N9 microglia. In addition, EMF dramatically increased the expression of CD11b, TNF-α and iNOS, and the production of NO. P6 strongly suppressed the phosphorylation of JAK2 and STAT3 and diminished STAT3 activity in EMF-stimulated microglia. Interestingly, expression of CD11b as well as gene expression and production of TNF-α and iNOS were suppressed by P6 at 12 h, but not at 3 h, after EMF exposure. Conclusions EMF exposure directly triggers initial activation of microglia and produces a significant pro-inflammatory response. Our findings confirm that

  15. Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells.

    PubMed

    Abbasi Habashi, Soraya; Sabouni, Farzaneh; Moghimi, Ali; Ansari Majd, Saeed

    2016-01-01

    Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. This study examined whether bromelain, the pineapple-derived extract, may exert an anti-inflammatory effect in primary microglia and may be neuroprotective by regulating microglial activation. Following the isolation of neonatal rat primary microglial cells, the activation profile of microglia was investigated by studying the effects of bromelain (5, 10, 20, and 30 µg/ml) on the levels of NO, inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) in microglia treated with lipopolysaccharide (LPS) (1 µg/ml). Data were analyzed using Student's t-test. P values less than 0.05 were considered to be statistically significant, compared with the LPS-treated group without bromelain. Results showed that pretreatment of rat primary microglia with bromelain, decreased the production of NO induced by LPS (1 µg/ml) treatment in a dose-dependent manner. Bromelain (30 µg/ml) also significantly reduced the expression of iNOS at mRNA level and NF-κB at protein level. Moreover, the study of mitochondrial activity in microglia indicated that bromelain had no cytotoxicity at any of the applied doses, suggesting that the anti-inflammatory effects of bromelain are not due to cell death. Bromelain can be of potential use as an agent for alleviation of symptoms in neurodegenerative diseases.

  16. Treatment with polyamine oxidase inhibitor reduces microglial activation and limits vascular injury in ischemic retinopathy

    PubMed Central

    Patel, C.; Xu, Z.; Shosha, E.; Xing, J.; Lucas, R.; Caldwell, R.W.; Caldwell, R.B.; Narayanan, S.P.

    2016-01-01

    Retinal vascular injury is a major cause of vision impairment in ischemic retinopathies. Insults such as hyperoxia, oxidative stress and inflammation contribute to this pathology. Previously, we showed that hyperoxia-induced retinal neurodegeneration is associated with increased polyamine oxidation. Here, we are studying the involvement of polyamine oxidases in hyperoxia-induced injury and death of retinal vascular endothelial cells. Newborn C57BL6/J mice were exposed to hyperoxia (70% O2) from postnatal day (P) 7 to 12 and were treated with the polyamine oxidase inhibitor MDL 72527 or vehicle starting at P6. Mice were sacrificed after different durations of hyperoxia and their retinas were analyzed to determine the effects on vascular injury, microglial cell activation, and inflammatory cytokine profiling. The results of this analysis showed that MDL 72527 treatment significantly reduced hyperoxia-induced retinal vascular injury and enhanced vascular sprouting as compared with the vehicle controls. These protective effects were correlated with significant decreases in microglial activation as well as levels of inflammatory cytokines and chemokines. In order to model the effects of polyamine oxidation in causing microglial activation in vitro, studies were performed using rat brain microvascular endothelial cells treated with conditioned-medium from rat retinal microglia stimulated with hydrogen peroxide. Conditioned-medium from activated microglial cultures induced cell stress signals and cell death in microvascular endothelial cells. These studies demonstrate the involvement of polyamine oxidases in hyperoxia-induced retinal vascular injury and retinal inflammation in ischemic retinopathy, through mechanisms involving cross-talk between endothelial cells and resident retinal microglia. PMID:27239699

  17. Anthocyanin-rich acai (Euterpe oleracea mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells

    USDA-ARS?s Scientific Manuscript database

    Age-related increases in oxidative stress and inflammation are associated with loss of cognitive and motor functions. Previous research has shown that supplementation with berry fruits can modulate signaling in primary hippocampal neurons or BV-2 mouse microglial cells. Because of the high polypheno...

  18. Excretory and Secretory Proteins of Naegleria fowleri Induce Inflammatory Responses in BV-2 Microglial Cells.

    PubMed

    Lee, Jinyoung; Kang, Jung-Mi; Kim, Tae Im; Kim, Jong-Hyun; Sohn, Hae-Jin; Na, Byoung-Kuk; Shin, Ho-Joon

    2017-03-01

    Naegleria fowleri, a free-living amoeba that is found in diverse environmental habitats, can cause a type of fulminating hemorrhagic meningoencephalitis, primary amoebic meningoencephalitis (PAM), in humans. The pathogenesis of PAM is not fully understood, but it is likely to be primarily caused by disruption of the host's nervous system via a direct phagocytic mechanism by the amoeba. Naegleria fowleri trophozoites are known to secrete diverse proteins that may indirectly contribute to the pathogenic function of the amoeba, but this factor is not clearly understood. In this study, we analyzed the inflammatory responses in BV-2 microglial cells induced by excretory and secretory proteins of N. fowleri (NfESP). Treatment of BV-2 cells with NfESP induced the expression of various cytokines and chemokines, including the proinflammatory cytokines IL-1α and TNF-α. NfESP-induced IL-1α and TNF-α expression in BV-2 cells were regulated by p38, JNK, and ERK MAPKs. NfESP-induced IL-1α and TNF-α production in BV-2 cells were effectively downregulated by inhibition of NF-kB and AP-1. These results collectively suggest that NfESP stimulates BV-2 cells to release IL-1α and TNF-α via NF-kB- and AP-1-dependent MAPK signaling pathways. The released cytokines may contribute to inflammatory responses in microglia and other cell types in the brain during N. fowleri infection. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  19. Shikonin Isolated from Lithospermum erythrorhizon Downregulates Proinflammatory Mediators in Lipopolysaccharide-Stimulated BV2 Microglial Cells by Suppressing Crosstalk between Reactive Oxygen Species and NF-κB.

    PubMed

    Prasad, Rajapaksha Gedara; Choi, Yung Hyun; Kim, Gi-Young

    2015-03-01

    According to the expansion of lifespan, neuronal disorder based on inflammation has been social problem. Therefore, we isolated shikonin from Lithospermum erythrorhizon and evaluated anti-inflammatory effects of shikonin in lipopolysaccharide (LSP)-stimulated BV2 microglial cells. Shikonin dose-dependently inhibits the expression of the proinflammatory mediators, nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α) as well as their main regulatory genes and products such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α in LPS-stimulated BV2 microglial cells. Additionally, shikonin suppressed the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) to regulate the key regulatory genes of the proinflammatory mediators, such as iNOS, COX-2, and TNF-α, accompanied with downregulation of reactive oxygen species (ROS) generation. The results indicate that shikonin may downregulate the expression of proinflammatory genes involved in the synthesis of NO, PGE2, and TNF-α in LPS-treated BV2 microglial cells by suppressing ROS and NF-κB. Taken together, our results revealed that shikonin exerts downregulation of proinflammatory mediators by interference the ROS and NF-κB signaling pathway.

  20. Shikonin Isolated from Lithospermum erythrorhizon Downregulates Proinflammatory Mediators in Lipopolysaccharide-Stimulated BV2 Microglial Cells by Suppressing Crosstalk between Reactive Oxygen Species and NF-κB

    PubMed Central

    Prasad, Rajapaksha Gedara; Choi, Yung Hyun; Kim, Gi-Young

    2015-01-01

    According to the expansion of lifespan, neuronal disorder based on inflammation has been social problem. Therefore, we isolated shikonin from Lithospermum erythrorhizon and evaluated anti-inflammatory effects of shikonin in lipopolysaccharide (LSP)-stimulated BV2 microglial cells. Shikonin dose-dependently inhibits the expression of the proinflammatory mediators, nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α) as well as their main regulatory genes and products such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α in LPS-stimulated BV2 microglial cells. Additionally, shikonin suppressed the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) to regulate the key regulatory genes of the proinflammatory mediators, such as iNOS, COX-2, and TNF-α, accompanied with downregulation of reactive oxygen species (ROS) generation. The results indicate that shikonin may downregulate the expression of proinflammatory genes involved in the synthesis of NO, PGE2, and TNF-α in LPS-treated BV2 microglial cells by suppressing ROS and NF-κB. Taken together, our results revealed that shikonin exerts downregulation of proinflammatory mediators by interference the ROS and NF-κB signaling pathway. PMID:25767678

  1. Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells

    PubMed Central

    Abbasi Habashi, Soraya; Sabouni, Farzaneh; Moghimi, Ali; Ansari Majd, Saeed

    2016-01-01

    Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. This study examined whether bromelain, the pineapple-derived extract, may exert an anti-inflammatory effect in primary microglia and may be neuroprotective by regulating microglial activation. Methods: Following the isolation of neonatal rat primary microglial cells, the activation profile of microglia was investigated by studying the effects of bromelain (5, 10, 20, and 30 µg/ml) on the levels of NO, inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) in microglia treated with lipopolysaccharide (LPS) (1 µg/ml). Data were analyzed using Student's t-test. P values less than 0.05 were considered to be statistically significant, compared with the LPS-treated group without bromelain. Results: Results showed that pretreatment of rat primary microglia with bromelain, decreased the production of NO induced by LPS (1 µg/ml) treatment in a dose-dependent manner. Bromelain (30 µg/ml) also significantly reduced the expression of iNOS at mRNA level and NF-κB at protein level. Moreover, the study of mitochondrial activity in microglia indicated that bromelain had no cytotoxicity at any of the applied doses, suggesting that the anti-inflammatory effects of bromelain are not due to cell death. Conclusion: Bromelain can be of potential use as an agent for alleviation of symptoms in neurodegenerative diseases. PMID:26459398

  2. Vitamin K2 suppresses rotenone-induced microglial activation in vitro

    PubMed Central

    Yu, Yan-xia; Li, Yi-pei; Gao, Feng; Hu, Qing-song; Zhang, Yan; Chen, Dong; Wang, Guang-hui

    2016-01-01

    Aim: Increasing evidence has shown that environmental factors such as rotenone and paraquat induce neuroinflammation, which contributes to the pathogenesis of Parkinson's disease (PD). In this study, we investigated the molecular mechanisms underlying the repression by menaquinone-4 (MK-4), a subtype of vitamin K2, of rotenone-induced microglial activation in vitro. Methods: A microglial cell line (BV2) was exposed to rotenone (1 μmol/L) with or without MK-4 treatment. The levels of TNF-α or IL-1β in 100 μL of cultured media of BV2 cells were measured using ELISA kits. BV2 cells treated with rotenone with or without MK4 were subjected to mitochondrial membrane potential, ROS production, immunofluorescence or immunoblot assays. The neuroblastoma SH-SY5Y cells were treated with conditioned media (CM) of BV2 cells that were exposed to rotenone with or without MK-4 treatment, and the cell viability was assessed using MTT assay. Results: In rotenone-treated BV2 cells, MK-4 (0.5–20 μmol/L) dose-dependently suppressed the upregulation in the expression of iNOS and COX-2 in the cells, as well as the production of TNF-α and IL-1β in the cultured media. MK-4 (5–20 μmol/L) significantly inhibited rotenone-induced nuclear translocation of NF-κB in BV2 cells. MK-4 (5–20 μmol/L) significantly inhibited rotenone-induced p38 activation, ROS production, and caspase-1 activation in BV2 cells. MK-4 (5–20 μmol/L) also restored the mitochondrial membrane potential that had been damaged by rotenone. Exposure to CM from rotenone-treated BV2 cells markedly decreased the viability of SH-SY5Y cells. However, this rotenone-activated microglia-mediated death of SH-SY5Y cells was significantly attenuated when the BV2 cells were co-treated with MK-4 (5–20 μmol/L). Conclusion: Vitamin K2 can directly suppress rotenone-induced activation of microglial BV2 cells in vitro by repressing ROS production and p38 activation. PMID:27498777

  3. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-07-19

    Methamphetamine causes long-term toxicity to dopamine nerve endings of the striatum. Evidence is emerging that microglia can contribute to the neuronal damage associated with disease, injury, or inflammation, but their role in methamphetamine-induced neurotoxicity has received relatively little attention. Lipopolysaccharide (LPS) and the neurotoxic HIV Tat protein, which cause dopamine neuronal toxicity after direct infusion into brain, cause activation of cultured mouse microglial cells as evidenced by increased expression of intracellular cyclooxygenase-2 and elevated secretion of tumor necrosis factor-alpha. MK-801, a non-competitive NMDA receptor antagonist that is known to protect against methamphetamine neurotoxicity, prevents microglial activation by LPS and HIV Tat. Dextromethorphan, an antitussive agent with NMDA receptor blocking properties, also prevents microglial activation. In vivo, MK-801 and dextromethorphan reduce methamphetamine-induced activation of microglia in striatum and they protect dopamine nerve endings against drug-induced nerve terminal damage. The present results indicate that the ability of MK-801 and dextromethorphan to protect against methamphetamine neurotoxicity is related to their common property as blockers of microglial activation.

  4. Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer's disease.

    PubMed

    Davies, Danielle S; Ma, Jolande; Jegathees, Thuvarahan; Goldsbury, Claire

    2017-11-01

    Changes in microglia function are involved in Alzheimer's disease (AD) for which ageing is the major risk factor. We evaluated microglial cell process morphologies and their gray matter coverage (arborized area) during ageing and in the presence and absence of AD pathology in autopsied human neocortex. Microglial cell processes were reduced in length, showed less branching and reduced arborized area with aging (case range 52-98 years). This occurred during normal ageing and without microglia dystrophy or changes in cell density. There was a larger reduction in process length and arborized area in AD compared to aged-matched control microglia. In AD cases, on average, 49%-64% of microglia had discontinuous and/or punctate Iba1 labeled processes instead of continuous Iba1 distribution. Up to 16% of aged-matched control microglia displayed discontinuous or punctate features. There was no change in the density of microglial cell bodies in gray matter during ageing or AD. This demonstrates that human microglia show progressive cell process retraction without cell loss during ageing. Additional changes in microglia occur with AD including Iba1 protein puncta and discontinuity. We suggest that reduced microglial arborized area may be an aging-related correlate of AD in humans. These variations in microglial cells during ageing and in AD could reflect changes in neural-glial interactions which are emerging as key to mechanisms involved in ageing and neurodegenerative disease. © 2016 International Society of Neuropathology.

  5. The amelioration of phagocytic ability in microglial cells by curcumin through the inhibition of EMF-induced pro-inflammatory responses

    PubMed Central

    2014-01-01

    Background Insufficient clearance by microglial cells, prevalent in several neurological conditions and diseases, is intricately intertwined with MFG-E8 expression and inflammatory responses. Electromagnetic field (EMF) exposure can elicit the pro-inflammatory activation and may also trigger an alteration of the clearance function in microglial cells. Curcumin has important roles in the anti-inflammatory and phagocytic process. Here, we evaluated the ability of curcumin to ameliorate the phagocytic ability of EMF-exposed microglial cells (N9 cells) and documented relative pathways. Methods N9 cells were pretreated with or without recombinant murine MFG-E8 (rmMFG-E8), curcumin and an antibody of toll-like receptor 4 (anti-TLR4), and subsequently treated with EMF or a sham exposure. Their phagocytic ability was evaluated using phosphatidylserine-containing fluorescent bioparticles. The pro-inflammatory activation of microglia was assessed via CD11b immunoreactivity and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and nitric oxide (NO) via the enzyme-linked immunosorbent assay or the Griess test. We evaluated the ability of curcumin to ameliorate the phagocytic ability of EMF-exposed N9 cells, including checking the expression of MFG-E8, αvβ3 integrin, TLR4, nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) using Western blotting. Results EMF exposure dramatically enhanced the expression of CD11b and depressed the phagocytic ability of N9 cells. rmMFG-E8 could clearly ameliorate the phagocytic ability of N9 cells after EMF exposure. We also found that EMF exposure significantly increased the secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and the production of NO; however, these increases were efficiently chilled by the addition of curcumin to the culture medium. This reduction led to the amelioration of the phagocytic ability of EMF-exposed N9 cells

  6. A homologous form of human interleukin 16 is implicated in microglia recruitment following nervous system injury in leech Hirudo medicinalis.

    PubMed

    Croq, Françoise; Vizioli, Jacopo; Tuzova, Marina; Tahtouh, Muriel; Sautiere, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Cruikshank, William W; Pestel, Joel; Lefebvre, Christophe

    2010-11-01

    In contrast to mammals, the medicinal leech Hirudo medicinalis can completely repair its central nervous system (CNS) after injury. This invertebrate model offers unique opportunities to study the molecular and cellular basis of the CNS repair processes. When the leech CNS is injured, microglial cells migrate and accumulate at the site of lesion, a phenomenon known to be essential for the usual sprouting of injured axons. In the present study, we demonstrate that a new molecule, designated HmIL-16, having functional homologies with human interleukin-16 (IL-16), has chemotactic activity on leech microglial cells as observed using a gradient of human IL-16. Preincubation of microglial cells either with an anti-human IL-16 antibody or with anti-HmIL-16 antibody significantly reduced microglia migration induced by leech-conditioned medium. Functional homology was demonstrated further by the ability of HmIL-16 to promote human CD4+ T cell migration which was inhibited by antibody against human IL-16, an IL-16 antagonist peptide or soluble CD4. Immunohistochemistry of leech CNS indicates that HmIL-16 protein present in the neurons is rapidly transported and stored along the axonal processes to promote the recruitment of microglial cells to the injured axons. To our knowledge, this is the first identification of a functional interleukin-16 homologue in invertebrate CNS. The ability of HmIL-16 to recruit microglial cells to sites of CNS injury suggests a role for HmIL-16 in the crosstalk between neurons and microglia in the leech CNS repair.

  7. Hydroxychloroquine reduces microglial activity and attenuates experimental autoimmune encephalomyelitis.

    PubMed

    Koch, Marcus W; Zabad, Rana; Giuliani, Fabrizio; Hader, Walter; Lewkonia, Ray; Metz, Luanne; Wee Yong, V

    2015-11-15

    Microglial activation is thought to be a key pathophysiological mechanism underlying disease activity in all forms of MS. Hydroxychloroquine (HCQ) is an antimalarial drug with immunomodulatory properties that is widely used in the treatment of rheumatological diseases. In this series of experiments, we explore the effect of HCQ on human microglial activation in vitro and on the development of experimental autoimmune encephalitis (EAE) in vivo. We activated human microglia with lipopolysaccharide (LPS), and measured concentrations of several pro- and anti-inflammatory cytokines in untreated and HCQ pretreated cultures. We investigated the effect of HCQ pretreatment at two doses on the development of EAE and spinal cord histology. HCQ pretreatment reduced the production of pro-inflammatory (TNF-alpha, IL-6, and IL-12) and anti-inflammatory (IL-10 and IL-1 receptor antagonist) cytokines in LPS-stimulated human microglia. HCQ pretreatment delayed the onset of EAE, and reduced the number of Iba-1 positive microglia/macrophages and signs of demyelination in the spinal cords of HCQ treated animals. HCQ treatment reduces the activation of human microglia in vitro, delays the onset of EAE, and decreases the representation of activated macrophages/microglia and demyelination in the spinal cord of treated mice. HCQ is a plausible candidate for further clinical studies in MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. APP Regulates Microglial Phenotype in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Manocha, Gunjan D.; Floden, Angela M.; Rausch, Keiko; Kulas, Joshua A.; McGregor, Brett A.; Rojanathammanee, Lalida; Puig, Kelley R.; Puig, Kendra L.; Karki, Sanjib; Nichols, Michael R.; Darland, Diane C.; Porter, James E.

    2016-01-01

    Prior work suggests that amyloid precursor protein (APP) can function as a proinflammatory receptor on immune cells, such as monocytes and microglia. Therefore, we hypothesized that APP serves this function in microglia during Alzheimer's disease. Although fibrillar amyloid β (Aβ)-stimulated cytokine secretion from both wild-type and APP knock-out (mAPP−/−) microglial cultures, oligomeric Aβ was unable to stimulate increased secretion from mAPP−/− cells. This was consistent with an ability of oligomeric Aβ to bind APP. Similarly, intracerebroventricular infusions of oligomeric Aβ produced less microgliosis in mAPP−/− mice compared with wild-type mice. The mAPP−/− mice crossed to an APP/PS1 transgenic mouse line demonstrated reduced microgliosis and cytokine levels and improved memory compared with wild-type mice despite robust fibrillar Aβ plaque deposition. These data define a novel function for microglial APP in regulating their ability to acquire a proinflammatory phenotype during disease. SIGNIFICANCE STATEMENT A hallmark of Alzheimer's disease (AD) brains is the accumulation of amyloid β (Aβ) peptide within plaques robustly invested with reactive microglia. This supports the notion that Aβ stimulation of microglial activation is one source of brain inflammatory changes during disease. Aβ is a cleavage product of the ubiquitously expressed amyloid precursor protein (APP) and is able to self-associate into a wide variety of differently sized and structurally distinct multimers. In this study, we demonstrate both in vitro and in vivo that nonfibrillar, oligomeric forms of Aβ are able to interact with the parent APP protein to stimulate microglial activation. This provides a mechanism by which metabolism of APP results in possible autocrine or paracrine Aβ production to drive the microgliosis associated with AD brains. PMID:27511018

  9. Role and Mechanism of Microglial Activation in Iron-Induced Selective and Progressive Dopaminergic Neurodegeneration

    PubMed Central

    Yan, Zhao-fen; Gao, Jun-hua; Sun, Li; Huang, Xi-yan; Liu, Zhuo; Yu, Shu-yang; Cao, Chen-Jie; Zuo, Li-jun; Chen, Ze-Jie; Hu, Yang; Wang, Fang; Hong, Jau-shyong; Wang, Xiao-min

    2016-01-01

    Parkinson’s disease (PD) patients have excessive iron depositions in substantia nigra (SN). Neuroinflammation characterized by microglial activation is pivotal for dopaminergic neurodegeneration in PD. However, the role and mechanism of microglial activation in iron-induced dopaminergic neurodegeneration in SN remain unclear yet. This study aimed to investigate the role and mechanism of microglial β-nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) activation in iron-induced selective and progressive dopaminergic neurodegeneration. Multiple primary midbrain cultures from rat, NOX2+/+ and NOX2−/− mice were used. Dopaminergic neurons, total neurons, and microglia were visualized by immunostainings. Cell viability was measured by MTT assay. Superoxide (O2·−) and intracellular reactive oxygen species (iROS) were determined by measuring SOD-inhibitable reduction of tetrazolium salt WST-1 and DCFH-DA assay. mRNA and protein were detected by real-time PCR and Western blot. Iron induces selective and progressive dopaminergic neurotoxicity in rat neuron–microglia–astroglia cultures and microglial activation potentiates the neurotoxicity. Activated microglia produce a magnitude of O2·− and iROS, and display morphological alteration. NOX2 inhibitor diphenylene iodonium protects against iron-elicited dopaminergic neurotoxicity through decreasing microglial O2·− generation, and NOX2−/− mice are resistant to the neurotoxicity by reducing microglial O2·− production, indicating that iron-elicited dopaminergic neurotoxicity is dependent of NOX2, a O2·−-generating enzyme. NOX2 activation is indicated by the increased mRNA and protein levels of subunits P47 and gp91. Molecules relevant to NOX2 activation include PKC-σ, P38, ERK1/2, JNK, and NF-ΚBP65 as their mRNA and protein levels are enhanced by NOX2 activation. Iron causes selective and progressive dopaminergic neurodegeneration, and microglial NOX2 activation potentiates the

  10. MicroRNA-101a regulates microglial morphology and inflammation.

    PubMed

    Saika, Reiko; Sakuma, Hiroshi; Noto, Daisuke; Yamaguchi, Shuhei; Yamamura, Takashi; Miyake, Sachiko

    2017-05-30

    Microglia, as well as other tissue-resident macrophages, arise from yolk sac progenitors. Thus, it is likely that the central nervous system environment is critical for the acquisition of a distinct microglial phenotype. Several microRNAs that are enriched in the brain play crucial roles in brain development and may also play a role in the differentiation of microglia. To track the differentiation of hematopoietic cells into microglia, lineage-negative bone marrow cells were co-cultured with astrocytes in the absence or presence of microRNAs or their inhibitors. Microglia-like cells were identified as small, round cells that were immunopositive for CD11b, Iba1, CX3CR1, and triggering receptor expressed on myeloid cells (TREM)-2. Five microRNAs (miR-101a, miR-139-3p, miR-214 * , miR-218, and miR-1186) were identified as modifiers of the differentiation of bone marrow-derived microglia-like cells. Among them, miR-101a facilitated the differentiation of bone marrow cells into microglia-like cells most potently. Small, round cells expressing CD11b, Iba1, CX3CR1, and TREM-2 were predominant in cells treated by miR-101a. miR-101a was abundantly expressed in non-microglial brain cells. Transfection of miR-101a into microglia significantly increased the production of IL-6 in response to LPS. Finally, miR-101a downregulated the expression of MAPK phosphatase-1. miR-101a, which is enriched in the brain, promotes the differentiation of bone marrow cells into microglia-like cells.

  11. Enhanced cerebral expression of MCT1 and MCT2 in a rat ischemia model occurs in activated microglial cells.

    PubMed

    Moreira, Tiago J T P; Pierre, Karin; Maekawa, Fumihiko; Repond, Cendrine; Cebere, Aleta; Liljequist, Sture; Pellerin, Luc

    2009-07-01

    Monocarboxylate transporters (MCTs) are essential for the use of lactate, an energy substrate known to be overproduced in brain during an ischemic episode. The expression of MCT1 and MCT2 was investigated at 48 h of reperfusion from focal ischemia induced by unilateral extradural compression in Wistar rats. Increased MCT1 mRNA expression was detected in the injured cortex and hippocampus of compressed animals compared to sham controls. In the contralateral, uncompressed hemisphere, increases in MCT1 mRNA level in the cortex and MCT2 mRNA level in the hippocampus were noted. Interestingly, strong MCT1 and MCT2 protein expression was found in peri-lesional macrophages/microglia and in an isolectin B4+/S100beta+ cell population in the corpus callosum. In vitro, MCT1 and MCT2 protein expression was observed in the N11 microglial cell line, whereas an enhancement of MCT1 expression by tumor necrosis factor-alpha (TNF-alpha) was shown in these cells. Modulation of MCT expression in microglia suggests that these transporters may help sustain microglial functions during recovery from focal brain ischemia. Overall, our study indicates that changes in MCT expression around and also away from the ischemic area, both at the mRNA and protein levels, are a part of the metabolic adaptations taking place in the brain after ischemia.

  12. Modulation of Microglial Activity by Rho-Kinase (ROCK) Inhibition as Therapeutic Strategy in Parkinson's Disease and Amyotrophic Lateral Sclerosis.

    PubMed

    Roser, Anna-Elisa; Tönges, Lars; Lingor, Paul

    2017-01-01

    Neurodegenerative diseases are characterized by the progressive degeneration of neurons in the central and peripheral nervous system (CNS, PNS), resulting in a reduced innervation of target structures and a loss of function. A shared characteristic of many neurodegenerative diseases is the infiltration of microglial cells into affected brain regions. During early disease stages microglial cells often display a rather neuroprotective phenotype, but switch to a more pro-inflammatory neurotoxic phenotype in later stages of the disease, contributing to the neurodegeneration. Activation of the Rho kinase (ROCK) pathway appears to be instrumental for the modulation of the microglial phenotype: increased ROCK activity in microglia mediates mechanisms of the inflammatory response and is associated with improved motility, increased production of reactive oxygen species (ROS) and release of inflammatory cytokines. Recently, several studies suggested inhibition of ROCK signaling as a promising treatment option for neurodegenerative diseases. In this review article, we discuss the contribution of microglial activity and phenotype switch to the pathophysiology of Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS), two devastating neurodegenerative diseases without disease-modifying treatment options. Furthermore, we describe how ROCK inhibition can influence the microglial phenotype in disease models and explore ROCK inhibition as a future treatment option for PD and ALS.

  13. Macroglia-Microglia Interactions via TSPO Signaling Regulates Microglial Activation in the Mouse Retina

    PubMed Central

    Wang, Minhua; Wang, Xu; Zhao, Lian; Ma, Wenxin; Rodriguez, Ignacio R.; Fariss, Robert N.

    2014-01-01

    Chronic retinal inflammation in the form of activated microglia and macrophages are implicated in the etiology of neurodegenerative diseases of the retina, including age-related macular degeneration, diabetic retinopathy, and glaucoma. However, molecular biomarkers and targeted therapies for immune cell activation in these disorders are currently lacking. To address this, we investigated the involvement and role of translocator protein (TSPO), a biomarker of microglial and astrocyte gliosis in brain degeneration, in the context of retinal inflammation. Here, we find that TSPO is acutely and specifically upregulated in retinal microglia in separate mouse models of retinal inflammation and injury. Concomitantly, its endogenous ligand, diazepam-binding inhibitor (DBI), is upregulated in the macroglia of the mouse retina such as astrocytes and Müller cells. In addition, we discover that TSPO-mediated signaling in microglia via DBI-derived ligands negatively regulates features of microglial activation, including reactive oxygen species production, TNF-α expression and secretion, and microglial proliferation. The inducibility and effects of DBI-TSPO signaling in the retina reveal a mechanism of coordinated macroglia-microglia interactions, the function of which is to limit the magnitude of inflammatory responses after their initiation, facilitating a return to baseline quiescence. Our results indicate that TSPO is a promising molecular marker for imaging inflammatory cell activation in the retina and highlight DBI-TSPO signaling as a potential target for immodulatory therapies. PMID:24599476

  14. A synthetic diosgenin primary amine derivative attenuates LPS-stimulated inflammation via inhibition of NF-κB and JNK MAPK signaling in microglial BV2 cells.

    PubMed

    Cai, Bangrong; Seong, Kyung-Joo; Bae, Sun-Woong; Chun, Changju; Kim, Won-Jae; Jung, Ji-Yeon

    2018-06-08

    Diosgenin, a precursor of steroid hormones in plants, is known to exhibit diverse pharmacological activities including anti-inflammatory properties. In this study, (3β, 25R)‑spirost‑5‑en‑3‑oxyl (2‑((2((2‑aminoethyl)amino)ethyl)amino)ethyl) carbamate (DGP), a new synthetic diosgenin derivative incorporating primary amine was used to investigate its anti-inflammatory effects and underlying mechanisms of action in lipopolysaccharide (LPS)-stimulated microglial BV2 cells. Pretreatment with DGP resulted in significant inhibition of nitric oxide (NO) synthesis, and down-regulation of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated microglial BV2 cells. In addition, DGP decreased the production of reactive oxygen species (ROS) and pro-inflammatory cytokines such as interleukin (IL)-6, IL-1β, and tumor necrosis factor alpha (TNF-α). The inhibitory effects of DGP on these inflammatory mediators in LPS-stimulated microglial BV2 cells were regulated by NF-κB signaling through blocking p65 nuclear translocation and NF-κB p65/DNA binding activity. DGP also blocked the phosphorylation of c-Jun amino-terminal kinase (JNK), but not p38 kinase or extracellular signal-regulated kinases (ERK). The NF-κB inhibitor JSH-23 and JNK-specific inhibitor SP600125 significantly decreased NO production and IL-6 release in LPS-stimulated BV2 cells, respectively. The overall results demonstrate that DGP has anti-inflammatory effects on LPS-stimulated BV2 cells via inhibition of NF-κB and JNK activation, suggesting that DGP is a potential prophylactic agent in various neurodegenerative disorders. Copyright © 2018. Published by Elsevier B.V.

  15. Comparison of the Expression Changes after Botulinum Toxin Type A and Minocycline Administration in Lipopolysaccharide-Stimulated Rat Microglial and Astroglial Cultures.

    PubMed

    Piotrowska, Anna; Popiolek-Barczyk, Katarzyna; Pavone, Flaminia; Mika, Joanna

    2017-01-01

    Botulinum neurotoxin type A (BoNT/A) and minocycline are potent drugs used in clinical therapies. The primary molecular mechanism of BoNT/A is the cleavage of SNARE proteins, which prevents cells from releasing neurotransmitters from vesicles, while the effects of minocycline are related to the inhibition of p38 activation. Both BoNT/A and minocycline exhibit analgesic effects, however, their direct impact on glial cells is not fully known. Therefore, the aim of the present study was to determine the effects of those drugs on microglial and astroglial activity after lipopolysaccharide (LPS) stimulation and their potential synergistic action. Our results show that BoNT/A and minocycline influenced primary microglial cells by inhibiting intracellular signaling pathways, such as p38, ERK1/2, NF-κB, and the release of pro-inflammatory factors, including IL-1β, IL-18, IL-6, and NOS2. We have revealed that, in contrast to minocycline, BoNT/A treatment did not decrease LPS-induced release of pro-inflammatory factors in the astroglia. In addition, BoNT/A decreased SNAP-23 in both types of glial cells and also SNAP-25 expressed only in astrocytes. Moreover, BoNT/A increased TLR2 and its adaptor protein MyD88, but not TLR4 exclusively in microglial cells. Furthermore, we have shown the impact of BoNT/A on microglial and astroglial cells, with a particular emphasis on its molecular target, TLR2. In contrast, minocycline did not affect any of those factors. We have revealed that despite of different molecular targets, minocycline, and BoNT/A reduced the release of microglia-derived pro-inflammatory factors. In conclusion, we have shown that BoNT/A and minocycline are effective drugs for the management of neuroinflammation by dampening the activation of microglial cells, with minocycline also affecting astroglial activity.

  16. Comparison of the Expression Changes after Botulinum Toxin Type A and Minocycline Administration in Lipopolysaccharide-Stimulated Rat Microglial and Astroglial Cultures

    PubMed Central

    Piotrowska, Anna; Popiolek-Barczyk, Katarzyna; Pavone, Flaminia; Mika, Joanna

    2017-01-01

    Botulinum neurotoxin type A (BoNT/A) and minocycline are potent drugs used in clinical therapies. The primary molecular mechanism of BoNT/A is the cleavage of SNARE proteins, which prevents cells from releasing neurotransmitters from vesicles, while the effects of minocycline are related to the inhibition of p38 activation. Both BoNT/A and minocycline exhibit analgesic effects, however, their direct impact on glial cells is not fully known. Therefore, the aim of the present study was to determine the effects of those drugs on microglial and astroglial activity after lipopolysaccharide (LPS) stimulation and their potential synergistic action. Our results show that BoNT/A and minocycline influenced primary microglial cells by inhibiting intracellular signaling pathways, such as p38, ERK1/2, NF-κB, and the release of pro-inflammatory factors, including IL-1β, IL-18, IL-6, and NOS2. We have revealed that, in contrast to minocycline, BoNT/A treatment did not decrease LPS-induced release of pro-inflammatory factors in the astroglia. In addition, BoNT/A decreased SNAP-23 in both types of glial cells and also SNAP-25 expressed only in astrocytes. Moreover, BoNT/A increased TLR2 and its adaptor protein MyD88, but not TLR4 exclusively in microglial cells. Furthermore, we have shown the impact of BoNT/A on microglial and astroglial cells, with a particular emphasis on its molecular target, TLR2. In contrast, minocycline did not affect any of those factors. We have revealed that despite of different molecular targets, minocycline, and BoNT/A reduced the release of microglia-derived pro-inflammatory factors. In conclusion, we have shown that BoNT/A and minocycline are effective drugs for the management of neuroinflammation by dampening the activation of microglial cells, with minocycline also affecting astroglial activity. PMID:28491822

  17. Quantitative Proteomics Reveals Temporal Proteomic Changes in Signaling Pathways during BV2 Mouse Microglial Cell Activation.

    PubMed

    Woo, Jongmin; Han, Dohyun; Wang, Joseph Injae; Park, Joonho; Kim, Hyunsoo; Kim, Youngsoo

    2017-09-01

    The development of systematic proteomic quantification techniques in systems biology research has enabled one to perform an in-depth analysis of cellular systems. We have developed a systematic proteomic approach that encompasses the spectrum from global to targeted analysis on a single platform. We have applied this technique to an activated microglia cell system to examine changes in the intracellular and extracellular proteomes. Microglia become activated when their homeostatic microenvironment is disrupted. There are varying degrees of microglial activation, and we chose to focus on the proinflammatory reactive state that is induced by exposure to such stimuli as lipopolysaccharide (LPS) and interferon-gamma (IFN-γ). Using an improved shotgun proteomics approach, we identified 5497 proteins in the whole-cell proteome and 4938 proteins in the secretome that were associated with the activation of BV2 mouse microglia by LPS or IFN-γ. Of the differentially expressed proteins in stimulated microglia, we classified pathways that were related to immune-inflammatory responses and metabolism. Our label-free parallel reaction monitoring (PRM) approach made it possible to comprehensively measure the hyper-multiplex quantitative value of each protein by high-resolution mass spectrometry. Over 450 peptides that corresponded to pathway proteins and direct or indirect interactors via the STRING database were quantified by label-free PRM in a single run. Moreover, we performed a longitudinal quantification of secreted proteins during microglial activation, in which neurotoxic molecules that mediate neuronal cell loss in the brain are released. These data suggest that latent pathways that are associated with neurodegenerative diseases can be discovered by constructing and analyzing a pathway network model of proteins. Furthermore, this systematic quantification platform has tremendous potential for applications in large-scale targeted analyses. The proteomics data for

  18. Effect of Placenta-Derived Mesenchymal Stem Cells in a Dementia Rat Model via Microglial Mediation: a Comparison between Stem Cell Transplant Methods.

    PubMed

    Cho, Jae Sung; Lee, Jihyeon; Jeong, Da Un; Kim, Han Wool; Chang, Won Seok; Moon, Jisook; Chang, Jin Woo

    2018-05-01

    Loss of cholinergic neurons in the hippocampus is a hallmark of many dementias. Administration of stem cells as a therapeutic intervention for patients is under active investigation, but the optimal stem cell type and transplantation modality has not yet been established. In this study, we studied the therapeutic effects of human placenta-derived mesenchymal stem cells (pMSCs) in dementia rat model using either intracerebroventricular (ICV) or intravenous (IV) injections and analyzed their mechanisms of therapeutic action. Dementia modeling was established by intraventricular injection of 192 IgG-saporin, which causes lesion of cholinergic neurons. Sixty-five male Sprague-Dawley rats were divided into five groups: control, lesion, lesion+ICV injection of pMSCs, lesion+IV injection of pMSCs, and lesion+donepezil. Rats were subjected to the Morris water maze and subsequent immunostaining analyses. Both ICV and IV pMSC administrations allowed significant cognitive recovery compared to the lesioned rats. Acetylcholinesterase activity was significantly rescued in the hippocampus of rats injected with pMSCs post-lesion. Choline acetyltransferase did not co-localize with pMSCs, showing that pMSCs did not directly differentiate into cholinergic cells. Number of microglial cells increased in lesioned rats and significantly decreased back to normal levels with pMSC injection. Our results suggest that ICV and IV injections of pMSCs facilitate the recovery of cholinergic neuronal populations and cognitive behavior. This recovery likely occurs through paracrine effects that resemble microglia function rather than direct differentiation of injected pMSCs into cholinergic neurons. © Copyright: Yonsei University College of Medicine 2018.

  19. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response.

    PubMed

    Cai, Qing; Li, Yuanyuan; Pei, Gang

    2017-03-24

    Ganoderma lucidum (GL) has been widely used in Asian countries for hundreds of years to promote health and longevity. The pharmacological functions of which had been classified, including the activation of innate immune responses, suppression of tumour and modulation of cell proliferations. Effective fractions of Ganoderma lucidum polysaccharides (GLP) had already been reported to regulate the immune system. Nevertheless, the role of GLP in the microglia-mediated neuroinflammation has not been sufficiently elucidated. Further, GLP effect on microglial behavioural modulations in correlation with the inflammatory responses remains to be unravelled. The aim of this work was to quantitatively analyse the contributions of GLP on microglia. The BV2 microglia and primary mouse microglia were stimulated by lipopolysaccharides (LPS) and amyloid beta 42 (Aβ 42 ) oligomer, respectively. Investigation on the effect of GLP was carried by quantitative determination of the microglial pro- and anti-inflammatory cytokine expressions and behavioural modulations including migration, morphology and phagocytosis. Analysis of microglial morphology and phagocytosis modulations was confirmed in the zebrafish brain. Quantitative results revealed that GLP down-regulates LPS- or Aβ-induced pro-inflammatory cytokines and promotes anti-inflammatory cytokine expressions in BV-2 and primary microglia. In addition, GLP attenuates inflammation-related microglial migration, morphological alterations and phagocytosis probabilities. We also showed that modulations of microglial behavioural responses were associated with MCP-1 and C1q expressions. Overall, our study provides an insight into the GLP regulation of LPS- and Aβ-induced neuroinflammation and serves an implication that the neuroprotective function of GLP might be achieved through modulation of microglial inflammatory and behavioural responses.

  20. Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation.

    PubMed

    Wang, S; Wang, H; Guo, H; Kang, L; Gao, X; Hu, L

    2011-06-30

    Inhibition of microglial over-reaction and the inflammatory processes may represent a therapeutic target to alleviate the progression of neurological diseases, such as neurodegenerative diseases and stroke. Scutellarin is the major active component of Erigeron breviscapus (Vant.) Hand-Mazz, a herbal medicine in treatment of cerebrovascular diseases for a long time in the Orient. In this study, we explored the mechanisms of neuroprotection by Scutellarin, particularly its anti-inflammatory effects in microglia. We observed that Scutellarin inhibited lipopolysaccharide (LPS)-induced production of proinflammatory mediators such as nitric oxide (NO), tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) and reactive oxygen species (ROS), suppressed LPS-stimulated inducible nitric oxide synthase (iNOS), TNFα, and IL-1β mRNA expression in rat primary microglia or BV-2 mouse microglial cell line. Scutellarin inhibited LPS-induced nuclear translocation and DNA binding activity of nuclear factor κB (NF-κB). It repressed the LPS-induced c-Jun N-terminal kinase (JNK) and p38 phosphorylation without affecting the activity of extracellular signal regulated kinase (ERK) mitogen-activated protein kinase. Moreover, Scutellarin also inhibited interferon-γ (IFN-γ)-induced NO production, iNOS mRNA expression and transcription factor signal transducer and activator of transcription 1α (STAT1α) activation. Concomitantly, conditioned media from Scutellarin pretreated BV-2 cells significantly reduced neurotoxicity compared with conditioned media from LPS treated alone. Together, the present study reported the anti-inflammatory activity of Scutellarin in microglial cells along with their underlying molecular mechanisms, and suggested Scutellarin might have therapeutic potential for various microglia mediated neuroinflammation. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Phenotypic dysregulation of microglial activation in young offspring rats with maternal sleep deprivation-induced cognitive impairment

    PubMed Central

    Zhao, Qiuying; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Jiang, Wei; Wu, Xiaohui; Yan, Shuo; Chen, Yubo; Peng, Cheng; You, Zili

    2015-01-01

    Despite the potential adverse effects of maternal sleep deprivation (MSD) on physiological and behavioral aspects of offspring, the mechanisms remain poorly understood. The present study was intended to investigate the roles of microglia on neurodevelopment and cognition in young offspring rats with prenatal sleep deprivation. Pregnant Wistar rats received 72 h sleep deprivation in the last trimester of gestation, and their prepuberty male offspring were given the intraperitoneal injection with or without minocycline. The results showed the number of Iba1+ microglia increased, that of hippocampal neurogenesis decreased, and the hippocampus-dependent spatial learning and memory were impaired in MSD offspring. The classical microglial activation markers (M1 phenotype) IL-1β, IL-6, TNF-α, CD68 and iNOS were increased, while the alternative microglial activation markers (M2 phenotype) Arg1, Ym1, IL-4, IL-10 and CD206 were reduced in hippocampus of MSD offspring. After minocycline administration, the MSD offspring showed improvement in MWM behaviors and increase in BrdU+/DCX+ cells. Minocycline reduced Iba1+ cells, suppressed the production of pro-inflammatory molecules, and reversed the reduction of M2 microglial markers in the MSD prepuberty offspring. These results indicate that dysregulation in microglial pro- and anti-inflammatory activation is involved in MSD-induced inhibition of neurogenesis and impairment of spatial learning and memory. PMID:25830666

  2. Annexin-1 Mediates Microglial Activation and Migration via the CK2 Pathway during Oxygen–Glucose Deprivation/Reperfusion

    PubMed Central

    Liu, Shuangxi; Gao, Yan; Yu, Xiaoli; Zhao, Baoming; Liu, Lu; Zhao, Yin; Luo, Zhenzhao; Shi, Jing

    2016-01-01

    Annexin-1 (ANXA1) has shown neuroprotective effects and microglia play significant roles during central nervous system injury, yet the underlying mechanisms remain unclear. This study sought to determine whether ANXA1 regulates microglial response to oxygen–glucose deprivation/reperfusion (OGD/R) treatment and to clarify the downstream molecular mechanism. In rat hippocampal slices, OGD/R treatment enhanced the ANXA1 expression in neuron, the formyl peptide receptor (FPRs) expression in microglia, and the microglial activation in the CA1 region (cornu ammonis 1). These effects were reversed by the FPRs antagonist Boc1. The cell membrane currents amplitude of BV-2 microglia (the microglial like cell-line) was increased when treated with Ac2-26, the N-terminal peptide of ANXA1. Ac2-26 treatment enhanced BV-2 microglial migration whereas Boc1 treatment inhibited the migration. In BV-2 microglia, both the expression of the CK2 target phosphorylated α-E-catenin and the binding of casein kinase II (CK2) with α-E-catenin were elevated by Ac2-26, these effects were counteracted by the CK2 inhibitor TBB and small interfering (si) RNA directed against transcripts of CK2 and FPRs. Moreover, both TBB and siRNA-mediated inhibition of CK2 blocked Ac2-26-mediated BV-2 microglia migration. Our findings indicate that ANXA1 promotes microglial activation and migration during OGD/R via FPRs, and CK2 target α-E-catenin phosphorylation is involved in this process. PMID:27782092

  3. Cannabidiol and Other Cannabinoids Reduce Microglial Activation In Vitro and In Vivo: Relevance to Alzheimer's Disease

    PubMed Central

    Martín-Moreno, Ana María; Reigada, David; Ramírez, Belén G.; Mechoulam, R.; Innamorato, Nadia; Cuadrado, Antonio

    2011-01-01

    Microglial activation is an invariant feature of Alzheimer's disease (AD). It is noteworthy that cannabinoids are neuroprotective by preventing β-amyloid (Aβ)-induced microglial activation both in vitro and in vivo. On the other hand, the phytocannabinoid cannabidiol (CBD) has shown anti-inflammatory properties in different paradigms. In the present study, we compared the effects of CBD with those of other cannabinoids on microglial cell functions in vitro and on learning behavior and cytokine expression after Aβ intraventricular administration to mice. CBD, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo-[1,2,3-d,e]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone [WIN 55,212-2 (WIN)], a mixed CB1/CB2 agonist, and 1,1-dimethylbutyl-1-deoxy-Δ9-tetrahydrocannabinol [JWH-133 (JWH)], a CB2-selective agonist, concentration-dependently decreased ATP-induced (400 μM) increase in intracellular calcium ([Ca2+]i) in cultured N13 microglial cells and in rat primary microglia. In contrast, 4-[4-(1,1-dimethylheptyl)-2,6-dimethoxyphenyl]-6,6-dimethyl-bicyclo[3.1.1]hept-2-ene-2-methanol [HU-308 (HU)], another CB2 agonist, was without effect. Cannabinoid and adenosine A2A receptors may be involved in the CBD action. CBD- and WIN-promoted primary microglia migration was blocked by CB1 and/or CB2 antagonists. JWH and HU-induced migration was blocked by a CB2 antagonist only. All of the cannabinoids decreased lipopolysaccharide-induced nitrite generation, which was insensitive to cannabinoid antagonism. Finally, both CBD and WIN, after subchronic administration for 3 weeks, were able to prevent learning of a spatial navigation task and cytokine gene expression in β-amyloid-injected mice. In summary, CBD is able to modulate microglial cell function in vitro and induce beneficial effects in an in vivo model of AD. Given that CBD lacks psychoactivity, it may represent a novel therapeutic approach for this neurological disease. PMID:21350020

  4. Effects of Low Phytanic Acid-Concentrated DHA on Activated Microglial Cells: Comparison with a Standard Phytanic Acid-Concentrated DHA.

    PubMed

    Ruiz-Roso, María Belén; Olivares-Álvaro, Elena; Quintela, José Carlos; Ballesteros, Sandra; Espinosa-Parrilla, Juan F; Ruiz-Roso, Baltasar; Lahera, Vicente; de Las Heras, Natalia; Martín-Fernández, Beatriz

    2018-05-30

    Docosahexaenoic acid (DHA, 22:6 n-3) is an essential omega-3 (ω-3) long chain polyunsaturated fatty acid of neuronal membranes involved in normal growth, development, and function. DHA has been proposed to reduce deleterious effects in neurodegenerative processes. Even though, some inconsistencies in findings from clinical and pre-clinical studies with DHA could be attributed to the presence of phytanic acid (PhA) in standard DHA treatments. Thus, the aim of our study was to analyze and compare the effects of a low PhA-concentrated DHA with a standard PhA-concentrated DHA under different neurotoxic conditions in BV-2 activated microglial cells. To this end, mouse microglial BV-2 cells were stimulated with either lipopolysaccharide (LPS) or hydrogen peroxide (H 2 O 2 ) and co-incubated with DHA 50 ppm of PhA (DHA (PhA:50)) or DHA 500 ppm of PhA (DHA (PhA:500)). Cell viability, superoxide anion (O 2 - ) production, Interleukin 6 (L-6), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), glutathione peroxidase (GtPx), glutathione reductase (GtRd), Caspase-3, and the brain-derived neurotrophic factor (BDNF) protein expression were explored. Low PhA-concentrated DHA protected against LPS or H 2 O 2 -induced cell viability reduction in BV-2 activated cells and O 2 - production reduction compared to DHA (PhA:500). Low PhA-concentrated DHA also decreased COX-2, IL-6, iNOS, GtPx, GtRd, and SOD-1 protein expression when compared to DHA (PhA:500). Furthermore, low PhA-concentrated DHA increased BDNF protein expression in comparison to DHA (PhA:500). The study provides data supporting the beneficial effect of low PhA-concentrated DHA in neurotoxic injury when compared to a standard PhA-concentrated DHA in activated microglia.

  5. Miglustat Improves Purkinje Cell Survival and Alters Microglial Phenotype in Feline Niemann-Pick Disease Type C

    PubMed Central

    Stein, Veronika M.; Crooks, Alexandra; Ding, Wenge; Prociuk, Maria; O’Donnell, Patricia; Bryan, Caroline; Sikora, Tracey; Dingemanse, Jasper; Vanier, Marie T.; Walkley, Steven U.; Vite, Charles H.

    2012-01-01

    Niemann-Pick disease type C (NPC disease) is an incurable cellular lipid trafficking disorder characterized by neurodegeneration and intralysosomal accumulation of cholesterol and glycosphingolipids. Treatment with miglustat, a small imino sugar that reversibly inhibits glucosylceramide synthase, which is necessary for glycosphingolipid synthesis, has been shown to benefit patients with NPC disease. The mechanism(s) and extent of brain cellular changes underlying this benefit are not understood. To investigate the basis of the efficacy of miglustat, cats with disease homologous to the juvenile-onset form of human NPC disease received daily miglustat orally beginning at 3 weeks of age. The plasma half-life of miglustat was 6.6 ± 1.1 hours, with a tmax, Cmax, and area under the plasma concentration-time curve of 1.7 ± 0.6 hours, 20.3 ± 4.6 μg/ml, and 104.1 ± 16.6 μg hours/ml, respectively. Miglustat delayed the onset of neurological signs and increased the lifespan of treated cats, and was associated with decreased GM2 ganglioside accumulation in the cerebellum and improved Purkinje cell survival. Ex vivo examination of microglia from the brains of treated cats revealed normalization of CD1c and class II major histocompatibility complex expression, as well as generation of reactive oxygen species. Together, these results suggest that prolonged Purkinje cell survival, reduced glycosphingolipid accumulation, and/or the modulation of microglial immunophenotype and function contribute to miglustat-induced neurological improvement in treated cats. PMID:22487861

  6. Social influences on microglial reactivity and neuronal damage after cardiac arrest/cardiopulmonary resuscitation.

    PubMed

    Gaudier-Diaz, Monica M; Haines, Adam H; Zhang, Ning; Courtney DeVries, A

    2018-06-19

    Social isolation presents a risk factor and worsens outcome to cerebrovascular diseases; however, the underlying mechanisms remain underspecified. This study examines the effect of social environment on microglial reactivity after global cerebral ischemia, to test the hypothesis that social isolation leads to greater microglial responses. Adult female and male mice were pair-housed or socially isolated for one week prior to cardiac arrest/cardiopulmonary resuscitation (CA/CPR) or the sham procedure, and following either 2 or 24 h of reperfusion, microglia samples were enriched and analyzed for gene expression. At the 2-hour time point, microglia from both females and males exhibited ischemia-induced inflammation, characterized by the gene expression increase of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6), regardless of the housing conditions. However, at 24 h post-ischemia, social housing attenuated microglial pro-inflammatory gene expression in a sex-specific manner. At this time point, the ischemia-induced increased expression of IL-1β and IL-6 was attenuated by social interaction in microglia from male mice, while among female mice social attenuation of the inflammatory response was observed in the microglial expression of cell surface protein major histocompatibility complex II (MHC II). A second study examined behavioral and physiological measures 96 h after ischemic injury. At this time point, female and male mice displayed increased locomotion and exploratory behavior following CA/CPR relative to controls. Regardless of sex, ischemia also elicited neuroinflammation and neurodegeneration, both of which were modulated by the social environment. Hippocampal nitric oxide (iNOS), cortical TNF-α, and counts of Fluoro-Jade C positive stained cells in the CA1 region of the hippocampus, were increased in the isolated CA/CPR group relative to sham controls and the pair-housed CA/CPR groups. Together, these data

  7. Cannabinoid effects on β amyloid fibril and aggregate formation, neuronal and microglial-activated neurotoxicity in vitro.

    PubMed

    Janefjord, Emelie; Mååg, Jesper L V; Harvey, Benjamin S; Smid, Scott D

    2014-01-01

    Cannabinoid (CB) ligands have demonstrated neuroprotective properties. In this study we compared the effects of a diverse set of CB ligands against β amyloid-mediated neuronal toxicity and activated microglial-conditioned media-based neurotoxicity in vitro, and compared this with a capacity to directly alter β amyloid (Aβ) fibril or aggregate formation. Neuroblastoma (SH-SY5Y) cells were exposed to Aβ1-42 directly or microglial (BV-2 cells) conditioned media activated with lipopolysaccharide (LPS) in the presence of the CB1 receptor-selective agonist ACEA, CB2 receptor-selective agonist JWH-015, phytocannabinoids Δ(9)-THC and cannabidiol (CBD), the endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide or putative GPR18/GPR55 ligands O-1602 and abnormal-cannabidiol (Abn-CBD). TNF-α and nitrite production was measured in BV-2 cells to compare activation via LPS or albumin with Aβ1-42. Aβ1-42 evoked a concentration-dependent loss of cell viability in SH-SY5Y cells but negligible TNF-α and nitrite production in BV-2 cells compared to albumin or LPS. Both albumin and LPS-activated BV-2 conditioned media significantly reduced neuronal cell viability but were directly innocuous to SH-SY5Y cells. Of those CB ligands tested, only 2-AG and CBD were directly protective against Aβ-evoked SH-SY5Y cell viability, whereas JWH-015, THC, CBD, Abn-CBD and O-1602 all protected SH-SY5Y cells from BV-2 conditioned media activated via LPS. While CB ligands variably altered the morphology of Aβ fibrils and aggregates, there was no clear correlation between effects on Aβ morphology and neuroprotective actions. These findings indicate a neuroprotective action of CB ligands via actions at microglial and neuronal cells.

  8. Withaferin A down-regulates lipopolysaccharide-induced cyclooxygenase-2 expression and PGE2 production through the inhibition of STAT1/3 activation in microglial cells.

    PubMed

    Min, Kyoung-Jin; Choi, Kyounghwa; Kwon, Taeg Kyu

    2011-08-01

    Microglia are the major immune effector cells in the brain, and microglia activated by injury and infection can produce inflammatory mediators. A number of studies have reported that withaferin A has anti-inflammatory functions. However, the effects of withaferin A on the microglial inflammatory response have not been investigated. Our results show that withaferin A inhibited lipopolysaccharide (LPS)-induced cyclooxygenase (COX)-2 mRNA and protein expression and prostaglandin E2 (PGE(2)) production in BV2 murine microglial cells. Withaferin A had no effect on LPS-induced Akt and ERK phosphorylation, but phosphorylation of p38 and JNK was slightly decreased by withaferin A. Withaferin A significantly inhibited LPS-induced STAT1 and STAT3 phosphorylation in a dose-dependent manner. Furthermore, withaferin A inhibited nuclear translocation of STAT1 and interferon-gamma activated sequence (GAS)-promoter activity. Taken together, these results suggest that withaferin A inhibits LPS-induced PGE(2) production and COX-2 expression, at least in part, by blocking STAT1 and STAT3 activation. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Anti-inflammatory effects of sodium alginate/gelatine porous scaffolds merged with fucoidan in murine microglial BV2 cells.

    PubMed

    Nguyen, Van-Tinh; Ko, Seok-Chun; Oh, Gun-Woo; Heo, Seong-Yeong; Jeon, You-Jin; Park, Won Sun; Choi, Il-Whan; Choi, Sung-Wook; Jung, Won-Kyo

    2016-12-01

    Microglia are the immune cells of the central nervous system (CNS). Overexpression of inflammatory mediators by microglia can induce several neurological diseases. Thus, the underlying basic requirement for neural tissue engineering is to develop materials that exhibit little or no neuro-inflammatory effects. In this study, we have developed a method to create porous scaffolds by adding fucoidan (Fu) into porous sodium alginate (Sa)/gelatine (G) (SaGFu). For mechanical characterization, in vitro degradation, stress/strain, swelling, and pore size were measured. Furthermore, the biocompatibility was evaluated by assessing the adhesion and proliferation of BV2 microglial cells on the SaGFu porous scaffolds using scanning electron microscopy (SEM) and lactate dehydrogenase (LDH) assay, respectively. Moreover, we studied the neuro-inflammatory effects of SaGFu on BV2 microglial cells. The effect of gelatine and fucoidan content on the various properties of the scaffold was investigated and the results showed that mechanical properties increased porosity and swelling ratio with an increase in the gelatine and fucoidan, while the in vitro biodegradability decreased. The average SaGFu diameter attained by fabrication of SaGFu ranged from 60 to 120μm with high porosity (74.44%-88.30%). Cell culture using gelatine 2.0% (SaG2Fu) and 4.0% (SaG4Fu), showed good cell proliferation; more than 60-80% that with Sa alone. Following stimulation with 0.5μg/mL LPS, microglia cultured in porous SaGFu decreased their expression of nitric oxide (NO), prostaglandin E2 (PGE2), and reactive oxygen species (ROS). SaG2Fu and SaG4Fu also inhibited the activation and translocation of p65 NF-κB protein levels, resulting in reduction of NO, ROS, and PGE2 production. These results provide insights into the diverse biological effects and opens new avenues for the applications of SaGFu in neuroscience. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Direct binding of Toll-like receptor 4 to ionotropic glutamate receptor N-methyl-D-aspartate subunit 1 induced by lipopolysaccharide in microglial cells N9 and EOC 20.

    PubMed

    Cui, Jie; Yu, Siyuan; Li, Yihui; Li, Pan; Liu, Feng

    2018-03-01

    Microglia, the primary immune cells in the brain, are the predominant cells regulating inflammation-mediated neuronal damage. In response to immunological challenges, such as lipopolysaccharide (LPS), microglia are activated and the inflammatory process is subsequently initiated. The aim of the present study was to determine whether LPS induces interactions between the Toll-like receptor 4 (TLR4) and the ionotropic glutamate receptor N-methyl-D‑aspartate subunit 1 (GluN1) in N9 and EOC 20 microglial cells. Immunocytochemistry demonstrated co-localization of TLR4 and GluN1 in response to LPS, and the direct binding of TLR4 and GluN1 was further validated by antibody-based Fluorescence Resonance Energy Transfer technology. Inhibition of the group I metabotropic glutamate receptor 5 with its selective antagonist, MTEP, abolished LPS-induced direct binding of TLR4 to GluN1. Therefore, these data demonstrated that GluN1 and TLR4 act reciprocally in response to LPS in N9 and EOC 20 microglial cells.

  11. An early and late peak in microglial activation in Alzheimer's disease trajectory.

    PubMed

    Fan, Zhen; Brooks, David J; Okello, Aren; Edison, Paul

    2017-03-01

    Amyloid-β deposition, neuroinflammation and tau tangle formation all play a significant role in Alzheimer's disease. We hypothesized that there is microglial activation early on in Alzheimer's disease trajectory, where in the initial phase, microglia may be trying to repair the damage, while later on in the disease these microglia could be ineffective and produce proinflammatory cytokines leading to progressive neuronal damage. In this longitudinal study, we have evaluated the temporal profile of microglial activation and its relationship between fibrillar amyloid load at baseline and follow-up in subjects with mild cognitive impairment, and this was compared with subjects with Alzheimer's disease. Thirty subjects (eight mild cognitive impairment, eight Alzheimer's disease and 14 controls) aged between 54 and 77 years underwent 11C-(R)PK11195, 11C-PIB positron emission tomography and magnetic resonance imaging scans. Patients were followed-up after 14 ± 4 months. Region of interest and Statistical Parametric Mapping analysis were used to determine longitudinal alterations. Single subject analysis was performed to evaluate the individualized pathological changes over time. Correlations between levels of microglial activation and amyloid deposition at a voxel level were assessed using Biological Parametric Mapping. We demonstrated that both baseline and follow-up microglial activation in the mild cognitive impairment cohort compared to controls were increased by 41% and 21%, respectively. There was a longitudinal reduction of 18% in microglial activation in mild cognitive impairment cohort over 14 months, which was associated with a mild elevation in fibrillar amyloid load. Cortical clusters of microglial activation and amyloid deposition spatially overlapped in the subjects with mild cognitive impairment. Baseline microglial activation was increased by 36% in Alzheimer's disease subjects compared with controls. Longitudinally, Alzheimer's disease subjects showed

  12. Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta.

    PubMed

    Griciuc, Ana; Serrano-Pozo, Alberto; Parrado, Antonio R; Lesinski, Andrea N; Asselin, Caroline N; Mullin, Kristina; Hooli, Basavaraj; Choi, Se Hoon; Hyman, Bradley T; Tanzi, Rudolph E

    2013-05-22

    The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer's disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APP(Swe)/PS1(ΔE9)/CD33(-/-) mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Age-specific function of α5β1 integrin in microglial migration during early colonization of the developing mouse cortex.

    PubMed

    Smolders, Sophie Marie-Thérèse; Swinnen, Nina; Kessels, Sofie; Arnauts, Kaline; Smolders, Silke; Le Bras, Barbara; Rigo, Jean-Michel; Legendre, Pascal; Brône, Bert

    2017-07-01

    Microglia, the immune cells of the central nervous system, take part in brain development and homeostasis. They derive from primitive myeloid progenitors that originate in the yolk sac and colonize the brain mainly through intensive migration. During development, microglial migration speed declines which suggests that their interaction with the microenvironment changes. However, the matrix-cell interactions allowing dispersion within the parenchyma are unknown. Therefore, we aimed to better characterize the migration behavior and to assess the role of matrix-integrin interactions during microglial migration in the embryonic brain ex vivo. We focused on microglia-fibronectin interactions mediated through the fibronectin receptor α5β1 integrin because in vitro work indirectly suggested a role for this ligand-receptor pair. Using 2-photon time-lapse microscopy on acute ex vivo embryonic brain slices, we found that migration occurs in a saltatory pattern and is developmentally regulated. Most importantly, there is an age-specific function of the α5β1 integrin during microglial cortex colonization. At embryonic day (E) 13.5, α5β1 facilitates migration while from E15.5, it inhibits migration. These results indicate a developmentally regulated function of α5β1 integrin in microglial migration during colonization of the embryonic brain. © 2017 Wiley Periodicals, Inc.

  14. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration

    PubMed Central

    Labandeira-Garcia, Jose L.; Rodríguez-Perez, Ana I.; Garrido-Gil, Pablo; Rodriguez-Pallares, Jannette; Lanciego, Jose L.; Guerra, Maria J.

    2017-01-01

    Microglia can transform into proinflammatory/classically activated (M1) or anti-inflammatory/alternatively activated (M2) phenotypes following environmental signals related to physiological conditions or brain lesions. An adequate transition from the M1 (proinflammatory) to M2 (immunoregulatory) phenotype is necessary to counteract brain damage. Several factors involved in microglial polarization have already been identified. However, the effects of the brain renin-angiotensin system (RAS) on microglial polarization are less known. It is well known that there is a “classical” circulating RAS; however, a second RAS (local or tissue RAS) has been observed in many tissues, including brain. The locally formed angiotensin is involved in local pathological changes of these tissues and modulates immune cells, which are equipped with all the components of the RAS. There are also recent data showing that brain RAS plays a major role in microglial polarization. Level of microglial NADPH-oxidase (Nox) activation is a major regulator of the shift between M1/proinflammatory and M2/immunoregulatory microglial phenotypes so that Nox activation promotes the proinflammatory and inhibits the immunoregulatory phenotype. Angiotensin II (Ang II), via its type 1 receptor (AT1), is a major activator of the NADPH-oxidase complex, leading to pro-oxidative and pro-inflammatory effects. However, these effects are counteracted by a RAS opposite arm constituted by Angiotensin II/AT2 receptor signaling and Angiotensin 1–7/Mas receptor (MasR) signaling. In addition, activation of prorenin-renin receptors may contribute to activation of the proinflammatory phenotype. Aged brains showed upregulation of AT1 and downregulation of AT2 receptor expression, which may contribute to a pro-oxidative pro-inflammatory state and the increase in neuron vulnerability. Several recent studies have shown interactions between the brain RAS and different factors involved in microglial polarization, such as

  15. Anthocyanins Downregulate Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglial Cells by Suppressing the NF-κB and Akt/MAPKs Signaling Pathways

    PubMed Central

    Jeong, Jin-Woo; Lee, Won Sup; Shin, Sung Chul; Kim, Gi-Young; Choi, Byung Tae; Choi, Yung Hyun

    2013-01-01

    Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants and have a variety of protective properties, which have generally been attributed to their antioxidant capacity. However, little is known about the molecular mechanisms underlying anti-inflammatory effects of anthocyanins related to neurodegenerative diseases. Therefore, we determined whether anthocyanins isolated from black soybean seed coats would inhibit pro-inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated murine BV2 microglial cells. Our results showed that anthocyanins significantly inhibited LPS-induced pro-inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2, and pro-inflammatory cytokines including tumor necrosis factor (TNF)-α and interleukin (IL)-1β, without significant cytotoxicity. Anthocyanins also downregulated excessive expression of inducible NO synthase, cyclooxygenase-2, TNF-α, and IL-1β in LPS-stimulated BV2 cells. Moreover, anthocyanins inhibited nuclear translocation of nuclear factor-kappa B (NF-κB) by reducing inhibitor of NF-κB alpha degradation as well as phosphorylating extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and Akt. These findings suggest that anthocyanins may offer substantial therapeutic potential for treating inflammatory and neurodegenerative diseases accompanied by microglial activation. PMID:23344054

  16. Minocycline reduces neuronal death and attenuates microglial response after pediatric asphyxial cardiac arrest.

    PubMed

    Tang, Minke; Alexander, Henry; Clark, Robert S B; Kochanek, Patrick M; Kagan, Valerian E; Bayir, Hülya

    2010-01-01

    The mechanisms leading to delayed neuronal death after asphyxial cardiac arrest (ACA) in the developing brain are unknown. This study aimed at investigating the possible role of microglial activation in neuronal death in developing brain after ACA. Postnatal day-17 rats were subjected to 9 mins of ACA followed by resuscitation. Rats were randomized to treatment with minocycline, (90 mg/kg, intraperitoneally (i.p.)) or vehicle (saline, i.p.) at 1 h after return of spontaneous circulation. Thereafter, minocycline (22.5 mg/kg, i.p.) was administrated every 12 h until sacrifice. Microglial activation (evaluated by immunohistochemistry using ionized calcium-binding adapter molecule-1 (Iba1) antibody) coincided with DNA fragmentation and neurodegeneration in CA1 hippocampus and cortex (assessed by deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL), Fluoro-Jade-B and Nissl stain). Minocycline significantly decreased both the microglial response and neuronal degeneration compared with the vehicle. Asphyxial CA significantly enhanced proinflammatory cytokine and chemokine levels in hippocampus versus control (assessed by multiplex bead array assay), specifically tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-1alpha (MIP-1alpha), regulated upon activation, normal T-cell expressed and secreted (RANTES), and growth-related oncogene (GRO-KC) (P<0.05). Minocycline attenuated ACA-induced increases in MIP-1alpha and RANTES (P<0.05). These data show that microglial activation and cytokine production are increased in immature brain after ACA. The beneficial effect of minocycline suggests an important role for microglia in selective neuronal death after pediatric ACA, and a possible therapeutic target.

  17. Method to investigate temporal dynamics of ganglion and other retinal cells in the living human eye

    NASA Astrophysics Data System (ADS)

    Kurokawa, Kazuhiro; Liu, Zhuolin; Crowell, James; Zhang, Furu; Miller, Donald T.

    2018-02-01

    The inner retina is critical for visual processing, but much remains unknown about its neural circuitry and vulnerability to disease. A major bottleneck has been our inability to observe the structure and function of the cells composing these retinal layers in the living human eye. Here, we present a noninvasive method to observe both structural and functional information. Adaptive optics optical coherence tomography (AO-OCT) is used to resolve the inner retinal cells in all three dimensions and novel post processing algorithms are applied to extract structure and physiology down to the cellular level. AO-OCT captured the 3D mosaic of individual ganglion cell somas, retinal nerve fiber bundles of micron caliber, and microglial cells, all in exquisite detail. Time correlation analysis of the AO-OCT videos revealed notable temporal differences between the principal layers of the inner retina. The GC layer was more dynamic than the nerve fiber and inner plexiform layers. At the cellular level, we applied a customized correlation method to individual GCL somas, and found a mean time constant of activity of 0.57 s and spread of +/-0.1 s suggesting a range of physiological dynamics even in the same cell type. Extending our method to slower dynamics (from minutes to one year), time-lapse imaging and temporal speckle contrast revealed appendage and soma motion of resting microglial cells at the retinal surface.

  18. Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy.

    PubMed

    Eles, James R; Vazquez, Alberto L; Snyder, Noah R; Lagenaur, Carl; Murphy, Matthew C; Kozai, Takashi D Y; Cui, X Tracy

    2017-01-01

    Implantable neural electrode technologies for chronic neural recordings can restore functional control to paralysis and limb loss victims through brain-machine interfaces. These probes, however, have high failure rates partly due to the biological responses to the probe which generate an inflammatory scar and subsequent neuronal cell death. L1 is a neuronal specific cell adhesion molecule and has been shown to minimize glial scar formation and promote electrode-neuron integration when covalently attached to the surface of neural probes. In this work, the acute microglial response to L1-coated neural probes was evaluated in vivo by implanting coated devices into the cortex of mice with fluorescently labeled microglia, and tracking microglial dynamics with multi-photon microscopy for the ensuing 6 h in order to understand L1's cellular mechanisms of action. Microglia became activated immediately after implantation, extending processes towards both L1-coated and uncoated control probes at similar velocities. After the processes made contact with the probes, microglial processes expanded to cover 47.7% of the control probes' surfaces. For L1-coated probes, however, there was a statistically significant 83% reduction in microglial surface coverage. This effect was sustained through the experiment. At 6 h post-implant, the radius of microglia activation was reduced for the L1 probes by 20%, shifting from 130.0 to 103.5 μm with the coating. Microglia as far as 270 μm from the implant site displayed significantly lower morphological characteristics of activation for the L1 group. These results suggest that the L1 surface treatment works in an acute setting by microglial mediated mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cromolyn Reduces Levels of the Alzheimer's Disease-Associated Amyloid β-Protein by Promoting Microglial Phagocytosis.

    PubMed

    Zhang, Can; Griciuc, Ana; Hudry, Eloise; Wan, Yu; Quinti, Luisa; Ward, Joseph; Forte, Angela M; Shen, Xunuo; Ran, ChongZhao; Elmaleh, David R; Tanzi, Rudolph E

    2018-01-18

    Amyloid-beta protein (Aβ) deposition is a pathological hallmark of Alzheimer's disease (AD). Aβ deposition triggers both pro-neuroinflammatory microglial activation and neurofibrillary tangle formation. Cromolyn sodium is an asthma therapeutic agent previously shown to reduce Aβ levels in transgenic AD mouse brains after one-week of treatment. Here, we further explored these effects as well as the mechanism of action of cromolyn, alone, and in combination with ibuprofen in APP Swedish -expressing Tg2576 mice. Mice were treated for 3 months starting at 5 months of age, when the earliest stages of β-amyloid deposition begin. Cromolyn, alone, or in combination with ibuprofen, almost completely abolished longer insoluble Aβ species, i.e. Aβ40 and Aβ42, but increased insoluble Aβ38 levels. In addition to its anti-aggregation effects on Aβ, cromolyn, alone, or plus ibuprofen, but not ibuprofen alone, increased microglial recruitment to, and phagocytosis of β-amyloid deposits in AD mice. Cromolyn also promoted Aβ42 uptake in microglial cell-based assays. Collectively, our data reveal robust effects of cromolyn, alone, or in combination with ibuprofen, in reducing aggregation-prone Aβ levels and inducing a neuroprotective microglial activation state favoring Aβ phagocytosis versus a pro-neuroinflammatory state. These findings support the use of cromolyn, alone, or with ibuprofen, as a potential AD therapeutic.

  20. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    PubMed Central

    2013-01-01

    Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM), as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF. PMID:23363775

  1. Attenuated microglial activation mediates tolerance to the neurotoxic effects of methamphetamine.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-02-01

    Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. Repeated, intermittent treatment of mice with low doses of methamphetamine leads to the development of tolerance to its neurotoxic effects. The mechanisms underlying tolerance are not understood but clearly involve more than alterations in drug bioavailability or reductions in the hyperthermia caused by methamphetamine. Microglia have been implicated recently as mediators of methamphetamine-induced neurotoxicity. The purpose of the present studies was to determine if a tolerance regimen of methamphetamine would attenuate the microglial response to a neurotoxic challenge. Mice treated with a low-dose methamphetamine tolerance regimen showed minor reductions in striatal dopamine content and low levels of microglial activation. When the tolerance regimen preceded a neurotoxic challenge of methamphetamine, the depletion of dopamine normally seen was significantly attenuated. The microglial activation that occurs after a toxic methamphetamine challenge was blunted likewise. Despite the induction of tolerance against drug-induced toxicity and microglial activation, a neurotoxic challenge with methamphetamine still caused hyperthermia. These results suggest that tolerance to methamphetamine neurotoxicity is associated with attenuated microglial activation and they further dissociate its neurotoxicity from drug-induced hyperthermia.

  2. Attenuation of dichlorvos-induced microglial activation and neuronal apoptosis by 4-hydroxy TEMPO.

    PubMed

    Sunkaria, Aditya; Sharma, Deep Raj; Wani, Willayat Yousuf; Gill, Kiran Dip

    2014-02-01

    The neurotoxic consequences of acute high-level as well as chronic low-level organophosphates exposure are associated with a range of abnormalities in nerve functions. Previously, we have shown that after 24 h of dichlorvos exposure, microglia become activated and secrete pro-inflammatory molecules like nitric oxide, tumour necrosis factor-α and interleukin-1β. Here, we extended our findings and focused on the neuronal damage caused by dichlorvos via microglial activation. For this, neurons and microglia were isolated separately from 1-day-old Wistar rat pups. Microglia were treated with dichlorvos for 24 h and supernatant was collected (dichlorvos-induced conditioned medium, DCM). However, when 4-hydroxy TEMPO (4-HT) pretreatment was given, we observed significant attenuation of dichlorvos-induced microglial activation; we also collected the supernatant of this culture (4-HT + DCM, TDCM). Next, we checked the effects of DCM on neurons and found heavy loss in viability as evident from NF-H immunostaining and MTT results, whereas dichlorvos alone-treated neurons showed comparatively less damage. However, we observed significant increase in neuronal viability when cells were treated with TDCM. Semi-quantitative PCR and western blot results revealed significant increase in p53, Bax and cytochrome c levels along with caspase 3 activation after 24 h of DCM treatment. However, TDCM-treated neurons showed significant decrease in the expression of these pro-apoptotic molecules. Taken together, these findings suggest that 4-HT can significantly attenuate dichlorvos-induced microglial activation and prevent apoptotic neuronal cell death.

  3. Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta

    PubMed Central

    Griciuc, Ana; Serrano-Pozo, Alberto; Parrado, Antonio R.; Lesinski, Andrea N.; Asselin, Caroline N.; Mullin, Kristina; Hooli, Basavaraj; Choi, Se Hoon; Hyman, Bradley T.; Tanzi, Rudolph E.

    2013-01-01

    SUMMARY The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer’s disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APPSwe/PS1ΔE9/CD33−/− mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD. PMID:23623698

  4. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    PubMed

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.

  5. Layer 5 Pyramidal Neurons' Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis

    PubMed Central

    Urrego, Diana; Troncoso, Julieta; Múnera, Alejandro

    2015-01-01

    This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1). It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans. PMID:26064916

  6. Licochalcone E activates Nrf2/antioxidant response element signaling pathway in both neuronal and microglial cells: therapeutic relevance to neurodegenerative disease.

    PubMed

    Kim, Sa Suk; Lim, Juhee; Bang, Yeojin; Gal, Jiyeong; Lee, Sang-Uk; Cho, Young-Chang; Yoon, Goo; Kang, Bok Yun; Cheon, Seung Hoon; Choi, Hyun Jin

    2012-10-01

    Oxidative stress and neuroinflammation are hallmarks of neurodegenerative diseases, which do not play independently but work synergistically through complex interactions exacerbating neurodegeneration. Therefore, the mechanism that is directly implicated in controlling oxidative stress and inflammatory response could be an attractive strategy to prevent the onset and/or delay the progression of neurodegenerative diseases. The transcription factor nuclear factor-E2-related factor-2 (Nrf2) is the guardian of redox homeostasis by regulating a battery of antioxidant and phase II detoxification genes, which are relevant to defense mechanism against oxidative stress and inflammatory responses. In this study, we show that a recently identified Glycyrrhiza-inflata-derived chalcone, licochalcone E (Lico-E), attenuates lipopolysaccharide-induced inflammatory responses in microglial BV2 cells and protects dopaminergic SH-SY5Y cells from 6-hydroxydopamine cytotoxicity. Lico-E activates Nrf2-antioxidant response element (ARE) system and up-regulates downstream NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1). Anti-inflammatory and cytoprotective effects of Lico-E are attenuated in siRNA-mediated Nrf2-silencing cells as well as in the presence with specific inhibitor of HO-1 or NQO1, respectively. Lico-E also has neuroprotective effect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigrostriatal dopaminergic neurodegeneration in mice, with up-regulation of HO-1 and NQO1 in the substantia nigra of the brain. This study demonstrates that Lico-E is a potential activator of the Nrf2/ARE-dependent pathway and is therapeutically relevant not only to oxidative-stress-related neurodegeneration but also inflammatory responses of microglial cells both in vitro and in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. System xC- is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice.

    PubMed

    Mesci, Pinar; Zaïdi, Sakina; Lobsiger, Christian S; Millecamps, Stéphanie; Escartin, Carole; Seilhean, Danielle; Sato, Hideyo; Mallat, Michel; Boillée, Séverine

    2015-01-01

    Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic

  8. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guseva, Daria; Hannover Medical School, Hannover; Rizvanov, Albert A.

    2014-09-05

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignantmore » transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.« less

  9. An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells.

    PubMed

    Tcw, Julia; Wang, Minghui; Pimenova, Anna A; Bowles, Kathryn R; Hartley, Brigham J; Lacin, Emre; Machlovi, Saima I; Abdelaal, Rawan; Karch, Celeste M; Phatnani, Hemali; Slesinger, Paul A; Zhang, Bin; Goate, Alison M; Brennand, Kristen J

    2017-08-08

    Growing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of replicative astrocytes from human induced pluripotent stem cells (hiPSCs), via a neural progenitor cell (NPC) intermediate. We evaluated this protocol across 42 NPC lines (derived from 30 individuals). Transcriptomic analysis demonstrated that hiPSC-astrocytes from four individuals are highly similar to primary human fetal astrocytes and characteristic of a non-reactive state. hiPSC-astrocytes respond to inflammatory stimulants, display phagocytic capacity, and enhance microglial phagocytosis. hiPSC-astrocytes also possess spontaneous calcium transient activity. Our protocol is a reproducible, straightforward (single medium), and rapid (<30 days) method to generate populations of hiPSC-astrocytes that can be used for neuron-astrocyte and microglia-astrocyte co-cultures for the study of neuropsychiatric disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Effects of oxaliplatin and oleic acid Gc-protein-derived macrophage-activating factor on murine and human microglia.

    PubMed

    Branca, Jacopo J V; Morucci, Gabriele; Malentacchi, Francesca; Gelmini, Stefania; Ruggiero, Marco; Pacini, Stefania

    2015-09-01

    The biological properties and characteristics of microglia in rodents have been widely described, but little is known about these features in human microglia. Several murine microglial cell lines are used to investigate neurodegenerative and neuroinflammatory conditions; however, the extrapolation of the results to human conditions is frequently met with criticism because of the possibility of species-specific differences. This study compares the effects of oxaliplatin and of oleic acid Gc-protein-derived macrophage-activating factor (OA-GcMAF) on two microglial cell lines, murine BV-2 cells and human C13NJ cells. Cell viability, cAMP levels, microglial activation, and vascular endothelial growth factor (VEGF) expression were evaluated. Our data demonstrate that oxaliplatin induced a significant decrease in cell viability in BV-2 and in C13NJ cells and that this effect was not reversed with OA-GcMAF treatment. The signal transduction pathway involving cAMP/VEGF was activated after treatment with oxaliplatin and/or OA-GcMAF in both cell lines. OA-GcMAF induced a significant increase in microglia activation, as evidenced by the expression of the B7-2 protein, in BV-2 as well as in C13NJ cells that was not associated with a concomitant increase in cell number. Furthermore, the effects of oxaliplatin and OA-GcMAF on coculture morphology and apoptosis were evaluated. Oxaliplatin-induced cell damage and apoptosis were nearly completely reversed by OA-GcMAF treatment in both BV-2/SH-SY5Y and C13NJ/SH-SY5Y cocultures. Our data show that murine and human microglia share common signal transduction pathways and activation mechanisms, suggesting that the murine BV-2 cell line may represent an excellent model for studying human microglia. © 2015 Wiley Periodicals, Inc.

  11. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function

    PubMed Central

    Abud, Edsel M.; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T.; Davtyan, Hayk; Fote, Gianna M.; Lau, Lydia; Weinger, Jason G.; Lane, Thomas E.; Inlay, Matthew A.; Poon, Wayne W.; Blurton-Jones, Mathew

    2016-01-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer’s disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting “Rag-5xfAD” mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive–innate immunity cross talk and accelerated disease progression. PMID:26884167

  12. Zinc Oxide Nanoparticle Induces Microglial Death by NADPH-Oxidase-Independent Reactive Oxygen Species as well as Energy Depletion.

    PubMed

    Sharma, Anuj Kumar; Singh, Vikas; Gera, Ruchi; Purohit, Mahaveer Prasad; Ghosh, Debabrata

    2017-10-01

    Zinc oxide nanoparticle (ZnO-NP) is one of the most widely used engineered nanoparticles. Upon exposure, nanoparticle can eventually reach the brain through various routes, interact with different brain cells, and alter their activity. Microglia is the fastest glial cell to respond to any toxic insult. Nanoparticle exposure can activate microglia and induce neuroinflammation. Simultaneous to activation, microglial death can exacerbate the scenario. Therefore, we focused on studying the effect of ZnO-NP on microglia and finding out the pathway involved in the microglial death. The present study showed that the 24 h inhibitory concentration 50 (IC 50 ) of ZnO-NP for microglia is 6.6 μg/ml. Early events following ZnO-NP exposure involved increase in intracellular calcium level as well as reactive oxygen species (ROS). Neither of NADPH oxidase inhibitors, apocynin, (APO) and diphenyleneiodonium chloride (DPIC) were able to reduce the ROS level and rescue microglia from ZnO-NP toxicity. In contrary, N-acetyl cysteine (NAC) showed opposite effect. Exogenous supplementation of superoxide dismutase (SOD) reduced ROS significantly even beyond control level but partially rescued microglial viability. Interestingly, pyruvate supplementation rescued microglia near to control level. Following 10 h of ZnO-NP exposure, intracellular ATP level was measured to be almost 50 % to the control. ZnO-NP-induced ROS as well as ATP depletion both disturbed mitochondrial membrane potential and subsequently triggered the apoptotic pathway. The level of apoptosis-inducing proteins was measured by western blot analysis and found to be upregulated. Taken together, we have deciphered that ZnO-NP induced microglial apoptosis by NADPH oxidase-independent ROS as well as ATP depletion.

  13. The Role of Microglial Subsets in Regulating Traumatic Brain Injury

    DTIC Science & Technology

    2013-07-01

    CCR)2. J. Exp. Med. 2000. 192: 1075–1080. 9 Mahad, D. J. and Ransohoff, R. M., The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and...at multiple timepoints in vivo and establish the function of these microglial subtypes ex vivo. 2. Skew the microglial response to TBI towards... multiple aspects, most notably in their chemokine repertoires. Thus, the macrophage response to TBI ini- tially involves heterogeneous polarization

  14. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures

    PubMed Central

    Bohlen, Christopher J.; Bennett, F. Chris; Tucker, Andrew F.; Collins, Hannah Y.; Mulinyawe, Sara B.; Barres, Ben A.

    2017-01-01

    Summary Microglia, the resident macrophages of the central nervous system (CNS), engage in various CNS-specific functions that are critical for development and health. To better study microglia and the properties that distinguish them from other tissue macrophage populations, we have optimized serum-free culture conditions to permit robust survival of highly ramified adult microglia under defined-medium conditions. We find that astrocyte-derived factors prevent microglial death ex vivo and that this activity results from three primary components, CSF-1/IL-34, TGF-β2, and cholesterol. Using microglial cultures that have never been exposed to serum, we demonstrate a dramatic and lasting change in phagocytic capacity after serum exposure. Finally, we find that mature microglia rapidly lose signature gene expression after isolation, and that this loss can be reversed by engrafting cells back into an intact CNS environment. These data indicate that the specialized gene expression profile of mature microglia requires continuous instructive signaling from the intact CNS. PMID:28521131

  15. Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures.

    PubMed

    Bohlen, Christopher J; Bennett, F Chris; Tucker, Andrew F; Collins, Hannah Y; Mulinyawe, Sara B; Barres, Ben A

    2017-05-17

    Microglia, the resident macrophages of the CNS, engage in various CNS-specific functions that are critical for development and health. To better study microglia and the properties that distinguish them from other tissue macrophage populations, we have optimized serum-free culture conditions to permit robust survival of highly ramified adult microglia under defined-medium conditions. We find that astrocyte-derived factors prevent microglial death ex vivo and that this activity results from three primary components, CSF-1/IL-34, TGF-β2, and cholesterol. Using microglial cultures that have never been exposed to serum, we demonstrate a dramatic and lasting change in phagocytic capacity after serum exposure. Finally, we find that mature microglia rapidly lose signature gene expression after isolation, and that this loss can be reversed by engrafting cells back into an intact CNS environment. These data indicate that the specialized gene expression profile of mature microglia requires continuous instructive signaling from the intact CNS. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Glioma-secreted soluble factors stimulate microglial activation: The role of interleukin-1β and tumor necrosis factor-α.

    PubMed

    Hwang, Ji-Sun; Jung, Eun-Hye; Kwon, Mi-Youn; Han, Inn-Oc

    2016-09-15

    We aimed to elucidate the effect of soluble factors secreted by glioma on microglial activation. Conditioned medium (CM) from glioma cells, CRT-MG and C6, significantly induced nitric oxide (NO) production and stimulated the mRNA expression of inducible NO synthase (iNOS), interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha (TNF-α) and cyclooxygenase 2 (COX-2) in BV2 cells. Glioma CM stimulated p38 mitogen-activated protein kinase (MAPK) phosphorylation, and a p38 MAPK inhibitor, SB203580, suppressed CM-induced NO production in BV2 cells. In addition, CM stimulated nuclear factor-kappaB (NF-κB) DNA binding and transcriptional activity, which was repressed by SB203580. Gliomas displayed higher mRNA expression and release of TNF-α and IL-1β than primary astrocyte cells. Neutralization of TNF-α and IL-1β in C6-CM using a neutralizing antibody inhibited NO/iNOS expression in BV-2 cells. These results indicate potential contribution of diffusible tumor-derived factors to regulate microglial activation and subsequent tumor microenvironment. Copyright © 2016. Published by Elsevier B.V.

  17. Pathological histone acetylation in Parkinson's disease: Neuroprotection and inhibition of microglial activation through SIRT 2 inhibition.

    PubMed

    Harrison, Ian F; Smith, Andrew D; Dexter, David T

    2018-02-14

    Parkinson's disease (PD) is associated with degeneration of nigrostriatal neurons due to intracytoplasmic inclusions composed predominantly of a synaptic protein called α-synuclein. Accumulations of α-synuclein are thought to 'mask' acetylation sites on histone proteins, inhibiting the action of histone acetyltransferase (HAT) enzymes in their equilibrium with histone deacetylases (HDACs), thus deregulating the dynamic control of gene transcription. It is therefore hypothesised that the misbalance in the actions of HATs/HDACs in neurodegeneration can be rectified with the use of HDAC inhibitors, limiting the deregulation of transcription and aiding neuronal homeostasis and neuroprotection in disorders such as PD. Here we quantify histone acetylation in the Substantia Nigra pars compacta (SNpc) in the brains of control, early and late stage PD cases to determine if histone acetylation is a function of disease progression. PD development is associated with Braak-dependent increases in histone acetylation. Concurrently, we show that as expected disease progression is associated with reduced markers of dopaminergic neurons and increased markers of activated microglia. We go on to demonstrate that in vitro, degenerating dopaminergic neurons exhibit histone hypoacetylation whereas activated microglia exhibit histone hyperacetylation. This suggests that the disease-dependent increase in histone acetylation observed in human PD cases is likely a combination of the contributions of both degenerating dopaminergic neurons and infiltrating activated microglia. The HDAC SIRT 2 has become increasingly implicated as a novel target for mediation of neuroprotection in PD: the neuronal and microglial specific effects of its inhibition however remain unclear. We demonstrate that SIRT 2 expression in the SNpc of PD brains remains relatively unchanged from controls and that SIRT 2 inhibition, via AGK2 treatment of neuronal and microglial cultures, results in neuroprotection of

  18. microRNA-34a-Mediated Down-Regulation of the Microglial-Enriched Triggering Receptor and Phagocytosis-Sensor TREM2 in Age-Related Macular Degeneration.

    PubMed

    Bhattacharjee, Surjyadipta; Zhao, Yuhai; Dua, Prerna; Rogaev, Evgeny I; Lukiw, Walter J

    2016-01-01

    The aggregation of Aβ42-peptides and the formation of drusen in age-related macular degeneration (AMD) are due in part to the inability of homeostatic phagocytic mechanisms to clear self-aggregating Aβ42-peptides from the extracellular space. The triggering receptor expressed in myeloid/microglial cells-2 (TREM2), a trans-membrane-spanning, sensor-receptor of the immune-globulin/lectin-like gene superfamily is a critical component of Aβ42-peptide clearance. Here we report a significant deficit in TREM2 in AMD retina and in cytokine- or oxidatively-stressed microglial (MG) cells. RT-PCR, miRNA-array, LED-Northern and Western blot studies indicated up-regulation of a microglial-enriched NF-кB-sensitive miRNA-34a coupled to a down-regulation of TREM2 in the same samples. Bioinformatics/transfection-luciferase reporter assays indicated that miRNA-34a targets the 299 nucleotide TREM2-mRNA-3'UTR, resulting in TREM2 down-regulation. C8B4-microglial cells challenged with Aβ42 were able to phagocytose these peptides, while miRNA-34a down-regulated both TREM2 and the ability of microglial-cells to phagocytose. Treatment of TNFα-stressed MG cells with phenyl-butyl nitrone (PBN), caffeic-acid phenethyl ester (CAPE), the NF-kB - [corrected] inhibitor/resveratrol analog CAY10512 or curcumin abrogated these responses. Incubation of anti-miRNA-34a (AM-34a) normalized miRNA-34a abundance and restored TREM2 back to homeostatic levels. These data support five novel observations: (i) that a ROS- and NF-kB - [corrected] sensitive, miRNA-34a-mediated modulation of TREM2 may in part regulate the phagocytic response; (ii) that gene products encoded on two different chromosomes (miRNA-34a at chr1q36.22 and TREM2 at chr6p21.1) orchestrate a phagocytic-Aβ42-peptide clearance-system; (iii) that this NF-kB-mediated-miRNA-34a-TREM2 mechanism is inducible from outside of the cell; (iv) that when operating normally, this pathway can clear Aβ42 peptide monomers from the extracellular

  19. microRNA-34a-Mediated Down-Regulation of the Microglial-Enriched Triggering Receptor and Phagocytosis-Sensor TREM2 in Age-Related Macular Degeneration

    PubMed Central

    Dua, Prerna; Rogaev, Evgeny I.; Lukiw, Walter J.

    2016-01-01

    The aggregation of Aβ42-peptides and the formation of drusen in age-related macular degeneration (AMD) are due in part to the inability of homeostatic phagocytic mechanisms to clear self-aggregating Aβ42-peptides from the extracellular space. The triggering receptor expressed in myeloid/microglial cells-2 (TREM2), a trans-membrane-spanning, sensor-receptor of the immune-globulin/lectin-like gene superfamily is a critical component of Aβ42-peptide clearance. Here we report a significant deficit in TREM2 in AMD retina and in cytokine- or oxidatively-stressed microglial (MG) cells. RT-PCR, miRNA-array, LED-Northern and Western blot studies indicated up-regulation of a microglial-enriched NF-кB-sensitive miRNA-34a coupled to a down-regulation of TREM2 in the same samples. Bioinformatics/transfection-luciferase reporter assays indicated that miRNA-34a targets the 299 nucleotide TREM2-mRNA-3’UTR, resulting in TREM2 down-regulation. C8B4-microglial cells challenged with Aβ42 were able to phagocytose these peptides, while miRNA-34a down-regulated both TREM2 and the ability of microglial-cells to phagocytose. Treatment of TNFα-stressed MG cells with phenyl-butyl nitrone (PBN), caffeic-acid phenethyl ester (CAPE), the NF-B-inhibitor/resveratrol analog CAY10512 or curcumin abrogated these responses. Incubation of anti-miRNA-34a (AM-34a) normalized miRNA-34a abundance and restored TREM2 back to homeostatic levels. These data support five novel observations: (i) that a ROS- and NF-B-sensitive, miRNA-34a-mediated modulation of TREM2 may in part regulate the phagocytic response; (ii) that gene products encoded on two different chromosomes (miRNA-34a at chr1q36.22 and TREM2 at chr6p21.1) orchestrate a phagocytic-Aβ42-peptide clearance-system; (iii) that this NF-kB-mediated-miRNA-34a-TREM2 mechanism is inducible from outside of the cell; (iv) that when operating normally, this pathway can clear Aβ42 peptide monomers from the extracellular medium; and (v) that anti

  20. Differential effects of minocycline on microglial activation and neurodegeneration following closed head injury in the neonate rat

    PubMed Central

    Hanlon, L.A.; Raghupathi, R.; Huh, J.W.

    2017-01-01

    The role of microglia in the pathophysiology of injury to the developing brain has been extensively studied. In children under the age of 4 who have sustained a traumatic brain injury (TBI), markers of microglial/macrophage activation were increased in the cerebrospinal fluid and were associated with worse neurologic outcome. Minocycline is an antibiotic that decreases microglial/macrophage activation following hypoxic-ischemia in neonatal rodents and TBI in adult rodents thereby reducing neurodegeneration and behavioral deficits. In study 1, 11-day-old rats received an impact to the intact skull and were treated for 3 days with minocycline. Immediately following termination of minocycline administration, microglial reactivity was reduced in the cortex and hippocampus (p<0.001) and was accompanied by an increase in the number of fluoro-Jade B profiles (p<0.001) suggestive of a reduced clearance of degenerating cells; however, this effect was not sustained at 7 days post-injury. Although microglial reactivity was reduced in the white matter tracts (p<0.001), minocycline treatment did not reduce axonal injury or degeneration. In the thalamus, minocycline treatment did not affect microglial reactivity, axonal injury and degeneration, and neurodegeneration. Injury-induced spatial learning and memory deficits were also not affected by minocycline. In study 2, to test whether extended dosing of minocycline may be necessary to reduce the ongoing pathologic alterations, a separate group of animals received minocycline for 9 days. Immediately following termination of treatment, microglial reactivity and neurodegeneration in all regions examined were exacerbated in minocycline-treated brain-injured animals compared to brain-injured animals that received vehicle (p<0.001), an effect that was only sustained in the cortex and hippocampus up to 15 days post-injury (p<0.001). Whereas injury-induced spatial learning deficits remained unaffected by minocycline treatment, memory

  1. Differential effects of minocycline on microglial activation and neurodegeneration following closed head injury in the neonate rat.

    PubMed

    Hanlon, L A; Raghupathi, R; Huh, J W

    2017-04-01

    The role of microglia in the pathophysiology of injury to the developing brain has been extensively studied. In children under the age of 4 who have sustained a traumatic brain injury (TBI), markers of microglial/macrophage activation were increased in the cerebrospinal fluid and were associated with worse neurologic outcome. Minocycline is an antibiotic that decreases microglial/macrophage activation following hypoxic-ischemia in neonatal rodents and TBI in adult rodents thereby reducing neurodegeneration and behavioral deficits. In study 1, 11-day-old rats received an impact to the intact skull and were treated for 3days with minocycline. Immediately following termination of minocycline administration, microglial reactivity was reduced in the cortex and hippocampus (p<0.001) and was accompanied by an increase in the number of fluoro-Jade B profiles (p<0.001) suggestive of a reduced clearance of degenerating cells; however, this effect was not sustained at 7days post-injury. Although microglial reactivity was reduced in the white matter tracts (p<0.001), minocycline treatment did not reduce axonal injury or degeneration. In the thalamus, minocycline treatment did not affect microglial reactivity, axonal injury and degeneration, and neurodegeneration. Injury-induced spatial learning and memory deficits were also not affected by minocycline. In study 2, to test whether extended dosing of minocycline may be necessary to reduce the ongoing pathologic alterations, a separate group of animals received minocycline for 9days. Immediately following termination of treatment, microglial reactivity and neurodegeneration in all regions examined were exacerbated in minocycline-treated brain-injured animals compared to brain-injured animals that received vehicle (p<0.001), an effect that was only sustained in the cortex and hippocampus up to 15days post-injury (p<0.001). Whereas injury-induced spatial learning deficits remained unaffected by minocycline treatment, memory

  2. Up-regulation of brain cytokines and chemokines mediates neurotoxicity in early acute liver failure by a mechanism independent of microglial activation.

    PubMed

    Faleiros, Bruno E; Miranda, Aline S; Campos, Alline C; Gomides, Lindisley F; Kangussu, Lucas M; Guatimosim, Cristina; Camargos, Elizabeth R S; Menezes, Gustavo B; Rachid, Milene A; Teixeira, Antônio L

    2014-08-26

    The neurological involvement in acute liver failure (ALF) is characterized by arousal impairment with progression to coma. There is a growing body of evidence that neuroinflammatory mechanisms play a role in this process, including production of inflammatory cytokines and microglial activation. However, it is still uncertain whether brain-derived cytokines and glial cells are crucial to the pathophysiology of ALF at the early stage, before coma development. Here, we investigated the influence of cytokines and microglia in ALF-induced encephalopathy in mice as soon as neurological symptoms were identifiable. Behavior was assessed at 12, 24, 36 and 48 h post-injection of thioacetamide, a hepatotoxic drug, through locomotor activity by an open field test. Brain concentration of cytokines (TNF-α and IL-1β) and chemokines (CXCL1, CCL2, CCL3 and CCL5) were assessed by ELISA. Microglial activation in brain sections was investigated through immunohistochemistry, and cellular ultrastructural changes were observed by transmission electron microscopy. We found that ALF-induced animals presented a significant decrease in locomotor activity at 24 h, which was accompanied by an increase in IL-1β, CXCL1, CCL2, CCL3 and CCL5 in the brain. TNF-α level was significantly increased only at 36 h. Despite marked morphological changes in astrocytes and brain endothelial cells, no microglial activation was observed. These findings suggest an involvement of brain-derived chemokines and IL-1β in early pathophysiology of ALF by a mechanism independent of microglial activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Sulforaphane Inhibits Lipopolysaccharide-Induced Inflammation, Cytotoxicity, Oxidative Stress, and miR-155 Expression and Switches to Mox Phenotype through Activating Extracellular Signal-Regulated Kinase 1/2-Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway in Murine Microglial Cells.

    PubMed

    Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin

    2018-01-01

    Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state.

  4. Nitric Oxide-Mediated Tumoricidal Activity of Murine Microglial Cells12

    PubMed Central

    Brantley, Emily C; Guo, Lixia; Zhang, Chenyu; Lin, Qingtang; Yokoi, Kenji; Langley, Robert R; Kruzel, Ewa; Maya, Marva; Kim, Seung Wook; Kim, Sun-Jin; Fan, Dominic; Fidler, Isaiah J

    2010-01-01

    Experimental metastases in the brain of mice are infiltrated by microglia, and parabiosis experiments of green fluorescent protein (GFP+) and GFP- mice revealed that these microglia are derived from circulating monocytes (GFP+, F4/80+, and CD68+). These findings raised the question as to whether microglia (specialized macrophages) possess tumoricidal activity. C8-B4 murine microglia cells were incubated in vitro in medium (control) or in medium containing both lipopolysaccharide and interferon-γ. Control microglia were not tumoricidal against a number of murine and human tumor cells, whereas lipopolysaccharide/interferon-γ-activated microglia lysed murine and human tumor cells by release of nitric oxide. Parallel experiments with murine peritoneal macrophages produced identical results. Neither activated microglia nor activated macrophages lysed nontumorigenic murine or human cells. Collectively, these data demonstrate that brain metastasis-associated microglia are derived from circulating mononuclear cells and exhibit selective and specific tumoricidal activity. PMID:21151477

  5. Inhibition of microglial activation by elderberry extracts and its phenolic components

    PubMed Central

    Simonyi, Agnes; Chen, Zihong; Jiang, Jinghua; Zong, Yijia; Chuang, Dennis Y.; Gu, Zezong; Lu, Chi-Hua; Fritsche, Kevin L.; Greenlief, C. Michael; Rottinghaus, George E.; Thomas, Andrew L.; Lubahn, Dennis B.; Sun, Grace Y.

    2015-01-01

    Aims Elderberry (Sambucus spp.) is one of the oldest medicinal plants noted for its cardiovascular, anti-inflammatory, and immune-stimulatory properties. In this study, we investigated the anti-inflammatory and anti-oxidant effects of the American elderberry (Sambucus nigra subsp. canadensis) pomace as well as some of the anthocyanins (cyanidin chloride and cyanidin 3-O-glucoside) and flavonols (quercetin and rutin) in bv-2 mouse microglial cells. Main methods The bv-2 cells were pretreated with elderberry pomace (extracted with ethanol or ethyl acetate) or its anthocyanins and flavonols and stimulated by either lipopolysaccharide (LPS) or interferon-γ (IFNγ). Reactive oxygen species (ROS) and nitric oxide (NO) production (indicating oxidative stress and inflammatory response) were measured using the ROS detection reagent DCF-DA and the Griess reaction, respectively. Key findings Analysis of total monomeric anthocyanin (as cyanidin 3-O-glucoside equivalents) indicated five-fold higher amount in the freeze-dried ethanol extract as compared to that of the oven-dried extract; anthocyanin was not detected in the ethyl acetate extracts. Elderberry ethanol extracts (freeze-dried or oven-dried) showed higher anti-oxidant activities and better ability to inhibit LPS or IFNγ-induced NO production as compared with the ethyl acetate extracts. The phenolic compounds strongly inhibited LPS or IFNγ-induced ROS production, but except for quercetin, they were relatively poor in inhibiting NO production. Significance These results demonstrated difference in anti-oxidative and anti-inflammatory effects of elderberry extracts depending on solvents used. Results further identified quercetin as the most active component in suppressing oxidative stress and inflammatory responses on microglial cells. PMID:25744406

  6. Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells

    PubMed Central

    Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup

    2016-01-01

    Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation. PMID:26838068

  7. Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells.

    PubMed

    Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup

    2016-02-03

    Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation.

  8. The Transcription Factor p53 Influences Microglial Activation Phenotype

    PubMed Central

    Jayadev, Suman; Nesser, Nicole K.; Hopkins, Stephanie; Myers, Scott J.; Case, Amanda; Lee, Rona J.; Seaburg, Luke A.; Uo, Takuma; Murphy, Sean P.; Morrison, Richard S.; Garden, Gwenn A.

    2011-01-01

    Several neurodegenerative diseases are influenced by the innate immune response in the central nervous system (CNS). Microglia, have pro-inflammatory and subsequently neurotoxic actions as well as anti-inflammatory functions that promote recovery and repair. Very little is known about the transcriptional control of these specific microglial behaviors. We have previously shown that in HIV associated neurocognitive disorders (HAND), the transcription factor p53 accumulates in microglia and that microglial p53 expression is required for the in vitro neurotoxicity of the HIV coat glycoprotein gp120. These findings suggested a novel function for p53 in regulating microglial activation. Here we report that in the absence of p53, microglia demonstrate a blunted response to interferon-γ, failing to increase expression of genes associated with classical macrophage activation or secrete pro-inflammatory cytokines. Microarray analysis of global gene expression profiles revealed increased expression of genes associated with anti-inflammatory functions, phagocytosis and tissue repair in p53 knockout (p53−/−) microglia compared with those cultured from strain matched p53 expressing (p53+/+) mice. We further observed that p53−/− microglia demonstrate increased phagocytic activity in vitro and expression of markers for alternative macrophage activation both in vitro and in vivo. In HAND brain tissue, the alternative activation marker CD163 was expressed in a separate subset of microglia than those demonstrating p53 accumulation. These data suggest that p53 influences microglial behavior, supporting the adoption of a pro-inflammatory phenotype, while p53 deficiency promotes phagocytosis and gene expression associated with alternative activation and anti-inflammatory functions. PMID:21598312

  9. Long Noncoding RNA H19 Promotes Neuroinflammation in Ischemic Stroke by Driving Histone Deacetylase 1-Dependent M1 Microglial Polarization.

    PubMed

    Wang, Jue; Zhao, Haiping; Fan, Zhibin; Li, Guangwen; Ma, Qingfeng; Tao, Zhen; Wang, Rongliang; Feng, Juan; Luo, Yumin

    2017-08-01

    Long noncoding RNA H19 is repressed after birth, but can be induced by hypoxia. We aim to investigate the impact on and underlying mechanism of H19 induction after ischemic stroke. Circulating H19 levels in stroke patients and mice subjected to middle cerebral artery occlusion were assessed using real-time polymerase chain reaction. H19 siRNA and histone deacetylase 1 (HDAC1) plasmid were used to knock down H19 and overexpress HDAC1, respectively. Microglial polarization and ischemic outcomes were assessed in middle cerebral artery occlusion mice and BV2 microglial cells subjected to oxygen-glucose deprivation. Circulating H19 levels were significantly higher in stroke patients compared with healthy controls, indicating high diagnostic sensitivity and specificity. Moreover, plasma H19 levels showed a positive correlation with National Institute of Health Stroke Scale score and tumor necrosis factor-α levels. After middle cerebral artery occlusion in mice, H19 levels increased in plasma, white blood cells, and brain. Intracerebroventricular injection of H19 siRNA reduced infarct volume and brain edema, decreased tumor necrosis factor-α and interleukin-1β levels in brain tissue and plasma, and increased plasma interleukin-10 concentrations 24 hours poststroke. Additionally, H19 knockdown attenuated brain tissue loss and neurological deficits 14 days poststroke. BV2 cell-based experiments showed that H19 knockdown blocked oxygen-glucose deprivation-driven M1 microglial polarization, decreased production of tumor necrosis factor-α and CD11b, and increased the expression of Arg-1 and CD206. Furthermore, H19 knockdown reversed oxygen-glucose deprivation-induced upregulation of HDAC1 and downregulation of acetyl-histone H3 and acetyl-histone H4. In contrast, HDAC1 overexpression negated the effects of H19 knockdown. Our findings indicate that H19 promotes neuroinflammation by driving HDAC1-dependent M1 microglial polarization, suggesting a novel H19-based diagnosis

  10. Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia.

    PubMed

    Moraga, Ana; Pradillo, Jesús M; García-Culebras, Alicia; Palma-Tortosa, Sara; Ballesteros, Ivan; Hernández-Jiménez, Macarena; Moro, María A; Lizasoain, Ignacio

    2015-05-10

    Aging is not just a risk factor of stroke, but it has also been associated with poor recovery. It is known that stroke-induced neurogenesis is reduced but maintained in the aged brain. However, there is no consensus on how neurogenesis is affected after stroke in aged animals. Our objective is to determine the role of aging on the process of neurogenesis after stroke. We have studied neurogenesis by analyzing proliferation, migration, and formation of new neurons, as well as inflammatory parameters, in a model of cerebral ischemia induced by permanent occlusion of the middle cerebral artery in young- (2 to 3 months) and middle-aged mice (13 to 14 months). Aging increased both microglial proliferation, as shown by a higher number of BrdU(+) cells and BrdU/Iba1(+) cells in the ischemic boundary and neutrophil infiltration. Interestingly, aging increased the number of M1 monocytes and N1 neutrophils, consistent with pro-inflammatory phenotypes when compared with the alternative M2 and N2 phenotypes. Aging also inhibited (subventricular zone) SVZ cell proliferation by decreasing both the number of astrocyte-like type-B (prominin-1(+)/epidermal growth factor receptor (EGFR)(+)/nestin(+)/glial fibrillary acidic protein (GFAP)(+) cells) and type-C cells (prominin-1(+)/EGFR(+)/nestin(-)/Mash1(+) cells), and not affecting apoptosis, 1 day after stroke. Aging also inhibited migration of neuroblasts (DCX(+) cells), as indicated by an accumulation of neuroblasts at migratory zones 14 days after injury; consistently, aged mice presented a smaller number of differentiated interneurons (NeuN(+)/BrdU(+) and GAD67(+) cells) in the peri-infarct cortical area 14 days after stroke. Our data confirm that stroke-induced neurogenesis is maintained but reduced in aged animals. Importantly, we now demonstrate that aging not only inhibits proliferation of specific SVZ cell subtypes but also blocks migration of neuroblasts to the damaged area and decreases the number of new interneurons in

  11. Microglial Activation Correlates with Disease Progression and Upper Motor Neuron Clinical Symptoms in Amyotrophic Lateral Sclerosis

    PubMed Central

    Brettschneider, Johannes; Toledo, Jon B.; Van Deerlin, Vivianna M.; Elman, Lauren; McCluskey, Leo; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2012-01-01

    Background/Aims We evaluated clinicopathological correlates of upper motor neuron (UMN) damage in amyotrophic lateral sclerosis (ALS), and analyzed if the presence of the C9ORF72 repeat expansion was associated with alterations in microglial inflammatory activity. Methods Microglial pathology was assessed by IHC with 2 different antibodies (CD68, Iba1), myelin loss by Kluver-Barrera staining and myelin basic protein (MBP) IHC, and axonal loss by neurofilament protein (TA51) IHC, performed on 59 autopsy cases of ALS including 9 cases with C9ORF72 repeat expansion. Results Microglial pathology as depicted by CD68 and Iba1 was significantly more extensive in the corticospinal tract (CST) of ALS cases with a rapid progression of disease. Cases with C9ORF72 repeat expansion showed more extensive microglial pathology in the medulla and motor cortex which persisted after adjusting for disease duration in a logistic regression model. Higher scores on the clinical UMN scale correlated with increasing microglial pathology in the cervical CST. TDP-43 pathology was more extensive in the motor cortex of cases with rapid progression of disease. Conclusions This study demonstrates that microglial pathology in the CST of ALS correlates with disease progression and is linked to severity of UMN deficits. PMID:22720079

  12. Differential transcriptional profiles mediated by exposure to the cannabinoids cannabidiol and Δ9-tetrahydrocannabinol in BV-2 microglial cells

    PubMed Central

    Juknat, Ana; Pietr, Maciej; Kozela, Ewa; Rimmerman, Neta; Levy, Rivka; Coppola, Giovanni; Geschwind, Daniel; Vogel, Zvi

    2012-01-01

    BACKGROUND AND PURPOSE Apart from their effects on mood and reward, cannabinoids exert beneficial actions such as neuroprotection and attenuation of inflammation. The immunosuppressive activity of cannabinoids has been well established. However, the underlying mechanisms are largely unknown. We previously showed that the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) and the non-psychoactive cannabidiol (CBD) differ in their anti-inflammatory signalling pathways. EXPERIMENTAL APPROACH To characterize the transcriptional effects of CBD and THC, we treated BV-2 microglial cells with these compounds and performed comparative microarray analysis using the Illumina MouseRef-8 BeadChip platform. Ingenuity Pathway Analysis was performed to identify functional subsets of genes and networks regulated by CBD and/or THC. KEY RESULTS Overall, CBD altered the expression of many more genes; from the 1298 transcripts found to be differentially regulated by the treatments, 680 gene probe sets were up-regulated by CBD and 58 by THC, and 524 gene products were down-regulated by CBD and only 36 by THC. CBD-specific gene expression profile showed changes associated with oxidative stress and glutathione depletion, normally occurring under nutrient limiting conditions or proteasome inhibition and involving the GCN2/eIF2α/p8/ATF4/CHOP-TRIB3 pathway. Furthermore, CBD-stimulated genes were shown to be controlled by nuclear factors known to be involved in the regulation of stress response and inflammation, mainly via the (EpRE/ARE)-Nrf2/ATF4 system and the Nrf2/Hmox1 axis. CONCLUSIONS AND IMPLICATIONS These observations indicated that CBD, but much less than THC, induced a cellular stress response in microglial cells and suggested that this effect could underlie its anti-inflammatory activity. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012

  13. Microglial activation in white matter lesions and nonlesional white matter of ageing brains.

    PubMed

    Simpson, J E; Ince, P G; Higham, C E; Gelsthorpe, C H; Fernando, M S; Matthews, F; Forster, G; O'Brien, J T; Barber, R; Kalaria, R N; Brayne, C; Shaw, P J; Stoeber, K; Williams, G H; Lewis, C E; Wharton, S B

    2007-12-01

    White matter lesions (WML), a common feature in brain ageing, are classified as periventricular (PVL) or deep subcortical (DSCL), depending on their anatomical location. Microglial activation is implicated in a number of neurodegenerative diseases, but the microglial response in WML is poorly characterized and its role in pathogenesis unknown. We have characterized the microglial response in WML and control white matter using immunohistochemistry to markers of microglial activation and of proliferation. WML of brains from an unbiased population-based autopsy cohort (Medical Research Council's Cognitive Function and Ageing Study) were identified by post mortem magnetic resonance imaging and sampled for histology. PVL contain significantly more activated microglia, expressing major histocompatibility complex (MHC) class II and the costimulatory molecules B7-2 and CD40, than either control white matter (WM) or DSCL. Furthermore, we show that significantly more microglia express the replication licensing protein minichromosome maintenance protein 2 within PVL, suggesting this is a more proliferation-permissive environment than DSCL. Although microglial activation occurs in both PVL and DSCL, our findings suggest a difference in pathogenesis between these lesion-types: the ramified, activated microglia associated with PVL may reflect immune activation resulting from disruption of the blood brain barrier, while the microglia within DSCL may reflect an innate, amoeboid phagocytic phenotype. We also show that microglia in control WM from lesional cases express significantly more MHC II than control WM from nonlesional ageing brain, suggesting that WML occur in a 'field-effect' of abnormal WM.

  14. Interruption of spinal cord microglial signaling by alpha-2 agonist dexmedetomidine in a murine model of delayed paraplegia.

    PubMed

    Bell, Marshall T; Agoston, Viktor A; Freeman, Kirsten A; Puskas, Ferenc; Herson, Paco S; Mares, Joshua; Fullerton, David A; Reece, T Brett

    2014-04-01

    Despite investigation into preventable pharmacologic adjuncts, paraplegia continues to complicate thoracoabdominal aortic interventions. The alpha 2a adrenergic receptor agonist, dexmedetomidine, has been shown to preserve neurologic function and neuronal viability in a murine model of spinal cord ischemia reperfusion, although the mechanism remains elusive. We hypothesize that dexmedetomidine will blunt postischemic inflammation in vivo following thoracic aortic occlusion with in vitro demonstration of microglial inhibition following lipopolysaccharide (LPS) stimulation. Adult male C57BL/6 mice underwent 4 minutes of aortic occlusion. Mice received 25 μg/kg intraperitoneal dexmedetomidine (n = 8) or 0.9% normal saline (n = 7) at reperfusion and 12-hour intervals postoperatively until 48 hours. Additionally, sham mice (n = 3), which had aortic arch exposed with no occlusion, were included for comparison. Functional scoring was done at 6 hours following surgery and 12-hour intervals until 60 hours when spinal cords were removed and examined for neuronal viability and cytokine production. Additional analysis of microglia activation was done in 12 hours following surgery. Age- and sex-matched mice had spinal cord removed for microglial isolation culture. Cells were grown to confluence and stimulated with toll-like receptor-4 agonist LPS 100 ng/mL in presence of dexmedetomidine or vehicle control for 24 hours. Microglia and media were then removed for analysis of protein expression. Dexmedetomidine treatment at reperfusion significantly preserved neurologic function with mice in treatment group having a Basso Score of 6.3 in comparison to 2.3 in ischemic control group. Treatment was associated with a significant reduction in microglia activation and in interleukin-6 production. Microglial cells in isolation when stimulated with LPS had an increased production of proinflammatory cytokines and markers of activation. Treatment with dexmedetomidine significantly

  15. Compartmentalization of endocannabinoids into lipid rafts in a microglial cell line devoid of caveorrlin-1

    PubMed Central

    Rimmerman, Neta; Bradshaw, Heather B; Kozela, Ewa; Levy, Rivka; Juknat, Ana; Vogel, Zvi

    2012-01-01

    BACKGROUND AND PURPOSE N-acyl ethanolamines (NAEs) and 2-arachidonoyl glycerol (2-AG) are endogenous cannabinoids and along with related lipids are synthesized on demand from membrane phospholipids. Here, we have studied the compartmentalization of NAEs and 2-AG into lipid raft fractions isolated from the caveolin-1-lacking microglial cell line BV-2, following vehicle or cannabidiol (CBD) treatment. Results were compared with those from the caveolin-1-positive F-11 cell line. EXPERIMENTAL APPROACH BV-2 cells were incubated with CBD or vehicle. Cells were fractionated using a detergent-free continuous OptiPrep density gradient. Lipids in fractions were quantified using HPLC/MS/MS. Proteins were measured using Western blot. KEY RESULTS BV-2 cells were devoid of caveolin-1. Lipid rafts were isolated from BV-2 cells as confirmed by co-localization with flotillin-1 and sphingomyelin. Small amounts of cannabinoid CB1 receptors were found in lipid raft fractions. After incubation with CBD, levels and distribution in lipid rafts of 2-AG, N-arachidonoyl ethanolamine (AEA), and N-oleoyl ethanolamine (OEA) were not changed. Conversely, the levels of the saturated N-stearoyl ethanolamine (SEA) and N-palmitoyl ethanolamine (PEA) were elevated in lipid raft fractions. In whole cells with growth medium, CBD treatment increased AEA and OEA time-dependently, while levels of 2-AG, PEA and SEA did not change. CONCLUSIONS AND IMPLICATIONS Whereas levels of 2-AG were not affected by CBD treatment, the distribution and levels of NAEs showed significant changes. Among the NAEs, the degree of acyl chain saturation predicted the compartmentalization after CBD treatment suggesting a shift in cell signalling activity. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10

  16. Omega-3 Polyunsaturated Fatty Acid Status, Microglial Activation, Stress Resilience, and Cognitive Performance

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0657 TITLE: Omega-3 Polyunsaturated Fatty Acid Status, Microglial Activation, Stress Resilience, and Cognitive...AND SUBTITLE Omega-3 Polyunsaturated Fatty Acid Status, Microglial Activation, Stress Resilience, and Cognitive Performance 5a. CONTRACT NUMBER 5b...a marker of activated microglia. Subjects will also complete a comprehensive stress resilience and neurocognitive battery to correlate with [11C

  17. The impact of microglial activation on blood-brain barrier in brain diseases

    PubMed Central

    da Fonseca, Anna Carolina Carvalho; Matias, Diana; Garcia, Celina; Amaral, Rackele; Geraldo, Luiz Henrique; Freitas, Catarina; Lima, Flavia Regina Souza

    2014-01-01

    The blood-brain barrier (BBB), constituted by an extensive network of endothelial cells (ECs) together with neurons and glial cells, including microglia, forms the neurovascular unit (NVU). The crosstalk between these cells guarantees a proper environment for brain function. In this context, changes in the endothelium-microglia interactions are associated with a variety of inflammation-related diseases in brain, where BBB permeability is compromised. Increasing evidences indicate that activated microglia modulate expression of tight junctions, which are essential for BBB integrity and function. On the other hand, the endothelium can regulate the state of microglial activation. Here, we review recent advances that provide insights into interactions between the microglia and the vascular system in brain diseases such as infectious/inflammatory diseases, epilepsy, ischemic stroke and neurodegenerative disorders. PMID:25404894

  18. Activation of PPARδ attenuates neurotoxicity by inhibiting lipopolysaccharide-triggered glutamate release in BV-2 microglial cells.

    PubMed

    Lee, Won Jin; Ham, Sun Ah; Yoo, Hyunjin; Hwang, Jung Seok; Yoo, Taesik; Paek, Kyung Shin; Lim, Dae-Seog; Han, Sung Gu; Lee, Chi-Ho; Hong, Kwonho; Seo, Han Geuk

    2018-02-01

    Neuroinflammation-associated release of glutamate from activated microglia has been implicated in the progression of neurodegenerative diseases. However, the regulatory mechanisms underlying this glutamate release are poorly understood. Here, we show that peroxisome proliferator-activated receptor delta (PPARδ) modulates neurotoxicity by inhibiting glutamate release in lipopolysaccharide (LPS)-activated BV-2 microglial cells. Activation of PPARδ by GW501516, a specific PPARδ agonist, inhibited glutamate release in BV-2 cells. This effect of GW501516 was significantly blocked by shRNA-mediated knockdown of PPARδ and by treatment with GSK0660, a specific PPARδ antagonist, indicating that PPARδ is associated with blockade of glutamate release. Additionally, GW501516-activated PPARδ suppressed generation of reactive oxygen species and expression of gp91phox, a functional subunit of NADPH oxidase 2, in BV-2 cells stimulated with LPS. The inhibitory effect of GW501516 on gp91phox expression and glutamate release was further potentiated in the presence of AG490, a specific inhibitor of janus kinase 2 (JAK2), leading to the inhibition of signal transducer and activator of transcription 1 (STAT1). By contrast, GW501516 upregulated the expression of suppressor of cytokine signaling 1 (SOCS1), an endogenous inhibitor of JAK2. Furthermore, neurotoxicity induced by conditioned media from LPS-stimulated BV-2 cells was significantly reduced when conditioned media from BV-2 cells treated with both LPS and GW501516 were used. These results indicate that PPARδ attenuates LPS-triggered neuroinflammation by enhancing SOCS1-mediated inhibition of JAK2/STAT1 signaling, thereby inhibiting neurotoxicity associated with glutamate release. © 2018 Wiley Periodicals, Inc.

  19. Microglial Function across the Spectrum of Age and Gender

    PubMed Central

    Nissen, Jillian C.

    2017-01-01

    Microglia constitute the resident immunocompetent cells of the central nervous system. Although much work has focused on their ability to mount an inflammatory response in reaction to pathology, recent studies have delved into their role in maintaining homeostasis in the healthy brain. It is important to note that the function of these cells is more complex than originally conceived, as there is increasing evidence that microglial responses can vary greatly among individuals. Here, this review will describe the changing behavior of microglia from development and birth through to the aged brain. Further, it is not only age that impacts the state of the neuroimmune milieu, as microglia have been shown to play a central role in the sexual differentiation of the brain. Finally, this review will discuss the implications this has for the differences in the incidence of neurodegenerative disorders between males and females, and between the young and old. PMID:28273860

  20. Sulforaphane Inhibits Lipopolysaccharide-Induced Inflammation, Cytotoxicity, Oxidative Stress, and miR-155 Expression and Switches to Mox Phenotype through Activating Extracellular Signal-Regulated Kinase 1/2–Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway in Murine Microglial Cells

    PubMed Central

    Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin

    2018-01-01

    Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state. PMID:29410668

  1. Evaluation of the Effect of Fingolimod Treatment on Microglial Activation Using Serial PET Imaging in Multiple Sclerosis.

    PubMed

    Sucksdorff, Marcus; Rissanen, Eero; Tuisku, Jouni; Nuutinen, Salla; Paavilainen, Teemu; Rokka, Johanna; Rinne, Juha; Airas, Laura

    2017-10-01

    Traditionally, multiple sclerosis (MS) has been considered a white matter disease with focal inflammatory lesions. It is, however, becoming clear that significant pathology, such as microglial activation, also takes place outside the plaque areas, that is, in areas of normal-appearing white matter (NAWM) and gray matter (GM). Microglial activation can be detected in vivo using 18-kDa translocator protein (TSPO)-binding radioligands and PET. It is unknown whether fingolimod affects microglial activation in MS. The aim of this study was to investigate whether serial PET can be used to evaluate the effect of fingolimod treatment on microglial activation. Methods: Ten relapsing-remitting MS patients were studied using the TSPO radioligand 11 C-( R )-PK11195. Imaging was performed at baseline and after 8 and 24 wk of fingolimod treatment. Eight healthy individuals were imaged for comparison. Microglial activation was evaluated as distribution volume ratio of 11 C-( R )-PK11195. Results: The patients had MS for an average of 7.9 ± 4.3 y (mean ± SD), their total relapses averaged 4 ± 2.4, and their Expanded Disability Status Scale was 2.7 ± 0.5. The patients were switched to fingolimod because of safety reasons or therapy escalation. The mean washout period before the initiation of fingolimod was 2.3 ± 1.1 mo. The patients were clinically stable on fingolimod. At baseline, microglial activation was significantly higher in the combined NAWM and GM areas of MS patients than in healthy controls ( P = 0.021). 11 C-( R )-PK11195 binding was reduced (-12.31%) within the combined T2 lesion area after 6 mo of fingolimod treatment ( P = 0.040) but not in the areas of NAWM or GM. Conclusion: Fingolimod treatment reduced microglial/macrophage activation at the site of focal inflammatory lesions, presumably by preventing leukocyte trafficking from the periphery. It did not affect the widespread, diffuse microglial activation in the NAWM and GM. The study opens new vistas for

  2. Minocycline Effects on IL-6 Concentration in Macrophage and Microglial Cells in a Rat Model of Neuropathic Pain.

    PubMed

    Moini-Zanjani, Taraneh; Ostad, Seyed-Nasser; Labibi, Farzaneh; Ameli, Haleh; Mosaffa, Nariman; Sabetkasaei, Masoumeh

    2016-11-01

    Evidence indicates that neuropathic pain pathogenesis is not confined to changes in the activity of neuronal systems but involves interactions between neurons, inflammatory immune and immune-like glial cells. Substances released from immune cells during inflammation play an important role in development and maintenance of neuropathic pain. It has been found that minocycline suppresses the development of neuropathic pain. Here, we evaluated the analgesic effect of minocycline in a chronic constriction injury (CCI) model of neuropathic pain in rat and assessed IL-6 concentration from cultured macrophage and microglia cells. Male Wistar rat (n=6, 150-200 g) were divided into three different groups: 1) CCI+vehicle, 2) sham+vehicle, and 3) CCI+drug. Minocycline (10, 20, and 40 mg/kg) was injected one hour before surgery and continued daily to day 14 post ligation. Von Frey filaments and acetone, as pain behavioral tests, were used for mechanical allodynia and cold allodynia, respectively. Experiments were performed on day 0 (before surgery) and days 1, 3, 5, 7, 10, and 14 post -injury. At day 14, rats were killed and monocyte-derived macrophage from right ventricle and microglia from lumbar part of the spinal cord were isolated and cultured in RPMI and Leibovitz's media, respectively. IL-6 concentration was evaluated in cell culture supernatant after 24 h. Minocycline (10, 20, and 40 mg/kg) attenuated pain behavior, and a decrease in IL-6 concentration was observed in immune cells compared to CCI vehicle-treated animals. Minocycline reduced pain behavior and decreased IL-6 concentration in macrophage and microglial cells.

  3. The antidepressant-like effects of pioglitazone in a chronic mild stress mouse model are associated with PPARγ-mediated alteration of microglial activation phenotypes.

    PubMed

    Zhao, Qiuying; Wu, Xiaohui; Yan, Shuo; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Peng, Cheng; You, Zili

    2016-10-04

    Discoveries that microglia-mediated neuroinflammation is involved in the pathological process of depression provided a new strategy for novel antidepressant therapy. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor regulating inflammation and microglial polarization and, therefore, a potential target for resolving depressive disorders. Our hypothesis was that antidepressant effects could be achieved through anti-inflammatory and neuroprotective activities by PPARγ-dependent microglia-modulating agents. Chronic mild stress (CMS) treatment was performed on C57BL/6 mice for 6 weeks. After 3 weeks with the CMS procedure, depressive-like behaviors were evaluated by sucrose preference (SP), tail suspension test (TST), forced swimming test (FST), and locomotor activity. Pioglitazone was administered intragastrically once per day for 3 weeks at different doses. Neuroinflammatory cytokines were determined by real time-PCR (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot. The activated microglial state was confirmed by immunohistochemistry. N9 microglial cells were subjected to lipopolysaccharide, pioglitazone, and GW9662 to discuss the phenotype of activated microglia by RT-PCR, ELISA, and western blot. It was demonstrated that the PPARγ agonist pioglitazone (2.5 mg/kg) ameliorated depression-like behaviors in CMS-treated mice, as indicated by body weight (BW), the SP test, the FST, and the TST. The amelioration of the depression was blocked by the PPARγ antagonist GW9662. The expression of M1 markers (IL-1β, IL-6, TNFα, iNOS, and CCL2) increased, and the gene expression of M2 markers (Ym1, Arg1, IL-4, IL-10, and TGFβ) decreased in the hippocampus of the stress-treated mice. Pioglitazone significantly inhibited the increased numbers and morphological alterations of microglia in the hippocampus, reduced the elevated expression of microglial M1 markers, and increased the downgraded expression of microglial M2 markers

  4. S. aureus-dependent microglial activation is selectively attenuated by the cyclopentenone prostaglandin 15-deoxy-Delta12,14- prostaglandin J2 (15d-PGJ2).

    PubMed

    Kielian, Tammy; McMahon, Meredith; Bearden, Edward D; Baldwin, Aaron C; Drew, Paul D; Esen, Nilufer

    2004-09-01

    Microglial activation is a hallmark of brain abscess. The continual release of proinflammatory mediators by microglia following bacterial challenge may contribute, in part, to the destruction of surrounding normal tissue characteristic of brain abscess. Therefore, attenuating chronic microglial activation during the course of CNS bacterial infections may have therapeutic benefits. The purpose of this study was to evaluate the ability of the natural peroxisome proliferator-activated receptor (PPAR)-gamma agonist 15-deoxy-Delta12,14- prostaglandin J2 (15d-PGJ2) to modulate microglial activation in response to Staphylococcus aureus, one of the main etiologic agents of brain abscess in humans. 15d-PGJ2 was a potent inhibitor of proinflammatory cytokine (IL-1beta, TNF-alpha, IL-12 p40) and CC chemokine (MIP-1beta, MCP-1) production in primary microglia, but had no effect upon the expression of select CXC chemokines (MIP-2, KC). 15d-PGJ2 also selectively inhibited the S. aureus-dependent increase in microglial TLR2, CD14, MHC class II, and CD40 expression, whereas it had no effect on the co-stimulatory molecules CD80 and CD86. Microarray analysis revealed additional inflammatory mediators modulated by 15d-PGJ2 in primary microglia following S. aureus exposure, the majority of which were chemokines. These results suggest that suppressing microglial activation through the use of 15d-PGJ2 may lead to the sparing of damage to normal brain parenchyma that often results from brain abscess. Copyright 2004 International Society for Neurochemistry

  5. HSP60 mediates the neuroprotective effects of curcumin by suppressing microglial activation.

    PubMed

    Ding, Feijia; Li, Fan; Li, Yunhong; Hou, Xiaolin; Ma, Yi; Zhang, Nan; Ma, Jiao; Zhang, Rui; Lang, Bing; Wang, Hongyan; Wang, Yin

    2016-08-01

    Curcumin has anti-inflammatory and antioxidant properties and has been widely used to treat or prevent neurodegenerative diseases. However, the mechanisms underlying the neuroprotective effects of curcumin are not well known. In the present study, the effect of curcumin on lipopolysaccharide (LPS)-stimulated BV2 mouse microglia cells was investigated using enzyme-linked immunosorbent assays of the culture medium and western blotting of cell lysates. The results showed that curcumin significantly inhibited the LPS-induced expression and release of heat shock protein 60 (HSP60) in the BV2 cells. The level of heat shock factor (HSF)-1 was upregulated in LPS-activated BV2 microglia, indicating that the increased expression of HSP60 was driven by HSF-1 activation. However, the increased HSF-1 level was downregulated by curcumin. Extracellular HSP60 is a ligand of Toll-like receptor 4 (TLR-4), and the level of the latter was increased in the LPS-activated BV2 microglia and inhibited by curcumin. The activation of TLR-4 is known to be associated with the activation of myeloid differentiation primary response 88 (MyD88) and nuclear factor (NF)-κB, with the subsequent production of proinflammatory and neurotoxic factors. In the present study, curcumin demonstrated marked suppression of the LPS-induced expression of MyD88, NF-κB, caspase-3, inducible nitric oxide synthase, tumor necrosis factor-α, interleukin (IL)-1β and IL-6 in the microglia. These results indicate that curcumin may exert its neuroprotective and anti-inflammatory effects by inhibiting microglial activation through the HSP60/TLR-4/MyD88/NF-κB signaling wpathway. Therefore, curcumin may be useful for the treatment of neurodegenerative diseases that are associated with microglial activation.

  6. Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling

    PubMed Central

    Thomas, David M.; Francescutti-Verbeem, Dina M.; Kuhn, Donald M.

    2009-01-01

    Methamphetamine (METH) damages dopamine (DA) nerve endings by a process that has been linked to microglial activation but the signaling pathways that mediate this response have not yet been delineated. Cardona et al. [Nat. Neurosci. 9 (2006), 917] recently identified the microglial-specific fractalkine receptor (CX3CR1) as an important mediator of MPTP-induced neurodegeneration of DA neurons. Because the CNS damage caused by METH and MPTP is highly selective for the DA neuronal system in mouse models of neurotoxicity, we hypothesized that the CX3CR1 plays a role in METH-induced neurotoxicity and microglial activation. Mice in which the CX3CR1 gene has been deleted and replaced with a cDNA encoding enhanced green fluorescent protein (eGFP) were treated with METH and examined for striatal neurotoxicity. METH depleted DA, caused microglial activation, and increased body temperature in CX3CR1 knockout mice to the same extent and over the same time course seen in wild-type controls. The effects of METH in CX3CR1 knockout mice were not gender-dependent and did not extend beyond the striatum. Striatal microglia expressing eGFP constitutively show morphological changes after METH that are characteristic of activation. This response was restricted to the striatum and contrasted sharply with unresponsive eGFP-microglia in surrounding brain areas that are not damaged by METH. We conclude from these studies that CX3CR1 signaling does not modulate METH neurotoxicity or microglial activation. Furthermore, it appears that striatal-resident microglia respond to METH with an activation cascade and then return to a surveying state without undergoing apoptosis or migration. PMID:18410508

  7. Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2008-07-01

    Methamphetamine (METH) damages dopamine (DA) nerve endings by a process that has been linked to microglial activation but the signaling pathways that mediate this response have not yet been delineated. Cardona et al. [Nat. Neurosci. 9 (2006), 917] recently identified the microglial-specific fractalkine receptor (CX3CR1) as an important mediator of MPTP-induced neurodegeneration of DA neurons. Because the CNS damage caused by METH and MPTP is highly selective for the DA neuronal system in mouse models of neurotoxicity, we hypothesized that the CX3CR1 plays a role in METH-induced neurotoxicity and microglial activation. Mice in which the CX3CR1 gene has been deleted and replaced with a cDNA encoding enhanced green fluorescent protein (eGFP) were treated with METH and examined for striatal neurotoxicity. METH depleted DA, caused microglial activation, and increased body temperature in CX3CR1 knockout mice to the same extent and over the same time course seen in wild-type controls. The effects of METH in CX3CR1 knockout mice were not gender-dependent and did not extend beyond the striatum. Striatal microglia expressing eGFP constitutively show morphological changes after METH that are characteristic of activation. This response was restricted to the striatum and contrasted sharply with unresponsive eGFP-microglia in surrounding brain areas that are not damaged by METH. We conclude from these studies that CX3CR1 signaling does not modulate METH neurotoxicity or microglial activation. Furthermore, it appears that striatal-resident microglia respond to METH with an activation cascade and then return to a surveying state without undergoing apoptosis or migration.

  8. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells

    PubMed Central

    Park, SE; Sapkota, K; Kim, S; Kim, H; Kim, SJ

    2011-01-01

    BACKGROUND AND PURPOSE Kaempferol, a dietary flavonoid and phyto-oestrogen, is known to have anti-inflammatory properties. Microglial activation has been implicated in various neurodegenerative diseases. Anti-inflammatory effects of kaempferol and the underlying mechanisms were investigated by using LPS-stimulated microglial BV2 cells. EXPERIMENTAL APPROACH Cell viability was measured using MTT and neutral red assays. elisa, Western blot, immunocytochemistry and electrophoretic mobility-shift assay were used to analyse NO, PGE2, TNF-α and IL-1β production, inducible NOS (iNOS), COX-2 expression and the involvement of signalling pathways such as toll-like receptor-4 (TLR4), MAPK cascades, PKB (AKT) and NF-κB. Accumulation of reaction oxygen species (ROS) was measured by nitroblue tetrazolium and 2′7′-dichlorofluorescein diacetate assay. Matrix metalloproteinase activity was investigated by zymography and immunoblot assay. Phagocytotic activity was assessed by use of latex beads. KEY RESULTS Kaempferol significantly attenuated LPS-induced NO, PGE2, TNF-α, IL-1β and ROS production and phagocytosis in a concentration-dependent manner. Kaempferol suppressed the expression of iNOS, COX-2, MMP-3 and blocked the TLR4 activation. Moreover, kaempferol inhibited LPS-induced NF-κB activation and p38 MAPK, JNK and AKT phosphorylation. CONCLUSION AND IMPLICATIONS Kaempferol was able to reduce LPS-induced inflammatory mediators through the down-regulation of TLR4, NF-κB, p38 MAPK, JNK and AKT suggesting that kaempferol has therapeutic potential for the treatment of neuroinflammatory diseases. PMID:21449918

  9. Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-α secretion

    PubMed Central

    Berta, Temugin; Park, Chul-Kyu; Xu, Zhen-Zhong; Xie, Ruo-Gang; Liu, Tong; Lü, Ning; Liu, Yen-Chin; Ji, Ru-Rong

    2014-01-01

    Increasing evidence indicates that the pathogenesis of neuropathic pain is mediated through spinal cord microglia activation. The intracellular protease caspase-6 (CASP6) is known to regulate neuronal apoptosis and axonal degeneration; however, the contribution of microglia and CASP6 in modulating synaptic transmission and pain is unclear. Here, we found that CASP6 is expressed specifically in C-fiber axonal terminals in the superficial spinal cord dorsal horn. Animals exposed to intraplantar formalin or bradykinin injection exhibited CASP6 activation in the dorsal horn. Casp6-null mice had normal baseline pain, but impaired inflammatory pain responses. Furthermore, formalin-induced second-phase pain was suppressed by spinal injection of CASP6 inhibitor or CASP6-neutralizing antibody, as well as perisciatic nerve injection of CASP6 siRNA. Recombinant CASP6 (rCASP6) induced marked TNF-α release in microglial cultures, and most microglia within the spinal cord expressed Tnfa. Spinal injection of rCASP6 elicited TNF-α production and microglia-dependent pain hypersensitivity. Evaluation of excitatory postsynaptic currents (EPSCs) revealed that rCASP6 rapidly increased synaptic transmission in spinal cord slices via TNF-α release. Interestingly, the microglial inhibitor minocycline suppressed rCASP6 but not TNF-α–induced synaptic potentiation. Finally, rCASP6-activated microglial culture medium increased EPSCs in spinal cord slices via TNF-α. Together, these data suggest that CASP6 released from axonal terminals regulates microglial TNF-α secretion, synaptic plasticity, and inflammatory pain. PMID:24531553

  10. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice.

    PubMed

    Brzozowska, Natalia I; Smith, Kristie L; Zhou, Cilla; Waters, Peter M; Cavalcante, Ligia Menezes; Abelev, Sarah V; Kuligowski, Michael; Clarke, David J; Todd, Stephanie M; Arnold, Jonathon C

    2017-10-01

    P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Electroconvulsive seizures (ECS) do not prevent LPS-induced behavioral alterations and microglial activation.

    PubMed

    van Buel, E M; Bosker, F J; van Drunen, J; Strijker, J; Douwenga, W; Klein, H C; Eisel, U L M

    2015-12-12

    Long-term neuroimmune activation is a common finding in major depressive disorder (MDD). Literature suggests a dual effect of electroconvulsive therapy (ECT), a highly effective treatment strategy for MDD, on neuroimmune parameters: while ECT acutely increases inflammatory parameters, such as serum levels of pro-inflammatory cytokines, there is evidence to suggest that repeated ECT sessions eventually result in downregulation of the inflammatory response. We hypothesized that this might be due to ECT-induced attenuation of microglial activity upon inflammatory stimuli in the brain. Adult male C57Bl/6J mice received a series of ten electroconvulsive seizures (ECS) or sham shocks, followed by an intracerebroventricular (i.c.v.) lipopolysaccharide (LPS) or phosphate-buffered saline (PBS) injection. Brains were extracted and immunohistochemically stained for the microglial marker ionized calcium-binding adaptor molecule 1 (Iba1). In addition, a sucrose preference test and an open-field test were performed to quantify behavioral alterations. LPS induced a short-term reduction in sucrose preference, which normalized within 3 days. In addition, LPS reduced the distance walked in the open field and induced alterations in grooming and rearing behavior. ECS did not affect any of these parameters. Phenotypical analysis of microglia demonstrated an LPS-induced increase in microglial activity ranging from 84 to 213 % in different hippocampal regions (CA3 213 %; CA1 84 %; dentate gyrus 131 %; and hilus 123 %). ECS-induced alterations in microglial activity were insignificant, ranging from -2.6 to 14.3 % in PBS-injected mice and from -20.2 to 6.6 % in LPS-injected mice. We were unable to demonstrate an effect of ECS on LPS-induced microglial activity or behavioral alterations.

  12. Influence of CSN1S2 protein from Caprine milk Etawah Breed (EB) on histology of microglial cells in rat (Rattus norvegicus) Type-2 diabetes mellitus (T2DM)

    NASA Astrophysics Data System (ADS)

    Rika, Margareth; Fatchiyah

    2017-11-01

    Type-2 diabetes mellitus (T2DM) is a degenerative disease that causes an imbalance in the metabolism. The aim of this research is to determine the influences of CSN1S2 on the structure of microglial cells in T2DM. Rats (Rattus norvegicus) were divided into eight groups of treatment with looping three times each between treatment groups (CM) Control. The control is given a milk treatment with doses of 375 mg/kg (CM375), 750 mg/kg (CM750), and 1500 mg/kg (CM1500), T2DM (DMK), and T2DM with CSN1S2 375 mg/kg dose (DM375), 750mg/kg (DM750), and 1500 mg/kg (DM1500). The animal model T2DM was induced by a high-fat diet in the form of feed followed by injection of STZ (dose of 25 mg/kg of animal treatment) and treatment of CSN1S2 for 28 days. Brain organs were taken and analysed in histopathology stained by Hematoxylin-eosin (HE) and observed using Olympus BX53. Based on the results, it was concluded that CSN1S2 protein is influential for induction of microglial cell proliferation in animal models of T2DM, as immunity responds to the inflammatory condition in T2DM.

  13. Microglial priming through the lung–brain axis: the role of air pollution–induced circulating factors

    PubMed Central

    Mumaw, Christen L.; Levesque, Shannon; McGraw, Constance; Robertson, Sarah; Lucas, Selita; Stafflinger, Jillian E; Campen, Matthew J.; Hall, Pamela; Norenberg, Jeffrey P.; Anderson, Tamara; Lund, Amie K.; McDonald, Jacob D.; Ottens, Andrew K.; Block, Michelle L.

    2016-01-01

    Air pollution is implicated in neurodegenerative disease risk and progression and in microglial activation, but the mechanisms are unknown. In this study, microglia remained activated 24 h after ozone (O3) exposure in rats, suggesting a persistent signal from lung to brain. Ex vivo analysis of serum from O3-treated rats revealed an augmented microglial proinflammatory response and β-amyloid 42 (Aβ42) neurotoxicity independent of traditional circulating cytokines, where macrophage-1 antigen-mediated microglia proinflammatory priming. Aged mice exhibited reduced pulmonary immune profiles and the most pronounced neuroinflammation and microglial activation in response to mixed vehicle emissions. Consistent with this premise, cluster of differentiation 36 (CD36)−/− mice exhibited impaired pulmonary immune responses concurrent with augmented neuroinflammation and microglial activation in response to O3. Further, aging glia were more sensitive to the proinflammatory effects of O3 serum. Together, these findings outline the lung–brain axis, where air pollutant exposures result in circulating, cytokine-independent signals present in serum that elevate the brain proinflammatory milieu, which is linked to the pulmonary response and is further augmented with age.—Mumaw, C. L., Levesque, S., McGraw, C., Robertson, S., Lucas, S., Stafflinger, J. E., Campen, M. J., Hall, P., Norenberg, J. P., Anderson, T., Lund, A. K., McDonald, J. D., Ottens, A. K., Block, M. L. Microglial priming through the lung–brain axis: the role of air pollution–induced circulating factors. PMID:26864854

  14. Dietary supplementation with the polyphenol-rich açaí pulps (Euterpe oleracea Mart. and Euterpe precatoria Mart.) improves cognition in aged rats and attenuates inflammatory signaling in BV-2 microglial cells.

    PubMed

    Carey, Amanda N; Miller, Marshall G; Fisher, Derek R; Bielinski, Donna F; Gilman, Casey K; Poulose, Shibu M; Shukitt-Hale, Barbara

    2017-05-01

    The present study was carried out to determine if lyophilized açaí fruit pulp (genus, Euterpe), rich in polyphenols and other bioactive antioxidant and anti-inflammatory phytochemicals, is efficacious in reversing age-related cognitive deficits in aged rats. The diets of 19-month-old Fischer 344 rats were supplemented for 8 weeks with 2% Euterpe oleracea (EO), Euterpe precatoria (EP), or a control diet. Rats were tested in the Morris water maze and then blood serum from the rats was used to assess inflammatory responses of BV-2 microglial cells. After 8 weeks of dietary supplementation with 2% EO or EP, rats demonstrated improved working memory in the Morris water maze, relative to controls; however, only the EO diet improved reference memory. BV-2 microglial cells treated with blood serum collected from EO-fed rats produced less nitric oxide (NO) than control-fed rats. Serum from both EO- and EP-fed rats reduced tumor necrosis factor-alpha (TNF-α). There is a relationship between performance in the water maze and the production of NO and TNF-α by serum-treated BV-2 cells, such that serum from rats with better performance was more protective against inflammatory signaling. Protection of memory during aging by supplementation of lyophilized açaí fruit pulp added to the diet may result from its ability to influence antioxidant and anti-inflammatory signaling.

  15. Resveratrol counteracts lipopolysaccharide-mediated microglial inflammation by modulating a SOCS-1 dependent signaling pathway.

    PubMed

    Dragone, Teresa; Cianciulli, Antonia; Calvello, Rosa; Porro, Chiara; Trotta, Teresa; Panaro, Maria Antonietta

    2014-09-01

    Brain damage or exposure to inflammatory agents provokes the activation of microglia and secretion of pro-inflammatory and neurotoxic mediators responsible for neuronal loss. Several lines of evidence show that resveratrol, a natural non-flavonoid polyphenol, may exert a neuroprotective action in neurodegenerative diseases. Suppressor of cytokine signaling (SOCS) proteins are a family of eight members expressed by immune cells and the central nervous system (CNS) cells, that regulate immune processes within the CNS, including microglia activation. We demonstrate that resveratrol had anti-inflammatory effects in murine N13 microglial cells stimulated with lipopolysaccharide (LPS), through up-regulating SOCS-1 expression. Interestingly, in SOCS-1-silenced cells resveratrol failed to play a protective role after LPS treatment. Our data demonstrate that resveratrol can impair microglia activation by activating a SOCS-1 mediated signaling pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Statins Reduce Lipopolysaccharide-Induced Cytokine and Inflammatory Mediator Release in an In Vitro Model of Microglial-Like Cells

    PubMed Central

    McFarland, A. J.

    2017-01-01

    The anti-inflammatory effects of statins (HMG-CoA reductase inhibitors) within the cardiovascular system are well-established; however, their neuroinflammatory potential is unclear. It is currently unknown whether statins' neurological effects are lipid-dependent or due to pleiotropic mechanisms. Therefore, the assumption that all statin compounds will have the same effect within the central nervous system is potentially inappropriate, with no studies to date having compared all statins in a single model. Thus, the aim of this study was to compare the effects of the six statins (atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin) within a single in vitro model of neuroinflammation. To achieve this, PMA-differentiated THP-1 cells were used as surrogate microglial cells, and LPS was used to induce inflammatory conditions. Here, we show that pretreatment with all statins was able to significantly reduce LPS-induced interleukin (IL)-1β and tumour necrosis factor (TNF)-α release, as well as decrease LPS-induced prostaglandin E2 (PGE2). Similarly, global reactive oxygen species (ROS) and nitric oxide (NO) production were decreased following pretreatment with all statins. Based on these findings, it is suggested that more complex cellular models should be considered to further compare individual statin compounds, including translation into in vivo models of acute and/or chronic neuroinflammation. PMID:28546657

  17. Insensitivity of Astrocytes to Interleukin-10 Signaling following Peripheral Immune Challenge Results in Prolonged Microglial Activation in the Aged Brain

    PubMed Central

    Norden, Diana M.; Trojanowski, Paige J.; Walker, Frederick R.; Godbout, Jonathan P.

    2017-01-01

    Immune-activated microglia from aged mice produce exaggerated levels of cytokines. Despite high levels of microglial IL-10 in the aged brain, neuroinflammation was prolonged and associated with depressive-like deficits. Because astrocytes respond to IL-10 and, in turn, attenuate microglial activation, we investigated if astrocyte-mediated resolution of microglial activation was impaired with age. Here, aged astrocytes had a dysfunctional profile with higher GFAP, lower glutamate transporter expression, and significant cytoskeletal re-arrangement. Moreover, aged astrocytes had reduced expression of growth factors and IL-10 Receptor-1 (IL-10R1). Following in vivo LPS immune challenge, aged astrocytes had a molecular signature associated with reduced responsiveness to IL-10. This IL-10 insensitivity of aged astrocytes resulted in a failure to induce IL-10R1 and TGFβ and resolve microglial activation. Additionally, adult astrocytes reduced microglial activation when co-cultured ex vivo, while aged astrocytes did not. Consistent with the aging studies, IL-10RKO astrocytes did not augment TGFβ after immune challenge and failed to resolve microglial activation. Collectively, a major cytokine-regulatory loop between activated microglia and astrocytes is impaired in the aged brain. PMID:27318131

  18. Safinamide and flecainide protect axons and reduce microglial activation in models of multiple sclerosis.

    PubMed

    Morsali, Damineh; Bechtold, David; Lee, Woojin; Chauhdry, Summen; Palchaudhuri, Upayan; Hassoon, Paula; Snell, Daniel M; Malpass, Katy; Piers, Thomas; Pocock, Jennifer; Roach, Arthur; Smith, Kenneth J

    2013-04-01

    Axonal degeneration is a major cause of permanent disability in the inflammatory demyelinating disease multiple sclerosis, but no therapies are known to be effective in axonal protection. Sodium channel blocking agents can provide effective protection of axons in the white matter in experimental models of multiple sclerosis, but the mechanism of action (directly on axons or indirectly via immune modulation) remains uncertain. Here we have examined the efficacy of two sodium channel blocking agents to protect white matter axons in two forms of experimental autoimmune encephalomyelitis, a common model of multiple sclerosis. Safinamide is currently in phase III development for use in Parkinson's disease based on its inhibition of monoamine oxidase B, but the drug is also a potent state-dependent inhibitor of sodium channels. Safinamide provided significant protection against neurological deficit and axonal degeneration in experimental autoimmune encephalomyelitis, even when administration was delayed until after the onset of neurological deficit. Protection of axons was associated with a significant reduction in the activation of microglia/macrophages within the central nervous system. To clarify which property of safinamide was likely to be involved in the suppression of the innate immune cells, the action of safinamide on microglia/macrophages was compared with that of the classical sodium channel blocking agent, flecainide, which has no recognized monoamine oxidase B activity, and which has previously been shown to protect the white matter in experimental autoimmune encephalomyelitis. Flecainide was also potent in suppressing microglial activation in experimental autoimmune encephalomyelitis. To distinguish whether the suppression of microglia was an indirect consequence of the reduction in axonal damage, or possibly instrumental in the axonal protection, the action of safinamide was examined in separate experiments in vitro. In cultured primary rat microglial

  19. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum.

    PubMed

    Ano, Yasuhisa; Kutsukake, Toshiko; Hoshi, Ayaka; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE) as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body by consumption of

  20. Identification of a Novel Dehydroergosterol Enhancing Microglial Anti-Inflammatory Activity in a Dairy Product Fermented with Penicillium candidum

    PubMed Central

    Ano, Yasuhisa; Kutsukake, Toshiko; Hoshi, Ayaka; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE) as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body by consumption of

  1. Bisphenol A exposure induces increased microglia and microglial related factors in the murine embryonic dorsal telencephalon and hypothalamus.

    PubMed

    Takahashi, Mifumi; Komada, Munekazu; Miyazawa, Ken; Goto, Shigemi; Ikeda, Yayoi

    2018-03-01

    Bisphenol A (BPA) is a widely used compound in the food packaging industry. Prenatal exposure to BPA induces histological abnormalities in the neocortex and hypothalamus in association with abnormal behaviors. Yet, the molecular and cellular neurodevelopmental toxicological mechanisms of BPA are incompletely characterized on neuroinflammatory-related endopoints. To evaluate the neurodevelopmental effects of BPA exposure in mouse embryos, we examined microglial numbers as well as the expression of microglial-related factors in the E15.5 embryonic brain. BPA-exposed embryos exhibited significant increases in Iba1-immunoreactive microglial numbers in the dorsal telencephalon and the hypothalamus compared to control embryos. Further, the expression levels of microglial markers (Iba1, CD16, iNOS, and CD206), inflammatory factors (TNFα and IL4), signal transducing molecules (Cx3Cr1 and Cx3Cl1), and neurotrophic factor (IGF1) were altered in BPA-exposed embryos. These findings suggest that BPA exposure increases microglial numbers in the brain and alters the neuroinflammatory status at a transcriptional level. Together, these changes may represent a novel target for neurodevelopmental toxicity assessment after BPA exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Mir143-BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: Implications for methamphetamine-mediated neurotoxicity

    PubMed Central

    Zhang, Yuan; Shen, Kai; Bai, Ying; Lv, Xuan; Huang, Rongrong; Zhang, Wei; Chao, Jie; Nguyen, Lan K.; Hua, Jun; Gan, Guangming; Hu, Gang; Yao, Honghong

    2016-01-01

    ABSTRACT BBC3 (BCL2 binding component 3) is a known apoptosis inducer; however, its role in microglial survival remains poorly understood. In addition to the classical transcription factor TRP53, Mir143 is involved in BBC3 expression at the post-transcriptional level. Here, we identify unique roles of Mir143-BBC3 in mediating microglial survival via the regulation of the interplay between apoptosis and autophagy. Autophagy inhibition accelerated methamphetamine-induced apoptosis, whereas autophagy induction attenuated the decrease in microglial survival. Moreover, anti-Mir143-dependent BBC3 upregulation reversed the methamphetamine-induced decrease in microglial survival via the regulation of apoptosis and autophagy. The in vivo relevance of these findings was confirmed in mouse models, which demonstrated that the microinjection of anti-Mir143 into the hippocampus ameliorated the methamphetamine-induced decrease in microglia as well as that observed in heterozygous Mir143+/− mice. These findings provide new insight regarding the specific contributions of Mir143-BBC3 to microglial survival in the context of drug abuse. PMID:27464000

  3. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.

    PubMed

    Nam, Min-Kyung; Shin, Hyun-Ah; Han, Ji-Hye; Park, Dae-Wook; Rhim, Hyangshuk

    2013-04-10

    As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Blueberry Opposes β-Amyloid Peptide-Induced Microglial Activation Via Inhibition of p44/42 Mitogen-Activation Protein Kinase

    PubMed Central

    Zhu, Yuyan; Bickford, Paula C.; Sanberg, Paul; Giunta, Brian

    2008-01-01

    Abstract Alzheimer's Disease (AD) is the most common age-related dementia, with a current prevalence in excess of five million individuals in the United States. The aggregation of amyloid-beta (Aβ) into fibrillar amyloid plaques is a key pathological event in the development of the disease. Microglial proinflammatory activation is widely known to cause neuronal and synaptic damage that correlates with cognitive impairment in AD. However, current pharmacological attempts at reducing neuroinflammation mediated via microglial activation have been largely negative in terms of slowing AD progression. Previously, we have shown that microglia express proinflammatory cytokines and a reduced capacity to phagocytose Aβ in the context of CD40, Aβ peptides and/or lipopolysaccharide (LPS) stimulation, a phenomenon that can be opposed by attenuation of p44/42 mitogen-activated protein kinase (MAPK) signaling. Other groups have found that blueberry (BB) extract both inhibits phosphorylation of this MAPK module and also improves cognitive deficits in AD model mice. Given these considerations and the lack of reduced Aβ quantities in behaviorally improved BB-fed mice, we wished to determine whether BB supplementation would alter the microglial proinflammatory activation state in response to Aβ. We found that BB significantly enhances microglial clearance of Aβ, inhibits aggregation of Aβ1–42, and suppresses microglial activation, all via suppression of the p44/42 MAPK module. Thus, these data may explain the previously observed behavioral recovery in PSAPP mice and suggest a means by which dietary supplementation could mitigate an undesirable microglial response toward fibrillar Aβ. PMID:18789000

  5. Protection against RAGE-mediated neuronal cell death by sRAGE-secreting human mesenchymal stem cells in 5xFAD transgenic mouse model.

    PubMed

    Son, Myeongjoo; Oh, Seyeon; Park, Hyunjin; Ahn, Hyosang; Choi, Junwon; Kim, Hyungho; Lee, Hye Sun; Lee, Sojung; Park, Hye-Jeong; Kim, Seung U; Lee, Bonghee; Byun, Kyunghee

    2017-11-01

    Alzheimer's disease (AD), which is the most commonly encountered neurodegenerative disease, causes synaptic dysfunction and neuronal loss due to various pathological processes that include tau abnormality and amyloid beta (Aβ) accumulation. Aβ stimulates the secretion and the synthesis of Receptor for Advanced Glycation End products (RAGE) ligand by activating microglial cells, and has been reported to cause neuronal cell death in Aβ 1-42 treated rats and in mice with neurotoxin-induced Parkinson's disease. The soluble form of RAGE (sRAGE) is known to reduce inflammation, and to decrease microglial cell activation and Aβ deposition, and thus, it protects from neuronal cell death in AD. However, sRAGE protein has too a short half-life for therapeutic purposes. We developed sRAGE-secreting umbilical cord derived mesenchymal stem cells (sRAGE-MSCs) to enhance the inhibitory effects of sRAGE on Aβ deposition and to reduce the secretion and synthesis of RAGE ligands in 5xFAD mice. In addition, these cells improved the viability of injected MSCs, and enhanced the protective effects of sRAGE by inhibiting the binding of RAGE and RAGE ligands in 5xFAD mice. These findings suggest sRAGE protein from sRAGE-MSCs has better protection against neuronal cell death than sRAGE protein or single MSC treatment by inhibiting the RAGE cell death cascade and RAGE-induce inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Experimental autoimmune prostatitis induces microglial activation in the spinal cord.

    PubMed

    Wong, Larry; Done, Joseph D; Schaeffer, Anthony J; Thumbikat, Praveen

    2015-01-01

    The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host's immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S14-S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Our data show that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. © 2014 Wiley Periodicals, Inc.

  7. Experimental autoimmune prostatitis induces microglial activation in the spinal cord

    PubMed Central

    Wong, Larry; Done, Joseph D.; Schaeffer, Anthony J.; Thumbikat, Praveen

    2014-01-01

    Background The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host’s immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Methods Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S4–S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Results Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Conclusion Our data shows that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. PMID:25263093

  8. Microglial disruption in young mice with early chronic lead exposure☆

    PubMed Central

    Sobin, Christina; Montoya, Mayra Gisel Flores; Parisi, Natali; Schaub, Tanner; Cervantes, Miguel; Armijos, Rodrigo X.

    2013-01-01

    The mechanisms by which early chronic lead (Pb) exposure alter brain development have not been identified. We examined neuroimmune system effects in C57BL/6J mice with Pb exposure, including levels that may be common among children in lower socioeconomic income environments. Pups were exposed via dams’ drinking water from birth to post-natal day 28 to low, high or no Pb conditions. We compared gene expression of neuroinflammatory markers (study 1); and microglial mean cell body volume and mean cell body number in dentate gyrus, and dentate gyrus volume (study 2). Blood Pb levels in exposed animals at sacrifice (post-natal day 28) ranged from 2.66 to 20.31 μg/dL. Only interleukin-6 (IL6) differed between groups and reductions were dose-dependent. Microglia cell body number also differed between groups and reductions were dose-dependent. As compared with controls, microglia cell body volume was greater but highly variable in only low-dose animals; dentate gyri volumes in low- and high-dose animals were reduced. The results did not support a model of increased neuroinflammation. Instead, early chronic exposure to Pb disrupted microglia via damage to, loss of, or lack of proliferation of microglia in the developing brains of Pb-exposed animals. PMID:23598043

  9. Increased microglial catalase activity in multiple sclerosis grey matter.

    PubMed

    Gray, Elizabeth; Kemp, Kevin; Hares, Kelly; Redondo, Julianna; Rice, Claire; Scolding, Neil; Wilkins, Alastair

    2014-04-22

    Chronic demyelination, on-going inflammation, axonal loss and grey matter neuronal injury are likely pathological processes that contribute to disease progression in multiple sclerosis (MS). Although the precise contribution of each process and their aetiological substrates is not fully known, recent evidence has implicated oxidative damage as a major cause of tissue injury in MS. The degree of tissue injury caused by oxidative molecules, such as reactive oxygen species (ROS), is balanced by endogenous anti-oxidant enzymes which detoxify ROS. Understanding endogenous mechanisms which protect the brain against oxidative injury in MS is important, since enhancing anti-oxidant responses is a major therapeutic strategy for preventing irreversible tissue injury in the disease. Our aims were to determine expression and activity levels of the hydrogen peroxide-reducing enzyme catalase in MS grey matter (GM). In MS GM, a catalase enzyme activity was elevated compared to control GM. We measured catalase protein expression by immune dot-blotting and catalase mRNA by a real-time polymerase chain reaction (RT-PCR). Protein analysis studies showed a strong positive correlation between catalase and microglial marker IBA-1 in MS GM. In addition, calibration of catalase mRNA level with reference to the microglial-specific transcript AIF-1 revealed an increase in this transcript in MS. This was reflected by the extent of HLA-DR immunolabeling in MS GM which was significantly elevated compared to control GM. Collectively, these observations provide evidence that microglial catalase activity is elevated in MS grey matter and may be an important endogenous anti-oxidant defence mechanism in MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Substance P enhances microglial density in the substantia nigra through neurokinin-1 receptor/NADPH oxidase-mediated chemotaxis in mice.

    PubMed

    Wang, Qingshan; Oyarzabal, Esteban; Wilson, Belinda; Qian, Li; Hong, Jau-Shyong

    2015-10-01

    The distribution of microglia varies greatly throughout the brain. The substantia nigra (SN) contains the highest density of microglia among different brain regions. However, the mechanism underlying this uneven distribution remains unclear. Substance P (SP) is a potent proinflammatory neuropeptide with high concentrations in the SN. We recently demonstrated that SP can regulate nigral microglial activity. In the present study, we further investigated the involvement of SP in modulating nigral microglial density in postnatal developing mice. Nigral microglial density was quantified in wild-type (WT) and SP-deficient mice from postnatal day 1 (P1) to P30. SP was detected at high levels in the SN as early as P1 and microglial density did not peak until around P30 in WT mice. SP-deficient mice (TAC1(-/-)) had a significant reduction in nigral microglial density. No differences in the ability of microglia to proliferate were observed between TAC1(-/-) and WT mice, suggesting that SP may alter microglial density through chemotaxic recruitment. SP was confirmed to dose-dependently attract microglia using a trans-well culture system. Mechanistic studies revealed that both the SP receptor neurokinin-1 receptor (NK1R) and the superoxide-producing enzyme NADPH oxidase (NOX2) were necessary for SP-mediated chemotaxis in microglia. Furthermore, genetic ablation and pharmacological inhibition of NK1R or NOX2 attenuated SP-induced microglial migration. Finally, protein kinase Cδ (PKCδ) was recognized to couple SP/NK1R-mediated NOX2 activation. Altogether, we found that SP partly accounts for the increased density of microglia in the SN through chemotaxic recruitment via a novel NK1R-NOX2 axis-mediated pathway. © 2015 Authors; published by Portland Press Limited.

  11. Effects of a Standardized Phenolic-Enriched Maple Syrup Extract on β-Amyloid Aggregation, Neuroinflammation in Microglial and Neuronal Cells, and β-Amyloid Induced Neurotoxicity in Caenorhabditis elegans

    PubMed Central

    Ma, Hang; DaSilva, Nicholas A.; Liu, Weixi; Nahar, Pragati P.; Wei, Zhengxi; Liu, Yongqiang; Pham, Priscilla T.; Crews, Rebecca; Vattem, Dhiraj A.; Slitt, Angela L.; Shaikh, Zahir A.; Seeram, Navindra P.

    2018-01-01

    Published data supports the neuroprotective effects of several phenolic-containing natural products, including certain fruit, berries, spices, nuts, green tea, and olive oil. However, limited data are available for phenolic-containing plant-derived natural sweeteners including maple syrup. Herein, we investigated the neuroprotective effects of a chemically standardized phenolic-enriched maple syrup extract (MSX) using a combination of biophysical, in vitro, and in vivo studies. Based on biophysical data (Thioflavin T assay, transmission electron microscopy, circular dichroism, dynamic light scattering, and zeta potential), MSX reduced amyloid β1–42 peptide (Aβ1–42) fibrillation in a concentration-dependent manner (50–500 μg/mL) with similar effects as the neuroprotective polyphenol, resveratrol, at its highest test concentration (63.5% at 500 μg/mL vs. 77.3% at 50 μg/mL, respectively). MSX (100 μg/mL) decreased H2O2-induced oxidative stress (16.1% decrease in ROS levels compared to control), and down-regulated the production of lipopolysaccharide (LPS)-stimulated inflammatory markers (22.1, 19.9, 74.8, and 87.6% decrease in NOS, IL-6, PGE2, and TNFα levels, respectively, compared to control) in murine BV-2 microglial cells. Moreover, in a non-contact co-culture cell model, differentiated human SH-SY5Y neuronal cells were exposed to conditioned media from BV-2 cells treated with MSX (100 μg/mL) and LPS or LPS alone. MSX-BV-2 media increased SH-SY5Y cell viability by 13.8% compared to media collected from LPS-BV-2 treated cells. Also, MSX (10 μg/mL) showed protective effects against Aβ1–42 induced neurotoxicity and paralysis in Caenorhabditis elegans in vivo. These data support the potential neuroprotective effects of MSX warranting further studies on this natural product. PMID:27418278

  12. Cannabinoids Δ9-Tetrahydrocannabinol and Cannabidiol Differentially Inhibit the Lipopolysaccharide-activated NF-κB and Interferon-β/STAT Proinflammatory Pathways in BV-2 Microglial Cells*

    PubMed Central

    Kozela, Ewa; Pietr, Maciej; Juknat, Ana; Rimmerman, Neta; Levy, Rivka; Vogel, Zvi

    2010-01-01

    Cannabinoids have been shown to exert anti-inflammatory activities in various in vivo and in vitro experimental models as well as ameliorate various inflammatory degenerative diseases. However, the mechanisms of these effects are not completely understood. Using the BV-2 mouse microglial cell line and lipopolysaccharide (LPS) to induce an inflammatory response, we studied the signaling pathways engaged in the anti-inflammatory effects of cannabinoids as well as their influence on the expression of several genes known to be involved in inflammation. We found that the two major cannabinoids present in marijuana, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), decrease the production and release of proinflammatory cytokines, including interleukin-1β, interleukin-6, and interferon (IFN)β, from LPS-activated microglial cells. The cannabinoid anti-inflammatory action does not seem to involve the CB1 and CB2 cannabinoid receptors or the abn-CBD-sensitive receptors. In addition, we found that THC and CBD act through different, although partially overlapping, mechanisms. CBD, but not THC, reduces the activity of the NF-κB pathway, a primary pathway regulating the expression of proinflammatory genes. Moreover, CBD, but not THC, up-regulates the activation of the STAT3 transcription factor, an element of homeostatic mechanism(s) inducing anti-inflammatory events. Following CBD treatment, but less so with THC, we observed a decreased level of mRNA for the Socs3 gene, a main negative regulator of STATs and particularly of STAT3. However, both CBD and THC decreased the activation of the LPS-induced STAT1 transcription factor, a key player in IFNβ-dependent proinflammatory processes. In summary, our observations show that CBD and THC vary in their effects on the anti-inflammatory pathways, including the NF-κB and IFNβ-dependent pathways. PMID:19910459

  13. Microglial depletion using intrahippocampal injection of liposome-encapsulated clodronate in prolonged hypothermic cardiac arrest in rats☆

    PubMed Central

    Drabek, Tomas; Janata, Andreas; Jackson, Edwin K.; End, Brad; Stezoski, Jason; Vagni, Vincent A.; Janesko-Feldman, Keri; Wilson, Caleb D.; van Rooijen, Nico; Tisherman, Samuel A.; Kochanek, Patrick M.

    2014-01-01

    Trauma patients who suffer cardiac arrest (CA) from exsanguination rarely survive. Emergency preservation and resuscitation using hypothermia was developed to buy time for resuscitative surgery and delayed resuscitation with cardiopulmonary bypass (CPB), but intact survival is limited by neuronal death associated with microglial proliferation and activation. Pharmacological modulation of microglia may improve outcome following CA. Systemic injection of liposome-encapsulated clodronate (LEC) depletes macrophages. To test the hypothesis that intrahippocampal injection of LEC would attenuate local microglial proliferation after CA in rats, we administered LEC or PBS into the right or left hippocampus, respectively. After rapid exsanguination and 6 min no-flow, hypothermia was induced by ice-cold (IC) or room-temperature (RT) flush. Total duration of CA was 20 min. Pre-treatment (IC, RTpre) and post-treatment (RTpost) groups were studied, along with shams (cannulation only) and CPB controls. On day 7, shams and CPB groups showed neither neuronal death nor microglial activation. In contrast, the number of microglia in hippocampus in each individual group (IC, RTpre, RTpost) was decreased with LEC vs. PBS by ~34–46% (P < 0.05). Microglial proliferation was attenuated in the IC vs. RT groups (P < 0.05). Neuronal death did not differ between hemispheres or IC vs. RT groups. Thus, intrahippocampal injection of LEC attenuated microglial proliferation by ~40%, but did not alter neuronal death. This suggests that microglia may not play a pivotal role in mediating neuronal death in prolonged hypothermic CA. This novel strategy provides us with a tool to study the specific effects of microglia in hypothermic CA. PMID:21970817

  14. Relationships between selective neuronal loss and microglial activation after ischaemic stroke in man.

    PubMed

    Morris, Rhiannon S; Simon Jones, P; Alawneh, Josef A; Hong, Young T; Fryer, Tim D; Aigbirhio, Franklin I; Warburton, Elizabeth A; Baron, Jean-Claude

    2018-05-09

    Modern ischaemic stroke management involves intravenous thrombolysis followed by mechanical thrombectomy, which allows markedly higher rates of recanalization and penumbral salvage than thrombolysis alone. However, <50% of treated patients eventually enjoy independent life. It is therefore important to identify complementary therapeutic targets. In rodent models, the salvaged penumbra is consistently affected by selective neuronal loss, which may hinder recovery by interfering with plastic processes, as well as by microglial activation, which may exacerbate neuronal death. However, whether the salvaged penumbra in man is similarly affected is still unclear. Here we determined whether these two processes affect the non-infarcted penumbra in man and, if so, whether they are inter-related. We prospectively recruited patients with (i) acute middle-cerebral artery stroke; (ii) penumbra present on CT perfusion obtained <4.5 h of stroke onset; and (iii) early neurological recovery as a marker of penumbral salvage. PET with 11C-flumazenil and 11C-PK11195, as well as MRI to map the final infarct, were obtained at predefined follow-up times. The presence of selective neuronal loss and microglial activation was determined voxel-wise within the MRI normal-appearing ipsilateral non-infarcted zone and surviving penumbra masks, and their inter-relationship was assessed both across and within patients. Dilated infarct contours were consistently excluded to control for partial volume effects. Across the 16 recruited patients, there was reduced 11C-flumazenil and increased 11C-PK11195 binding in the whole ipsilateral non-infarcted zone (P = 0.04 and 0.02, respectively). Within the non-infarcted penumbra, 11C-flumazenil was also reduced (P = 0.001), but without clear increase in 11C-PK11195 (P = 0.18). There was no significant correlation between 11C-flumazenil and 11C-PK11195 in either compartment. This mechanistic study provides direct evidence for the presence of both neuronal

  15. Methyl-isobutyl amiloride reduces brain Lac/NAA, cell death and microglial activation in a perinatal asphyxia model.

    PubMed

    Robertson, Nicola J; Kato, Takenori; Bainbridge, Alan; Chandrasekaran, Manigandan; Iwata, Osuke; Kapetanakis, Andrew; Faulkner, Stuart; Cheong, Jeanie; Iwata, Sachiko; Hristova, Mariya; Cady, Ernest; Raivich, Gennadij

    2013-03-01

    Na⁺/H⁺ exchanger (NHE) blockade attenuates the detrimental consequences of ischaemia and reperfusion in myocardium and brain in adult and neonatal animal studies. Our aim was to use magnetic resonance spectroscopy (MRS) biomarkers and immunohistochemistry to investigate the cerebral effects of the NHE inhibitor, methyl isobutyl amiloride (MIA) given after severe perinatal asphyxia in the piglet. Eighteen male piglets (aged < 24 h) underwent transient global cerebral hypoxia-ischaemia and were randomized to (i) saline placebo; or (ii) 3 mg/kg intravenous MIA administered 10 min post-insult and 8 hourly thereafter. Serial phosphorus-31 (³¹P) and proton (¹H) MRS data were acquired before, during and up to 48 h after hypoxia-ischaemia and metabolite-ratio time-series Area under the Curve (AUC) calculated. At 48 h, histological and immunohistochemical assessments quantified regional tissue injury. MIA decreased thalamic lactate/N-acetylaspartate and lactate/creatine AUCs (both p < 0.05) compared with placebo. Correlating with improved cerebral energy metabolism, transferase mediated biotinylated d-UTP nick end-labelling (TUNEL) positive cell density was reduced in the MIA group in cerebral cortex, thalamus and white matter (all p < 0.05) and caspase 3 immunoreactive cells were reduced in pyriform cortex and caudate nucleus (both p < 0.05). Microglial activation was reduced in pyriform and midtemporal cortex (both p < 0.05). Treatment with MIA starting 10 min after hypoxia-ischaemia was neuroprotective in this perinatal asphyxia model. © 2012 International Society for Neurochemistry.

  16. Implicating Receptor Activator of NF-κB (RANK)/RANK Ligand Signalling in Microglial Responses to Toll-Like Receptor Stimuli

    PubMed Central

    Kichev, Anton; Eede, Pascale; Gressens, Pierre; Thornton, Claire; Hagberg, Henrik

    2017-01-01

    Inflammation in the perinatal brain caused by maternal or intrauterine fetal infection is now well established as an important contributor to the development of perinatal brain injury. Exposure to inflammatory products can impair perinatal brain development and act as a risk factor for neurological dysfunction, cognitive disorders, cerebral palsy, or preterm birth. Pre-exposure to inflammation significantly exacerbates brain injury caused by hypoxic/ischaemic insult. Tumour necrosis factor (TNF) is a family of cytokines largely involved in inflammation signalling. In our previous study, we identified the importance of TNF-related apoptosis-inducing ligand (TRAIL) signalling in the development of perinatal brain injury. We observed a significant increase in the expression levels of a soluble decoy receptor for TRAIL, osteoprotegerin (OPG). Besides TRAIL, OPG is able to bind the receptor activator of the NF-κB (RANK) ligand (RANKL) and inhibit its signalling. The function of the RANK/RANKL/OPG system in the brain has not come under much scrutiny. The aim of this research study was to elucidate the role of RANK, RANKL, and OPG in microglial responses to the proinflammatory stimuli lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (Poly I:C). Here, we show that RANK signalling is important for regulating the activation of the BV2 microglial cell line. We found that LPS treatment causes a significant decrease in the expression of RANK in the BV2 cell line while significantly increasing the expression of OPG, Toll-like receptor (TLR)3, and the adaptor proteins MyD88 and TRIF. We found that pretreatment of BV2 cells with RANKL for 24 h before the LPS or Poly I:C exposure decreases the expression of inflammatory markers such as inducible nitric oxide synthase and cyclooxygenase. This is accompanied by a decreased expression of the TLR adaptor proteins MyD88 and TRIF, which we observed after RANKL treatment. Similar results were obtained in our experiments with

  17. Implicating Receptor Activator of NF-κB (RANK)/RANK Ligand Signalling in Microglial Responses to Toll-Like Receptor Stimuli.

    PubMed

    Kichev, Anton; Eede, Pascale; Gressens, Pierre; Thornton, Claire; Hagberg, Henrik

    2017-01-01

    Inflammation in the perinatal brain caused by maternal or intrauterine fetal infection is now well established as an important contributor to the development of perinatal brain injury. Exposure to inflammatory products can impair perinatal brain development and act as a risk factor for neurological dysfunction, cognitive disorders, cerebral palsy, or preterm birth. Pre-exposure to inflammation significantly exacerbates brain injury caused by hypoxic/ischaemic insult. Tumour necrosis factor (TNF) is a family of cytokines largely involved in inflammation signalling. In our previous study, we identified the importance of TNF-related apoptosis-inducing ligand (TRAIL) signalling in the development of perinatal brain injury. We observed a significant increase in the expression levels of a soluble decoy receptor for TRAIL, osteoprotegerin (OPG). Besides TRAIL, OPG is able to bind the receptor activator of the NF-κB (RANK) ligand (RANKL) and inhibit its signalling. The function of the RANK/RANKL/OPG system in the brain has not come under much scrutiny. The aim of this research study was to elucidate the role of RANK, RANKL, and OPG in microglial responses to the proinflammatory stimuli lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (Poly I:C). Here, we show that RANK signalling is important for regulating the activation of the BV2 microglial cell line. We found that LPS treatment causes a significant decrease in the expression of RANK in the BV2 cell line while significantly increasing the expression of OPG, Toll-like receptor (TLR)3, and the adaptor proteins MyD88 and TRIF. We found that pretreatment of BV2 cells with RANKL for 24 h before the LPS or Poly I:C exposure decreases the expression of inflammatory markers such as inducible nitric oxide synthase and cyclooxygenase. This is accompanied by a decreased expression of the TLR adaptor proteins MyD88 and TRIF, which we observed after RANKL treatment. Similar results were obtained in our experiments with

  18. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression.

    PubMed

    Cheng, Kevin P; Kiernan, Elizabeth A; Eliceiri, Kevin W; Williams, Justin C; Watters, Jyoti J

    2016-02-17

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS.

  19. Pain intensity and duration can be enhanced by prior challenge: Initial evidence suggestive of a role of microglial priming

    PubMed Central

    Hains, Leah E.; Loram, Lisa C.; Weiseler, Julie L.; Frank, Matthew G.; Bloss, Erik B.; Sholar, Paige; Taylor, Frederick R; Harrison, Jacqueline A; Martin, Thomas J.; Eisenach, James C.; Maier, Steven F.; Watkins, Linda R.

    2010-01-01

    Activation of spinal microglia and consequent release of pro-inflammatory mediators facilitate pain. Under certain conditions, responses of activated microglia can become enhanced. Enhanced microglial production of pro-inflammatory products may result from priming (sensitization), similar to macrophage priming. We hypothesized that if spinal microglia were primed by an initial inflammatory challenge, subsequent challenges may create enhanced pain. Here, we used a "two-hit" paradigm using two successive challenges, which affect overlapping populations of spinal microglia, presented two weeks apart. Mechanical allodynia and/or activation of spinal glia were assessed. Initially, laparotomy preceded systemic lipopolysaccharide (LPS). Prior laparotomy caused prolonged microglial (not astrocyte) activation plus enhanced LPS-induced allodynia. In this “two-hit” paradigm, minocycline, a microglial activation inhibitor, significantly reduced later exaggerated pain induced by prior surgery when minocycline was administered intrathecally for 5 days starting either at the time of surgery or 5 days before LPS administration. To test generality of the priming effect, subcutaneous formalin preceded intrathecal HIV-1 gp120, which activates spinal microglia and causes robust allodynia. Prior formalin enhanced intrathecal gp120-induced allodynia, suggesting that microglial priming is not limited to laparotomy and again supporting a spinal site of action. Therefore, spinal microglial priming may increase vulnerability to pain enhancement. PMID:20434956

  20. The microglial fractalkine receptor is not required for activity-dependent plasticity in the mouse visual system.

    PubMed

    Lowery, Rebecca L; Tremblay, Marie-Eve; Hopkins, Brittany E; Majewska, Ania K

    2017-11-01

    Microglia have recently been implicated as key regulators of activity-dependent plasticity, where they contribute to the removal of inappropriate or excess synapses. However, the molecular mechanisms that mediate this microglial function are still not well understood. Although multiple studies have implicated fractalkine signaling as a mediator of microglia-neuron communications during synaptic plasticity, it is unclear whether this is a universal signaling mechanism or whether its role is limited to specific brain regions and stages of the lifespan. Here, we examined whether fractalkine signaling mediates microglial contributions to activity-dependent plasticity in the developing and adolescent visual system. Using genetic ablation of fractalkine's cognate receptor, CX 3 CR1, and both ex vivo characterization and in vivo imaging in mice, we examined whether fractalkine signaling is required for microglial dynamics and modulation of synapses, as well as activity-dependent plasticity in the visual system. We did not find a role for fractalkine signaling in mediating microglial properties during visual plasticity. Ablation of CX 3 CR1 had no effect on microglial density, distribution, morphology, or motility, in either adolescent or young adult mice across brain regions that include the visual cortex. Ablation of CX 3 CR1 also had no effect on baseline synaptic turnover or contact dynamics between microglia and neurons. Finally, we found that fractalkine signaling is not required for either early or late forms of activity-dependent visual system plasticity. These findings suggest that fractalkine is not a universal regulator of synaptic plasticity, but rather has heterogeneous roles in specific brain regions and life stages. © 2017 Wiley Periodicals, Inc.

  1. Macrophagic and microglial responses after focal traumatic brain injury in the female rat

    PubMed Central

    2014-01-01

    Background After central nervous system injury, inflammatory macrophages (M1) predominate over anti-inflammatory macrophages (M2). The temporal profile of M1/M2 phenotypes in macrophages and microglia after traumatic brain injury (TBI) in rats is unknown. We subjected female rats to severe controlled cortical impact (CCI) and examined the postinjury M1/M2 time course in their brains. Methods The motor cortex (2.5 mm left laterally and 1.0 mm anteriorly from the bregma) of anesthetized female Wistar rats (ages 8 to 10 weeks; N = 72) underwent histologically moderate to severe CCI with a 5-mm impactor tip. Separate cohorts of rats had their brains dissociated into cells for flow cytometry, perfusion-fixed for immunohistochemistry (IHC) and ex vivo magnetic resonance imaging or flash-frozen for RNA and protein analysis. For each analytical method used, separate postinjury times were included for 24 hours; 3 or 5 days; or 1, 2, 4 or 8 weeks. Results By IHC, we found that the macrophagic and microglial responses peaked at 5 to 7 days post-TBI with characteristics of mixed populations of M1 and M2 phenotypes. Upon flow cytometry examination of immunological cells isolated from brain tissue, we observed that peak M2-associated staining occurred at 5 days post-TBI. Chemokine analysis by multiplex assay showed statistically significant increases in macrophage inflammatory protein 1α and keratinocyte chemoattractant/growth-related oncogene on the ipsilateral side within the first 24 hours after injury relative to controls and to the contralateral side. Quantitative RT-PCR analysis demonstrated expression of both M1- and M2-associated markers, which peaked at 5 days post-TBI. Conclusions The responses of macrophagic and microglial cells to histologically severe CCI in the female rat are maximal between days 3 and 7 postinjury. The response to injury is a mixture of M1 and M2 phenotypes. PMID:24761998

  2. The effects of chronic alcoholism on cell proliferation in the human brain.

    PubMed

    Sutherland, G T; Sheahan, P J; Matthews, J; Dennis, C V P; Sheedy, D S; McCrossin, T; Curtis, M A; Kril, J J

    2013-09-01

    Neurogenesis continues in the human subventricular zone and to a lesser extent in the hippocampal subgranular zone throughout life. Subventricular zone-derived neuroblasts migrate to the olfactory bulb where survivors become integrated as interneurons and are postulated to contribute to odor discrimination. Adult neurogenesis is dysregulated in many neurological, neurovascular and neurodegenerative diseases. Alcohol abuse can result in a neurodegenerative condition called alcohol-related brain damage. Alcohol-related brain damage manifests clinically as cognitive dysfunction and the loss of smell sensation (hyposmia) and pathologically as generalized white matter atrophy and focal neuronal loss. The exact mechanism linking chronic alcohol intoxication with alcohol-related brain damage remains largely unknown but rodent models suggest that decreased neurogenesis is an important component. We investigated this idea by comparing proliferative events in the subventricular zone and olfactory bulb of a well-characterized cohort of 15 chronic alcoholics and 16 age-matched controls. In contrast to the findings in animal models there was no difference in the number of proliferative cell nuclear antigen-positive cells in the subventricular zone of alcoholics (mean±SD=28.7±20.0) and controls (27.6±18.9, p=1.0). There were also no differences in either the total (p=0.89) or proliferative cells (p=0.98) in the granular cell layer of the olfactory bulb. Our findings show that chronic alcohol consumption does not affect cell proliferation in the human SVZ or olfactory bulb. In fact only microglial proliferation could be demonstrated in the latter. Therefore neurogenic deficits are unlikely to contribute to hyposmia in chronic alcoholics. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Potential roles of microglial cell progranulin in HIV-associated CNS pathologies and neurocognitive impairment

    PubMed Central

    Suh, Hyeon-Sook; Gelman, Benjamin B.; Lee, Sunhee C.

    2013-01-01

    Progranulin (PGRN) is a highly unusual molecule with both neuronal and microglial expression with two seemingly unrelated functions, i.e., as a neuronal growth factor and a modulator of neuroinflammation. Haploinsufficiency due to loss of function mutations lead to a fatal presenile dementing illness (frontotemporal lobar degeneration), indicating that adequate expression of PGRN is essential for successful aging. PGRN might be a particularly relevant factor in the pathogenesis of HIV encephalitis (HIVE) and HIV-associated neurocognitive disorders (HAND). We present emerging data and a review of the literature which show that cells of myeloid lineage such as macrophages and microglia are the primary sources of PGRN and that PGRN expression contributes to pathogenesis of CNS diseases. We also present evidence that PGRN is a macrophage antiviral cytokine. For example, PGRN mRNA and protein expression are significantly upregulated in brain specimens with HIVE, and in HIV-infected microglia in vitro. Paradoxically, our preliminary CHARTER data analyses indicate that lower PGRN levels in CSF trended towards an association with HAND, particularly in those without detectable virus. Based upon these findings, we introduce the hypothesis that PGRN plays dual roles in modulating antiviral immunity and neuronal dysfunction in the context of HIV infection. In the presence of active viral replication, PGRN expression is increased functioning as an anti-viral factor as well as a neuroprotectant. In the absence of active HIV replication, ongoing inflammation or other stressors suppress PGRN production from macrophages/microglia contributing to neurocognitive dysfunction. We propose CSF PGRN as a candidate surrogate marker for HAND. PMID:23959579

  4. Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord.

    PubMed

    Tahtouh, Muriel; Croq, Françoise; Vizioli, Jacopo; Sautiere, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Daha, Mohamed R; Pestel, Joël; Lefebvre, Christophe

    2009-02-01

    In vertebrates, central nervous system (CNS) protection is dependent on many immune cells including microglial cells. Indeed, activated microglial cells are involved in neuroinflammation mechanisms by interacting with numerous immune factors. Unlike vertebrates, some lophotrochozoan invertebrates can fully repair their CNS following injury. In the medicinal leech Hirudo medicinalis, the recruitment of microglial cells at the lesion site is essential for sprouting of injured axons. Interestingly, a new molecule homologous to vertebrate C1q was characterized in leech, named HmC1q (for H. medicinalis) and detected in neurons and glial cells. In chemotaxis assays, leech microglial cells were demonstrated to respond to human C1q. The chemotactic activity was reduced when microglia was preincubated with signaling pathway inhibitors (Pertussis Toxin or wortmannin) or anti-human gC1qR antibody suggesting the involvement of gC1qR in C1q-mediated migration in leech. Assays using cells preincubated with NO chelator (cPTIO) showed that C1q-mediated migration was associated to NO production. Of interest, by using anti-HmC1q antibodies, HmC1q released in the culture medium was shown to exhibit a similar chemotactic effect on microglial cells as human C1q. In summary, we have identified, for the first time, a molecule homologous to mammalian C1q in leech CNS. Its chemoattractant activity on microglia highlights a new investigation field leading to better understand leech CNS repair mechanisms.

  5. Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation.

    PubMed

    Kaushik, Deepak K; Gupta, Malvika; Das, Sulagna; Basu, Anirban

    2010-10-15

    Activation of microglia, the resident macrophages of the central nervous system (CNS), is the hallmark of neuroinflammation in neurodegenerative diseases and other pathological conditions associated with CNS infection. The activation of microglia is often associated with bystander neuronal death. Nuclear factor-κB (NF-κB) is one of the important transcription factors known to be associated with microglial activation which upregulates the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (Cox-2) and other pro-inflammatory cytokines. Recent studies have focused on the role of Krüppel-like factor 4 (Klf4), one of the zinc-finger transcription factors, in mediating inflammation. However, these studies were limited to peripheral system and its role in CNS is not understood. Our studies focused on the possible role of Klf4 in mediating CNS inflammation. For in vitro studies, mouse microglial BV-2 cell lines were treated with 500 ng/ml Salmonella enterica lipopolysacchride (LPS). Brain tissues were isolated from BALB/c mice administered with 5 mg/kg body weight of LPS. Expressions of Klf4, Cox-2, iNOS and pNF-κB were evaluated using western blotting, quantitative real time PCR, and reverse transcriptase polymerase chain reactions (RT-PCRs). Klf4 knockdown was carried out using SiRNA specific for Klf4 mRNA and luciferase assays and electromobility shift assay (EMSA) were performed to study the interaction of Klf4 to iNOS promoter elements in vitro. Co-immunoprecipitation of Klf4 and pNF-κB was done in order to study a possible interaction between the two transcription factors. LPS stimulation increased Klf4 expression in microglial cells in a time- and dose-dependent manner. Knockdown of Klf4 resulted in decreased levels of the pro-inflammatory cytokines TNF-α, MCP-1 and IL-6, along with a significant decrease in iNOS and Cox-2 expression. NO production also decreased as a result of Klf4 knockdown. We found that Klf4 can potentially interact with

  6. Microglial Lectins in Health and Neurological Diseases

    PubMed Central

    Siew, Jian Jing; Chern, Yijuang

    2018-01-01

    Microglia are the innate sentinels of the central nervous system (CNS) and are responsible for the homeostasis and immune defense of the CNS. Under the influence of the local environment and cell-cell interaction, microglia exhibit a multidimensional and context-dependent phenotypes that can be cytotoxic and neuroprotective. Recent studies suggest that microglia express multitudinous types of lectins, including galectins, Siglecs, mannose-binding lectins (MBLs) and other glycan binding proteins. Because most studies that examine lectins focus on the peripheral system, the functions of lectins have not been critically investigated in the CNS. In addition, the types of brain cells that contribute to the altered levels of lectins present in diseases are often unclear. In this review, we will discuss how galectins, Siglecs, selectins and MBLs contribute to the dynamic functions of microglia. The interacting ligands of these lectins are complex glycoconjugates, which consist of glycoproteins and glycolipids that are expressed on microglia or surrounding cells. The current understanding of the heterogeneity and functions of glycans in the brain is limited. Galectins are a group of pleotropic proteins that recognize both β-galactoside-containing glycans and non- β-galactoside-containing proteins. The function and regulation of galectins have been implicated in immunomodulation, neuroinflammation, apoptosis, phagocytosis and oxidative bursts. Most Siglecs are expressed at a low level on the plasma membrane and bind to sialic acid residues for immunosurveillance and cell-cell communication. Siglecs are classified based on their inhibitory and activatory downstream signaling properties. Inhibitory Siglecs negatively regulate microglia activation upon recognizing the intact sialic acid patterns and vice versa. MBLs are expressed upon infection in cytoplasm and can be secreted in order to recognize molecules containing terminal mannose as an innate immune defense machinery

  7. Cellular demise and inflammatory microglial activation during beta-amyloid toxicity are governed by Wnt1 and canonical signaling pathways.

    PubMed

    Chong, Zhao Zhong; Li, Faqi; Maiese, Kenneth

    2007-06-01

    Initially described as a modulator of embryogenesis for a number of organ systems, Wnt1 has recently been linked to the development of several neurodegenerative disorders, none being of greater significance than Alzheimer's disease. We therefore examined the ability of Wnt1 to oversee vital pathways responsible for cell survival during beta-amyloid (Abeta1-42) exposure. Here we show that Wnt1 is critical for protection in the SH-SY5Y neuronal cell line against genomic DNA degradation, membrane phosphatidylserine (PS) exposure, and microglial activation, since these neuroprotective attributes of Wnt1 are lost during gene silencing of Wnt1 protein expression. Intimately tied to Wnt1 protection is the presence and activation of Akt1. Pharmacological inhibition of the PI 3-K pathway or gene silencing of Akt1 expression can abrogate the protective capacity of Wnt1. Closely aligned with Wnt1 and Akt1 are the integrated canonical pathways of synthase kinase-3beta (GSK-3beta) and beta-catenin. Through Akt1 dependent pathways, Wnt1 phosphorylates GSK-3beta and maintains beta-catenin integrity to insure its translocation from the cytoplasm to the nucleus to block apoptosis. Our work outlines a highly novel role for Wnt1 and its integration with Akt1, GSK-3beta, and beta-catenin to foster neuronal cell survival and repress inflammatory microglial activation that can identify new avenues of therapy against neurodegenerative disorders.

  8. Hyperforin protects against acute cerebral ischemic injury through inhibition of interleukin-17A-mediated microglial activation.

    PubMed

    Ma, Li; Pan, Xia; Zhou, Fang; Liu, Kang; Wang, Long

    2018-01-01

    Hyperforin, a pharmacologically active component of the medicinal plant Hypericum perforatum (St. John's wort), has been shown to be neuroprotective against acute ischemic stroke. However, the underlying mechanisms are still unclear and need to be fully elucidated. C57BL/6 wildtype (WT) mice or interleukin (IL)-17A knock-out mice were subjected to middle cerebral artery occlusion (60min) followed by reperfusion for 72h. Hyperforin (0.5μg) was injected slowly into the right ventricle of WT mice 1, 24 and 48h after middle cerebral artery occlusion (MCAO) onset. Here, we found that hyperforin treatment decreased the mRNA and protein expression of IL-17A at 72h after MCAO onset. Hyperforin reduced infarct volumes and increased neurologic scores accompanied by a decrease in microglial activation and a shift from M1 to M2 phenotypes in the peri-infarct striatum. Furthermore, we revealed that IL-17A was essential to the microglial activation in the acute phase of ischemic stroke. IL-17A knock-out (il-17a -/- ) or anti-IL-17 A monoclonal antibody treatment markedly decreased the microglial activation and induced a shift from M1 to M2 phenotypes of activated microglia. In addition, treatment with recombinant mouse IL-17A abolished the protective effects of hyperforin on acute ischemic brain injury, attenuated the inhibitory effects of hyperforin on the microglial activation, and inhibited the enhanced shift from M1 to M2 phenotypes mediated by hyperforin. In conclusion, our results clearly showed that hyperforin could protect against acute cerebral ischemic injury through inhibition of interleukin-17A-mediated microglial activation and polarization of microglia to M2 phenotype. Copyright © 2017. Published by Elsevier B.V.

  9. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    PubMed Central

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  10. Evidence for Neuroinflammatory and Microglial Changes in the Cerebral Response to Sleep Loss

    PubMed Central

    Wisor, Jonathan P.; Schmidt, Michelle A.; Clegern, William C.

    2011-01-01

    Study Objectives: Sleep loss has pro-inflammatory effects, but the roles of specific cell populations in mediating these effects have not been delineated. We assessed the modulation of the electroencephalographic and molecular responses to sleep deprivation (S-DEP) by minocycline, a compound that attenuates microglial activation occurring in association with neuroinflammatory events. Design: Laboratory rodents were subjected to assessment of sleep and wake in baseline and sleep deprived conditions. Participants: Adult male CD-1 mice (30-35 g) subjected to telemetric electroencephalography. Interventions: Minocycline was administered daily. Mice were subjected to baseline data collection on the first day of minocycline administration and, on subsequent days, 2 S-DEP sessions, 1 and 3 h in duration, followed by recovery sleep. Following EEG studies, mice were euthanized either at the end of a 3 h S-DEP or as time-of day controls for sampling of brain messenger RNAs. Gene expression was measured by real-time polymerase chain reaction. Measurements and Results: Minocycline-treated mice exhibited a reduction in time spent asleep, relative to saline-treated mice, in the 3-h interval immediately after administration. S-DEP resulted in an increase in EEG slow wave activity relative to baseline in saline-treated mice. This response to S-DEP was abolished in animals subjected to chronic minocycline administration. S-DEP suppressed the expression of the microglial-specific transcript cd11b and the neuroinflammation marker peripheral benzodiazepine receptor, in the brain at the mRNA level. Minocycline attenuated the elevation of c-fos expression by S-DEP. Brain levels of pro-inflammatory cytokine mRNAs interleukin-1β (il-1β), interleukin-6 (il-6), and tumor necrosis factor-α (tnfα) were unaffected by S-DEP, but were elevated in minocycline-treated mice relative to saline-treated mice. Conclusions: The anti-neuroinflammatory agent minocycline prevents either the buildup or

  11. Isobutyrylshikonin inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in BV2 microglial cells by suppressing the PI3K/Akt-mediated nuclear transcription factor-κB pathway.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Kyoung-Tae; Kang, Chang-Hee; Dilshara, Matharage Gayani; Lee, Hak-Ju; Choi, Yung Hyun; Choi, Il-Whan; Kim, Gi-Young

    2014-12-01

    Microglia are important macrophages to defend against pathogens in the central nervous system (CNS); however, persistent or acute inflammation of microglia lead to CNS disorders via neuronal cell death. Therefore, we theorized that a good strategy for the treatment of CNS disorders would be to target inflammatory mediators from microglia in disease. Consequently, we investigated whether isobutyrylshikonin (IBS) attenuates the production of proinflammatory mediators, such as nitric oxide (NO) and prostaglandin E2, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Treatment with IBS inhibited the secretion of NO and prostaglandin E2 (as well as the expression of their key regulatory genes), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). Isobutyrylshikonin also suppressed LPS-induced DNA-binding activity of nuclear transcription factor-κB (NF-κB), by inhibiting the nuclear translocation of p50 and p65 in addition to blocking the phosphorylation and degradation of IκBα. Pretreatment with pyrrolidine dithiocarbamate, a specific NF-κB inhibitor, showed the down-regulation of LPS-induced iNOS and COX-2 messenger RNA by suppressing NF-κB activity. This indirectly suggests that IBS-mediated NF-κB inhibition is the main signaling pathway involved in the inhibition of iNOS and COX-2 expression. In addition, IBS attenuated LPS-induced phosphorylation of PI3K and Akt, which are upstream molecules of NF-κB, in LPS-stimulated BV2 microglial cells. The functional aspects of the PI3K/Akt signaling pathway were analyzed with LY294002, which is a specific PI3K/Akt inhibitor that attenuated LPS-induced iNOS and COX-2 expression by suppressing NF-κB activity. These data suggest that an IBS-mediated anti-inflammatory effect may be involved in suppressing the PI3K/Akt-mediated NF-κB signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Glioma Stem Cells but Not Bulk Glioma Cells Upregulate IL-6 Secretion in Microglia/Brain Macrophages via Toll-like Receptor 4 Signaling.

    PubMed

    a Dzaye, Omar Dildar; Hu, Feng; Derkow, Katja; Haage, Verena; Euskirchen, Philipp; Harms, Christoph; Lehnardt, Seija; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-05-01

    Peripheral macrophages and resident microglia constitute the dominant glioma-infiltrating cells. The tumor induces an immunosuppressive and tumor-supportive phenotype in these glioma-associated microglia/brain macrophages (GAMs). A subpopulation of glioma cells acts as glioma stem cells (GSCs). We explored the interaction between GSCs and GAMs. Using CD133 as a marker of stemness, we enriched for or deprived the mouse glioma cell line GL261 of GSCs by fluorescence-activated cell sorting (FACS). Over the same period of time, 100 CD133(+ )GSCs had the capacity to form a tumor of comparable size to the ones formed by 10,000 CD133(-) GL261 cells. In IL-6(-/-) mice, only tumors formed by CD133(+ )cells were smaller compared with wild type. After stimulation of primary cultured microglia with medium from CD133-enriched GL261 glioma cells, we observed an selective upregulation in microglial IL-6 secretion dependent on Toll-like receptor (TLR) 4. Our results show that GSCs, but not the bulk glioma cells, initiate microglial IL-6 secretion via TLR4 signaling and that IL-6 regulates glioma growth by supporting GSCs. Using human glioma tissue, we could confirm the finding that GAMs are the major source of IL-6 in the tumor context. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  13. Experience-Dependent Synaptic Plasticity in V1 Occurs without Microglial CX3CR1

    PubMed Central

    Stevens, Beth

    2017-01-01

    Brief monocular deprivation (MD) shifts ocular dominance and reduces the density of thalamic synapses in layer 4 of the mouse primary visual cortex (V1). We found that microglial lysosome content is also increased as a result of MD. Previous studies have shown that the microglial fractalkine receptor CX3CR1 is involved in synaptic development and hippocampal plasticity. We therefore tested the hypothesis that neuron-to-microglial communication via CX3CR1 is an essential component of visual cortical development and plasticity in male mice. Our data show that CX3CR1 is not required for normal development of V1 responses to visual stimulation, multiple forms of experience-dependent plasticity, or the synapse loss that accompanies MD in layer 4. By ruling out an essential role for fractalkine signaling, our study narrows the search for understanding how microglia respond to active synapse modification in the visual cortex. SIGNIFICANCE STATEMENT Microglia in the visual cortex respond to monocular deprivation with increased lysosome content, but signaling through the fractalkine receptor CX3CR1 is not an essential component in the mechanisms of visual cortical development or experience-dependent synaptic plasticity. PMID:28951447

  14. Gestational Exposure to Air Pollution Alters Cortical Volume, Microglial Morphology, and Microglia-Neuron Interactions in a Sex-Specific Manner.

    PubMed

    Bolton, Jessica L; Marinero, Steven; Hassanzadeh, Tania; Natesan, Divya; Le, Dominic; Belliveau, Christine; Mason, S N; Auten, Richard L; Bilbo, Staci D

    2017-01-01

    Microglia are the resident immune cells of the brain, important for normal neural development in addition to host defense in response to inflammatory stimuli. Air pollution is one of the most pervasive and harmful environmental toxicants in the modern world, and several large scale epidemiological studies have recently linked prenatal air pollution exposure with an increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD). Diesel exhaust particles (DEP) are a primary toxic component of air pollution, and markedly activate microglia in vitro and in vivo in adult rodents. We have demonstrated that prenatal exposure to DEP in mice, i.e., to the pregnant dams throughout gestation, results in a persistent vulnerability to behavioral deficits in adult offspring, especially in males, which is intriguing given the greater incidence of ASD in males to females (∼4:1). Moreover, there is a striking upregulation of toll-like receptor (TLR) 4 gene expression within the brains of the same mice, and this expression is primarily in microglia. Here we explored the impact of gestational exposure to DEP or vehicle on microglial morphology in the developing brains of male and female mice. DEP exposure increased inflammatory cytokine protein and altered the morphology of microglia, consistent with activation or a delay in maturation, only within the embryonic brains of male mice; and these effects were dependent on TLR4. DEP exposure also increased cortical volume at embryonic day (E)18, which switched to decreased volume by post-natal day (P)30 in males, suggesting an impact on the developing neural stem cell niche. Consistent with this hypothesis, we found increased microglial-neuronal interactions in male offspring that received DEP compared to all other groups. Taken together, these data suggest a mechanism by which prenatal exposure to environmental toxins may affect microglial development and long-term function, and thereby contribute to the risk of

  15. Gestational Exposure to Air Pollution Alters Cortical Volume, Microglial Morphology, and Microglia-Neuron Interactions in a Sex-Specific Manner

    PubMed Central

    Bolton, Jessica L.; Marinero, Steven; Hassanzadeh, Tania; Natesan, Divya; Le, Dominic; Belliveau, Christine; Mason, S. N.; Auten, Richard L.; Bilbo, Staci D.

    2017-01-01

    Microglia are the resident immune cells of the brain, important for normal neural development in addition to host defense in response to inflammatory stimuli. Air pollution is one of the most pervasive and harmful environmental toxicants in the modern world, and several large scale epidemiological studies have recently linked prenatal air pollution exposure with an increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD). Diesel exhaust particles (DEP) are a primary toxic component of air pollution, and markedly activate microglia in vitro and in vivo in adult rodents. We have demonstrated that prenatal exposure to DEP in mice, i.e., to the pregnant dams throughout gestation, results in a persistent vulnerability to behavioral deficits in adult offspring, especially in males, which is intriguing given the greater incidence of ASD in males to females (∼4:1). Moreover, there is a striking upregulation of toll-like receptor (TLR) 4 gene expression within the brains of the same mice, and this expression is primarily in microglia. Here we explored the impact of gestational exposure to DEP or vehicle on microglial morphology in the developing brains of male and female mice. DEP exposure increased inflammatory cytokine protein and altered the morphology of microglia, consistent with activation or a delay in maturation, only within the embryonic brains of male mice; and these effects were dependent on TLR4. DEP exposure also increased cortical volume at embryonic day (E)18, which switched to decreased volume by post-natal day (P)30 in males, suggesting an impact on the developing neural stem cell niche. Consistent with this hypothesis, we found increased microglial-neuronal interactions in male offspring that received DEP compared to all other groups. Taken together, these data suggest a mechanism by which prenatal exposure to environmental toxins may affect microglial development and long-term function, and thereby contribute to the risk of

  16. Glial cell morphological and density changes through the lifespan of rhesus macaques.

    PubMed

    Robillard, Katelyn N; Lee, Kim M; Chiu, Kevin B; MacLean, Andrew G

    2016-07-01

    How aging impacts the central nervous system (CNS) is an area of intense interest. Glial morphology is known to affect neuronal and immune function as well as metabolic and homeostatic balance. Activation of glia, both astrocytes and microglia, occurs at several stages during development and aging. The present study analyzed changes in glial morphology and density through the entire lifespan of rhesus macaques, which are physiologically and anatomically similar to humans. We observed apparent increases in gray matter astrocytic process length and process complexity as rhesus macaques matured from juveniles through adulthood. These changes were not attributed to cell enlargement because they were not accompanied by proportional changes in soma or process volume. There was a decrease in white matter microglial process length as rhesus macaques aged. Aging was shown to have a significant effect on gray matter microglial density, with a significant increase in aged macaques compared with adults. Overall, we observed significant changes in glial morphology as macaques age indicative of astrocytic activation with subsequent increase in microglial density in aged macaques. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Microglia and neuroprotection: implications for Alzheimer's disease.

    PubMed

    Streit, Wolfgang J

    2005-04-01

    The first part of this paper summarizes some of the key observations from experimental work in animals that support a role of microglia as neuroprotective cells after acute neuronal injury. These studies point towards an important role of neuronal-microglial crosstalk in the facilitation of neuroprotection. Conceptually, injured neurons are thought to generate rescue signals that trigger microglial activation and, in turn, activated microglia produce trophic or other factors that help damaged neurons recover from injury. Against this background, the second part of this paper summarizes recent work from postmortem studies conducted in humans that have revealed the occurrence of senescent, or dystrophic, microglial cells in the aged and Alzheimer's disease brain. These findings suggest that microglial cells become increasingly dysfunctional with advancing age and that a loss of microglial cell function may involve a loss of neuroprotective properties that could contribute to the development of aging-related neurodegeneration.

  18. KCa 3.1-a microglial target ready for drug repurposing?

    PubMed

    Dale, Elena; Staal, Roland G W; Eder, Claudia; Möller, Thomas

    2016-10-01

    Over the past decade, glial cells have attracted attention for harboring unexploited targets for drug discovery. Several glial targets have attracted de novo drug discovery programs, as highlighted in this GLIA Special Issue. Drug repurposing, which has the objective of utilizing existing drugs as well as abandoned, failed, or not yet pursued clinical development candidates for new indications, might provide a faster opportunity to bring drugs for glial targets to patients with unmet needs. Here, we review the potential of the intermediate-conductance calcium-activated potassium channels KCa 3.1 as the target for such a repurposing effort. We discuss the data on KCa 3.1 expression on microglia in vitro and in vivo and review the relevant literature on the two KCa 3.1 inhibitors TRAM-34 and Senicapoc. Finally, we provide an outlook of what it might take to harness the potential of KCa 3.1 as a bona fide microglial drug target. GLIA 2016;64:1733-1741. © 2016 Wiley Periodicals, Inc.

  19. Gemfibrozil, a lipid lowering drug, inhibits the activation of primary human microglia via peroxisome proliferator-activated receptor β.

    PubMed

    Jana, Malabendu; Pahan, Kalipada

    2012-08-01

    Microglial activation participates in the pathogenesis of various neuroinflammatory and neurodegenerative diseases. However, mechanisms by which microglial activation could be controlled are poorly understood. Peroxisome proliferator-activated receptors (PPAR) are transcription factors belonging to the nuclear receptor super family with diverse effect. This study underlines the importance of PPARβ/δ in mediating the anti-inflammatory effect of gemfibrozil, an FDA-approved lipid-lowering drug, in primary human microglia. Bacterial lipopolysachharides (LPS) induced the expression of various proinflammatory molecules and upregulated the expression of microglial surface marker CD11b in human microglia. However, gemfibrozil markedly suppressed proinflammatory molecules and CD11b in LPS-stimulated microglia. Human microglia expressed PPAR-β and -γ, but not PPAR-α. Interestingly, either antisense knockdown of PPAR-β or antagonism of PPAR-β by a specific chemical antagonist abrogated gemfibrozil-mediated inhibition of microglial activation. On the other hand, blocking of PPAR-α and -γ had no effect on gemfibrozil-mediated anti-inflammatory effect in microglia. These results highlight the fact that gemfibrozil regulates microglial activation by inhibiting inflammatory gene expression in a PPAR-β dependent pathway and further reinforce its therapeutic application in several neuroinflammatory and neurodegenerative diseases.

  20. Gemfibrozil, a lipid lowering drug, inhibits the activation of primary human microglia via peroxisome proliferator-activated receptor β

    PubMed Central

    Jana, Malabendu; Pahan, Kalipada

    2012-01-01

    Microglial activation participates in the pathogenesis of various neuroinflammatory and neurodegenerative diseases. However, mechanisms by which microglial activation could be controlled are poorly understood. Peroxisome proliferator-activated receptors (PPAR) are transcription factors belonging to the nuclear receptor super family with diverse effect. This study underlines the importance of PPARβ/δ in mediating the anti-inflammatory effect of gemfibrozil, an FDA-approved lipid-lowering drug, in primary human microglia. Bacterial lipopolysachharides (LPS) induced the expression of various proinflammatory molecules and upregulated the expression of microglial surface marker CD11b in human microglia. However, gemfibrozil markedly suppressed proinflammatory molecules and CD11b in LPS-stimulated microglia. Human microglia expressed PPAR-β and PPAR-γ, but not PPAR-α. Interestingly, either antisense knockdown of PPAR-β or antagonism of PPAR-β by a specific chemical antagonist abrogated gemfibrozil-mediated inhibition of microglial activation. On the other hand, blocking of PPAR-α and PPAR-γ had no effect on gemfibrozil-mediated anti-inflammatory effect in microglia. These results highlight the fact that gemfibrozil regulates microglial activation by inhibiting inflammatory gene expression in a PPAR-β dependent pathway and further reinforce its therapeutic application in several neuroinflammatory and neurodegenerative diseases. PMID:22528839

  1. Effects of a Standardized Phenolic-Enriched Maple Syrup Extract on β-Amyloid Aggregation, Neuroinflammation in Microglial and Neuronal Cells, and β-Amyloid Induced Neurotoxicity in Caenorhabditis elegans.

    PubMed

    Ma, Hang; DaSilva, Nicholas A; Liu, Weixi; Nahar, Pragati P; Wei, Zhengxi; Liu, Yongqiang; Pham, Priscilla T; Crews, Rebecca; Vattem, Dhiraj A; Slitt, Angela L; Shaikh, Zahir A; Seeram, Navindra P

    2016-11-01

    Published data supports the neuroprotective effects of several phenolic-containing natural products, including certain fruit, berries, spices, nuts, green tea, and olive oil. However, limited data are available for phenolic-containing plant-derived natural sweeteners including maple syrup. Herein, we investigated the neuroprotective effects of a chemically standardized phenolic-enriched maple syrup extract (MSX) using a combination of biophysical, in vitro, and in vivo studies. Based on biophysical data (Thioflavin T assay, transmission electron microscopy, circular dichroism, dynamic light scattering, and zeta potential), MSX reduced amyloid β 1-42 peptide (Aβ 1-42 ) fibrillation in a concentration-dependent manner (50-500 μg/mL) with similar effects as the neuroprotective polyphenol, resveratrol, at its highest test concentration (63.5 % at 500 μg/mL vs. 77.3 % at 50 μg/mL, respectively). MSX (100 μg/mL) decreased H 2 O 2 -induced oxidative stress (16.1 % decrease in ROS levels compared to control), and down-regulated the production of lipopolysaccharide (LPS)-stimulated inflammatory markers (22.1, 19.9, 74.8, and 87.6 % decrease in NOS, IL-6, PGE 2 , and TNFα levels, respectively, compared to control) in murine BV-2 microglial cells. Moreover, in a non-contact co-culture cell model, differentiated human SH-SY5Y neuronal cells were exposed to conditioned media from BV-2 cells treated with MSX (100 μg/mL) and LPS or LPS alone. MSX-BV-2 media increased SH-SY5Y cell viability by 13.8 % compared to media collected from LPS-BV-2 treated cells. Also, MSX (10 μg/mL) showed protective effects against Aβ 1-42 induced neurotoxicity and paralysis in Caenorhabditis elegans in vivo. These data support the potential neuroprotective effects of MSX warranting further studies on this natural product.

  2. Microglial brain region-dependent diversity and selective regional sensitivities to ageing

    PubMed Central

    Grabert, Kathleen; Michoel, Tom; Karavolos, Michail H; Clohisey, Sara; Baillie, J Kenneth; Stevens, Mark P; Freeman, Tom C; Summers, Kim M; McColl, Barry W

    2015-01-01

    Microglia play critical roles in neural development, homeostasis and neuroinflammation and are increasingly implicated in age-related neurological dysfunction. Neurodegeneration often occurs in disease-specific spatially-restricted patterns, the origins of which are unknown. We performed the first genome-wide analysis of microglia from discrete brain regions across the adult lifespan of the mouse and reveal that microglia have distinct region-dependent transcriptional identities and age in a regionally variable manner. In the young adult brain, differences in bioenergetic and immunoregulatory pathways were the major sources of heterogeneity and suggested that cerebellar and hippocampal microglia exist in a more immune vigilant state. Immune function correlated with regional transcriptional patterns. Augmentation of the distinct cerebellar immunophenotype and a contrasting loss in distinction of the hippocampal phenotype among forebrain regions were key features during ageing. Microglial diversity may enable regionally localised homeostatic functions but could also underlie region-specific sensitivities to microglial dysregulation and involvement in age-related neurodegeneration. PMID:26780511

  3. The sp2-iminosugar glycolipid 1-dodecylsulfonyl-5N,6O-oxomethylidenenojirimycin (DSO2-ONJ) as selective anti-inflammatory agent by modulation of hemeoxygenase-1 in Bv.2 microglial cells and retinal explants.

    PubMed

    Alcalde-Estévez, Elena; Arroba, Ana I; Sánchez-Fernández, Elena M; Mellet, Carmen Ortiz; García Fernández, Jose M; Masgrau, Laura; Valverde, Ángela M

    2018-01-01

    Neuroinflammation is an early event during diabetic retinopathy (DR) that impacts the dynamics of microglia polarization. Gliosis is a hallmark of DR and we have reported the beneficial effects of 1R-DSO-ONJ, a member of the sp 2 -iminosugar glycolipid (sp 2 -IGL) family, in targeting microglia and reducing gliosis in diabetic db/db mice. Herein, we analyzed the effect of DSO 2 -ONJ, another family compound incorporating a sulfone group that better mimics the phosphate group of phosphatidylinositol ether lipid analogues (PIAs), in Bv.2 microglial cells treated with bacterial lipopolysaccaride (LPS) and in retinal explants from db/db mice. In addition to decreasing iNOS and inflammasome activation, the anti-inflammatory effect of DSO 2 -ONJ was mediated by direct p38α MAPK activation. Computational docking experiments demonstrated that DSO 2 -ONJ binds to p38α MAPK at the same site where PIAs and the alkyl phospholipid perifosine activators do, suggesting similar mechanism of action. Moreover, treatment of microglial cells with DSO 2 -ONJ increased both heme-oxygenase (HO)-1 and Il10 expression regardless the presence of LPS. In retinal explants from db/db mice, DSO 2 -ONJ also induced HO-1 and reduced gliosis. Since IL-10-mediated induction of HO-1 expression is mediated by p38α MAPK activation, our results suggest that this molecular mechanism is involved in the anti-inflammatory effects of DSO 2 -ONJ in microglia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Non-toxic engineered carbon nanodiamond concentrations induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells.

    PubMed

    Fresta, Claudia G; Chakraborty, Aishik; Wijesinghe, Manjula B; Amorini, Angela M; Lazzarino, Giacomo; Lazzarino, Giuseppe; Tavazzi, Barbara; Lunte, Susan M; Caraci, Filippo; Dhar, Prajnaparamita; Caruso, Giuseppe

    2018-02-14

    Engineered nanoparticles are finding a wide spectrum of biomedical applications, including drug delivery and capacity to trigger cytotoxic phenomena, potentially useful against tumor cells. The full understanding of their biosafety and interactions with cell processes is mandatory. Using microglial (BV-2) and alveolar basal epithelial (A549) cells, in this study we determined the effects of engineered carbon nanodiamonds (ECNs) on cell viability, nitric oxide (NO) and reactive oxygen species (ROS) production, as well as on energy metabolism. Particularly, we initially measured decrease in cell viability as a function of increasing ECNs doses, finding similar cytotoxic ECN effects in the two cell lines. Subsequently, using apparently non-cytotoxic ECN concentrations (2 µg/mL causing decrease in cell number < 5%) we determined NO and ROS production, and measured the concentrations of compounds related to energy metabolism, mitochondrial functions, oxido-reductive reactions, and antioxidant defences. We found that in both cell lines non-cytotoxic ECN concentrations increased NO and ROS production with sustained oxidative/nitrosative stress, and caused energy metabolism imbalance (decrease in high energy phosphates and nicotinic coenzymes) and mitochondrial malfunctioning (decrease in ATP/ADP ratio).These results underline the importance to deeply investigate the molecular and biochemical changes occurring upon the interaction of ECNs (and nanoparticles in general) with living cells, even at apparently non-toxic concentration. Since the use of ECNs in biomedical field is attracting increasing attention the complete evaluation of their biosafety, toxicity and/or possible side effects both in vitro and in vivo is mandatory before these highly promising tools might find the correct application.

  5. Microglial Immune Response to Low Concentrations of Combustion-Generated Nanoparticles: An In Vitro Model of Brain Health

    PubMed Central

    Duffy, Cayla M.; Swanson, Jacob; Northrop, William; Nixon, Joshua P.; Butterick, Tammy A.

    2018-01-01

    The brain is the central regulator for integration and control of responses to environmental cues. Previous studies suggest that air pollution may directly impact brain health by triggering the onset of chronic neuroinflammation. We hypothesize that nanoparticle components of combustion-generated air pollution may underlie these effects. To test this association, a microglial in vitro biological sensor model was used for testing neuroinflammatory response caused by low-dose nanoparticle exposure. The model was first validated using 20 nm silver nanoparticles (AgNP). Next, neuroinflammatory response was tested after exposure to size-selected 20 nm combustion-generated nanoparticles (CGNP) collected from a modern diesel engine. We show that low concentrations of CGNPs promote low-grade inflammatory response indicated by increased pro-inflammatory cytokine release (tumor necrosis factor-α), similar to that observed after AgNP exposure. We also demonstrate increased production of reactive oxygen species and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation in microglia after CGNP stimulation. Finally, we show conditioned media from CGNP-stimulated microglia significantly reduced hypothalamic neuronal survival in vitro. To our knowledge, this data show for the first time that exposure to AgNP and CGNP elicits microglial neuroinflammatory response through the activation of NF-κB. PMID:29522448

  6. Recurrent hypoinsulinemic hyperglycemia in neonatal rats increases PARP-1 and NF-κB expression and leads to microglial activation in the cerebral cortex.

    PubMed

    Gisslen, Tate; Ennis, Kathleen; Bhandari, Vineet; Rao, Raghavendra

    2015-11-01

    Hyperglycemia is a common metabolic problem in extremely low-birth-weight preterm infants. Neonatal hyperglycemia is associated with increased mortality and brain injury. Glucose-mediated oxidative injury may be responsible. Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in DNA repair and cell survival. However, PARP-1 overactivation leads to cell death. NF-κB is coactivated with PARP-1 and regulates microglial activation. The effects of recurrent hyperglycemia on PARP-1/NF-κB expression and microglial activation are not well understood. Rat pups were subjected to recurrent hypoinsulinemic hyperglycemia of 2 h duration twice daily from postnatal (P) day 3-P12 and killed on P13. mRNA and protein expression of PARP-1/NF-κB and their downstream effectors were determined in the cerebral cortex. Microgliosis was determined using CD11 immunohistochemistry. Recurrent hyperglycemia increased PARP-1 expression confined to the nucleus and without causing PARP-1 overactivation and cell death. NF-κB mRNA expression was increased, while IκB mRNA expression was decreased. inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) mRNA expressions were decreased. Hyperglycemia significantly increased the number of microglia. Recurrent hyperglycemia in neonatal rats is associated with upregulation of PARP-1 and NF-κB expression and subsequent microgliosis but not neuronal cell death in the cerebral cortex.

  7. Differential pathotropism of non-immortalized and immortalized human neural stem cell lines in a focal demyelination model.

    PubMed

    Ferrari, Daniela; Zalfa, Cristina; Nodari, Laura Rota; Gelati, Maurizio; Carlessi, Luigi; Delia, Domenico; Vescovi, Angelo Luigi; De Filippis, Lidia

    2012-04-01

    Cell therapy is reaching the stage of phase I clinical trials for post-traumatic, post-ischemic, or neurodegenerative disorders, and the selection of the appropriate cell source is essential. In order to assess the capacity of different human neural stem cell lines (hNSC) to contribute to neural tissue regeneration and to reduce the local inflammation after an acute injury, we transplanted GMP-grade non-immortalized hNSCs and v-myc (v-IhNSC), c-myc T58A (T-IhNSC) immortalized cells into the corpus callosum of adult rats after 5 days from focal demyelination induced by lysophosphatidylcholine. At 15 days from transplantation, hNSC and T-IhNSC migrated to the lesioned area where they promoted endogenous remyelination and differentiated into mature oligodendrocytes, while the all three cell lines were able to integrate in the SVZ. Moreover, where demyelination was accompanied by an inflammatory reaction, a significant reduction of microglial cells' activation was observed. This effect correlated with a differential migratory pattern of transplanted hNSC and IhNSC, significantly enhanced in the former, thus suggesting a specific NSC-mediated immunomodulatory effect on the local inflammation. We provide evidence that, in the subacute phase of a demyelination injury, different human immortalized and non-immortalized NSC lines, all sharing homing to the stem niche, display a differential pathotropism, both through cell-autonomous and non-cell autonomous effects. Overall, these findings promote IhNSC as an inexhaustible cell source for large-scale preclinical studies and non-immortalized GMP grade hNSC lines as an efficacious, safe, and reliable therapeutic tool for future clinical applications.

  8. Evaluation of TgH(CX3CR1-EGFP) mice implanted with mCherry-GL261 cells as an in vivo model for morphometrical analysis of glioma-microglia interaction.

    PubMed

    Resende, Fernando F B; Bai, Xianshu; Del Bel, Elaine Aparecida; Kirchhoff, Frank; Scheller, Anja; Titze-de-Almeida, Ricardo

    2016-02-08

    Glioblastoma multiforme is the most aggressive brain tumor. Microglia are prominent cells within glioma tissue and play important roles in tumor biology. This work presents an animal model designed for the study of microglial cell morphology in situ during gliomagenesis. It also allows a quantitative morphometrical analysis of microglial cells during their activation by glioma cells. The animal model associates the following cell types: 1- mCherry red fluorescent GL261 glioma cells and; 2- EGFP fluorescent microglia, present in the TgH(CX3CR1-EGFP) mouse line. First, mCherry-GL261 glioma cells were implanted in the brain cortex of TgH(CX3CR1-EGFP) mice. Epifluorescence - and confocal laser-scanning microscopy were employed for analysis of fixed tissue sections, whereas two-photon laser-scanning microscopy (2P-LSM) was used to track tumor cells and microglia in the brain of living animals. Implanted mCherry-GL261 cells successfully developed brain tumors. They mimic the aggressive behavior found in human disease, with a rapid increase in size and the presence of secondary tumors apart from the injection site. As tumor grows, mCherry-GL261 cells progressively lost their original shape, adopting a heterogeneous and diffuse morphology at 14-18 d. Soma size increased from 10-52 μm. At this point, we focused on the kinetics of microglial access to glioma tissues. 2P-LSM revealed an intense microgliosis in brain areas already shortly after tumor implantation, i.e. at 30 min. By confocal microscopy, we found clusters of microglial cells around the tumor mass in the first 3 days. Then cells infiltrated the tumor area, where they remained during all the time points studied, from 6-18 days. Microglia in contact with glioma cells also present changes in cell morphology, from a ramified to an amoeboid shape. Cell bodies enlarged from 366 ± 0.0 μm(2), in quiescent microglia, to 1310 ± 146.0 μm(2), and the cell processes became shortened. The GL261/CX3CR1 mouse model

  9. Size-Dependent Deposition, Translocation, and Microglial Activation of Inhaled Silver Nanoparticles in the Rodent Nose and Brain

    PubMed Central

    Patchin, Esther Shin; Anderson, Donald S.; Silva, Rona M.; Uyeminami, Dale L.; Scott, Grace M.; Guo, Ting; Van Winkle, Laura S.; Pinkerton, Kent E.

    2016-01-01

    Background: Silver nanoparticles (AgNP) are present in personal, commercial, and industrial products, which are often aerosolized. Current understanding of the deposition, translocation, and health-related impacts of AgNP inhalation is limited. Objectives: We determined a) the deposition and retention of inhaled Ag in the nasal cavity from nose-only exposure; b) the timing for Ag translocation to and retention/clearance in the olfactory bulb (OB); and c) whether the presence of Ag in the OB affects microglial activity. Methods: Male Sprague-Dawley rats were exposed nose-only to citrate-buffered 20- or 110-nm AgNP (C20 or C110, respectively) or citrate buffer alone for 6 hr. The nasal cavity and OB were examined for the presence of Ag and for biological responses up to 56 days post-exposure (8 weeks). Results: The highest nasal Ag deposition was observed on Day 0 for both AgNP sizes. Inhalation of aerosolized C20 resulted in rapid translocation of Ag to the OB and in microglial activation at Days 0, 1, and 7. In contrast, inhalation of C110 resulted in a gradual but progressive transport of Ag to and retention in the OB, with a trend for microglial activation to variably be above control. Conclusions: The results of this study show that after rats experienced a 6-hr inhalation exposure to 20- and 110-nm AgNP at a single point in time, Ag deposition in the nose, the rate of translocation to the brain, and subsequent microglial activation in the OB differed depending on AgNP size and time since exposure. Citation: Patchin ES, Anderson DS, Silva RM, Uyeminami DL, Scott GM, Guo T, Van Winkle LS, Pinkerton KE. 2016. Size-dependent deposition, translocation, and microglial activation of inhaled silver nanoparticles in the rodent nose and brain. Environ Health Perspect 124:1870–1875; http://dx.doi.org/10.1289/EHP234 PMID:27152509

  10. miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells.

    PubMed

    Deng, Minnan; Du, Ganqin; Zhao, Jiegang; Du, Xiaowei

    2017-06-01

    Increasing evidence confirms the involvement of virus infection and miRNA, such as miR-146a, in neuroinflammation-associated epilepsy. In the present study, we investigated the upregulation of miR-146a with RT-qPCR and in situ hybridization methods in a mice infection model of Japanese encephalitis virus (JEV) and in vitro. Subsequently we investigated the involvement of miR-146a in modulating JEV-induced neuroinflammation. It was demonstrated that JEV infection promoted miR-146a production in BALB/c mice brain and in cultured mouse microglial C8-B4 cells, along with pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, IFN-β and IFN-α. We also found that miR-146a exerted negative regulatory effects upon IL-1β, IL-6, TNF-α, IFN-β and IFN-α in C8-B4 cells. Accordingly, miR-146a downregulation with a miR-146a inhibitor promoted the upregulation of IL-1β, IL-6, TNF-α, IFN-β and IFN-α, whereas miR-146a upregulation with miR-146a mimics reduced the upregulation of these cytokines. Moreover, miR-146a exerted no regulation upon JEV growth in C8-B4 cells. In conclusion, JEV infection upregulated miR-146a and pro-inflammatory cytokine production, in mice brain and in cultured C8-B4 cells. Furthermore, miR-146a negatively regulated the production of JEV-induced pro-inflammatory cytokines, in virus growth independent fashion, identifying miR-146a as a negative feedback regulator in JEV-induced neuroinflammation, and possibly in epilepsy.

  11. Protective Effects of α-Tocopherol, γ-Tocopherol and Oleic Acid, Three Compounds of Olive Oils, and No Effect of Trolox, on 7-Ketocholesterol-Induced Mitochondrial and Peroxisomal Dysfunction in Microglial BV-2 Cells.

    PubMed

    Debbabi, Meryam; Nury, Thomas; Zarrouk, Amira; Mekahli, Nadia; Bezine, Maryem; Sghaier, Randa; Grégoire, Stéphane; Martine, Lucy; Durand, Philippe; Camus, Emmanuelle; Vejux, Anne; Jabrane, Aymen; Bretillon, Lionel; Prost, Michel; Moreau, Thibault; Ammou, Sofien Ben; Hammami, Mohamed; Lizard, Gérard

    2016-11-25

    Lipid peroxidation products, such as 7-ketocholesterol (7KC), may be increased in the body fluids and tissues of patients with neurodegenerative diseases and trigger microglial dysfunction involved in neurodegeneration. It is therefore important to identify synthetic and natural molecules able to impair the toxic effects of 7KC. We determined the impact of 7KC on murine microglial BV-2 cells, especially its ability to trigger mitochondrial and peroxisomal dysfunction, and evaluated the protective effects of α- and γ-tocopherol, Trolox, and oleic acid (OA). Multiple complementary chemical assays, flow cytometric and biochemical methods were used to evaluate the antioxidant and cytoprotective properties of these molecules. According to various complementary assays to estimate antioxidant activity, only α-, and γ-tocopherol, and Trolox had antioxidant properties. However, only α-tocopherol, γ-tocopherol and OA were able to impair 7KC-induced loss of mitochondrial transmembrane potential, which is associated with increased permeability to propidium iodide, an indicator of cell death. In addition, α-and γ-tocopherol, and OA were able to prevent the decrease in Abcd3 protein levels, which allows the measurement of peroxisomal mass, and in mRNA levels of Abcd1 and Abcd2, which encode for two transporters involved in peroxisomal β-oxidation. Thus, 7KC-induced side effects are associated with mitochondrial and peroxisomal dysfunction which can be inversed by natural compounds, thus supporting the hypothesis that the composition of the diet can act on the function of organelles involved in neurodegenerative diseases.

  12. Protective Effects of α-Tocopherol, γ-Tocopherol and Oleic Acid, Three Compounds of Olive Oils, and No Effect of Trolox, on 7-Ketocholesterol-Induced Mitochondrial and Peroxisomal Dysfunction in Microglial BV-2 Cells

    PubMed Central

    Debbabi, Meryam; Nury, Thomas; Zarrouk, Amira; Mekahli, Nadia; Bezine, Maryem; Sghaier, Randa; Grégoire, Stéphane; Martine, Lucy; Durand, Philippe; Camus, Emmanuelle; Vejux, Anne; Jabrane, Aymen; Bretillon, Lionel; Prost, Michel; Moreau, Thibault; Ammou, Sofien Ben; Hammami, Mohamed; Lizard, Gérard

    2016-01-01

    Lipid peroxidation products, such as 7-ketocholesterol (7KC), may be increased in the body fluids and tissues of patients with neurodegenerative diseases and trigger microglial dysfunction involved in neurodegeneration. It is therefore important to identify synthetic and natural molecules able to impair the toxic effects of 7KC. We determined the impact of 7KC on murine microglial BV-2 cells, especially its ability to trigger mitochondrial and peroxisomal dysfunction, and evaluated the protective effects of α- and γ-tocopherol, Trolox, and oleic acid (OA). Multiple complementary chemical assays, flow cytometric and biochemical methods were used to evaluate the antioxidant and cytoprotective properties of these molecules. According to various complementary assays to estimate antioxidant activity, only α-, and γ-tocopherol, and Trolox had antioxidant properties. However, only α-tocopherol, γ-tocopherol and OA were able to impair 7KC-induced loss of mitochondrial transmembrane potential, which is associated with increased permeability to propidium iodide, an indicator of cell death. In addition, α-and γ-tocopherol, and OA were able to prevent the decrease in Abcd3 protein levels, which allows the measurement of peroxisomal mass, and in mRNA levels of Abcd1 and Abcd2, which encode for two transporters involved in peroxisomal β-oxidation. Thus, 7KC-induced side effects are associated with mitochondrial and peroxisomal dysfunction which can be inversed by natural compounds, thus supporting the hypothesis that the composition of the diet can act on the function of organelles involved in neurodegenerative diseases. PMID:27897980

  13. Peripheral formalin injection induces unique spinal cord microglial phenotypic changes

    PubMed Central

    Fu, Kai-Yuan; Tan, Yong-Hui; Sung, Backil; Mao, Jianren

    2014-01-01

    Microglia are resident immune cells of brain and activated by peripheral tissue injury. In the present study, we investigated the possible induction of several microglial surface immunomolecules in the spinal cord, including leukocyte common antigen (LCA/CD45), MHC class I antigen, MHC class II antigen, Fc receptor, and CD11c following formalin injection into the rat’s hind paw. CD45 and MHC class I were upregulated in the activated microglia, which was evident on day 3 with the peak expression on day 7 following peripheral formalin injection. There was a very low basal expression of MHC class II, CD11c, and the Fc receptor, which did not change after the formalin injection. These results, for the first time, indicate that peripheral formalin injection can induce phenotypic changes of microglia with distinct upregulation of CD45 and MHC class I antigen. The data suggest that phenotypic changes of the activated microglia may be a unique pattern of central changes following peripheral tissue injury. PMID:19015000

  14. Huperzine A protects neural stem cells against Aβ-induced apoptosis in a neural stem cells and microglia co-culture system

    PubMed Central

    Zhu, Ning; Lin, Jizong; Wang, Kewan; Wei, Meidan; Chen, Qingzhuang; Wang, Yong

    2015-01-01

    Objectives: This study aims to explore whether Huperzine A (HupA) could protect neural stem cells against amyloid beta-peptide Aβ induced apoptosis in a neural stem cells (NSCs) and microglia co-culture system. Methods: Rat NSCs and microglial cells were isolated, cultured and identified with immunofluorescence Assays (IFA). Co-culture systems of NSCs and microglial cells were employed using Transwell Permeable Supports. The effects of Aβ1-42 on NSCs were studied in 4 groups using co-culture systems: NSCs, Aβ+NSCs, co-culture and Aβ+co-culture groups. Bromodeoxyuridine (BrdU) incorporation and flow cytometry were utilized to assess the differences of proliferation, differentiation and apoptosis of NSCs between the groups. LQ test was performed to assess the amounts of IL-6, TNF-α and MIP-α secreted, and flow cytometry and Western blotting were used to assess apoptosis of NSCs and the expressions of Bcl-2 and Bax in each group. Results: IFA results showed that isolated rat NSCs were nestin-positive and microglial cells were CD11b/c-positive. Among all the groups, the Aβ+co-culture group has the lowest BrdU expression level, the lowest MAP2-positive, ChAT-positive cell counts and the highest NSC apoptosis rate. Smaller amounts of IL-6, TNF-α and MIP-α were being secreted by microglial cells in the HupA+Aβ+co-culture group compared with those in the Aβ+ co-culture group. Also the Bcl-2: Bax ratio was much higher in the HupA+Aβ+co-culture group than in the Aβ+co-culture group. Conclusions: HupA inhibits cell apoptosis through restraining microglia’s inflammatory response induced by Aβ1-42. PMID:26261518

  15. Human endogenous retrovirus W env increases nitric oxide production and enhances the migration ability of microglia by regulating the expression of inducible nitric oxide synthase.

    PubMed

    Xiao, Ran; Li, Shan; Cao, Qian; Wang, Xiuling; Yan, Qiujin; Tu, Xiaoning; Zhu, Ying; Zhu, Fan

    2017-06-01

    Human endogenous retrovirus W env (HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis (MS). These diseases are accompanied by immunological reactions in the central nervous system (CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter-nitric oxide (NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase (hiNOS) and enhanced the promoter activity of hiNOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.

  16. Glatiramer Acetate administration does not reduce damage after cerebral ischemia in mice.

    PubMed

    Poittevin, Marine; Deroide, Nicolas; Azibani, Feriel; Delcayre, Claude; Giannesini, Claire; Levy, Bernard I; Pocard, Marc; Kubis, Nathalie

    2013-01-15

    Inflammation plays a key role in ischemic stroke pathophysiology: microglial/macrophage cells and type-1 helper cells (Th1) seem deleterious, while type-2 helper cells (Th2) and regulatory T cells (Treg) seem protective. CD4 Th0 differentiation is modulated by microglial cytokine secretion. Glatiramer Acetate (GA) is an immunomodulatory drug that has been approved for the treatment of human multiple sclerosis by means of a number of mechanisms: reduced microglial activation and pro-inflammatory cytokine production, Th0 differentiation shifting from Th2 to Th2 and Treg with anti-inflammatory cytokine production and increased neurogenesis. We induced permanent (pMCAo) or transient middle cerebral artery occlusion (tMCAo) and GA (2 mg) or vehicle was injected subcutaneously immediately after cerebral ischemia. Mice were sacrificed at D3 to measure neurological deficit, infarct volume, microglial cell density and qPCR of TNFα and IL-1β (pro-inflammatory microglial cytokines), IFNγ (Th2 cytokine), IL-4 (Th2 cytokine), TGFβ and IL-10 (Treg cytokines), and at D7 to evaluate neurological deficit, infarct volume and neurogenesis assessment. We showed that in GA-treated pMCAo mice, infarct volume, microglial cell density and cytokine secretion were not significantly modified at D3, while neurogenesis was enhanced at D7 without significant infarct volume reduction. In GA-treated tMCAo mice, microglial pro-inflammatory cytokines IL-1β and TNFα were significantly decreased without modification of microglial/macrophage cell density, cytokine secretion, neurological deficit or infarct volume at D3, or modification of neurological deficit, neurogenesis or infarct volume at D7. In conclusion, Glatiramer Acetate administered after cerebral ischemia does not reduce infarct volume or improve neurological deficit in mice despite a significant increase in neurogenesis in pMCAo and a microglial pro-inflammatory cytokine reduction in tMCAo. Copyright © 2012 Elsevier B.V. All rights

  17. Heat shock protein 60: an endogenous inducer of dopaminergic cell death in Parkinson disease

    PubMed Central

    2014-01-01

    Background Increasing evidence suggests that inflammation associated with microglial cell activation in the substantia nigra (SN) of patients with Parkinson disease (PD) is not only a consequence of neuronal degeneration, but may actively sustain dopaminergic (DA) cell loss over time. We aimed to study whether the intracellular chaperone heat shock protein 60 (Hsp60) could serve as a signal of CNS injury for activation of microglial cells. Methods Hsp60 mRNA expression in the mesencephalon and the striatum of C57/BL6 mice treated with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and the Hsp60/TH mRNA ratios in the SN of PD patients and aged-matched subjects were measured. To further investigate a possible link between the neuronal Hsp60 response and PD-related cellular stress, Hsp60 immunoblot analysis and quantification in cell lysates from SH-SY5Y after treatment with 100 μM MPP+ (1-methyl-4-phenylpyridinium) at different time points (6, 12, 24 and 48 hours) compared to control cells were performed. Additional MTT and LDH assay were used. We next addressed the question as to whether Hsp60 influences the survival of TH+ neurons in mesencephalic neuron-glia cultures treated either with MPP+ (1 μM), hHsp60 (10 μg/ml) or a combination of both. Finally, we measured IL-1β, IL-6, TNF-α and NO-release by ELISA in primary microglial cell cultures following treatment with different hHsp60 preparations. Control cultures were exposed to LPS. Results In the mesencephalon and striatum of mice treated with MPTP and also in the SN of PD patients, we found that Hsp60 mRNA was up-regulated. MPP+, the active metabolite of MPTP, also caused an increased expression and release of Hsp60 in the human dopaminergic cell line SH-SY5Y. Interestingly, in addition to being toxic to DA neurons in primary mesencephalic cultures, exogenous Hsp60 aggravated the effects of MPP+. Yet, although we demonstrated that Hsp60 specifically binds to microglial cells, it failed to stimulate

  18. Anti-allodynic effect of intrathecal processed Aconitum jaluense is associated with the inhibition of microglial activation and P2X7 receptor expression in spinal cord.

    PubMed

    Yang, Jihoon; Park, Keun Suk; Yoon, Jae Joon; Bae, Hong-Beom; Yoon, Myung Ha; Choi, Jeong Il

    2016-07-13

    For their analgesic and anti-arthritic effects, Aconitum species have been used in folk medicine in some East Asian countries. Although their analgesic effect is attributed to its action on voltage-dependent sodium channels, they also suppress purinergic receptor expression in dorsal root ganglion neurons in rats with neuropathic pain. In vitro study also demonstrated that the Aconitum suppresses ATP-induced P2X7 receptor (P2X7R)-mediated inflammatory responses in microglial cell lines. Herein, we examined the effect of intrathecal administration of thermally processed Aconitum jaluense (PA) on pain behavior, P2X7R expression and microglial activation in a rat spinal nerve ligation (SNL) model. Mechanical allodynia induced by L5 SNL in Sprague-Dawley rats was measured using the von Frey test to evaluate the effect of intrathecal injection of PA. Changes in the expression of P2X7R in the spinal cord were examined using RT-PCR and Western blot analysis. In addition, the effect of intrathecal PA on microglial activation was evaluated by immunofluorescence. Intrathecal PA attenuated mechanical allodynia in a dose-dependent manner showing both acute and chronic effects with 65 % of the maximal possible effect. The expression and production of spinal P2X7R was increased five days after SNL, but daily intrathecal PA injection significantly inhibited the increase to the level of naïve animals. Immunofluorescence of the spinal cord revealed a significant increase in P2X7R expression and activation of microglia in the dorsal horn, which was inhibited by intrathecal PA treatment. P2X7R co-localized with microglia marker, but not neurons. Intrathecal PA exerts anti-allodynic effects in neuropathic pain, possibly by suppressing P2X7R production and expression as well as reducing microglial activation in the spinal cord.

  19. The Role of MAC1 in Diesel Exhaust Particle-induced Microglial Activation and Loss of Dopaminergic Neuron Function

    PubMed Central

    Levesque, Shannon; Taetzsch, Thomas; Lull, Melinda E.; Johnson, Jo Anne; McGraw, Constance; Block, Michelle L.

    2013-01-01

    Increasing reports support that air pollution causes neuroinflammation and is linked to central nervous system (CNS) disease/damage. Diesel exhaust particles (DEP) are a major component of urban air pollution, which has been linked to microglial activation and Parkinson’s disease-like pathology. To begin to address how DEP may exert CNS effects, microglia and neuron-glia cultures were treated with either nanometer-sized DEP (<0.22 µM; 50µg/mL), ultrafine carbon black (ufCB, 50µg/ml), or DEP extracts (eDEP; from 50 µg/ml DEP) and the effect of microglial activation and dopaminergic (DA) neuron function was assessed. All three treatments showed enhanced amoeboid microglia morphology, increased H2O2 production, and decreased DA uptake. Mechanistic inquiry revealed that the scavenger receptor inhibitor fucoidan blocked DEP internalization in microglia, but failed to alter DEP-induced H2O2 production in microglia. However, pretreatment with the MAC1/CD11b inhibitor antibody blocked microglial H2O2 production in response to DEP. MAC1−/− mesencephalic neuron-glia cultures were protected from DEP-induced loss of DA neuron function, as measured by DA uptake. These findings support that DEP may activate microglia through multiple mechanisms, where scavenger receptors regulate internalization of DEP and the MAC1 receptor is mandatory for both DEP-induced microglial H2O2 production and loss of DA neuron function. PMID:23470120

  20. Influence of extracellular zinc on M1 microglial activation.

    PubMed

    Higashi, Youichirou; Aratake, Takaaki; Shimizu, Shogo; Shimizu, Takahiro; Nakamura, Kumiko; Tsuda, Masayuki; Yawata, Toshio; Ueba, Tetuya; Saito, Motoaki

    2017-02-27

    Extracellular zinc, which is released from hippocampal neurons in response to brain ischaemia, triggers morphological changes in microglia. Under ischaemic conditions, microglia exhibit two opposite activation states (M1 and M2 activation), which may be further regulated by the microenvironment. We examined the role of extracellular zinc on M1 activation of microglia. Pre-treatment of microglia with 30-60 μM ZnCl 2 resulted in dose-dependent increases in interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNFα) secretion when M1 activation was induced by lipopolysaccharide administration. In contrast, the cell-permeable zinc chelator TPEN, the radical scavenger Trolox, and the P2X7 receptor antagonist A438079 suppressed the effects of zinc pre-treatment on microglia. Furthermore, endogenous zinc release was induced by cerebral ischaemia-reperfusion, resulting in increased expression of IL-1β, IL-6, TNFα, and the microglial M1 surface marker CD16/32, without hippocampal neuronal cell loss, in addition to impairments in object recognition memory. However, these effects were suppressed by the zinc chelator CaEDTA. These findings suggest that extracellular zinc may prime microglia to enhance production of pro-inflammatory cytokines via P2X7 receptor activation followed by reactive oxygen species generation in response to stimuli that trigger M1 activation, and that these inflammatory processes may result in deficits in object recognition memory.

  1. Influence of extracellular zinc on M1 microglial activation

    PubMed Central

    Higashi, Youichirou; Aratake, Takaaki; Shimizu, Shogo; Shimizu, Takahiro; Nakamura, Kumiko; Tsuda, Masayuki; Yawata, Toshio; Ueba, Tetuya; Saito, Motoaki

    2017-01-01

    Extracellular zinc, which is released from hippocampal neurons in response to brain ischaemia, triggers morphological changes in microglia. Under ischaemic conditions, microglia exhibit two opposite activation states (M1 and M2 activation), which may be further regulated by the microenvironment. We examined the role of extracellular zinc on M1 activation of microglia. Pre-treatment of microglia with 30–60 μM ZnCl2 resulted in dose-dependent increases in interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNFα) secretion when M1 activation was induced by lipopolysaccharide administration. In contrast, the cell-permeable zinc chelator TPEN, the radical scavenger Trolox, and the P2X7 receptor antagonist A438079 suppressed the effects of zinc pre-treatment on microglia. Furthermore, endogenous zinc release was induced by cerebral ischaemia–reperfusion, resulting in increased expression of IL-1β, IL-6, TNFα, and the microglial M1 surface marker CD16/32, without hippocampal neuronal cell loss, in addition to impairments in object recognition memory. However, these effects were suppressed by the zinc chelator CaEDTA. These findings suggest that extracellular zinc may prime microglia to enhance production of pro-inflammatory cytokines via P2X7 receptor activation followed by reactive oxygen species generation in response to stimuli that trigger M1 activation, and that these inflammatory processes may result in deficits in object recognition memory. PMID:28240322

  2. Antagonistic effects of acetylshikonin on LPS-induced NO and PGE2 production in BV2 microglial cells via inhibition of ROS/PI3K/Akt-mediated NF-κB signaling and activation of Nrf2-dependent HO-1.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Kyoung-Tae; Choi, Yung Hyun; Moon, Sung-Kwon; Kim, Wun-Jae; Kim, Gi-Young

    2015-10-01

    Although acetylshikonin (ACS) is known to have antioxidant and antitumor activities, whether ACS regulates the expression of proinflammatory mediators in lipopolysaccharide (LPS)-stimulated microglial cells remains unclear. In this study, it was found that ACS isolated from Lithospermum erythrorhizon inhibits LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) release by suppressing the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in BV2 microglial cells. Furthermore, ACS reduced the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) and subsequently suppressed iNOS and COX-2 expression. Consistent with these data, ACS attenuated the phosphorylation of PI3K and Akt and suppressed the DNA-binding activity of NF-κB by inducing the generation of reactive oxygen species (ROS) in LPS-stimulated cells. In addition, ACS enhanced heme oxygenase-1 (HO-1) expression via nuclear factor-erythroid 2-related factor 2 (Nrf2) activation. Zinc protoporphyrin, a specific HO-1 inhibitor, partially attenuated the antagonistic effects of ACS on LPS-induced NO and PGE2 production. By contrast, the presence of cobalt protoporphyrin, a specific HO-1 inducer, potently suppressed LPS-induced NO and PGE2 production. These data indicate that ACS downregulates proinflammatory mediators such as NO and PGE2 by suppressing PI3K/Akt-dependent NF-κB activity induced by ROS as well as inducing Nrf2-dependent HO-1 activity. Taken together, ACS might be a good candidate to regulate LPS-mediated inflammatory diseases.

  3. NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION.

    EPA Science Inventory

    NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION. M.L. Block1,2, X. Wu1, P. Zhong1, G. Li1, T. Wang1, J.S. Hong1 & B.Veronesi.2
    1The Laboratory of Pharmacology and Chemistry, NIEHS, RTP, NC and 2 National Health and Envi...

  4. Characterization of Macrophage/Microglial Activation and Effect of Photobiomodulation in the Spared Nerve Injury Model of Neuropathic Pain.

    PubMed

    Kobiela Ketz, Ann; Byrnes, Kimberly R; Grunberg, Neil E; Kasper, Christine E; Osborne, Lisa; Pryor, Brian; Tosini, Nicholas L; Wu, Xingjia; Anders, Juanita J

    2017-05-01

    Neuropathic pain is common and debilitating with limited effective treatments. Macrophage/microglial activation along ascending somatosensory pathways following peripheral nerve injury facilitates neuropathic pain. However, polarization of macrophages/microglia in neuropathic pain is not well understood. Photobiomodulation treatment has been used to decrease neuropathic pain, has anti-inflammatory effects in spinal injury and wound healing models, and modulates microglial polarization in vitro. Our aim was to characterize macrophage/microglia response after peripheral nerve injury and modulate the response with photobiomodulation. Adult male Sprague-Dawley rats were randomly assigned to sham (N = 13), spared nerve injury (N = 13), or injury + photobiomodulation treatment groups (N = 7). Mechanical hypersensitivity was assessed with electronic von Frey. Photobiomodulation (980 nm) was applied to affected hind paw (output power 1 W, 20 s, 41cm above skin, power density 43.25 mW/cm 2 , dose 20 J), dorsal root ganglia (output power 4.5W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 85.5 J), and spinal cord regions (output power 1.5 W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 28.5 J) every other day from day 7-30 post-operatively. Immunohistochemistry characterized macrophage/microglial activation. Injured groups demonstrated mechanical hypersensitivity 1-30 days post-operatively. Photobiomodulation-treated animals began to recover after two treatments; at day 26, mechanical sensitivity reached baseline. Peripheral nerve injury caused region-specific macrophages/microglia activation along spinothalamic and dorsal-column medial lemniscus pathways. A pro-inflammatory microglial marker was expressed in the spinal cord of injured rats compared to photobiomodulation-treated and sham group. Photobiomodulation-treated dorsal root ganglion macrophages expressed anti-inflammatory markers. Photobiomodulation effectively reduced

  5. RNA sequencing analysis reveals quiescent microglia isolation methods from postnatal mouse brains and limitations of BV2 cells.

    PubMed

    He, Yingbo; Yao, Xiang; Taylor, Natalie; Bai, Yuchen; Lovenberg, Timothy; Bhattacharya, Anindya

    2018-05-22

    Microglia play key roles in neuron-glia interaction, neuroinflammation, neural repair, and neurotoxicity. Currently, various microglial in vitro models including primary microglia derived from distinct isolation methods and immortalized microglial cell lines are extensively used. However, the diversity of these existing models raises difficulty in parallel comparison across studies since microglia are sensitive to environmental changes, and thus, different models are likely to show widely varied responses to the same stimuli. To better understand the involvement of microglia in pathophysiological situations, it is critical to establish a reliable microglial model system. With postnatal mouse brains, we isolated microglia using three general methods including shaking, mild trypsinization, and CD11b magnetic-associated cell sorting (MACS) and applied RNA sequencing to compare transcriptomes of the isolated cells. Additionally, we generated a genome-wide dataset by RNA sequencing of immortalized BV2 microglial cell line to compare with primary microglia. Furthermore, based on the outcomes of transcriptional analysis, we compared cellular functions between primary microglia and BV2 cells including immune responses to LPS by quantitative RT-PCR and Luminex Multiplex Assay, TGFβ signaling probed by Western blot, and direct migration by chemotaxis assay. We found that although the yield and purity of microglia were comparable among the three isolation methods, mild trypsinization drove microglia in a relatively active state, evidenced by high amount of amoeboid microglia, enhanced expression of microglial activation genes, and suppression of microglial quiescent genes. In contrast, CD11b MACS was the most reliable and consistent method, and microglia isolated by this method maintained a relatively resting state. Transcriptional and functional analyses revealed that as compared to primary microglia, BV2 cells remain most of the immune functions such as responses to LPS

  6. Oxidative stress of neural, hematopoietic, and stem cells: protection by natural compounds.

    PubMed

    Shytle, R Douglas; Ehrhart, Jared; Tan, Jun; Vila, Jennifer; Cole, Michael; Sanberg, Cyndy D; Sanberg, Paul R; Bickford, Paula C

    2007-06-01

    During natural aging, adult stem cells are known to have a reduced restorative capacity and are more vulnerable to oxidative stress resulting in a reduced ability of the body to heal itself. We report here that the proprietary natural product formulation, NT020, previously found to promote proliferation of human hematopoietic stem cells, reduced oxidative stress-induced apoptosis of murine neurons and microglial cells in vitro. Furthermore, when taken orally for 2 weeks, cultured bone marrow stem cells from these mice exhibited a dose-related reduction of oxidative stress-induced apoptosis. This preclinical study demonstrates that NT020 can act to promote healing via an interaction with stem cell populations and forms the basis of conducting a clinical trial to determine if NT020 exhibits similar health promoting effects in humans when used as a dietary supplement.

  7. High-mobility group box 1 is an important mediator of microglial activation induced by cortical spreading depression.

    PubMed

    Takizawa, Tsubasa; Shibata, Mamoru; Kayama, Yohei; Shimizu, Toshihiko; Toriumi, Haruki; Ebine, Taeko; Unekawa, Miyuki; Koh, Anri; Yoshimura, Akihiko; Suzuki, Norihiro

    2017-03-01

    Single episodes of cortical spreading depression (CSD) are believed to cause typical migraine aura, whereas clusters of spreading depolarizations have been observed in cerebral ischemia and subarachnoid hemorrhage. We recently demonstrated that the release of high-mobility group box 1 (HMGB1) from cortical neurons after CSD in a rodent model is dependent on the number of CSD episodes, such that only multiple CSD episodes can induce significant HMGB1 release. Here, we report that only multiple CSD inductions caused microglial hypertrophy (activation) accompanied by a greater impact on the transcription activity of the HMGB1 receptor genes, TLR2 and TLR4, while the total number of cortical microglia was not affected. Both an HMGB1-neurtalizing antibody and the HMGB1 inhibitor glycyrrhizin abrogated multiple CSD-induced microglial hypertrophy. Moreover, multiple CSD inductions failed to induce microglial hypertrophy in TLR2/4 double knockout mice. These results strongly implicate the HMGB1-TLR2/4 axis in the activation of microglia following multiple CSD inductions. Increased expression of the lysosomal acid hydrolase cathepsin D was detected in activated microglia by immunostaining, suggesting that lysosomal phagocytic activity may be enhanced in multiple CSD-activated microglia.

  8. The role of MAC1 in diesel exhaust particle-induced microglial activation and loss of dopaminergic neuron function.

    PubMed

    Levesque, Shannon; Taetzsch, Thomas; Lull, Melinda E; Johnson, Jo Anne; McGraw, Constance; Block, Michelle L

    2013-06-01

    Increasing reports support that air pollution causes neuroinflammation and is linked to central nervous system (CNS) disease/damage. Diesel exhaust particles (DEP) are a major component of urban air pollution, which has been linked to microglial activation and Parkinson's disease-like pathology. To begin to address how DEP may exert CNS effects, microglia and neuron-glia cultures were treated with either nanometer-sized DEP (< 0.22 μM; 50 μg/mL), ultrafine carbon black (ufCB, 50 μg/mL), or DEP extracts (eDEP; from 50 μg/mL DEP), and the effect of microglial activation and dopaminergic (DA) neuron function was assessed. All three treatments showed enhanced ameboid microglia morphology, increased H2 O2 production, and decreased DA uptake. Mechanistic inquiry revealed that the scavenger receptor inhibitor fucoidan blocked DEP internalization in microglia, but failed to alter DEP-induced H2 O2 production in microglia. However, pre-treatment with the MAC1/CD11b inhibitor antibody blocked microglial H2 O2 production in response to DEP. MAC1(-/-) mesencephalic neuron-glia cultures were protected from DEP-induced loss of DA neuron function, as measured by DA uptake. These findings support that DEP may activate microglia through multiple mechanisms, where scavenger receptors regulate internalization of DEP and the MAC1 receptor is mandatory for both DEP-induced microglial H2 O2 production and loss of DA neuron function. © 2013 International Society for Neurochemistry.

  9. Electroacupuncture ameliorating post-stroke cognitive impairments via inhibition of peri-infarct astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia.

    PubMed

    Huang, Jia; You, Xiaofang; Liu, Weilin; Song, Changming; Lin, Xiaomin; Zhang, Xiufeng; Tao, Jing; Chen, Lidian

    2017-10-10

    During ischemic stroke (IS), adenosine 5'-triphosphate (ATP) is released from damaged nerve cells of the infract core region to the extracellular space, invoking peri-infarct glial cellular P2 purinoceptors singling, and causing pro-inflammatory cytokine secretion, which is likely to initiate or aggravate motor and cognitive impairment. It has been proved that electroacupuncture (EA) is an effective and safe strategy used in anti-inflammation. However, EA for the role of purine receptors in the central nervous system has not yet been reported. Ischemia-reperfusion injured rat model was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). EA treatment at the DU 20 and DU 24 acupoints treatment were conducted to rats from the 12 h after MCAO/R injury for consecutive 7 days. The neurological outcomes, infarction volumes and the level of astroglial and microglial/macrophage hyperplasia, inflammatory cytokine and P2X7R and P2Y1R expression in the peri-infarct hippocampal CA1and sensorimotor cortex were investigated after IS to evaluate the MCAO/R model and therapeutic mechanism of EA treatment. EA effectively reduced the level of pro-inflammatory cytokine interleukin-1β (IL-1β) as evidenced by reduction in astroglial and microglial/macrophage hyperplasia and the levels of P2X7R and ED1, P2X7R and GFAP, P2Y1R and ED1, P2Y1R and GFAP co-expression in peri-infarct hippocampal CA1 and sensorimotor cortex compared with that of MCAO/R model and Non-EA treatment, accompanied by the improved neurological deficit and the motor and memory impairment outcomes. Therefore, our data support the hypothesis that EA could exert its anti-inflammatory effect via inhibiting the astroglial and microglial/macrophage P2 purinoceptors (P2X7R and P2Y1R)-mediated neuroinflammation after MCAO/R injury. Astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia in peri-infarct hippocampal CA1 and sensorimotor cortex were attenuated by EA

  10. Time Courses of Cortical Glucose Metabolism and Microglial Activity Across the Life Span of Wild-Type Mice: A PET Study.

    PubMed

    Brendel, Matthias; Focke, Carola; Blume, Tanja; Peters, Finn; Deussing, Maximilian; Probst, Federico; Jaworska, Anna; Overhoff, Felix; Albert, Nathalie; Lindner, Simon; von Ungern-Sternberg, Barbara; Bartenstein, Peter; Haass, Christian; Kleinberger, Gernot; Herms, Jochen; Rominger, Axel

    2017-12-01

    Contrary to findings in the human brain, 18 F-FDG PET shows cerebral hypermetabolism of aged wild-type (WT) mice relative to younger animals, supposedly due to microglial activation. Therefore, we used dual-tracer small-animal PET to examine directly the link between neuroinflammation and hypermetabolism in aged mice. Methods: WT mice (5-20 mo) were investigated in a cross-sectional design using 18 F-FDG ( n = 43) and translocator protein (TSPO) ( 18 F-GE180; n = 58) small-animal PET, with volume-of-interest and voxelwise analyses. Biochemical analysis of plasma cytokine levels and immunohistochemical confirmation of microglial activity were also performed. Results: Age-dependent cortical hypermetabolism in WT mice relative to young animals aged 5 mo peaked at 14.5 mo (+16%, P < 0.001) and declined to baseline at 20 mo. Similarly, cortical TSPO binding increased to a maximum at 14.5 mo (+15%, P < 0.001) and remained high to 20 mo, resulting in an overall correlation between 18 F-FDG uptake and TSPO binding (R = 0.69, P < 0.005). Biochemical and immunohistochemical analyses confirmed the TSPO small-animal PET findings. Conclusion: Age-dependent neuroinflammation is associated with the controversial observation of cerebral hypermetabolism in aging WT mice. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  11. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation

    PubMed Central

    2014-01-01

    Background Bile acids are steroid acids found predominantly in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in different animal models of stroke and neurological diseases. However, the anti-inflammatory properties of TUDCA in the central nervous system (CNS) remain unknown. Methods The acute neuroinflammation model of intracerebroventricular (icv) injection with bacterial lipopolysaccharide (LPS) in C57BL/6 adult mice was used herein. Immunoreactivity against Iba-1, GFAP, and VCAM-1 was measured in coronal sections in the mice hippocampus. Primary cultures of microglial cells and astrocytes were obtained from neonatal Wistar rats. Glial cells were treated with proinflammatory stimuli to determine the effect of TUDCA on nitrite production and activation of inducible enzyme nitric oxide synthase (iNOS) and NFκB luciferase reporters. We studied the effect of TUDCA on transcriptional induction of iNOS and monocyte chemotactic protein-1 (MCP-1) mRNA as well as induction of protein expression and phosphorylation of different proteins from the NFκB pathway. Results TUDCA specifically reduces microglial reactivity in the hippocampus of mice treated by icv injection of LPS. TUDCA treatment reduced the production of nitrites by microglial cells and astrocytes induced by proinflammatory stimuli that led to transcriptional and translational diminution of the iNOS. This effect might be due to inhibition of the NFκB pathway, activated by proinflammatory stimuli. TUDCA decreased in vitro microglial migration induced by both IFN-γ and astrocytes treated with LPS plus IFN-γ. TUDCA inhibition of MCP-1 expression induced by proinflammatory stimuli could be in part responsible for this effect. VCAM-1 inmunoreactivity in the hippocampus of animals treated by icv LPS was reduced by TUDCA treatment, compared to animals treated with LPS alone. Conclusions We show a triple anti-inflammatory effect of TUDCA on glial cells: i

  12. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation.

    PubMed

    Yanguas-Casás, Natalia; Barreda-Manso, M Asunción; Nieto-Sampedro, Manuel; Romero-Ramírez, Lorenzo

    2014-03-19

    Bile acids are steroid acids found predominantly in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in different animal models of stroke and neurological diseases. However, the anti-inflammatory properties of TUDCA in the central nervous system (CNS) remain unknown. The acute neuroinflammation model of intracerebroventricular (icv) injection with bacterial lipopolysaccharide (LPS) in C57BL/6 adult mice was used herein. Immunoreactivity against Iba-1, GFAP, and VCAM-1 was measured in coronal sections in the mice hippocampus. Primary cultures of microglial cells and astrocytes were obtained from neonatal Wistar rats. Glial cells were treated with proinflammatory stimuli to determine the effect of TUDCA on nitrite production and activation of inducible enzyme nitric oxide synthase (iNOS) and NFκB luciferase reporters. We studied the effect of TUDCA on transcriptional induction of iNOS and monocyte chemotactic protein-1 (MCP-1) mRNA as well as induction of protein expression and phosphorylation of different proteins from the NFκB pathway. TUDCA specifically reduces microglial reactivity in the hippocampus of mice treated by icv injection of LPS. TUDCA treatment reduced the production of nitrites by microglial cells and astrocytes induced by proinflammatory stimuli that led to transcriptional and translational diminution of the iNOS. This effect might be due to inhibition of the NFκB pathway, activated by proinflammatory stimuli. TUDCA decreased in vitro microglial migration induced by both IFN-γ and astrocytes treated with LPS plus IFN-γ. TUDCA inhibition of MCP-1 expression induced by proinflammatory stimuli could be in part responsible for this effect. VCAM-1 inmunoreactivity in the hippocampus of animals treated by icv LPS was reduced by TUDCA treatment, compared to animals treated with LPS alone. We show a triple anti-inflammatory effect of TUDCA on glial cells: i) reduced glial cell activation, ii

  13. Retraction Statement: Anti-inflammatory properties of tianeptine on lipopolysaccharide-induced changes in microglial cells involve toll-like receptor-related pathways.

    PubMed

    2017-09-01

    'Anti-inflammatory properties of tianeptine on lipopolysaccharide-induced changes in microglial cells involve toll-like receptor-related pathways' by Slusarczyk, J., Trojan, E., Glombik, K., Piotrowska, A., Budziszewska, B., Kubera, M., Popiolek-Barczyk, K., Lason, W., Mika, J. and Basta-Kaim, A. The above article from the Journal of Neurochemistry published on 14 February 2016 on Wiley Online Library ( www.onlinelibrary.com), and in Volume 136, pp. 958-970, is being retracted by agreement between the corresponding author Agnieszka Basta-Kaim, the Journal's Editor-in-Chief Jörg Schulz, and John Wiley & Sons Ltd. The Editorial Office was alerted by a science journalist that the same Western Blot lane had been used to represent two different proteins. The Western Blot signal of iNOS in Fig. 4a was supposedly identical to the Western Blot signal of phospho-JNK in Fig. 6b. The corresponding author stated that "on the final step of figure 6 preparation the first author made, by mistake, an incorrect attachment of representative p-JNK blots." A corrected Fig. 6b is enclosed below. The second concern reaching the Editorial Office was that the same Western Blot signal appeared to have been used to represent two different experimental conditions: the iNOS control signal (-/- LPS/TIA Fig. 4a) appears as a horizontal and vertical mirror image of the last signal in this line (+/10 LPS/TIA Fig. 4a). The raw membrane which was used to produce Fig. 4a is enclosed on the next page and highlights the steps that were undertaken during figure preparation. Although the initial concern was not proven, concerns remained regarding the question how an inadvertent flipping of the first Western blot lane could happen. A corrected Fig. 4a prepared by the corresponding author from the raw image of iNOS western blot depicted above, without flipped first lane, is presented below: Although the corresponding author provided a large amount of evidence to explain disparities in the

  14. Glycogen synthase kinase-3 negatively regulates anti-inflammatory interleukin-10 for lipopolysaccharide-induced iNOS/NO biosynthesis and RANTES production in microglial cells

    PubMed Central

    Huang, Wei-Ching; Lin, Yee-Shin; Wang, Chi-Yun; Tsai, Cheng-Chieh; Tseng, Hsiang-Chi; Chen, Chia-Ling; Lu, Pei-Jung; Chen, Po-See; Qian, Li; Hong, Jau-Shyong; Lin, Chiou-Feng

    2009-01-01

    The inflammatory effects of glycogen synthase kinase-3 (GSK-3) have been identified; however, the potential mechanism is still controversial. In this study, we investigated the effects of GSK-3-mediated interleukin-10 (IL-10) inhibition on lipopolysaccharide (LPS)-induced inflammation. Treatment with GSK-3 inhibitor significantly blocked LPS-induced nitric oxide (NO) production as well as inducible NO synthase (iNOS) expression in BV2 murine microglial cells and primary rat microglia-enriched cultures. Using an antibody array and enzyme-linked immunosorbent assay, we found that GSK-3-inhibitor treatment blocked LPS-induced upregulation of regulated on activation normal T-cell expressed and secreted (RANTES) and increased IL-10 expression. The time kinetics and dose–response relations were confirmed. Reverse transcription–polymerase chain reaction showed changes on the messenger RNA level as well. Inhibiting GSK-3 using short-interference RNA, and transfecting cells with dominant-negative GSK-3β, blocked LPS-elicited NO and RANTES expression but increased IL-10 expression. In contrast, GSK-3β overexpression upregulated NO and RANTES but downregulated IL-10 in LPS-stimulated cells. Treating cells with anti-IL-10 neutralizing antibodies to prevent GSK-3 from downregulating NO and RANTES showed that the anti-inflammatory effects are, at least in part, IL-10-dependent. The involvement of Akt, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase and nuclear factor-κB that positively regulated IL-10 was demonstrated. Furthermore, inhibiting GSK-3 increased the nuclear translocation of transcription factors, that all important for IL-10 expression, including CCAAT/enhancer-binding protein beat (C/EBPβ), C/EBPδ, cAMP response binding element protein and NF-κB. Taken together, these findings reveal that LPS induces iNOS/NO biosynthesis and RANTES production through a mechanism involving GSK-3-mediated IL-10 downregulation. PMID:19175796

  15. Glycogen synthase kinase-3 negatively regulates anti-inflammatory interleukin-10 for lipopolysaccharide-induced iNOS/NO biosynthesis and RANTES production in microglial cells.

    PubMed

    Huang, Wei-Ching; Lin, Yee-Shin; Wang, Chi-Yun; Tsai, Cheng-Chieh; Tseng, Hsiang-Chi; Chen, Chia-Ling; Lu, Pei-Jung; Chen, Po-See; Qian, Li; Hong, Jau-Shyong; Lin, Chiou-Feng

    2009-09-01

    The inflammatory effects of glycogen synthase kinase-3 (GSK-3) have been identified; however, the potential mechanism is still controversial. In this study, we investigated the effects of GSK-3-mediated interleukin-10 (IL-10) inhibition on lipopolysaccharide (LPS)-induced inflammation. Treatment with GSK-3 inhibitor significantly blocked LPS-induced nitric oxide (NO) production as well as inducible NO synthase (iNOS) expression in BV2 murine microglial cells and primary rat microglia-enriched cultures. Using an antibody array and enzyme-linked immunosorbent assay, we found that GSK-3-inhibitor treatment blocked LPS-induced upregulation of regulated on activation normal T-cell expressed and secreted (RANTES) and increased IL-10 expression. The time kinetics and dose-response relations were confirmed. Reverse transcription-polymerase chain reaction showed changes on the messenger RNA level as well. Inhibiting GSK-3 using short-interference RNA, and transfecting cells with dominant-negative GSK-3beta, blocked LPS-elicited NO and RANTES expression but increased IL-10 expression. In contrast, GSK-3beta overexpression upregulated NO and RANTES but downregulated IL-10 in LPS-stimulated cells. Treating cells with anti-IL-10 neutralizing antibodies to prevent GSK-3 from downregulating NO and RANTES showed that the anti-inflammatory effects are, at least in part, IL-10-dependent. The involvement of Akt, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase and nuclear factor-kappaB that positively regulated IL-10 was demonstrated. Furthermore, inhibiting GSK-3 increased the nuclear translocation of transcription factors, that all important for IL-10 expression, including CCAAT/enhancer-binding protein beat (C/EBPbeta), C/EBPdelta, cAMP response binding element protein and NF-kappaB. Taken together, these findings reveal that LPS induces iNOS/NO biosynthesis and RANTES production through a mechanism involving GSK-3-mediated IL-10 downregulation.

  16. Immunomodulatory effect of CD200-positive human placenta-derived stem cells in the early phase of stroke

    PubMed Central

    Kong, TaeHo; Park, Ji-Min; Jang, Ji Hyon; Kim, C-Yoon; Bae, Sang-Hun; Choi, Yuri; Jeong, Yun-Hwa; Kim, Chul; Chang, Sung Woon; Kim, Joopyung; Moon, Jisook

    2018-01-01

    Human placenta amniotic membrane-derived mesenchymal stem cells (AMSCs) regulate immune responses, and this property can be exploited to treat stroke patients via cell therapy. We investigated the expression profile of AMSCs cultured under hypoxic conditions and observed interesting expression changes in various genes involved in immune regulation. CD200, an anti-inflammatory factor and positive regulator of TGF-β, was more highly expressed under hypoxic conditions than normoxic conditions. Furthermore, AMSCs exhibited inhibition of pro-inflammatory cytokine expression in co-cultures with LPS-primed BV2 microglia, and this effect was decreased in CD200-silenced AMSCs. The AMSCs transplanted into the ischemic rat model of stroke dramatically inhibited the expression of pro-inflammatory cytokines and up-regulated CD200, as compared with the levels in the sham-treated group. Moreover, decreased microglia activation in the boundary region and improvements in behavior were confirmed in AMSC-treated ischemic rats. The results suggested that the highly expressed CD200 from the AMSCs in a hypoxic environment modulates levels of inflammatory cytokines and microglial activation, thus increasing the therapeutic recovery potential after hypoxic-ischemic brain injury, and further demonstrated the immunomodulatory function of AMSCs in a stroke model. PMID:29328072

  17. Zinc is released by cultured astrocytes as a gliotransmitter under hypoosmotic stress-loaded conditions and regulates microglial activity.

    PubMed

    Segawa, Shohei; Nishiura, Takeshi; Furuta, Takahiro; Ohsato, Yuki; Tani, Misaki; Nishida, Kentaro; Nagasawa, Kazuki

    2014-01-17

    Astrocytes contribute to the maintenance of brain homeostasis via the release of gliotransmitters such as ATP and glutamate. Here we examined whether zinc was released from astrocytes under stress-loaded conditions, and was involved in the regulation of microglial activity as a gliotransmitter. Hypoosmotic stress was loaded to astrocytes using balanced salt solution prepared to 214-314 mOsmol/L, and then intra- and extra-cellular zinc levels were assessed using Newport Green DCF diacetate (NG) and ICP-MS, respectively. Microglial activation by the astrocytic supernatant was assessed by their morphological changes and poly(ADP-ribose) (PAR) polymer accumulation. Exposure of astrocytes to hypoosmotic buffer, increased the extracellular ATP level in osmolarity-dependent manners, indicating a load of hypoosmotic stress. In hypoosmotic stress-loaded astrocytes, there were apparent increases in the intra- and extra-cellular zinc levels. Incubation of microglia in the astrocytic conditioned medium transformed them into the activated "amoeboid" form and induced PAR formation. Administration of an extracellular zinc chelator, CaEDTA, to the astrocytic conditioned medium almost completely prevented the microglial activation. Treatment of astrocytes with an intracellular zinc chelator, TPEN, suppressed the hypoosmotic stress-increased intracellular, but not the extracellular, zinc level, and the increase in the intracellular zinc level was blocked partially by a nitric oxide synthase inhibitor, but not by CaEDTA, indicating that the mechanisms underlying the increases in the intra- and extra-cellular zinc levels might be different. These findings suggest that under hypoosmotic stress-loaded conditions, zinc is released from astrocytes and then plays a primary role in microglial activation as a gliotransmitter. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Does microglial dysfunction play a role in autism and Rett syndrome?

    PubMed Central

    MAEZAWA, IZUMI; CALAFIORE, MARCO; WULFF, HEIKE; JIN, LEE-WAY

    2016-01-01

    Autism spectrum disorders (ASDs) including classic autism is a group of complex developmental disabilities with core deficits of impaired social interactions, communication difficulties and repetitive behaviors. Although the neurobiology of ASDs has attracted much attention in the last two decades, the role of microglia has been ignored. Existing data are focused on their recognized role in neuroinflammation, which only covers a small part of the pathological repertoire of microglia. This review highlights recent findings on the broader roles of microglia, including their active surveillance of brain microenvironments and regulation of synaptic connectivity, maturation of brain circuitry and neurogenesis. Emerging evidence suggests that microglia respond to pre- and postnatal environmental stimuli through epigenetic interface to change gene expression, thus acting as effectors of experience-dependent synaptic plasticity. Impairments of these microglial functions could substantially contribute to several major etiological factors of autism, such as environmental toxins and cortical underconnectivity. Our recent study on Rett syndrome, a syndromic autistic disorder, provides an example that intrinsic microglial dysfunction due to genetic and epigenetic aberrations could detrimentally affect the developmental trajectory without evoking neuroinflammation. We propose that ASDs provide excellent opportunities to study the influence of microglia on neurodevelopment, and this knowledge could lead to novel therapies. PMID:22717189

  19. Gas6 Deficiency Increases Oligodendrocyte Loss and Microglial Activation in Response to Cuprizone-Induced Demyelination

    PubMed Central

    Binder, Michele D.; Cate, Holly S.; Prieto, Anne L.; Kemper, Dennis; Butzkueven, Helmut; Gresle, Melissa M.; Cipriani, Tania; Jokubaitis, Vilija G.; Carmeliet, Peter

    2008-01-01

    The TAM family of receptor protein tyrosine kinases comprises three known members, namely Tyro3, Axl, and Mer. These receptors are widely expressed in the nervous system, including by oligodendrocytes, the cell type responsible for myelinating the CNS. We examined the potential role of the TAM family and of their principle cognate ligand, Gas6 (growth arrest gene 6), in modulating the phenotype of the cuprizone model of demyelination. We found that the expression profiles of Axl, Mer, and Gas6 mRNA were increased in the corpus callosum in a temporal profile correlating with the increased migration and proliferation of microglia/macrophages in this model. In contrast, expression of Tyro3 decreased, correlating with the loss of oligodendrocytes. Gas6 both promoted in vitro survival of oligodendrocytes (39.3 ± 3.1 vs 11.8 ± 2.4%) and modulated markers of activation in purified cultures of microglia (tumor necrosis factor α mRNA expression was reduced ∼48%). In Gas6−/− mice subjected to cuprizone-challenge, demyelination was greater than in control mice, within the rostral region of the corpus callosum, as assessed by luxol fast blue staining (myelination reduced by 36%) and by ultrastructural analysis. An increased loss of Gst-π (glutathione S-transferase-π)-positive oligodendrocytes was also identified throughout the corpus callosum of Gas6−/− mice. Microglial marker expression (ionized calcium-binding adapter molecule 1) was increased in Gas6−/− mice but was restricted to the rostral corpus callosum. Therefore, TAM receptor activation and regulation can independently influence both oligodendrocyte survival and the microglial response after CNS damage. PMID:18480276

  20. Transplantation of Human Menstrual Blood-Derived Mesenchymal Stem Cells Alleviates Alzheimer's Disease-Like Pathology in APP/PS1 Transgenic Mice.

    PubMed

    Zhao, Yongjia; Chen, Xin; Wu, Yichen; Wang, Yanling; Li, Yifei; Xiang, Charlie

    2018-01-01

    Extracellular β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) are the pathological hallmarks of Alzheimer's disease (AD). Mesenchymal stem cells (MSCs) have shown therapeutic efficacy in many neurodegenerative diseases, including AD. Human menstrual blood-derived stem cells (MenSCs) are a novel source of MSCs advantageous for their higher proliferation rate and because they are easy to obtain without ethical concerns. Although MenSCs have exhibited therapeutic efficacy in some diseases, their effects on AD remain elusive. In the present study, we showed that intracerebral transplantation of MenSCs dramatically improved the spatial learning and memory of APP/PS1 mice. In addition, MenSCs significantly ameliorated amyloid plaques and reduced tau hyperphosphorylation in APP/PS1 mice. Remarkably, we also found that intracerebral transplantation of MenSCs markedly increased several Aβ degrading enzymes and modulated a panel of proinflammatory cytokines associated with an altered microglial phenotype, suggesting an Aβ degrading and anti-inflammatory impact of MenSCs in the brains of APP/PS1 mice. In conclusion, these findings suggest that MenSCs are a promising therapeutic candidate for AD.

  1. Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents.

    PubMed

    Won, Shen-Jeu; Liu, Cheng-Tsung; Tsao, Lo-Ti; Weng, Jing-Ru; Ko, Horng-Huey; Wang, Jih-Pyang; Lin, Chun-Nan

    2005-01-01

    In an effort to develop potent anti-inflammatory and cancer chemopreventive agents, a series of chalcones were prepared by Claisen-Schmidt condensation of appropriate acetophenones with suitable aromatic aldehyde or prepared with appropriate dihydrochalcone reacted with appropriate alkyl bromide or prepared in one-pot procedure involving acetophenone and convenient aromatic aldehyde using ultrasonic agitation on basic alumina. The synthesized products were tested for their inhibitory effects on the activation of mast cells, neutrophils, macrophages, and microglial cells. The potent inhibitors of NO production in macrophages and microglial cells were further evaluated for their in vitro cytotoxic effects against several human cancer cell lines. 2'-Hydroxychalcones 1-3, and 2',5'-dihydroxychalcone 7 exhibited potent inhibitory effects on the release of beta-glucuronidase or lysozyme from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP)/cytochalasin B (CB). Two 2'-hydroxychalcones (1 and 3) showed potent inhibitory effects on superoxide anion generation in rat neutrophils in response to fMLP/CB. The previously reported chalcone, 5, 6, and 12, exhibited potent inhibitory effect on NO production in lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma)-activated N9 microglial cells or in LPS-activated RAW 264.7 macrophage-like cells. The potent inhibitors 5, 6, and 12 of NO production in macrophages or microglial cells revealed significant or marginal cytotoxic effects against several human cancer lines. Compound 12 manifested potent selective cytotoxicity against human MCF-7 cells and caused cell death by apoptosis. The present results demonstrated that 1-3, and 7 have anti-inflammatory effects and 5, 6, and 12 are potential anti-inflammatory and cancer chemopreventive agents.

  2. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPHmore » oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm{sup 2} induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm{sup 2}) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91{sup phox}, p47{sup phox} and p40{sup phox}); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47{sup phox} and p67{sup phox} translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to

  3. Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex.

    PubMed Central

    Mato, M; Ookawara, S; Sakamoto, A; Aikawa, E; Ogawa, T; Mitsuhashi, U; Masuzawa, T; Suzuki, H; Honda, M; Yazaki, Y; Watanabe, E; Luoma, J; Yla-Herttuala, S; Fraser, I; Gordon, S; Kodama, T

    1996-01-01

    The transport of solutes between blood and brain is regulated by a specific barrier. Capillary endothelial cells of brain are known to mediate barrier function and facilitate transport. Here we report that specific cells surrounding arterioles, known as Mato's fluorescent granular perithelial (FGP) cells or perivascular microglial cells, contribute to the barrier function. Immunohistochemical and in situ hybridization studies indicate that, in normal brain cortex, type I and type II macrophage scavenger receptors are expressed only in FGP/perivascular microglial cells, and surface markers of macrophage lineage are also detected on them. These cells mediate the uptake of macromolecules, including modified low density lipoprotein, horseradish peroxidase, and ferritin injected either into the blood or into the cerebral ventricles. Accumulation of scavenged materials with aging or after the administration of a high-fat diet results in the formation of honeycomb-like foam cells and the narrowing of the lumen of arterioles in the brain cortex. These results indicate involvement of FGP/perivascular microglial cells in the barrier and scavenger functions in the central nervous system. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8622926

  4. Activation of Intrinsic Immune Responses and Microglial Phagocytosis in an Ex Vivo Spinal Cord Slice Culture Model of West Nile Virus Infection

    PubMed Central

    Quick, Eamon D.; Leser, J. Smith; Tyler, Kenneth L.

    2014-01-01

    ABSTRACT West Nile virus (WNV) is a neurotropic flavivirus that causes significant neuroinvasive disease involving the brain and/or spinal cord. Experimental mouse models of WNV infection have established the importance of innate and adaptive immune responses in controlling the extent and severity of central nervous system (CNS) disease. However, differentiating between immune responses that are intrinsic to the CNS and those that are dependent on infiltrating inflammatory cells has proven difficult. We used a murine ex vivo spinal cord slice culture (SCSC) model to determine the innate immune processes specific to the CNS during WNV infections. By 7 days after ex vivo infection of SCSCs, the majority of neurons and a substantial percentage of astrocytes were infected with WNV, resulting in apoptotic cell death and astrogliosis. Microglia, the resident immune cells of the CNS, were activated by WNV infection, as exemplified by their amoeboid morphology, the development of filopodia and lamellipodia, and phagocytosis of WNV-infected cells and debris. Microglial cell activation was concomitant with increased expression of proinflammatory cytokines and chemokines, including CXCL10, CXCL1, CCL5, CCL3, CCL2, tumor necrosis factor alpha (TNF-α), TNF-related apoptosis-inducing ligand (TRAIL), and interleukin-6 (IL-6). The application of minocycline, an inhibitor of neuroinflammation, altered the WNV-induced proinflammatory cytokine/chemokine expression profile, with inhibited production of CCL5, CCL2, and IL-6. Our findings establish that CNS-resident cells have the capacity to initiate a robust innate immune response against WNV infection in the absence of infiltrating inflammatory cells and systemic immune responses. IMPORTANCE There are no specific treatments of proven efficacy available for WNV neuroinvasive disease. A better understanding of the pathogenesis of WNV CNS infection is crucial for the rational development of novel therapies. Development of a spinal cord

  5. Protective effects of geniposide and ginsenoside Rg1 combination treatment on rats following cerebral ischemia are mediated via microglial microRNA‑155‑5p inhibition.

    PubMed

    Wang, Jun; Li, Dan; Hou, Jincai; Lei, Hongtao

    2018-02-01

    Geniposide, an active component of Gardenia, has been reported to protect against cerebral ischemia in animals. Ginsenoside Rg1, a component of Panax notoginseng, is usually administered in combination with Gardenia for the treatment of acute ischemic stroke; however, there are unknown effects of ginsenoside Rg1 that require further investigation. In the present study, the effects of geniposide and ginsensoide Rg1 combination treatment on focal cerebral ischemic stroke were investigated. For in vivo analysis, male rats were separated into three groups, including the (control), model and geniposide + ginsenoside Rg1 groups (n=8 per group). A middle cerebral artery occlusion model was established as the model group. The treatment group was treated with geniposide (30 mg/kg, tail vein injection) + ginsenoside Rg1 (6 mg/kg, tail vein injection), and the model group received saline instead. Neurobehavioral deficits, infarct volume, brain edema, and the expression of microRNA (miR)‑155‑5p and CD11b by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and immunohistochemistry, were assessed following 24 h of ischemia. For in vitro analysis, BV2 mouse microglial cells were cultured and exposed to geniposide (40 µg/ml) + ginsenoside Rg1 (8 µg/ml) during various durations of oxygen‑glucose deprivation (OGD). The expression levels of miR‑155‑5p, pri‑miR‑155 and pre‑miR‑155 were detected by RT‑qPCR. The results demonstrated that increases in brain infarct volume, edema volume, CD11b‑positive cells and miR‑155‑5p levels were alleviated following geniposide + ginsenoside administration in rats exposed to ischemia. Furthermore, geniposide + ginsenoside Rg1 treatment suppressed the miR‑155‑5p, pri‑miR‑155 and pre‑miR‑155 expression levels in OGD‑injured BV2 microglial cells. The results of the present study demonstrated that tail vein administration of geniposide in combination with ginsenoside Rg1

  6. GNP-GAPDH1-22 nanovaccines prevent neonatal listeriosis by blocking microglial apoptosis and bacterial dissemination

    PubMed Central

    Marimon, José María; Freire, Javier; Salcines-Cuevas, David; Carmen Fariñas, M.; onzalez-Rico, Claudia; Marradi, Marco; Garcia, Isabel; Alkorta-Gurrutxaga, Mirian; San Nicolas-Gomez, Aida; Castañeda-Sampedro, Ana; Yañez-Diaz, Sonsoles; Penades, Soledad; Punzon, Carmen; Gomez-Roman, Javier; Rivera, Fernando; Fresno, Manuel; Alvarez-Dominguez, Carmen

    2017-01-01

    Clinical cases of neonatal listeriosis are associated with brain disease and fetal loss due to complications in early or late pregnancy, which suggests that microglial function is altered. This is believed to be the first study to link microglial apoptosis with neonatal listeriosis and listeriosis-associated brain disease, and to propose a new nanovaccine formulation that reverses all effects of listeriosis and confers Listeria monocytogenes (LM)-specific immunity. We examined clinical cases of neonatal listeriosis in 2013–2015 and defined two useful prognostic immune biomarkers to design listeriosis vaccines: high anti-GAPDH1-22 titres and tumor necrosis factor (TNF)/interleukin (IL)-6 ratios. Therefore, we developed a nanovaccine with gold glyco-nanoparticles conjugated to LM peptide 1-22 of GAPDH (Lmo2459), GNP-GAPDH1-22 nanovaccinesformulated with a pro-inflammatory Toll-like receptor 2/4-targeted adjuvant. Neonates born to non-vaccinated pregnant mice with listeriosis, showed brain and vascular diseases and significant microglial dysfunction by induction of TNF-α-mediated apoptosis. This programmed TNF-mediated suicide explains LM dissemination in brains and livers and blocks production of early pro-inflammatory cytokines such as IL-1β and interferon-α/β. In contrast, neonates born to GNP-GAPDH1–22-vaccinated mothers before LM infection, did not develop listeriosis or brain diseases and had functional microglia. In nanovaccinated mothers, immune responses shifted towards Th1/IL-12 pro-inflammatory cytokine profiles and high production of anti-GAPDH1–22 antibodies, suggesting good induction of LM-specific memory. PMID:28903312

  7. GNP-GAPDH1-22 nanovaccines prevent neonatal listeriosis by blocking microglial apoptosis and bacterial dissemination.

    PubMed

    Calderon-Gonzalez, Ricardo; Frande-Cabanes, Elisabet; Teran-Navarro, Hector; Marimon, José María; Freire, Javier; Salcines-Cuevas, David; Carmen Fariñas, M; Onzalez-Rico, Claudia; Marradi, Marco; Garcia, Isabel; Alkorta-Gurrutxaga, Mirian; San Nicolas-Gomez, Aida; Castañeda-Sampedro, Ana; Yañez-Diaz, Sonsoles; Penades, Soledad; Punzon, Carmen; Gomez-Roman, Javier; Rivera, Fernando; Fresno, Manuel; Alvarez-Dominguez, Carmen

    2017-08-15

    Clinical cases of neonatal listeriosis are associated with brain disease and fetal loss due to complications in early or late pregnancy, which suggests that microglial function is altered. This is believed to be the first study to link microglial apoptosis with neonatal listeriosis and listeriosis-associated brain disease, and to propose a new nanovaccine formulation that reverses all effects of listeriosis and confers Listeria monocytogenes (LM)-specific immunity. We examined clinical cases of neonatal listeriosis in 2013-2015 and defined two useful prognostic immune biomarkers to design listeriosis vaccines: high anti-GAPDH 1-22 titres and tumor necrosis factor (TNF)/interleukin (IL)-6 ratios. Therefore, we developed a nanovaccine with gold glyco-nanoparticles conjugated to LM peptide 1-22 of GAPDH (Lmo2459), GNP-GAPDH 1-22 nanovaccinesformulated with a pro-inflammatory Toll-like receptor 2/4-targeted adjuvant. Neonates born to non-vaccinated pregnant mice with listeriosis, showed brain and vascular diseases and significant microglial dysfunction by induction of TNF-α-mediated apoptosis. This programmed TNF-mediated suicide explains LM dissemination in brains and livers and blocks production of early pro-inflammatory cytokines such as IL-1β and interferon-α/β. In contrast, neonates born to GNP-GAPDH 1-22 -vaccinated mothers before LM infection, did not develop listeriosis or brain diseases and had functional microglia. In nanovaccinated mothers, immune responses shifted towards Th1/IL-12 pro-inflammatory cytokine profiles and high production of anti-GAPDH 1-22 antibodies, suggesting good induction of LM-specific memory.

  8. Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance.

    PubMed

    Bolmont, Tristan; Haiss, Florent; Eicke, Daniel; Radde, Rebecca; Mathis, Chester A; Klunk, William E; Kohsaka, Shinichi; Jucker, Mathias; Calhoun, Michael E

    2008-04-16

    Microglial cells aggregate around amyloid plaques in Alzheimer's disease, but, despite their therapeutic potential, various aspects of their reactive kinetics and role in plaque pathogenesis remain hypothetical. Through use of in vivo imaging and quantitative morphological measures in transgenic mice, we demonstrate that local resident microglia rapidly react to plaque formation by extending processes and subsequently migrating toward plaques, in which individual transformed microglia somata remain spatially stable for weeks. The number of plaque-associated microglia increased at a rate of almost three per plaque per month, independent of plaque volume. Larger plaques were surrounded by larger microglia, and a subset of plaques changed in size over time, with an increase or decrease related to the volume of associated microglia. Far from adopting a more static role, plaque-associated microglia retained rapid process and membrane movement at the plaque/glia interface. Microglia internalized systemically injected amyloid-binding dye at a much higher rate in the vicinity of plaques. These results indicate a role for microglia in plaque maintenance and provide a model with multiple targets for therapeutic intervention.

  9. Dynamics of the Microglial/Amyloid Interaction Indicate a Role in Plaque Maintenance

    PubMed Central

    Bolmont, Tristan; Haiss, Florent; Eicke, Daniel; Radde, Rebecca; Mathis, Chester A.; Klunk, William E.; Kohsaka, Shinichi; Jucker, Mathias

    2008-01-01

    Microglial cells aggregate around amyloid plaques in Alzheimer's disease, but, despite their therapeutic potential, various aspects of their reactive kinetics and role in plaque pathogenesis remain hypothetical. Through use of in vivo imaging and quantitative morphological measures in transgenic mice, we demonstrate that local resident microglia rapidly react to plaque formation by extending processes and subsequently migrating toward plaques, in which individual transformed microglia somata remain spatially stable for weeks. The number of plaque-associated microglia increased at a rate of almost three per plaque per month, independent of plaque volume. Larger plaques were surrounded by larger microglia, and a subset of plaques changed in size over time, with an increase or decrease related to the volume of associated microglia. Far from adopting a more static role, plaque-associated microglia retained rapid process and membrane movement at the plaque/glia interface. Microglia internalized systemically injected amyloid-binding dye at a much higher rate in the vicinity of plaques. These results indicate a role for microglia in plaque maintenance and provide a model with multiple targets for therapeutic intervention. PMID:18417708

  10. High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells

    PubMed Central

    Gonzalez Carter, Daniel A.; Motskin, Michael; Pienaar, Ilse S.; Chen, Shu; Hu, Sheng; Ruenraroengsak, Pakatip; Ryan, Mary P.; Shaffer, Milo S. P.; Dexter, David T.

    2016-01-01

    Multi-walled carbon nanotubes (MWNTs) are increasingly being developed both as neuro-therapeutic drug delivery systems to the brain and as neural scaffolds to drive tissue regeneration across lesion sites. MWNTs with different degrees of acid oxidation may have different bioreactivities and propensities to aggregate in the extracellular environment, and both individualised and aggregated MWNTs may be expected to be found in the brain. Before practical application, it is vital to understand how both aggregates and individual MWNTs will interact with local phagocytic immune cells, the microglia, and ultimately to determine their biopersistence in the brain. The processing of extra- and intracellular MWNTs (both pristine and when acid oxidised) by microglia was characterised across multiple length scales by correlating a range of dynamic, quantitative and multi-scale techniques, including: UV-vis spectroscopy, light microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy. Dynamic, live cell imaging revealed the ability of microglia to break apart and internalise micron-sized extracellular agglomerates of acid oxidised MWNT, but not pristine MWNTs. The total amount of MWNTs internalised by, or strongly bound to, microglia was quantified as a function of time. Neither the significant uptake of oxidised MWNTs, nor the incomplete uptake of pristine MWNTs affected microglial viability, pro-inflammatory cytokine release or nitric oxide production. However, after 24 hrs exposure to pristine MWNTs, a significant increase in the production of reactive oxygen species was observed. Small aggregates and individualised oxidised MWNTs were present in the cytoplasm and vesicles, including within multilaminar bodies, after 72 hours. Some evidence of morphological damage to oxidised MWNT structure was observed including highly disordered graphitic structures, suggesting possible biodegradation. This work demonstrates the utility of dynamic

  11. Anti-inflammatory effects of the cannabidiol derivative dimethylheptyl-cannabidiol - studies in BV-2 microglia and encephalitogenic T cells.

    PubMed

    Juknat, Ana; Kozela, Ewa; Kaushansky, Nathali; Mechoulam, Raphael; Vogel, Zvi

    2016-05-01

    Dimethylheptyl-cannabidiol (DMH-CBD), a non-psychoactive, synthetic derivative of the phytocannabinoid cannabidiol (CBD), has been reported to be anti-inflammatory in RAW macrophages. Here, we evaluated the effects of DMH-CBD at the transcriptional level in BV-2 microglial cells as well as on the proliferation of encephalitogenic T cells. BV-2 cells were pretreated with DMH-CBD, followed by stimulation with the endotoxin lipopolysaccharide (LPS). The expression levels of selected genes involved in stress regulation and inflammation were determined by quantitative real-time PCR. In addition, MOG35-55-reactive T cells (TMOG) were cultured with antigen-presenting cells in the presence of DMH-CBD and MOG35-55 peptide, and cell proliferation was determined by measuring [3H]thymidine incorporation. DMH-CBD treatment downregulated in a dose-dependent manner the mRNA expression of LPS-upregulated pro-inflammatory genes (Il1b, Il6, and Tnf) in BV-2 microglial cells. The expression of these genes was also downregulated by DMH-CBD in unstimulated cells. In parallel, DMH-CBD upregulated the expression of genes related to oxidative stress and glutathione homeostasis such as Trb3, Slc7a11/xCT, Hmox1, Atf4, Chop, and p8 in both stimulated and unstimulated microglial cells. In addition, DMH-CBD dose-dependently inhibited MOG35-55-induced TMOG proliferation. The results show that DMH-CBD has similar anti-inflammatory properties to those of CBD. DMH-CBD downregulates the expression of inflammatory cytokines and protects the microglial cells by inducing an adaptive cellular response against inflammatory stimuli and oxidative injury. In addition, DMH-CBD decreases the proliferation of pathogenic activated TMOG cells.

  12. The Role of Angiotensin II/AT1 Receptor Signaling in Regulating Retinal Microglial Activation.

    PubMed

    Phipps, Joanna A; Vessey, Kirstan A; Brandli, Alice; Nag, Nupur; Tran, Mai X; Jobling, Andrew I; Fletcher, Erica L

    2018-01-01

    This study explored whether the proangiogenic factor Angiotensin II (AngII) had a direct effect on the activation state of microglia via the Angiotensin type 1 receptor (AT1-R). Microglial dynamic activity was investigated in live retinal flatmounts from adult Cx3Cr1+/GFP mice under control, AngII (5 μM) or AngII (5 μM) + candesartan (0.227 μM) conditions. The effects of intravitreal administration of AngII (10 mM) were also investigated at 24 hours, with retinae processed for immunocytochemistry, flow cytometry, or inflammatory quantitative PCR arrays. We found FACS isolated retinal microglia expressed AT1-R. In retinal flatmounts, microglia showed characteristic movement of processes under control conditions. Perfusion of AngII induced an immediate change in process length (-42%, P < 0.05) and activation state of microglia that was ameliorated by AT1-R blockade, suggesting a direct effect of AngII on microglia via the AT1-R. Intravitreal injection of AngII induced microglial activation after 24 hours, which was characterized by increased soma size (23%, P < 0.001) and decreased process length (20%, P < 0.05). Further analysis indicated a significant decrease in the number of microglial contacts with retinal neurons (saline 15.6 ± 2.31 versus AngII 7.8 ± 1.06, P < 0.05). Retinal cytokine and chemokine expression was modulated, indicative of an inflammatory retinal phenotype. We show that retinal microglia express AT1-R and their activation state is significantly altered by the angiogenic factor, AngII. Specifically, AngII may directly activate AT1-Rs on microglia and contribute to retinal inflammation. This may have implications for diseases like diabetic retinopathy where increases in AngII and inflammation have been shown to play an important role.

  13. Computational identification of potential multi-drug combinations for reduction of microglial inflammation in Alzheimer disease

    PubMed Central

    Anastasio, Thomas J.

    2015-01-01

    Like other neurodegenerative diseases, Alzheimer Disease (AD) has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action. PMID:26097457

  14. Deletion of the Inflammasome Sensor Aim2 Mitigates Aβ Deposition and Microglial Activation but Increases Inflammatory Cytokine Expression in an Alzheimer Disease Mouse Model.

    PubMed

    Wu, Pei-Jung; Hung, Yun-Fen; Liu, Hsin-Yu; Hsueh, Yi-Ping

    2017-01-01

    Inflammation is clearly associated with Alzheimer disease (AD). Knockout of Nlrp3, a gene encoding an inflammasome sensor, has been shown to ameliorate AD pathology in a mouse model. Because AIM2 is the most dominant inflammasome sensor expressed in mouse brains, here we investigate whether Aim2 deletion also influences the phenotype of a 5XFAD AD mouse model. Quantitative RT-PCR, immunostaining, immunoblotting, and behavioral analyses were applied to compare wild-type, Aim2-/-, 5XFAD, and Aim2-/-;5XFAD mice. We found that Aim2 knockout mitigates Aβ deposition in the cerebral cortex and hippocampus of 5XFAD mice. The activation of microglial cells is also reduced in Aim2-/-;5XFAD brains compared with 5XFAD brains. However, Aim2 knockout does not improve memory and anxiety phenotypes of 5XFAD mice in an open field, cued Y-maze, or Barnes maze. Compared with 5XFAD mice, Il-1 expression levels are not reduced in Aim2-/-;5XFAD mice. Unexpectedly, Il-6 and Il-18 expression levels in 5XFAD brains were further increased when Aim2 was deleted. Thus, inflammatory cytokine expression in 5XFAD brains is upregulated by Aim2 deletion through an unknown mechanism. Although Aim2 knockout mitigates Aβ deposition and microglial activation, Aim2 deletion does not have a beneficial effect on the spatial memory or cytokine expression of 5XFAD mice. Our findings suggest that Aβ aggregation and microglial activation may not always be correlated with the expression of inflammatory cytokines or cognitive function of 5XFAD mice. Our study also implies that different inflammasomes likely perform distinct roles in different physiological and/or pathological events. © 2017 S. Karger AG, Basel.

  15. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer's disease.

    PubMed

    Hamelin, Lorraine; Lagarde, Julien; Dorothée, Guillaume; Potier, Marie Claude; Corlier, Fabian; Kuhnast, Bertrand; Caillé, Fabien; Dubois, Bruno; Fillon, Ludovic; Chupin, Marie; Bottlaender, Michel; Sarazin, Marie

    2018-06-01

    Although brain neuroinflammation may play an instrumental role in the pathophysiology of Alzheimer's disease, its actual impact on disease progression remains controversial, being reported as either detrimental or protective. This work aimed at investigating the temporal relationship between microglial activation and clinical progression of Alzheimer's disease. First, in a large cohort of patients with Alzheimer's disease we analysed the predictive value of microglial activation assessed by 18F-DPA-714 PET imaging on functional, cognitive and MRI biomarkers outcomes after a 2-year follow-up. Second, we analysed the longitudinal progression of 18F-DPA-714 binding in patients with Alzheimer's disease by comparison with controls, and assessed its influence on clinical progression. At baseline, all participants underwent a clinical assessment, brain MRI, 11C-PiB, 18F-DPA-714 PET imaging and TSPO genotyping. Participants were followed-up annually for 2 years. At the end of the study, subjects were asked to repeat a second 18F-DPA-714-PET imaging. Initial 18F-DPA-714 binding was higher in prodromal (n = 33) and in demented patients with Alzheimer's disease (n = 19) compared to controls (n = 17). After classifying patients into slow and fast decliners according to functional (Clinical Dementia Rating change) or cognitive (Mini-Mental State Examination score decline) outcomes, we found a higher initial 18F-DPA-714 binding in slow than fast decliners. Negative correlations were observed between initial 18F-DPA-714 binding and the Clinical Dementia Rating Sum of Boxes score increase, the MMSE score loss and the progression of hippocampal atrophy. This suggests that higher initial 18F-DPA-714 binding is associated with better clinical prognosis. Twenty-four patients with Alzheimer's disease and 15 control subjects performed a second DPA-PET. We observed an increase of 18F-DPA-714 in patients with Alzheimer's disease as compared with controls (mean 13.2% per year versus 4

  16. The Human Cell Atlas.

    PubMed

    Regev, Aviv; Teichmann, Sarah A; Lander, Eric S; Amit, Ido; Benoist, Christophe; Birney, Ewan; Bodenmiller, Bernd; Campbell, Peter; Carninci, Piero; Clatworthy, Menna; Clevers, Hans; Deplancke, Bart; Dunham, Ian; Eberwine, James; Eils, Roland; Enard, Wolfgang; Farmer, Andrew; Fugger, Lars; Göttgens, Berthold; Hacohen, Nir; Haniffa, Muzlifah; Hemberg, Martin; Kim, Seung; Klenerman, Paul; Kriegstein, Arnold; Lein, Ed; Linnarsson, Sten; Lundberg, Emma; Lundeberg, Joakim; Majumder, Partha; Marioni, John C; Merad, Miriam; Mhlanga, Musa; Nawijn, Martijn; Netea, Mihai; Nolan, Garry; Pe'er, Dana; Phillipakis, Anthony; Ponting, Chris P; Quake, Stephen; Reik, Wolf; Rozenblatt-Rosen, Orit; Sanes, Joshua; Satija, Rahul; Schumacher, Ton N; Shalek, Alex; Shapiro, Ehud; Sharma, Padmanee; Shin, Jay W; Stegle, Oliver; Stratton, Michael; Stubbington, Michael J T; Theis, Fabian J; Uhlen, Matthias; van Oudenaarden, Alexander; Wagner, Allon; Watt, Fiona; Weissman, Jonathan; Wold, Barbara; Xavier, Ramnik; Yosef, Nir

    2017-12-05

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.

  17. The Human Cell Atlas

    PubMed Central

    Amit, Ido; Benoist, Christophe; Birney, Ewan; Bodenmiller, Bernd; Campbell, Peter; Carninci, Piero; Clatworthy, Menna; Clevers, Hans; Deplancke, Bart; Dunham, Ian; Eberwine, James; Eils, Roland; Enard, Wolfgang; Farmer, Andrew; Fugger, Lars; Göttgens, Berthold; Hacohen, Nir; Haniffa, Muzlifah; Hemberg, Martin; Kim, Seung; Klenerman, Paul; Kriegstein, Arnold; Lein, Ed; Linnarsson, Sten; Lundberg, Emma; Lundeberg, Joakim; Majumder, Partha; Marioni, John C; Merad, Miriam; Mhlanga, Musa; Nawijn, Martijn; Netea, Mihai; Nolan, Garry; Pe'er, Dana; Phillipakis, Anthony; Ponting, Chris P; Quake, Stephen; Reik, Wolf; Rozenblatt-Rosen, Orit; Sanes, Joshua; Satija, Rahul; Schumacher, Ton N; Shalek, Alex; Shapiro, Ehud; Sharma, Padmanee; Shin, Jay W; Stegle, Oliver; Stratton, Michael; Stubbington, Michael J T; Theis, Fabian J; Uhlen, Matthias; van Oudenaarden, Alexander; Wagner, Allon; Watt, Fiona; Weissman, Jonathan; Wold, Barbara; Xavier, Ramnik; Yosef, Nir

    2017-01-01

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community. PMID:29206104

  18. Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase.

    PubMed

    Gao, Yuanqing; Vidal-Itriago, Andrés; Milanova, Irina; Korpel, Nikita L; Kalsbeek, Martin J; Tom, Robby Zachariah; Kalsbeek, Andries; Hofmann, Susanna M; Yi, Chun-Xia

    2018-01-01

    Leptin is a cytokine produced by adipose tissue that acts mainly on the hypothalamus to regulate appetite and energy homeostasis. Previous studies revealed that the leptin receptor is expressed not only in neurons, but also in glial cells. Microglia are resident immune cells in the brain that play an essential role in immune defense and neural network development. Previously we reported that microglial morphology and cytokine production are changed in the leptin receptor deficient db/db mouse, suggesting that leptin's central effects on metabolic control might involve signaling through microglia. In the current study, we aimed to uncover the role of leptin signaling in microglia in systemic metabolic control. We generated a mouse model with leptin receptor deficiency, specifically in the myeloid cells, to determine the role of microglial leptin signaling in the development of metabolic disease and to investigate microglial functions. We discovered that these mice have increased body weight with hyperphagia. In the hypothalamus, pro-opiomelanocortin neuron numbers in the arcuate nucleus (ARC) and α-MSH projections from the ARC to the paraventricular nucleus (PVN) decreased, which was accompanied by the presence of less ramified microglia with impaired phagocytic capacity in the PVN. Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Leptin signaling in hypothalamic microglia is important for microglial function and a correct formation of the hypothalamic neuronal circuit regulating metabolism. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  19. Cronobacter sakazakii clinical isolates overcome host barriers and evade the immune response.

    PubMed

    Almajed, Faisal S; Forsythe, Stephen J

    2016-01-01

    Cronobacter sakazakii is the most frequently clinically isolated species of the Cronobacter genus. However the virulence factors of C. sakazakii including their ability to overcome host barriers remains poorly studied. In this study, ten clinical isolates of C. sakazakii were assessed for their ability to invade and translocate through human colonic carcinoma epithelial cells (Caco-2) and human brain microvascular endothelial cells (HBMEC). Their ability to avoid phagocytosis in human macrophages U937 and human brain microglial cells was investigated. Additionally, they were tested for serum sensitivity and the presence of the Cronobacter plasminogen activation gene (cpa) gene, which is reported to confer serum resistance. Our data showed that the clinical C. sakazakii strains invaded and translocated through Caco-2 and HBMEC cell lines and some strains showed significantly higher levels of invasion and translocation. Moreover, C. sakazakii was able to persist and even multiply in phagocytic macrophage and microglial cells. All strains, except one, were able to withstand human serum exposure, the single serum sensitive strain was also the only one which did not encode for the cpa gene. These results demonstrate that C. sakazakii clinical isolates are able to overcome host barriers and evade the host immune response indicating their capacity to cause diseases such as necrotizing enterocolitis (NEC) and meningitis. Our data showed for the first time the ability of C. sakazakii clinical isolates to survive and multiply within human microglial cells. Additionally, it was shown that C. sakazakii clinical strains have the capacity to translocate through the Caco-2 and HBMEC cell lines paracellularly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Microglial activation as a measure of stress in mouse brains exposed acutely (60 minutes) and long-term (2 years) to mobile telephone radiofrequency fields.

    PubMed

    Finnie, John W; Cai, Zhao; Manavis, Jim; Helps, Stephen; Blumbergs, Peter C

    2010-02-01

    To determine whether acute or long-term exposure of the brain to mobile telephone radiofrequency (RF) fields produces activation of microglia, which normally respond rapidly to any change in their microenvironment. Using a purpose designed exposure system at 900 MHz, mice were given a single, far-field whole body exposure at a specific absorption rate (SAR) of 4 W/kg for 60 min (acute) or on five successive days per week for 104 weeks (long-term). Control mice were sham-exposed or freely mobile in a cage to control for any stress caused by immobilisation in the exposure module. Positive control brains subjected to a stab wound were also included to confirm the ability of microglia to react to any neural stress. Brains were perfusion-fixed with 4% paraformaldehyde and representative regions of the cerebral cortex and hippocampus immunostained for ionised calcium binding adaptor molecule (Iba1), a specific microglial marker. There was no increase in microglial Iba1 expression in brains short or long-term exposed to mobile telephony microwaves compared to control (sham-exposed or freely moving caged mice) brains, while substantial microglial activation occurred in damaged positive control neural tissue. Acute (60 minutes) or longer duration (2 years) exposure of murine brains to mobile telephone RF fields did not produce any microglial activation detectable by Iba1 immunostaining.

  1. Chronic ethanol intake induces partial microglial activation that is not reversed by long-term ethanol withdrawal in the rat hippocampal formation.

    PubMed

    Cruz, Catarina; Meireles, Manuela; Silva, Susana M

    2017-05-01

    Neuroinflammation has been implicated in the pathogenesis of several disorders. Activation of microglia leads to the release of pro-inflammatory mediators and microglial-mediated neuroinflammation has been proposed as one of the alcohol-induced neuropathological mechanisms. The present study aimed to examine the effect of chronic ethanol exposure and long-term withdrawal on microglial activation and neuroinflammation in the hippocampal formation. Male rats were submitted to 6 months of ethanol treatment followed by a 2-month withdrawal period. Stereological methods were applied to estimate the total number of microglia and activated microglia detected by CD11b immunohistochemistry in the hippocampal formation. The expression levels of the pro-inflammatory cytokines TNF-α, COX-2 and IL-15 were measured by qRT-PCR. Alcohol consumption was associated with an increase in the total number of activated microglia but morphological assessment indicated that microglia did not exhibit a full activation phenotype. These data were supported by functional evidence since chronic alcohol consumption produced no changes in the expression of TNF-α or COX-2. The levels of IL-15 a cytokine whose expression is increased upon activation of both astrocytes and microglia, was induced by chronic alcohol treatment. Importantly, the partial activation of microglia induced by ethanol was not reversed by long-term withdrawal. This study suggests that chronic alcohol exposure induces a microglial phenotype consistent with partial activation without significant increase in classical cytokine markers of neuroinflammation in the hippocampal formation. Furthermore, long-term cessation of alcohol intake is not sufficient to alter the microglial partial activation phenotype induced by ethanol. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sex Differences in Early Postnatal Microglial Colonization of the Developing Rat Hippocampus Following a Single-Day Alcohol Exposure.

    PubMed

    Ruggiero, M J; Boschen, K E; Roth, T L; Klintsova, A Y

    2018-06-01

    Microglia are involved in various homeostatic processes in the brain, including phagocytosis, apoptosis, and synaptic pruning. Sex differences in microglia colonization of the developing brain have been reported, but have not been established following alcohol insult. Developmental alcohol exposure represents a neuroimmune challenge that may contribute to cognitive dysfunction prevalent in humans with Fetal Alcohol Spectrum Disorders (FASD) and in rodent models of FASD. Most studies have investigated neuroimmune activation following adult alcohol exposure or following multiple exposures. The current study uses a single day binge alcohol exposure model (postnatal day [PD] 4) to examine sex differences in the neuroimmune response in the developing rat hippocampus on PD5 and 8. The neuroimmune response was evaluated through measurement of microglial number and cytokine gene expression at both time points. Male pups had higher microglial number compared to females in many hippocampal subregions on PD5, but this difference disappeared by PD8, unless exposed to alcohol. Expression of pro-inflammatory marker CD11b was higher on PD5 in alcohol-exposed (AE) females compared to AE males. After alcohol exposure, C-C motif chemokine ligand 4 (CCL4) was significantly increased in female AE pups on PD5 and PD8. Tumor necrosis factor-α (TNF-α) levels were also upregulated by AE in males on PD8. The results demonstrate a clear difference between the male and female neuroimmune response to an AE challenge, which also occurs in a time-dependent manner. These findings are significant as they add to our knowledge of specific sex-dependent effects of alcohol exposure on microglia within the developing brain.

  3. Triticum vulgare extract exerts an anti-inflammatory action in two in vitro models of inflammation in microglial cells

    PubMed Central

    Sanguigno, Luca; Casamassa, Antonella; Funel, Niccola; Minale, Massimiliano; Riccio, Rodolfo; Riccio, Salvatore; Boscia, Francesca; Brancaccio, Paola; Pollina, Luca Emanuele; Anzilotti, Serenella; Di Renzo, Gianfranco

    2018-01-01

    Triticum vulgare has been extensively used in traditional medicine thanks to its properties of accelerating tissue repair. The specific extract of Triticum vulgare manufactured by Farmaceutici Damor (TVE-DAMOR) is already present in some pharmaceutical formulations used in the treatment of decubitus ulcers, skin lesions and burns. It has been recently suggested that this Triticum vulgare extract may possess potential anti-inflammatory properties. In the light of these premises the aim of the present paper was to verify the anti-inflammatory role of TVE, using the LPS-stimulated microglia model of inflammation. In particular the effect of different concentrations of TVE on the release of several mediators of inflammation such as nitric oxide, IL-6, PGE2 and TNF alpha was evaluated. More important, the anti-inflammatory effect of TVE was confirmed also in primary rat microglia cultures. The results of the present study show that TVE exerts anti-inflammatory properties since it reduces the release of all the evaluated markers of inflammation, such as NO, IL6, TNF alpha and PGE2 in LPS-activated BV2 microglial cells. Intriguingly, TVE reduced microglia activation and NO release also in primary microglia. Indeed, to verify the pathway of modulation of the inflammatory markers reported above, we found that TVE restores the cytoplasmic expression of p65 protein, kwown as specific marker associated with activation of inflammatory response. The evidence for an inhibitory activity on inflammation of this specific extract of Triticum vulgare may open the way to the possibility of a therapeutical use of the Triticum vulgare extract as an anti-inflammatory compound in certain pathological states such as burns, decubitus ulcers, folliculitis and inflammation of peripheral nerve. PMID:29902182

  4. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum

    PubMed Central

    López-Pedrajas, Rosa; Ramírez-Lamelas, Dolores T.; Muriach, Borja; Sánchez-Villarejo, María V.; Almansa, Inmaculada; Vidal-Gil, Lorena; Romero, Francisco J.; Barcia, Jorge M.; Muriach, María

    2015-01-01

    Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB), considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone, and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68, and GFAP expression were determined. Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction. PMID:26283916

  5. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum.

    PubMed

    López-Pedrajas, Rosa; Ramírez-Lamelas, Dolores T; Muriach, Borja; Sánchez-Villarejo, María V; Almansa, Inmaculada; Vidal-Gil, Lorena; Romero, Francisco J; Barcia, Jorge M; Muriach, María

    2015-01-01

    Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB), considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone, and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68, and GFAP expression were determined. Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction.

  6. PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia.

    PubMed

    Di Biase, M A; Zalesky, A; O'keefe, G; Laskaris, L; Baune, B T; Weickert, C S; Olver, J; McGorry, P D; Amminger, G P; Nelson, B; Scott, A M; Hickie, I; Banati, R; Turkheimer, F; Yaqub, M; Everall, I P; Pantelis, C; Cropley, V

    2017-08-29

    We examined putative microglial activation as a function of illness course in schizophrenia. Microglial activity was quantified using [ 11 C](R)-(1-[2-chrorophynyl]-N-methyl-N-[1-methylpropyl]-3 isoquinoline carboxamide ( 11 C-(R)-PK11195) positron emission tomography (PET) in: (i) 10 individuals at ultra-high risk (UHR) of psychosis; (ii) 18 patients recently diagnosed with schizophrenia; (iii) 15 patients chronically ill with schizophrenia; and, (iv) 27 age-matched healthy controls. Regional-binding potential (BP ND ) was calculated using the simplified reference-tissue model with four alternative reference inputs. The UHR, recent-onset and chronic patient groups were compared to age-matched healthy control groups to examine between-group BP ND differences in 6 regions: dorsal frontal, orbital frontal, anterior cingulate, medial temporal, thalamus and insula. Correlation analysis tested for BP ND associations with gray matter volume, peripheral cytokines and clinical variables. The null hypothesis of equality in BP ND between patients (UHR, recent-onset and chronic) and respective healthy control groups (younger and older) was not rejected for any group comparison or region. Across all subjects, BP ND was positively correlated to age in the thalamus (r=0.43, P=0.008, false discovery rate). No correlations with regional gray matter, peripheral cytokine levels or clinical symptoms were detected. We therefore found no evidence of microglial activation in groups of individuals at high risk, recently diagnosed or chronically ill with schizophrenia. While the possibility of 11 C-(R)-PK11195-binding differences in certain patient subgroups remains, the patient cohorts in our study, who also displayed normal peripheral cytokine profiles, do not substantiate the assumption of microglial activation in schizophrenia as a regular and defining feature, as measured by 11 C-(R)-PK11195 BP ND .

  7. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia

    PubMed Central

    2013-01-01

    Background Microglia are the primary immune cells of the brain whose phenotype largely depends on their surrounding micro-environment. Microglia respond to a multitude of soluble molecules produced by a variety of brain cells. Macrophage colony-stimulating factor (M-CSF) is a cytokine found in the brain whose receptor is expressed by microglia. Previous studies suggest a critical role for M-CSF in brain development and normal functioning as well as in several disease processes involving neuroinflammation. Methods Using biopsy tissue from patients with intractable temporal epilepsy and autopsy tissue, we cultured primary adult human microglia to investigate their response to M-CSF. Mixed glial cultures were treated with 25 ng/ml M-CSF for 96 hours. Proliferation and phagocytosis assays, and high through-put immunocytochemistry, microscopy and image analysis were performed to investigate microglial phenotype and function. Results We found that the phenotype of primary adult human microglia was markedly changed following exposure to M-CSF. A greater number of microglia were present in the M-CSF- treated cultures as the percentage of proliferating (BrdU and Ki67-positive) microglia was greatly increased. A number of changes in protein expression occurred following M-CSF treatment, including increased transcription factors PU.1 and C/EBPβ, increased DAP12 adaptor protein, increased M-CSF receptor (CSF-1R) and IGF-1 receptor, and reduced HLA-DP, DQ, DR antigen presentation protein. Furthermore, a distinct morphological change was observed with elongation of microglial processes. These changes in phenotype were accompanied by a functional increase in phagocytosis of Aβ1-42 peptide. Conclusions We show here that the cytokine M-CSF dramatically influences the phenotype of adult human microglia. These results pave the way for future investigation of M-CSF-related targets for human therapeutic benefit. PMID:23866312

  8. Inhibition of Peripheral TNF-α and Downregulation of Microglial Activation by Alpha-Lipoic Acid and Etanercept Protect Rat Brain Against Ischemic Stroke.

    PubMed

    Wu, Ming-Hsiu; Huang, Chao-Ching; Chio, Chung-Ching; Tsai, Kuen-Jer; Chang, Ching-Ping; Lin, Nan-Kai; Lin, Mao-Tsun

    2016-09-01

    Ischemic stroke, caused by obstruction of blood flow to the brain, would initiate microglia activation which contributes to neuronal damage. Therefore, inhibition of microglia-mediated neuroinflammation could be a therapeutic strategy for ischemic stroke. This study was aimed to elucidate the anti-inflammatory effects of alpha-lipoic acid and etanercept given either singly or in combination in rats subjected to middle cerebral artery occlusion. Both α-lipoic acid and etanercept markedly reduced cerebral infarct, blood-brain barrier disruption, and neurological motor deficits with the former drug being more effective with the dosage used. Furthermore, when used in combination, the reduction was more substantial. Remarkably, a greater diminution in the serum levels of tumor necrosis factor-alpha as well as the brain levels of microglial activation (e.g., microgliosis, amoeboid microglia, and microglial overexpression of tumor necrosis factor-α) was observed with the combined drug treatment as compared to the drugs given separately. We conclude that inhibition of peripheral tumor necrosis factor-alpha as well as downregulation of brain microglial activation by alpha-lipoic acid or etanercept protect rat brain against ischemic stroke. Moreover, when both drugs were used in combination, the stroke recovery was promoted more extensively.

  9. Microarray and Pathway Analysis Reveal Distinct Mechanisms Underlying Cannabinoid-Mediated Modulation of LPS-Induced Activation of BV-2 Microglial Cells

    PubMed Central

    Juknat, Ana; Kozela, Ewa; Rimmerman, Neta; Levy, Rivka; Gao, Fuying; Coppola, Giovanni; Geschwind, Daniel; Vogel, Zvi

    2013-01-01

    Cannabinoids are known to exert immunosuppressive activities. However, the mechanisms which contribute to these effects are unknown. Using lipopolysaccharide (LPS) to activate BV-2 microglial cells, we examined how Δ9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, and cannabidiol (CBD) the non-psychoactive component, modulate the inflammatory response. Microarray analysis of genome-wide mRNA levels was performed using Illumina platform and the resulting expression patterns analyzed using the Ingenuity Pathway Analysis to identify functional subsets of genes, and the Ingenuity System Database to denote the gene networks regulated by CBD and THC. From the 5338 transcripts that were differentially expressed across treatments, 400 transcripts were found to be upregulated by LPS, 502 by CBD+LPS and 424 by THC+LPS, while 145 were downregulated by LPS, 297 by CBD+LPS and 149 by THC+LPS, by 2-fold or more (p≤0.005). Results clearly link the effects of CBD and THC to inflammatory signaling pathways and identify new cannabinoid targets in the MAPK pathway (Dusp1, Dusp8, Dusp2), cell cycle related (Cdkn2b, Gadd45a) as well as JAK/STAT regulatory molecules (Socs3, Cish, Stat1). The impact of CBD on LPS-stimulated gene expression was greater than that of THC. We attribute this difference to the fact that CBD highly upregulated several genes encoding negative regulators of both NFκB and AP-1 transcriptional activities, such as Trib3 and Dusp1 known to be modulated through Nrf2 activation. The CBD-specific expression profile reflected changes associated with oxidative stress and glutathione depletion via Trib3 and expression of ATF4 target genes. Furthermore, the CBD affected genes were shown to be controlled by nuclear factors usually involved in regulation of stress response and inflammation, mainly via Nrf2/Hmox1 axis and the Nrf2/ATF4-Trib3 pathway. These observations indicate that CBD, and less so THC, induce a cellular stress response and

  10. Association of Regulatory T-Cell Expansion With Progression of Amyotrophic Lateral Sclerosis: A Study of Humans and a Transgenic Mouse Model.

    PubMed

    Sheean, Rebecca K; McKay, Fiona C; Cretney, Erika; Bye, Christopher R; Perera, Nirma D; Tomas, Doris; Weston, Richard A; Scheller, Karlene J; Djouma, Elvan; Menon, Parvathi; Schibeci, Stephen D; Marmash, Najwa; Yerbury, Justin J; Nutt, Stephen L; Booth, David R; Stewart, Graeme J; Kiernan, Mathew C; Vucic, Steve; Turner, Bradley J

    2018-06-01

    Neuroinflammation appears to be a key modulator of disease progression in amyotrophic lateral sclerosis (ALS) and thereby a promising therapeutic target. The CD4+Foxp3+ regulatory T-cells (Tregs) infiltrating into the central nervous system suppress neuroinflammation and promote the activation of neuroprotective microglia in mouse models of ALS. To our knowledge, the therapeutic association of host Treg expansion with ALS progression has not been studied in vivo. To assess the role of Tregs in regulating the pathophysiology of ALS in humans and the therapeutic outcome of increasing Treg activity in a mouse model of the disease. This prospective multicenter human and animal study was performed in hospitals, outpatient clinics, and research institutes. Clinical and function assessment, as well as immunological studies, were undertaken in 33 patients with sporadic ALS, and results were compared with 38 healthy control participants who were consecutively recruited from the multidisciplinary ALS clinic at Westmead Hospital between February 1, 2013, and December 31, 2014. All data analysis on patients with ALS was undertaken between January 2015 and December 2016. Subsequently, we implemented a novel approach to amplify the endogenous Treg population using peripheral injections of interleukin 2/interleukin 2 monoclonal antibody complexes (IL-2c) in transgenic mice that expressed mutant superoxide dismutase 1 (SOD1), a gene associated with motor neuron degeneration. In patients with ALS, Treg levels were determined and then correlated with disease progression. Circulating T-cell populations, motor neuron size, glial cell activation, and T-cell and microglial gene expression in spinal cords were determined in SOD1G93A mice, as well as the association of Treg amplification with disease onset and survival time in mice. The cohort of patients with ALS included 24 male patients and 9 female patients (mean [SD] age at assessment, 58.9 [10.9] years). There was an inverse

  11. Human innate lymphoid cells.

    PubMed

    Montaldo, Elisa; Vacca, Paola; Vitale, Chiara; Moretta, Francesca; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-11-01

    The interest in innate lymphoid cells (ILC) has rapidly grown during the last decade. ILC include distinct cell types that are collectively involved in host protection against pathogens and tumor cells and in the regulation of tissue homeostasis. Studies in mice enabled a broad characterization of ILC function and of their developmental requirements. In humans all mature ILC subsets have been characterized and their role in the pathogenesis of certain disease is emerging. Nonetheless, still limited information is available on human ILC development. Indeed, only the cell precursors committed toward NK cells or ILC3 have been described. Here, we review the most recent finding on human mature ILC, discussing their tissue localization and function. Moreover, we summarize the available data regarding human ILC development. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  12. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    PubMed

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-02-03

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. Copyright © 2016 John Wiley & Sons, Inc.

  13. Spinal versus brain microglial and macrophage activation traits determine the differential neuroinflammatory responses and analgesic effect of minocycline in chronic neuropathic pain.

    PubMed

    Li, Zhilin; Wei, Hong; Piirainen, Sami; Chen, Zuyue; Kalso, Eija; Pertovaara, Antti; Tian, Li

    2016-11-01

    Substantial evidence indicates involvement of microglia/macrophages in chronic neuropathic pain. However, the temporal-spatial features of microglial/macrophage activation and their pain-bound roles remain elusive. Here, we evaluated microglia/macrophages and the subtypes in the lumbar spinal cord (SC) and prefrontal cortex (PFC), and analgesic-anxiolytic effect of minocycline at different stages following spared nerve injury (SNI) in rats. While SNI enhanced the number of spinal microglia/macrophages since post-operative day (POD)3, pro-inflammatory MHCII + spinal microglia/macrophages were unexpectedly less abundant in SNI rats than shams on POD21. By contrast, less abundant anti-inflammatory CD172a (SIRPα) + microglia/macrophages were found in the PFC of SNI rats. Interestingly in naïve rats, microglial/macrophage expression of CD11b/c, MHCII and MHCII + /CD172a + ratio were higher in the SC than the cortex. Consistently, multiple immune genes involved in anti-inflammation, phagocytosis, complement activation and M2 microglial/macrophage polarization were upregulated in the spinal dorsal horn and dorsal root ganglia but downregulated in the PFC of SNI rats. Furthermore, daily intrathecal minocycline treatment starting from POD0 for two weeks alleviated mechanical allodynia most robustly before POD3 and attenuated anxiety on POD9. Although minocycline dampened spinal MHCII + microglia/macrophages until POD13, it failed to do so on cortical microglia/macrophages, indicating that dampening only spinal inflammation may not be enough to alleviate centralized pain at the chronic stage. Taken together, our data provide the first evidence that basal microglial/macrophage traits underlie differential region-specific responses to SNI and minocycline treatment, and suggest that drug treatment efficiently targeting not only spinal but also brain inflammation may be more effective in treating chronic neuropathic pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer's disease.

    PubMed

    Mita, Tsuneyuki; Furukawa-Hibi, Yoko; Takeuchi, Hideyuki; Hattori, Hisashi; Yamada, Kiyofumi; Hibi, Hideharu; Ueda, Minoru; Yamamoto, Akihito

    2015-10-15

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by a decline in cognitive abilities and the appearance of β-amyloid plaques in the brain. Although the pathogenic mechanisms associated with AD are not fully understood, activated microglia releasing various neurotoxic factors, including pro-inflammatory cytokines and oxidative stress mediators, appear to play major roles. Here, we investigated the therapeutic benefits of a serum-free conditioned medium (CM) derived from the stem cells of human exfoliated deciduous teeth (SHEDs) in a mouse model of AD. The intranasal administration of SHEDs in these mice resulted in substantially improved cognitive function. SHED-CM contained factors involved in multiple neuroregenerative mechanisms, such as neuroprotection, axonal elongation, neurotransmission, the suppression of inflammation, and microglial regulation. Notably, SHED-CM attenuated the pro-inflammatory responses induced by β-amyloid plaques, and generated an anti-inflammatory/tissue-regenerating environment, which was accompanied by the induction of anti-inflammatory M2-like microglia. Our data suggest that SHED-CM may provide significant therapeutic benefits for AD. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Brain and Bone Damage in KARAP/DAP12 Loss-of-Function Mice Correlate with Alterations in Microglia and Osteoclast Lineages

    PubMed Central

    Nataf, Serge; Anginot, Adrienne; Vuaillat, Carine; Malaval, Luc; Fodil, Nassima; Chereul¶, Emmanuel; Langlois¶, Jean-Baptiste; Dumontel, Christiane; Cavillon, Gaelle; Confavreux, Christian; Mazzorana, Marlène; Vico, Laurence; Belin, Marie-Franaçoise; Vivier, Eric; Tomasello, Elena; Jurdic, Pierre

    2005-01-01

    Human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy, also known as Nasu-Hakola disease, has been described to be associated with mutations affecting the immunoreceptor tyrosine-based activation motif-bearing KARAP/DAP12 immunoreceptor gene. Patients present bone fragilities and severe neurological alterations leading to presenile dementia. Here we investigated whether the absence of KARAP/DAP12-mediated signals in loss-of-function (KΔ75) mice also leads to bone and central nervous system pathological features. Histological analysis of adult KΔ75 mice brains revealed a diffuse hypomyelination predominating in anterior brain regions. As this was not accompanied by oligodendrocyte degeneration or microglial cell activation it suggests a developmental defect of myelin formation. Interestingly, in postnatal KΔ75 mice, we observed a dramatic reduction in microglial cell numbers similar to in vitro microglial cell differentiation impairment. Our results raise the intriguing possibility that defective microglial cell differentiation might be responsible for abnormal myelin development. Histomorphometry revealed that bone remodeling is also altered, because of a resorption defect, associated with a severe block of in vitro osteoclast differentiation. In addition, we show that, among monocytic lineages, KARAP/DAP12 specifically controls microglial and osteoclast differentiation. Our results confirm that KARAP/DAP12-mediated signals play an important role in the regulation of both brain and bone homeostasis. Yet, important differences exist between the symptoms observed in Nasu-Hakola patients and KΔ75 mice. PMID:15632019

  16. Investigation of tissue cysts in the retina in a mouse model of ocular toxoplasmosis: distribution and interaction with glial cells.

    PubMed

    Song, Hyun Beom; Jung, Bong-Kwang; Kim, Jin Hyoung; Lee, Young-Ha; Choi, Min-Ho; Kim, Jeong Hun

    2018-06-02

    The conversion of tachyzoites into bradyzoites is a way for Toxoplasma gondii to establish a chronic and asymptomatic infection and achieve lifelong persistence in the host. The bradyzoites form tissue cysts in the retina, but not much is known about the horizontal distribution of the cysts or their interactions with glial cells in the retina. A chronic ocular toxoplasmosis model was induced by per oral administration of T. gondii Me49 strain cysts to BALB/c mice. Two months after the infection, retinas were flat-mounted and immunostained to detect cysts, ganglion cells, Müller cells, astrocytes, and microglial cells, followed by observation under fluorescence and confocal microscope. The horizontal distribution showed a rather clustered pattern, but the clusters were not restricted to certain location of the retina. Axial distribution was confined to the inner retina, mostly in ganglion cell layer or the inner plexiform layer. Both ganglion cells, a type of retinal neurons, and Müller cells, predominant retinal glial cells, could harbor cysts. The cysts were spatially separated from astrocytes, the most abundant glial cells in the ganglion cell layer, while close spatial distribution of microglial cells was observed in two thirds of retinal cysts. In this study, we demonstrated that the retinal cysts were not evenly distributed horizontally and were confined to the inner retina axially. Both neurons and one type of glial cells could harbor cysts, and topographic analysis of other glial cells suggests role of microglial cells in chronic ocular toxoplasmosis.

  17. Behaviour of CD11b-Positive Cells in an Animal Model of Laser-Induced Choroidal Neovascularisation.

    PubMed

    Li, Lu; Heiduschka, Peter; Alex, Anne F; Niekämper, Daniel; Eter, Nicole

    2017-01-01

    Immune cells, e.g. microglial cells of the retina, appear to be involved in pathological processes in neovascular age-related macular degeneration. Therefore, the purpose of this study was to immunohistochemically check the expression of various factors and cytokines by CD11b-positive (CD11b+) immune cells in an animal model of choroidal neovascularisation (CNV). We used the animal model of laser-induced CNV in mice. Eyes were isolated at 1, 4, 7, and 14 days after laser treatment. Cryosections were prepared and checked immunohistochemically for the presence of different growth factors and cytokines on microglial cells and other immune cells identified by CD11b immunoreactivity. We found that the number of CD11b+ cells at the laser spots increased dramatically 4 days after laser treatment, the majority of them entering the laser spot most probably by migration. CD11b+ cells in the laser spot were positive for a variety of pro-angiogenic factors, such as PDGF-β, FGF-1, FGF-2, and TGF-β1. They were also positive for some inflammatory cytokines, in particular TNF-α, IL-6, and CXCL1. In non-treated retinas, CD11b+ cells showed almost no immunoreactivity for these proteins. Microglial cells, macrophages, and other CD11b+ cells may promote the neovascularisation in the laser spot and show a moderate inflammatory behaviour. Immunoreactivity for most of these molecules was found to decrease during the time of observation. Modulation of immune cell activity may thus be a tool to reduce the extent of CNV. © 2017 S. Karger AG, Basel.

  18. Dose-Dependent Effect of Intravenous Administration of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Neonatal Stroke Mice

    PubMed Central

    Tanaka, Emi; Ogawa, Yuko; Mukai, Takeo; Sato, Yoshiaki; Hamazaki, Takashi; Nagamura-Inoue, Tokiko; Harada-Shiba, Mariko; Shintaku, Haruo; Tsuji, Masahiro

    2018-01-01

    Neonatal brain injury induced by stroke causes significant disability, including cerebral palsy, and there is no effective therapy for stroke. Recently, mesenchymal stem cells (MSCs) have emerged as a promising tool for stem cell-based therapies. In this study, we examined the safety and efficacy of intravenously administered human umbilical cord-derived MSCs (UC-MSCs) in neonatal stroke mice. Pups underwent permanent middle cerebral artery occlusion at postnatal day 12 (P12), and low-dose (1 × 104) or high-dose (1 × 105) UC-MSCs were administered intravenously 48 h after the insult (P14). To evaluate the effect of the UC-MSC treatment, neurological behavior and cerebral blood flow were measured, and neuroanatomical analysis was performed at P28. To investigate the mechanisms of intravenously injected UC-MSCs, systemic blood flowmetry, in vivo imaging and human brain-derived neurotrophic factor (BDNF) measurements were performed. Functional disability was significantly improved in the high-dose UC-MSC group when compared with the vehicle group, but cerebral blood flow and cerebral hemispheric volume were not restored by UC-MSC therapy. The level of exogenous human BDNF was elevated only in the cerebrospinal fluid of one pup 24 h after UC-MSC injection, and in vivo imaging revealed that most UC-MSCs were trapped in the lungs and disappeared in a week without migration toward the brain or other organs. We found that systemic blood flow was stable over the 10 min after cell administration and that there were no differences in mortality among the groups. Immunohistopathological assessment showed that the percent area of Iba1-positive staining in the peri-infarct cortex was significantly reduced with the high-dose UC-MSC treatment compared with the vehicle treatment. These results suggest that intravenous administration of UC-MSCs is safe for a mouse model of neonatal stroke and improves dysfunction after middle cerebral artery occlusion by modulating

  19. Genome engineering in human cells.

    PubMed

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  20. Sleep Deprivation Aggravates Median Nerve Injury-Induced Neuropathic Pain and Enhances Microglial Activation by Suppressing Melatonin Secretion

    PubMed Central

    Huang, Chun-Ta; Chiang, Rayleigh Ping-Ying; Chen, Chih-Li; Tsai, Yi-Ju

    2014-01-01

    Study Objectives: Sleep deprivation is common in patients with neuropathic pain, but the effect of sleep deprivation on pathological pain remains uncertain. This study investigated whether sleep deprivation aggravates neuropathic symptoms and enhances microglial activation in the cuneate nucleus (CN) in a median nerve chronic constriction injury (CCI) model. Also, we assessed if melatonin supplements during the sleep deprived period attenuates these effects. Design: Rats were subjected to sleep deprivation for 3 days by the disc-on-water method either before or after CCI. In the melatonin treatment group, CCI rats received melatonin supplements at doses of 37.5, 75, 150, or 300 mg/kg during sleep deprivation. Melatonin was administered at 23:00 once a day. Participants: Male Sprague-Dawley rats, weighing 180-250 g (n = 190), were used. Measurements: Seven days after CCI, behavioral testing was conducted, and immunohistochemistry, immunoblotting, and enzyme-linked immunosorbent assay were used for qualitative and quantitative analyses of microglial activation and measurements of proinflammatory cytokines. Results: In rats who underwent post-CCI sleep deprivation, microglia were more profoundly activated and neuropathic pain was worse than those receiving pre-CCI sleep deprivation. During the sleep deprived period, serum melatonin levels were low over the 24-h period. Administration of melatonin to CCI rats with sleep deprivation significantly attenuated activation of microglia and development of neuropathic pain, and markedly decreased concentrations of proinflammatory cytokines. Conclusions: Sleep deprivation makes rats more vulnerable to nerve injury-induced neuropathic pain, probably because of associated lower melatonin levels. Melatonin supplements to restore a circadian variation in melatonin concentrations during the sleep deprived period could alleviate nerve injury-induced behavioral hypersensitivity. Citation: Huang CT, Chiang RP, Chen CL, Tsai YJ. Sleep

  1. Early Events in Retinal Degeneration Caused by Rhodopsin Mutation or Pigment Epithelium Malfunction: Differences and Similarities

    PubMed Central

    Di Pierdomenico, Johnny; García-Ayuso, Diego; Pinilla, Isabel; Cuenca, Nicolás; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta; Villegas-Pérez, María P.

    2017-01-01

    To study the course of photoreceptor cell death and macro and microglial reactivity in two rat models of retinal degeneration with different etiologies. Retinas from P23H-1 (rhodopsin mutation) and Royal College of Surgeon (RCS, pigment epithelium malfunction) rats and age-matched control animals (Sprague-Dawley and Pievald Viro Glaxo, respectively) were cross-sectioned at different postnatal ages (from P10 to P60) and rhodopsin, L/M- and S-opsin, ionized calcium-binding adapter molecule 1 (Iba1), glial fibrillary acid protein (GFAP), and proliferating cell nuclear antigen (PCNA) proteins were immunodetected. Photoreceptor nuclei rows and microglial cells in the different retinal layers were quantified. Photoreceptor degeneration starts earlier and progresses quicker in P23H-1 than in RCS rats. In both models, microglial cell activation occurs simultaneously with the initiation of photoreceptor death while GFAP over-expression starts later. As degeneration progresses, the numbers of microglial cells increase in the retina, but decreasing in the inner retina and increasing in the outer retina, more markedly in RCS rats. Interestingly, and in contrast with healthy animals, microglial cells reach the outer nuclei and outer segment layers. The higher number of microglial cells in dystrophic retinas cannot be fully accounted by intraretinal migration and PCNA immunodetection revealed microglial proliferation in both models but more importantly in RCS rats. The etiology of retinal degeneration determines the initiation and pattern of photoreceptor cell death and simultaneously there is microglial activation and migration, while the macroglial response is delayed. The actions of microglial cells in the degeneration cannot be explained only in the basis of photoreceptor death because they participate more actively in the RCS model. Thus, the retinal degeneration caused by pigment epithelium malfunction is more inflammatory and would probably respond better to interventions

  2. Astroglial and microglial contributions to iron metabolism disturbance in Parkinson's disease.

    PubMed

    Song, Ning; Wang, Jun; Jiang, Hong; Xie, Junxia

    2018-03-01

    Understandings of the disturbed iron metabolism in Parkinson's disease (PD) are largely from the perspectives of neurons. Neurodegenerative processes in PD trigger universal and conserved astroglial dysfunction and microglial activation. In this review, we start with astroglia and microglia in PD with an emphasis on their roles in spreading α-synuclein pathology, and then focus on their contributions in iron metabolism under normal conditions and the diseased state of PD. Elevated iron in the brain regions affects glial features, meanwhile, glial effects on neuronal iron metabolism are largely dependent on their releasing factors. These advances might be valuable for better understanding and modulating iron metabolism disturbance in PD. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Phosphorylation of p53 by LRRK2 induces microglial tumor necrosis factor α-mediated neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Dong Hwan, E-mail: ethan2887@gmail.com; Seol, Wongi; Eun, Jin Hwan

    Leucine-rich repeat kinase (LRRK2), a major causal gene of Parkinson's disease (PD), functions as a kinase. The most prevalent mutation of LRRK2 is G2019S. It exhibits increased kinase activity compared to the wildtype LRRK2. Previous studies have shown that LRRK2 can phosphorylate p53 at T304 and T377 of threonine-X-arginine (TXR) motif in neurons. Reduction of LRRK2 expression or inhibition of LRRK2 kinase activity has been shown to be able to alleviate LPS-induced neuroinflammation in microglia cells. In this study, we found that LRRK2 could also phosphorylate p53 in microglia model BV2 cells. Transfection of BV2 with phosphomimetic p53 T304/377D significantlymore » increased the secretion of pro-inflammatory cytokine TNFα compared to BV2 transfected with p53 wild type after LPS treatment. In addition, conditioned media from these transfected cells increased the death of dopaminergic neuronal SN4741 cells. Moreover, such neurotoxic effect was rescued by co-treatment with the conditioned media and etanercept, a TNFα blocking antibody. Furthermore, TNFα secretion was significantly increased in primary microglia derived from G2019S transgenic mice treated with LPS compared to that in cells derived from their littermates. These results suggest that LRRK2 kinase activity in microglia can contribute to neuroinflammation in PD via phosphorylating p53 at T304 and T377 site. - Highlights: • LPS stimulates LRRK2-mediated p53 phosphorylation and its nuclear localization. • Phosphorylation of p53 by LRRK2 in microglia enhances TNFα expression. • Microglial TNFα via LRRK2-induced p53 phosphorylation decreases neuronal survival.« less

  4. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons.

    PubMed

    Huang, Shan; Ge, Xintong; Yu, Jinwen; Han, Zhaoli; Yin, Zhenyu; Li, Ying; Chen, Fanglian; Wang, Haichen; Zhang, Jianning; Lei, Ping

    2018-01-01

    Neuronal inflammation is the characteristic pathologic change of acute neurologic impairment and chronic traumatic encephalopathy after traumatic brain injury (TBI). Inhibiting the excessive inflammatory response is essential for improving the neurologic outcome. To clarify the regulatory mechanism of microglial exosomes on neuronal inflammation in TBI, we focused on studying the impact of microglial exosomal miRNAs on injured neurons in this research. We used a repetitive (r)TBI mouse model and harvested the injured brain extracts from the acute to the chronic phase of TBI to treat cultured BV2 microglia in vitro The microglial exosomes were collected for miRNA microarray analysis, which showed that the expression level of miR-124-3p increased most apparently in the miRNAs. We found that miR-124-3p promoted the anti-inflamed M2 polarization in microglia, and microglial exosomal miR-124-3p inhibited neuronal inflammation in scratch-injured neurons. Further, the mammalian target of rapamycin (mTOR) signaling was implicated as being involved in the regulation of miR-124-3p by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Using the mTOR activator MHY1485 we confirmed that the inhibitory effect of exosomal miR-124-3p on neuronal inflammation was exerted by suppressing the activity of mTOR signaling. PDE4B was predicted to be the target gene of miR-124-3p by pathway analysis. We proved that it was directly targeted by miR-124-3p with a luciferase reporter assay. Using a PDE4B overexpressed lentivirus transfection system, we suggested that miR-124-3p suppressed the activity of mTOR signaling mainly through inhibiting the expression of PDE4B. In addition, exosomal miR-124-3p promoted neurite outgrowth after scratch injury, characterized by an increase on the number of neurite branches and total neurite length, and a decreased expression on RhoA and neurodegenerative proteins [Aβ-peptide and p-Tau]. It also improved the neurologic outcome and

  5. Gc-protein-derived macrophage activating factor counteracts the neuronal damage induced by oxaliplatin.

    PubMed

    Morucci, Gabriele; Branca, Jacopo J V; Gulisano, Massimo; Ruggiero, Marco; Paternostro, Ferdinando; Pacini, Alessandra; Di Cesare Mannelli, Lorenzo; Pacini, Stefania

    2015-02-01

    Oxaliplatin-based regimens are effective in metastasized advanced cancers. However, a major limitation to their widespread use is represented by neurotoxicity that leads to peripheral neuropathy. In this study we evaluated the roles of a proven immunotherapeutic agent [Gc-protein-derived macrophage activating factor (GcMAF)] in preventing or decreasing oxaliplatin-induced neuronal damage and in modulating microglia activation following oxaliplatin-induced damage. The effects of oxaliplatin and of a commercially available formula of GcMAF [oleic acid-GcMAF (OA-GcMAF)] were studied in human neurons (SH-SY5Y cells) and in human microglial cells (C13NJ). Cell density, morphology and viability, as well as production of cAMP and expression of vascular endothelial growth factor (VEGF), markers of neuron regeneration [neuromodulin or growth associated protein-43 (Gap-43)] and markers of microglia activation [ionized calcium binding adaptor molecule 1 (Iba1) and B7-2], were determined. OA-GcMAF reverted the damage inflicted by oxaliplatin on human neurons and preserved their viability. The neuroprotective effect was accompanied by increased intracellular cAMP production, as well as by increased expression of VEGF and neuromodulin. OA-GcMAF did not revert the effects of oxaliplatin on microglial cell viability. However, it increased microglial activation following oxaliplatin-induced damage, resulting in an increased expression of the markers Iba1 and B7-2 without any concomitant increase in cell number. When neurons and microglial cells were co-cultured, the presence of OA-GcMAF significantly counteracted the toxic effects of oxaliplatin. Our results demonstrate that OA-GcMAF, already used in the immunotherapy of advanced cancers, may significantly contribute to neutralizing the neurotoxicity induced by oxaliplatin, at the same time possibly concurring to an integrated anticancer effect. The association between these two powerful anticancer molecules would probably produce

  6. Human mesenchymal stromal cell transplantation modulates neuroinflammatory milieu in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Boido, Marina; Piras, Antonio; Valsecchi, Valeria; Spigolon, Giada; Mareschi, Katia; Ferrero, Ivana; Vizzini, Andrea; Temi, Santa; Mazzini, Letizia; Fagioli, Franca; Vercelli, Alessandro

    2014-08-01

    Mesenchymal stromal cells (MSCs), after intraparenchymal, intrathecal and endovenous administration, have been previously tested for cell therapy in amyotrophic lateral sclerosis in the SOD1 (superoxide dismutase 1) mouse. However, every administration route has specific pros and cons. We administrated human MSCs (hMSCs) in the cisterna lumbaris, which is easily accessible and could be used in outpatient surgery, in the SOD1 G93A mouse, at the earliest onset of symptoms. Control animals received saline injections. Motor behavior was checked starting from 2 months of age until the mice were killed. Animals were killed 2 weeks after transplantation; lumbar motoneurons were stereologically counted, astrocytes and microglia were analyzed and quantified after immunohistochemistry and cytokine expression was assayed by means of real-time polymerase chain reaction. We provide evidence that this route of administration can exert strongly positive effects. Motoneuron death and motor decay were delayed, astrogliosis was reduced and microglial activation was modulated. In addition, hMSC transplantation prevented the downregulation of the anti-inflammatory interleukin-10, as well as that of vascular endothelial growth factor observed in saline-treated transgenic mice compared with wild type, and resulted in a dramatic increase in the expression of the anti-inflammatory interleukin-13. Our results suggest that hMSCs, when intracisternally administered, can exert their paracrine potential, influencing the inflammatory response of the host. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  7. Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo

    PubMed Central

    Roux, Clémence; Saviane, Gaëlle; Pini, Jonathan; Belaïd, Nourhène; Dhib, Gihen; Voha, Christine; Ibáñez, Lidia; Boutin, Antoine; Mazure, Nathalie M.; Wakkach, Abdelilah; Blin-Wakkach, Claudine; Rouleau, Matthieu

    2018-01-01

    Despite mesenchymal stromal cells (MSCs) are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate). Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS) cells, remediating part of these issues, are considered as well as a valuable tool for therapeutic approaches, but their functions remained to be fully characterized. We generated multipotent MSCs derived from huiPS cells (huiPS-MSCs), and focusing on their immunosuppressive activity, we showed that human T-cell activation in coculture with huiPS-MSCs was significantly reduced. We also observed the generation of functional CD4+ FoxP3+ regulatory T (Treg) cells. Further tested in vivo in a model of human T-cell expansion in immune-deficient NSG mice, huiPS-MSCs immunosuppressive activity prevented the circulation and the accumulation of activated human T cells. Intracytoplasmic labeling of cytokines produced by the recovered T cells showed reduced percentages of human-differentiated T cells producing Th1 inflammatory cytokines. By contrast, T cells producing IL-10 and FoxP3+-Treg cells, absent in non-treated animals, were detected in huiPS-MSCs treated mice. For the first time, these results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo. They may favor the development of new tools and strategies based on the use of huiPS cells and their derivatives for the induction of immune tolerance. PMID:29422893

  8. Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo.

    PubMed

    Roux, Clémence; Saviane, Gaëlle; Pini, Jonathan; Belaïd, Nourhène; Dhib, Gihen; Voha, Christine; Ibáñez, Lidia; Boutin, Antoine; Mazure, Nathalie M; Wakkach, Abdelilah; Blin-Wakkach, Claudine; Rouleau, Matthieu

    2017-01-01

    Despite mesenchymal stromal cells (MSCs) are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate). Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS) cells, remediating part of these issues, are considered as well as a valuable tool for therapeutic approaches, but their functions remained to be fully characterized. We generated multipotent MSCs derived from huiPS cells (huiPS-MSCs), and focusing on their immunosuppressive activity, we showed that human T-cell activation in coculture with huiPS-MSCs was significantly reduced. We also observed the generation of functional CD4 + FoxP3 + regulatory T (Treg) cells. Further tested in vivo in a model of human T-cell expansion in immune-deficient NSG mice, huiPS-MSCs immunosuppressive activity prevented the circulation and the accumulation of activated human T cells. Intracytoplasmic labeling of cytokines produced by the recovered T cells showed reduced percentages of human-differentiated T cells producing Th1 inflammatory cytokines. By contrast, T cells producing IL-10 and FoxP3 + -Treg cells, absent in non-treated animals, were detected in huiPS-MSCs treated mice. For the first time, these results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo . They may favor the development of new tools and strategies based on the use of huiPS cells and their derivatives for the induction of immune tolerance.

  9. Visuospatial learning and memory in the Cebus apella and microglial morphology in the molecular layer of the dentate gyrus and CA1 lacunosum molecular layer.

    PubMed

    Santos-Filho, Carlos; de Lima, Camila M; Fôro, César A R; de Oliveira, Marcus A; Magalhães, Nara G M; Guerreiro-Diniz, Cristovam; Diniz, Daniel G; Vasconcelos, Pedro F da C; Diniz, Cristovam W P

    2014-11-01

    We investigated whether the morphology of microglia in the molecular layer of the dentate gyrus (DG-Mol) or in the lacunosum molecular layer of CA1 (CA1-LMol) was correlated with spatial learning and memory in the capuchin monkey (Cebus apella). Learning and memory was tested in 4 monkeys with visuo-spatial, paired associated learning (PAL) tasks from the Cambridge battery of neuropsychological tests. After testing, monkeys were sacrificed, and hippocampi were sectioned. We specifically immunolabeled microglia with an antibody against the adapter binding, ionized calcium protein. Microglia were selected from the middle and outer thirds of the DG-Mol (n=268) and the CA1-LMol (n=185) for three-dimensional reconstructions created with Neurolucida and Neuroexplorer software. Cluster and discriminant analyses, based on microglial morphometric parameters, identified two major morphological microglia phenotypes (types I and II) found in both the CA1-LMol and DG-Mol of all individuals. Compared to type II, type I microglia were significantly smaller, thinner, more tortuous and ramified, and less complex (lower fractal dimensions). PAL performance was both linearly and non-linearly correlated with type I microglial morphological features from the rostral and caudal DG-Mol, but not with microglia from the CA1-LMol. These differences in microglial morphology and correlations with PAL performance were consistent with previous proposals of hippocampal regional contributions for spatial learning and memory. Our results suggested that at least two morphological microglial phenotypes provided distinct physiological roles to learning-associated activity in the rostral and caudal DG-Mol of the monkey brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Formation of human hepatocyte-like cells with different cellular phenotypes by human umbilical cord blood-derived cells in the human-rat chimeras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yan; Xiao, Dong; Zhang, Ruo-Shuang

    2007-06-15

    We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver.more » More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future.« less

  11. Intrathecal lidocaine pretreatment attenuates immediate neuropathic pain by modulating Nav1.3 expression and decreasing spinal microglial activation

    PubMed Central

    2011-01-01

    Background Intrathecal lidocaine reverses tactile allodynia after nerve injury, but whether neuropathic pain is attenuated by intrathecal lidocaine pretreatment is uncertain. Methods Sixty six adult male Sprague-Dawley rats were divided into three treatment groups: (1) sham (Group S), which underwent removal of the L6 transverse process; (2) ligated (Group L), which underwent left L5 spinal nerve ligation (SNL); and (3) pretreated (Group P), which underwent L5 SNL and was pretreated with intrathecal 2% lidocaine (50 μl). Neuropathic pain was assessed based on behavioral responses to thermal and mechanical stimuli. Expression of sodium channels (Nav1.3 and Nav1.8) in injured dorsal root ganglia and microglial proliferation/activation in the spinal cord were measured on post-operative days 3 (POD3) and 7 (POD7). Results Group L presented abnormal behavioral responses indicative of mechanical allodynia and thermal hyperalgesia, exhibited up-regulation of Nav1.3 and down-regulation of Nav1.8, and showed increased microglial activation. Compared with ligation only, pretreatment with intrathecal lidocaine before nerve injury (Group P), as measured on POD3, palliated both mechanical allodynia (p < 0.01) and thermal hyperalgesia (p < 0.001), attenuated Nav1.3 up-regulation (p = 0.003), and mitigated spinal microglial activation (p = 0.026) by inhibiting phosphorylation (activation) of p38 MAP kinase (p = 0.034). p38 activation was also suppressed on POD7 (p = 0.002). Conclusions Intrathecal lidocaine prior to SNL blunts the response to noxious stimuli by attenuating Nav1.3 up-regulation and suppressing activation of spinal microglia. Although its effects are limited to 3 days, intrathecal lidocaine pretreatment can alleviate acute SNL-induced neuropathic pain. PMID:21676267

  12. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics.

    PubMed

    Kooreman, Nigel G; de Almeida, Patricia E; Stack, Jonathan P; Nelakanti, Raman V; Diecke, Sebastian; Shao, Ning-Yi; Swijnenburg, Rutger-Jan; Sanchez-Freire, Veronica; Matsa, Elena; Liu, Chun; Connolly, Andrew J; Hamming, Jaap F; Quax, Paul H A; Brehm, Michael A; Greiner, Dale L; Shultz, Leonard D; Wu, Joseph C

    2017-08-22

    There is growing interest in using embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an "allogenized" mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. c-Myc-Dependent Cell Competition in Human Cancer Cells.

    PubMed

    Patel, Manish S; Shah, Heta S; Shrivastava, Neeta

    2017-07-01

    Cell Competition is an interaction between cells for existence in heterogeneous cell populations of multicellular organisms. This phenomenon is involved in initiation and progression of cancer where heterogeneous cell populations compete directly or indirectly for the survival of the fittest based on differential gene expression. In Drosophila, cells having lower dMyc expression are eliminated by cell competition through apoptosis when present in the milieu of cells having higher dMyc expression. Thus, we designed a study to develop c-Myc (human homolog) dependent in vitro cell competition model of human cancer cells. Cells with higher c-Myc were transfected with c-myc shRNA to prepare cells with lower c-Myc and then co-cultured with the same type of cells having a higher c-Myc in equal ratio. Cells with lower c-Myc showed a significant decrease in numbers when compared with higher c-Myc cells, suggesting "loser" and "winner" status of cells, respectively. During microscopy, engulfment of loser cells by winner cells was observed with higher expression of JNK in loser cells. Furthermore, elimination of loser cells was prevented significantly, when co-cultured cells were treated with the JNK (apoptosis) inhibitor. Above results indicate elimination of loser cells in the presence of winner cells by c-Myc-dependent mechanisms of cell competition in human cancer cells. This could be an important mechanism in human tumors where normal cells are eliminated by c-Myc-overexpressed tumor cells. J. Cell. Biochem. 118: 1782-1791, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. The neural cell adhesion molecule-derived peptide, FGL, attenuates lipopolysaccharide-induced changes in glia in a CD200-dependent manner.

    PubMed

    Cox, F F; Berezin, V; Bock, E; Lynch, M A

    2013-04-03

    Fibroblast growth loop (FGL) is a neural cell adhesion molecule (NCAM)-mimetic peptide that mimics the interaction of NCAM with fibroblast growth factor receptor (FGFR). FGL increases neurite outgrowth and promotes neuronal survival in vitro, and it has also been shown to have neuroprotective effects in vivo. More recent evidence has indicated that FGL has anti-inflammatory effects, decreasing age-related changes in microglial activation and production of inflammatory cytokines. These changes have been associated with an FGL-induced increase in expression of the glycoprotein, CD200, which interacts with its receptor to help maintain microglia in a quiescent state. However whether the FGL-induced anti-inflammatory effects are CD200-dependent has not been examined. The objective of this study was to address this question. Mixed glia were prepared from brain tissue of neonatal wildtype and CD200-deficient mice and preincubated with FGL prior to stimulation with lipopolysaccharide (LPS). Cells were assessed for mRNA expression of markers of microglial activation, CD11b, CD40 and intercellular adhesion molecule 1 (ICAM-1) and also the inflammatory cytokines, interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α, while supernatant concentrations of these cytokine were also assessed. LPS significantly increased all these parameters and the effect was greater in cells prepared from CD200-deficient mice. Whereas FGL attenuated the LPS-induced changes in cells from wildtype mice, it did not do so in cells from CD200-deficient mice. We conclude that the FGL-induced changes in microglial activation are CD200-dependent and demonstrate that the interaction of astrocytes with microglia is critically important for modulating microglial activation. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Activation of human T cells in hypertension: Studies of Humanized Mice and Hypertensive Humans

    PubMed Central

    Itani, Hana A.; McMaster, William G.; Saleh, Mohamed A.; Nazarewicz, Rafal R.; Mikolajczyk, Tomasz P.; Kaszuba, Anna; Konior, Anna; Prejbisz, Aleksander; Januszewicz, Andrzej; Norlander, Allison E.; Chen, Wei; Bonami, Rachel H.; Marshall, Andrew F.; Poffenberger, Greg; Weyand, Cornelia M.; Madhur, Meena S.; Moore, Daniel J.; Harrison, David G.; Guzik, Tomasz J.

    2016-01-01

    Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We employed a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 mm Hg vs. 116 mm Hg for sham treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta and kidney revealed increased infiltration of human leukocytes (CD45+) and T lymphocytes (CD3+ and CD4+) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3+/CD45RO+) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T cell proliferation. We also observed an increase in circulating IL-17A producing CD4+ T cells and both CD4+ and CD8+ T cells that produce IFN-γ in hypertensive compared to normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II. PMID:27217403

  16. Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans.

    PubMed

    Itani, Hana A; McMaster, William G; Saleh, Mohamed A; Nazarewicz, Rafal R; Mikolajczyk, Tomasz P; Kaszuba, Anna M; Konior, Anna; Prejbisz, Aleksander; Januszewicz, Andrzej; Norlander, Allison E; Chen, Wei; Bonami, Rachel H; Marshall, Andrew F; Poffenberger, Greg; Weyand, Cornelia M; Madhur, Meena S; Moore, Daniel J; Harrison, David G; Guzik, Tomasz J

    2016-07-01

    Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45(+)) and T lymphocytes (CD3(+) and CD4(+)) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3(+)/CD45RO(+)) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4(+) T cells and both CD4(+) and CD8(+) T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II. © 2016 American Heart Association, Inc.

  17. Activated Microglia Desialylate and Phagocytose Cells via Neuraminidase, Galectin-3, and Mer Tyrosine Kinase

    PubMed Central

    Nomura, Koji; Vilalta, Anna; Allendorf, David H.; Hornik, Tamara C.

    2017-01-01

    Activated microglia can phagocytose dying, stressed, or excess neurons and synapses via the phagocytic receptor Mer tyrosine kinase (MerTK). Galectin-3 (Gal-3) can cross-link surface glycoproteins by binding galactose residues that are normally hidden below terminal sialic acid residues. Gal-3 was recently reported to opsonize cells via activating MerTK. We found that LPS-activated BV-2 microglia rapidly released Gal-3, which was blocked by calcineurin inhibitors. Gal-3 bound to MerTK on microglia and to stressed PC12 (neuron-like) cells, and it increased microglial phagocytosis of PC12 cells or primary neurons, which was blocked by inhibition of MerTK. LPS-activated microglia exhibited a sialidase activity that desialylated PC12 cells and could be inhibited by Tamiflu, a neuraminidase (sialidase) inhibitor. Sialidase treatment of PC12 cells enabled Gal-3 to bind and opsonize the live cells for phagocytosis by microglia. LPS-induced microglial phagocytosis of PC12 was prevented by small interfering RNA knockdown of Gal-3 in microglia, lactose inhibition of Gal-3 binding, inhibition of neuraminidase with Tamiflu, or inhibition of MerTK by UNC569. LPS-induced phagocytosis of primary neurons by primary microglia was also blocked by inhibition of MerTK. We conclude that activated microglia release Gal-3 and a neuraminidase that desialylates microglial and PC12 surfaces, enabling Gal-3 binding to PC12 cells and their phagocytosis via MerTK. Thus, Gal-3 acts as an opsonin of desialylated surfaces, and inflammatory loss of neurons or synapses may potentially be blocked by inhibiting neuraminidases, Gal-3, or MerTK. PMID:28500071

  18. Induction of insulin-producing cells from human pancreatic progenitor cells.

    PubMed

    Noguchi, H; Naziruddin, B; Shimoda, M; Fujita, Y; Chujo, D; Takita, M; Peng, H; Sugimoto, K; Itoh, T; Tamura, Y; Olsen, G S; Kobayashi, N; Onaca, N; Hayashi, S; Levy, M F; Matsumoto, S

    2010-01-01

    We previously established a mouse pancreatic stem cell line without genetic manipulation. In this study, we sought to identify and isolate human pancreatic stem/progenitor cells. We also tested whether growth factors and protein transduction of pancreatic and duodenal homeobox factor-1 (PDX-1) and BETA2/NeuroD into human pancreatic stem/progenitor cells induced insulin or pancreas-related gene expressions. Human pancreata from brain-dead donors were used for islet isolation with the standard Ricordi technique modified by the Edmonton protocol. The cells from a duct-rich population were cultured in several media, based on those designed for mouse pancreatic or for human embryonic stem cells. To induce cell differentiation, cells were cultured for 2 weeks with exendin-4, nicotinamide, keratinocyte growth factor, PDX-1 protein, or BETA2/NeuroD protein. The cells in serum-free media showed morphologies similar to a mouse pancreatic stem cell line, while the cells in the medium for human embryonic stem cells formed fibroblast-like morphologies. The nucleus/cytoplasm ratios of the cells in each culture medium decreased during the culture. The cells stopped dividing after 30 days, suggesting that they had entered senescence. The cells treated with induction medium differentiated into insulin-producing cells, expressing pancreas-related genes. Duplications of cells from a duct-rich population were limited. Induction therapy with several growth factors and transduction proteins might provide a potential new strategy for induction of transplantable insulin-producing cells. Copyright 2010 Elsevier Inc. All rights reserved.

  19. High content analysis of phagocytic activity and cell morphology with PuntoMorph.

    PubMed

    Al-Ali, Hassan; Gao, Han; Dalby-Hansen, Camilla; Peters, Vanessa Ann; Shi, Yan; Brambilla, Roberta

    2017-11-01

    Phagocytosis is essential for maintenance of normal homeostasis and healthy tissue. As such, it is a therapeutic target for a wide range of clinical applications. The development of phenotypic screens targeting phagocytosis has lagged behind, however, due to the difficulties associated with image-based quantification of phagocytic activity. We present a robust algorithm and cell-based assay system for high content analysis of phagocytic activity. The method utilizes fluorescently labeled beads as a phagocytic substrate with defined physical properties. The algorithm employs statistical modeling to determine the mean fluorescence of individual beads within each image, and uses the information to conduct an accurate count of phagocytosed beads. In addition, the algorithm conducts detailed and sophisticated analysis of cellular morphology, making it a standalone tool for high content screening. We tested our assay system using microglial cultures. Our results recapitulated previous findings on the effects of microglial stimulation on cell morphology and phagocytic activity. Moreover, our cell-level analysis revealed that the two phenotypes associated with microglial activation, specifically cell body hypertrophy and increased phagocytic activity, are not highly correlated. This novel finding suggests the two phenotypes may be under the control of distinct signaling pathways. We demonstrate that our assay system outperforms preexisting methods for quantifying phagocytic activity in multiple dimensions including speed, accuracy, and resolution. We provide a framework to facilitate the development of high content assays suitable for drug screening. For convenience, we implemented our algorithm in a standalone software package, PuntoMorph. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem

  1. Development and function of human innate immune cells in a humanized mouse model.

    PubMed

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A

    2014-04-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

  2. Development and function of human innate immune cells in a humanized mouse model

    PubMed Central

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V.; Teichmann, Lino L.; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A. Karolina; Manz, Markus G.; Flavell, Richard A.

    2014-01-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models are unable to support development of human innate immune cells, including myeloid cells and NK cells. Here we describe a mouse strain, called MI(S)TRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked in to their respective mouse loci. The human cytokines support the development and function of monocytes/macrophages and natural killer cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MI(S)TRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology. PMID:24633240

  3. Deferoxamine inhibits microglial activation, attenuates blood-brain barrier disruption, rescues dendritic damage, and improves spatial memory in a mouse model of microhemorrhages.

    PubMed

    He, Xiao-Fei; Lan, Yue; Zhang, Qun; Liu, Dong-Xu; Wang, Qinmei; Liang, Feng-Ying; Zeng, Jin-Sheng; Xu, Guang-Qing; Pei, Zhong

    2016-08-01

    Cerebral microbleeds are strongly linked to cognitive dysfunction in the elderly. Iron accumulation plays an important role in the pathogenesis of intracranial hemorrhage. Deferoxamine (DFX), a metal chelator, removes iron overload and protects against brain damage in intracranial hemorrhage. In this study, the protective effects of DFX against microhemorrhage were examined in mice. C57BL6 and Thy-1 green fluorescent protein transgenic mice were subjected to perforating artery microhemorrhages on the right posterior parietal cortex using two-photon laser irradiation. DFX (100 mg/kg) was administered 6 h after microhemorrhage induction, followed by every 12 h for three consecutive days. The water maze task was conducted 7 days after induction of microhemorrhages, followed by measurement of blood-brain barrier permeability, iron deposition, microglial activation, and dendritic damage. Laser-induced multiple microbleeds in the right parietal cortex clearly led to spatial memory disruption, iron deposits, microglial activation, and dendritic damage, which were significantly attenuated by DFX, supporting the targeting of iron overload as a therapeutic option and the significant potential of DFX in microhemorrhage treatment. Irons accumulation after intracranial hemorrhage induced a serious secondary damage to the brain. We proposed that irons accumulation after parietal microhemorrhages impaired spatial cognition. After parietal multiple microhemorrhages, increased irons and ferritin contents induced blood-brain barrier disruption, microglial activation, and further induced dendrites loss, eventually impaired the water maze, deferoxamine treatment protected from these damages. © 2016 International Society for Neurochemistry.

  4. Utilization of human amniotic mesenchymal cells as feeder layers to sustain propagation of human embryonic stem cells in the undifferentiated state.

    PubMed

    Zhang, Kehua; Cai, Zhe; Li, Yang; Shu, Jun; Pan, Lin; Wan, Fang; Li, Hong; Huang, Xiaojie; He, Chun; Liu, Yanqiu; Cui, Xiaohui; Xu, Yang; Gao, Yan; Wu, Liqun; Cao, Shanxia; Li, Lingsong

    2011-08-01

    Human embryonic stem (ES) cells are usually maintained in the undifferentiated state by culturing on feeder cells layers of mouse embryonic fibroblasts (MEFs). However, MEFs are not suitable to support human ES cells used for clinical purpose because of risk of zoonosis from animal cells. Therefore, human tissue-based feeder layers need to be developed for human ES cells for clinical purpose. Hereof we report that human amniotic mesenchymal cells (hAMCs) could act as feeder cells for human ES cells, because they are easily obtained and relatively exempt from ethical problem. Like MEFs, hAMCs could act as feeder cells for human ES cells to grow well on. The self-renewal rate of human ES cells cultured on hAMCs feeders was higher than that on MEFs and human amniotic epithelial cells determined by measurement of colonial diameters and growth curve as well as cell cycle analysis. Both immunofluorescence staining and immunoblotting showed that human ES cells cultured on hAMCs expressed stem cell markers such as Oct-3/4, Sox2, and NANOG. Verified by embryoid body formation in vitro and teratoma formation in vivo, we found out that after 20 passages of culture, human ES cells grown on hAMCs feeders could still retain the potency of differentiating into three germ layers. Taken together, our data suggested hAMCs may be safe feeder cells to sustain the propagation of human ES cells in undifferentiated state for future therapeutic use.

  5. Human monoclonal antibodies reactive with human myelomonocytic leukemia cells.

    PubMed

    Posner, M R; Santos, D J; Elboim, H S; Tumber, M B; Frackelton, A R

    1989-04-01

    Peripheral blood mononuclear cells from a patient with chronic myelogenous leukemia (CML), in remission, were depleted of CD8-positive T-cells and cultured with Epstein-Barr virus. Four of 20 cultures (20%) secreted human IgG antibodies selectively reactive with the cell surfaces of certain human leukemia cell lines. Three polyclonal, Epstein-Barr virus-transformed, B-cell lines were expanded and fused with the human-mouse myeloma analogue HMMA2.11TG/O. Antibody from secreting clones HL 1.2 (IgG1), HL 2.1 (IgG3), and HL 3.1 (IgG1) have been characterized. All three react with HL-60 (promyelocytic), RWLeu4 (CML promyelocytic), and U937 (monocytic), but not with KG-1 (myeloblastic) or K562 (CML erythroid). There is no reactivity with T-cell lines, Burkitt's cell lines, pre-B-leukemia cell lines, or an undifferentiated CML cell line, BV173. Leukemic cells from two of seven patients with acute myelogenous leukemia and one of five with acute lymphocytic leukemia react with all three antibodies. Normal lymphocytes, monocytes, polymorphonuclear cells, red blood cells, bone marrow cells, and platelets do not react. Samples from patients with other diverse hematopoietic malignancies showed no reactivity. Immunoprecipitations suggest that the reactive antigen(s) is a lactoperoxidase iodinatable series of cell surface proteins with molecular weights of 42,000-54,000 and a noniodinatable protein with a molecular weight of 82,000. Based on these data these human monoclonal antibodies appear to react with myelomonocytic leukemic cells and may detect a leukemia-specific antigen or a highly restricted differentiation antigen.

  6. Cell-to-Cell Contact and Nectin-4 Govern Spread of Measles Virus from Primary Human Myeloid Cells to Primary Human Airway Epithelial Cells.

    PubMed

    Singh, Brajesh K; Li, Ni; Mark, Anna C; Mateo, Mathieu; Cattaneo, Roberto; Sinn, Patrick L

    2016-08-01

    Measles is a highly contagious, acute viral illness. Immune cells within the airways are likely first targets of infection, and these cells traffic measles virus (MeV) to lymph nodes for amplification and subsequent systemic dissemination. Infected immune cells are thought to return MeV to the airways; however, the mechanisms responsible for virus transfer to pulmonary epithelial cells are poorly understood. To investigate this process, we collected blood from human donors and generated primary myeloid cells, specifically, monocyte-derived macrophages (MDMs) and dendritic cells (DCs). MDMs and DCs were infected with MeV and then applied to primary cultures of well-differentiated airway epithelial cells from human donors (HAE). Consistent with previous results obtained with free virus, infected MDMs or DCs were incapable of transferring MeV to HAE when applied to the apical surface. Likewise, infected MDMs or DCs applied to the basolateral surface of HAE grown on small-pore (0.4-μm) support membranes did not transfer virus. In contrast, infected MDMs and DCs applied to the basolateral surface of HAE grown on large-pore (3.0-μm) membranes successfully transferred MeV. Confocal microscopy demonstrated that MDMs and DCs are capable of penetrating large-pore membranes but not small-pore membranes. Further, by using a nectin-4 blocking antibody or recombinant MeV unable to enter cells through nectin-4, we demonstrated formally that transfer from immune cells to HAE occurs in a nectin-4-dependent manner. Thus, both infected MDMs and DCs rely on cell-to-cell contacts and nectin-4 to efficiently deliver MeV to the basolateral surface of HAE. Measles virus spreads rapidly and efficiently in human airway epithelial cells. This rapid spread is based on cell-to-cell contact rather than on particle release and reentry. Here we posit that MeV transfer from infected immune cells to epithelial cells also occurs by cell-to-cell contact rather than through cell-free particles. In

  7. Variability of human pluripotent stem cell lines.

    PubMed

    Ortmann, Daniel; Vallier, Ludovic

    2017-10-01

    Human pluripotent stem cells derived from embryos (human Embryonic Stem Cells or hESCs) or generated by direct reprogramming of somatic cells (human Induced Pluripotent Stem Cells or hiPSCs) can proliferate almost indefinitely in vitro while maintaining the capacity to differentiate into a broad diversity of cell types. These two properties (self-renewal and pluripotency) confers human pluripotent stem cells a unique interest for clinical applications since they could allow the production of infinite quantities of cells for disease modelling, drug screening and cell based therapy. However, recent studies have clearly established that human pluripotent stem cell lines can display variable capacity to differentiate into specific lineages. Consequently, the development of universal protocols of differentiation which could work efficiently with any human pluripotent cell line is complicated substantially. As a consequence, each protocol needs to be adapted to every cell line thereby limiting large scale applications and precluding personalised therapies. Here, we summarise our knowledge concerning the origin of this variability and describe potential solutions currently available to bypass this major challenge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Signaling hierarchy regulating human endothelial cell development.

    PubMed

    Kelly, Melissa A; Hirschi, Karen K

    2009-05-01

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these studies. Using human embryonic stem cells as a model system, we were able to reproducibly and robustly generate differentiated endothelial cells via coculture on OP9 marrow stromal cells. We found that, in contrast to studies in the mouse, bFGF and VEGF had no specific effects on the initiation of human vasculogenesis. However, exogenous Ihh promoted endothelial cell differentiation, as evidenced by increased production of cells with cobblestone morphology that coexpress multiple endothelial-specific genes and proteins, form lumens, and exhibit DiI-AcLDL uptake. Inhibition of BMP signaling using Noggin or BMP4, specifically, using neutralizing antibodies suppressed endothelial cell formation; whereas, addition of rhBMP4 to cells treated with the hedgehog inhibitor cyclopamine rescued endothelial cell development. Our studies revealed that Ihh promoted human endothelial cell differentiation from pluripotent hES cells via BMP signaling, providing novel insights applicable to modulating human endothelial cell formation and vascular regeneration for human clinical therapies.

  9. Microglia is activated by astrocytes in trimethyltin intoxication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roehl, Claudia; Sievers, Jobst

    2005-04-01

    Microglia participates in most acute and chronic neuropathologies and its activation appears to involve interactions with neurons and other glial cells. Trimethyltin (TMT)-induced brain damage is a well-characterized model of neurodegeneration, in which microglial activation occurs before neuronal degeneration. The aim of this in vitro study was to investigate the role of astroglia in TMT-induced microgliosis by using nitric oxide (NO), inducible NO synthase (iNOS), and morphological changes as parameters for microglial activation. Our investigation discusses (a) whether microglial cells can be activated directly by TMT; (b) if astroglial cells are capable of triggering or modulating microglial activation; (c) howmore » the morphology and survival of microglia and astrocytes are affected by TMT treatment; and (d) whether microglial-astroglial interactions depend on direct cell contact or on soluble factors. Our results show that microglia are more vulnerable to TMT than astrocytes are and cannot be activated directly by TMT with regard to the examined parameters. In bilayer coculture with viable astroglial cells, microglia produce NO in significant amounts at subcytotoxic concentrations of TMT (20 {mu}mol/l). At these TMT concentrations, microglial cells in coculture convert into small round cells without cell processes, whereas flat, fibroblast-like astrocytes convert into thin process bearing stellate cells with a dense and compact cell body. We conclude that astrocytes trigger microglial activation after treatment with TMT, although the mechanisms of this interaction remain unknown.« less

  10. Embryonic Stem Cell Patents and Human Dignity

    PubMed Central

    Resnik, David B.

    2009-01-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells. PMID:17922198

  11. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury.

    PubMed

    Chen, Xiangrong; Wu, Shukai; Chen, Chunnuan; Xie, Baoyuan; Fang, Zhongning; Hu, Weipeng; Chen, Junyan; Fu, Huangde; He, Hefan

    2017-07-24

    Microglial activation and the subsequent inflammatory response in the central nervous system play important roles in secondary damage after traumatic brain injury (TBI). High-mobility group box 1 (HMGB1) protein, an important mediator in late inflammatory responses, interacts with transmembrane receptor for advanced glycation end products (RAGE) and toll-like receptors (TLRs) to activate downstream signaling pathways, such as the nuclear factor (NF)-κB signaling pathway, leading to a cascade amplification of inflammatory responses, which are related to neuronal damage after TBI. Omega-3 polyunsaturated fatty acid (ω-3 PUFA) is a commonly used clinical immunonutrient, which has antioxidative and anti-inflammatory effects. However, the effects of ω-3 PUFA on HMGB1 expression and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway are not clear. The Feeney DM TBI model was adopted to induce brain injury in rats. Modified neurological severity scores, brain water content, and Nissl staining were employed to determine the neuroprotective effects of ω-3 PUFA supplementation. Assessment of microglial activation in lesioned sites and protein markers for proinflammatory, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, interferon (IFN)-γ, and HMGB1 were used to evaluate neuroinflammatory responses and anti-inflammation effects of ω-3 PUFA supplementation. Immunofluorescent staining and western blot analysis were used to detect HMGB1 nuclear translocation, secretion, and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway to evaluate the effects of ω-3 PUFA supplementation and gain further insight into the mechanisms underlying the development of the neuroinflammatory response after TBI. It was found that ω-3 PUFA supplementation inhibited TBI-induced microglial activation and expression of inflammatory factors (TNF-α, IL-1β, IL-6, and IFN-γ), reduced brain edema, decreased neuronal apoptosis, and improved neurological

  12. Human Cells Display Reduced Apoptotic Function Relative to Chimpanzee Cells

    PubMed Central

    McDonald, John F.

    2012-01-01

    Previously published gene expression analyses suggested that apoptotic function may be reduced in humans relative to chimpanzees and led to the hypothesis that this difference may contribute to the relatively larger size of the human brain and the increased propensity of humans to develop cancer. In this study, we sought to further test the hypothesis that humans maintain a reduced apoptotic function relative to chimpanzees by conducting a series of apoptotic function assays on human, chimpanzee and macaque primary fibroblastic cells. Human cells consistently displayed significantly reduced apoptotic function relative to the chimpanzee and macaque cells. These results are consistent with earlier findings indicating that apoptotic function is reduced in humans relative to chimpanzees. PMID:23029431

  13. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    PubMed

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  14. Rapid neuroinflammatory response localized to injured neurons after diffuse traumatic brain injury in swine.

    PubMed

    Wofford, Kathryn L; Harris, James P; Browne, Kevin D; Brown, Daniel P; Grovola, Michael R; Mietus, Constance J; Wolf, John A; Duda, John E; Putt, Mary E; Spiller, Kara L; Cullen, D Kacy

    2017-04-01

    Despite increasing appreciation of the critical role that neuroinflammatory pathways play in brain injury and neurodegeneration, little is known about acute microglial reactivity following diffuse traumatic brain injury (TBI) - the most common clinical presentation that includes all concussions. Therefore, we investigated acute microglial reactivity using a porcine model of closed-head rotational velocity/acceleration-induced TBI that closely mimics the biomechanical etiology of inertial TBI in humans. We observed rapid microglial reactivity within 15min of both mild and severe TBI. Strikingly, microglial activation was restrained to regions proximal to individual injured neurons - as denoted by trauma-induced plasma membrane disruption - which served as epicenters of acute reactivity. Single-cell quantitative analysis showed that in areas free of traumatically permeabilized neurons, microglial density and morphology were similar between sham or following mild or severe TBI. However, microglia density increased and morphology shifted to become more reactive in proximity to injured neurons. Microglial reactivity around injured neurons was exacerbated following repetitive TBI, suggesting further amplification of acute neuroinflammatory responses. These results indicate that neuronal trauma rapidly activates microglia in a highly localized manner, and suggest that activated microglia may rapidly influence neuronal stability and/or pathophysiology after diffuse TBI. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Synergistic Effects of Psychosocial Stress and Mild Peripheral Infection on Inducing Microglial Activation in the Hippocampal Dentate Gyrus and Long-Lasting Deficits in Hippocampus-Related Memory.

    PubMed

    Tzeng, Wen-Yu; Su, Chien-Chou; Sun, Li-Han; Cherng, Chianfang G.; Yu, Lung

    2018-04-30

    Lipopolysaccharide (LPS) treatment and stress may cause immune activation in the brain, an event which has been thought to play a role in mediating stress-induced cognitive dysfunction. However, the enduring impact of psychosocial stress on brain immune activation or cognitive deficits has not been well investigated. Likewise, it remains unexplored whether there exist synergistic effects of psychosocial stress and a weak systemic LPS treatment on brain immune activation and/or cognitive function. In this work, a 10-day social defeat regimen was used to model psychosocial stress and the number and density of ionized calcium-binding adaptor molecule 1 (Iba1)-stained microglia was used to reveal brain immune activation in male Balb/C mice. The social defeat regimen did not cause observable microglial activation in dentate gyrus (DG) 24 h after the conclusion of the regimen. Microglial activation peaked in DG 24 h following a single 1 mg/kg intra-peritoneal LPS injection. At this time point, DG microglial activation was not evident providing 0.125 mg/kg or lower of LPS was used, this dose of LPS was, thus, regarded as the “sub-threshold” in this study. Twenty-four h after the conclusion of the defeat regimen, mice received a social interaction test to determine their defeat stress susceptibility and a “sub-threshold” LPS injection. DG microglial activation was observed in the defeat-stress susceptible, but not in the resilient, mice. Furthermore, the stress-susceptible mice showed impairment in object location and Y maze tasks 24 and 72 h after the “sub-threshold” LPS injection. These results suggest that psychosocial stress, when combined with a negligible peripheral infection, may induce long-lasting hippocampus-related memory deficits exclusively in subjects susceptible to psychosocial stresses.

  16. Human ES cells – haematopoiesis and transplantation strategies*

    PubMed Central

    Kaufman, DS; Thomson, JA

    2002-01-01

    Human embryonic stem (ES) cells provide a novel opportunity to study early developmental events in a human system. We have used human ES cell lines, including clonally derived lines, to evaluate haematopoiesis. Co-culture of the human ES cells with irradiated bone marrow stromal cell lines in the presence of fetal bovine serum (FBS), but without other exogenous cytokines, leads to differentiation of the human ES cells within a matter of days. A portion of these differentiated cells express CD34, the best-defined marker for early haematopoietic cells. Haematopoietic colony-forming cells (CFCs) are demonstrated by methylcellulose assay. Myeloid, erythroid, megakaryocyte and multipotential CFCs can all be derived under these conditions. Enrichment of CD34+ cells derived from the human ES cells markedly increases the yield of CFCs, as would be expected for cells derived from adult bone marrow or umbilical cord blood. Transcription factors are also expressed in a manner consistent with haematopoietic differentiation. This system now presents the potential to evaluate specific conditions needed to induce or support events in early human blood development. Human ES cells are also a novel source of cells for transplantation therapies. The immunogenicity of ES cell-derived cells is unknown. The unique properties of ES cells afford the opportunity to explore novel mechanisms to prevent immune-mediated rejection. Potential strategies to overcome rejection will be presented, including creation of haematopoietic chimerism as a means to successfully transplant cells and tissues derived from human ES cells. PMID:12033728

  17. Substance P Exacerbates Dopaminergic Neurodegeneration through Neurokinin-1 Receptor-Independent Activation of Microglial NADPH Oxidase

    PubMed Central

    Chu, Chun-Hsien; Qian, Li; Chen, Shih-Heng; Wilson, Belinda; Oyarzabal, Esteban; Jiang, Lulu; Ali, Syed; Robinson, Bonnie; Kim, Hyoung-Chun

    2014-01-01

    Although dysregulated substance P (SP) has been implicated in the pathophysiology of Parkinson's disease (PD), how SP affects the survival of dopaminergic neurons remains unclear. Here, we found that mice lacking endogenous SP (TAC1−/−), but not those deficient in the SP receptor (neurokinin-1 receptor, NK1R), were more resistant to lipopolysaccharide (LPS)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic neurodegeneration than wild-type controls, suggesting a NK1R-independent toxic action of SP. In vitro dose–response studies revealed that exogenous SP enhanced LPS- and 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic neurodegeneration in a bimodal manner, peaking at submicromolar and subpicomolar concentrations, but was substantially less effective at intermediate concentrations. Mechanistically, the actions of submicromolar levels of SP were NK1R-dependent, whereas subpicomolar SP-elicited actions required microglial NADPH oxidase (NOX2), the key superoxide-producing enzyme, but not NK1R. Subpicomolar concentrations of SP activated NOX2 by binding to the catalytic subunit gp91phox and inducing membrane translocation of the cytosolic subunits p47phox and p67phox. The importance of NOX2 was further corroborated by showing that inhibition or disruption of NOX2 blocked subpicomolar SP-exacerbated neurotoxicity. Together, our findings revealed a critical role of microglial NOX2 in mediating the neuroinflammatory and dopaminergic neurodegenerative effects of SP, which may provide new insights into the pathogenesis of PD. PMID:25209287

  18. Cell motion predicts human epidermal stemness

    PubMed Central

    Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki

    2015-01-01

    Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083

  19. Functional characterization of human pluripotent stem cell-derived arterial endothelial cells.

    PubMed

    Zhang, Jue; Chu, Li-Fang; Hou, Zhonggang; Schwartz, Michael P; Hacker, Timothy; Vickerman, Vernella; Swanson, Scott; Leng, Ning; Nguyen, Bao Kim; Elwell, Angela; Bolin, Jennifer; Brown, Matthew E; Stewart, Ron; Burlingham, William J; Murphy, William L; Thomson, James A

    2017-07-25

    Here, we report the derivation of arterial endothelial cells from human pluripotent stem cells that exhibit arterial-specific functions in vitro and in vivo. We combine single-cell RNA sequencing of embryonic mouse endothelial cells with an EFNB2-tdTomato/EPHB4-EGFP dual reporter human embryonic stem cell line to identify factors that regulate arterial endothelial cell specification. The resulting xeno-free protocol produces cells with gene expression profiles, oxygen consumption rates, nitric oxide production levels, shear stress responses, and TNFα-induced leukocyte adhesion rates characteristic of arterial endothelial cells. Arterial endothelial cells were robustly generated from multiple human embryonic and induced pluripotent stem cell lines and have potential applications for both disease modeling and regenerative medicine.

  20. Susceptibility of human liver cells to porcine endogenous retrovirus.

    PubMed

    Lin, Xinzi; Qi, Lin; Li, Zhiguo; Chi, Hao; Lin, Wanjun; Wang, Yan; Jiang, Zesheng; Pan, Mingxin; Gao, Yi

    2013-12-01

    The risk of porcine endogenous retrovirus infection is a major barrier for pig-to-human xenotransplant. Porcine endogenous retrovirus, present in porcine cells, can infect many human and nonhuman primate cells in vitro, but there is no evidence available about in vitro infection of human liver cells. We investigated the susceptibility of different human liver cells to porcine endogenous retrovirus. The supernatant from a porcine kidney cell line was added to human liver cells, including a normal hepatocyte cell line (HL-7702 cells), primary hepatocytes (Phh cells), and a liver stellate cell line (Lx-2 cells), and to human embryonic kidney cells as a reference control. Expression of the porcine endogenous retrovirus antigen p15E in the human cells was evaluated with polymerase chain reaction, reverse transcription-polymerase chain reaction, and Western blot. The porcine endogenous retrovirus antigen p15E was not expressed in any human liver cells (HL-7702, Phh, or Lx-2 cells) that had been exposed to supernatants from porcine kidney cell lines. Porcine endogenous retrovirus-specific fragments were amplified in human kidney cells. Human liver cells tested were not susceptible to infection by porcine endogenous retrovirus. Therefore, not all human cells are susceptible to porcine endogenous retrovirus.

  1. Generation and characteristics of human Sertoli cell line immortalized by overexpression of human telomerase

    PubMed Central

    Wen, Liping; Yuan, Qingqing; Sun, Min; Niu, Minghui; Wang, Hong; Fu, Hongyong; Zhou, Fan; Yao, Chencheng; Wang, Xiaobo; Li, Zheng; He, Zuping

    2017-01-01

    Sertoli cells are required for normal spermatogenesis and they can be reprogrammed to other types of functional cells. However, the number of primary Sertoli cells is rare and human Sertoli cell line is unavailable. In this study, we have for the first time reported a stable human Sertoli cell line, namely hS1 cells, by overexpression of human telomerase. The hS1 cells expressed a number of hallmarks for human Sertoli cells, including SOX9, WT1, GDNF, SCF, BMP4, BMP6, GATA4, and VIM, and they were negative for 3β-HSD, SMA, and VASA. Higher levels of AR and FSHR were observed in hS1 cells compared to primary human Sertoli cells. Microarray analysis showed that 70.4% of global gene profiles of hS1 cells were similar to primary human Sertoli cells. Proliferation assay demonstrated that hS1 cells proliferated rapidly and they could be passaged for more than 30 times in 6 months. Neither Y chromosome microdeletion nor tumorgenesis was detected in this cell line and 90% normal karyotypes existed in hS1 cells. Collectively, we have established the first human Sertoli cell line with phenotype of primary human Sertoli cells, an unlimited proliferation potential and high safety, which could offer sufficient human Sertoli cells for basic research as well as reproductive and regenerative medicine. PMID:28152522

  2. Th17 cells in human disease

    PubMed Central

    Tesmer, Laura A.; Lundy, Steven K.; Sarkar, Sujata; Fox, David A.

    2012-01-01

    Summary Our understanding of the role of T cells in human disease is undergoing revision as a result of the discovery of T-helper 17 (Th17) cells, a unique CD4+ T-cell subset characterized by production of interleukin-17 (IL-17). IL-17 is a highly inflammatory cytokine with robust effects on stromal cells in many tissues. Recent data in humans and mice suggest that Th17 cells play an important role in the pathogenesis of a diverse group of immune-mediated diseases, including psoriasis, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and asthma. Initial reports also propose a role for Th17 cells in tumorigenesis and transplant rejection. Important differences, as well as many similarities, are emerging when the biology of Th17 cells in the mouse is compared with corresponding phenomena in humans. As our understanding of human Th17 biology grows, the mechanisms underlying many diseases are becoming more apparent, resulting in a new appreciation for both previously known and more recently discovered cytokines, chemokines, and feedback mechanisms. Given the strong association between excessive Th17 activity and human disease, new therapeutic approaches targeting Th17 cells are highly promising, but the potential safety of such treatments may be limited by the role of these cells in normal host defenses against infection. PMID:18613831

  3. 3 CFR - Guidelines for Human Stem Cell Research

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the extent...

  4. Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: a PET study with the TSPO molecular imaging biomarker [((11))C]vinpocetine.

    PubMed

    Gulyás, Balázs; Tóth, Miklós; Schain, Martin; Airaksinen, Anu; Vas, Adám; Kostulas, Konstantinos; Lindström, Per; Hillert, Jan; Halldin, Christer

    2012-09-15

    Although there is increasing evidence for microglial activation after an ischaemic stroke in the infarct core and the peri-infarct region, the "evolution" of the process in stroke patients is poorly known. Using PET and [((11))C]vinpocetine, we measured the regional changes of TSPO in the brain of nine ischaemic stroke patients up to 14weeks after the insult. Already a week after stroke there was an increased radioligand uptake, indicating the up-regulation of TSPO and the presence of activated microglia, in both the ischaemic core and the peri-infarct zone. This increased activation showed a steady decrease with post stroke time. The proportion between %SUV values in the peri-infarct zone and the ischaemic core increased with time. There were no time-dependent TSPO activity changes in other regions, not affected directly by the stroke. The present observations demonstrate that increased regional microglia activation, as a consequence of stroke, can be visualised with PET, using the TSPO molecular imaging biomarker [((11))C]vinpocetine. The evolution of this microglial activation shows a time dependent decrease the gradient of which is different between the peri-infarct zone and the ischaemic core. The findings indicate an increased microglial activation in the peri-stroke region for several weeks after the insult. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Large-scale production of embryonic red blood cells from human embryonic stem cells.

    PubMed

    Olivier, Emmanuel N; Qiu, Caihong; Velho, Michelle; Hirsch, Rhoda Elison; Bouhassira, Eric E

    2006-12-01

    To develop a method to produce in culture large number of erythroid cells from human embryonic stem cells. Human H1 embryonic stem cells were differentiated into hematopoietic cells by coculture with a human fetal liver cell line, and the resulting CD34-positive cells were expanded in vitro in liquid culture using a three-step method. The erythroid cells produced were then analyzed by light microscopy and flow cytometry. Globin expression was characterized by quantitative reverse-transcriptase polymerase chain reaction and by high-performance liquid chromatography. CD34-positive cells produced from human embryonic stem cells could be efficiently differentiated into erythroid cells in liquid culture leading to a more than 5000-fold increase in cell number. The erythroid cells produced are similar to primitive erythroid cells present in the yolk sac of early human embryos and did not enucleate. They are fully hemoglobinized and express a mixture of embryonic and fetal globins but no beta-globin. We have developed an experimental protocol to produce large numbers of primitive erythroid cells starting from undifferentiated human embryonic stem cells. As the earliest human erythroid cells, the nucleated primitive erythroblasts, are not very well characterized because experimental material at this stage of development is very difficult to obtain, this system should prove useful to answer a number of experimental questions regarding the biology of these cells. In addition, production of mature red blood cells from human embryonic stem cells is of great potential practical importance because it could eventually become an alternate source of cell for transfusion.

  6. Modeling human infertility with pluripotent stem cells.

    PubMed

    Chen, Di; Gell, Joanna J; Tao, Yu; Sosa, Enrique; Clark, Amander T

    2017-05-01

    Human fertility is dependent upon the correct establishment and differentiation of the germline. This is because no other cell type in the body is capable of passing a genome and epigenome from parent to child. Terminally differentiated germline cells in the adult testis and ovary are called gametes. However, the initial specification of germline cells occurs in the embryo around the time of gastrulation. Most of our knowledge regarding the cell and molecular events that govern human germline specification involves extrapolating scientific principles from model organisms, most notably the mouse. However, recent work using next generation sequencing, gene editing and differentiation of germline cells from pluripotent stem cells has revealed that the core molecular mechanisms that regulate human germline development are different from rodents. Here, we will discuss the major molecular pathways required for human germline differentiation and how pluripotent stem cells have revolutionized our ability to study the earliest steps in human embryonic lineage specification in order to understand human fertility. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Human innate lymphoid cells.

    PubMed

    Mjösberg, Jenny; Spits, Hergen

    2016-11-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune responses. As such, ILCs make up interesting therapeutic targets for several diseases. In patients with allergy and asthma, group 2 innate lymphoid cells produce high amounts of IL-5 and IL-13, thereby contributing to type 2-mediated inflammation. Group 3 innate lymphoid cells are implicated in intestinal homeostasis and psoriasis pathology through abundant IL-22 production, whereas group 1 innate lymphoid cells are accumulated in chronic inflammation of the gut (inflammatory bowel disease) and lung (chronic obstructive pulmonary disease), where they contribute to IFN-γ-mediated inflammation. Although the ontogeny of mouse ILCs is slowly unraveling, the development of human ILCs is far from understood. In addition, the growing complexity of the human ILC family in terms of previously unrecognized functional heterogeneity and plasticity has generated confusion within the field. Here we provide an updated view on the function and plasticity of human ILCs in tissue homeostasis and disease. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Intranasally delivered small interfering RNA-mediated suppression of scavenger receptor Mac-1 attenuates microglial phenotype switching and working memory impairment following hypoxia.

    PubMed

    Das, Sudeshna; Mishra, K P; Ganju, Lilly; Singh, S B

    2018-05-05

    Brain, being the highest consumer of oxygen, is prone to increased risk of hypoxia-induced neurological insults. In response to hypoxia, microglia, the major resident immune cells of brain switches to an activated phenotype and promote inflammatory responses leading to tissue damage and loss of cognitive functions including working memory impairment. Till date, no proven clinical therapeutics is available to retard the progression of neurodegenerative memory impairment. In the present study, we investigated the therapeutic potential of intranasal small interfering RNA (siRNA) delivery in a mouse model of hypoxia-induced working memory impairment using microglial receptor, Mac-1 as a target gene. Here, we implicate Mac-1 scavenger receptor in microglial phenotype switching, neurodegeneration in prefrontal cortex, hippocampus and working memory impairment. RNA mediated silencing of Mac-1 in both in vitro and in vivo model showed significant impact of it on hypoxia induced altered expression of Mac-1 endogenous ligand, signaling cascade proteins, transcription factors and NADPH oxidase pathway. Efficient degradation of Mac-1 mRNA suppressed expression of M1 phenotypic markers, inflammatory chemokines, and cytokines, but on the other hand, it upregulated M2 phenotypic markers and anti-inflammatory cytokines. Neuronal viability and synaptic plasticity markers were also modulated significantly by this strategy. Behavioral study revealed significant downregulation in the number of working memory errors at a time-dependent manner after silencing the Mac-1 gene during continuous hypoxic exposure. The novel findings of this study for the very first time, unmasked the role of Mac-1 receptor in neurodegenerative disease progression under hypoxic condition and at the same time indicated the potential therapeutic value of this non-invasive siRNA delivery approach for treating working memory loss. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. GENETICS OF HUMAN CELL LINES

    PubMed Central

    Djordjevic, B.; Szybalski, Waclaw

    1960-01-01

    The human cell line D98S can be cultivated indefinitely in the presence of up to 3 x 10–5 M 5-bromodeoxyuridine (BUDR), without loss of cell viability. During this time, BUDR is incorporated into both strands of the DNA molecules, replacing up to 45 per cent of the thymidine and thereby rendering the cells highly sensitive to UV light and to x-rays. Cells grown for a limited period of time in the presence of 5-iododeoxyuridine (IUDR) become UV-sensitized, while prolonged cultivation with IUDR results in the loss of cell viability. The properties of the BUDR label permitted the demonstration that: (a) human DNA replicates in a "semiconservative" manner; (b) the degree of radiosensitization of BUDR-treated cells depends on whether the DNA has been substituted in one strand only ("unifilarly") or in both strands ("bifilarly"); (c) functional human DNA is produced during partial inhibition of protein synthesis. The potential applicability of this new rational principle of radiosensitization to the radiotherapy of neoplastic diseases is discussed. PMID:13723177

  10. Some Ethical Concerns About Human Induced Pluripotent Stem Cells.

    PubMed

    Zheng, Yue Liang

    2016-10-01

    Human induced pluripotent stem cells can be obtained from somatic cells, and their derivation does not require destruction of embryos, thus avoiding ethical problems arising from the destruction of human embryos. This type of stem cell may provide an important tool for stem cell therapy, but it also results in some ethical concerns. It is likely that abnormal reprogramming occurs in the induction of human induced pluripotent stem cells, and that the stem cells generate tumors in the process of stem cell therapy. Human induced pluripotent stem cells should not be used to clone human beings, to produce human germ cells, nor to make human embryos. Informed consent should be obtained from patients in stem cell therapy.

  11. Expression cloning of human B cell immunoglobulins.

    PubMed

    Wardemann, Hedda; Kofer, Juliane

    2013-01-01

    The majority of lymphomas originate from B cells at the germinal center stage or beyond. Preferential selection of B cell clones by a limited set of antigens has been suggested to drive lymphoma development. However, little is known about the specificity of the antibodies expressed by lymphoma cells, and the role of antibody-specificity in lymphomagenesis remains elusive. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire on a single cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells, to the RT-PCR-based amplification of the expressed Igh, Igκ, and Igλ chain genes, and Ig gene expression vector cloning for the in vitro production of monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B cell lymphomas by single cell Ig gene sequencing and on the antibody reactivity of human lymphoma B cells.

  12. Comprehensive evaluation of leukocyte lineage derived from human hematopoietic cells in humanized mice.

    PubMed

    Takahashi, Masayuki; Tsujimura, Noriyuki; Otsuka, Kensuke; Yoshino, Tomoko; Mori, Tetsushi; Matsunaga, Tadashi; Nakasono, Satoshi

    2012-04-01

    Recently, humanized animals whereby a part of the animal is biologically engineered using human genes or cells have been utilized to overcome interspecific differences. Herein, we analyzed the detail of the differentiation states of various human leukocyte subpopulations in humanized mouse and evaluated comprehensively the similarity of the leukocyte lineage between humanized mice and humans. Humanized mice were established by transplanting human CD34(+) cord blood cells into irradiated severely immunodeficient NOD/Shi-scid/IL2Rγ(null) (NOG) mice, and the phenotypes of human cells contained in bone marrow, thymus, spleen and peripheral blood from the mice were analyzed at monthly intervals until 4 months after cell transplantation. The analysis revealed that transplanted human hematopoietic stem cells via the caudal vein homed and engrafted themselves successfully at the mouse bone marrow. Subsequently, the differentiated leukocytes migrated to the various tissues. Almost all of the leukocytes within the thymus were human cells. Furthermore, analysis of the differentiation states of human leukocytes in various tissues and organs indicated that it is highly likely that the human-like leukocyte lineage can be developed in mice. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Haematopoietic stem and progenitor cells from human pluripotent stem cells

    PubMed Central

    Sugimura, Ryohichi; Jha, Deepak Kumar; Han, Areum; Soria-Valles, Clara; da Rocha, Edroaldo Lummertz; Lu, Yi-Fen; Goettel, Jeremy A.; Serrao, Erik; Rowe, R. Grant; Malleshaiah, Mohan; Wong, Irene; Sousa, Patricia; Zhu, Ted N.; Ditadi, Andrea; Keller, Gordon; Engelman, Alan N.; Snapper, Scott B.; Doulatov, Sergei; Daley, George Q.

    2018-01-01

    A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders. PMID:28514439

  14. Reprogramming human gallbladder cells into insulin-producing β-like cells

    PubMed Central

    Benedetti, Eric; Wang, Yuhan; Pelz, Carl; Schug, Jonathan; Kaestner, Klaus H.; Grompe, Markus

    2017-01-01

    The gallbladder and cystic duct (GBCs) are parts of the extrahepatic biliary tree and share a common developmental origin with the ventral pancreas. Here, we report on the very first genetic reprogramming of patient-derived human GBCs to β-like cells for potential autologous cell replacement therapy for type 1 diabetes. We developed a robust method for large-scale expansion of human GBCs ex vivo. GBCs were reprogrammed into insulin-producing pancreatic β-like cells by a combined adenoviral-mediated expression of hallmark pancreatic endocrine transcription factors PDX1, MAFA, NEUROG3, and PAX6 and differentiation culture in vitro. The reprogrammed GBCs (rGBCs) strongly induced the production of insulin and pancreatic endocrine genes and these responded to glucose stimulation in vitro. rGBCs also expressed an islet-specific surface marker, which was used to enrich for the most highly reprogrammed cells. More importantly, global mRNA and microRNA expression profiles and protein immunostaining indicated that rGBCs adopted an overall β-like state and these rGBCs engrafted in immunodeficient mice. Furthermore, comparative global expression analyses identified putative regulators of human biliary to β cell fate conversion. In summary, we have developed, for the first time, a reliable and robust genetic reprogramming and culture expansion of primary human GBCs—derived from multiple unrelated donors—into pancreatic β-like cells ex vivo, thus showing that human gallbladder is a potentially rich source of reprogrammable cells for autologous cell therapy in diabetes. PMID:28813430

  15. Satellite cells in human skeletal muscle plasticity

    PubMed Central

    Snijders, Tim; Nederveen, Joshua P.; McKay, Bryon R.; Joanisse, Sophie; Verdijk, Lex B.; van Loon, Luc J. C.; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models. PMID:26557092

  16. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.

    PubMed

    Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru

    2016-01-01

    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.

  17. Substance P exacerbates dopaminergic neurodegeneration through neurokinin-1 receptor-independent activation of microglial NADPH oxidase.

    PubMed

    Wang, Qingshan; Chu, Chun-Hsien; Qian, Li; Chen, Shih-Heng; Wilson, Belinda; Oyarzabal, Esteban; Jiang, Lulu; Ali, Syed; Robinson, Bonnie; Kim, Hyoung-Chun; Hong, Jau-Shyong

    2014-09-10

    Although dysregulated substance P (SP) has been implicated in the pathophysiology of Parkinson's disease (PD), how SP affects the survival of dopaminergic neurons remains unclear. Here, we found that mice lacking endogenous SP (TAC1(-/-)), but not those deficient in the SP receptor (neurokinin-1 receptor, NK1R), were more resistant to lipopolysaccharide (LPS)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic neurodegeneration than wild-type controls, suggesting a NK1R-independent toxic action of SP. In vitro dose-response studies revealed that exogenous SP enhanced LPS- and 1-methyl-4-phenylpyridinium (MPP(+))-induced dopaminergic neurodegeneration in a bimodal manner, peaking at submicromolar and subpicomolar concentrations, but was substantially less effective at intermediate concentrations. Mechanistically, the actions of submicromolar levels of SP were NK1R-dependent, whereas subpicomolar SP-elicited actions required microglial NADPH oxidase (NOX2), the key superoxide-producing enzyme, but not NK1R. Subpicomolar concentrations of SP activated NOX2 by binding to the catalytic subunit gp91(phox) and inducing membrane translocation of the cytosolic subunits p47(phox) and p67(phox). The importance of NOX2 was further corroborated by showing that inhibition or disruption of NOX2 blocked subpicomolar SP-exacerbated neurotoxicity. Together, our findings revealed a critical role of microglial NOX2 in mediating the neuroinflammatory and dopaminergic neurodegenerative effects of SP, which may provide new insights into the pathogenesis of PD. Copyright © 2014 the authors 0270-6474/14/3412490-14$15.00/0.

  18. Immunoglobulins G from Sera of Amyotrophic Lateral Sclerosis Patients Induce Oxidative Stress and Upregulation of Antioxidative System in BV-2 Microglial Cell Line

    PubMed Central

    Milošević, Milena; Milićević, Katarina; Božić, Iva; Lavrnja, Irena; Stevanović, Ivana; Bijelić, Dunja; Dubaić, Marija; Živković, Irena; Stević, Zorica; Giniatullin, Rashid; Andjus, Pavle

    2017-01-01

    DCFDA. The observed phenomena demonstrate the potential role of inflammatory humoral factors, IgGs, as potential triggers of the activation in microglia, known to occur in later stages of ALS. Therefore, revealing the ALS IgG signaling cascade in microglial cells could offer a valuable molecular biomarker and/or a potential therapeutic target. PMID:29218049

  19. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice

    PubMed Central

    Hu, Zheng; Xia, Jinxing; Fan, Wei; Wargo, Jennifer; Yang, Yong-Guang

    2016-01-01

    A major factor hindering the exploration of adoptive immunotherapy in preclinical settings is the limited availability of tumor-reactive human T cells. Here we developed a humanized mouse model that permits large-scale production of human T cells expressing the engineered melanoma antigen MART-1-specific TCR. Humanized mice, made by transplantation of human fetal thymic tissue and CD34+ cells virally-transduced with HLA class I-restricted melanoma antigen (MART-1)-specific TCR gene, showed efficient development of MART-1-TCR+ human T cells with predominantly CD8+ cells. Importantly, MART-1-TCR+CD8+ T cells developing in these mice were capable of mounting antigen-specific responses in vivo, as evidenced by their proliferation, phenotypic conversion and IFN-γ production following MART-1 peptide immunization. Moreover, these MART-1-TCR+CD8+ T cells mediated efficient killing of melanoma cells in an HLA/antigen-dependent manner. Adoptive transfer of in vitro expanded MART-1-TCR+CD8+ T cells induced potent antitumor responses that were further enhanced by IL-15 treatment in melanoma-bearing recipients. Finally, a short incubation of MART-1-specific T cells with rapamycin acted synergistically with IL-15, leading to significantly improved tumor-free survival in recipients with metastatic melanoma. These data demonstrate the practicality of using humanized mice to produce potentially unlimited source of tumor-specific human T cells for experimental and preclinical exploration of cancer immunotherapy. This study also suggests that pretreatment of tumor-reactive T cells with rapamycin in combination with IL-15 administration may be a novel strategy to improve the efficacy of adoptive T cell therapy. PMID:26824989

  20. The orthotopic xenotransplant of human glioblastoma successfully recapitulates glioblastoma-microenvironment interactions in a non-immunosuppressed mouse model.

    PubMed

    Garcia, Celina; Dubois, Luiz Gustavo; Xavier, Anna Lenice; Geraldo, Luiz Henrique; da Fonseca, Anna Carolina Carvalho; Correia, Ana Helena; Meirelles, Fernanda; Ventura, Grasiella; Romão, Luciana; Canedo, Nathalie Henriques Silva; de Souza, Jorge Marcondes; de Menezes, João Ricardo Lacerda; Moura-Neto, Vivaldo; Tovar-Moll, Fernanda; Lima, Flavia Regina Souza

    2014-12-08

    Glioblastoma (GBM) is the most common primary brain tumor and the most aggressive glial tumor. This tumor is highly heterogeneous, angiogenic, and insensitive to radio- and chemotherapy. Here we have investigated the progression of GBM produced by the injection of human GBM cells into the brain parenchyma of immunocompetent mice. Xenotransplanted animals were submitted to magnetic resonance imaging (MRI) and histopathological analyses. Our data show that two weeks after injection, the produced tumor presents histopathological characteristics recommended by World Health Organization for the diagnosis of GBM in humans. The tumor was able to produce reactive gliosis in the adjacent parenchyma, angiogenesis, an intense recruitment of macrophage and microglial cells, and presence of necrosis regions. Besides, MRI showed that tumor mass had enhanced contrast, suggesting a blood-brain barrier disruption. This study demonstrated that the xenografted tumor in mouse brain parenchyma develops in a very similar manner to those found in patients affected by GBM and can be used to better understand the biology of GBM as well as testing potential therapies.

  1. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells

    PubMed Central

    Xiong, Jimin; Menicanin, Danijela; Marino, Victor

    2016-01-01

    The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043

  2. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells.

    PubMed

    Xiong, Jimin; Menicanin, Danijela; Zilm, Peter S; Marino, Victor; Bartold, P Mark; Gronthos, Stan

    2016-01-01

    The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein "spots" were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population.

  3. Cell sources for in vitro human liver cell culture models

    PubMed Central

    Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-01-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  4. Aggregation of Human Eyelid Adipose-derived Stem Cells by Human Body Fluids

    PubMed Central

    Song, Yeonhwa; Yun, Sujin; Yang, Hye Jin; Yoon, A Young; Kim, Haekwon

    2012-01-01

    Fetal bovine serum (FBS) is the most frequently used serum for the cultivation of mammalian cells. However, since animal-derived materials might not be appropriate due to safety issues, allogeneic human serum (HS) has been used to replace FBS, particularly for the culture of human cells. While there has been a debate about the advantages of HS, its precise effect on human adult stem cells have not been clarified. The present study aimed to investigate the effect of HS on the human eyelid adipose stem cells (HEACs) in vitro. When HEACs were cultivated in a medium containing 10% HS, many cells moved into several spots and aggregated there. The phenomenon was observed as early as 9 days following 10% HS treatment, and 12 days following 5% HS plus 5% FBS treatment. However, the aggregation was never observed when the same cells were cultivated with 10% FBS or bovine serum albumin. To examine whether cell density might affect the aggregation, cells were seeded with different densities on 12-well dish. Until the beginning of aggregation, cells seeded at low densities exhibited the longest culture period of 16 days whereas cells seeded at high densities showed the shortest period of 9 days to form aggregation. The number of cells was 15.1±0.2×104 as the least for the low density group, and 29.3±2.8×104 as the greatest for the high density group. When human cord blood serum or normal bovine serum was examined for the same effect on HEACs, interestingly, cord blood serum induced the aggregation of cells whereas bovine serum treatment has never induced. When cells were cultivated with 10% HS for 9 days, they were obtained and analyzed by RT-PCR. Compared to FBS-cultivated HEACs, HS-cultivated HEACs did not express VIM, and less expressed GATA4, PALLD. On the other hand, HS-cultivated HEACs expressed MAP2 more than FBS-cultivated HEACs. In conclusion, human adult stem cells could move and form aggregates by the treatment with human body fluids. PMID:25949109

  5. Microglia and Aging: The Role of the TREM2–DAP12 and CX3CL1-CX3CR1 Axes

    PubMed Central

    Mecca, Carmen; Giambanco, Ileana; Donato, Rosario; Arcuri, Cataldo

    2018-01-01

    Depending on the species, microglial cells represent 5–20% of glial cells in the adult brain. As the innate immune effector of the brain, microglia are involved in several functions: regulation of inflammation, synaptic connectivity, programmed cell death, wiring and circuitry formation, phagocytosis of cell debris, and synaptic pruning and sculpting of postnatal neural circuits. Moreover, microglia contribute to some neurodevelopmental disorders such as Nasu-Hakola disease (NHD), and to aged-associated neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and others. There is evidence that human and rodent microglia may become senescent. This event determines alterations in the microglia activation status, associated with a chronic inflammation phenotype and with the loss of neuroprotective functions that lead to a greater susceptibility to the neurodegenerative diseases of aging. In the central nervous system (CNS), Triggering Receptor Expressed on Myeloid Cells 2-DNAX activation protein 12 (TREM2-DAP12) is a signaling complex expressed exclusively in microglia. As a microglial surface receptor, TREM2 interacts with DAP12 to initiate signal transduction pathways that promote microglial cell activation, phagocytosis, and microglial cell survival. Defective TREM2-DAP12 functions play a central role in the pathogenesis of several diseases. The CX3CL1 (fractalkine)-CX3CR1 signaling represents the most important communication channel between neurons and microglia. The expression of CX3CL1 in neurons and of its receptor CX3CR1 in microglia determines a specific interaction, playing fundamental roles in the regulation of the maturation and function of these cells. Here, we review the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes in aged microglia and the involvement of these pathways in physiological CNS aging and in age-associated neurodegenerative diseases. PMID:29361745

  6. The effect of cell phones on human health

    NASA Astrophysics Data System (ADS)

    Abu-Isbeih, Ibrahim N.; Saad, Dina

    2011-10-01

    The effect of cell phone radiation on human health is the subject of recent interest and study, as a result of the enormous increase in cell phone usage throughout the world. Cell phones use electromagnetic radiation in the microwave range, which some believe may be harmful to human health. Other digital wireless systems, such as data communication networks, produce similar radiation. The objective of this survey is to review the effects of cell phones on human health: A large body of research exists, both epidemiological and experimental, in non-human animals and in humans, of which the majority shows no definite causative relationship between exposure to cell phones and harmful biological effects in humans. This is often paraphrased simply as the balance of evidence showing no harm to humans from cell phones, although a significant number of individual studies do suggest such a relationship, or are inconclusive.

  7. Development of hematopoietic stem and progenitor cells from human pluripotent stem cells.

    PubMed

    Chen, Tong; Wang, Fen; Wu, Mengyao; Wang, Zack Z

    2015-07-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells, a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review, we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells. We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development of hPSC-derived blood products for therapeutic purpose. © 2015 Wiley Periodicals, Inc.

  8. Identification of cells initiating human melanomas.

    PubMed

    Schatton, Tobias; Murphy, George F; Frank, Natasha Y; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M; Weishaupt, Carsten; Fuhlbrigge, Robert C; Kupper, Thomas S; Sayegh, Mohamed H; Frank, Markus H

    2008-01-17

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.

  9. Identification of cells initiating human melanomas

    PubMed Central

    Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.

    2012-01-01

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660

  10. Human stem cells for craniomaxillofacial reconstruction.

    PubMed

    Jalali, Morteza; Kirkpatrick, William Niall Alexander; Cameron, Malcolm Gregor; Pauklin, Siim; Vallier, Ludovic

    2014-07-01

    Human stem cell research represents an exceptional opportunity for regenerative medicine and the surgical reconstruction of the craniomaxillofacial complex. The correct architecture and function of the vastly diverse tissues of this important anatomical region are critical for life supportive processes, the delivery of senses, social interaction, and aesthetics. Craniomaxillofacial tissue loss is commonly associated with inflammatory responses of the surrounding tissue, significant scarring, disfigurement, and psychological sequelae as an inevitable consequence. The in vitro production of fully functional cells for skin, muscle, cartilage, bone, and neurovascular tissue formation from human stem cells, may one day provide novel materials for the reconstructive surgeon operating on patients with both hard and soft tissue deficit due to cancer, congenital disease, or trauma. However, the clinical translation of human stem cell technology, including the application of human pluripotent stem cells (hPSCs) in novel regenerative therapies, faces several hurdles that must be solved to permit safe and effective use in patients. The basic biology of hPSCs remains to be fully elucidated and concerns of tumorigenicity need to be addressed, prior to the development of cell transplantation treatments. Furthermore, functional comparison of in vitro generated tissue to their in vivo counterparts will be necessary for confirmation of maturity and suitability for application in reconstructive surgery. Here, we provide an overview of human stem cells in disease modeling, drug screening, and therapeutics, while also discussing the application of regenerative medicine for craniomaxillofacial tissue deficit and surgical reconstruction.

  11. Human Stem Cells for Craniomaxillofacial Reconstruction

    PubMed Central

    Kirkpatrick, William Niall Alexander; Cameron, Malcolm Gregor

    2014-01-01

    Human stem cell research represents an exceptional opportunity for regenerative medicine and the surgical reconstruction of the craniomaxillofacial complex. The correct architecture and function of the vastly diverse tissues of this important anatomical region are critical for life supportive processes, the delivery of senses, social interaction, and aesthetics. Craniomaxillofacial tissue loss is commonly associated with inflammatory responses of the surrounding tissue, significant scarring, disfigurement, and psychological sequelae as an inevitable consequence. The in vitro production of fully functional cells for skin, muscle, cartilage, bone, and neurovascular tissue formation from human stem cells, may one day provide novel materials for the reconstructive surgeon operating on patients with both hard and soft tissue deficit due to cancer, congenital disease, or trauma. However, the clinical translation of human stem cell technology, including the application of human pluripotent stem cells (hPSCs) in novel regenerative therapies, faces several hurdles that must be solved to permit safe and effective use in patients. The basic biology of hPSCs remains to be fully elucidated and concerns of tumorigenicity need to be addressed, prior to the development of cell transplantation treatments. Furthermore, functional comparison of in vitro generated tissue to their in vivo counterparts will be necessary for confirmation of maturity and suitability for application in reconstructive surgery. Here, we provide an overview of human stem cells in disease modeling, drug screening, and therapeutics, while also discussing the application of regenerative medicine for craniomaxillofacial tissue deficit and surgical reconstruction. PMID:24564584

  12. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity.

    PubMed

    Nguyen, Quy H; Pervolarakis, Nicholas; Blake, Kerrigan; Ma, Dennis; Davis, Ryan Tevia; James, Nathan; Phung, Anh T; Willey, Elizabeth; Kumar, Raj; Jabart, Eric; Driver, Ian; Rock, Jason; Goga, Andrei; Khan, Seema A; Lawson, Devon A; Werb, Zena; Kessenbrock, Kai

    2018-05-23

    Breast cancer arises from breast epithelial cells that acquire genetic alterations leading to subsequent loss of tissue homeostasis. Several distinct epithelial subpopulations have been proposed, but complete understanding of the spectrum of heterogeneity and differentiation hierarchy in the human breast remains elusive. Here, we use single-cell mRNA sequencing (scRNAseq) to profile the transcriptomes of 25,790 primary human breast epithelial cells isolated from reduction mammoplasties of seven individuals. Unbiased clustering analysis reveals the existence of three distinct epithelial cell populations, one basal and two luminal cell types, which we identify as secretory L1- and hormone-responsive L2-type cells. Pseudotemporal reconstruction of differentiation trajectories produces one continuous lineage hierarchy that closely connects the basal lineage to the two differentiated luminal branches. Our comprehensive cell atlas provides insights into the cellular blueprint of the human breast epithelium and will form the foundation to understand how the system goes awry during breast cancer.

  13. The contribution of human/non-human animal chimeras to stem cell research.

    PubMed

    Levine, Sonya; Grabel, Laura

    2017-10-01

    Chimeric animals are made up of cells from two separate zygotes. Human/non-human animal chimeras have been used for a number of research purposes, including human disease modeling. Pluripotent stem cell (PSC) research has relied upon the chimera approach to examine the developmental potential of stem cells, to determine the efficacy of cell replacement therapies, and to establish a means of producing human organs. Based on ethical issues, this work has faced pushback from various sources including funding agencies. We discuss here the essential role these studies have played, from gaining a better understanding of human biology to providing a stepping stone to human disease treatments. We also consider the major ethical issues, as well as the current status of support for this work in the United States. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaolan, E-mail: huxiaolan1998@yahoo.com.cn; Zhang, Xianqi; Qiu, Shuifeng

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) weremore » sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.« less

  15. Characterization of human pancreatic progenitor cells.

    PubMed

    Noguchi, Hirofumi; Naziruddin, Bashoo; Jackson, Andrew; Shimoda, Masayuki; Ikemoto, Tetsuya; Fujita, Yasutaka; Chujo, Daisuke; Takita, Morihito; Kobayashi, Naoya; Onaca, Nicholas; Hayashi, Shuji; Levy, Marlon F; Matsumoto, Shinichi

    2010-01-01

    β-Cell replacement therapy via islet transplantation is an effective treatment for diabetes mellitus, but its widespread use is severely limited by the shortage of donor organs. Because pancreatic stem/progenitor cells are abundantly available in the pancreas of these patients and in donor organs, the cells could become a useful target for β-cell replacement therapy. We previously established a mouse pancreatic stem cell line without genetic manipulation. In this study, we used the techniques to identify and isolate human pancreatic stem/progenitor cells. The cells from a duct-rich population were cultured in 23 kinds of culture media, based on media for mouse pancreatic stem cells or for human embryonic stem cells. The cells in serum-free media formed "cobblestone" morphologies, similar to a mouse pancreatic stem cell line. On the other hand, the cells in serum-containing medium and the medium for human embryonic stem cells formed "fibroblast-like" morphologies. The cells divided actively until day 30, and the population doubling level (PDL) was 6-10. However, the cells stopped dividing after 30 days in any culture conditions. During the cultures, the nucleus/cytoplasm (N/C) ratio decreased, suggesting that the cells entered senescence. Exendin-4 treatment and transduction of PDX-1 and NeuroD proteins by protein transduction technology into the cells induced insulin and pancreas-related gene expression. Although the duplications of these cells were limited, this approach could provide a potential new source of insulin-producing cells for transplantation.

  16. New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.

    PubMed

    O'Brien, Carmel M; Chy, Hun S; Zhou, Qi; Blumenfeld, Shiri; Lambshead, Jack W; Liu, Xiaodong; Kie, Joshua; Capaldo, Bianca D; Chung, Tung-Liang; Adams, Timothy E; Phan, Tram; Bentley, John D; McKinstry, William J; Oliva, Karen; McMurrick, Paul J; Wang, Yu-Chieh; Rossello, Fernando J; Lindeman, Geoffrey J; Chen, Di; Jarde, Thierry; Clark, Amander T; Abud, Helen E; Visvader, Jane E; Nefzger, Christian M; Polo, Jose M; Loring, Jeanne F; Laslett, Andrew L

    2017-03-01

    The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterized monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626-640. © 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  17. Carbon Nanotubes and Human Cells?

    ERIC Educational Resources Information Center

    King, G. Angela

    2005-01-01

    Single-walled carbon nanotubes that were chemically altered to be water soluble are shown to enter fibroblasts, T cells, and HL60 cells. Nanoparticles adversely affect immortalized HaCaT human keratinocyte cultures, indicating that they may enter cells.

  18. DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    PubMed Central

    Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.

    2012-01-01

    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831

  19. CELLPEDIA: a repository for human cell information for cell studies and differentiation analyses.

    PubMed

    Hatano, Akiko; Chiba, Hirokazu; Moesa, Harry Amri; Taniguchi, Takeaki; Nagaie, Satoshi; Yamanegi, Koji; Takai-Igarashi, Takako; Tanaka, Hiroshi; Fujibuchi, Wataru

    2011-01-01

    CELLPEDIA is a repository database for current knowledge about human cells. It contains various types of information, such as cell morphologies, gene expression and literature references. The major role of CELLPEDIA is to provide a digital dictionary of human cells for the biomedical field, including support for the characterization of artificially generated cells in regenerative medicine. CELLPEDIA features (i) its own cell classification scheme, in which whole human cells are classified by their physical locations in addition to conventional taxonomy; and (ii) cell differentiation pathways compiled from biomedical textbooks and journal papers. Currently, human differentiated cells and stem cells are classified into 2260 and 66 cell taxonomy keys, respectively, from which 934 parent-child relationships reported in cell differentiation or transdifferentiation pathways are retrievable. As far as we know, this is the first attempt to develop a digital cell bank to function as a public resource for the accumulation of current knowledge about human cells. The CELLPEDIA homepage is freely accessible except for the data submission pages that require authentication (please send a password request to cell-info@cbrc.jp). Database URL: http://cellpedia.cbrc.jp/

  20. Interleukin-6, Produced by Resident Cells of the Central Nervous System and Infiltrating Cells, Contributes to the Development of Seizures following Viral Infection▿

    PubMed Central

    Libbey, Jane E.; Kennett, Nikki J.; Wilcox, Karen S.; White, H. Steve; Fujinami, Robert S.

    2011-01-01

    Cells that can participate in an innate immune response within the central nervous system (CNS) include infiltrating cells (polymorphonuclear leukocytes [PMNs], macrophages, and natural killer [NK] cells) and resident cells (microglia and sometimes astrocytes). The proinflammatory cytokine interleukin-6 (IL-6) is produced by all of these cells and has been implicated in the development of behavioral seizures in the Theiler's murine encephalomyelitis virus (TMEV)-induced seizure model. The assessment, via PCR arrays, of the mRNA expression levels of a large number of chemokines (ligands and receptors) in TMEV-infected and mock-infected C57BL/6 mice both with and without seizures did not clearly demonstrate the involvement of PMNs, monocytes/macrophages, or NK cells in the development of seizures, possibly due to overlapping function of the chemokines. Additionally, C57BL/6 mice unable to recruit or depleted of infiltrating PMNs and NK cells had seizure rates comparable to those of controls following TMEV infection, and therefore PMNs and NK cells do not significantly contribute to seizure development. In contrast, C57BL/6 mice treated with minocycline, which affects monocytes/macrophages, microglial cells, and PMNs, had significantly fewer seizures than controls following TMEV infection, indicating monocytes/macrophages and resident microglial cells are important in seizure development. Irradiated bone marrow chimeric mice that were either IL-6-deficient mice reconstituted with wild-type bone marrow cells or wild-type mice reconstituted with IL-6-deficient bone marrow cells developed significantly fewer behavioral seizures following TMEV infection. Therefore, both resident CNS cells and infiltrating cells are necessary for seizure development. PMID:21543484

  1. Cell sources for in vitro human liver cell culture models.

    PubMed

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. © 2016 by the Society for Experimental Biology and Medicine.

  2. Establishment of human hair follicle mesenchymal stem cells with overexpressed human hepatocyte growth factor.

    PubMed

    Zhou, Dan; Cheng, Hongjing; Liu, Jinyu; Zhang, Lei

    2017-06-01

    Chronic liver disease has become a major health problem that causes serious damage to human health. Since the existing treatment effect was not ideal, we need to seek new treatment methods. We utilized the gene recombination technology to obtain the human hair mesenchymal stem cells which overexpression of human hepatocyte growth factor (hHGF). Furthermore, we verified the property of transfected cells through detecting surface marker by flow cytometry. We show here establishment of the hHGF-overexpressing lentivirus vector, and successfully transfection to human hair follicle mesenchymal stem cells. The verified experiments could demonstrate the human hair follicle mesenchymal stem cells which have been transfected still have the properties of stem cells. We successfully constructed human hair follicle mesenchymal stem cells which overexpression hHGF, and maintain the same properties compared with pro-transfected cells.

  3. Constitutive expression of HCA(2) in human retina and primary human retinal pigment epithelial cells.

    PubMed

    Yu, Alice L; Birke, Kerstin; Lorenz, Reinhard L; Welge-Lussen, Ulrich

    2014-05-01

    HCA2, a receptor of β-hydroxybutyrate and niacin, has recently been described in mouse retina and immortalized human retinal pigment epithelial (RPE) cell lines. As HCA2 might be a pharmacologic target, e.g. in diabetic retinopathy, we studied its expression in human retina and primary human RPE cells. Paraffin sections of human retina and primary human RPE cells were obtained from human donor eyes. Expression of HCA2 in human retina was investigated by immunohistochemistry of paraffin sections and by RT-PCR. HCA2 expression in primary human RPE cells was examined by immunocytochemistry and by Western-blot analysis. Positive immunohistochemical staining for HCA2 was found in paraffin sections of human retina, and positive immunocytochemical staining for HCA2 in primary human RPE cells. RT-PCR analysis detected mRNA expression of HCA2 in human retina. The expression of HCA2 protein was found in primary human RPE cells. Based on these results, HCA2 appears to be constitutively expressed in human retina and in primary human RPE cells. Although its functional role is still unknown, HCA2 may be potentially involved in the pathogenesis of various retinopathies and may offer a new therapeutic target.

  4. Preventive effects of a fermented dairy product against Alzheimer's disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity.

    PubMed

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer's disease and to identify the responsible component. Here, in a mouse model of Alzheimer's disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer's disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia.

  5. Human cells and cell cultures: availability, authentication and future prospects.

    PubMed

    Hay, R J

    1996-09-01

    The availability of well characterized, viable human cells, tissues and cell lines along with pertinent data on the specific patient donors is a prerequisite for much current transplantation and biomedical research. In the USA, institutional and multi-center networks have been established for provision of primary human cells and tissues to qualified clinicians and research scientists. Monetary support derives from government, university, institutional and fee sources. Problems involved include concern for the rights and privacy of tissue donors, cultural reservations relating to tissue provision, the need for safe and expeditious transport, short term survival and limited supply, adequate correlation of patient data with samples provided, presence of infectious viruses and microorganisms, as well as state or government regulations regarding national or international shipping. The use of human cell lines with continuous or even somewhat limited doubling potentials overcomes many of the above difficulties. National cell banks have been established to provide reference lines for use by multiple investigators. Use of such cell lines assures improved research comparability both geographically and with time. Authentication procedures are critically important for all of these programs. Verification of tissue types and conditions is required through histological, biochemical and immunological assays. Tests for microbial and viral contaminants must be applied. In addition to such procedures utilized for tissues, with cell lines the banking agency must also verify species and where possible identity, properties and functions. The literature is replete with descriptions documenting incorrect identifications and infections of proliferating cell strains used for research. The availability of viable tissue through local sources and distribution agencies in the USA is becoming more commonplace even including full family participation and collection of related, detailed histories

  6. Human genome project and sickle cell disease.

    PubMed

    Norman, Brenda J; Miller, Sheila D

    2011-01-01

    Sickle cell disease is one of the most common genetic blood disorders in the United States that affects 1 in every 375 African Americans. Sickle cell disease is an inherited condition caused by abnormal hemoglobin in the red blood cells. The Human Genome Project has provided valuable insight and extensive research advances in the understanding of the human genome and sickle cell disease. Significant progress in genetic knowledge has led to an increase in the ability for researchers to map and sequence genes for diagnosis, treatment, and prevention of sickle cell disease and other chronic illnesses. This article explores some of the recent knowledge and advances about sickle cell disease and the Human Genome Project.

  7. T-cell receptor transfer into human T cells with ecotropic retroviral vectors.

    PubMed

    Koste, L; Beissert, T; Hoff, H; Pretsch, L; Türeci, Ö; Sahin, U

    2014-05-01

    Adoptive T-cell transfer for cancer immunotherapy requires genetic modification of T cells with recombinant T-cell receptors (TCRs). Amphotropic retroviral vectors (RVs) used for TCR transduction for this purpose are considered safe in principle. Despite this, TCR-coding and packaging vectors could theoretically recombine to produce replication competent vectors (RCVs), and transduced T-cell preparations must be proven free of RCV. To eliminate the need for RCV testing, we transduced human T cells with ecotropic RVs so potential RCV would be non-infectious for human cells. We show that transfection of synthetic messenger RNA encoding murine cationic amino-acid transporter 1 (mCAT-1), the receptor for murine retroviruses, enables efficient transient ecotropic transduction of human T cells. mCAT-1-dependent transduction was more efficient than amphotropic transduction performed in parallel, and preferentially targeted naive T cells. Moreover, we demonstrate that ecotropic TCR transduction results in antigen-specific restimulation of primary human T cells. Thus, ecotropic RVs represent a versatile, safe and potent tool to prepare T cells for the adoptive transfer.

  8. Gammaherpesvirus Infection of Human Neuronal Cells

    PubMed Central

    Jha, Hem Chandra; Mehta, Devan; Lu, Jie; El-Naccache, Darine; Shukla, Sanket K.; Kovacsics, Colleen; Kolson, Dennis

    2015-01-01

    ABSTRACT Gammaherpesviruses human herpesvirus 4 (HHV4) and HHV8 are two prominent members of the herpesvirus family associated with a number of human cancers. HHV4, also known as Epstein-Barr virus (EBV), a ubiquitous gammaherpesvirus prevalent in 90 to 95% of the human population, is clinically associated with various neurological diseases such as primary central nervous system lymphoma, multiple sclerosis, Alzheimer’s disease, cerebellar ataxia, and encephalitis. However, the possibility that EBV and Kaposi’s sarcoma-associated herpesvirus (KSHV) can directly infect neurons has been largely overlooked. This study has, for the first time, characterized EBV infection in neural cell backgrounds by using the Sh-Sy5y neuroblastoma cell line, teratocarcinoma Ntera2 neurons, and primary human fetal neurons. Furthermore, we also demonstrated KSHV infection of neural Sh-Sy5y cells. These neuronal cells were infected with green fluorescent protein-expressing recombinant EBV or KSHV. Microscopy, genetic analysis, immunofluorescence, and Western blot analyses for specific viral antigens supported and validated the infection of these cells by EBV and KSHV and showed that the infection was efficient and productive. Progeny virus produced from infected neuronal cells efficiently infected fresh neuronal cells, as well as peripheral blood mononuclear cells. Furthermore, acyclovir was effective at inhibiting the production of virus from neuronal cells similar to lymphoblastoid cell lines; this suggests active lytic replication in infected neurons in vitro. These studies represent a potentially new in vitro model of EBV- and KSHV-associated neuronal disease development and pathogenesis. PMID:26628726

  9. Shiga Toxin Mediated Neurologic Changes in Murine Model of Disease.

    PubMed

    Pradhan, Suman; Pellino, Christine; MacMaster, Kayleigh; Coyle, Dennis; Weiss, Alison A

    2016-01-01

    Seizures and neurologic involvement have been reported in patients infected with Shiga toxin (Stx) producing E. coli , and hemolytic uremic syndrome (HUS) with neurologic involvement is associated with more severe outcome. We investigated the extent of renal and neurologic damage in mice following injection of the highly potent form of Stx, Stx2a, and less potent Stx1. As observed in previous studies, Stx2a brought about moderate to acute tubular necrosis of proximal and distal tubules in the kidneys. Brain sections stained with hematoxylin and eosin (H&E) appeared normal, although some red blood cell congestion was observed. Microglial cell responses to neural injury include up-regulation of surface-marker expression (e.g., Iba1) and stereotypical morphological changes. Mice injected with Stx2a showed increased Iba1 staining, mild morphological changes associated with microglial activation (thickening of processes), and increased microglial staining per unit area. Microglial changes were observed in the cortex, hippocampus, and amygdala regions, but not the nucleus. Magnetic resonance imaging (MRI) of Stx2a-treated mice revealed no hyper-intensities in the brain, although magnetic resonance spectroscopy (MRS) revealed significantly decreased levels of phosphocreatine in the thalamus. Less dramatic changes were observed following Stx1 challenge. Neither immortalized microvascular endothelial cells from the cerebral cortex of mice (bEnd.3) nor primary human brain microvascular endothelial cells were found to be susceptible to Stx1 or Stx2a. The lack of susceptibility to Stx for both cell types correlated with an absence of receptor expression. These studies indicate Stx causes subtle, but identifiable changes in the mouse brain.

  10. The organotin compounds trimethyltin (TMT) and triethyltin (TET) but not tributyltin (TBT) induce activation of microglia co-cultivated with astrocytes.

    PubMed

    Röhl, C; Grell, M; Maser, E

    2009-12-01

    The organotin compounds trimethyltin (TMT), triethyltin (TET) and tributyltin (TBT) show different organotoxicities in vivo. While TMT and TET induce a strong neurotoxicity accompanied by microglial and astroglial activation, TBT rather effects the immune system. Previously, we have shown in an in vitro co-culture model that microglial cells can be activated by TMT in the presence of astrocytes. In this study, we wanted to investigate (a) if the neurotoxic organotin compound TET can also activate microglial cells in vitro similar to TMT and (b) if differences between the neurotoxicants TMT and TET on the one side and TBT on the other exist concerning microglial activation. Therefore, purified microglial and astroglial cell cultures from neonatal rat brains were treated either alone or in co-cultures for 24h with different concentrations of TMT, TET or TBT and the basal cytotoxicity and nitric oxide formation was determined. Furthermore, morphological changes of astrocytes were examined. Our results show that microglial activation can be increased in subcytolethal concentrations, but only in the presence of astrocytes and not in microglial cell cultures alone. This increase was induced by the neurotoxicants TMT and TET but not by TBT. Taken together, the differing microglia activating effect of the organotin compounds may contribute to the differing neurotoxic potential of this group of chemicals in vivo. In addition, our results emphasize the need for co-culture systems when studying interactions between different cell types for toxicity assessment.

  11. Single-Cell RNA Sequencing of Human T Cells.

    PubMed

    Villani, Alexandra-Chloé; Shekhar, Karthik

    2017-01-01

    Understanding how populations of human T cells leverage cellular heterogeneity, plasticity, and diversity to achieve a wide range of functional flexibility, particularly during dynamic processes such as development, differentiation, and antigenic response, is a core challenge that is well suited for single-cell analysis. Hypothesis-free evaluation of cellular states and subpopulations by transcriptional profiling of single T cells can identify relationships that may be obscured by targeted approaches such as FACS sorting on cell-surface antigens, or bulk expression analysis. While this approach is relevant to all cell types, it is of particular interest in the study of T cells for which classical phenotypic criteria are now viewed as insufficient for distinguishing different T cell subtypes and transitional states, and defining the changes associated with dysfunctional T cell states in autoimmunity and tumor-related exhaustion. This unit describes a protocol to generate single-cell transcriptomic libraries of human blood CD4 + and CD8 + T cells, and also introduces the basic bioinformatic steps to process the resulting sequence data for further computational analysis. We show how cellular subpopulations can be identified from transcriptional data, and derive characteristic gene expression signatures that distinguish these states. We believe single-cell RNA-seq is a powerful technique to study the cellular heterogeneity in complex tissues, a paradigm that will be of great value for the immune system.

  12. Review article: stem cells in human reproduction.

    PubMed

    Gargett, Caroline E

    2007-07-01

    The derivation of human embryonic stem (hES) cells heralds a new era in stem cell research, generating excitement for their therapeutic potential in regenerative medicine. Pioneering work of embryologists, developmental biologists, and reproductive medicine practitioners in in vitro fertilization clinics has facilitated hES cell research. This review summarizes current research focused on optimizing hES cell culture conditions for good manufacturing practice, directing hES cell differentiation toward trophectoderm and germ cells, and approaches used to reprogram cells for pluripotent cell derivation. The identification of germ stem cells in the testis and the recent controversy over their existence in the ovary raise the possibility of harnessing them for treating young cancer survivors. There is also the potential to harvest fetal stem cells with pluripotent cell-like properties from discarded placental tissues. The recent identification of adult stem/progenitor cell activity in the human endometrium offers a new understanding of common gynecological diseases. Discoveries resulting from research into embryonic, germ, fetal, and adult stem cells are highly relevant to human reproduction.

  13. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various diagnostic...

  14. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various diagnostic...

  15. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various diagnostic...

  16. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various diagnostic...

  17. Interaction of Human Enterochromaffin Cells with Human Enteric Adenovirus 41 Leads to Serotonin Release and Subsequent Activation of Enteric Glia Cells.

    PubMed

    Westerberg, Sonja; Hagbom, Marie; Rajan, Anandi; Loitto, Vesa; Persson, B David; Allard, Annika; Nordgren, Johan; Sharma, Sumit; Magnusson, Karl-Eric; Arnberg, Niklas; Svensson, Lennart

    2018-04-01

    Human adenovirus 41 (HAdV-41) causes acute gastroenteritis in young children. The main characteristics of HAdV-41 infection are diarrhea and vomiting. Nevertheless, the precise mechanism of HAdV-41-induced diarrhea is unknown, as a suitable small-animal model has not been described. In this study, we used the human midgut carcinoid cell line GOT1 to investigate the effect of HAdV-41 infection and the individual HAdV-41 capsid proteins on serotonin release by enterochromaffin cells and on enteric glia cell (EGC) activation. We first determined that HAdV-41 could infect the enterochromaffin cells. Immunofluorescence staining revealed that the cells expressed HAdV-41-specific coxsackievirus and adenovirus receptor (CAR); flow cytometry analysis supported these findings. HAdV-41 infection of the enterochromaffin cells induced serotonin secretion dose dependently. In contrast, control infection with HAdV-5 did not induce serotonin secretion in the cells. Confocal microscopy studies of enterochromaffin cells infected with HAdV-41 revealed decreased serotonin immunofluorescence compared to that in uninfected cells. Incubation of the enterochromaffin cells with purified HAdV-41 short fiber knob and hexon proteins increased the serotonin levels in the harvested cell supernatant significantly. HAdV-41 infection could also activate EGCs, as shown in the significantly altered expression of glia fibrillary acidic protein (GFAP) in EGCs incubated with HAdV-41. The EGCs were also activated by serotonin alone, as shown in the significantly increased GFAP staining intensity. Likewise, EGCs were activated by the cell supernatant of HAdV-41-infected enterochromaffin cells. IMPORTANCE The nonenveloped human adenovirus 41 causes diarrhea, vomiting, dehydration, and low-grade fever mainly in children under 2 years of age. Even though acute gastroenteritis is well described, how human adenovirus 41 causes diarrhea is unknown. In our study, we analyzed the effect of human adenovirus 41

  18. Culture of human cell lines by a pathogen-inactivated human platelet lysate.

    PubMed

    Fazzina, R; Iudicone, P; Mariotti, A; Fioravanti, D; Procoli, A; Cicchetti, E; Scambia, G; Bonanno, G; Pierelli, L

    2016-08-01

    Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety.

  19. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth ofmore » undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.« less

  20. Microglia-Neuron Communication in Epilepsy.

    PubMed

    Eyo, Ukpong B; Murugan, Madhuvika; Wu, Long-Jun

    2017-01-01

    Epilepsy has remained a significant social concern and financial burden globally. Current therapeutic strategies are based primarily on neurocentric mechanisms that have not proven successful in at least a third of patients, raising the need for novel alternative and complementary approaches. Recent evidence implicates glial cells and neuroinflammation in the pathogenesis of epilepsy with the promise of targeting these cells to complement existing strategies. Specifically, microglial involvement, as a major inflammatory cell in the epileptic brain, has been poorly studied. In this review, we highlight microglial reaction to experimental seizures, discuss microglial control of neuronal activities, and propose the functions of microglia during acute epileptic phenotypes, delayed neurodegeneration, and aberrant neurogenesis. Future research that would help fill in the current gaps in our knowledge includes epilepsy-induced alterations in basic microglial functions, neuro-microglial interactions during chronic epilepsy, and microglial contribution to developmental seizures. Studying the role of microglia in epilepsy could inform therapies to better alleviate the disease. GLIA 2016;65:5-18. © 2016 Wiley Periodicals, Inc.

  1. Evodiamine Induces Cell Growth Arrest, Apoptosis and Suppresses Tumorigenesis in Human Urothelial Cell Carcinoma Cells.

    PubMed

    Shi, Chung-Sheng; Li, Jhy-Ming; Chin, Chih-Chien; Kuo, Yi-Hung; Lee, Ying-Ray; Huang, Yun-Ching

    2017-03-01

    Evodiamine, an indole alkaloid derived from Evodia rutaecarpa, exhibits pharmacological activities including vasodilatation, analgesia, anti-cardiovascular disease, anti-Alzheimer's disease, anti-inflammation, and anti-tumor activity. This study analyzes the anti-tumor effects of evodiamine on cellular growth, tumorigenesis, cell cycle and apoptosis induction of human urothelial cell carcinoma (UCC) cells. The present study showed that evodiamine significantly inhibited the proliferation of UCC cells in a dose- and time-dependent manner. Also, evodiamine suppressed the tumorigenesis of UCC cells in vitro. Moreover, evodiamine caused G 2 /M cell-cycle arrest and induced caspase-dependent apoptosis in UCC cells. Finally, we demonstrated that evodiamine exhibits better cytotoxic than 5-fluorouracil, a clinical chemotherapeutic drug, for UCC cells. Evodiamine induces growth inhibition, tumorigenesis suppression, cell-cycle arrest, and apoptosis induction in human UCC cells. Therefore, this agent displays a therapeutic potential for treating human UCC cells and is worthy for further investigation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Human interleukin for DA cells or leukemia inhibitory factor is released by Vero cells in human embryo coculture.

    PubMed

    Papaxanthos-Roche, A; Taupin, J L; Mayer, G; Daniel, J Y; Moreau, J F

    1994-09-01

    In the light of the newly discovered implications of human interleukin for DA cells and leukemia inhibitory factor in embryology, we searched for the presence of this soluble cytokine in the supernatant of Vero cell coculture systems. Using a bioassay as well as a specific ELISA, we demonstrated that Vero cells are able to release large quantities of human interleukin for DA cells and leukemia inhibitory factor in the embryo-growing medium of such cocultures.

  3. Exosomes from NSC-34 Cells Transfected with hSOD1-G93A Are Enriched in miR-124 and Drive Alterations in Microglia Phenotype.

    PubMed

    Pinto, Sara; Cunha, Carolina; Barbosa, Marta; Vaz, Ana R; Brites, Dora

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disorder affecting motor neurons (MNs). Evidences indicate that ALS is a non-cell autonomous disease in which glial cells participate in both disease onset and progression. Exosomal transfer of mutant copper-zinc superoxide dismutase 1 (mSOD1) from cell-to-cell was suggested to contribute to disease dissemination. Data from our group and others showed that exosomes from activated cells contain inflammatory-related microRNAs (inflamma-miRNAs) that recapitulate the donor cell. While glia-derived exosomes and their effects in neurons have been addressed by several studies, only a few investigated the influence of motor neuron (MN)-derived exosomes in other cell function, the aim of the present study. We assessed a set of inflamma-miRs in NSC-34 MN-like cells transfected with mutant SOD1(G93A) and extended the study into their derived exosomes (mSOD1 exosomes). Then, the effects produced by mSOD1 exosomes in the activation and polarization of the recipient N9 microglial cells were investigated. Exosomes in coculture with N9 microglia and NSC-34 cells [either transfected with either wild-type (wt) human SOD1 or mutant SOD1(G93A)] showed to be transferred into N9 cells. Increased miR-124 expression was found in mSOD1 NSC-34 cells and in their derived exosomes. Incubation of mSOD1 exosomes with N9 cells determined a sustained 50% reduction in the cell phagocytic ability. It also caused a persistent NF-kB activation and an acute generation of NO, MMP-2, and MMP-9 activation, as well as upregulation of IL-1β, TNF-α, MHC-II, and iNOS gene expression, suggestive of induced M1 polarization. Marked elevation of IL-10, Arginase 1, TREM2, RAGE, and TLR4 mRNA levels, together with increased miR-124, miR-146a, and miR-155, at 24 h incubation, suggest the switch to mixed M1 and M2 subpopulations in the exosome-treated N9 microglial cells. Exosomes from mSOD1 NSC-34 MNs also enhanced the number of

  4. Autophagy in Human Embryonic Stem Cells

    PubMed Central

    Tra, Thien; Gong, Lan; Kao, Lin-Pin; Li, Xue-Lei; Grandela, Catarina; Devenish, Rodney J.; Wolvetang, Ernst; Prescott, Mark

    2011-01-01

    Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC. PMID:22110659

  5. Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts.

    PubMed

    Motté, Evi; Szepessy, Edit; Suenens, Krista; Stangé, Geert; Bomans, Myriam; Jacobs-Tulleneers-Thevissen, Daniel; Ling, Zhidong; Kroon, Evert; Pipeleers, Daniel

    2014-11-01

    β-Cells generated from large-scale sources can overcome current shortages in clinical islet cell grafts provided that they adequately respond to metabolic variations. Pancreatic (non)endocrine cells can develop from human embryonic stem (huES) cells following in vitro derivation to pancreatic endoderm (PE) that is subsequently implanted in immune-incompetent mice for further differentiation. Encapsulation of PE increases the proportion of endocrine cells in subcutaneous implants, with enrichment in β-cells when they are placed in TheraCyte-macrodevices and predominantly α-cells when they are alginate-microencapsulated. At posttransplant (PT) weeks 20-30, macroencapsulated huES implants presented higher glucose-responsive plasma C-peptide levels and a lower proinsulin-over-C-peptide ratio than human islet cell implants under the kidney capsule. Their ex vivo analysis showed the presence of single-hormone-positive α- and β-cells that exhibited rapid secretory responses to increasing and decreasing glucose concentrations, similar to isolated human islet cells. However, their insulin secretory amplitude was lower, which was attributed in part to a lower cellular hormone content; it was associated with a lower glucose-induced insulin biosynthesis, but not with lower glucagon-induced stimulation, which together is compatible with an immature functional state of the huES-derived β-cells at PT weeks 20-30. These data support the therapeutic potential of macroencapsulated huES implants but indicate the need for further functional analysis. Their comparison with clinical-grade human islet cell grafts sets references for future development and clinical translation. Copyright © 2014 the American Physiological Society.

  6. Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells

    PubMed Central

    Wang, Chen; Yi, Tai; Qin, Lingfeng; Maldonado, Roberto A.; von Andrian, Ulrich H.; Kulkarni, Sanjay; Tellides, George; Pober, Jordan S.

    2013-01-01

    Human graft endothelial cells (ECs) can act as antigen-presenting cells to initiate allograft rejection by host memory T cells. Rapamycin, an mTOR inhibitor used clinically to suppress T cell responses, also acts on DCs, rendering them tolerogenic. Here, we report the effects of rapamycin on EC alloimmunogenicity. Compared with mock-treated cells, rapamycin-pretreated human ECs (rapa-ECs) stimulated less proliferation and cytokine secretion from allogeneic CD4+ memory cells, an effect mimicked by shRNA knockdown of mTOR or raptor in ECs. The effects of rapamycin persisted for several days and were linked to upregulation of the inhibitory molecules PD-L1 and PD-L2 on rapa-ECs. Additionally, rapa-ECs produced lower levels of the inflammatory cytokine IL-6. CD4+ memory cells activated by allogeneic rapa-ECs became hyporesponsive to restimulation in an alloantigen-specific manner and contained higher percentages of suppressive CD4+CD25hiCD127loFoxP3+ cells that did not produce effector cytokines. In a human-mouse chimeric model of allograft rejection, rapamycin pretreatment of human arterial allografts increased graft EC expression of PD-L1 and PD-L2 and reduced subsequent infiltration of allogeneic effector T cells into the artery intima and intimal expansion. Preoperative conditioning of allograft ECs with rapamycin could potentially reduce immune-mediated rejection. PMID:23478407

  7. Preparation of pancreatic β-cells from human iPS cells with small molecules

    PubMed Central

    2012-01-01

    Human induced pluripotent stem (iPS) cells obtained from patients are expected to be a useful source for cell transplantation therapy, because many patients (including those with type 1 diabetes and severe type 2 diabetes) are on waiting lists for transplantation for a long time due to the shortage of donors. At present, many concerns related to clinical application of human iPS cells have been raised, but rapid development of methods for the establishment, culture, and standardization of iPS cells will lead autologous cell therapy to be realistic sooner or later. However, establishment of a method for preparing some of desired cell types is still challenging. Regarding pancreatic β-cells, there have been many reports about differentiation of these cells from human embryonic stem (ES)/iPS cells, but a protocol for clinical application has still not been established. Since there is clear proof that cell transplantation therapy is effective for diabetes based on the results of clinical islet transplantation, pancreatic β-cells prepared from human iPS cells are considered likely to be effective for reducing the burden on patients. In this article, the current status of procedures for preparing pancreatic β-cells from human ES/iPS cells, including effective use of small molecules, is summarized, and some of the problems that still need to be overcome are discussed. PMID:22722666

  8. Bidirectional enhancing activities between human T cell leukemia-lymphoma virus type I and human cytomegalovirus in human term syncytiotrophoblast cells cultured in vitro.

    PubMed

    Tóth, F D; Aboagye-Mathiesen, G; Szabó, J; Liu, X; Mosborg-Petersen, P; Kiss, J; Hager, H; Zdravkovic, M; Andirkó, I; Aranyosi, J

    1995-12-01

    The syncytiotrophoblast layer of the human placenta has an important role in limiting transplacental viral spread from mother to fetus. Human cytomegalovirus (HCMV) is capable of establishing a latent infection in syncytiotrophoblast cells, with restriction of gene expression to immediate-early and early proteins. We analyzed the extent of replication of human T cell leukemia-lymphoma virus type I (HTLV-I) in human term syncytiotrophoblasts infected with HTLV-I alone or coinfected with HTLV-I and HCMV. Although syncytiotrophoblasts could be infected with cell-free HTLV-I, no viral protein expression was found in the singly infected cells. On the contrary, coinfection of the cells with HTLV-I and HCMV resulted in simultaneous replication of both viruses. Bidirectional enhancing activities between HTLV-I and HCMV were mediated primarily by the Tax and immediate-early proteins, respectively. The stimulatory effect of HTLV-I Tax on HCMV replication appeared to be mediated partly by tumor necrosis factor beta and transforming growth factor beta-1. We observed formation of pseudotypes with HTLV-I nucleocapsids within HCMV envelopes, whereas HCMV was not pseudotyped by HTLV-I envelopes in dually infected syncytiotrophoblast cells. Our data suggest that in vivo dual infection of syncytiotrophoblast cells with HTLV-I and HCMV may facilitate the transplacental transmission of both viruses.

  9. Preventive Effects of a Fermented Dairy Product against Alzheimer’s Disease and Identification of a Novel Oleamide with Enhanced Microglial Phagocytosis and Anti-Inflammatory Activity

    PubMed Central

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer’s disease and to identify the responsible component. Here, in a mouse model of Alzheimer’s disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer’s disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia. PMID:25760987

  10. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  11. Human Skin Cells Are More Sensitive than Human Lung Cells to the Cytotoxic and Cell Cycle Arresting Impacts of Particulate and Soluble Hexavalent Chromium

    PubMed Central

    Xie, Hong; Holmes, Amie L.; Wise, Sandra S.; Young, Jamie L.; Wise, James T. F.; Wise, John Pierce

    2015-01-01

    Hexavalent chromium Cr(VI) is a known human lung carcinogen, with solubility playing an important role in its carcinogenic potency. Dermal exposure to Cr(VI) is common and has been associated with skin damage; however, no link between chromate exposure and skin cancer has been found. In this study, we compared the cytotoxic and clastogenic effects of Cr(VI) and its impacts on cell cycle progression in human lung and skin fibroblasts. We found human skin cells arrested earlier in their cell cycle and exhibit more cytotoxicity than human lung cells, despite taking up similar amounts of Cr. These outcomes are consistent with a hypothesis that different cellular and molecular responses underlie the differences in carcinogenic outcome in these two tissues. PMID:25805272

  12. New frontiers in human cell biology and medicine: can pluripotent stem cells deliver?

    PubMed

    Goldstein, Lawrence S B

    2012-11-12

    Human pluripotent stem cells provide enormous opportunities to treat disease using cell therapy. But human stem cells can also drive biomedical and cell biological discoveries in a human model system, which can be directly linked to understanding disease or developing new therapies. Finally, rigorous scientific studies of these cells can and should inform the many science and medical policy issues that confront the translation of these technologies to medicine. In this paper, I discuss these issues using amyotrophic lateral sclerosis as an example.

  13. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells.

    PubMed

    Lee, Jonghyeob; Sugiyama, Takuya; Liu, Yinghua; Wang, Jing; Gu, Xueying; Lei, Ji; Markmann, James F; Miyazaki, Satsuki; Miyazaki, Jun-Ichi; Szot, Gregory L; Bottino, Rita; Kim, Seung K

    2013-11-19

    Pancreatic islet β-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional β-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native β-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark β-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes. DOI: http://dx.doi.org/10.7554/eLife.00940.001.

  14. Human organomics: a fresh approach to understanding human development using single-cell transcriptomics.

    PubMed

    Camp, J Gray; Treutlein, Barbara

    2017-05-01

    Innovative methods designed to recapitulate human organogenesis from pluripotent stem cells provide a means to explore human developmental biology. New technologies to sequence and analyze single-cell transcriptomes can deconstruct these 'organoids' into constituent parts, and reconstruct lineage trajectories during cell differentiation. In this Spotlight article we summarize the different approaches to performing single-cell transcriptomics on organoids, and discuss the opportunities and challenges of applying these techniques to generate organ-level, mechanistic models of human development and disease. Together, these technologies will move past characterization to the prediction of human developmental and disease-related phenomena. © 2017. Published by The Company of Biologists Ltd.

  15. [Primary culture of human normal epithelial cells].

    PubMed

    Tang, Yu; Xu, Wenji; Guo, Wanbei; Xie, Ming; Fang, Huilong; Chen, Chen; Zhou, Jun

    2017-11-28

    The traditional primary culture methods of human normal epithelial cells have disadvantages of low activity of cultured cells, the low cultivated rate and complicated operation. To solve these problems, researchers made many studies on culture process of human normal primary epithelial cell. In this paper, we mainly introduce some methods used in separation and purification of human normal epithelial cells, such as tissue separation method, enzyme digestion separation method, mechanical brushing method, red blood cell lysis method, percoll layered medium density gradient separation method. We also review some methods used in the culture and subculture, including serum-free medium combined with low mass fraction serum culture method, mouse tail collagen coating method, and glass culture bottle combined with plastic culture dish culture method. The biological characteristics of human normal epithelial cells, the methods of immunocytochemical staining, trypan blue exclusion are described. Moreover, the factors affecting the aseptic operation, the conditions of the extracellular environment, the conditions of the extracellular environment during culture, the number of differential adhesion, and the selection and dosage of additives are summarized.

  16. Side population cells in the human vocal fold.

    PubMed

    Yamashita, Masaru; Hirano, Shigeru; Kanemaru, Shin-ichi; Tsuji, Shunichiro; Suehiro, Atsushi; Ito, Juichi

    2007-11-01

    The regenerative processes of the vocal fold, or the existence of stem cells in the folds, are unknown. Side population (SP) cells are defined as cells that have the ability to exclude the DNA binding dye, Hoechst 33342. They are regarded as a cell population enriched with stem cells and can be isolated from non-SP cells by a fluorescence-activated cell sorter. This study was designed to determine whether SP cells exist in the human vocal fold, as a first step in elucidating the regenerative mechanisms of the vocal fold. Seven human excised larynges were used in this study. Two were used for fluorescence-activated cell sorter analysis, and 5 were subjected to immunohistochemical analysis with antibodies against an adenosine triphosphate binding cassette transporter family member, ABCG2, which is expressed in SP cells. The number of SP cells in the human vocal fold was about 0.2% of the total number of cells. ABCG2-positive cells were identified in both the epithelium and subepithelial tissue throughout the entire vocal fold. This preliminary study demonstrated the existence of SP cells in the human vocal fold. Further studies are warranted to clarify how these cells work in the vocal fold, particularly in the regenerative process.

  17. An 80-year experience with optic nerve glioma cases at the Armed Forces Institute of Pathology: evolution from museum to molecular evaluation suggests possibe interventions in the cellular senescence and microglial pathways (an American Ophthalmological Society thesis).

    PubMed

    Cameron, J Douglas; Rodriguez, Fausto J; Rushing, Elisabeth; Horkayne-Szakaly, Iren; Eberhart, Charles

    2014-01-01

    To determine whether p16, a molecular marker of cellular senescence, and CD68, a microglial marker, are detectible in optic nerve glioma tissue stored for decades, thus providing potential targets for pharmacologic intervention. Cases were retrieved from the Armed Forces Institute of Pathology Registry of Ophthalmic Pathology. Clinical information was tabulated. In specimens with sufficient tissue, a tissue microarray was constructed to conduct molecular studies. Ninety-two cases were included: gender distribution was in a ratio of one male to 1.6 females, and age range was 2 months to 50 years (average age, 10.8 years). Neurofibromatosis type 1 was identified in 10 cases (10.8%). The majority presented with decreased vision and exophthalmos. Forty-eight cases were studied by a tissue microarray construction. Glial fibrillary acidic protein, a control for immunoreactivity, was positive in 46 cases (96%). Immunoreactivity for p16 protein was seen in 36 cases (75%) and CD68-positive cells in 34 (71%). Limitations include referral bias, limited clinical information, limited amount of tissue, and extended period of tissue preservation. Optic nerve glioma is a tumor of the visual axis in young individuals, which is generally indolent but with a variable clinical course. Traditional histopathologic techniques have not been reliably predictive of clinical course. This microarray contains tumors with representative demographic, clinical, and histologic characteristics for optic nerve glioma. Immunoreactivity for p16 protein and CD68 is positive in the majority. These findings suggest a possible explanation for the variable clinical course and identify therapeutic targets in the cell senescence and microglial pathways.

  18. Comparative reactivity of human IgE to cynomolgus monkey and human effector cells and effects on IgE effector cell potency

    PubMed Central

    Saul, Louise; Saul, Louise; Josephs, Debra H; Josephs, Debra H; Cutler, Keith; Cutler, Keith; Bradwell, Andrew; Bradwell, Andrew; Karagiannis, Panagiotis; Karagiannis, Panagiotis; Selkirk, Chris; Selkirk, Chris; Gould, Hannah J; Gould, Hannah J; Jones, Paul; Jones, Paul; Spicer, James F; Spicer, James F; Karagiannis, Sophia N; Karagiannis, Sophia N

    2014-01-01

    Background: Due to genetic similarities with humans, primates of the macaque genus such as the cynomolgus monkey are often chosen as models for toxicology studies of antibody therapies. IgE therapeutics in development depend upon engagement with the FcεRI and FcεRII receptors on immune effector cells for their function. Only limited knowledge of the primate IgE immune system is available to inform the choice of models for mechanistic and safety evaluations.   Methods: The recognition of human IgE by peripheral blood lymphocytes from cynomolgus monkey and man was compared. We used effector cells from each species in ex vivo affinity, dose-response, antibody-receptor dissociation and potency assays. Results: We report cross-reactivity of human IgE Fc with cynomolgus monkey cells, and comparable binding kinetics to peripheral blood lymphocytes from both species. In competition and dissociation assays, however, human IgE dissociated faster from cynomolgus monkey compared with human effector cells. Differences in association and dissociation kinetics were reflected in effector cell potency assays of IgE-mediated target cell killing, with higher concentrations of human IgE needed to elicit effector response in the cynomolgus monkey system. Additionally, human IgE binding on immune effector cells yielded significantly different cytokine release profiles in each species. Conclusion: These data suggest that human IgE binds with different characteristics to human and cynomolgus monkey IgE effector cells. This is likely to affect the potency of IgE effector functions in these two species, and so has relevance for the selection of biologically-relevant model systems when designing pre-clinical toxicology and functional studies. PMID:24492303

  19. Alternative Sources of Adult Stem Cells: Human Amniotic Membrane

    NASA Astrophysics Data System (ADS)

    Wolbank, Susanne; van Griensven, Martijn; Grillari-Voglauer, Regina; Peterbauer-Scherb, Anja

    Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.

  20. Novel PI3K/Akt Inhibitors Screened by the Cytoprotective Function of Human Immunodeficiency Virus Type 1 Tat

    PubMed Central

    Kim, Dong-Hyun; Kim, Baek

    2011-01-01

    The PI3K/Akt pathway regulates various stress-related cellular responses such as cell survival, cell proliferation, metabolism and protein synthesis. Many cancer cell types display the activation of this pathway, and compounds inhibiting this cell survival pathway have been extensively evaluated as anti-cancer agents. In addition to cancers, several human viruses, such as HTLV, HPV, HCV and HIV-1, also modulate this pathway, presumably in order to extend the life span of the infected target cells for productive viral replication. The expression of HIV-1 Tat protein exhibited the cytoprotective effect in macrophages and a human microglial cell line by inhibiting the negative regulator of this pathway, PTEN. This cytoprotective effect of HIV-1 appears to contribute to the long-term survival and persistent HIV-1 production in human macrophage reservoirs. In this study we exploited the PI3K/Akt dependent cytoprotective effect of Tat-expressing CHME5 cells. We screened a collection of compounds known to modulate inflammation, and identified three novel compounds: Lancemaside A, Compound K and Arctigenin that abolished the cytoprotective phenotype of Tat-expressing CHME5 cells. All three compounds antagonized the kinase activity of Akt. Further detailed signaling studies revealed that each of these three compounds targeted different steps of the PI3K/Akt pathway. Arctigenin regulates the upstream PI3K enzyme from converting PIP2 to PIP3. Lancemaside A1 inhibited the movement of Akt to the plasma membrane, a critical step for Akt activation. Compound K inhibited Akt phosphorylation. This study supports that Tat-expressing CHME5 cells are an effective model system for screening novel PI3K/Akt inhibitors. PMID:21765914

  1. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro...

  2. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos.

    PubMed

    Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián

    2015-09-01

    Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers. Copyright © 2015. Published by Elsevier B.V.

  3. Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Hepatocytes

    PubMed Central

    Basma, Hesham; Soto-Gutiérrez, Alejandro; Yannam, Govardhana Rao; Liu, Liping; Ito, Ryotaro; Yamamoto, Toshiyuki; Ellis, Ewa; Carson, Steven D.; Sato, Shintaro; Chen, Yong; Muirhead, David; Navarro-Álvarez, Nalu; Wong, Ron; Roy-Chowdhury, Jayanta; Platt, Jeffrey L.; Mercer, David F.; Miller, John D.; Strom, Stephen C.; Kobayashi, Noaya; Fox, Ira J.

    2009-01-01

    Background & Aims The ability to obtain unlimited numbers of human hepatocytes would improve development of cell-based therapies for liver diseases, facilitate the study of liver biology and improve the early stages of drug discovery. Embryonic stem cells are pluripotent, can potentially differentiate into any cell type and could therefore be developed as a source of human hepatocytes. Methods To generate human hepatocytes, human embryonic stem cells were differentiated by sequential culture in fibroblast growth factor 2 and human Activin-A, hepatocyte growth factor, and dexamethasone. Functional hepatocytes were isolated by sorting for surface asialoglycoprotein receptor expression. Characterization was performed by real-time PCR, imunohistochemistry, immunoblot, functional assays and transplantation. Results Embryonic stem cell-derived hepatocytes expressed liver-specific genes but not genes representing other lineages, secreted functional human liver-specific proteins similar to those of primary human hepatocytes and demonstrated human hepatocyte cytochrome P450 metabolic activity. Serum from rodents given injections of embryonic stem cell-derived hepatocytes contained significant amounts of human albumin and alpha-1-antitrypsin. Colonies of cytokeratin-18 and human albumin-expressing cells were present in the livers of recipient animals. Conclusion Human embryonic stem cells can be differentiated into cells with many characteristics of primary human hepatocytes. Hepatocyte-like cells can be enriched and recovered based on asialoglycoprotein receptor expression and could potentially be used in drug discovery research and developed as therapeutics. PMID:19026649

  4. Are microglia minding us? Digging up the unconscious mind-brain relationship from a neuropsychoanalytic approach

    PubMed Central

    Kato, Takahiro A.; Kanba, Shigenobu

    2013-01-01

    The unconscious mind-brain relationship remains unresolved. From the perspective of neuroscience, neuronal networks including synapses have been dominantly believed to play crucial roles in human mental activities, while glial contribution to mental activities has long been ignored. Recently, it has been suggested that microglia, glial cells with immunological/inflammatory functions, play important roles in psychiatric disorders. Newly revealed microglial roles, such as constant direct contact with synapses even in the normal brain, have defied the common traditional belief that microglia do not contribute to neuronal networks. Recent human neuroeconomic investigations with healthy volunteers using minocycline, an antibiotic with inhibitory effects on microglial activation, suggest that microglia may unconsciously modulate human social behaviors as “noise.” We herein propose a novel unconscious mind structural system in the brain centering on microglia from a neuropsychoanalytic approach. At least to some extent, microglial activation in the brain may activate unconscious drives as “psychological immune memory/reaction” in the mind, and result in various emotions, traumatic reactions, psychiatric symptoms including suicidal behaviors, and (psychoanalytic) transference during interpersonal relationships. Microglia have the potential to bridge the huge gap between neuroscience, biological psychiatry, psychology and psychoanalysis as a key player to connect the conscious and the unconscious world. PMID:23443737

  5. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles

    PubMed Central

    Xu, Xiaoti; Wilschut, Karlijn J.; Kouklis, Gayle; Tian, Hua; Hesse, Robert; Garland, Catharine; Sbitany, Hani; Hansen, Scott; Seth, Rahul; Knott, P. Daniel; Hoffman, William Y.; Pomerantz, Jason H.

    2015-01-01

    Summary Identification of human satellite cells that fulfill muscle stem cell criteria is an unmet need in regenerative medicine. This hurdle limits understanding how closely muscle stem cell properties are conserved among mice and humans and hampers translational efforts in muscle regeneration. Here, we report that PAX7 satellite cells exist at a consistent frequency of 2–4 cells/mm of fiber in muscles of the human trunk, limbs, and head. Xenotransplantation into mice of 50–70 fiber-associated, or 1,000–5,000 FACS-enriched CD56+/CD29+ human satellite cells led to stable engraftment and formation of human-derived myofibers. Human cells with characteristic PAX7, CD56, and CD29 expression patterns populated the satellite cell niche beneath the basal lamina on the periphery of regenerated fibers. After additional injury, transplanted satellite cells robustly regenerated to form hundreds of human-derived fibers. Together, these findings conclusively delineate a source of bona-fide endogenous human muscle stem cells that will aid development of clinical applications. PMID:26352798

  6. Derivation, propagation and differentiation of human embryonic stem cells.

    PubMed

    Conley, Brock J; Young, Julia C; Trounson, Alan O; Mollard, Richard

    2004-04-01

    Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug

  7. Pneumolysin induces cellular senescence by increasing ROS production and activation of MAPK/NF-κB signal pathway in glial cells.

    PubMed

    Kwon, Ii-Seul; Kim, Jinwook; Rhee, Dong-Kwon; Kim, Byung-Oh; Pyo, Suhkneung

    2017-04-01

    Senescence is an irreversible proliferation arrest that is induced by various stress stimuli including genotoxin. Pneumolysin (PLY) is a pathogenicity factor unique to Streptococcus pneumoniae that is important in pneumococcal-induced diseases such as otitis media, meningitis and pneumonia. However, the cell fate response to the toxin is mechanistically unclear. We investigated the effect of PLY on cellular senescence in BV-2 microglial cells. Exposure to PLY resulted in changes in the expression of phospho-p53, p21, p16, pRb and CDK2 and increased the number of senescence associated β-gal positive cells. PLY-treatment also increased PAI-1 expression and cell proliferation arrest in concentration- and time-dependent manners. PLY induced NF-κB activation and phosphorylation of SIRT-1, ERK1/2, JNK, and p38 MAPK. In addition, PLY increased the production of reactive oxygen species. Overall, the results suggest that PLY regulates microglial cellular senescence by enhancing production of reactive oxygen species, activation of MAPK and NF-κB, and phosphorylation of SIRT-1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Poly(ADP-ribose) polymerase-1 regulates microglia mediated decrease of endothelial tight junction integrity.

    PubMed

    Mehrabadi, Abbas Rezaeian; Korolainen, Minna A; Odero, Gary; Miller, Donald W; Kauppinen, Tiina M

    2017-09-01

    Alzheimer's disease pathology includes, beside neuronal damage, reactive gliosis and reduced blood-brain barrier (BBB) integrity. Microglia are intimately associated with the BBB and upon AD pathology, pro-inflammatory responses of microglia could contribute to BBB damage. To study whether microglia can directly affect BBB integrity, the effects of amyloid beta (Aβ) -stimulated primary murine microglia on co-cultured mouse brain endothelial cells (bEnd3) and murine astrocyte cultures were assessed. We also assessed whether microglial phenotype modulation via poly(ADP-ribose) polymerase-1 (PARP-1) inhibition/ablation can reverse microglial impact on these BBB forming cells. Unstimulated microglia promoted expression of tight junction proteins (TJPs), zonula ocluden-1 (ZO-1) and occludin in co-cultured endothelia cells, whereas Aβ-stimulated microglia reduced endothelial expression of ZO-1 and occludin. Astrocytes co-cultured with microglia showed elevated glial fibrillary acidic protein (GFAP) expression, which was further increased if microglia had been stimulated with Aβ. Aβ induced microglial release of nitric oxide (NO) and tumour necrosis factor alpha (TNFα), which resulted in reduced endothelial expression of TJPs and increased paracellular permeability. Microglial PARP-1 inhibition attenuated these Aβ-induced events. These findings demonstrate that PARP-1 mediated microglial responses (NO and TNFα) can directly reduce BBB integrity by promoting TJP degradation, increasing endothelial cell permeability and inducing astrogliosis. PARP-1 as a modulator of microglial phenotype can prevent microglial BBB damaging events, and thus is a potential therapeutic target. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Enhanced Stem Cell Differentiation and Immunopurification of Genome Engineered Human Retinal Ganglion Cells.

    PubMed

    Sluch, Valentin M; Chamling, Xitiz; Liu, Melissa M; Berlinicke, Cynthia A; Cheng, Jie; Mitchell, Katherine L; Welsbie, Derek S; Zack, Donald J

    2017-11-01

    Human pluripotent stem cells have the potential to promote biological studies and accelerate drug discovery efforts by making possible direct experimentation on a variety of human cell types of interest. However, stem cell cultures are generally heterogeneous and efficient differentiation and purification protocols are often lacking. Here, we describe the generation of clustered regularly-interspaced short palindromic repeats(CRISPR)-Cas9 engineered reporter knock-in embryonic stem cell lines in which tdTomato and a unique cell-surface protein, THY1.2, are expressed under the control of the retinal ganglion cell (RGC)-enriched gene BRN3B. Using these reporter cell lines, we greatly improved adherent stem cell differentiation to the RGC lineage by optimizing a novel combination of small molecules and established an anti-THY1.2-based protocol that allows for large-scale RGC immunopurification. RNA-sequencing confirmed the similarity of the stem cell-derived RGCs to their endogenous human counterparts. Additionally, we developed an in vitro axonal injury model suitable for studying signaling pathways and mechanisms of human RGC cell death and for high-throughput screening for neuroprotective compounds. Using this system in combination with RNAi-based knockdown, we show that knockdown of dual leucine kinase (DLK) promotes survival of human RGCs, expanding to the human system prior reports that DLK inhibition is neuroprotective for murine RGCs. These improvements will facilitate the development and use of large-scale experimental paradigms that require numbers of pure RGCs that were not previously obtainable. Stem Cells Translational Medicine 2017;6:1972-1986. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  10. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  11. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  12. Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity.

    PubMed

    Woll, Petter S; Martin, Colin H; Miller, Jeffrey S; Kaufman, Dan S

    2005-10-15

    Human embryonic stem cells (hESCs) provide a unique resource to analyze early stages of human hematopoiesis. However, little is known about the ability to use hESCs to evaluate lymphocyte development. In the present study, we use a two-step culture method to demonstrate efficient generation of functional NK cells from hESCs. The CD56(+)CD45(+) hESC-derived lymphocytes express inhibitory and activating receptors typical of mature NK cells, including killer cell Ig-like receptors, natural cytotoxicity receptors, and CD16. Limiting dilution analysis suggests that these cells can be produced from hESC-derived hemopoietic progenitors at a clonal frequency similar to CD34(+) cells isolated from cord blood. The hESC-derived NK cells acquire the ability to lyse human tumor cells by both direct cell-mediated cytotoxicity and Ab-dependent cellular cytotoxicity. Additionally, activated hESC-derived NK cells up-regulate cytokine production. hESC-derived lymphoid progenitors provide a novel means to characterize specific cellular and molecular mechanisms that lead to development of specific human lymphocyte populations. These cells may also provide a source for innovative cellular immune therapies.

  13. Generation of Oligodendrogenic Spinal Neural Progenitor Cells From Human Induced Pluripotent Stem Cells.

    PubMed

    Khazaei, Mohamad; Ahuja, Christopher S; Fehlings, Michael G

    2017-08-14

    This unit describes protocols for the efficient generation of oligodendrogenic neural progenitor cells (o-NPCs) from human induced pluripotent stem cells (hiPSCs). Specifically, detailed methods are provided for the maintenance and differentiation of hiPSCs, human induced pluripotent stem cell-derived neural progenitor cells (hiPS-NPCs), and human induced pluripotent stem cell-oligodendrogenic neural progenitor cells (hiPSC-o-NPCs) with the final products being suitable for in vitro experimentation or in vivo transplantation. Throughout, cell exposure to growth factors and patterning morphogens has been optimized for both concentration and timing, based on the literature and empirical experience, resulting in a robust and highly efficient protocol. Using this derivation procedure, it is possible to obtain millions of oligodendrogenic-NPCs within 40 days of initial cell plating which is substantially shorter than other protocols for similar cell types. This protocol has also been optimized to use translationally relevant human iPSCs as the parent cell line. The resultant cells have been extensively characterized both in vitro and in vivo and express key markers of an oligodendrogenic lineage. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  14. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells

    PubMed Central

    Lee, Jonghyeob; Sugiyama, Takuya; Liu, Yinghua; Wang, Jing; Gu, Xueying; Lei, Ji; Markmann, James F; Miyazaki, Satsuki; Miyazaki, Jun-ichi; Szot, Gregory L; Bottino, Rita; Kim, Seung K

    2013-01-01

    Pancreatic islet β-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional β-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native β-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark β-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes. DOI: http://dx.doi.org/10.7554/eLife.00940.001 PMID:24252877

  15. Genetic Causes of Human NK Cell Deficiency and Their Effect on NK Cell Subsets

    PubMed Central

    Mace, Emily M.; Orange, Jordan S.

    2016-01-01

    Human NK cells play critical roles in human host defense, particularly the control of viral infection and malignancy, and patients with congenital immunodeficiency affecting NK cell function or number can suffer from severe illness. The importance of NK cell function is particularly underscored in patients with primary immunodeficiency in which NK cells are the primary or sole affected population (NK cell deficiency, NKD). While NKD may lead to the absence of NK cells, we are also gaining an increasing appreciation of the effect that NKD may have on the generation of specific NK cell subsets. In turn, this leads to improved insights into the requirements for human NK cell subset generation, as well as their importance in immune homeostasis. The presence of inherently abnormally developed or functionally impaired NK cells, in particular, appears to be problematic in the way of interfering with normal human host defense and may be more impactful than low numbers of NK cells alone. Here, we review the known genetic causes of NKD and the insight that is derived by these into the requirements for human subset generation and, by extension, for NK cell-mediated immunity. PMID:27994588

  16. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LCmore » cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the

  17. Generating trunk neural crest from human pluripotent stem cells

    PubMed Central

    Huang, Miller; Miller, Matthew L.; McHenry, Lauren K.; Zheng, Tina; Zhen, Qiqi; Ilkhanizadeh, Shirin; Conklin, Bruce R.; Bronner, Marianne E.; Weiss, William A.

    2016-01-01

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior “cranial” NCC form craniofacial bone, whereas solely posterior “trunk” NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages. PMID:26812940

  18. New insights into human primordial germ cells and early embryonic development from single-cell analysis.

    PubMed

    Otte, Jörg; Wruck, Wasco; Adjaye, James

    2017-08-01

    Human preimplantation developmental studies are difficult to accomplish due to associated ethical and moral issues. Preimplantation cells are rare and exist only in transient cell states. From a single cell, it is very challenging to analyse the origination of the heterogeneity and complexity inherent to the human body. However, recent advances in single-cell technology and data analysis have provided new insights into the process of early human development and germ cell specification. In this Review, we examine the latest single-cell datasets of human preimplantation embryos and germ cell development, compare them to bulk cell analyses, and interpret their biological implications. © 2017 Federation of European Biochemical Societies.

  19. Human Decidua-Derived Mesenchymal Cells Are a Promising Source for the Generation and Cell Banking of Human Induced Pluripotent Stem Cells

    PubMed Central

    Shofuda, Tomoko; Kanematsu, Daisuke; Fukusumi, Hayato; Yamamoto, Atsuyo; Bamba, Yohei; Yoshitatsu, Sumiko; Suemizu, Hiroshi; Nakamura, Masato; Sugimoto, Yoshikazu; Furue, Miho Kusuda; Kohara, Arihiro; Akamatsu, Wado; Okada, Yohei; Okano, Hideyuki; Yamasaki, Mami; Kanemura, Yonehiro

    2013-01-01

    Placental tissue is a biomaterial with remarkable potential for use in regenerative medicine. It has a three-layer structure derived from the fetus (amnion and chorion) and the mother (decidua), and it contains huge numbers of cells. Moreover, placental tissue can be collected without any physical danger to the donor and can be matched with a variety of HLA types. The decidua-derived mesenchymal cells (DMCs) are highly proliferative fibroblast-like cells that express a similar pattern of CD antigens as bone marrow-derived mesenchymal cells (BM-MSCs). Here we demonstrated that induced pluripotent stem (iPS) cells could be efficiently generated from DMCs by retroviral transfer of reprogramming factor genes. DMC-hiPS cells showed equivalent characteristics to human embryonic stem cells (hESCs) in colony morphology, global gene expression profile (including human pluripotent stem cell markers), DNA methylation status of the OCT3/4 and NANOG promoters, and ability to differentiate into components of the three germ layers in vitro and in vivo. The RNA expression of XIST and the methylation status of its promoter region suggested that DMC-iPSCs, when maintained undifferentiated and pluripotent, had three distinct states: (1) complete X-chromosome reactivation, (2) one inactive X-chromosome, or (3) an epigenetic aberration. Because DMCs are derived from the maternal portion of the placenta, they can be collected with the full consent of the adult donor and have considerable ethical advantages for cell banking and the subsequent generation of human iPS cells for regenerative applications. PMID:26858858

  20. Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics.

    PubMed

    Spaethling, Jennifer M; Na, Young-Ji; Lee, Jaehee; Ulyanova, Alexandra V; Baltuch, Gordon H; Bell, Thomas J; Brem, Steven; Chen, H Isaac; Dueck, Hannah; Fisher, Stephen A; Garcia, Marcela P; Khaladkar, Mugdha; Kung, David K; Lucas, Timothy H; O'Rourke, Donald M; Stefanik, Derek; Wang, Jinhui; Wolf, John A; Bartfai, Tamas; Grady, M Sean; Sul, Jai-Yoon; Kim, Junhyong; Eberwine, James H

    2017-01-17

    Investigation of human CNS disease and drug effects has been hampered by the lack of a system that enables single-cell analysis of live adult patient brain cells. We developed a culturing system, based on a papain-aided procedure, for resected adult human brain tissue removed during neurosurgery. We performed single-cell transcriptomics on over 300 cells, permitting identification of oligodendrocytes, microglia, neurons, endothelial cells, and astrocytes after 3 weeks in culture. Using deep sequencing, we detected over 12,000 expressed genes, including hundreds of cell-type-enriched mRNAs, lncRNAs and pri-miRNAs. We describe cell-type- and patient-specific transcriptional hierarchies. Single-cell transcriptomics on cultured live adult patient derived cells is a prime example of the promise of personalized precision medicine. Because these cells derive from subjects ranging in age into their sixties, this system permits human aging studies previously possible only in rodent systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Comparison of the Gene Expression Profiles of Human Hematopoietic Stem Cells between Humans and a Humanized Xenograft Model.

    PubMed

    Matsuzawa, Hideyuki; Matsushita, Hiromichi; Yahata, Takashi; Tanaka, Masayuki; Ando, Kiyoshi

    2017-04-20

    The aim of this study is to evaluate the feasibility of NOD/Shi-scid-IL2Rγ null (NOG) mice transplanted with human CD34 + /CD38 - /Lin -/low hematopoietic cells from cord blood (CB) as an experimental model of the gene expression in human hematopoiesis. We compared the gene expressions of human CD34 + /CD38 - /Lin -/low cells from human bone marrow (BM) and in xenograft models. The microarray data revealed that 25 KEGG pathways were extracted from the comparison of human CD34 + /CD38 - /Lin -/low HSCs between CB and BM, and that 17 of them--which were mostly related to cellular survival, RNA metabolism and lymphoid development--were shared with the xenograft model. When the probes that were commonly altered in CD34 + /CD38 - /Lin -/low cells from both human and xenograft BM were analyzed, most of them, including the genes related hypoxia, hematopoietic differentiation, epigenetic modification, translation initiation, and RNA degradation, were downregulated. These alterations of gene expression suggest a reduced differentiation capacity and likely include key alterations of gene expression for settlement of CB CD34 + /CD38 - /Lin -/low cells in BM. Our findings demonstrate that the xenograft model of human CB CD34 + /CD38 - /Lin -/low cells using NOG mice was useful, at least in part, for the evaluation of the gene expression profile of human hematopoietic stem cells.

  2. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    PubMed

    Barkla, D H; Whitehead, R H; Foster, H; Tutton, P J

    1988-09-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting from the apical surface. The microvilli are attached by a core of long microfilaments passing deep into the apical cytoplasm. Between the microvilli are parallel arrays of vesicles (caveoli) containing flocculent material. Two different but not mutually exclusive explanations for the presence of tuft cells are proposed. The first explanation is that tuft cells came from the resected tumour and have survived by mitotic division during subsequent passages. The second explanation suggests that tuft cells are the progeny of undifferentiated tumour cells. Descriptions of tuft cells in colon carcinomas are uncommon and possible reasons for this are presented. The morphology of tuft cells is consistent with that of a highly differentiated cell specialised for absorption, and these new models provide an opportunity to further investigate the structure and function of tuft cells.

  3. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells

    PubMed Central

    Scoville, Steven D.; Freud, Aharon G.; Caligiuri, Michael A.

    2017-01-01

    Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development. PMID:28396671

  4. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells.

    PubMed

    Scoville, Steven D; Freud, Aharon G; Caligiuri, Michael A

    2017-01-01

    Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development.

  5. Does minocycline, an antibiotic with inhibitory effects on microglial activation, sharpen a sense of trust in social interaction?

    PubMed

    Watabe, Motoki; Kato, Takahiro A; Monji, Akira; Horikawa, Hideki; Kanba, Shigenobu

    2012-04-01

    Minocycline has long been applied to various infectious diseases as a tetracycline antibiotic and recently has found new application in the treatment of brain diseases such as stroke and multiple sclerosis. In addition, minocycline has also been suggested as an effective drug for psychiatric diseases. These suggestions imply that minocycline may modulate our mental activities, while the underlying mechanism remains to be clarified. To investigate how minocycline influences human mental activity, we experimentally examined how minocycline works on human social decision making in a double-blind randomized trial. Forty-nine healthy volunteers were administered minocycline or placebo over four days, after which they played (1) a trust game, in which they decided how much to trust an anonymous partner, and (2) a dictator game, in which they decided how to divide resources between themselves and an anonymous partner. The minocycline group did not display increased trusting behavior or more altruistic resource allocation. In fact, the minocycline group displayed a slight reduction in trusting behavior. However, the minocycline group did show a strong positive correlation between the degree of risk taking in the trust game and in a separate evaluation of others' trustworthiness, whereas the placebo group showed no such correlation. These results suggest that minocycline led to more rational decision-making strategies, possibly by increasing emotion regulation. Since minocycline is a well-known inhibitor of microglial activation, our findings may open a new optional pathway for treating mental states in which a component of rational decision making is impaired.

  6. Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity.

    PubMed

    Paulsen, Katrin; Tauber, Svantje; Dumrese, Claudia; Bradacs, Gesine; Simmet, Dana M; Gölz, Nadine; Hauschild, Swantje; Raig, Christiane; Engeli, Stephanie; Gutewort, Annett; Hürlimann, Eva; Biskup, Josefine; Unverdorben, Felix; Rieder, Gabriela; Hofmänner, Daniel; Mutschler, Lisa; Krammer, Sonja; Buttron, Isabell; Philpot, Claudia; Huge, Andreas; Lier, Hartwin; Barz, Ines; Engelmann, Frank; Layer, Liliana E; Thiel, Cora S; Ullrich, Oliver

    2015-01-01

    Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.

  7. Regulation of ICAM-1 in Cells of the Monocyte/Macrophage System in Microgravity

    PubMed Central

    Paulsen, Katrin; Tauber, Svantje; Dumrese, Claudia; Bradacs, Gesine; Simmet, Dana M.; Gölz, Nadine; Hauschild, Swantje; Raig, Christiane; Engeli, Stephanie; Gutewort, Annett; Hürlimann, Eva; Biskup, Josefine; Rieder, Gabriela; Hofmänner, Daniel; Mutschler, Lisa; Krammer, Sonja; Philpot, Claudia; Huge, Andreas; Lier, Hartwin; Barz, Ines; Engelmann, Frank; Layer, Liliana E.; Thiel, Cora S.

    2015-01-01

    Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells. PMID:25654110

  8. Preparative electrophoresis of cultured human cells: Effect of cell cycle phase

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Todd, P. W.; Goolsby, C. L.; Walker, J. T.

    1985-01-01

    Human epithelioid T-1E cells were cultured in suspension and subjected to density gradient electrophoresis upward in a vertical column. It is indicated that the most rapidly migrating cells were at the beginning of the cell cycle and the most slowly migrating cells were at the end of the cell cycle. The fastest migrating cells divided 24 hr later than the slowest migrating cells. Colonies developing from slowly migrating cells had twice as many cells during exponential growth as did the most rapidly migrating cells, and the numbers of cells per colony at any time was inversely related to the electrophoretic migration rate. The DNA measurements by fluorescence flow cytometry indicates that the slowest migrating cell populations are enriched in cells that have twice as much DNA as the fastest migrating cells. It is concluded that electrophoretic mobility of these cultured human cells declines steadily through the cell cycle and that the mobility is lowest at the end of G sub 2 phase and highest at the beginning of G sub 1 phase.

  9. Generation of functional hepatocytes from human spermatogonial stem cells.

    PubMed

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-02-23

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration.

  10. Generation of functional hepatocytes from human spermatogonial stem cells

    PubMed Central

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-01-01

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration. PMID:26840458

  11. Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening.

    PubMed

    Takayama, Kazuo; Mizuguchi, Hiroyuki

    2017-02-01

    Because drug-induced liver injury is one of the main reasons for drug development failures, it is important to perform drug toxicity screening in the early phase of pharmaceutical development. Currently, primary human hepatocytes are most widely used for the prediction of drug-induced liver injury. However, the sources of primary human hepatocytes are limited, making it difficult to supply the abundant quantities required for large-scale drug toxicity screening. Therefore, there is an urgent need for a novel unlimited, efficient, inexpensive, and predictive model which can be applied for large-scale drug toxicity screening. Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are able to replicate indefinitely and differentiate into most of the body's cell types, including hepatocytes. It is expected that hepatocyte-like cells generated from human ES/iPS cells (human ES/iPS-HLCs) will be a useful tool for drug toxicity screening. To apply human ES/iPS-HLCs to various applications including drug toxicity screening, homogenous and functional HLCs must be differentiated from human ES/iPS cells. In this review, we will introduce the current status of hepatocyte differentiation technology from human ES/iPS cells and a novel method to predict drug-induced liver injury using human ES/iPS-HLCs. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  12. Human spleen and red blood cells

    NASA Astrophysics Data System (ADS)

    Pivkin, Igor; Peng, Zhangli; Karniadakis, George; Buffet, Pierre; Dao, Ming

    2016-11-01

    Spleen plays multiple roles in the human body. Among them is removal of old and altered red blood cells (RBCs), which is done by filtering cells through the endothelial slits, small micron-sized openings. There is currently no experimental technique available that allows us to observe RBC passage through the slits. It was previously noticed that people without a spleen have less deformable red blood cells, indicating that the spleen may play a role in defining the size and shape of red blood cells. We used detailed RBC model implemented within the Dissipative Particle Dynamics (DPD) simulation framework to study the filter function of the spleen. Our results demonstrate that spleen indeed plays major role in defining the size and shape of the healthy human red blood cells.

  13. Symmetry breaking in human neuroblastoma cells

    PubMed Central

    Izumi, Hideki; Kaneko, Yasuhiko

    2014-01-01

    Asymmetric cell division (ACD) is a characteristic of cancer stem cells, which exhibit high malignant potential. However, the cellular mechanisms that regulate symmetric (self-renewal) and asymmetric cell divisions are mostly unknown. Using human neuroblastoma cells, we found that the oncosuppressor protein tripartite motif containing 32 (TRIM32) positively regulates ACD. PMID:27308367

  14. Anti-inflammatory actions of a taurine analogue, ethane β-sultam, in phagocytic cells, in vivo and in vitro.

    PubMed

    Ward, Roberta J; Lallemand, Frederic; de Witte, Philippe; Crichton, Robert R; Piette, Jacques; Tipton, Keith; Hemmings, Karl; Pitard, Arnaud; Page, Mike; Della Corte, Laura; Taylor, Deanna; Dexter, David

    2011-03-15

    The ability of a taurine prodrug, ethane β-sultam, to reduce cellular inflammation has been investigated, in vitro, in primary cultures of alveolar macrophages and an immortilised N9 microglial cell line and in vivo in an animal model of inflammation and control rats. Ethane β-sultam showed enhanced ability to reduce the inflammatory response in alveolar macrophages, as assayed by the lipopolysaccharide-stimulated-nitric oxide release, (LPS stimulated-NO), in comparison to taurine both in vitro (10 nM, 50 nM) and in vivo (0.15 mmol/kg/day by gavage). In addition, ethane β-sultam, (50, 100 and 1000 nM) significantly reduced LPS-stimulated glutamate release from N9 microglial cells to a greater extent than taurine. The anti-inflammatory response of taurine was shown to be mediated via stabilisation of IkBα. The use of a taurine prodrug as therapeutic agents, for the treatment of neurological conditions, such as Parkinson's and Alzheimer's disease and alcoholic brain damage, where activated phagocytic cells contribute to the pathogenesis, may be of great potential. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    PubMed Central

    Barkla, D. H.; Whitehead, R. H.; Foster, H.; Tutton, P. J.

    1988-01-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting from the apical surface. The microvilli are attached by a core of long microfilaments passing deep into the apical cytoplasm. Between the microvilli are parallel arrays of vesicles (caveoli) containing flocculent material. Two different but not mutually exclusive explanations for the presence of tuft cells are proposed. The first explanation is that tuft cells came from the resected tumour and have survived by mitotic division during subsequent passages. The second explanation suggests that tuft cells are the progeny of undifferentiated tumour cells. Descriptions of tuft cells in colon carcinomas are uncommon and possible reasons for this are presented. The morphology of tuft cells is consistent with that of a highly differentiated cell specialised for absorption, and these new models provide an opportunity to further investigate the structure and function of tuft cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:3414781

  16. Human β-cell Precursors Mature Into Functional Insulin-producing Cells in an Immunoisolation Device: Implications for Diabetes Cell Therapies

    PubMed Central

    Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y.; Geron, Ifat; Strongin, Alex Y.; Itkin-Ansari, Pamela

    2009-01-01

    Background Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human β-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human β-cells and their progenitors and (2) the engraftment of encapsulated murine β-cells in allo- and autoimmune settings. Methods Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Results Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary β-cells ameliorated diabetes without stimulating a detectable T-cell response. Conclusions We demonstrate for the first time that human β-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of β-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells. PMID:19352116

  17. Human beta-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies.

    PubMed

    Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y; Geron, Ifat; Strongin, Alex Y; Itkin-Ansari, Pamela

    2009-04-15

    Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human beta-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human beta-cells and their progenitors and (2) the engraftment of encapsulated murine beta-cells in allo- and autoimmune settings. Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary beta-cells ameliorated diabetes without stimulating a detectable T-cell response. We demonstrate for the first time that human beta-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of beta-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells.

  18. Standardized cryopreservation of human primary cells.

    PubMed

    Ramos, Thomas V; Mathew, Aby J; Thompson, Maria L; Ehrhardt, Rolf O

    2014-09-02

    Cryopreservation is the use of low temperatures to preserve structurally intact living cells. The cells that survive the thermodynamic journey from the 37 °C incubator to the -196 °C liquid nitrogen storage tank are free from the influences of time. Thus, cryopreservation is a critical component of cell culture and cell manufacturing protocols. Successful cryopreservation of human cells requires that the cells be derived from patient samples that are collected in a standardized manner, and carefully handled from blood draw through cell isolation. Furthermore, proper equipment must be in place to ensure consistency, reproducibility, and sterility. In addition, the correct choice and amount of cryoprotectant agent must be added at the correct temperature, and a controlled rate of freezing (most commonly 1 °C/min) must be applied prior to a standardized method of cryogenic storage. This appendix describes how human primary cells can be frozen for long-term storage and thawed for growth in a tissue culture vessel. Copyright © 2014 John Wiley & Sons, Inc.

  19. Genome Editing in Human Pluripotent Stem Cells.

    PubMed

    Carlson-Stevermer, Jared; Saha, Krishanu

    2017-01-01

    Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically use plasmids to transiently transcribe nucleases within the cell. Here, we describe the process for preparing hPSCs for transient expression of nucleases via electroporation and subsequent analysis to create genetically modified stem cell lines.

  20. Molecular cloning of a human Ca2+-dependent cell-cell adhesion molecule homologous to mouse placental cadherin: its low expression in human placental tissues

    PubMed Central

    1989-01-01

    P-cadherin is a subclass of Ca2+-dependent cell-cell adhesion molecules present in mouse placenta, where its localization suggests a function of connecting the embryo to the uterus (Nose, A., and M. Takeichi. 1986. J. Cell Biol. 103:2649-2658). We recently identified a human cadherin detected by an mAb capable of disrupting cell-cell adhesion of A-431 cells, and found that it was closely related immunochemically to mouse P-cadherin. Curiously, this cadherin was undetectable in human placenta by immunohistochemical examination (Shimoyama, Y., S. Hirohashi, S. Hirano, M. Noguchi, Y. Shimosato, M. Takeichi, and O. Abe. 1989. Cancer Res. 49:2128-2133). We here report the cloning and sequencing of cDNA clone encoding the human homologue of mouse P- cadherin. The deduced amino acid sequence of the human P-cadherin consists of 829 amino acid and shows striking homology with mouse P- cadherin. On Northern blot analysis, human P-cadherin was scarcely expressed in human placenta in contrast to mouse P-cadherin, which was abundantly expressed in mouse placenta throughout pregnancy, and it was shown that E-cadherin, but not P-cadherin, was the major cadherin molecule in human placenta. Moreover, NIH3T3 cells transfected with human P-cadherin cDNA expressed the functional cadherin molecule, which was identical to the cadherin we had previously identified using the mAb, showing that this molecule really does mediate cell-cell adhesion and that the cadherin we detected immunochemically is undoubtedly human P-cadherin. The results obtained in this study support the idea that P- cadherin plays little role, if any, in Ca2+-dependent cell-cell binding in human placental tissue at least after several weeks of pregnancy. PMID:2793940