Science.gov

Sample records for human myogenic precursor

  1. Interleukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo

    SciTech Connect

    Lafreniere, J.F.; Mills, P.; Bouchentouf, M.; Tremblay, J.P. . E-mail: Jacques-P.Tremblay@crchul.ulaval.ca

    2006-04-15

    Different molecules are available to recruit new neighboring myogenic cells to the site of regeneration. Formerly called B cell stimulatory factor-1, IL-4 can now be included in the list of motogenic factors. The present report demonstrates that human IL-4 is not required for fusion between mononucleated myoblasts but is required for myotube maturation. In identifying IL-4 as a pro-migratory agent for myogenic cells, these results provide a mechanism which partly explains IL-4 demonstrated activity during differentiation. Among the different mechanisms by which IL-4 might enhance myoblast migration processes, our results indicate that there are implications of some integrins and of three major components of the fibrinolytic system. Indeed, increases in the amount of active urokinase plasminogen activator and its receptor were observed following an IL-4 treatment, while the plasminogen activator inhibitor-1 decreased. Finally, IL-4 did not modify the amount of cell surface {alpha}5 integrin but increased the presence of {beta}3 and {beta}1 integrins. This integrin modulation might favor myogenic cell migration and its interaction with newly formed myotubes. Therefore, IL-4 co-injection with transplanted myoblasts might be an approach to enhance the migration of transplanted cells for the treatment of a damaged myocardium or of a Duchenne Muscular Dystrophy patient.

  2. A new pro-migratory activity on human myogenic precursor cells for a synthetic peptide within the E domain of the mechano growth factor

    SciTech Connect

    Mills, Philippe; Lafreniere, Jean-Francois; Benabdallah, Basma Fattouma; El Fahime, El Mostafa; Tremblay, Jacques-P. . E-mail: Jacques-P.Tremblay@crchul.ulaval.ca

    2007-02-01

    Duchenne muscular dystrophy (DMD) is an inherited disease that leads to progressive muscle wasting. Myogenic precursor cell transplantation is an approach that can introduce the normal dystrophin gene in the muscle fibers of the patients. Unfortunately, these myogenic precursor cells do not migrate well in the muscle and thus many injections have to be done to enable a good graft success. Recent reports have shown that there is extensive splicing of the IGF-1 gene in muscles. The MGF isoform contains a C-terminal 24 amino acids peptide in the E domain (MGF-Ct24E) that has intrinsic properties. It can promote the proliferation while delaying the differentiation of C{sub 2}C{sub 12} cells. Here, we demonstrated that this synthetic peptide is a motogenic factor for human precursor myogenic cells in vitro and in vivo. Indeed, MGF-Ct24E peptide can modulate members of the fibrinolytic and metalloproteinase systems, which are implicated in the migration of myogenic cells. MGF-Ct24E peptide enhances the expression of u-PA, u-PAR and MMP-7 while reducing PAI-1 activity. Moreover, it has no effect on the gelatinases MMP-2 and -9. Those combined effects can favour cell migration. Finally, we present some results suggesting that the MGF-Ct24E peptide induces these cell responses through a mechanism that does not involve the IGF-1 receptor. Thus, this MGF-Ct24E peptide has a new pro-migratory activity on human myogenic precursor cells that may be helpful in the treatment of DMD. Those results reinforce the possibility that the IGF-1Ec isoform may produce an E domain peptide that can act as a cytokine.

  3. Preparation and Culture of Myogenic Precursor Cells/Primary Myoblasts from Skeletal Muscle of Adult and Aged Humans.

    PubMed

    Soriano-Arroquia, Ana; Clegg, Peter D; Molloy, Andrew P; Goljanek-Whysall, Katarzyna

    2017-02-16

    Skeletal muscle homeostasis depends on muscle growth (hypertrophy), atrophy and regeneration. During ageing and in several diseases, muscle wasting occurs. Loss of muscle mass and function is associated with muscle fiber type atrophy, fiber type switching, defective muscle regeneration associated with dysfunction of satellite cells, muscle stem cells, and other pathophysiological processes. These changes are associated with changes in intracellular as well as local and systemic niches. In addition to most commonly used rodent models of muscle ageing, there is a need to study muscle homeostasis and wasting using human models, which due to ethical implications, consist predominantly of in vitro cultures. Despite the wide use of human Myogenic Progenitor Cells (MPCs) and primary myoblasts in myogenesis, there is limited data on using human primary myoblast and myotube cultures to study molecular mechanisms regulating different aspects of age-associated muscle wasting, aiding in the validation of mechanisms of ageing proposed in rodent muscle. The use of human MPCs, primary myoblasts and myotubes isolated from adult and aged people, provides a physiologically relevant model of molecular mechanisms of processes associated with muscle growth, atrophy and regeneration. Here we describe in detail a robust, inexpensive, reproducible and efficient protocol for the isolation and maintenance of human MPCs and their progeny - myoblasts and myotubes from human muscle samples using enzymatic digestion. Furthermore, we have determined the passage number at which primary myoblasts from adult and aged people undergo senescence in an in vitro culture. Finally, we show the ability to transfect these myoblasts and the ability to characterize their proliferative and differentiation capacity and propose their suitability for performing functional studies of molecular mechanisms of myogenesis and muscle wasting in vitro.

  4. The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans.

    PubMed

    Mackey, Abigail L; Kjaer, Michael; Dandanell, Sune; Mikkelsen, Kristian H; Holm, Lars; Døssing, Simon; Kadi, Fawzi; Koskinen, Satu O; Jensen, Charlotte H; Schrøder, Henrik D; Langberg, Henning

    2007-08-01

    The consumption of nonsteroidal anti-inflammatory drugs (NSAIDs) is widespread among athletes when faced with muscle soreness or injury, but the effects of NSAIDs on satellite cell activity in humans are unknown. To investigate this, 14 healthy male endurance athletes (mean peak oxygen consumption 62 ml x kg(-1) x min(-1)) volunteered for the study, which involved running 36 km. They were divided into two groups and received either 100 mg indomethacin per day or placebo. Muscle biopsies collected before the run and on days 1, 3, and 8 afterward were analyzed for satellite cells by immunohistochemistry with the aid of neural cell adhesion molecule (NCAM) and fetal antigen-1 (FA1) antibodies. Muscle biopsies were also collected from untrained individuals for comparison. Compared with preexercise levels, a 27% increase in the number of NCAM+ cells was observed on day 8 postexercise in the placebo group (P < 0.05), while levels remained similar at all time points in the NSAID group. No change was seen in the proportion of FA1+ cells, although lower levels were found in the muscle of endurance-trained athletes compared with untrained individuals (P < 0.05). These results suggest that ingestion of anti-inflammatory drugs attenuates the exercise-induced increase in satellite cell number, supporting the role of the cyclooxygenase pathway in satellite cell activity.

  5. Myogenic potential of human alveolar mucosa derived cells.

    PubMed

    Zorin, Vadim L; Pulin, Andrey A; Eremin, Ilya I; Korsakov, Ivan N; Zorina, Alla I; Khromova, Natalia V; Sokova, Olga I; Kotenko, Konstantin V; Kopnin, Pavel B

    2017-03-19

    Difficulties related to the obtainment of stem/progenitor cells from skeletal muscle tissue make the search for new sources of myogenic cells highly relevant. Alveolar mucosa might be considered as a perspective candidate due to availability and high proliferative capacity of its cells. Human alveolar mucosa cells (AMC) were obtained from gingival biopsy samples collected from 10 healthy donors and cultured up to 10 passages. AMC matched the generally accepted multipotent mesenchymal stromal cells criteria and possess population doubling time, caryotype and immunophenotype stability during long-term cultivation. The single myogenic induction of primary cell cultures resulted in differentiation of AMC into multinucleated myotubes. The myogenic differentiation was associated with expression of skeletal muscle markers: skeletal myosin, skeletal actin, myogenin and MyoD1. Efficiency of myogenic differentiation in AMC cultures was similar to that in skeletal muscle cells. Furthermore, some of differentiated myotubes exhibited contractions in vitro. Our data confirms the sufficiently high myogenic potential and proliferative capacity of AMC and their ability to maintain in vitro proliferation-competent myogenic precursor cells regardless of the passage number.

  6. Immortalization of human myogenic progenitor cell clone retaining multipotentiality

    SciTech Connect

    Hashimoto, Naohiro . E-mail: nao@nils.go.jp; Kiyono, Tohru; Wada, Michiko R.; Shimizu, Shirabe; Yasumoto, Shigeru; Inagawa, Masayo

    2006-10-06

    Human myogenic cells have limited ability to proliferate in culture. Although forced expression of telomerase can immortalize some cell types, telomerase alone delays senescence of human primary cultured myogenic cells, but fails to immortalize them. In contrast, constitutive expression of both telomerase and the E7 gene from human papillomavirus type 16 immortalizes primary human myogenic cells. We have established an immortalized primary human myogenic cell line preserving multipotentiality by ectopic expression of telomerase and E7. The immortalized human myogenic cells exhibit the phenotypic characteristics of their primary parent, including an ability to undergo myogenic, osteogenic, and adipogenic terminal differentiation under appropriate culture conditions. The immortalized cells will be useful for both basic and applied studies aimed at human muscle disorders. Furthermore, immortalization by transduction of telomerase and E7 represents a useful method by which to expand human myogenic cells in vitro without compromising their ability to differentiate.

  7. Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts

    PubMed Central

    Costamagna, Domiziana; Quattrocelli, Mattia; van Tienen, Florence; Umans, Lieve; de Coo, Irineus F. M.; Zwijsen, An; Huylebroeck, Danny; Sampaolesi, Maurilio

    2016-01-01

    Mesoangioblasts (MABs) are vessel-associated stem cells that express pericyte marker genes and participate in skeletal muscle regeneration. Molecular circuits that regulate the myogenic commitment of MABs are still poorly characterized. The critical role of bone morphogenetic protein (BMP) signalling during proliferation and differentiation of adult myogenic precursors, such as satellite cells, has recently been established. We evaluated whether BMP signalling impacts on the myogenic potential of embryonic and adult MABs both in vitro and in vivo. Addition of BMP inhibited MAB myogenic differentiation, whereas interference with the interactions between BMPs and receptor complexes induced differentiation. Similarly, siRNA-mediated knockdown of Smad8 in Smad1/5-null MABs or inhibition of SMAD1/5/8 phosphorylation with Dorsomorphin (DM) also improved myogenic differentiation, demonstrating a novel role of SMAD8. Moreover, using a transgenic mouse model of Smad8 deletion, we demonstrated that the absence of SMAD8 protein improved MAB myogenic differentiation. Furthermore, once injected into α-Sarcoglycan (Sgca)-null muscles, DM-treated MABs were more efficacious to restore α-sarcoglycan (αSG) protein levels and re-establish functional muscle properties. Similarly, in acute muscle damage, DM-treated MABs displayed a better myogenic potential compared with BMP-treated and untreated cells. Finally, SMADs also control the myogenic commitment of human MABs (hMABs). BMP signalling antagonists are therefore novel candidates to improve the therapeutic effects of hMABs. PMID:26450990

  8. Ageing is associated with diminished muscle re-growth and myogenic precursor cell expansion early after immobility-induced atrophy in human skeletal muscle.

    PubMed

    Suetta, C; Frandsen, U; Mackey, A L; Jensen, L; Hvid, L G; Bayer, M L; Petersson, S J; Schrøder, H D; Andersen, J L; Aagaard, P; Schjerling, P; Kjaer, M

    2013-08-01

    Recovery of skeletal muscle mass from immobilisation-induced atrophy is faster in young than older individuals, yet the cellular mechanisms remain unknown. We examined the cellular and molecular regulation of muscle recovery in young and older human subjects subsequent to 2 weeks of immobility-induced muscle atrophy. Retraining consisted of 4 weeks of supervised resistive exercise in 9 older (OM: mean age) 67.3, range 61-74 yrs) and 11 young (YM: mean age 24.4, range 21-30 yrs) males. Measures of myofibre area (MFA), Pax7-positive satellite cells (SCs) associated with type I and type II muscle fibres, as well as gene expression analysis of key growth and transcription factors associated with local skeletal muscle milieu, were performed after 2 weeks immobility (Imm) and following 3 days (+3d) and 4 weeks (+4wks) of retraining. OM demonstrated no detectable gains in MFA (vastus lateralis muscle) and no increases in number of Pax7-positive SCs following 4wks retraining, whereas YM increased their MFA (P < 0.05), number of Pax7-positive cells, and had more Pax7-positive cells per type II fibre than OM at +3d and +4wks (P < 0.05). No age-related differences were observed in mRNA expression of IGF-1Ea, MGF, MyoD1 and HGF with retraining, whereas myostatin expression levels were more down-regulated in YM compared to OM at +3d (P < 0.05). In conclusion, the diminished muscle re-growth after immobilisation in elderly humans was associated with a lesser response in satellite cell proliferation in combination with an age-specific regulation of myostatin. In contrast, expression of local growth factors did not seem to explain the age-related difference in muscle mass recovery.

  9. Effects of Retinoic Acid Signaling on Extraocular Muscle Myogenic Precursor Cells In Vitro.

    PubMed

    Hebert, Sadie L; Fitzpatrick, Krysta R; McConnell, Samantha A; Cucak, Anja; Yuan, Ching; McLoon, Linda K

    2017-10-07

    One major difference between limb and extraocular muscles (EOM) is the presence of an enriched population of Pitx2-positive myogenic precursor cells in EOM compared to limb muscle. We hypothesize that retinoic acid regulates Pitx2 expression in EOM myogenic precursor cells and that its effects would differ in leg muscle. The two muscle groups expressed differential retinoic acid receptor (RAR) and retinoid X receptor (RXR) levels. RXR co-localized with the Pitx2-positive cells but not with those expressing Pax7. EOM-derived and LEG-derived EECD34 cells were treated with vehicle, retinoic acid, the RAR inverse agonist BMS493, or the RXR antagonist UVI 3003. In vitro, fewer EOM-derived EECD34 cells expressed desmin and fused, while more LEG-derived cells expressed desmin and fused when treated with retinoic acid compared to vehicle. Both EOM and LEG-derived EECD34 cells exposed to retinoic acid showed a higher percentage of cells expressing Pitx2 compared to vehicle, supporting the hypothesis that retinoic acid plays a role in maintaining Pitx2 expression. We hypothesize that retinoic acid signaling aids in the maintenance of large numbers of undifferentiated myogenic precursor cells in the EOM, which would be required to maintain EOM normalcy throughout a lifetime of myonuclear turnover. Copyright © 2017. Published by Elsevier Inc.

  10. Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages

    PubMed Central

    Froehlich, Jacob Michael; Seiliez, Iban; Gabillard, Jean-Charles; Biga, Peggy R.

    2014-01-01

    Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4. PMID:24835774

  11. Hierarchization of myogenic and adipogenic progenitors within human skeletal muscle.

    PubMed

    Pisani, Didier F; Clement, Noémie; Loubat, Agnès; Plaisant, Magali; Sacconi, Sabrina; Kurzenne, Jean-Yves; Desnuelle, Claude; Dani, Christian; Dechesne, Claude A

    2010-12-01

    Skeletal muscle cells constitute a heterogeneous population that maintains muscle integrity through a high myogenic regenerative capacity. More unexpectedly, this population is also endowed with an adipogenic potential, even in humans, and intramuscular adipocytes have been found to be present in several disorders. We tested the distribution of myogenic and adipogenic commitments in human muscle-derived cells to decipher the cellular basis of the myoadipogenic balance. Clonal analysis showed that adipogenic progenitors can be separated from myogenic progenitors and, interestingly, from myoadipogenic bipotent progenitors. These progenitors were isolated in the CD34(+) population on the basis of the expression of CD56 and CD15 cell surface markers. In vivo, these different cell types have been found in the interstitial compartment of human muscle. In vitro, we show that the proliferation of bipotent myoadipogenic CD56(+)CD15(+) progenitors gives rise to myogenic CD56(+)CD15(-) progenitors and adipogenic CD56(-)CD15(+) progenitors. A cellular hierarchy of muscle and fat progenitors thus occurs within human muscle. These results provide cellular bases for adipogenic differentiation in human skeletal muscle, which may explain the fat development encountered in different muscle pathological situations.

  12. Isolation and Quantitative Immunocytochemical Characterization of Primary Myogenic Cells and Fibroblasts from Human Skeletal Muscle

    PubMed Central

    Agley, Chibeza C.; Rowlerson, Anthea M.; Velloso, Cristiana P.; Lazarus, Norman L.; Harridge, Stephen D. R.

    2015-01-01

    The repair and regeneration of skeletal muscle requires the action of satellite cells, which are the resident muscle stem cells. These can be isolated from human muscle biopsy samples using enzymatic digestion and their myogenic properties studied in culture. Quantitatively, the two main adherent cell types obtained from enzymatic digestion are: (i) the satellite cells (termed myogenic cells or muscle precursor cells), identified initially as CD56+ and later as CD56+/desmin+ cells and (ii) muscle-derived fibroblasts, identified as CD56– and TE-7+. Fibroblasts proliferate very efficiently in culture and in mixed cell populations these cells may overrun myogenic cells to dominate the culture. The isolation and purification of different cell types from human muscle is thus an important methodological consideration when trying to investigate the innate behavior of either cell type in culture. Here we describe a system of sorting based on the gentle enzymatic digestion of cells using collagenase and dispase followed by magnetic activated cell sorting (MACS) which gives both a high purity (>95% myogenic cells) and good yield (~2.8 x 106 ± 8.87 x 105 cells/g tissue after 7 days in vitro) for experiments in culture. This approach is based on incubating the mixed muscle-derived cell population with magnetic microbeads beads conjugated to an antibody against CD56 and then passing cells though a magnetic field. CD56+ cells bound to microbeads are retained by the field whereas CD56– cells pass unimpeded through the column. Cell suspensions from any stage of the sorting process can be plated and cultured. Following a given intervention, cell morphology, and the expression and localization of proteins including nuclear transcription factors can be quantified using immunofluorescent labeling with specific antibodies and an image processing and analysis package. PMID:25650991

  13. Isolation and quantitative immunocytochemical characterization of primary myogenic cells and fibroblasts from human skeletal muscle.

    PubMed

    Agley, Chibeza C; Rowlerson, Anthea M; Velloso, Cristiana P; Lazarus, Norman L; Harridge, Stephen D R

    2015-01-12

    The repair and regeneration of skeletal muscle requires the action of satellite cells, which are the resident muscle stem cells. These can be isolated from human muscle biopsy samples using enzymatic digestion and their myogenic properties studied in culture. Quantitatively, the two main adherent cell types obtained from enzymatic digestion are: (i) the satellite cells (termed myogenic cells or muscle precursor cells), identified initially as CD56(+) and later as CD56(+)/desmin(+) cells and (ii) muscle-derived fibroblasts, identified as CD56(-) and TE-7(+). Fibroblasts proliferate very efficiently in culture and in mixed cell populations these cells may overrun myogenic cells to dominate the culture. The isolation and purification of different cell types from human muscle is thus an important methodological consideration when trying to investigate the innate behavior of either cell type in culture. Here we describe a system of sorting based on the gentle enzymatic digestion of cells using collagenase and dispase followed by magnetic activated cell sorting (MACS) which gives both a high purity (>95% myogenic cells) and good yield (~2.8 x 10(6) ± 8.87 x 10(5) cells/g tissue after 7 days in vitro) for experiments in culture. This approach is based on incubating the mixed muscle-derived cell population with magnetic microbeads beads conjugated to an antibody against CD56 and then passing cells though a magnetic field. CD56(+) cells bound to microbeads are retained by the field whereas CD56(-) cells pass unimpeded through the column. Cell suspensions from any stage of the sorting process can be plated and cultured. Following a given intervention, cell morphology, and the expression and localization of proteins including nuclear transcription factors can be quantified using immunofluorescent labeling with specific antibodies and an image processing and analysis package.

  14. Sparing of extraocular muscle in aging and muscular dystrophies: a myogenic precursor cell hypothesis.

    PubMed

    Kallestad, Kristen M; Hebert, Sadie L; McDonald, Abby A; Daniel, Mark L; Cu, Sharon R; McLoon, Linda K

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin(-/-) (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a subpopulation

  15. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    SciTech Connect

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K.

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin{sup -/-} (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a

  16. The role of Pitx2 in maintaining the phenotype of myogenic precursor cells in the extraocular muscles.

    PubMed

    Hebert, Sadie L; Daniel, Mark L; McLoon, Linda K

    2013-01-01

    Many differences exist between extraocular muscles (EOM) and non-cranial skeletal muscles. One striking difference is the sparing of EOM in various muscular dystrophies compared to non-cranial skeletal muscles. EOM undergo continuous myonuclear remodeling in normal, uninjured adults, and distinct transcription factors are required for the early determination, development, and maintenance of EOM compared to limb skeletal muscle. Pitx2, a bicoid-like homeobox transcription factor, is required for the development of EOM and the maintenance of characteristic properties of the adult EOM phenotype, but is not required for the development of limb muscle. We hypothesize that these unique properties of EOM contribute to the constitutive differences between EOM and non-craniofacial skeletal muscles. Using flow cytometry, CD34(+)/Sca1(-/)CD45(-/)CD31(-) cells (EECD34 cells) were isolated from extraocular and limb skeletal muscle and in vitro, EOM EECD34 cells proliferated faster than limb muscle EECD34 cells. To further define these myogenic precursor cells from EOM and limb skeletal muscle, they were analyzed for their expression of Pitx2. Western blotting and immunohistochemical data demonstrated that EOM express higher levels of Pitx2 than limb muscle, and 80% of the EECD34 cells expressed Pitx2. siRNA knockdown of Pitx2 expression in EECD34 cells in vitro decreased proliferation rates and impaired the ability of EECD34 cells to fuse into multinucleated myotubes. High levels of Pitx2 were retained in dystrophic and aging mouse EOM and the EOM EECD34 cells compared to limb muscle. The differential expression of Pitx2 between EOM and limb skeletal muscle along with the functional changes in response to lower levels of Pitx2 expression in the myogenic precursor cells suggest a role for Pitx2 in the maintenance of constitutive differences between EOM and limb skeletal muscle that may contribute to the sparing of EOM in muscular dystrophies.

  17. In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study.

    PubMed

    Negroni, Elisa; Riederer, Ingo; Chaouch, Soraya; Belicchi, Marzia; Razini, Paola; Di Santo, James; Torrente, Yvan; Butler-Browne, Gillian S; Mouly, Vincent

    2009-10-01

    In recent years, numerous reports have identified in mouse different sources of myogenic cells distinct from satellite cells that exhibited a variable myogenic potential in vivo. Myogenic stem cells have also been described in humans, although their regenerative potential has rarely been quantified. In this study, we have investigated the myogenic potential of human muscle-derived cells based on the expression of the stem cell marker CD133 as compared to bona fide satellite cells already used in clinical trials. The efficiency of these cells to participate in muscle regeneration and contribute to the renewal of the satellite cell pool, when injected intramuscularly, has been evaluated in the Rag2(-/-) gammaC(-/-) C5(-/-) mouse in which muscle degeneration is induced by cryoinjury. We demonstrate that human muscle-derived CD133+ cells showed a much greater regenerative capacity when compared to human myoblasts. The number of fibers expressing human proteins and the number of human cells in a satellite cell position are all dramatically increased when compared to those observed after injection of human myoblasts. In addition, CD133+/CD34+ cells exhibited a better dispersion in the host muscle when compared to human myoblasts. We propose that muscle-derived CD133+ cells could be an attractive candidate for cellular therapy.

  18. In Vivo Myogenic Potential of Human CD133+ Muscle-derived Stem Cells: A Quantitative Study

    PubMed Central

    Negroni, Elisa; Riederer, Ingo; Chaouch, Soraya; Belicchi, Marzia; Razini, Paola; Di Santo, James; Torrente, Yvan; Butler-Browne, Gillian S; Mouly, Vincent

    2009-01-01

    In recent years, numerous reports have identified in mouse different sources of myogenic cells distinct from satellite cells that exhibited a variable myogenic potential in vivo. Myogenic stem cells have also been described in humans, although their regenerative potential has rarely been quantified. In this study, we have investigated the myogenic potential of human muscle–derived cells based on the expression of the stem cell marker CD133 as compared to bona fide satellite cells already used in clinical trials. The efficiency of these cells to participate in muscle regeneration and contribute to the renewal of the satellite cell pool, when injected intramuscularly, has been evaluated in the Rag2−/− γC−/− C5−/− mouse in which muscle degeneration is induced by cryoinjury. We demonstrate that human muscle–derived CD133+ cells showed a much greater regenerative capacity when compared to human myoblasts. The number of fibers expressing human proteins and the number of human cells in a satellite cell position are all dramatically increased when compared to those observed after injection of human myoblasts. In addition, CD133+/CD34+ cells exhibited a better dispersion in the host muscle when compared to human myoblasts. We propose that muscle-derived CD133+ cells could be an attractive candidate for cellular therapy. PMID:19623164

  19. Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries

    PubMed Central

    Slack, Daniel L.; Burnstein, Marcus J.; Errett, Lee; Bonneau, Daniel; Latter, David; Rotstein, Ori D.; Bolz, Steffen-Sebastian; Lidington, Darcy; Voigtlaender-Bolz, Julia

    2015-01-01

    We recently identified sphingosine-1-phosphate (S1P) signaling and the cystic fibrosis transmembrane conductance regulator (CFTR) as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i) express critical S1P signaling elements, (ii) constrict in response to S1P and (iii) lose myogenic responsiveness following S1P receptor antagonism (JTE013). However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study. PMID:26367262

  20. In vitro and in vivo study of human amniotic fluid-derived stem cell differentiation into myogenic lineage.

    PubMed

    Gekas, Jean; Walther, Guillaume; Skuk, Daniel; Bujold, Emmanuel; Harvey, Isabelle; Bertrand, Olivier François

    2010-03-01

    Recent findings have shown that amniotic fluid (AF) could be a putative new source of multipotent stem cells (SC). We investigated whether these human SC could efficiently differentiate into myogenic lineage in vitro and integrate in vivo skeletal muscle in severe combined immunodeficiency (SCID) mice. C/kit immunomagnetic-sorted AF (AF c/kit+) SC were characterized by immunocytochemistry and Southern blotting for myogenic markers (desmin, MyoD). In vitro, AF c/kit+ SC phenotypic conversion into myogenic cells was assayed by myogenic-specific induction media. AF c/kit+ SC without ex vivo manipulation were transplanted into the tibialis anterior (TA) of (SCID) mice. Acquisition of a myogenic-like phenotype (desmin, MyoD) in AF c/kit+ SC was observed after culture in myogenic-specific induction media. In vivo, transplanted AF c/kit+ SC showed an engraftment in the skeletal muscle of SCID mice, but with unexpected tubular glandular tissue-like differentiation. Importantly, no immuno-rejection, inflammatory response or tumorigenicity of these cells was found. Within these experimental conditions, AF c/kit+ SC were able to differentiate into myogenic cells in vitro, but not in vivo after their transplantation into the skeletal muscle of SCID mice. Because AF c/kit+ SC survived and differentiated into tubular gland-like cells after their transplantation in the TA, an ex vivo engagement in myogenic pathway prior their transplantation could favor their differentiation into myogenic cells in vivo.

  1. Reversible immortalization of human myogenic cells by site-specific excision of a retrovirally transferred oncogene.

    PubMed

    Berghella, L; De Angelis, L; Coletta, M; Berarducci, B; Sonnino, C; Salvatori, G; Anthonissen, C; Cooper, R; Butler-Browne, G S; Mouly, V; Ferrari, G; Mavilio, F; Cossu, G

    1999-07-01

    Myogenic cells have a limited life span in culture, which prevents expansion at clinically relevant levels, and seriously limits any potential use in cell replacement or ex vivo gene therapy. We developed a strategy for reversibly immortalizing human primary myogenic cells, based on retrovirus-mediated integration of a wild-type SV40 large-T antigen (Tag), excisable by means of the Cre-Lox recombination system. Myogenic cells were transduced with a vector (LTTN-LoxP) expressing the SV40 Tag under the control of an LTR modified by the insertion of a LoxP site in the U3 region. Clonal isolates of Tag-positive cells showed modified growth characteristics and a significantly extended life span, while maintaining a full myogenic potential. Transient expression of Cre recombinase, delivered by transfection or adenoviral vector transduction, allowed excision of the entire provirus with up to >90% efficiency. Cultures of Cre-treated (Tag-) or untreated (Tag+) myogenic cells were genetically labeled with a lacZ retroviral vector, and injected into the regenerating muscle of SCID/bg immunodeficient mice. Tag- cells underwent terminal differentiation in vivo, giving rise to clusters of beta-Gal+ hybrid fibers with an efficiency comparable to that of control untransduced cells. Tag+ cells could not be detected after injection. Neither Tag+ nor Tag- cells formed tumor in this xenotransplantation model. Reversible immortalization by Tag therefore allows the expansion of primary myogenic cells in culture without compromising their ability to differentiate in vivo, and could represent a safe method by which to increase the availability of these cells for clinical application.

  2. Human skeletal muscle fibroblasts, but not myogenic cells, readily undergo adipogenic differentiation.

    PubMed

    Agley, Chibeza C; Rowlerson, Anthea M; Velloso, Cristiana P; Lazarus, Norman R; Harridge, Stephen D R

    2013-12-15

    We characterised the adherent cell types isolated from human skeletal muscle by enzymatic digestion, and demonstrated that even at 72 hours after isolation these cultures consisted predominantly of myogenic cells (CD56(+), desmin(+)) and fibroblasts (TE-7(+), collagen VI(+), PDGFRα(+), vimentin(+), fibronectin(+)). To evaluate the behaviour of the cell types obtained, we optimised a double immuno-magnetic cell-sorting method for the separation of myogenic cells from fibroblasts. This procedure gave purities of >96% for myogenic (CD56(+), desmin(+)) cells. The CD56(-) fraction obtained from the first sort was highly enriched in TE-7(+) fibroblasts. Using quantitative analysis of immunofluorescent staining for lipid content, lineage markers and transcription factors, we tested if the purified cell populations could differentiate into adipocytes in response to treatment with either fatty acids or adipocyte-inducing medium. Both treatments caused the fibroblasts to differentiate into adipocytes, as shown by loss of intracellular TE-7, upregulation of the adipogenic transcription factors PPARγ and C/EBPα, and adoption of a lipid-laden adipocyte morphology. By contrast, myogenic cells did not undergo adipogenesis and showed differential regulation of PPARγ and C/EBPα in response to these adipogenic treatments. Our results show that human skeletal muscle fibroblasts are at least bipotent progenitors that can remain as extracellular-matrix-producing cells or differentiate into adipocytes.

  3. Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiation in vitro and in vivo.

    PubMed

    Ma, Xiaorong; Zhang, Shengli; Zhou, Junmei; Chen, Baisong; Shang, Yafeng; Gao, Tongbing; Wang, Xue; Xie, Hua; Chen, Fang

    2012-08-01

    Stem cell-based therapy may be the most promising method to cure skeletal muscle degenerative diseases such as Duchenne muscular dystrophy (DMD) and trauma in the future. Human amniotic fluid is enriched with early-stage stem cells from developing fetuses and these cells have cardiomyogenic potential both in vitro and in vivo. In the present study, we investigated the characteristics of human amniotic fluid-derived AF-type stem (HAF-AFS) cells by flow cytometry, immunofluorescence staining, reverse-transcription polymerase chain reaction, and osteogenic and adipogenic differentiation analysis. After confirming the stemness of HAF-AFS cells, we tested whether HAF-AFS cells could differentiate into skeletal myogenic cells in vitro and incorporate into regenerating skeletal muscle in vivo. By temporary exposure to the DNA demethylation agent 5-aza-2'-deoxycytidine (5-Aza dC) or co-cultured with C2C12 myoblasts, HAF-AFS cells differentiated into skeletal myogenic cells, expressing skeletal myogenic cell-specific markers such as Desmin, Troponin I (Tn I) and α-Actinin. Four weeks after transplantation into cardiotoxin-injured and X-ray-irradiated tibialis anterior (TA) muscles of NOD/SCID mice, HAF-AFS cells survived, differentiated into myogenic precursor cells and fused with host myofibres. The findings that HAF-AFS cells differentiate into myogenic cells in vitro and incorporate in skeletal muscle regeneration in vivo hold the promise of HAF-AFS cell-based therapy for skeletal muscle degenerative diseases. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Autophagy induction in the skeletal myogenic differentiation of human tonsil-derived mesenchymal stem cells

    PubMed Central

    Park, Saeyoung; Choi, Yoonyoung; Jung, Namhee; Kim, Jieun; Oh, Seiyoon; Yu, Yeonsil; Ahn, Jung-Hyuck; Jo, Inho; Choi, Byung-Ok; Jung, Sung-Chul

    2017-01-01

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation and are thus a valuable source for the replacement of diseased or damaged organs. Previously, we reported that the tonsils can be an excellent reservoir of MSCs for the regeneration of skeletal muscle (SKM) damage. However, the mechanisms involved in the differentiation from tonsil-derived MSCs (T-MSCs) to myocytes via myoblasts remain unclear. To clarify these mechanisms, we analyzed gene expression profiles of T-MSCs during differentiation into myocytes compared with human skeletal muscle cells (hSKMCs). Total RNA was extracted from T-MSCs, T-MSC-derived myoblasts and myocytes, and hSKMCs and was subjected to analysis using a microarray. Microarray analysis of the three phases of myogenic differentiation identified candidate genes associated with myogenic differentiation. The expression pattern of undifferentiated T-MSCs was distinguishable from the myogenic differentiated T-MSCs and hSKMCs. In particular, we selected FNBP1L, which among the upregulated genes is essential for antibacterial autophagy, since autophagy is related to SKM metabolism and myogenesis. T-MSCs differentiated toward myoblasts and skeletal myocytes sequentially, as evidenced by increased expression of autophagy-related markers (including Beclin-1, LC3B and Atg5) and decreased expression of Bcl-2. Furthermore, we reconfirmed that autophagy has an effect on the mechanism of skeletal myogenic differentiation derived from T-MSCs by treatment with 5-azacytidine and bafilomycin A1. These data suggest that the transcriptome of the T-MSC-derived myocytes is similar to that of hSKMCs, and that autophagy has an important role in the mechanism of myogenic differentiation of T-MSCs. PMID:28259927

  5. Autophagy induction in the skeletal myogenic differentiation of human tonsil-derived mesenchymal stem cells.

    PubMed

    Park, Saeyoung; Choi, Yoonyoung; Jung, Namhee; Kim, Jieun; Oh, Seiyoon; Yu, Yeonsil; Ahn, Jung-Hyuck; Jo, Inho; Choi, Byung-Ok; Jung, Sung-Chul

    2017-04-01

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation and are thus a valuable source for the replacement of diseased or damaged organs. Previously, we reported that the tonsils can be an excellent reservoir of MSCs for the regeneration of skeletal muscle (SKM) damage. However, the mechanisms involved in the differentiation from tonsil-derived MSCs (T-MSCs) to myocytes via myoblasts remain unclear. To clarify these mechanisms, we analyzed gene expression profiles of T-MSCs during differentiation into myocytes compared with human skeletal muscle cells (hSKMCs). Total RNA was extracted from T-MSCs, T-MSC-derived myoblasts and myocytes, and hSKMCs and was subjected to analysis using a microarray. Microarray analysis of the three phases of myogenic differentiation identified candidate genes associated with myogenic differentiation. The expression pattern of undifferentiated T-MSCs was distinguishable from the myogenic differentiated T-MSCs and hSKMCs. In particular, we selected FNBP1L, which among the upregulated genes is essential for antibacterial autophagy, since autophagy is related to SKM metabolism and myogenesis. T-MSCs differentiated toward myoblasts and skeletal myocytes sequentially, as evidenced by increased expression of autophagy-related markers (including Beclin-1, LC3B and Atg5) and decreased expression of Bcl-2. Furthermore, we reconfirmed that autophagy has an effect on the mechanism of skeletal myogenic differentiation derived from T-MSCs by treatment with 5-azacytidine and bafilomycin A1. These data suggest that the transcriptome of the T-MSC-derived myocytes is similar to that of hSKMCs, and that autophagy has an important role in the mechanism of myogenic differentiation of T-MSCs.

  6. Myogenic bladder defects in mouse models of human oculodentodigital dysplasia

    PubMed Central

    Huang, Tao; Shao, Qing; Barr, Kevin; Simek, Jamie; Fishman, Glenn I.; Laird, Dale W.

    2015-01-01

    To date, over 65 mutations in the gene encoding Cx43 (connexin43) have been linked to the autosomal-dominant disease ODDD (oculodentodigital dysplasia). A subset of these patients experience bladder incontinence which could be due to underlying neurogenic deterioration or aberrant myogenic regulation. BSMCs (bladder smooth muscle cells) from wild-type and two Cx43 mutant lines (Cx43G60S and Cx43I130T) that mimic ODDD exhibit a significant reduction in total Cx43. Dye transfer studies revealed that the G60S mutant was a potent dominant-negative inhibitor of co-expressed Cx43, a property not equally shared by the I130T mutant. BSMCs from both mutant mouse strains were defective in their ability to contract, which is indicative of phenotype changes due to harbouring the Cx43 mutants. Upon stretching, Cx43 levels were significantly elevated in controls and mutants containing BSMCs, but the non-muscle myosin heavy chain A levels were only reduced in cells from control mice. Although the Cx43G60S mutant mice showed no difference in voided urine volume or frequency, the Cx43I130T mice voided less frequently. Thus, similar to the diversity of morbidities seen in ODDD patients, genetically modified mice also display mutation-specific changes in bladder function. Furthermore, although mutant mice have compromised smooth muscle contraction and response to stretch, overriding bladder defects in Cx43I130T mice are likely to be complemented by neurogenic changes. PMID:24228978

  7. Notch signaling regulates myogenic regenerative capacity of murine and human mesoangioblasts

    PubMed Central

    Quattrocelli, M; Costamagna, D; Giacomazzi, G; Camps, J; Sampaolesi, M

    2014-01-01

    Somatic stem cells hold attractive potential for the treatment of muscular dystrophies (MDs). Mesoangioblasts (MABs) constitute a myogenic subset of muscle pericytes and have been shown to efficiently regenerate dystrophic muscles in mice and dogs. In addition, HLA-matched MABs are currently being tested in a phase 1 clinical study on Duchenne MD patients (EudraCT #2011-000176-33). Many reports indicate that the Notch pathway regulates muscle regeneration and satellite cell commitment. However, little is known about Notch-mediated effects on other resident myogenic cells. To possibly potentiate MAB-driven regeneration in vivo, we asked whether Notch signaling played a pivotal role in regulating MAB myogenic capacity. Through different approaches of loss- and gain-of-function in murine and human MABs, we determined that the interplay between Delta-like ligand 1 (Dll1)-activated Notch1 and Mef2C supports MAB commitment in vitro and ameliorates engraftment and functional outcome after intra-arterial delivery in dystrophic mice. Furthermore, using a transgenic mouse model of conditional Dll1 deletion, we demonstrated that Dll1 ablation, either on the injected cells, or on the receiving muscle fibers, impairs MAB regenerative potential. Our data corroborate the perspective of advanced combinations of cell therapy and signaling tuning to enhance therapeutic efficaciousness of somatic stem cells. PMID:25299773

  8. Aldehyde Dehydrogenase Activity Identifies a Population of Human Skeletal Muscle Cells With High Myogenic Capacities

    PubMed Central

    Vauchez, Karine; Marolleau, Jean-Pierre; Schmid, Michel; Khattar, Patricia; Chapel, Alain; Catelain, Cyril; Lecourt, Séverine; Larghéro, Jérôme; Fiszman, Marc; Vilquin, Jean-Thomas

    2009-01-01

    Aldehyde dehydrogenase 1A1 (ALDH) activity is one hallmark of human bone marrow (BM), umbilical cord blood (UCB), and peripheral blood (PB) primitive progenitors presenting high reconstitution capacities in vivo. In this study, we have identified ALDH+ cells within human skeletal muscles, and have analyzed their phenotypical and functional characteristics. Immunohistofluorescence analysis of human muscle tissue sections revealed rare endomysial cells. Flow cytometry analysis using the fluorescent substrate of ALDH, Aldefluor, identified brightly stained (ALDHbr) cells with low side scatter (SSClo), in enzymatically dissociated muscle biopsies, thereafter abbreviated as SMALD+ (for skeletal muscle ALDH+) cells. Phenotypical analysis discriminated two sub-populations according to CD34 expression: SMALD+/CD34− and SMALD+/CD34+ cells. These sub-populations did not initially express endothelial (CD31), hematopoietic (CD45), and myogenic (CD56) markers. Upon sorting, however, whereas SMALD+/CD34+ cells developed in vitro as a heterogeneous population of CD56− cells able to differentiate in adipoblasts, the SMALD+/CD34− fraction developed in vitro as a highly enriched population of CD56+ myoblasts able to form myotubes. Moreover, only the SMALD+/CD34− population maintained a strong myogenic potential in vivo upon intramuscular transplantation. Our results suggest that ALDH activity is a novel marker for a population of new human skeletal muscle progenitors presenting a potential for cell biology and cell therapy. PMID:19738599

  9. Induction of myogenic differentiation in a human rhabdomyosarcoma cell line by phenylacetate.

    PubMed

    Cinatl, J; Cinatl, J; Herneiz, P; Rabenau, H; Hovak, M; Benda, R; Gümbel, H O; Kornhuber, B; Doerr, H W

    1994-04-01

    Sodium phenylacetate (NaPA) at concentrations ranging from 2 to 10 mM promoted myogenic differentiation of the human alveolar rhabdomyosarcoma cell line KFR. These concentrations inhibited DNA synthesis of the cells in a dose-dependent manner without significant effect on cell viability. The morphological differentiation of small mononuclear elements to terminal, elongated multinuclear structures resembling myotubes was accompanied by the expression of skeletal muscle myosin. The proportion of differentiated myosin-positive cells which was around 0.8-1.7% in control cultures 12 days after seeding was increased by NaPA treatment up to 47%. In the cytoplasm of differentiated cells, features of sarcomerogenesis were observed. These results suggest that NaPA is an effective inducer of rhabdomyosarcoma cell differentiation at concentrations that have been achieved in humans with no significant adverse effects.

  10. Human Myocardial Pericytes: Multipotent Mesodermal Precursors Exhibiting Cardiac Specificity

    PubMed Central

    Chen, William C.W.; Baily, James E.; Corselli, Mirko; Diaz, Mary; Sun, Bin; Xiang, Guosheng; Gray, Gillian A.; Huard, Johnny; Péault, Bruno

    2015-01-01

    Perivascular mesenchymal precursor cells (i.e. pericytes) reside in skeletal muscle where they contribute to myofiber regeneration; however, the existence of similar microvessel-associated regenerative precursor cells in cardiac muscle has not yet been documented. We tested whether microvascular pericytes within human myocardium exhibit phenotypes and multipotency similar to their anatomically and developmentally distinct counterparts. Fetal and adult human heart pericytes (hHPs) express canonical pericyte markers in situ, including CD146, NG2, PDGFRβ, PDGFRα, αSMA, and SM-MHC, but not CD117, CD133 and desmin, nor endothelial cell (EC) markers. hHPs were prospectively purified to homogeneity from ventricular myocardium by flow cytometry, based on a combination of positive- (CD146) and negative-selection (CD34, CD45, CD56, and CD117) cell lineage markers. Purified hHPs expanded in vitro were phenotypically similar to human skeletal muscle-derived pericytes (hSkMPs). hHPs express MSC markers in situ and exhibited osteo- chondro-, and adipogenic potentials but, importantly, no ability for skeletal myogenesis, diverging from pericytes of all other origins. hHPs supported network formation with/without ECs in Matrigel cultures; hHPs further stimulated angiogenic responses under hypoxia, markedly different from hSkMPs. The cardiomyogenic potential of hHPs was examined following 5-azacytidine treatment and neonatal cardiomyocyte co-culture in vitro, and intramyocardial transplantation in vivo. Results indicated cardiomyocytic differentiation in a small fraction of hHPs. In conclusion, human myocardial pericytes share certain phenotypic and developmental similarities with their skeletal muscle homologs, yet exhibit different antigenic, myogenic, and angiogenic properties. This is the first example of an anatomical restriction in the developmental potential of pericytes as native mesenchymal stem cells. PMID:25336400

  11. Myogenic response of human skeletal muscle to 12 weeks of resistance training at light loading intensity.

    PubMed

    Mackey, A L; Holm, L; Reitelseder, S; Pedersen, T G; Doessing, S; Kadi, F; Kjaer, M

    2011-12-01

    There is strong evidence for enhanced numbers of satellite cells with heavy resistance training. The satellite cell response to very light muscle loading is, however, unknown. We, therefore, designed a 12-week training protocol where volunteers trained one leg with a high load (H) and the other leg with a light load (L). Twelve young healthy men [mean age 25 ± 3 standard deviation (SD) years] volunteered for the study. Muscle biopsies were collected from the m. vastus lateralis of both legs before and after the training period and satellite cells were visualized by CD56 immunohistochemistry. A significant main effect of time was observed (P<0.001) for the number of CD56+ cells per fiber (L: from 0.11 ± 0.02 to 0.13 ± 0.03; H: from 0.12 ± 0.03 to 0.15 ± 0.05, mean ± SD). The finding that 12 weeks of training skeletal muscle even with very light loads can induce an increase in the number of satellite cells reveals a new aspect of myogenic precursor cell activation and suggests that satellite cells may play a role in skeletal muscle adaptation over a broad physiological range. © 2010 John Wiley & Sons A/S.

  12. Dose-dependent Effect of Boric Acid on Myogenic Differentiation of Human Adipose-derived Stem Cells (hADSCs).

    PubMed

    Apdik, Hüseyin; Doğan, Ayşegül; Demirci, Selami; Aydın, Safa; Şahin, Fikrettin

    2015-06-01

    Boron, a vital micronutrient for plant metabolism, is not fully elucidated for embryonic and adult body development, and tissue regeneration. Although optimized amount of boron supplement has been shown to be essential for normal gestational development in zebrafish and frog and beneficial for bone regeneration in higher animals, effects of boron on myogenesis and myo-regeneration remains to be solved. In the current study, we investigated dose-dependent activity of boric acid on myogenic differentiation of human adipose-derived stem cells (hADSCs) using immunocytochemical, gene, and protein expression analysis. The results revealed that while low- (81.9 μM) and high-dose (819.6 μM) boron treatment increased myogenic gene expression levels such as myosin heavy chain (MYH), MyoD, myogenin, and desmin at day 4 of differentiation, high-dose treatment decreased myogenic-related gene and protein levels at day 21 of differentiation, confirmed by immunocytochemical analysis. The findings of the study present not only an understanding of boron's effect on myogenic differentiation but also an opportunity for the development of scaffolds to be used in skeletal tissue engineering and supplements for embryonic muscle growth. However, fine dose tuning and treatment period arranging are highly warranted as boron treatment over required concentrations and time might result in detrimental outcomes to myogenesis and myo-regeneration.

  13. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    SciTech Connect

    Sung, Min Sun; Mun, Ji-Young; Kwon, Ohsuk; Kwon, Ki-Sun; Oh, Doo-Byoung

    2013-07-19

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method.

  14. Skeletal myogenic differentiation of human urine-derived cells as a potential source for skeletal muscle regeneration.

    PubMed

    Chen, Wei; Xie, Minkai; Yang, Bin; Bharadwaj, Shantaram; Song, Lujie; Liu, Guihua; Yi, Shanhong; Ye, Gang; Atala, Anthony; Zhang, Yuanyuan

    2017-02-01

    Stem cells are regarded as possible cell therapy candidates for skeletal muscle regeneration. However, invasive harvesting of those cells can cause potential harvest-site morbidity. The goal of this study was to assess whether human urine-derived stem cells (USCs), obtained through non-invasive procedures, can differentiate into skeletal muscle linage cells (Sk-MCs) and potentially be used for skeletal muscle regeneration. In this study, USCs were harvested from six healthy individuals aged 25-55. Expression profiles of cell-surface markers were assessed by flow cytometry. To optimize the myogenic differentiation medium, we selected two from four different types of myogenic differentiation media to induce the USCs. Differentiated USCs were identified with myogenic markers by gene and protein expression. USCs were implanted into the tibialis anterior muscles of nude mice for 1 month. The results showed that USCs displayed surface markers with positive staining for CD24, CD29, CD44, CD73, CD90, CD105, CD117, CD133, CD146, SSEA-4 and STRO-1, and negative staining for CD14, CD31, CD34 and CD45. After myogenic differentiation, a change in morphology was observed from 'rice-grain'-like cells to spindle-shaped cells. The USCs expressed specific Sk-MC transcripts and protein markers (myf5, myoD, myosin, and desmin) after being induced with different myogenic culture media. Implanted cells expressed Sk-MC markers stably in vivo. Our findings suggest that USCs are able to differentiate into the Sk-MC lineage in vitro and after being implanted in vivo. Thus, they might be a potential source for cell injection therapy in the use of skeletal muscle regeneration. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Schisandrae fructus enhances myogenic differentiation and inhibits atrophy through protein synthesis in human myotubes

    PubMed Central

    Kim, Cy Hyun; Shin, Jin-Hong; Hwang, Sung Jun; Choi, Yung Hyun; Kim, Dae-Seong; Kim, Cheol Min

    2016-01-01

    Schisandrae fructus (SF) has recently been reported to increase skeletal muscle mass and inhibit atrophy in mice. We investigated the effect of SF extract on human myotube differentiation and its acting pathway. Various concentrations (0.1–10 μg/mL) of SF extract were applied on human skeletal muscle cells in vitro. Myotube area and fusion index were measured to quantify myotube differentiation. The maximum effect was observed at 0.5 μg/mL of SF extract, enhancing differentiation up to 1.4-fold in fusion index and 1.6-fold in myotube area at 8 days after induction of differentiation compared to control. Phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 and 70 kDa ribosomal protein S6 kinase, which initiate translation as downstream of mammalian target of rapamycin pathway, was upregulated in early phases of differentiation after SF treatment. SF also attenuated dexamethasone-induced atrophy. In conclusion, we show that SF augments myogenic differentiation and attenuates atrophy by increasing protein synthesis through mammalian target of rapamycin/70 kDa ribosomal protein S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1 signaling pathway in human myotubes. SF can be a useful natural dietary supplement in increasing skeletal muscle mass, especially in the aged with sarcopenia and the patients with disuse atrophy. PMID:27330287

  16. Cancer-targeted IL-12 controls human rhabdomyosarcoma by senescence induction and myogenic differentiation

    PubMed Central

    Schilbach, Karin; Alkhaled, Mohammed; Welker, Christian; Eckert, Franziska; Blank, Gregor; Ziegler, Hendrik; Sterk, Marco; Müller, Friederike; Sonntag, Katja; Wieder, Thomas; Braumüller, Heidi; Schmitt, Julia; Eyrich, Matthias; Schleicher, Sabine; Seitz, Christian; Erbacher, Annika; Pichler, Bernd J; Müller, Hartmut; Tighe, Robert; Lim, Annick; Gillies, Stephen D; Strittmatter, Wolfgang; Röcken, Martin; Handgretinger, Rupert

    2015-01-01

    Stimulating the immune system to attack cancer is a promising approach, even for the control of advanced cancers. Several cytokines that promote interferon-γ-dominated immune responses show antitumor activity, with interleukin 12 (IL-12) being of major importance. Here, we used an antibody-IL-12 fusion protein (NHS-IL12) that binds histones of necrotic cells to treat human sarcoma in humanized mice. Following sarcoma engraftment, NHS-IL12 therapy was combined with either engineered IL-7 (FcIL-7) or IL-2 (IL-2MAB602) for continuous cytokine bioavailability. NHS-IL12 strongly induced innate and adaptive antitumor immunity when combined with IL-7 or IL-2. NHS-IL12 therapy significantly improved survival of sarcoma-bearing mice and caused long-term remissions when combined with IL-2. NHS-IL12 induced pronounced cancer cell senescence, as documented by strong expression of senescence-associated p16INK4a and nuclear translocation of p-HP1γ, and permanent arrest of cancer cell proliferation. In addition, this cancer immunotherapy initiated the induction of myogenic differentiation, further promoting the hypothesis that efficient antitumor immunity includes mechanisms different from cytotoxicity for efficient cancer control in vivo. PMID:26140238

  17. Molecular basis of the myogenic profile of aged human skeletal muscle satellite cells during differentiation.

    PubMed

    Pietrangelo, Tiziana; Puglielli, Cristina; Mancinelli, Rosa; Beccafico, Sara; Fanò, Giorgio; Fulle, Stefania

    2009-08-01

    Sarcopenia is the age-related loss of muscle mass, strength and function. Human muscle proteins are synthesized at a slower rate in the elderly than in young adults, leading to atrophy and muscle mass loss with a decline in the functional capability. Additionally, aging is accompanied by a decrease in the ability of muscle tissue to regenerate following injury or overuse due to the impairment of intervening satellite cells, in which we previously reported oxidative damage evidences. The aim of the present study was to determine the effects of aging on myoblasts and myotubes obtained from human skeletal muscle, and characterize the transcriptional profile as molecular expression patterns in relation to age-dependent modifications in their regenerative capacity. Our data show that the failure to differentiate does not depend on reduced myogenic cell number, but difficulty to complete the differentiation program. Data reported here suggested the following findings: (i) oxidative damage accumulation in molecular substrates, probably due to impaired antioxidant activity and insufficient repair capability, (ii) limited capability of elderly myoblasts to execute a complete differentiation program; restricted fusion, possibly due to altered cytoskeleton turnover and extracellular matrix degradation and (iii) activation of atrophy mechanism by activation of a specific FOXO-dependent program.

  18. Efficient and Reproducible Myogenic Differentiation from Human iPS Cells: Prospects for Modeling Miyoshi Myopathy In Vitro

    PubMed Central

    Tanaka, Akihito; Woltjen, Knut; Miyake, Katsuya; Hotta, Akitsu; Ikeya, Makoto; Yamamoto, Takuya; Nishino, Tokiko; Shoji, Emi; Sehara-Fujisawa, Atsuko; Manabe, Yasuko; Fujii, Nobuharu; Hanaoka, Kazunori; Era, Takumi; Yamashita, Satoshi; Isobe, Ken-ichi; Kimura, En; Sakurai, Hidetoshi

    2013-01-01

    The establishment of human induced pluripotent stem cells (hiPSCs) has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1) in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70–90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM) is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF). These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs. PMID:23626698

  19. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein.

    PubMed

    Sung, Min Sun; Mun, Ji-Young; Kwon, Ohsuk; Kwon, Ki-Sun; Oh, Doo-Byoung

    2013-07-19

    Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells.

    PubMed

    Li, Huaqiong; Wen, Feng; Wong, Yee Shan; Boey, Freddy Yin Chiang; Subbu, Venkatraman S; Leong, David Tai; Ng, Kee Woei; Ng, Gary Ka Lai; Tan, Lay Poh

    2012-02-01

    The engineering of tissue is preferably done with stem cells, which can be differentiated into the tissue of interest using biochemical or physical cues. While much effort has been focused on using biological factors to regulate stem cell differentiation, recently interest in the contribution of physical factors has increased. In this work, three-dimensional (3-D) microchannels with topographic micropatterns were fabricated by femtosecond laser machining on a biodegradable polymer (poly(L-lactide-co-ε-caprolactone)) substrate. Two substrates with narrow and wide channels respectively were created. Human mesenchymal stem cells (hMSCs) were cultured on the scaffolds for cell proliferation and cellular organization. Gene expression and the immunostaining of myogenic and neurogenic markers were studied. Both scaffolds improved the cell alignment along the channels as compared to the control group. Microfilaments within hMSCs were more significantly aligned and elongated on the narrower microchannels. The gene expression study revealed significant up-regulation of several hallmark markers associated with myogenesis for hMSCs cultured on the scaffold with narrow microchannels, while osteogenic and neurogenic markers were down-regulated or remained similar to the control at day 14. Immunostaining of myogen- and neurogen-specific differentiation markers were used to further confirm the specific differentiation towards a myogenic lineage. This study demonstrates that femtosecond laser machining is a versatile tool for generating controllable 3-D microchannels with topographic features that can be used to induce specific myogenic differentiation of hMSCs in vitro, even in the absence of biological factors.

  1. Time-lapse microscopy and classification of 2D human mesenchymal stem cells based on cell shape picks up myogenic from osteogenic and adipogenic differentiation.

    PubMed

    Seiler, Christof; Gazdhar, Amiq; Reyes, Mauricio; Benneker, Lorin M; Geiser, Thomas; Siebenrock, Klaus A; Gantenbein-Ritter, Benjamin

    2014-09-01

    Current methods to characterize mesenchymal stem cells (MSCs) are limited to CD marker expression, plastic adherence and their ability to differentiate into adipogenic, osteogenic and chondrogenic precursors. It seems evident that stem cells undergoing differentiation should differ in many aspects, such as morphology and possibly also behaviour; however, such a correlation has not yet been exploited for fate prediction of MSCs. Primary human MSCs from bone marrow were expanded and pelleted to form high-density cultures and were then randomly divided into four groups to differentiate into adipogenic, osteogenic chondrogenic and myogenic progenitor cells. The cells were expanded as heterogeneous and tracked with time-lapse microscopy to record cell shape, using phase-contrast microscopy. The cells were segmented using a custom-made image-processing pipeline. Seven morphological features were extracted for each of the segmented cells. Statistical analysis was performed on the seven-dimensional feature vectors, using a tree-like classification method. Differentiation of cells was monitored with key marker genes and histology. Cells in differentiation media were expressing the key genes for each of the three pathways after 21 days, i.e. adipogenic, osteogenic and chondrogenic, which was also confirmed by histological staining. Time-lapse microscopy data were obtained and contained new evidence that two cell shape features, eccentricity and filopodia (= 'fingers') are highly informative to classify myogenic differentiation from all others. However, no robust classifiers could be identified for the other cell differentiation paths. The results suggest that non-invasive automated time-lapse microscopy could potentially be used to predict the stem cell fate of hMSCs for clinical application, based on morphology for earlier time-points. The classification is challenged by cell density, proliferation and possible unknown donor-specific factors, which affect the performance of

  2. From supine to standing: in vivo segregation of myogenic and baroreceptor vasoconstriction in humans.

    PubMed

    Estañol, Bruno; Rivera, Ana Leonor; Martínez Memije, Raúl; Fossion, Ruben; Gómez, Fermín; Bernal, Katherine; Murúa Beltrán, Sofía; Delgado-García, Guillermo; Frank, Alejandro

    2016-12-01

    Myogenic vascular response is a form of systemic and regional vasoconstriction produced increasing the intra-arterial pressure by gravity. Here, the vasoconstriction due to the myogenic response, induced by the gravitational action in a dependent limb, is separated from that caused by the baroreceptor reflex. Regional changes of skin blood flow (SBF), total blood volume of the finger (TBVF), pulse pressure (PP), heart rate (HR), systolic, and diastolic blood pressure (BP) were analyzed in 10 healthy young subjects in supine and upright positions. By lowering the arm in supine position, SBF decreased compared to its basal measurement, PR increased, and PP contracted, indicating arterial vasoconstriction that rise BP TBVF increased, demonstrating an increment in venous volume. HR did not change, reflecting no action of the baroreceptor reflex. In upright position with lowered arm, there was an additional increase in BP variables, demonstrating vasoconstriction. Moreover, BP and HR showed oscillations at 0.1 Hz reflecting the entrance of the baroreceptor reflex. The action of gravity in a dependent limb in supine position induces a regional vasoconstriction and an increase of BP due to activation of the myogenic response, while the baroreceptor reflex or other neural factors do not appear to operate. In the upright position with the arm dependent, there is a further increase in regional vasoconstriction and BP with reciprocal changes in HR, indicating the entrance of the baroreceptor superimposed to the myogenic response. This study demonstrates that the myogenic and baroreceptor vasoconstriction can be separated in vivo. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. Adrenergic and myogenic regulation of viscoelasticity in the vascular bed of the human forearm.

    PubMed

    Frances, M F; Goswami, R; Rachinsky, M; Craen, R; Kiviniemi, A M; Fleischhauer, A; Steinback, C D; Zamir, M; Shoemaker, J K

    2011-11-01

    This study tested the hypothesis that the compliance (C) and viscoelasticity (K) of the forearm vascular bed are controlled by myogenic and/or α-adrenergic receptor (αAR) activation. Heart rate (HR) and waveforms of brachial artery blood pressure (Finometer) and forearm blood flow (Doppler ultrasound) were measured in baseline conditions and during infusion of noradrenaline (NA; αAR agonist), with and without phentolamine (αAR antagonist; n = 10; 6 men and 4 women). These baseline and αAR-agonist-based measures were repeated when the arm was positioned above or below the heart to modify the myogenic stimulus. A lumped Windkessel model was used to quantify the values of forearm C and K in each set of conditions. Baseline forearm C was inversely, and K directly, related to the myogenic load (P < 0.001). Compared with saline infusion, C was increased, but K was unaffected, with phentolanine, but only in the 'above' position. Compliance was reduced (P < 0.001) and K increased (P = 0.06) with NA infusion (main effects of NA) across arm positions; phentolamine minimized these NA-induced changes in C and K for both arm positions. Examination of conditions with and without NA infusion at similar forearm intravascular pressures indicated that the NA-induced changes in C and K were due largely to the concurrent changes in blood pressure. Therefore, within the range of arm positions used, it was concluded that vascular stiffness and vessel wall viscoelastic properties are acutely affected by myogenic stimuli. Additionally, forearm vascular compliance is sensitive to baseline levels of αAR activation when transmural pressure is low.

  4. Spontaneous and specific myogenic differentiation of human mesenchymal stem cells on polyethylene glycol-linked multi-walled carbon nanotube films for skeletal muscle engineering.

    PubMed

    Zhao, Chunyan; Andersen, Henrik; Ozyilmaz, Barbaros; Ramaprabhu, Sundara; Pastorin, Giorgia; Ho, Han Kiat

    2015-11-21

    This study explored the influence of polyethylene glycol-linked multi-walled carbon nanotube (PEG-CNT) films on skeletal myogenic differentiation of human mesenchymal stem cells (hMSCs). PEG-CNT films were prepared with nanoscale surface roughness, orderly arrangement of PEG-CNTs, high hydrophilicity and high mechanical strength. Notably, PEG-CNT films alone could direct the skeletal myogenic differentiation of hMSCs in the absence of myogenic induction factors. The quantitative real-time polymerase chain reaction (RT-PCR) showed that the non-induced hMSCs plated on the PEG-CNT films, compared to the negative control, presented significant up-regulation of general myogenic markers including early commitment markers of myoblast differentiation protein-1 (MyoD) and desmin, as well as a late phase marker of myosin heavy chain-2 (MHC). Corresponding protein analysis by immunoblot assays corroborated these results. Skeletal muscle-specific markers, fast skeletal troponin-C (TnC) and ryanodine receptor-1 (Ryr) were also significantly increased in the non-induced hMSCs on PEG-CNT films by RT-PCR. For these cells, the commitment to specific skeletal myoblasts was further proved by the absence of enhanced adipogenic, chondrogenic and osteogenic markers. This study elucidated that PEG-CNT films supported a dedicated differentiation of hMSCs into a skeletal myogenic lineage and can work as a promising material towards skeletal muscle injury repair.

  5. Efficient delivery of human single fiber-derived muscle precursor cells via biocompatible scaffold.

    PubMed

    Boldrin, Luisa; Malerba, Alberto; Vitiello, Libero; Cimetta, Elisa; Piccoli, Martina; Messina, Chiara; Gamba, Pier Giorgio; Elvassore, Nicola; De Coppi, Paolo

    2008-01-01

    The success of cell therapy for skeletal muscle disorders depends upon two main factors: the cell source and the method of delivery. In this work we have explored the therapeutic potential of human muscle precursor cells (hMPCs), obtained from single human muscle fibers, implanted in vivo via micropatterned scaffolds. hMPCs were initially expanded and characterized in vitro by immunostaining and flow cytometric analysis. For in vivo studies, hMPCs were seeded onto micropatterned poly-lactic-glycolic acid 3D-scaffolds fabricated using soft-lithography and thermal membrane lamination. Seeded scaffolds were then implanted in predamaged tibialis anterior muscles of CD1 nude mice; hMPCs were also directly injected in contralateral limbs as controls. Similarly to what we previously described with mouse precursors cells, we found that hMPCs were able to participate in muscle regeneration and scaffold-implanted muscles contained a greater number of human nuclei, as revealed by immunostaining and Western blot analyses. These results indicate that hMPCs derived from single fibers could be a good and reliable cell source for the design of therapeutic protocols and that implantation of cellularized scaffolds is superior to direct injection for the delivery of myogenic cells into regenerating skeletal muscle.

  6. Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells.

    PubMed

    Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Juritz, Stephanie; Birk, Richard; Goessler, Ulrich Reinhart; Bieback, Karen; Bugert, Peter; Schultz, Johannes; Hörmann, Karl; Kinscherf, Ralf; Faber, Anne

    2014-01-01

    The creation of functional muscles/muscle tissue from human stem cells is a major goal of skeletal muscle tissue engineering. Mesenchymal stem cells (MSCs) from fat/adipose tissue (AT-MSCs), as well as bone marrow (BM-MSCs) have been shown to bear myogenic potential, which makes them candidate stem cells for skeletal muscle tissue engineering applications. The aim of this study was to analyse the myogenic differentiation potential of human AT-MSCs and BM-MSCs cultured in six different cell culture media containing different mixtures of growth factors. The following cell culture media were used in our experiments: mesenchymal stem cell growth medium (MSCGM)™ as growth medium, MSCGM + 5-azacytidine (5-Aza), skeletal muscle myoblast cell growth medium (SkGM)-2 BulletKit™, and 5, 30 and 50% conditioned cell culture media, i.e., supernatant of human satellite cell cultures after three days in cell culture mixed with MSCGM. Following the incubation of human AT-MSCs or BM-MSCs for 0, 4, 8, 11, 16 or 21 days with each of the cell culture media, cell proliferation was measured using the alamarBlue® assay. Myogenic differentiation was evaluated by quantitative gene expression analyses, using quantitative RT-PCR (qRT-PCR) and immunocytochemical staining (ICC), using well-defined skeletal markers, such as desmin (DES), myogenic factor 5 (MYF5), myosin, heavy chain 8, skeletal muscle, perinatal (MYH8), myosin, heavy chain 1, skeletal muscle, adult (MYH1) and skeletal muscle actin-α1 (ACTA1). The highest proliferation rates were observed in the AT-MSCs and BM-MSCs cultured with SkGM-2 BulletKit medium. The average proliferation rate was higher in the AT-MSCs than in the BM-MSCs, taking all six culture media into account. qRT-PCR revealed the expression levels of the myogenic markers, ACTA1, MYH1 and MYH8, in the AT-MSC cell cultures, but not in the BM-MSC cultures. The muscle-specific intermediate filament, DES, was only detected (by ICC) in the AT-MSCs, but not in the BM

  7. Spontaneous and specific myogenic differentiation of human mesenchymal stem cells on polyethylene glycol-linked multi-walled carbon nanotube films for skeletal muscle engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Chunyan; Andersen, Henrik; Ozyilmaz, Barbaros; Ramaprabhu, Sundara; Pastorin, Giorgia; Ho, Han Kiat

    2015-10-01

    This study explored the influence of polyethylene glycol-linked multi-walled carbon nanotube (PEG-CNT) films on skeletal myogenic differentiation of human mesenchymal stem cells (hMSCs). PEG-CNT films were prepared with nanoscale surface roughness, orderly arrangement of PEG-CNTs, high hydrophilicity and high mechanical strength. Notably, PEG-CNT films alone could direct the skeletal myogenic differentiation of hMSCs in the absence of myogenic induction factors. The quantitative real-time polymerase chain reaction (RT-PCR) showed that the non-induced hMSCs plated on the PEG-CNT films, compared to the negative control, presented significant up-regulation of general myogenic markers including early commitment markers of myoblast differentiation protein-1 (MyoD) and desmin, as well as a late phase marker of myosin heavy chain-2 (MHC). Corresponding protein analysis by immunoblot assays corroborated these results. Skeletal muscle-specific markers, fast skeletal troponin-C (TnC) and ryanodine receptor-1 (Ryr) were also significantly increased in the non-induced hMSCs on PEG-CNT films by RT-PCR. For these cells, the commitment to specific skeletal myoblasts was further proved by the absence of enhanced adipogenic, chondrogenic and osteogenic markers. This study elucidated that PEG-CNT films supported a dedicated differentiation of hMSCs into a skeletal myogenic lineage and can work as a promising material towards skeletal muscle injury repair.This study explored the influence of polyethylene glycol-linked multi-walled carbon nanotube (PEG-CNT) films on skeletal myogenic differentiation of human mesenchymal stem cells (hMSCs). PEG-CNT films were prepared with nanoscale surface roughness, orderly arrangement of PEG-CNTs, high hydrophilicity and high mechanical strength. Notably, PEG-CNT films alone could direct the skeletal myogenic differentiation of hMSCs in the absence of myogenic induction factors. The quantitative real-time polymerase chain reaction (RT-PCR) showed

  8. Human embryonic epidermis contains a diverse Langerhans cell precursor pool.

    PubMed

    Schuster, Christopher; Mildner, Michael; Mairhofer, Mario; Bauer, Wolfgang; Fiala, Christian; Prior, Marion; Eppel, Wolfgang; Kolbus, Andrea; Tschachler, Erwin; Stingl, Georg; Elbe-Bürger, Adelheid

    2014-02-01

    Despite intense efforts, the exact phenotype of the epidermal Langerhans cell (LC) precursors during human ontogeny has not been determined yet. These elusive precursors are believed to migrate into the embryonic skin and to express primitive surface markers, including CD36, but not typical LC markers such as CD1a, CD1c and CD207. The aim of this study was to further characterize the phenotype of LC precursors in human embryonic epidermis and to compare it with that of LCs in healthy adult skin. We found that epidermal leukocytes in first trimester human skin are negative for CD34 and heterogeneous with regard to the expression of CD1c, CD14 and CD36, thus contrasting the phenotypic uniformity of epidermal LCs in adult skin. These data indicate that LC precursors colonize the developing epidermis in an undifferentiated state, where they acquire the definitive LC marker profile with time. Using a human three-dimensional full-thickness skin model to mimic in vivo LC development, we found that FACS-sorted, CD207(-) cord blood-derived haematopoietic precursor cells resembling foetal LC precursors but not CD14(+)CD16(-) blood monocytes integrate into skin equivalents, and without additional exogenous cytokines give rise to cells that morphologically and phenotypically resemble LCs. Overall, it appears that CD14(-) haematopoietic precursors possess a much higher differentiation potential than CD14(+) precursor cells.

  9. Choice of xenogenic-free expansion media significantly influences the myogenic differentiation potential of human bone marrow-derived mesenchymal stromal cells.

    PubMed

    Brun, Juliane; Abruzzese, Tanja; Rolauffs, Bernd; Aicher, Wilhelm K; Hart, Melanie L

    2016-03-01

    Mesenchymal stromal cells (MSCs) have great potential for use in cell-based therapies for restoration of structure and function of many tissue types including smooth muscle. We compared proliferation, immunophenotype, differentiation capability and gene expression of bone marrow-derived MSCs expanded in different media containing human serum, plasma and platelet lysate in combination with commonly used protocols for myogenic, osteogenic, chondrogenic and adipogenic differentiation. Moreover, we developed a xenogenic-free protocol for myogenic differentiation of MSCs. Expansion of MSCs in media complemented with serum, serum + platelet lysate or plasma + platelet lysate were multipotent because they differentiated toward four mesenchymal (myogenic, osteogenic, chondrogenic, adipogenic) lineages. Addition of platelet lysate to expansion media increased the proliferation of MSCs and their expression of CD146. Incubation of MSCs in medium containing human serum or plasma plus 5% human platelet lysate in combination with smooth muscle cell (SMC)-inducing growth factors TGFβ1, PDGF and ascorbic acid induced high expression of ACTA2, TAGLN, CNN1 and/or MYH11 contractile SMC markers. Osteogenic, adipogenic and chondrogenic differentiations served as controls. Our study provides novel data on the myogenic differentiation potential of human MSCs toward the SMC lineage using different xenogenic-free cell culture expansion media in combination with distinct differentiation medium compositions. We show that the choice of expansion medium significantly influences the differentiation potential of human MSCs toward the smooth muscle cell, as well as osteogenic, adipogenic and chondrogenic lineages. These results can aid in designing studies using MSCs for tissue-specific therapeutic applications. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Regulation of myogenic progenitor proliferation in human fetal skeletal muscle by BMP4 and its antagonist Gremlin.

    PubMed

    Frank, Natasha Y; Kho, Alvin T; Schatton, Tobias; Murphy, George F; Molloy, Michael J; Zhan, Qian; Ramoni, Marco F; Frank, Markus H; Kohane, Isaac S; Gussoni, Emanuela

    2006-10-09

    Skeletal muscle side population (SP) cells are thought to be "stem"-like cells. Despite reports confirming the ability of muscle SP cells to give rise to differentiated progeny in vitro and in vivo, the molecular mechanisms defining their phenotype remain unclear. In this study, gene expression analyses of human fetal skeletal muscle demonstrate that bone morphogenetic protein 4 (BMP4) is highly expressed in SP cells but not in main population (MP) mononuclear muscle-derived cells. Functional studies revealed that BMP4 specifically induces proliferation of BMP receptor 1a-positive MP cells but has no effect on SP cells, which are BMPR1a-negative. In contrast, the BMP4 antagonist Gremlin, specifically up-regulated in MP cells, counteracts the stimulatory effects of BMP4 and inhibits proliferation of BMPR1a-positive muscle cells. In vivo, BMP4-positive cells can be found in the proximity of BMPR1a-positive cells in the interstitial spaces between myofibers. Gremlin is expressed by mature myofibers and interstitial cells, which are separate from BMP4-expressing cells. Together, these studies propose that BMP4 and Gremlin, which are highly expressed by human fetal skeletal muscle SP and MP cells, respectively, are regulators of myogenic progenitor proliferation.

  11. Myogenic differentiation potential of human tonsil-derived mesenchymal stem cells and their potential for use to promote skeletal muscle regeneration

    PubMed Central

    PARK, SAEYOUNG; CHOI, YOONYOUNG; JUNG, NAMHEE; YU, YEONSIL; RYU, KYUNG-HA; KIM, HAN SU; JO, INHO; CHOI, BYUNG-OK; JUNG, SUNG-CHUL

    2016-01-01

    Stem cells are regarded as an important source of cells which may be used to promote the regeneration of skeletal muscle (SKM) which has been damaged due to defects in the organization of muscle tissue caused by congenital diseases, trauma or tumor removal. In particular, mesenchymal stem cells (MSCs), which require less invasive harvesting techniques, represent a valuable source of cells for stem cell therapy. In the present study, we demonstrated that human tonsil-derived MSCs (T-MSCs) may differentiate into myogenic cells in vitro and that the transplantation of myoblasts and myocytes generated from human T-MSCs mediates the recovery of muscle function in vivo. In order to induce myogenic differentiation, the T-MSC-derived spheres were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F-12 (DMEM/F-12) supplemented with 1 ng/ml transforming growth factor-β, non-essential amino acids and insulin-transferrin-selenium for 4 days followed by culture in myogenic induction medium [low-glucose DMEM containing 2% fetal bovine serum (FBS) and 10 ng/ml insulin-like growth factor 1 (IGF1)] for 14 days. The T-MSCs sequentially differentiated into myoblasts and skeletal myocytes, as evidenced by the increased expression of skeletal myogenesis-related markers [including α-actinin, troponin I type 1 (TNNI1) and myogenin] and the formation of myotubes in vitro. The in situ transplantation of T-MSCs into mice with a partial myectomy of the right gastrocnemius muscle enhanced muscle function, as demonstrated by gait assessment (footprint analysis), and restored the shape of SKM without forming teratomas. Thus, T-MSCs may differentiate into myogenic cells and effectively regenerate SKM following injury. These results demonstrate the therapeutic potential of T-MSCs to promote SKM regeneration following injury. PMID:27035161

  12. High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathies.

    PubMed Central

    Lattanzi, L; Salvatori, G; Coletta, M; Sonnino, C; Cusella De Angelis, M G; Gioglio, L; Murry, C E; Kelly, R; Ferrari, G; Molinaro, M; Crescenzi, M; Mavilio, F; Cossu, G

    1998-01-01

    Ex vivo gene therapy of primary myopathies, based on autologous transplantation of genetically modified myogenic cells, is seriously limited by the number of primary myogenic cells that can be isolated, expanded, transduced, and reimplanted into the patient's muscles. We explored the possibility of using the MyoD gene to induce myogenic conversion of nonmuscle, primary cells in a quantitatively relevant fashion. Primary human and murine fibroblasts from skin, muscle, or bone marrow were infected by an E1-deleted adenoviral vector carrying a retroviral long terminal repeat-promoted MyoD cDNA. Expression of MyoD caused irreversible withdrawal from the cell cycle and myogenic differentiation in the majority (from 60 to 90%) of cultured fibroblasts, as defined by activation of muscle-specific genes, fusion into contractile myotubes, and appearance of ultrastructurally normal sarcomagenesis in culture. 24 h after adenoviral exposure, MyoD-converted cultures were injected into regenerating muscle of immunodeficient (severe combined immunodeficiency/beige) mice, where they gave rise to beta-galactosidase positive, centrally nucleated fibers expressing human myosin heavy chains. Fibers originating from converted fibroblasts were indistinguishable from those obtained by injection of control cultures of lacZ-transduced satellite cells. MyoD-converted murine fibroblasts participated to muscle regeneration also in immunocompetent, syngeneic mice. Although antibodies from these mice bound to adenoviral infected cells in vitro, no inflammatory infiltrate was present in the graft site throughout the 3-wk study period. These data support the feasibility of an alternative approach to gene therapy of primary myopathies, based on implantation of large numbers of genetically modified primary fibroblasts massively converted to myogenesis by adenoviral delivery of MyoD ex vivo. PMID:9593768

  13. The proliferative human monocyte subpopulation contains osteoclast precursors.

    PubMed

    Lari, Roya; Kitchener, Peter D; Hamilton, John A

    2009-01-01

    Immediate precursors of bone-resorbing osteoclasts are cells of the monocyte/macrophage lineage. Particularly during clinical conditions showing bone loss, it would appear that osteoclast precursors are mobilized from bone marrow into the circulation prior to entering tissues undergoing such loss. The observed heterogeneity of peripheral blood monocytes has led to the notion that different monocyte subpopulations may have special or restricted functions, including as osteoclast precursors. Human peripheral blood monocytes were sorted based upon their degree of proliferation and cultured in macrophage colony-stimulating factor (M-CSF or CSF-1) and receptor activator of nuclear factor-kappa-B ligand (RANKL). The monocyte subpopulation that is capable of proliferation gave rise to significantly more multinucleated, bone-resorbing osteoclasts than the bulk of the monocytes. Human peripheral blood osteoclast precursors reside in the proliferative monocyte subpopulation.

  14. Low-dose benzo(a)pyrene and its epoxide metabolite inhibit myogenic differentiation in human skeletal muscle-derived progenitor cells.

    PubMed

    Chiu, Chen-Yuan; Yen, Yuan-Peng; Tsai, Keh-Sung; Yang, Rong-Sen; Liu, Shing-Hwa

    2014-04-01

    The risk of low birth weights is elevated in prenatal exposure to polycyclic aromatic hydrocarbons (PAHs), which are ubiquitous environmental pollutants generated from combustion of organic compounds, including cigarette smoke. We hypothesized that benzo(a)pyrene (BaP), a member of PAHs existing in cigarette smoke, may affect the myogenesis to cause low birth weights. We investigated the effects of BaP and its main metabolite, benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), on the myogenic differentiation of human skeletal muscle-derived progenitor cells (HSMPCs). HSMPCs were isolated by a modified preplate technique and cultured in myogenic differentiation media with or without BaP and BPDE (0.25 and 0.5 μM) for 4 days. The multinucleated myotube formation was morphologically analyzed by hematoxylin and eosin staining. The expressions of myogenic differentiation markers and related signaling proteins were determined by Western blotting. Both BaP and BPDE at the submicromolar concentrations (0.25 and 0.5 μM) dose-dependently repressed HSMPCs myogenic differentiation without obvious cell toxicity. Both BaP and BPDE inhibited the muscle-specific protein expressions (myogenin and myosin heavy chain) and phosphorylation of Akt (a known modulator in myogenesis), which could be significantly reversed by the inhibitors for aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and nuclear factor (NF)-κB. BaP- and BPDE-activated NF-κB-p65 protein phosphorylation could also be attenuated by both AhR and ER inhibitors. The inhibitory effects of BaP and BPDE on myogenesis were reversed after withdrawing BaP exposure, but not after BPDE withdrawal. These results suggest that both BaP and BPDE are capable of inhibiting myogenesis via an AhR- or/and ER-regulated NF-κB/Akt signaling pathway.

  15. Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering.

    PubMed

    Haralampieva, Deana; Betzel, Thomas; Dinulovic, Ivana; Salemi, Souzan; Stoelting, Meline; Krämer, Stefanie D; Schibli, Roger; Sulser, Tullio; Handschin, Christoph; Eberli, Daniel; Ametamey, Simon M

    2016-09-01

    Transplantation of human muscle precursor cells (hMPCs) is envisioned for the treatment of various muscle diseases. However, a feasible noninvasive tool to monitor cell survival, migration, and integration into the host tissue is still missing. In this study, we designed an adenoviral delivery system to genetically modify hMPCs to express a signaling-deficient form of human dopamine D2 receptor (hD2R). The gene expression levels of the receptor were evaluated by reverse transcriptase polymerase chain reaction, and infection efficiency was evaluated by fluorescent microscopy. The viability, proliferation, and differentiation capacity of the transduced cells, as well as their myogenic phenotype, were determined by flow cytometry analysis and fluorescent microscopy. (18)F-fallypride and (18)F-fluoromisonidazole, two well-established PET radioligands, were assessed for their potential to image engineered hMPCs in a mouse model and their uptakes were evaluated at different time points after cell inoculation in vivo. Biodistribution studies, autoradiography, and PET experiments were performed to determine the extent of signal specificity. To address feasibility for tracking hMPCs in an in vivo model, the safety of the adenoviral gene delivery was evaluated. Finally, the harvested tissues were histologically examined to determine whether survival of the transplanted cells was sustained at different time points. Adenoviral gene delivery was shown to be safe, with no detrimental effects on the primary human cells. The viability, proliferation, and differentiation capacity of the transduced cells were confirmed, and flow cytometry analysis and fluorescent microscopy showed that their myogenic phenotype was sustained. (18)F-fallypride and (18)F-fluoromisonidazole were successfully synthesized. Specific binding of (18)F-fallypride to hD2R hMPCs was demonstrated in vitro and in vivo. Furthermore, the (18)F-fluoromisonidazole signal was high at the early stages. Finally

  16. Low Oxygen Tension Enhances Expression of Myogenic Genes When Human Myoblasts Are Activated from G0 Arrest.

    PubMed

    Sellathurai, Jeeva; Nielsen, Joachim; Hejbøl, Eva Kildall; Jørgensen, Louise Helskov; Dhawan, Jyotsna; Nielsen, Michael Friberg Bruun; Schrøder, Henrik Daa

    2016-01-01

    Most cell culture studies have been performed at atmospheric oxygen tension of 21%, however the physiological oxygen tension is much lower and is a factor that may affect skeletal muscle myoblasts. In this study we have compared activation of G0 arrested myoblasts in 21% O2 and in 1% O2 in order to see how oxygen tension affects activation and proliferation of human myoblasts. Human myoblasts were isolated from skeletal muscle tissue and G0 arrested in vitro followed by reactivation at 21% O2 and 1% O2. The effect was assesses by Real-time RT-PCR, immunocytochemistry and western blot. We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β-catenin indicated that notch signaling may be induced in 21% O2, while the canonical Wnt signaling may be induced in 1% O2 during activation and proliferation of myoblasts.

  17. Low Oxygen Tension Enhances Expression of Myogenic Genes When Human Myoblasts Are Activated from G0 Arrest

    PubMed Central

    Sellathurai, Jeeva; Nielsen, Joachim; Hejbøl, Eva Kildall; Jørgensen, Louise Helskov; Dhawan, Jyotsna; Nielsen, Michael Friberg Bruun; Schrøder, Henrik Daa

    2016-01-01

    Objectives Most cell culture studies have been performed at atmospheric oxygen tension of 21%, however the physiological oxygen tension is much lower and is a factor that may affect skeletal muscle myoblasts. In this study we have compared activation of G0 arrested myoblasts in 21% O2 and in 1% O2 in order to see how oxygen tension affects activation and proliferation of human myoblasts. Materials and Methods Human myoblasts were isolated from skeletal muscle tissue and G0 arrested in vitro followed by reactivation at 21% O2 and 1% O2. The effect was assesses by Real-time RT-PCR, immunocytochemistry and western blot. Results and Conclusions We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β-catenin indicated that notch signaling may be induced in 21% O2, while the canonical Wnt signaling may be induced in 1% O2 during activation and proliferation of myoblasts. PMID:27442119

  18. Human muscle precursor cells overexpressing PGC-1α enhance early skeletal muscle tissue formation.

    PubMed

    Haralampieva, Deana; Salemi, Souzan; Dinulovic, Ivana; Sulser, Tullio; M Ametamey, Simon; Handschin, Christoph; Eberli, Daniel

    2017-02-03

    Muscle precursor cells (MPCs) are activated satellite cells capable of muscle fiber reconstruction. Therefore, autologous MPC transplantation is envisioned for the treatment of muscle diseases. However, the density of MPCs, as well as their proliferation and differentiation potential gradually decline with age. The goal of this research was to genetically modify human MPCs (hMPCs) to overexpress the peroxisome proliferator-activated receptor gamma coactivator (PGC-1α), a key regulator of exercise-mediated adaptation, and thereby to enhance early skeletal muscle formation and quality. We were able to confirm the sustained myogenic phenotype of the genetically modified hMPCs. While maintaining their viability and proliferation potential, PGC-1α modified hMPCs showed an enhanced myofiber formation capacity in vitro. Engineered muscle tissues were harvested 1, 2 and 4 weeks after subcutaneous injection of cell-collagen suspensions and histological analysis confirmed the earlier myotube formation in PGC-1α modified samples, predominantly of slow twitch myofibers. Increased contractile protein levels were detected by Western Blot. In summary, by genetically modifying hMPCs to overexpress PGC-1α we were able to promote early muscle fiber formation in vitro and in vivo, with an initial switch to slow type myofibers. Therefore, overexpressing PGC-1α is novel strategy to further enhance skeletal muscle tissue engineering.

  19. Rb suppresses human cone-precursor-derived retinoblastoma tumours.

    PubMed

    Xu, Xiaoliang L; Singh, Hardeep P; Wang, Lu; Qi, Dong-Lai; Poulos, Bradford K; Abramson, David H; Jhanwar, Suresh C; Cobrinik, David

    2014-10-16

    Retinoblastoma is a childhood retinal tumour that initiates in response to biallelic RB1 inactivation and loss of functional retinoblastoma (Rb) protein. Although Rb has diverse tumour-suppressor functions and is inactivated in many cancers, germline RB1 mutations predispose to retinoblastoma far more strongly than to other malignancies. This tropism suggests that retinal cell-type-specific circuitry sensitizes to Rb loss, yet the nature of the circuitry and the cell type in which it operates have been unclear. Here we show that post-mitotic human cone precursors are uniquely sensitive to Rb depletion. Rb knockdown induced cone precursor proliferation in prospectively isolated populations and in intact retina. Proliferation followed the induction of E2F-regulated genes, and depended on factors having strong expression in maturing cone precursors and crucial roles in retinoblastoma cell proliferation, including MYCN and MDM2. Proliferation of Rb-depleted cones and retinoblastoma cells also depended on the Rb-related protein p107, SKP2, and a p27 downregulation associated with cone precursor maturation. Moreover, Rb-depleted cone precursors formed tumours in orthotopic xenografts with histological features and protein expression typical of human retinoblastoma. These findings provide a compelling molecular rationale for a cone precursor origin of retinoblastoma. More generally, they demonstrate that cell-type-specific circuitry can collaborate with an initiating oncogenic mutation to enable tumorigenesis.

  20. Effect of Dexamethasone, Insulin and EGF on the Myogenic Potential on Human Endometrial Stem Cell

    PubMed Central

    Jalali Tehrani, Hora; Parivar, Kazem; Ai, Jafar; Kajbafzadeh, Abdolmohammad; Rahbarghazi, Reza; Hashemi, Mehrdad; Sadeghizadeh, Majid

    2014-01-01

    Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents have a broad range of effects in myoblast differentiation in-vitro. We used immunohystochemistry analysis and RT –PCR to evaluate the presence of skeletal muscle - specific proteins some of which are expressed in the early stage of differentiation including myoD and Desmin which expressed at later stages of differentiation. In conclusion eMSC can differentiate in culture media which contains above mentioned factors and use for therapeutic purpose in muscular degenerative disease. PMID:25237362

  1. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line

    PubMed Central

    Faggi, Fiorella; Codenotti, Silvia; Poliani, Pietro Luigi; Cominelli, Manuela; Chiarelli, Nicola; Colombi, Marina; Vezzoli, Marika; Monti, Eugenio; Bono, Federica; Tulipano, Giovanni; Fiorentini, Chiara; Zanola, Alessandra; Lo, Harriet P.; Parton, Robert G.; Keller, Charles; Fanzani, Alessandro

    2015-01-01

    The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS. PMID:26086601

  2. SESAME Opens: A Precursor to Human Asteroid Missions

    NASA Astrophysics Data System (ADS)

    Maiwald, Volker; Marchand, Emilien

    2013-09-01

    A common path for human spaceflight is currently often envisioned to lead to Near Earth Asteroids (NEA) within the next decades. While the goal is clear this is not so true for the targets. Just as unmanned probes investigated the lunar surface before humans ever set foot on our natural satellite, it is advisable - considering the current lack of knowledge about NEAs even mandatory - to send an unmanned mission ahead to conduct measurements in preparation of a human mission. Just as with the moon more than one target area should be investigated, i.e. more than one target asteroid. While many designs for the actual human mission already exist, scenarios for a precursor mission are scarcer. In this paper we present a feasible design for a multi-rendezvous mission to targets suitable for human missions, able to reach up to 5 asteroids with one launch. We will propose a system that will be able to measure various properties of each asteroid, e.g. chemical composition and topography and describe it on a subsystem level, providing mass and power budgets for the whole system. The results show that a spacecraft of about 1,600 kg launch mass and utilizing solar electric propulsion can fly a 5 target mission within 10 years. With a sensitivity analysis we will show the robustness of the design and generally establish the feasibility of such a mission.

  3. Defining the cellular precursors to human breast cancer

    PubMed Central

    Keller, Patricia J.; Arendt, Lisa M.; Skibinski, Adam; Logvinenko, Tanya; Klebba, Ina; Dong, Shumin; Smith, Avi E.; Prat, Aleix; Perou, Charles M.; Gilmore, Hannah; Schnitt, Stuart; Naber, Stephen P.; Garlick, Jonathan A.; Kuperwasser, Charlotte

    2012-01-01

    Human breast cancers are broadly classified based on their gene-expression profiles into luminal- and basal-type tumors. These two major tumor subtypes express markers corresponding to the major differentiation states of epithelial cells in the breast: luminal (EpCAM+) and basal/myoepithelial (CD10+). However, there are also rare types of breast cancers, such as metaplastic carcinomas, where tumor cells exhibit features of alternate cell types that no longer resemble breast epithelium. Until now, it has been difficult to identify the cell type(s) in the human breast that gives rise to these various forms of breast cancer. Here we report that transformation of EpCAM+ epithelial cells results in the formation of common forms of human breast cancer, including estrogen receptor-positive and estrogen receptor-negative tumors with luminal and basal-like characteristics, respectively, whereas transformation of CD10+ cells results in the development of rare metaplastic tumors reminiscent of the claudin-low subtype. We also demonstrate the existence of CD10+ breast cells with metaplastic traits that can give rise to skin and epidermal tissues. Furthermore, we show that the development of metaplastic breast cancer is attributable, in part, to the transformation of these metaplastic breast epithelial cells. These findings identify normal cellular precursors to human breast cancers and reveal the existence of a population of cells with epidermal progenitor activity within adult human breast tissues. PMID:21940501

  4. Characterization of precursor and secreted forms of human angiotensinogen.

    PubMed Central

    Campbell, D J; Bouhnik, J; Coezy, E; Menard, J; Corvol, P

    1985-01-01

    To define the basis of the heterogeneity of angiotensinogen, we have characterized the immunoreactivity of high molecular weight (HMW) and low molecular weight (LMW) plasma angiotensinogen, the angiotensinogen precursor synthesized by cell-free translation, and angiotensinogen secreted by human hepatoma (Hep G2) cells. Angiotensinogen precursor synthesized by rabbit reticulocyte lysate primed with RNA prepared from liver or Hep G2 cells was compared with angiotensinogen secreted by Hep G2 cells by using immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). So as to assess the contribution of N-glycosylation of angiotensinogen, Hep G2 cells were incubated in the presence of tunicamycin. Glycosylation of secreted angiotensinogen was further characterized by using chromatography on concanavalin A-Sepharose, digestion with neuraminidase, and treatment with trifluoromethane sulfonic acid. In Sephadex G-200 column chromatography, HMW plasma angiotensinogen eluted just after the column void volume and was clearly separated from LMW angiotensinogen which eluted just before bovine serum albumin. Both HMW and LMW plasma angiotensinogen were shown to bind to monoclonal and polyclonal antibodies raised against pure LMW angiotensinogen. Only one angiotensinogen precursor (mol wt 50,000) was identified by cell-free translation which, after cleavage by renin, was reduced to mol wt 45,600. Angiotensinogen secreted by Hep G2 cells showed electrophoretic heterogeneity (mol wt 53,100-65,400). Tunicamycin-treated Hep G2 cells secreted five discrete forms of angiotensinogen, a predominant form of mol wt 46,200, with other forms (mol wt 46,800, 48,100, 49,200, and 49,600) representing 10% of secreted angiotensinogen. All five forms showed a similar reduction in molecular weight after cleavage by renin. The predominant 46,200-mol wt protein represented nonglycosylated angiotensinogen in that, after cleavage by renin, it had an electrophoretic

  5. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells.

    PubMed

    Croci, Stefania; Landuzzi, Lorena; Astolfi, Annalisa; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Follo, Matilde Y; Oliver, Noelynn; De Giovanni, Carla; Nanni, Patrizia; Lollini, Pier-Luigi

    2004-03-01

    Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.

  6. Rotator cuff muscle degeneration and tear severity related to myogenic, adipogenic, and atrophy genes in human muscle.

    PubMed

    Shah, Shivam A; Kormpakis, Ioannis; Cavinatto, Leonardo; Killian, Megan L; Thomopoulos, Stavros; Galatz, Leesa M

    2017-05-04

    Large rotator cuff tear size and advanced muscle degeneration can affect reparability of tears and compromise tendon healing. Clinicians often rely on direct measures of rotator cuff tear size and muscle degeneration from magnetic resonance imaging (MRI) to determine whether the rotator cuff tear is repairable. The objective of this study was to identify the relationship between gene expression changes in rotator cuff muscle degeneration to standard data available to clinicians. Radiographic assessment of preoperative rotator cuff tear severity was completed for 25 patients with varying magnitudes of rotator cuff tears. Tear width and retraction were measured using MRI, and Goutallier grade, tangent (tan) sign, and Thomazeau grade were determined. Expression of myogenic-, adipogenic-, atrophy-, and metabolism-related genes in biopsied muscles were correlated with tear width, tear retraction, Goutallier grade, tan sign, and Thomazeau grade. Tear width positively correlated with Goutallier grade in both the supraspinatus (r = 0.73) and infraspinatus (r = 0.77), along with tan sign (r = 0.71) and Thomazeau grade (r = 0.68). Decreased myogenesis (Myf5), increased adipogenesis (CEBPα, Lep, Wnt10b), and decreased metabolism (PPARα) correlated with radiographic assessments. Gene expression changes suggest that rotator cuff tears lead to a dramatic molecular response in an attempt to maintain normal muscle tissue, increase adipogenesis, and decrease metabolism. Fat accumulation and muscle atrophy appear to stem from endogenous changes rather than from changes mediated by infiltrating cells. Results suggest that chronic unloading of muscle, induced by rotator cuff tear, disrupts muscle homeostasis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction

    PubMed Central

    Nielsen, Jakob Lindberg; Aagaard, Per; Bech, Rune Dueholm; Nygaard, Tobias; Hvid, Lars Grøndahl; Wernbom, Mathias; Suetta, Charlotte; Frandsen, Ulrik

    2012-01-01

    Low-load resistance training with blood flow restriction has been shown to elicit substantial increases in muscle mass and muscle strength; however, the effect on myogenic stem cells (MSCs) and myonuclei number remains unexplored. Ten male subjects (22.8 ± 2.3 years) performed four sets of knee extensor exercise (20% 1RM) to concentric failure during blood flow restriction (BFR) of the proximal thigh (100 mmHg), while eight work-matched controls (21.9 ± 3.0 years) trained without BFR (control, CON). Twenty-three training sessions were performed within 19 days. Maximal isometric knee extensor strength (MVC) was examined pre- and post-training, while muscle biopsies were obtained at baseline (Pre), after 8 days intervention (Mid8) and 3 (Post3) and 10 days (Post10) post training to examine changes in myofibre area (MFA), MSC and myonuclei number. MVC increased by 7.1% (Post5) and 10.6% (Post12) (P < 0.001) with BFR training, while type I and II MFA increased by 38% (Mid8), 35–37% (Post3) and 31–32% (Post10) (P < 0.001). MSCs per myofibre increased with BFR training from 0.10 ± 0.01 (Pre) to 0.38 ± 0.02 (Mid8), 0.36 ± 0.04 (Post3) and 0.25 ± 0.02 (Post10) (P < 0.001). Likewise, myonuclei per myofibre increased from 2.49 ± 0.07 (Pre) to 3.30 ± 0.22 (Mid8), 3.20 ± 0.16 (Post3) and 3.11 ± 0.11 (Post10), (P < 0.01). Although MFA increased in CON at Mid8, it returned to baseline at Post3. No changes in MSC or myonuclei number were observed in CON. This study is the first to show that short-term low-load resistance exercise performed with partial blood flow restriction leads to marked proliferation of myogenic stem cells and resulting myonuclei addition in human skeletal muscle, which is accompanied by substantial myofibre hypertrophy. PMID:22802591

  8. Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction.

    PubMed

    Nielsen, Jakob Lindberg; Aagaard, Per; Bech, Rune Dueholm; Nygaard, Tobias; Hvid, Lars Grøndahl; Wernbom, Mathias; Suetta, Charlotte; Frandsen, Ulrik

    2012-09-01

    Low-load resistance training with blood flow restriction has been shown to elicit substantial increases in muscle mass and muscle strength; however, the effect on myogenic stem cells (MSCs) and myonuclei number remains unexplored. Ten male subjects (22.8 ± 2.3 years)performed four sets of knee extensor exercise (20% 1RM) to concentric failure during bloodflow restriction (BFR) of the proximal thigh (100 mmHg), while eight work-matched controls(21.9 ± 3.0 years) trained without BFR (control, CON). Twenty-three training sessions were performed within 19 days. Maximal isometric knee extensor strength (MVC) was examined pre- and post-training, while muscle biopsies were obtained at baseline (Pre), after 8 days intervention(Mid8) and 3 (Post3) and 10 days (Post10) post training to examine changes in myofibre area (MFA), MSC and myonuclei number. MVC increased by 7.1% (Post5) and 10.6% (Post12)(P <0.001) with BFR training, while type I and II MFA increased by 38% (Mid8), 35 – 37%(Post3) and 31 – 32% (Post10) (P <0.001). MSCs per myofibre increased with BFR training from 0.10 ± 0.01 (Pre) to 0.38 ± 0.02 (Mid8), 0.36 ± 0.04 (Post3) and 0.25 ± 0.02 (Post10) (P <0.001). Likewise, myonuclei per myofibre increased from 2.49 ± 0.07 (Pre) to 3.30 ± 0.22(Mid8), 3.20 ± 0.16 (Post3) and 3.11 ± 0.11 (Post10), (P<0.01). Although MFA increased in CON at Mid8, it returned to baseline at Post3. No changes in MSC or myonuclei number were observed in CON. This study is the first to show that short-term low-load resistance exercise performed with partial blood flow restriction leads to marked proliferation of myogenic stem cells and resulting myonuclei addition in human skeletal muscle, which is accompanied by substantial myofibre hypertrophy.

  9. The synergistic effect of surface topography and sustained release of TGF-β1 on myogenic differentiation of human mesenchymal stem cells.

    PubMed

    Moghadasi Boroujeni, Samaneh; Mashayekhan, Shohreh; Vakilian, Saeid; Ardeshirylajimi, Abdolreza; Soleimani, Masoud

    2016-07-01

    A combination of topographical cues and controlled release of biochemical factors is a potential platform in controlling stem cells differentiation. In this study the synergistic effect of nanotopography and sustained release of biofunctional transforming growth factor beta 1 (TGF-β1) on differentiation of human Wharton's Jelly-derived mesenchymal stem cell (hWJ-derived UC-MSCs) toward myogenic lineage was investigated. In order to achieve a sustained release of TGF-β1, this factor was encapsulated within chitosan nanoparticles. Afterwards the aligned composite mats were fabricated using poly-ɛ-caprolacton (PCL) containing TGF-β1-loaded chitosan nanoparticles and poly-L-lactic acid (PLLA). The nanofiber topography notably up-regulated the expressions of calponin1 and SM22α compared with tissue culture polystyrene (TCP). Moreover, the combination of nanofiber topography and sustained TGF-β1release resulted in more significant enhancement of SMC marker, in particular smooth muscle α-actin (ASMA) expression, compared with bolus delivery despite lower amounts of TGF-β1 (>10 times lower). Additionally, immunofluorescence staining showed that ASMA and desmin were expressed at higher intensity in cells exposed to controlled TGF-β1 delivery rather than bolus delivery. These results demonstrated the importance of combined effect of topography and drug delivery in directing stem cell fate and the potential of such biofunctional scaffolds for cell transplantation applications in bladder tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1610-1621, 2016.

  10. GBM secretome induces transient transformation of human neural precursor cells.

    PubMed

    Venugopal, Chitra; Wang, X Simon; Manoranjan, Branavan; McFarlane, Nicole; Nolte, Sara; Li, Meredith; Murty, Naresh; Siu, K W Michael; Singh, Sheila K

    2012-09-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor in humans, with a uniformly poor prognosis. The tumor microenvironment is composed of both supportive cellular substrates and exogenous factors. We hypothesize that exogenous factors secreted by brain tumor initiating cells (BTICs) could predispose normal neural precursor cells (NPCs) to transformation. When NPCs are grown in GBM-conditioned media, and designated as "tumor-conditioned NPCs" (tcNPCs), they become highly proliferative and exhibit increased stem cell self-renewal, or the unique ability of stem cells to asymmetrically generate another stem cell and a daughter cell. tcNPCs also show an increased transcript level of stem cell markers such as CD133 and ALDH and growth factor receptors such as VEGFR1, VEGFR2, EGFR and PDGFRα. Media analysis by ELISA of GBM-conditioned media reveals an elevated secretion of growth factors such as EGF, VEGF and PDGF-AA when compared to normal neural stem cell-conditioned media. We also demonstrate that tcNPCs require prolonged or continuous exposure to the GBM secretome in vitro to retain GBM BTIC characteristics. Our in vivo studies reveal that tcNPCs are unable to form tumors, confirming that irreversible transformation events may require sustained or prolonged presence of the GBM secretome. Analysis of GBM-conditioned media by mass spectrometry reveals the presence of secreted proteins Chitinase-3-like 1 (CHI3L1) and H2A histone family member H2AX. Collectively, our data suggest that GBM-secreted factors are capable of transiently altering normal NPCs, although for retention of the transformed phenotype, sustained or prolonged secretome exposure or additional transformation events are likely necessary.

  11. Confined Sandwichlike Microenvironments Tune Myogenic Differentiation.

    PubMed

    Ballester-Beltrán, José; Trujillo, Sara; Alakpa, Enateri V; Compañ, Vicente; Gavara, Rafael; Meek, Dominic; West, Christopher C; Péault, Bruno; Dalby, Matthew J; Salmerón-Sánchez, Manuel

    2017-08-14

    Sandwichlike (SW) cultures are engineered as a multilayer technology to simultaneously stimulate dorsal and ventral cell receptors, seeking to mimic cell adhesion in three-dimensional (3D) environments in a reductionist manner. The effect of this environment on cell differentiation was investigated for several cell types cultured in standard growth media, which promotes proliferation on two-dimensional (2D) surfaces and avoids any preferential differentiation. First, murine C2C12 myoblasts showed specific myogenic differentiation. Human mesenchymal stem cells (hMSCs) of adipose and bone marrow origin, which can differentiate toward a wider variety of lineages, showed again myodifferentiation. Overall, this study shows myogenic differentiation in normal growth media for several cell types under SW conditions, avoiding the use of growth factors and cytokines, i.e., solely by culturing cells within the SW environment. Mechanistically, it provides further insights into the balance between integrin adhesion to the dorsal substrate and the confinement imposed by the SW system.

  12. Vestibular evoked myogenic potentials: review.

    PubMed

    Mudduwa, R; Kara, N; Whelan, D; Banerjee, Anirvan

    2010-10-01

    Disorders of balance often pose a diagnostic conundrum for clinicians, and a multitude of investigations have emerged over the years. Vestibular evoked myogenic potential testing is a diagnostic tool which can be used to assess vestibular function. Over recent years, extensive study has begun to establish a broader clinical role for vestibular evoked myogenic potential testing. To provide an overview of vestibular evoked myogenic potential testing, and to present the evidence for its clinical application. REVIEW TYPE: Structured literature search according to evidence-based medicine guidelines, performed between November 2008 and April 2009. No restrictions were applied to the dates searched. The benefits of vestibular evoked myogenic potential testing have already been established as regards the diagnosis and monitoring of several clinical conditions. Researchers continue to delve deeper into potential new clinical applications, with early results suggesting promising future developments.

  13. Human iPSC Derived GABA Ergic Precursor Cell Therapy for Chronic Epilepsy

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0558 TITLE: Human iPSC-Derived GABA-Ergic Precursor Cell Therapy for Chronic Epilepsy PRINCIPAL INVESTIGATOR: Ashok K...SUBTITLE Human iPSC-Derived GABA-Ergic Precursor Cell Therapy for Chronic Epilepsy 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0558 5c...medial ganglionic eminence (hMGE)-like precursor cells generated from the human induced pluripotent stem cells (hiPSCs) into the hippocampus of

  14. Affordable Precursor Missions to Search for Life and Pave the Way for Human Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.

    2017-02-01

    The goal of landing humans on Mars in the 2030s requires a precursor program to assess modern life on Mars and assess the water resource of near surface ground ice. Missions that address these issues are presented.

  15. MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation.

    PubMed

    Alexander, M S; Kawahara, G; Motohashi, N; Casar, J C; Eisenberg, I; Myers, J A; Gasperini, M J; Estrella, E A; Kho, A T; Mitsuhashi, S; Shapiro, F; Kang, P B; Kunkel, L M

    2013-09-01

    In patients with Duchenne muscular dystrophy (DMD), the absence of a functional dystrophin protein results in sarcolemmal instability, abnormal calcium signaling, cardiomyopathy, and skeletal muscle degeneration. Using the dystrophin-deficient sapje zebrafish model, we have identified microRNAs (miRNAs) that, in comparison to our previous findings in human DMD muscle biopsies, are uniquely dysregulated in dystrophic muscle across vertebrate species. MiR-199a-5p is dysregulated in dystrophin-deficient zebrafish, mdx(5cv) mice, and human muscle biopsies. MiR-199a-5p mature miRNA sequences are transcribed from stem loop precursor miRNAs that are found within the introns of the dynamin-2 and dynamin-3 loci. The miR-199a-2 stem loop precursor transcript that gives rise to the miR-199a-5p mature transcript was found to be elevated in human dystrophic muscle. The levels of expression of miR-199a-5p are regulated in a serum response factor (SRF)-dependent manner along with myocardin-related transcription factors. Inhibition of SRF-signaling reduces miR-199a-5p transcript levels during myogenic differentiation. Manipulation of miR-199a-5p expression in human primary myoblasts and myotubes resulted in dramatic changes in cellular size, proliferation, and differentiation. MiR-199a-5p targets several myogenic cell proliferation and differentiation regulatory factors within the WNT signaling pathway, including FZD4, JAG1, and WNT2. Overexpression of miR-199a-5p in the muscles of transgenic zebrafish resulted in abnormal myofiber disruption and sarcolemmal membrane detachment, pericardial edema, and lethality. Together, these studies identify miR-199a-5p as a potential regulator of myogenesis through suppression of WNT-signaling factors that act to balance myogenic cell proliferation and differentiation.

  16. MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation

    PubMed Central

    Alexander, M S; Kawahara, G; Motohashi, N; Casar, J C; Eisenberg, I; Myers, J A; Gasperini, M J; Estrella, E A; Kho, A T; Mitsuhashi, S; Shapiro, F; Kang, P B; Kunkel, L M

    2013-01-01

    In patients with Duchenne muscular dystrophy (DMD), the absence of a functional dystrophin protein results in sarcolemmal instability, abnormal calcium signaling, cardiomyopathy, and skeletal muscle degeneration. Using the dystrophin-deficient sapje zebrafish model, we have identified microRNAs (miRNAs) that, in comparison to our previous findings in human DMD muscle biopsies, are uniquely dysregulated in dystrophic muscle across vertebrate species. MiR-199a-5p is dysregulated in dystrophin-deficient zebrafish, mdx5cv mice, and human muscle biopsies. MiR-199a-5p mature miRNA sequences are transcribed from stem loop precursor miRNAs that are found within the introns of the dynamin-2 and dynamin-3 loci. The miR-199a-2 stem loop precursor transcript that gives rise to the miR-199a-5p mature transcript was found to be elevated in human dystrophic muscle. The levels of expression of miR-199a-5p are regulated in a serum response factor (SRF)-dependent manner along with myocardin-related transcription factors. Inhibition of SRF-signaling reduces miR-199a-5p transcript levels during myogenic differentiation. Manipulation of miR-199a-5p expression in human primary myoblasts and myotubes resulted in dramatic changes in cellular size, proliferation, and differentiation. MiR-199a-5p targets several myogenic cell proliferation and differentiation regulatory factors within the WNT signaling pathway, including FZD4, JAG1, and WNT2. Overexpression of miR-199a-5p in the muscles of transgenic zebrafish resulted in abnormal myofiber disruption and sarcolemmal membrane detachment, pericardial edema, and lethality. Together, these studies identify miR-199a-5p as a potential regulator of myogenesis through suppression of WNT-signaling factors that act to balance myogenic cell proliferation and differentiation. PMID:23764775

  17. Human iPSC-Derived GABA Ergic Precursor Cell Therapy for Chronic Epilepsy

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0558 TITLE: Human iPSC-Derived GABA-Ergic Precursor Cell Therapy for Chronic Epilepsy PRINCIPAL INVESTIGATOR: Ashok K...AND SUBTITLE 5a. CONTRACT NUMBER Human iPSC-Derived GABA-Ergic Precursor Cell Therapy for Chronic Epilepsy 5b. GRANT NUMBER W81XWH-14-1-0558 5c...exhibiting chronic temporal lobe epilepsy (TLE) would: (1) greatly diminish the frequency and intensity of spontaneous recurrent seizures (SRS, Specific

  18. The construction and partial characterization of plasmids containing complementary DNA sequences to human calcitonin precursor polyprotein.

    PubMed Central

    Allison, J; Hall, L; MacIntyre, I; Craig, R K

    1981-01-01

    (1) Total poly(A)-containing RNA isolated from human thyroid medullary carcinoma tissue was shown to direct the synthesis in the wheat germ cell-free system of a major (Mr 21000) and several minor forms of human calcitonin precursor polyproteins. Evidence for processing of these precursor(s) by the wheat germ cell-free system is also presented. (2) A small complementary DNA (cDNA) plasmid library has been constructed in the PstI site of the plasmid pAT153, using total human thyroid medullary carcinoma poly(A)-containing RNA as the starting material. (3) Plasmids containing abundant cDNA sequences were selected by hybridization in situ, and two of these (ph T-B3 and phT-B6) were characterized by hybridization--translation and restriction analysis. Each was shown to contain human calcitonin precursor polyprotein cDNA sequences. (4) RNA blotting techniques demonstrate that the human calcitonin precursor polyprotein is encoded within a mRNA containing 1000 bases. (5) The results demonstrate that human calcitonin is synthesized as a precursor polyprotein. Images Fig. 1. Fig. 2. Fig. 3. PMID:6896146

  19. Opposing effects of shear-mediated dilation and myogenic constriction on artery diameter in response to handgrip exercise in humans.

    PubMed

    Atkinson, Ceri L; Carter, Howard H; Naylor, Louise H; Dawson, Ellen A; Marusic, Petra; Hering, Dagmara; Schlaich, Markus P; Thijssen, Dick H J; Green, Daniel J

    2015-10-15

    While the impact of changes in blood flow and shear stress on artery function are well documented, the acute effects of increases in arterial pressure are less well described in humans. The aim of this study was to assess the effect of 30 min of elevated blood pressure, in the absence of changes in shear stress or sympathetic nervous system (SNS) activation, on conduit artery diameter. Ten healthy male subjects undertook three sessions of 30 min unilateral handgrip exercise at 5, 10, and 15% of maximal voluntary contractile (MVC) strength. Brachial artery shear rate and blood flow profiles were measured simultaneously during exercise in the active and contralateral resting arms. Bilateral brachial artery diameter was simultaneously assessed before and immediately postexercise. In a second experiment, six subjects repeated the 15% MVC condition while continuous vascular measurements were collected during muscle sympathetic nerve activity (MSNA) assessment using peroneal microneurography. We found that unilateral handgrip exercise at 5, 10, and 15% MVC strength induced stepwise elevations in blood pressure (P < 0.01, Δmean arterial pressure: 7.06 ± 2.44, 8.50 ± 2.80, and 18.35 ± 3.52 mmHg, P < 0.01). Whereas stepwise increases were evident in shear rate in the exercising arm (P < 0.001), no changes were apparent in the nonexercising limb (P = 0.42). Brachial artery diameter increased in the exercising arm (P = 0.02), but significantly decreased in the nonexercising arm (P = 0.03). At 15% MVC, changes in diameter were significantly different between arms (interaction effect: P = 0.01), whereas this level of exertion produced no significant changes in MSNA. We conclude that acute increases in transmural pressure, independent of shear rate and changes in SNS activation, reduce arterial caliber in normotensive humans in vivo. These changes in diameter were mitigated by exercise-induced elevations in shear rate in the active limb.

  20. Inhibitory action of amyloid precursor protein against human Hageman factor (factor XII).

    PubMed

    Niwano, H; Embury, P B; Greenberg, B D; Ratnoff, O D

    1995-02-01

    Amyloid precursor protein forms that contain Kunitz protease inhibitor domains are released from activated platelets, T-lymphocytes, and leukocytes and inhibit trypsin, plasmin, and activated factor XI. We investigated the effects of amyloid precursor protein isoforms on activated Hageman factor (factor XII), activated factor X (Stuart factor), and thrombin. Recombinant amyloid precursor proteins with or without the Kunitz domain, 770 and 695 amino acids, respectively, were produced in insect cells by Baculovirus expression (BAC770 and BAC695). Neither BAC695 nor BAC770 inhibited human alpha-thrombin or activated factor X. The partial thromboplastin time was prolonged by both amyloid precursor proteins, only one of which, BAC770, contains the Kunitz protease inhibitor domain. Both forms of amyloid precursor proteins inhibited ellagic acid-induced activation of Hageman factor but did not inhibit activated Hageman factor. Bismuth subgallate, which is an insoluble analog of ellagic acid, lost its ability to activate Hageman factor on being exposed to BAC770. Inhibition of ellagic acid-induced activation of Hageman factor by both forms of amyloid precursor protein was enhanced by heparin. These findings suggested that the heparin-binding domain of amyloid precursor proteins is not in the Kunitz domain. This heparin-binding domain may block the activation of Hageman factor by negatively charged agents. Thus, amyloid precursor proteins may be involved in the control of hemostasis, properties not all dependent on the Kunitz domain.

  1. Backbone resonance assignments of the micro-RNA precursor binding region of human TRBP.

    PubMed

    Benoit, Matthieu P M H; Plevin, Michael J

    2013-10-01

    TAR-RNA binding protein (TRBP) is a multidomain human protein involved in micro-RNA (miRNA) biogenesis. TRBP is a component of both the Dicer complex, which processes precursor miRNAs, and the RNA-induced silencing complex-loading complex. In addition, TRBP is implicated in the human immunodeficiency virus replication cycle and interferon-protein kinase R activity. TRBP contains 3 double-stranded RNA binding domains the first two of which have been shown to interact with miRNA precursors. Here we present the backbone resonance assignments and secondary structure of residues 19-228 of human TRBP2.

  2. Calcitonin precursor levels in human medullary thyroid carcinoma.

    PubMed

    Bihan, H; Becker, K L; Snider, R H; Nylen, E; Vittaz, L; Lauret, C; Modigliani, E; Moretti, J L; Cohen, R

    2003-08-01

    The hormonal serum marker for the presence and course of patients with medullary thyroid cancer (MTC) is the mature calcitonin (CT) peptide. Other CALC-1 gene products such as the 116-amino acid polypeptide prohormone, procalcitonin, as well as its component calcitonin precursors (CTpr) may also be increased in their sera. We performed a study to evaluate the clinical utility of serum levels CTpr in these patients. Twenty-one patients with MTC (9 males, 12 females; 23-76 years of age) were evaluated. The diagnosis was confirmed by histologic examination, except for 2 (a proven RET mutation plus an abnormal pentagastrin-stimulated CT level). Nine patients had postoperative hypercalcitoninemia and 3 of these died. The specific assay for mature CT was a commercial immunoradiometric assay (hCT-IRMA); the immunoluminometric assay for CTpr (B.R.A.H.M.S Diagnostica, Berlin, Germany) detects intact procalcitonin and the free CT:CT carboxypeptide-1. All patients had detectable serum CTpr. These levels considerably exceeded those of mature CT, averaging 7.6-fold greater. CTpr levels correlated positively with mature CT (r = 0.61; p < 0.001). After pentagastrin administration, there was a parallelism of response between the two assays. Whenever there were known metastases, CTpr increased markedly. This study demonstrates the universal presence of CTpr in the blood of patients with MTC. The measurement of these peptides may offer a new dimension to the clinical evaluation of this malignancy.

  3. Crystal Structure of the Human Laminin Receptor Precursor

    SciTech Connect

    Jamieson,K.; Wu, J.; Hubbard, S.; Meruelo, D.

    2008-01-01

    The human laminin receptor (LamR) interacts with many ligands, including laminin, prions, Sindbis virus, and the polyphenol (-)-epigallocatechin-3-gallate (EGCG), and has been implicated in a number of diseases. LamR is overexpressed on tumor cells, and targeting LamR elicits anti-cancer effects. Here, we report the crystal structure of human LamR, which provides insights into its function and should facilitate the design of novel therapeutics targeting LamR.

  4. Modeling Stem Cell Myogenic Differentiation

    PubMed Central

    Deshpande, Rajiv S.; Spector, Alexander A.

    2017-01-01

    The process of stem cell myogenesis (transformation into skeletal muscle cells) includes several stages characterized by the expression of certain combinations of myogenic factors. The first part of this process is accompanied by cell division, while the second part is mainly associated with direct differentiation. The mechanical cues are known to enhance stem cell myogenesis, and the paper focuses on the stem cell differentiation under the condition of externally applied strain. The process of stem cell myogenic differentiation is interpreted as the interplay among transcription factors, targeted proteins and strain-generated signaling molecule, and it is described by a kinetic multi-stage model. The model parameters are optimally adjusted by using the available data from the experiment with adipose-derived stem cells subjected to the application of cyclic uniaxial strains of the magnitude of 10%. The modeling results predict the kinetics of the process of myogenic differentiation, including the number of cells in each stage of differentiation and the rates of differentiation from one stage to another for different strains from 4% to 16%. The developed model can help better understand the process of myogenic differentiation and the effects of mechanical cues on stem cell use in muscle therapies. PMID:28106095

  5. Determination of dideoxyosone precursors of AGEs in human lens proteins.

    PubMed

    Linetsky, Mikhail; Kaid Johar, S R; Meltretter, Jasmin; Padmanabha, Smitha; Parmar, Trilok; Vasavada, Abhay R; Pischetsrieder, Monika; Nagaraj, Ram H

    2011-10-01

    Dideoxyosones (DDOs) are intermediates in the synthesis of advanced glycation endproducts (AGEs), such as pentosidine and glucosepane. Although the formation of pentosidine and glucosepane in the human lens has been firmly established, the formation of DDOs has not been demonstrated. The aim of this study was to develop a reliable method to detect DDOs in lens proteins. A specific DDO trapping agent, biotinyl-diaminobenzene (3,4-diamino-N-(3-[5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoyl]aminopropyl)benzamide) (BDAB) was added during in vitro protein glycation or during protein extraction from human lenses. In vitro glycated human lens protein showed strong reaction in monomeric and polymeric crosslinked proteins by Western blot and ELISA. Glycation of BSA in the presence of BDAB resulted in covalent binding of BDAB to the protein and inhibited pentosidine formation. Mass spectrometric analysis of lysozyme glycated in the presence of BDAB showed the presence of quinoxalines at lysine residues at positions K1, K33, K96, and K116. The ELISA results indicated that cataractous lens proteins contain significantly higher levels of DDO than non-cataractous lenses (101.9±67.8 vs. 31.7±19.5AU/mg protein, p<0.0001). This study provides first direct evidence of DDO presence in human tissue proteins and establishes that AGE crosslink synthesis in the human lens occurs via DDO intermediates. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Determination of Dideoxyosone Precursors of AGEs in Human Lens Proteins

    PubMed Central

    Linetsky, Mikhail; Johar, Kaid; Meltretter, Jasmin; Padmanabha, Smitha; Parmar, Trilok; Vasavada, Abhay R.; Pischetsrieder, Monika; Nagaraj, Ram H.

    2011-01-01

    Dideoxyosones (DDOs) are intermediates in the synthesis of advanced glycation end products (AGEs), such as pentosidine and glucosepane. Although the formation of pentosidine and glucosepane in the human lens has been firmly established, the formation of DDOs has not been demonstrated. The aim of this study was to develop a reliable method to detect DDOs in lens proteins. A specific DDO trapping agent, biotinyl-diaminobenzene (3,4-diamino-N-(3-{[5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoyl]aminopropyl) benzamide) (BDAB) was added during in vitro protein glycation or during protein extraction from human lenses. In vitro glycated human lens protein showed strong reaction in monomeric and polymeric crosslinked proteins by western blot and ELISA. Glycation of BSA in the presence of BDAB resulted in covalent binding of BDAB to the protein and inhibited pentosidine formation. Mass spectrometric analysis of lysozyme glycated in the presence of BDAB showed the presence of quinoxalines at lysine residues at positions K1, K33, K96, and K116. The ELISA results indicated that cataractous lens proteins contain significantly higher levels of DDO than non-cataractous lenses (101.9±67.8 AU/mg protein vs. 31.7±19.5 AU/mg protein, p<0.0001). This study provides first direct evidence of DDO presence in human tissue proteins and establishes that AGE crosslink synthesis in the human lens occurs via DDO intermediates. PMID:21820400

  7. Epithelin/Granulin Precursor Expression in Human Breast Carcinoma

    DTIC Science & Technology

    1998-09-01

    presented in this paper summarized here show that PCDGF mRNA and protein is expressed in estrogen-dependent human breast carcinoma cell lines MCF-7 and...T47D. Treatment of human breast carcinoma cell lines MCF-7 and T47D with estradiol stimulated PCDGF mRNA and protein expression in a dose (5-fold...and protein were very low in the non-tumorigenic cells and increased in tumorigenic cell lines in a positive correlation with their tumorigenic

  8. Primary structure of the human follistatin precursor and its genomic organization

    SciTech Connect

    Shimasaki, Shunichi; Koga, Makoto; Esch, F.; Cooksey, K.; Mercado, M.; Koba, A.; Ueno, Naoto; Ying, Shaoyao; Ling, N.; Guillemin, R. )

    1988-06-01

    Follistatin is a single-chain gonadal protein that specifically inhibits follicle-stimulating hormone release. By use of the recently characterized porcine follistatin cDNA as a probe to screen a human testis cDNA library and a genomic library, the structure of the complete human follistatin precursor as well as its genomic organization have been determined. Three of eight cDNA clones that were sequenced predicted a precursor with 344 amino acids, whereas the remaining five cDNA clones encoded a 317 amino acid precursor, resulting from alternative splicing of the precursor mRNA. Mature follistatins contain four contiguous domains that are encoded by precisely separated exons; three of the domains are highly similar to each other, as well as to human epidermal growth factor and human pancreatic secretory trypsin inhibitor. The genomic organization of the human follistatin is similar to that of the human epidermal growth factor gene and thus supports the notion of exon shuffling during evolution.

  9. A Drosophila gene encoding a protein resembling the human beta-amyloid protein precursor.

    PubMed Central

    Rosen, D R; Martin-Morris, L; Luo, L Q; White, K

    1989-01-01

    We have isolated genomic and cDNA clones for a Drosophila gene resembling the human beta-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human beta-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development. Images PMID:2494667

  10. A Drosophila gene encoding a protein resembling the human. beta. -amyloid protein precursor

    SciTech Connect

    Rosen, D.R.; Martin-Morris, L.; Luo, L.; White, K. )

    1989-04-01

    The authors have isolated genomic and cDNA clones for a Drosophila gene resembling the human {beta}-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human {beta}-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development.

  11. Formation and Human Risk of Carcinogenic Heterocyclic Amines Formed from Natural Precursors in Meat

    SciTech Connect

    Knize, M G; Felton, J S

    2004-11-22

    A group of heterocyclic amines that are mutagens and rodent carcinogens form when meat is cooked to medium and well-done states. The precursors of these compounds are natural meat components: creatinine, amino acids and sugars. Defined model systems of dry-heated precursors mimic the amounts and proportions of heterocyclic amines found in meat. Results from model systems and cooking experiments suggest ways to reduce their formation and, thus, to reduce human intake. Human cancer epidemiology studies related to consumption of well-done meat products are listed and compared.

  12. Assessing Influences of Ozone Precursor Emissions on Human Health & Ecosystems"

    EPA Science Inventory

    The Clean Air Act supports the establishment of a national standard for ambient concentrations of atmospheric pollutants to protect human health and public welfare (CAA, 1990). The primary standard has been viewed as sucient for also protecting public welfare. We seek to explore ...

  13. Mars scientific investigations as a precursor for human exploration.

    PubMed

    Ahlf, P; Cantwell, E; Ostrach, L; Pline, A

    2000-01-01

    In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities. c 2000 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  14. Mars scientific investigations as a precursor for human exploration

    NASA Technical Reports Server (NTRS)

    Ahlf, P.; Cantwell, E.; Ostrach, L.; Pline, A.

    2000-01-01

    In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities. c 2000 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  15. Mars scientific investigations as a precursor for human exploration

    NASA Technical Reports Server (NTRS)

    Ahlf, P.; Cantwell, E.; Ostrach, L.; Pline, A.

    2000-01-01

    In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities. c 2000 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  16. Precursors of hexoneogenesis within the human mammary gland

    USDA-ARS?s Scientific Manuscript database

    The human mammary gland is capable of de novo synthesis of glucose and galactose (hexoneogenesis); however, the carbon source is incompletely understood. In this study, we investigated the role of acetate, glutamine, lactate and glycerol as potential carbon sources for hexoneogenesis. Healthy breast...

  17. Assessing Influences of Ozone Precursor Emissions on Human Health & Ecosystems"

    EPA Science Inventory

    The Clean Air Act supports the establishment of a national standard for ambient concentrations of atmospheric pollutants to protect human health and public welfare (CAA, 1990). The primary standard has been viewed as sucient for also protecting public welfare. We seek to explore ...

  18. Differentiation of human adult skin-derived neuronal precursors into mature neurons.

    PubMed

    Gingras, Marie; Champigny, Marie-France; Berthod, François

    2007-02-01

    The isolation of autologous neuronal precursors from skin-derived precursor cells extracted from adult human skin would be a very efficient source of neurons for the treatment of various neurodegenerative diseases. The purpose of this study was to demonstrate that these neuronal precursors were able to differentiate into mature neurons. We isolated neuronal precursors from breast skin and expanded them in vitro for over ten passages. We showed that 48% of these cells were proliferating after the first passage, while this growth rate decreased after the second passage. We demonstrated that 70% of these cells were nestin-positive after the third passage, while only 17% were neurofilament M-positive after 7 days of differentiation. These neuronal precursors expressed betaIII tubulin, the dendritic marker MAP2 and the presynaptic marker synaptophysin after 7 days of in vitro maturation. They also expressed the postsynaptic marker PSD95 and the late neuronal markers NeuN and neurofilament H after 21 days of differentiation, demonstrating they became terminally differentiated neurons. These markers were still expressed after 50 days of culture. The generation of autologous neurons from an accessible adult human source opens many potential therapeutic applications and has a great potential for the development of experimental studies on normal human neurons.

  19. Export of Precursor tRNAIle from the Nucleus to the Cytoplasm in Human Cells

    PubMed Central

    Wei, Min; Zhao, Xia; Liu, Mi; Niu, Meijuan; Seif, Elias; Kleiman, Lawrence

    2016-01-01

    In the current concept, tRNA maturation in vertebrate cells, including splicing of introns, trimming of 5’ leader and 3’ trailer, and adding of CCA, is thought to occur exclusively in the nucleus. Here we provide evidence to challenge this concept. Unspliced intron-containing precursor tRNAIle was identified in Human Immunodeficiency Virus type 1 (HIV-1) virions, which are synthesized in the cytoplasm. Northern blot, confocal microscopy and quantitative RT-PCR further verified enrichment of this unspliced tRNAIle within the cytoplasm in human cells. In addition to containing an intron, the cytoplasmic precursor tRNAIle also contains a short incompletely processed 5´ leader and a 3´ trailer, which abundance is around 1000 fold higher than the nuclear precursor tRNAIle with long 5’ leader and long 3’ trailer. In vitro data also suggest that the cytoplasmic unspliced end-immature precursor tRNAIle could be processed by short isoform of RNase Z, but not long isoform of RNase Z. These data suggest that precursor tRNAs could export from the nucleus to the cytoplasm in human cells, instead of be processed only in the nucleus. PMID:27101286

  20. Export of Precursor tRNAIle from the Nucleus to the Cytoplasm in Human Cells.

    PubMed

    Wei, Min; Zhao, Xia; Liu, Mi; Niu, Meijuan; Seif, Elias; Kleiman, Lawrence

    2016-01-01

    In the current concept, tRNA maturation in vertebrate cells, including splicing of introns, trimming of 5' leader and 3' trailer, and adding of CCA, is thought to occur exclusively in the nucleus. Here we provide evidence to challenge this concept. Unspliced intron-containing precursor tRNAIle was identified in Human Immunodeficiency Virus type 1 (HIV-1) virions, which are synthesized in the cytoplasm. Northern blot, confocal microscopy and quantitative RT-PCR further verified enrichment of this unspliced tRNAIle within the cytoplasm in human cells. In addition to containing an intron, the cytoplasmic precursor tRNAIle also contains a short incompletely processed 5´ leader and a 3´ trailer, which abundance is around 1000 fold higher than the nuclear precursor tRNAIle with long 5' leader and long 3' trailer. In vitro data also suggest that the cytoplasmic unspliced end-immature precursor tRNAIle could be processed by short isoform of RNase Z, but not long isoform of RNase Z. These data suggest that precursor tRNAs could export from the nucleus to the cytoplasm in human cells, instead of be processed only in the nucleus.

  1. SLS-Derived Lab: Precursor to Deep Space Human Exploration

    NASA Technical Reports Server (NTRS)

    Griffin, Brand; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2014-01-01

    Plans to send humans to Mars are in work and the launch system is being built. Are we ready? Robotic missions have successfully demonstrated transportation, entry, landing and surface operations but for human missions there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs) are the unanswered questions concerning long-duration exploration beyond low-earth-orbit. The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside earth's protective geo-magnetic field they cannot be resolved on the earth or on the International Space Station (ISS). Placing a laboratory at the relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 meter and 4.3 meter diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit Habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems, solutions are not obvious, and require integrated, iterative, and multi-disciplinary development. A lunar

  2. TRBP alters human precursor microRNA processing in vitro.

    PubMed

    Lee, Ho Young; Doudna, Jennifer A

    2012-11-01

    MicroRNAs play central roles in controlling gene expression in human cells. Sequencing data show that many miRNAs are produced at different levels and as multiple isoforms that can vary in length at their 5' or 3' ends, but the biogenesis and functional significance of these RNAs are largely unknown. We show here that the human trans-activation response (TAR) RNA binding protein (TRBP), a known molecular partner of the miRNA processing enzyme Dicer, changes the rates of pre-miRNA cleavage in an RNA-structure-specific manner. Furthermore, TRBP can trigger the generation of iso-miRNAs (isomiRs) that are longer than the canonical sequence by one nucleotide. We show that this change in miRNA processing site can alter guide strand selection, resulting in preferential silencing of a different mRNA target. These results implicate TRBP as a key regulator of miRNA processing and targeting in humans.

  3. Detection of Biosynthetic Precursors, Discovery of Glycosylated Forms, and Homeostasis of Calcitonin in Human Cancer Cells.

    PubMed

    Cao, Feihua; Gamble, Allan B; Onagi, Hideki; Howes, Joanna; Hennessy, James E; Gu, Chen; Morgan, Jeremy A M; Easton, Christopher J

    2017-07-05

    The peptide hormone calcitonin is intimately connected with human cancer development and proliferation. Its biosynthesis is reasoned to proceed via glycine-, α-hydroxyglycine-, glycyllysine-, and glycyllysyllysine-extended precursors; however, as a result of the limitations of current analytical methods, until now, there has been no procedure capable of detecting these individual species in cell or tissue samples. Therefore, their presence and dynamics in cancer had not been established. Here, we report the first methodology for the separation, detection, and quantification of calcitonin and each of its precursors in human cancer cells. We also report the discovery and characterization of O-glycosylated calcitonin and its analogous biosynthetic precursors. Through direct and simultaneous analysis of the glycosylated and nonglycosylated species, we interrogate the hormone biosynthesis. This shows that the cellular calcitonin level is maintained to mitigate effects of biosynthetic enzyme inhibitors that substantially change the proportions of calcitonin-related species released into the culture medium.

  4. SLS-Derived Lab- Precursor to Deep Space Human Exploration

    NASA Technical Reports Server (NTRS)

    Griffin, Brand M.; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2015-01-01

    Plans to send humans to Mars are in the works and the launch system is being built. Are we ready? Transportation, entry, landing, and surface operations have been successfully demonstrated for robotic missions. However, for human missions, there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs), are the unanswered questions concerning long duration exploration Beyond low Earth Orbit (BEO). The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside of earth's protective geo-magnetic field, they cannot be resolved on Earth or on the International Space Station (ISS). Placing a laboratory at a relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 m and 4.3 m diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems. The solutions to these problems are not obvious; they require integrated, iterative

  5. Effect of ionizing radiation on human skeletal muscle precursor cells

    PubMed Central

    Jurdana, Mihaela; Cemazar, Maja; Pegan, Katarina; Mars, Tomaz

    2013-01-01

    Background Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures. Materials and methods Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin – 6 (IL-6) release and stress response detected by the heat shock protein (HSP) level, while long term effects were followed by proliferation capacity and cell death. Results Compared with non-irradiated control and cells treated with inhibitor of cell proliferation Ara C, myoblast proliferation decreased 72 h post-irradiation, this effect was more pronounced with increasing doses. Post-irradiation myoblast survival determined by measurement of released LDH enzyme activity revealed increased activity after exposure to irradiation. The acute response of myoblasts to lower doses of irradiation (4 and 6 Gy) was decreased secretion of constitutive IL-6. Higher doses of irradiation triggered a stress response in myoblasts, determined by increased levels of stress markers (HSPs 27 and 70). Conclusions Our results show that myoblasts are sensitive to irradiation in terms of their proliferation capacity and capacity to secret IL-6. Since myoblast proliferation and differentiation are a key stage in muscle regeneration, this effect of irradiation needs to be taken in account, particularly in certain clinical conditions. PMID:24294183

  6. Confined Sandwichlike Microenvironments Tune Myogenic Differentiation

    PubMed Central

    2017-01-01

    Sandwichlike (SW) cultures are engineered as a multilayer technology to simultaneously stimulate dorsal and ventral cell receptors, seeking to mimic cell adhesion in three-dimensional (3D) environments in a reductionist manner. The effect of this environment on cell differentiation was investigated for several cell types cultured in standard growth media, which promotes proliferation on two-dimensional (2D) surfaces and avoids any preferential differentiation. First, murine C2C12 myoblasts showed specific myogenic differentiation. Human mesenchymal stem cells (hMSCs) of adipose and bone marrow origin, which can differentiate toward a wider variety of lineages, showed again myodifferentiation. Overall, this study shows myogenic differentiation in normal growth media for several cell types under SW conditions, avoiding the use of growth factors and cytokines, i.e., solely by culturing cells within the SW environment. Mechanistically, it provides further insights into the balance between integrin adhesion to the dorsal substrate and the confinement imposed by the SW system. PMID:28824958

  7. Circulating connective tissue precursors: extreme rarity in humans and chondrogenic potential in guinea pigs.

    PubMed

    Kuznetsov, Sergei A; Mankani, Mahesh H; Leet, Arabella I; Ziran, Navid; Gronthos, Stan; Robey, Pamela Gehron

    2007-07-01

    Using a variety of cell separation techniques and cultivation conditions, circulating, adherent, connective tissue, clonogenic cells were found in just 3 donors out of 66, demonstrating that these precursors are extremely rare in postnatal human blood. Contrary to humans, guinea pig blood shows much more reproducible connective tissue colony formation; it was therefore chosen to study the differentiation potential of adherent blood-derived clonogenic cells. Out of 22 single colony-derived strains of various morphologies, only 5 spindle-shaped strains showed extensive proliferative capacity in vitro. None of these strains formed bone upon in vivo transplantation, whereas two strains formed cartilage in high-density pellet cultures in vitro. Both chondrogenic strains included cells expressing aggrecan, whereas nonchondrogenic strains did not. Out of four polyclonal strains studied, one formed both cartilage and abundant bone accompanied by hematopoiesis-supporting stroma. Evidently, there are cells in adult guinea pig blood capable of both extensive proliferation and differentiation toward cartilage: circulating chondrogenic precursors. Although some of these cells lack osteogenic potential and therefore represent committed chondrogenic precursors, others may be multipotential and consequently belong to the family of skeletal stem cells. This is the first demonstration of postnatal circulating chondrogenic precursors, as well as of precursor cells with chondrogenic but not osteogenic potential. Disclosure of potential conflicts of interest is found at the end of this article.

  8. Communication and Empathy as Precursors to Burnout among Human Service Workers.

    ERIC Educational Resources Information Center

    Miller, Katherine I.; And Others

    1988-01-01

    Examines the role of communicative responsiveness, empathic concern, and emotional contagion as precursors to burnout among human service workers. Concludes that empathic concern leads to communicative responsiveness, emotional contagion decreases responsiveness, and responsiveness predicts three dimensions of burnout and occupational commitment.…

  9. Precursors of hexoneogenesis within the human mammary gland.

    PubMed

    Mohammad, Mahmoud A; Maningat, Patricia; Sunehag, Agneta L; Haymond, Morey W

    2015-04-15

    The human mammary gland is capable of de novo synthesis of glucose and galactose (hexoneogenesis); however, the carbon source is incompletely understood. In this study, we investigated the role of acetate, glutamine, lactate and glycerol as potential carbon sources for hexoneogenesis. Healthy breastfeeding women were studied following a 24-h fast on two occasions separated by 1-3 wk. Five women were infused with [U-¹³C]lactate or [1,2-¹³C₂]glutamine and five women with [U-¹³C]glycerol or [1,2-¹³C₂]acetate. Enrichments of ¹³C in plasma and milk substrates were analyzed using GC-MS. Infusion of labeled lactate, glycerol, glutamine, and acetate resulted in plasma glucose being 22.0±3.7, 11.2±1.0, 2.5±0.5, and 1.3±0.2% labeled, respectively. Lactate, glutamine, or acetate did not contribute to milk glucose or galactose (0-2%). In milk, ¹³C-free glycerol enrichment was one-fourth that in plasma but free glycerol concentration in milk was fourfold higher than in plasma. Using [U-¹³C]glycerol and by accounting for tracer dilution, glycerol alone contributed to 10±2 and 69±11% of the hexoneogenesis of milk glucose and galactose, respectively. During [U-¹³C]glycerol infusion, the ratio of M₃ enrichment on 4-6 carbons/M₃ on 1-3 carbons of galactose was higher (P<0.05, 1.22±0.05) than those of glucose in plasma (1.05±0.03) and milk (1.07±0.02). Reanalysis of samples from a previous study involving [U-¹³C]glucose infusion alone suggested labeling a portion of galactose consistent with pentose phosphate pathway (PPP) activity. We conclude that, although lactate contributed significantly to gluconeogenesis, glycerol alone provides the vast majority of substrate for hexoneogenesis. The relative contribution of the PPP vs. the reversal Embden-Meyerhof pathway to hexoneogenesis within the human mammary gland remains to be determined.

  10. Nitric oxide inhibition of Drp1-mediated mitochondrial fission is critical for myogenic differentiation

    PubMed Central

    De Palma, C; Falcone, S; Pisoni, S; Cipolat, S; Panzeri, C; Pambianco, S; Pisconti, A; Allevi, R; Bassi, MT; Cossu, G; Pozzan, T; Moncada, S; Scorrano, L; Brunelli, S; Clementi, E

    2011-01-01

    During myogenic differentiation the short mitochondria of myoblasts change into the extensively elongated network observed in myotubes. The functional relevance and the molecular mechanisms driving the formation of this mitochondrial network are unknown. We now show that mitochondrial elongation is required for myogenesis to occur and that this event depends on the cellular generation of nitric oxide (NO). Inhibition of NO synthesis in myogenic precursor cells leads to inhibition of mitochondrial elongation and of myogenic differentiation. This is due to the enhanced activity, translocation and docking of the pro-fission GTPase dynamin-related protein-1 (Drp1) to mitochondria, leading also to a latent mitochondrial dysfunction that increased sensitivity to apoptotic stimuli. These effects of NO inhibition were not observed in myogenic precursor cells containing a dominant-negative form of Drp1. Both NO-dependent repression of Drp1 action and maintenance of mitochondrial integrity and function were mediated through the soluble guanylate cyclase. These data uncover a novel level of regulation of differentiation linking mitochondrial morphology and function to myogenic differentiation. PMID:20467441

  11. Diploid and tetraploid precursors of megakaryocytes in normal human bone marrow detected by immunofluorescence.

    PubMed

    Renner, D; Propp, H; Queisser, W

    1987-11-01

    A sequential preparation method is described which allows immunological identification, morphological characterization, cytophotometric determination of relative DNA content of the megakaryocyte lineage as well as quantitation of megakaryocyte precursors in human bone marrow aspirates. We compared several monoclonal (anti-GP IIIa and HD 19) and polyclonal (A225, RAHPS) antiplatelet antibodies for immunofluorescent staining. Among the identified cells, a small number of cells showing a diploid and tetraploid DNA content were found which must be regarded as promegakaryoblasts, representing 2.5-4.7% of all megakaryocytes. The heterogenous morphology of these precursors in panoptically stained smears is described.

  12. Establishment of clonal myogenic cell lines from severely affected dystrophic muscles - CDK4 maintains the myogenic population

    PubMed Central

    2011-01-01

    Background A hallmark of muscular dystrophies is the replacement of muscle by connective tissue. Muscle biopsies from patients severely affected with facioscapulohumeral muscular dystrophy (FSHD) may contain few myogenic cells. Because the chromosomal contraction at 4q35 linked to FSHD is thought to cause a defect within myogenic cells, it is important to study this particular cell type, rather than the fibroblasts and adipocytes of the endomysial fibrosis, to understand the mechanism leading to myopathy. Results We present a protocol to establish clonal myogenic cell lines from even severely dystrophic muscle that has been replaced mostly by fat, using overexpression of CDK4 and the catalytic component of telomerase (human telomerase reverse transcriptase; hTERT), and a subsequent cloning step. hTERT is necessary to compensate for telomere loss during in vitro cultivation, while CDK4 prevents a telomere-independent growth arrest affecting CD56+ myogenic cells, but not their CD56- counterpart, in vitro. Conclusions These immortal cell lines are valuable tools to reproducibly study the effect of the FSHD mutation within myoblasts isolated from muscles that have been severely affected by the disease, without the confounding influence of variable amounts of contaminating connective-tissue cells. PMID:21798090

  13. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.

    PubMed

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E; Ziegler, Mathias; Nikiforov, Andrey

    2015-11-06

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors.

  14. Promotion of human adipocyte precursor replication by 17beta-estradiol in culture.

    PubMed Central

    Roncari, D A; Van, R L

    1978-01-01

    The influence of 17beta-estradiol and 17alpha-estradiol on adult human omental adipocyte precursors grown in a propagating culture system was studied. Cells were grown in subculture in the presence or absence of hormone. 17beta-estradiol resulted in significant promotion of adipocyte precursor replication, as determined by cell counting and incorporation of radioactive thymidine into DNA. The hormone stimulated cell multiplication in the concentration range 0.5--500 ng/ml growth medium. The highest level tested was 500 ng/ml. The maximal effects were obtained at 50 ng/ml (P less than 0.001 by paired t test, 48 h after hormone addition). All 10 cell strains (five were derived from men and five from women) that were tested responded similarly to the hormone. 17beta-estradiol did not affect cell size. 17alpha-estradiol did not promote the replication of adipocyte precursors, nor did it influence cell size. Thus, 17beta-estradiol, which is the active isomer in known target tissues, stimulates the multiplication of human adipocyte precursors in culture. Images PMID:690182

  15. Anatomical Location of LPA1 Activation and LPA Phospholipid Precursors in Rodent and Human Brain

    PubMed Central

    González de San Román, E; Manuel, I; Giralt, MT; Chun, J; Estivill-Torrús, G; Rodriguez de Fonseca, F; Santín, LJ; Ferrer, I; Rodriguez-Puertas, R

    2016-01-01

    Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCRs): LPA1–LPA6. LPA evokes several responses in the CNS including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [35S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1-null mice (a variant of LPA1-null) lack [35S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides (PA) and phosphatidylcholines (PC). Both PA and PC species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. PMID:25857358

  16. Characterization of human immunodeficiency virus type 2 envelope glycoproteins: Dimerization of the glycoprotein precursor during processing

    SciTech Connect

    Rey, M.A.; Krust, B.; Laurent, A.G.; Montagnier, L.; Hovanessian, A.G.

    1989-02-01

    For glycoproteins with apparent molecular weights of 300,000, 140,000, 125,000, and 36,000 (gp300, gp140, gp125, and gp36) were detectable in human immunodeficiency virus type 2 (HIV-2)-infected cells. They have identical isoelectric points, suggesting that gp300 might be a dimeric form of the immature precursor, gp140. The purified gp300 can be dissociated in a slightly acidic buffer to give rise to monomers of 140,000 molecular weight. Such dissociated monomers and the purified gp140 showed identical patterns of polypeptides after partial proteolysis with Staphylococcus aureus V8 protease. Pulse-chase experiments indicated that gp300 is formed after synthesis of gp140 and before the detection of the mature external envelope glycoprotein, gp125. These results were confirmed by using various inhibitors of glycosylation and inhibitors of trimming enzymes. Dimer formation of the envelope glycoprotein precursor was also observed in cells infected with simian immunodeficiency virus (SIV), a virus closely related to HIV-2. On the other hand, the envelope glycoprotein precursor of HIV-1 did not form a dimer during its processing. Therefore, dimer formation seems to be a specific property of HIV-2 and SIV envelope gene expression. Such transient dimerization of the glycoprotein precursor might be required for its efficient transport to the Golgi apparatus and for its processing.

  17. Identification and Characterization of Neuronal Precursors and Their Progeny From Human Fetal Tissue

    PubMed Central

    Piper, David R.; Mujtaba, Tahmina; Keyoung, Hansoo; Roy, Neeta S.; Goldman, Steven A.; Rao, Mahendra S.; Lucero, Mary T.

    2010-01-01

    We have examined primary human neuronal precursors (HNPs) from 18–22-week-old fetuses. We showed that E-NCAM/MAP2/β-III tubulin-immunoreactive neuronal precursors divide in vitro and could be induced to differentiate into mature neurons in 2 weeks. HNPs did not express nestin and differentiated slowly compared to rodent neuronal restricted precursors (NRPs, 5 days). Immunocytochemical and physiological analyses showed that HNPs could generate a heterogeneous population of neurons that expressed neurofilament-associated protein and various neurotransmitters, neurotransmitter synthesizing enzymes, voltage-gated ion channels, and ligand-gated neurotransmitter receptors and could fire action potentials. Undifferentiated and differentiated HNPs did not coexpress glial markers. Only a subset of cells that expressed GFP under the control of the Tα1 tubulin promoter was E-NCAM/β-III tubulin-immunoreactive, indicating nonexclusive overlap between these two HNP cell populations. Overall, HNPs resemble NRPs isolated from rodent tissue and appear to be a neuronal precursor population. PMID:11746353

  18. Anatomical location of LPA1 activation and LPA phospholipid precursors in rodent and human brain.

    PubMed

    González de San Román, Estibaliz; Manuel, Iván; Giralt, María Teresa; Chun, Jerold; Estivill-Torrús, Guillermo; Rodríguez de Fonseca, Fernando; Santín, Luis Javier; Ferrer, Isidro; Rodríguez-Puertas, Rafael

    2015-08-01

    Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors: LPA1 -LPA6 . LPA evokes several responses in the CNS, including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation, and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1 -null mice (a variant of LPA1 -null) lack [(35) S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides and phosphatidylcholines. Both phosphatides and phosphatidylcholines species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCR), LPA1 to LPA6 . LPA evokes several responses in the central nervous system (CNS), including cortical development and folding, growth of the axonal cone and its retraction process. We used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 -binding sites in adult rodent and human brain. The distribution of LPA1 receptors in rat, mouse and human brains show the highest activity in white matter myelinated areas. The basal and

  19. Muscle-Bound Primordial Stem Cells Give Rise to Myofiber-Associated Myogenic and Non-Myogenic Progenitors

    PubMed Central

    Chapal-Ilani, Noa; Itzkovitz, Shalev; Horovitz, Inna; Reizel, Yitzhak; Benayahu, Dafna; Shapiro, Ehud

    2011-01-01

    Myofiber cultures give rise to myogenic as well as to non-myogenic cells. Whether these myofiber-associated non-myogenic cells develop from resident stem cells that possess mesenchymal plasticity or from other stem cells such as mesenchymal stem cells (MSCs) remain unsolved. To address this question, we applied a method for reconstructing cell lineage trees from somatic mutations to MSCs and myogenic and non-myogenic cells from individual myofibers that were cultured at clonal density. Our analyses show that (i) in addition to myogenic progenitors, myofibers also harbor non-myogenic progenitors of a distinct, yet close, lineage; (ii) myofiber-associated non-myogenic and myogenic cells share the same muscle-bound primordial stem cells of a lineage distinct from bone marrow MSCs; (iii) these muscle-bound primordial stem-cells first part to individual muscles and then differentiate into myogenic and non-myogenic stem cells. PMID:22022423

  20. Zinc Deficiency Induces Apoptosis via Mitochondrial p53- and Caspase-Dependent Pathways in Human Neuronal Precursor Cells

    ERIC Educational Resources Information Center

    Seth, Rohit; Corniola, Rikki S.; Gower-Winter, Shannon D.; Morgan, Thomas J., Jr.; Bishop, Brian; Levenson, Cathy W.

    2015-01-01

    Previous studies have shown that zinc deficiency leads to apoptosis of neuronal precursor cells in vivo and in vitro. In addition to the role of p53 as a nuclear transcription factor in zinc deficient cultured human neuronal precursors (NT-2), we have now identified the translocation of phosphorylated p53 to the mitochondria and p53-dependent…

  1. Myogenic cytodifferentiation of the precardiac mesoderm in the rat.

    PubMed

    Baldwin, H S; Jensen, K L; Solursh, M

    1991-08-01

    The contractile cells of the primitive heart are derived from a subpopulation of the lateral plate splanchnic mesoderm. While the formation of the cardiac primordia has been studied in the avian embryo, little is known about this cell population in the mammal. To investigate the distribution and cellular differentiation of the myocardial precursors in the early mammalian embryo, we studied the sequential immunohistochemical appearance of desmin and myosin in whole mounts of rat embryos from the presomite (gestational day 9) through the 6-8 somite, straight heart tube (gestational day 10) stages of early cardiac morphogenesis. In contrast to the chicken, and previous reports in the mouse, our results show that myogenic differentiation of the muscle precursor cells of the heart begins in the presomite embryo prior to formation of the anterior intestinal portal or foregut. In addition, this cell population of the precardiac mesoderm appears as a single crescent-shaped population of cells in continuity across the midline which extends caudally during development and then fuses in the midline to form the primitive heart tube. Unlike skeletal myogenesis, desmin and myosin appear simultaneously and are codistributed throughout this initial period of heart development. These results suggest that myocardial differentiation in the rat is precocious when compared to the chicken and precedes the morphogenetic processes involved in formation of the primitive heart tube. Furthermore, this study provides the first description in the mammal of the spatial distribution of the myogenic precardiac mesoderm.

  2. Antigenic characterization of the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor incorporated into nanodiscs

    PubMed Central

    Witt, Kristen C.; Castillo-Menendez, Luis; Ding, Haitao; Espy, Nicole; Zhang, Shijian; Kappes, John C.; Sodroski, Joseph

    2017-01-01

    The entry of human immunodeficiency virus (HIV-1) into host cells is mediated by the viral envelope glycoproteins (Envs), which are derived by the proteolytic cleavage of a trimeric gp160 Env precursor. The mature Env trimer is a major target for entry inhibitors and vaccine-induced neutralizing antibodies. Env interstrain variability, conformational flexibility and heavy glycosylation contribute to evasion of the host immune response, and create challenges for structural characterization and vaccine development. Here we investigate variables associated with reconstitution of the HIV-1 Env precursor into nanodiscs, nanoscale lipid bilayer discs enclosed by membrane scaffolding proteins. We identified detergents, as well as lipids similar in composition to the viral lipidome, that allowed efficient formation of Env-nanodiscs (Env-NDs). Env-NDs were created with the full-length Env precursor and with an Env precursor with the majority of the cytoplasmic tail intact. The self-association of Env-NDs was decreased by glutaraldehyde crosslinking. The Env-NDs exhibited an antigenic profile expected for the HIV-1 Env precursor. Env-NDs were recognized by broadly neutralizing antibodies. Of note, neutralizing antibody epitopes in the gp41 membrane-proximal external region and in the gp120:gp41 interface were well exposed on Env-NDs compared with Env expressed on cell surfaces. Most Env epitopes recognized by non-neutralizing antibodies were masked on the Env-NDs. This antigenic profile was stable for several days, exhibiting a considerably longer half-life than that of Env solubilized in detergents. Negative selection with weak neutralizing antibodies could be used to improve the antigenic profile of the Env-NDs. Finally, we show that lipid adjuvants can be incorporated into Env-NDs. These results indicate that Env-NDs represent a potentially useful platform for investigating the structural, functional and antigenic properties of the HIV-1 Env trimer in a membrane context

  3. Spontaneous myogenic differentiation of Flk-1-positive cells from adult pancreas and other nonmuscle tissues.

    PubMed

    Di Rocco, Giuliana; Tritarelli, Alessandra; Toietta, Gabriele; Gatto, Ilaria; Iachininoto, Maria Grazia; Pagani, Francesca; Mangoni, Antonella; Straino, Stefania; Capogrossi, Maurizio C

    2008-02-01

    At the embryonic or fetal stages, autonomously myogenic cells (AMCs), i.e., cells able to spontaneously differentiate into skeletal myotubes, have been identified from several different sites other than skeletal muscle, including the vascular compartment. However, in the adult animal, AMCs from skeletal muscle-devoid tissues have been described in only two cases. One is represented by thymic myoid cells, a restricted population of committed myogenic progenitors of unknown derivation present in the thymic medulla; the other is represented by a small subset of adipose tissue-associated cells, which we recently identified. In the present study we report, for the first time, the presence of spontaneously differentiating myogenic precursors in the pancreas and in other skeletal muscle-devoid organs such as spleen and stomach, as well as in the periaortic tissue of adult mice. Immunomagnetic selection procedures indicate that AMCs derive from Flk-1(+) progenitors. Individual clones of myogenic cells from nonmuscle organs are morphologically and functionally indistinguishable from skeletal muscle-derived primary myoblasts. Moreover, they can be induced to proliferate in vitro and are able to participate in muscle regeneration in vivo. Thus, we provide evidence that fully competent myogenic progenitors can be derived from the Flk-1(+) compartment of several adult tissues that are embryologically unrelated to skeletal muscle.

  4. Human placental transfer of perfluoroalkyl acid precursors: Levels and profiles in paired maternal and cord serum.

    PubMed

    Yang, Lin; Wang, Zhen; Shi, Yu; Li, Jingguang; Wang, Yuxin; Zhao, Yunfeng; Wu, Yongning; Cai, Zongwei

    2016-02-01

    Perfluoroalkyl acids (PFAAs) precursors, the indirect source of PFAA exposure, have been observed in environmental and human samples. However, the maternal-fetal transfer of these chemicals has not been well examined. In this study, 50 paired maternal and cord serum samples collected in Jiangsu province of China were analyzed for fifteen PFAA precursors. Among the detected PFAAs, 6:2 fluorotelomer sulfonate (6:2 FTS), N-methyl- and N-ethyl-perfluorooctanesulfonamidoacetates had comparable detection rate in both maternal and cord sera, while the mean concentrations and detection rates of 8:2 FTS and perfluorooctane sulfonamide (PFOSA) were higher in maternal sera compared to cord sera (Mann-Whitney U test, P < 0.05). Analysis of variance and least significant difference tests showed that the youngest maternal age group (21-24 years old) had the highest concentration of 6:2 FTS in cord sera. Maternal serum PFOSA was found significantly correlated with the cord serum perfluorooctanesulfonate (PFOS) (Spearman test, r = 0.361, P = 0.010), indicating that maternal serum PFOSA might be an indirect source of PFOS in fetuses. The obtained results suggested the potential prenatal exposure and human placental transfer of perfluoroalkyl acid precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Differential processing of colony-stimulating factor 1 precursors encoded by two human cDNAs.

    PubMed Central

    Rettenmier, C W; Roussel, M F

    1988-01-01

    The biosynthesis of macrophage colony-stimulating factor 1 (CSF-1) was examined in mouse NIH-3T3 fibroblasts transfected with a retroviral vector expressing the 554-amino-acid product of a human 4-kilobase (kb) CSF-1 cDNA. Similar to results previously obtained with a 1.6-kb human cDNA that codes for a 256-amino-acid CSF-1 precursor, the results of the present study showed that NIH-3T3 cells expressing the product of the 4-kb clone produced biologically active human CSF-1 and were transformed by an autocrine mechanism when cotransfected with a vector containing a human c-fms (CSF-1 receptor) cDNA. The 4-kb CSF-1 cDNA product was synthesized as an integral transmembrane glycoprotein that was assembled into disulfide-linked dimers and rapidly underwent proteolytic cleavage to generate a soluble growth factor. Although the smaller CSF-1 precursor specified by the 1.6-kb human cDNA was stably expressed as a membrane-bound glycoprotein at the cell surface and was slowly cleaved to release the extracellular growth factor, the cell-associated product of the 4-kb clone was efficiently processed to the secreted form and was not detected on the plasma membrane. Digestion with glycosidic enzymes indicated that soluble CSF-1 encoded by the 4-kb cDNA contained both asparagine(N)-linked and O-linked carbohydrate chains, whereas the product of the 1.6-kb clone had only N-linked oligosaccharides. Removal of the carbohydrate indicated that the polypeptide chain of the secreted 4-kb cDNA product was longer than that of the corresponding form encoded by the smaller clone. These differences in posttranslational processing may reflect diverse physiological roles for the products of the two CSF-1 precursors in vivo. Images PMID:3264877

  6. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition.

    PubMed

    Bogan, Katrina L; Brenner, Charles

    2008-01-01

    Although baseline requirements for nicotinamide adenine dinucleotide (NAD+) synthesis can be met either with dietary tryptophan or with less than 20 mg of daily niacin, which consists of nicotinic acid and/or nicotinamide, there is growing evidence that substantially greater rates of NAD+ synthesis may be beneficial to protect against neurological degeneration, Candida glabrata infection, and possibly to enhance reverse cholesterol transport. The distinct and tissue-specific biosynthetic and/or ligand activities of tryptophan, nicotinic acid, nicotinamide, and the newly identified NAD+ precursor, nicotinamide riboside, reviewed herein, are responsible for vitamin-specific effects and side effects. Because current data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis, we present prospects for human nicotinamide riboside supplementation and propose areas for future research.

  7. Frequency tuning of the cervical vestibular-evoked myogenic potential (cVEMP) recorded from multiple sites along the sternocleidomastoid muscle in normal human subjects.

    PubMed

    Wei, Wei; Jeffcoat, Ben; Mustain, William; Zhu, Hong; Eby, Thomas; Zhou, Wu

    2013-02-01

    Frequency tuning of tone burst-evoked myogenic potentials recorded from the sternocleidomastoid muscle (cervical VEMP or cVEMP) is used clinically to assess vestibular function. Understanding the characteristics of cVEMP is important for improving the specificity of cVEMP testing in diagnosing vestibular deficits. In the present study, we analyzed the frequency tuning properties of the cVEMPs by constructing detailed tuning curves and examining their morphology and dependence on SCM tonic level, sound intensity, and recording site along the SCM. Here we report two main findings. First, by employing nine tone frequencies between 125 and 4,000 Hz, some tuning curves exhibited two distinct peaks, which cannot be modeled by a single mass spring system as previously suggested. Instead, the observed tuning is better modeled as linear summation of two mass spring systems, with resonance frequencies at ~300 and ~1,000 Hz. Peak frequency of cVEMP tuning curves was not affected by SCM tonic level, sound intensity, and location of recording site on the SCM. However, sharpness of cVEMP tuning was increased at lower sound intensities. Second, polarity of cVEMP responses recorded from the lower quarter of the SCM was reversed as compared to that at the two upper sites. While more studies are needed, these results suggest that cVEMP tuning is mediated through multiple generators with different resonance frequencies. Future studies are needed to explore implications of these results on development of selective VEMP tests and determine the nature of polarity inversion at the lower quarter of SCM.

  8. Direct measurement of the precursors of adrenocorticotropin in human plasma by two-site immunoradiometric assay

    SciTech Connect

    Crosby, S.R.; Stewart, M.F.; Ratcliffe, J.G.; White, A.

    1988-12-01

    An immunoradiometric assay (IRMA) for the direct measurement of the precursors of ACTH in unextracted human plasma has been developed and evaluated clinically in normal subjects and patients with disorders of the hypothalamic-pituitary-adrenal axis. The IRMA is based on an iodinated monoclonal antibody to ACTH and a monoclonal antibody to gamma MSH coupled to Sephacryl S300. The assay detects only peptides containing both epitopes, i.e. POMC (31K) and pro-ACTH (22K). The reference standard was partially purified POMC from culture medium of human corticotroph adenoma cells. The detection limit (greater than +2.5SD of the 0 standard) was 2.0 pmol/L and the within-assay coefficient of variation was less than 10% between 29 and 2600 pmol/L. Plasma concentrations of ACTH precursor peptides in 11 normal subjects sampled at 0930 h ranged from 5-34 pmol/L. The concentrations in the patient groups studied were: 260-2300 pmol/L in 5 patients with the ectopic ACTH syndrome associated with small cell lung cancer, less than 2.0-104 pmol/L in 10 patients with pituitary-dependent Cushing's disease, 23 pmol/L in a patient with Nelson's syndrome, and 3.0-230 pmol/L in 5 patients with Addison's disease. We conclude that this IRMA offers a simple and reliable method for measuring ACTH precursors in unextracted plasma. The proportionately greater elevation of ACTH precursors compared to ACTH in patients with the ectopic ACTH syndrome associated with small cell lung cancer but not in pituitary-dependent Cushing's syndrome, suggests that this assay may be clinically useful.

  9. A canine model of Alzheimer's disease generated by overexpressing a mutated human amyloid precursor protein.

    PubMed

    Lee, Geun-Shik; Jeong, Yeon Woo; Kim, Joung Joo; Park, Sun Woo; Ko, Kyeong Hee; Kang, Mina; Kim, Yu Kyung; Jung, Eui-Man; Moon, Changjong; Hyun, Sang Hwan; Hwang, Kyu-Chan; Kim, Nam-Hyung; Shin, Taeyoung; Jeung, Eui-Bae; Hwang, Woo Suk

    2014-04-01

    Canines are considered the most authentic model for studying multifactorial human diseases, as these animals typically share a common environment with man. Somatic cell nuclear transfer (SCNT) technology along with genetic engineering of nuclear donor cells provides a unique opportunity for examining human diseases using transgenic canines. In the present study, we generated transgenic canines that overexpressed the human amyloid precursor protein (APP) gene containing well-characterized familial Alzheimer's disease (AD) mutations. We successfully obtained five out of six live puppies by SCNT. This was confirmed by observing the expression of green fluorescence protein in the body as a visual transgenic marker and the overexpression of the mutated APP gene in the brain. The transgenic canines developed AD-like symptoms, such as enlarged ventricles, an atrophied hippocampus, and β-amyloid plaques in the brain. Thus, the transgenic canines we created can serve as a novel animal model for studying human AD.

  10. In vitro effect of glutathione precursors on cytotoxicity of amino acids to human mesothelial cells.

    PubMed

    Grzybowski, A E

    1999-09-01

    Amino acids (AA) which were proposed as an alternative osmotically active agents in dialysates are toxic to human peritoneal mesothelial cells (HPMC) due to disturbance of the antioxidant-oxidant balance in cells by reducing level of glutathione. We assessed if the addition intracellular glutathione precursors: N-acetyl-cysteine (NAC), tioproline (TP), L--2-oxo--4-thiazolidine acid (PC), and glutathione (GSH) could reduce the cytotoxicity of AA, as measured by inhibition of cells proliferation and disorders of intracellular 86Rb transport. HPMC were obtained from omentum from nonuremic donors and cultured in in vitro conditions. The HPMC proliferation capacity was assessed indirectly by the 3H-methyl-thymidine incorporation assay. The injury to HPMC membrane integrity was assessed by the release of radioisotope molecules of 86Rb from the prelabelled cells. We have found that AA diminished the intracellular potassium (86Rb) influx. Supplementation of AA mixture with NAC enhanced the total 86Rb influx into HMC. Other precursors of intracellular glutathione (TP,PC,GSH) tested in the presence of AA significantly stimulated intracellular transport of 86Rb via Na,K-ATPase dependent channel, but the total intracellular transport of 86Rb was still lower than in control. HMC proliferation was significantly inhibited by AA what was measured by incorporation of H-metyl-tymidine. In the presence of NAC inhibition of HMC proliferation caused by AA was weaker. Our results suggest that some of intracellular glutathione precursors may reduce the disturbances of the HMC function caused by AA.

  11. Cloning and characterization of human liver cDNA encoding a protein S precursor.

    PubMed Central

    Hoskins, J; Norman, D K; Beckmann, R J; Long, G L

    1987-01-01

    Human liver cDNA encoding a protein S precursor was isolated from two cDNA libraries by two different techniques. Based upon the frequency of positive clones, the abundance of mRNA for protein S is approximately 0.01%. Blot hybridization of electrophoretically fractionated poly(A)+ RNA revealed a major mRNA approximately 4 kilobases long and two minor forms of approximately 3.1 and approximately equal to 2.6 kilobases. One of the cDNA clones contains a segment encoding a 676 amino acid protein S precursor, as well as 108 and 1132 nucleotides of 5' and 3' noncoding sequence, respectively, plus a poly(A) region at the 3' end. The cDNAs are adenosine plus thymidine-rich (60%) except for the 5' noncoding region, where 78% of the nucleotides are guanosine or cytosine. The protein precursor consists of a 41 amino acid "leader" peptide followed by 635 amino acids corresponding to mature protein S. Comparison of the mature protein region with homologous vitamin K-dependent plasma proteins shows that it is composed of the following domains: an amino-terminal gamma-carboxyglutamic acid-rich region of 37 amino acids; a 36 amino acid linker region rich in hydroxy amino acids; four epidermal growth factor-like segments, each approximately 45 amino acids long; and a 387 amino acid carboxyl-terminal domain of unrecognized structure and unknown function. Images PMID:3467362

  12. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.

    PubMed

    Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru

    2016-01-01

    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.

  13. Vestibular-evoked myogenic potentials.

    PubMed

    Colebatch, J G; Rosengren, S M; Welgampola, M S

    2016-01-01

    The vestibular-evoked myogenic potential (VEMP) is a short-latency potential evoked through activation of vestibular receptors using sound or vibration. It is generated by modulated electromyographic signals either from the sternocleidomastoid muscle for the cervical VEMP (cVEMP) or the inferior oblique muscle for the ocular VEMP (oVEMP). These reflexes appear to originate from the otolith organs and thus complement existing methods of vestibular assessment, which are mainly based upon canal function. This review considers the basis, methodology, and current applications of the cVEMP and oVEMP in the assessment and diagnosis of vestibular disorders, both peripheral and central. © 2016 Elsevier B.V. All rights reserved.

  14. Non-invasive Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering Using Positron Emission Tomography

    PubMed Central

    Haralampieva, Deana; Betzel, Thomas; Dinulovic, Ivana; Salemi, Souzan; Stoelting, Meline; Kraemer, Stefanie; Schibli, Roger; Sulser, Tullio; Handschin, Christoph; Eberli, Daniel; Ametamey, Simon M.

    2016-01-01

    Transplantation of human muscle precursor cells (hMPCs) is envisioned for the treatment of various muscle diseases. However, a feasible non-invasive tool to monitor cell survival, migration and integration into the host tissue is still missing. Methods In this study, we designed an adenoviral delivery system to genetically modify hMPCs to express a signaling-deficient form of a human dopamine D2 receptor (hD2R). The gene expression levels of the receptor were evaluated by Reverse Transcriptase Polymerase Chain Reaction (RTPCR) and infection efficiency was visualized by fluorescent microscopy. Viability, proliferation and differentiation capacity of the transduced cells were confirmed and their sustained myogenic phenotype was shown by flow cytometry analysis and fluorescent microscopy. 18F-Fallypride and 18F-FMISO, two well-established PET radioligands, were successfully synthesized and evaluated for their potential to image engineered hMPCs in a mouse model. Furthermore, biodistribution studies and autoradiography were also performed to determine the extent of signal specificity. Results To address the feasibility of the presented approach for tracking of hMPCs in an in vivo model, we first evaluated the safety of the adenoviral gene-delivery, which showed no detrimental effects on the primary human cells. Specific binding of 18F-Fallypride to hD2R_hMPCs was demonstrated in vitro, as well as in vivo, by performing autoradiography, biodistribution and PET experiments, respectively. Furthermore, 18F-FMISO uptake was evaluated at different time-points after cell inoculation in vivo, showing high signal only at the early stages. Finally, histological assessment of the harvested tissues confirmed the sustained survival of the transplanted cells at different time-points with formation of muscle tissue at the site of injection. Conclusion We here propose a signaling-deficient human D2R as a potent reporter for in vivo hMPCs PET tracking by 18F-Fallypride. This approach

  15. The Cervical Vestibular-Evoked Myogenic Potentials (cVEMPs) Recorded Along the Sternocleidomastoid Muscles During Head Rotation and Flexion in Normal Human Subjects.

    PubMed

    Ashford, Alexander; Huang, Jun; Zhang, Chunming; Wei, Wei; Mustain, William; Eby, Thomas; Zhu, Hong; Zhou, Wu

    2016-08-01

    Tone burst-evoked myogenic potentials recorded from tonically contracted sternocleidomastoid muscles (SCM) (cervical VEMP or cVEMP) are widely used to assess the vestibular function. Since the cVEMP response is mediated by the vestibulo-collic reflex (VCR) pathways, it is important to understand how the cVEMPs are determined by factors related to either the sensory components (vestibular end organs) or the motor components (SCM) of the VCR pathways. Compared to the numerous studies that have investigated effects of sound parameters on the cVEMPs, there are few studies that have examined effects of SCM-related factors on the cVEMPs. The goal of the present study is to fill this knowledge gap by testing three SCM-related hypotheses. The first hypothesis is that contrary to the current view, the cVEMP response is only present in the SCM ipsilateral to the stimulated ear. The second hypothesis is that the cVEMP response is not only dependent on tonic level of the SCM, but also on how the tonic level is achieved, i.e., by head rotation or head flexion. The third hypothesis is that the SCM is compartmented and the polarity of the cVEMP response is dependent on the recording site. Seven surface electrodes were positioned along the left SCMs in 12 healthy adult subjects, and tone bursts were delivered to the ipsilateral or contralateral ear (8 ms plateau, 1 ms rise/fall, 130 dB SPL, 50-4000 Hz) while subjects activated their SCMs by head rotation (HR condition) or chin downward head flexion (CD condition). The first hypothesis was confirmed by the finding that the contralateral cVEMPs were minimal at all recording sites for all the tested tones during both HR and CD conditions. The second hypothesis was confirmed by the finding that the ipsilateral cVEMPs were larger in HR condition than in CD condition at recording sites above and below the SCM midpoint. Finally, the third hypothesis was confirmed by the finding that the cVEMPs exhibit reversed polarities at the sites

  16. Blood-brain barrier promotes differentiation of human fetal neural precursor cells.

    PubMed

    Chintawar, Satyan; Cayrol, Romain; Antel, Jack; Pandolfo, Massimo; Prat, Alexandre

    2009-04-01

    In the stem cell niche, neural stem cells (NSCs) are in close contact with the specialized blood-brain barrier (BBB) endothelial cells (ECs) that modulate their proliferation and differentiation behavior. NSCs are also an attractive source for cell transplantation and neural tissue repair after central nervous system injury. After systemic grafting, they are confronted with the BBB before they can enter the brain parenchyma. We investigated the interactions of human fetal neural precursor cells (hfNPCs) with human brain ECs in an in vitro model using primary cultures. We demonstrated that hfNPCs efficiently differentiate to neurons, astrocytes, and oligodendrocytes and move to the subendothelial space of human BBB endothelium, but not to pulmonary artery ECs. Effective differentiation was found to be dependent on the chemokine CCL2/MCP-1, but not on CXCL8/IL-8. Our findings suggest that neural precursor cells specifically interact with the BBB endothelium and differentiate in the subendothelial niche into astrocytes, neurons, and oligodendrocytes, under the influence of the chemokine CCL2/MCP-1.

  17. Role of PUFAs, the precursors of endocannabinoids, in human obesity and type 2 diabetes.

    PubMed

    Dain, Alejandro; Repossi, Gaston; Das, Undurti N; Eynard, Aldo Renato

    2010-06-01

    Polyunsaturated fatty acids (PUFAs) serve as precursors of the endocannabinoids (ECs) that are bioactive lipids molecules. Recent studies revealed that ECs participate in several physiological and pathological processes including obesity and type 2 diabetes mellitus. Here we review the experimental and clinical aspects of the role of endocannabinoids in obesity and type 2 diabetes mellitus and the modification of the endocannabinoids by exogenously administered PUFAs. Based on these evidences, we propose that the endocannabinoid system (ECS) can be modulated by exogenous manipulation of PUFAs that could help in the prevention and management of human diseases such as obesity, metabolic syndrome and type 2 diabetes mellitus.

  18. Involvement of Epithelial Na+ Channel in the Elevated Myogenic Response in Posterior Cerebral Arteries from Spontaneously Hypertensive Rats

    PubMed Central

    Choi, Soo-Kyoung; Yeon, Soo-In; Kwon, Youngin; Byeon, Seonhee; Lee, Young-Ho

    2017-01-01

    Hypertension is characterized by increased peripheral vascular resistance which is related with elevated myogenic response. Recent findings have indicated that epithelial sodium channel (ENaC) is involved in mechanotransduction of the myogenic response. The purpose of this study was to investigate the involvement of ENaC in the elevated myogenic response of posterior cerebral arteries (PCAs) from spontaneously hypertensive rats (SHRs). Sixteen to eighteen weeks old male wistar kyoto rats (WKYs) and SHRs were used in this study. We found that wall to lumen (W/L) ratio was increased in the PCAs from SHRs compared with WKYs at the resting state. Interestingly, amiloride significantly inhibited myogenic response in the PCAs from SHRs and WKYs, however, the magnitude of the blockade was greater in SHRs. The transfection of γENaC-siRNA significantly reduced the expression of γENaC protein and inhibited myogenic response in the PCAs from SHRs. Furthermore, these data were supported by the findings that serum/glucocorticoid-induced kinase (Sgk1) and neural precursor cell-expressed developmentally downregulated gene 4-2 (Nedd4-2) were increased in SHRs compared with WKYs. Our results suggest that γENaC may play an important role in the elevated myogenic response in PCAs from SHRs. PMID:28383056

  19. Effects of Maternal Supplementation With Omega-3 Precursors on Human Milk Composition.

    PubMed

    Mazurier, Evelyne; Rigourd, Virginie; Perez, Paul; Buffin, Rachel; Couedelo, Leslie; Vaysse, Carole; Belcadi, Wafae; Sitta, Rémi; Nacka, Fabienne; Lamireau, Delphine; Cambonie, Gilles; Picaud, Jean-Charles; Billeaud, Claude

    2017-05-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) are important for newborn neurosensory development. Supplementation of breastfeeding mothers' diets with omega-3 PUFAs, such as alpha-linolenic acid (ALA), may increase their concentration in human milk. Research aim: This study aimed to assess human milk composition after 15-day supplementation regimens containing either omega-3 PUFAs or olive oil, which does not provide ALA. A multicenter factorial randomized trial was conducted with four groups of breastfeeding women, with each group containing 19 to 22 women. After a 15-day ALA washout period, three groups received supplementation with omega-3 precursors for 15 days: an enriched margarine (M), a rapeseed oil (R), and a margarine and rapeseed oil (MR). The fourth was unexposed to omega-3 precursors (olive oil control diet, O). After 15 days, blind determination of human milk fatty acid (FA) composition was assessed by gas chromatography, and the FA composition was compared among groups using variance analyses. Alpha-linolenic acid content, expressed as the mean (standard deviation) total human milk FA percentage, was significantly higher after diet supplementation with omega-3 PUFAs, with values of 2.2% (0.7%) (MR), 1.3% (0.5%) (R), 1.1% (0.4%) (M), and 0.8% (0.3%) (O at D30) ( p < .003 for each comparison). The lowest LA-ALA ratio (5.5) was found in the MR group ( p < .001). Docosahexaenoic acid and trans FA concentrations did not differ among groups. In lactating women, omega-3 supplementation via the combination of enriched margarine and rapeseed oil increased the ALA content of human milk and generated the most favorable LA-ALA ratio for LC-PUFA synthesis.

  20. Transforming growth factor-alpha precursors in human colon carcinoma cells.

    PubMed

    Asbert, M; Montaner, B; Pérez-Tomás, R

    2001-06-01

    Among the proteins of the epidermal growth factor family, transforming growth factor-alpha (TGF-alpha) may be an especially reliable indicator of metastasis or prognosis in human colorectal carcinomas. Moreover, anomalous forms of TGF-alpha have been detected in several tissues of cancer origin, suggesting a role of these forms in the development of the disease. This study was designed to identify the presence of TGF-alpha precursors in different colon cancer cell lines by mean of immunocytochemistry and western blotting techniques. Pro-TGF-alpha was detected in all cell lines tested. Staining for pro-TGF-alpha was observed in cytoplasm. Monoclonal antibody to TGF-alpha detected two bands of 20 and 21 kDa. Polyclonal antibody to pro-TGF-alpha revealed five bands ranging from 15 to 24 kDa. All these proteins were also detected in nonmalignant cells expressing a transfected rat pro-TGF-alpha gene. In conclusions, transformation in these human colon carcinoma cells is not due to the presence of anomalous forms of TGF-alpha precursors.

  1. Evidence for a Direct Effect of the NAD+ Precursor Acipimox on Muscle Mitochondrial Function in Humans

    PubMed Central

    van de Weijer, Tineke; Phielix, Esther; Bilet, Lena; Williams, Evan G.; Ropelle, Eduardo R.; Bierwagen, Alessandra; Livingstone, Roshan; Nowotny, Peter; Sparks, Lauren M.; Paglialunga, Sabina; Szendroedi, Julia; Havekes, Bas; Moullan, Norman; Pirinen, Eija; Hwang, Jong-Hee; Schrauwen-Hinderling, Vera B.; Hesselink, Matthijs K.C.; Auwerx, Johan

    2015-01-01

    Recent preclinical studies showed the potential of nicotinamide adenine dinucleotide (NAD+) precursors to increase oxidative phosphorylation and improve metabolic health, but human data are lacking. We hypothesize that the nicotinic acid derivative acipimox, an NAD+ precursor, would directly affect mitochondrial function independent of reductions in nonesterified fatty acid (NEFA) concentrations. In a multicenter randomized crossover trial, 21 patients with type 2 diabetes (age 57.7 ± 1.1 years, BMI 33.4 ± 0.8 kg/m2) received either placebo or acipimox 250 mg three times daily dosage for 2 weeks. Acipimox treatment increased plasma NEFA levels (759 ± 44 vs. 1,135 ± 97 μmol/L for placebo vs. acipimox, P < 0.01) owing to a previously described rebound effect. As a result, skeletal muscle lipid content increased and insulin sensitivity decreased. Despite the elevated plasma NEFA levels, ex vivo mitochondrial respiration in skeletal muscle increased. Subsequently, we showed that acipimox treatment resulted in a robust elevation in expression of nuclear-encoded mitochondrial gene sets and a mitonuclear protein imbalance, which may indicate activation of the mitochondrial unfolded protein response. Further studies in C2C12 myotubes confirmed a direct effect of acipimox on NAD+ levels, mitonuclear protein imbalance, and mitochondrial oxidative capacity. To the best of our knowledge, this study is the first to demonstrate that NAD+ boosters can also directly affect skeletal muscle mitochondrial function in humans. PMID:25352640

  2. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    SciTech Connect

    Colleoni, Silvia; Giannelli, Serena G.; Armentero, Marie-Therese; Blandini, Fabio; Broccoli, Vania; Lazzari, Giovanna

    2010-04-15

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  3. Coordinated vascular endothelial growth factor expression and signaling during skeletal myogenic differentiation.

    PubMed

    Bryan, Brad A; Walshe, Tony E; Mitchell, Dianne C; Havumaki, Josh S; Saint-Geniez, Magali; Maharaj, Arindel S; Maldonado, Angel E; D'Amore, Patricia A

    2008-03-01

    Angiogenesis is largely controlled by hypoxia-driven transcriptional up-regulation and secretion of vascular endothelial growth factor (VEGF) and its binding to the endothelial cell tyrosine receptor kinases, VEGFR1 and VEGFR2. Recent expression analysis suggests that VEGF is expressed in a cell-specific manner in normoxic adult tissue; however, the transcriptional regulation and role of VEGF in these tissues remains fundamentally unknown. In this report we demonstrate that VEGF is coordinately up-regulated during terminal skeletal muscle differentiation. We reveal that this regulation is mediated in part by MyoD homo- and hetero-dimeric transcriptional mechanisms. Serial deletions of the VEGF promoter elucidated a region containing three tandem CANNTG consensus MyoD sites serving as essential sites of direct interaction for MyoD-mediated up-regulation of VEGF transcription. VEGF-null embryonic stem (ES) cells exhibited reduced myogenic differentiation compared with wild-type ES cells, suggesting that VEGF may serve a role in skeletal muscle differentiation. We demonstrate that VEGFR1 and VEGFR2 are expressed at low levels in myogenic precursor cells and are robustly activated upon VEGF stimulation and that their expression is coordinately regulated during skeletal muscle differentiation. VEGF stimulation of differentiating C2C12 cells promoted myotube hypertrophy and increased myogenic differentiation, whereas addition of sFlt1, a VEGF inhibitor, resulted in myotube hypotrophy and inhibited myogenic differentiation. We further provide evidence indicating VEGF-mediated myogenic marker expression, mitogenic activity, migration, and prosurvival functions may contribute to increased myogenesis. These data suggest a novel mechanism whereby VEGF is coordinately regulated as part of the myogenic differentiation program and serves an autocrine function regulating skeletal myogenesis.

  4. Precursor Asteroid Missions and Synergies to Human Exploration of Phobos and Deimos

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2013-01-01

    U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025 and then on to the Martian system in the 2030s. Given this direction from the White House, NASA has been involved in studying various strategies for near-Earth object (NEO) exploration in order to follow U.S. space exploration policy. These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and its moons, as well as other Solar System destinations. Robotic precursor missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, which may play a vital role in leveraging potential resources from the Martian moons that in turn could enable robotic and human exploration of Mars.

  5. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Gibson, Marc; Poston, Dave

    2013-01-01

    Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-Wclass radioisotope power systems being developed for science missions and below the typical 100-kWe-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.

  6. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Gibson, Marc Andrew; Poston, Dave

    2013-01-01

    Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-W-class radioisotope power systems being developed for science missions and below the typical 100-k We-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.

  7. Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix.

    PubMed

    Gronthos, S; Simmons, P J; Graves, S E; Robey, P G

    2001-02-01

    To date, the precise interactions between bone marrow stromal cells and the extracellular matrix that govern stromal cell development remain unclear. The integrin super-family of cell-surface adhesion molecules represents a major pathway used by virtually all cell types to interact with different extracellular matrix components. In this study, purified populations of stromal precursor cells were isolated from the STRO-1-positive fraction of normal human marrow, by fluoresence-activated cell sorting, and then assayed for their ability to initiate clonogenic growth in the presence of various integrin ligands. Bone marrow-derived stromal progenitors displayed differential growth to fibronectin, vitronectin, and laminin, over collagen types I and III, but showed a similar affinity for collagen type IV. The integrin heterodimers alpha1beta1, alpha2beta1, alpha5beta1, alpha6beta1, alpha(v)beta3, and alpha(v)beta5 were found to coexpress with the STRO-1 antigen on the cell surface of CFU-F, using dual-color analysis. Furthermore, only a proportion of stromal precursors expressed the integrin alpha4beta1, while no measurable levels of the integrin alpha3beta1 could be detected. Subsequent adhesion studies using functional blocking antibodies to different integrin alpha/beta heterodimers showed that stromal cell growth on collagen, laminin, and fibronectin was mediated by multiple beta1 integrins. In contrast, cloning efficiency in the presence of vitronectin was mediated in part by alpha(v)beta3. When human marrow stromal cells were cultured under osteoinductive conditions, their ability to form a mineralized matrix in vitro was significantly diminished in the presence of a functional blocking monoclonal antibody to the beta1 integrin subunit. The results of this study indicate that beta1 integrins appear to be the predominant adhesion receptor subfamily utilized by stromal precursor cells to adhere and proliferate utilizing matrix glycoproteins commonly found in the bone

  8. Malignant Precursor Cells Pre-Exist in Human Breast DCIS and Require Autophagy for Survival

    PubMed Central

    Espina, Virginia; Mariani, Brian D.; Gallagher, Rosa I.; Tran, Khoa; Banks, Stacey; Wiedemann, Joy; Huryk, Heather; Mueller, Claudius; Adamo, Luana; Deng, Jianghong; Petricoin, Emanuel F.; Pastore, Lucia; Zaman, Syed; Menezes, Geetha; Mize, James; Johal, Jasbir; Edmiston, Kirsten; Liotta, Lance A.

    2010-01-01

    Background While it is accepted that a majority of invasive breast cancer progresses from a ductal carcinoma in situ (DCIS) precursor stage, very little is known about the factors that promote survival of DCIS neoplastic cells within the hypoxic, nutrient deprived intraductal microenvironment. Methodology and Principal Findings We examined the hypothesis that fresh human DCIS lesions contain pre-existing carcinoma precursor cells. We characterized these cells by full genome molecular cytogenetics (Illumina HumanCytoSNP profile), and signal pathway profiling (Reverse Phase Protein Microarray, 59 endpoints), and demonstrated that autophagy is required for survival and anchorage independent growth of the cytogenetically abnormal tumorigenic DCIS cells. Ex vivo organoid culture of fresh human DCIS lesions, without enzymatic treatment or sorting, induced the emergence of neoplastic epithelial cells exhibiting the following characteristics: a) spontaneous generation of hundreds of spheroids and duct-like 3-D structures in culture within 2–4 weeks; b) tumorigenicity in NOD/SCID mice; c) cytogenetically abnormal (copy number loss or gain in chromosomes including 1, 5, 6, 8, 13, 17) compared to the normal karyotype of the non-neoplastic cells in the source patient's breast tissue; d) in vitro migration and invasion of autologous breast stroma; and e) up-regulation of signal pathways linked to, and components of, cellular autophagy. Multiple autophagy markers were present in the patient's original DCIS lesion and the mouse xenograft. We tested whether autophagy was necessary for survival of cytogenetically abnormal DCIS cells. The lysosomotropic inhibitor (chloroquine phosphate) of autophagy completely suppressed the generation of DCIS spheroids/3-D structures, suppressed ex vivo invasion of autologous stroma, induced apoptosis, suppressed autophagy associated proteins including Atg5, AKT/PI3 Kinase and mTOR, eliminated cytogenetically abnormal spheroid forming cells from

  9. The influence of platelet-rich plasma on myogenic differentiation.

    PubMed

    McClure, Michael J; Garg, Koyal; Simpson, David G; Ryan, John J; Sell, Scott A; Bowlin, Gary L; Ericksen, Jeffery J

    2016-04-01

    The ability to expand and direct both precursor and stem cells towards a differential fate is considered extremely advantageous in tissue engineering. Platelet-rich plasma (PRP) possesses a milieu of growth factors and cytokines, which have the potential to have either a differentiative or proliferative influence on the cell type tested. Here, we investigated the effect of PRP on C2C12 myoblasts. A range of PRP concentrations in differentiation media was used to determine whether a concentration dependence existed, while PRP embedded in fibres of aligned electrospun polydioxanone and polycaprolactone was used to determine whether this presence of fibres would cause any differences in response. In both cases, it was found that late myogenic markers were suppressed after 7 days in culture. However, an early differentiation marker, MyoD, was upregulated during this same time period. The results from this study represent the ability of PRP to have an influence over both myogenic proliferation and differentiation, a factor which could prove useful in future studies involved with skeletal muscle tissue engineering.

  10. Deficiency of the myogenic factor MyoD causes a perinatally lethal fetal akinesia

    PubMed Central

    Crinnion, Laura A; Murphy, Helen; Newbould, Melanie; Harrison, Sally M; Lascelles, Carolina; Antanaviciute, Agne; Carr, Ian M; Sheridan, Eamonn; Bonthron, David T; Smith, Audrey

    2016-01-01

    Background Lethal fetal akinesia deformation sequence (FADS) describes a clinically and genetically heterogeneous phenotype that includes fetal akinesia, intrauterine growth retardation, arthrogryposis and developmental anomalies. Affected babies die as a result of pulmonary hypoplasia. We aimed to identify the underlying genetic cause of this disorder in a family in which there were three affected individuals from two sibships. Methods Autosomal-recessive inheritance was suggested by a family history of consanguinity and by recurrence of the phenotype between the two sibships. We performed exome sequencing of the affected individuals and their unaffected mother, followed by autozygosity mapping and variant filtering to identify the causative gene. Results Five autozygous regions were identified, spanning 31.7 Mb of genomic sequence and including 211 genes. Using standard variant filtering criteria, we excluded all variants as being the likely pathogenic cause, apart from a single novel nonsense mutation, c.188C>A p.(Ser63*) (NM_002478.4), in MYOD1. This gene encodes an extensively studied transcription factor involved in muscle development, which has nonetheless not hitherto been associated with a hereditary human disease phenotype. Conclusions We provide the first description of a human phenotype that appears to result from MYOD1 mutation. The presentation with FADS is consistent with a large body of data demonstrating that in the mouse, MyoD is a major controller of precursor cell commitment to the myogenic differentiation programme. PMID:26733463

  11. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin

    PubMed Central

    Schöppl, Alice; Botta, Albert; Prior, Marion; Akgün, Johnnie; Schuster, Christopher; Elbe-Bürger, Adelheid

    2015-01-01

    The skin is the first barrier against foreign pathogens and the prenatal formation of a strong network of various innate and adaptive cells is required to protect the newborn from perinatal infections. While many studies about the immune system in healthy and diseased adult human skin exist, our knowledge about the cutaneous prenatal/developing immune system and especially about the phenotype and function of antigen-presenting cells such as epidermal Langerhans cells (LCs) in human skin is still scarce. It has been shown previously that LCs in healthy adult human skin express receptor activator of NF-κB (RANK), an important molecule prolonging their survival. In this study, we investigated at which developmental stage LCs acquire this important molecule. Immunofluorescence double-labeling of cryostat sections revealed that LC precursors in prenatal human skin either do not yet [10–11 weeks of estimated gestational age (EGA)] or only faintly (13–15 weeks EGA) express RANK. LCs express RANK at levels comparable to adult LCs by the end of the second trimester. Comparable with adult skin, dermal antigen-presenting cells at no gestational age express this marker. These findings indicate that epidermal leukocytes gradually acquire RANK during gestation – a phenomenon previously observed also for other markers on LCs in prenatal human skin. PMID:25722033

  12. Differential localization of TGF-beta-precursor isotypes in normal human skin.

    PubMed

    Wataya-Kaneda, M; Hashimoto, K; Kato, M; Miyazono, K; Yoshikawa, K

    1994-08-01

    Transforming growth factor-beta (TGF-beta) can act as a multi-functional regulator of both cell growth and differentiation. Three isotypes of TGF-beta s namely TGF-beta 1, TGF-beta 2 and TGF-beta 3, have been found in human tissues. Up to now, little is known about the distribution patterns of the TGF-beta isotypes in human skin. Using the TGF-beta-precursor (latency-associated peptides) specific antibodies to confirm the specificity, we studied the immunohistochemical distribution of TGF-beta 1-3 in human skin. TGF-beta 2 was found mainly in the intercellular space of all the layers of the epidermis as well as in the cytoplasm with a weak staining. In contrast, TGF-beta 3 was present in the subepidermal area of the dermis. TGF-beta 1 was observed obviously in neither epidermis nor dermis. These results showed the differential localization of TGF-beta isotypes in human skin, suggesting that the TGF-beta 2 and TGF-beta 3 may regulate the human skin function in an epithelial autocrine or mesenchymal-epithelial interaction manner.

  13. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin.

    PubMed

    Schöppl, Alice; Botta, Albert; Prior, Marion; Akgün, Johnnie; Schuster, Christopher; Elbe-Bürger, Adelheid

    2015-01-01

    The skin is the first barrier against foreign pathogens and the prenatal formation of a strong network of various innate and adaptive cells is required to protect the newborn from perinatal infections. While many studies about the immune system in healthy and diseased adult human skin exist, our knowledge about the cutaneous prenatal/developing immune system and especially about the phenotype and function of antigen-presenting cells such as epidermal Langerhans cells (LCs) in human skin is still scarce. It has been shown previously that LCs in healthy adult human skin express receptor activator of NF-κB (RANK), an important molecule prolonging their survival. In this study, we investigated at which developmental stage LCs acquire this important molecule. Immunofluorescence double-labeling of cryostat sections revealed that LC precursors in prenatal human skin either do not yet [10-11 weeks of estimated gestational age (EGA)] or only faintly (13-15 weeks EGA) express RANK. LCs express RANK at levels comparable to adult LCs by the end of the second trimester. Comparable with adult skin, dermal antigen-presenting cells at no gestational age express this marker. These findings indicate that epidermal leukocytes gradually acquire RANK during gestation - a phenomenon previously observed also for other markers on LCs in prenatal human skin.

  14. Human post-thymic precursor cells in health and disease. I. Characterization of the autologous rosette-forming T cells as post-thymic precursors.

    PubMed Central

    Palacios, R; Alarcón-Segovia, D; Llorente, L; Ruíz-Arguelles, A; Díaz-Jouanen, E

    1981-01-01

    Human autologous-rosette-forming T cells (Tar cells) have many of the characteristics of post-thymic precursor cells. Thus, they bind to sheep erythrocytes but have neither receptors for the Fc portion of IgG nor for that of IgM. They include a subpopulation that binds peanut agglutinin which suggests that they are immature and, as opposed to T cells with either receptors for the FC portion of IgM (T mu) or of IgG (T gamma), Tar cells adhere to nylon wool, another possible indicator of immaturity, as is their extreme sensitivity to hydrocortisone both in vitro and in vivo. There are more Tar cells in cord blood than in the peripheral blood of young adults and there are more Tar cells in the peripheral blood of young adults than in the peripheral blood of elderly subjects. By co-culturing T mu and B cells, or T mu, or Tar and B cells in the presence of pokeweek mitogen (PWM) we were able to determine that these cells cause feedback inhibition, a function considered characteristic of post-thymic precursors. In co-cultures in which we placed mononuclear cells (MNC) or MNC plus Tar cells, or MNC depleted of Tar cells or MNC depleted of Tar cells plus Tar cells stimulated with PWM, we determined that Tar cells play a role in the generation of suppression thereby confirming that human Tar cells are precursor cells. We also found that Tar cells proliferated and generated T gamma and T mu cells both spontaneously and in greater numbers, under the effect of serum thymic factor. PMID:6970170

  15. Measurement of precursor miRNA in exosomes from human ESC-derived mesenchymal stem cells.

    PubMed

    Chen, Tian Sheng; Lim, Sai Kiang

    2013-01-01

    Mesenchymal stem cells (MSCs) derived from human embryonic stem cells (ESCs) have been shown to secrete exosomes that are cardioprotective against myocardial ischemia reperfusion injury in a mouse model. To elucidate this cardioprotective mechanism, we have characterized the protein, nucleic acid, and lipid composition of MSC exosomes. Here we describe the isolation and analysis of RNA in MSC exosome. We have previously reported that RNAs in MSC exosome are primarily small RNA molecules of <300 nt and they include many miRNAs. Many of these miRNAs are in the precursor form suggesting that pre-miRNAs, and not mature miRNAs are preferentially loaded into exosomes. The protocols described here include assays to ascertain the presence of pre-miRNAs, profiling of miRNA and pre-miRNA, and quantitative estimation of mature and pre-miRNA.

  16. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    SciTech Connect

    Manceur, Aziza P.; Tseng, Michael; Holowacz, Tamara; Witterick, Ian; Weksberg, Rosanna; McCurdy, Richard D.; Warsh, Jerry J.; Audet, Julie

    2011-09-10

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  17. Estimating human exposure to PFOS isomers and PFCA homologues: the relative importance of direct and indirect (precursor) exposure.

    PubMed

    Gebbink, Wouter A; Berger, Urs; Cousins, Ian T

    2015-01-01

    Contributions of direct and indirect (via precursors) pathways of human exposure to perfluorooctane sulfonic acid (PFOS) isomers and perfluoroalkyl carboxylic acids (PFCAs) are estimated using a Scenario-Based Risk Assessment (SceBRA) modelling approach. Monitoring data published since 2008 (including samples from 2007) are used. The estimated daily exposures (resulting from both direct and precursor intake) for the general adult population are highest for PFOS and perfluorooctanoic acid (PFOA), followed by perfluorohexanoic acid (PFHxA) and perfluorodecanoic acid (PFDA), while lower daily exposures are estimated for perfluorobutanoic acid (PFBA) and perfluorododecanoic acid (PFDoDA). The precursor contributions to the individual perfluoroalkyl acid (PFAA) daily exposures are estimated to be 11-33% for PFOS, 0.1-2.5% for PFBA, 3.7-34% for PFHxA, 13-64% for PFOA, 5.2-66% for PFDA, and 0.7-25% for PFDoDA (ranges represent estimated precursor contributions in a low- and high-exposure scenario). For PFOS, direct intake via diet is the major exposure pathway regardless of exposure scenario. For PFCAs, the dominant exposure pathway is dependent on perfluoroalkyl chain length and exposure scenario. Modelled PFOS and PFOA concentrations in human serum using the estimated intakes from an intermediate-exposure scenario are in agreement with measured concentrations in different populations. The isomer pattern of PFOS resulting from total intakes (direct and via precursors) is estimated to be enriched with linear PFOS (84%) relative to technical PFOS (70% linear). This finding appears to be contradictory to the observed enrichment of branched PFOS isomers in recent human serum monitoring studies and suggests that either external exposure is not fully understood (e.g. there are unknown precursors, missing or poorly quantified exposure pathways) and/or that there is an incomplete understanding of the isomer-specific human pharmacokinetic processes of PFOS, its precursors and

  18. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    SciTech Connect

    Zhu, Liang; Dong, Chuanming; Sun, Chenxi; Ma, Rongjie; Yang, Danjing; Zhu, Hongwen; Xu, Jun

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  19. Lunar Precursor Missions for Human Exploration of Mars - II. Studies of Mission Operations

    NASA Astrophysics Data System (ADS)

    Mendell, W. W.; Griffith, A. D.

    necessary precursor to human missions to Mars. He observed that mission parameters for Mars expeditions far exceed current and projected near-term space operations experience in categories such as duration, scale, logistics, required system reliability, time delay for communications, crew exposure to the space environment (particularly reduced gravity), lack of abort-to-Earth options, degree of crew isolation, and long-term political commitment. He demonstrated how a program of lunar exploration could be structured to expand the experience base, test operations approaches, and validate proposed technologies. In this paper, we plan to expand the discussion on the topic of mission operations, including flight and trajectory design, crew activity planning, procedure development and validation, and initialization load development. contemplating the nature of the challenges posed by a mission with a single crew lasting 3 years with no possibility of abort to Earth and at a distance where the light-time precludes conversation between with the astronauts. The brief durations of Apollo or Space Shuttle missions mandates strict scheduling of in-space tasks to maximize the productivity. On a mission to Mars, the opposite obtains. Transit times are long (~160 days), and crew time may be principally devoted to physical conditioning and repeated simulations of the landing sequence. While the physical exercise parallels the experience on the International Space Station (ISS), the remote refresher training is new. The extensive surface stay time (~500 days) implies that later phases of the surface missions will have to be planned in consultation with the crew to a large extent than is currently the case. resolve concerns over the form of new methodologies and philosophies needed. Recent proposed reductions in scope and crew size for ISS exacerbate this problem. One unknown aspect is whether any sociological pathologies will develop in the relationship of the crew to Mission

  20. Cannabidiol Activates Neuronal Precursor Genes in Human Gingival Mesenchymal Stromal Cells.

    PubMed

    Soundara Rajan, Thangavelu; Giacoppo, Sabrina; Scionti, Domenico; Diomede, Francesca; Grassi, Gianpaolo; Pollastro, Federica; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2016-12-05

    In the last years, mesenchymal stromal cells (MSCs) from oral tissues have received considerable interest in regenerative medicine since they can be obtained with minimal invasive procedure and exhibit immunomodulatory properties. This study was aimed to investigate whether in vitro pre-treatment of MSCs obtained from human gingiva (hGMSCs) with Cannabidiol (CBD), a cannabinoid component produced by the plant Cannabis sativa, may promote human gingiva derived MSCs to differentiate toward neuronal precursor cells. Specifically, we have treated the hGMSCs with CBD (5 µM) for 24 h in order to evaluate the expression of genes involved in cannabidiol signaling, cell proliferation, self-renewal and multipotency, and neural progenitor cells differentiation. Next generation sequencing (NGS) demonstrated that CBD activates genes associated with G protein coupled receptor signaling in hGMSCs. Genes involved in DNA replication, cell cycle, proliferation, and apoptosis were regulated. Moreover, genes associated with the biological process of neuronal progenitor cells (NCPs) proliferation, neuron differentiation, neurogenesis, and nervous system development were significantly modulated. From our results, we hypothesize that human gingiva-derived MSCs conditioned with CBD could represent a valid method for improving the hGMSCs phenotype and thus might be a potential therapeutic tool in the treatment of neurodegenerative diseases. J. Cell. Biochem. 9999: 1-16, 2016. © 2016 Wiley Periodicals, Inc.

  1. An Engineered Cardiac Reporter Cell Line Identifies Human Embryonic Stem Cell-Derived Myocardial Precursors

    PubMed Central

    Mihardja, Shirley S.; Liszewski, Walter; Erle, David J.; Lee, Randall J.; Bernstein, Harold S.

    2011-01-01

    Unlike some organs, the heart is unable to repair itself after injury. Human embryonic stem cells (hESCs) grow and divide indefinitely while maintaining the potential to develop into many tissues of the body. As such, they provide an unprecedented opportunity to treat human diseases characterized by tissue loss. We have identified early myocardial precursors derived from hESCs (hMPs) using an α-myosin heavy chain (αMHC)-GFP reporter line. We have demonstrated by immunocytochemistry and quantitative real-time PCR (qPCR) that reporter activation is restricted to hESC-derived cardiomyocytes (CMs) differentiated in vitro, and that hMPs give rise exclusively to muscle in an in vivo teratoma formation assay. We also demonstrate that the reporter does not interfere with hESC genomic stability. Importantly, we show that hMPs give rise to atrial, ventricular and specialized conduction CM subtypes by qPCR and microelectrode array analysis. Expression profiling of hMPs over the course of differentiation implicate Wnt and transforming growth factor-β signaling pathways in CM development. The identification of hMPs using this αMHC-GFP reporter line will provide important insight into the pathways regulating human myocardial development, and may provide a novel therapeutic reagent for the treatment of cardiac disease. PMID:21245908

  2. Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac----liver transition.

    PubMed Central

    Migliaccio, G; Migliaccio, A R; Petti, S; Mavilio, F; Russo, G; Lazzaro, D; Testa, U; Marinucci, M; Peschle, C

    1986-01-01

    Human embryonic development involves transition from yolk sac (YS) to liver (L) hemopoiesis. We report the identification of pluripotent, erythroid, and granulo-macrophage progenitors in YS, L, and blood from human embryos. Furthermore, comprehensive studies are presented on the number of hemopoietic progenitors and precursors, as well as of other cell types, in YS, L, and blood at precisely sequential stages in embryos and early fetuses (i.e., at 4.5-8 wk and 9-10 wk postconception, respectively). Our results provide circumstantial support to a monoclonal hypothesis for human embryonic hemopoiesis, based on migration of stem and early progenitor cells from a generation site (YS) to a colonization site (L) via circulating blood. The YS----L transition is associated with development of the differentiation program in proliferating stem cells: their erythroid progeny shows, therefore, parallel switches of multiple parameters, e.g., morphology (megaloblasts----macrocytes) and globin expression (zeta----alpha, epsilon----gamma). Images PMID:3722384

  3. A potential regulatory network underlying distinct fate commitment of myogenic and adipogenic cells in skeletal muscle

    PubMed Central

    Sun, Wenjuan; He, Ting; Qin, Chunfu; Qiu, Kai; Zhang, Xin; Luo, Yanhong; Li, Defa; Yin, Jingdong

    2017-01-01

    Mechanism controlling myo-adipogenic balance in skeletal muscle is of great significance for human skeletal muscle dysfunction and myopathies as well as livestock meat quality. In the present study, two cell subpopulations with particular potency of adipogenic or myogenic differentiation were isolated from neonatal porcine longissimus dorsi using the preplate method to detect mechanisms underlying distinct fate commitment of myogenic and adipogenic cells in skeletal muscle. Both cells share a common surface expression profile of CD29+CD31−CD34−CD90+CD105+, verifying their mesenchymal origin. A total of 448 differentially expressed genes (DEGs) (FDR < 0.05 and |log2 FC| ≥ 1) between two distinct cells were identified via RNA-seq, including 358 up-regulated and 90 down-regulated genes in myogenic cells compared with adipogenic cells. The results of functional annotation and enrichment showed that 42 DEGs were implicated in cell differentiation, among them PDGFRα, ITGA3, ITGB6, MLCK and MLC acted as hubs between environment information processing and cellular process, indicating that the interaction of the two categories exerts an important role in distinct fate commitment of myogenic and adipogenic cells. Particularly, we are first to show that up-regulation of intracellular Ca2+-MLCK and Rho-DMPK, and subsequently elevated MLC, may contribute to the distinct commitment of myogenic and adipogenic lineages via mediating cytoskeleton dynamics. PMID:28276486

  4. A potential regulatory network underlying distinct fate commitment of myogenic and adipogenic cells in skeletal muscle.

    PubMed

    Sun, Wenjuan; He, Ting; Qin, Chunfu; Qiu, Kai; Zhang, Xin; Luo, Yanhong; Li, Defa; Yin, Jingdong

    2017-03-09

    Mechanism controlling myo-adipogenic balance in skeletal muscle is of great significance for human skeletal muscle dysfunction and myopathies as well as livestock meat quality. In the present study, two cell subpopulations with particular potency of adipogenic or myogenic differentiation were isolated from neonatal porcine longissimus dorsi using the preplate method to detect mechanisms underlying distinct fate commitment of myogenic and adipogenic cells in skeletal muscle. Both cells share a common surface expression profile of CD29(+)CD31(-)CD34(-)CD90(+)CD105(+), verifying their mesenchymal origin. A total of 448 differentially expressed genes (DEGs) (FDR < 0.05 and |log2 FC| ≥ 1) between two distinct cells were identified via RNA-seq, including 358 up-regulated and 90 down-regulated genes in myogenic cells compared with adipogenic cells. The results of functional annotation and enrichment showed that 42 DEGs were implicated in cell differentiation, among them PDGFRα, ITGA3, ITGB6, MLCK and MLC acted as hubs between environment information processing and cellular process, indicating that the interaction of the two categories exerts an important role in distinct fate commitment of myogenic and adipogenic cells. Particularly, we are first to show that up-regulation of intracellular Ca(2+)-MLCK and Rho-DMPK, and subsequently elevated MLC, may contribute to the distinct commitment of myogenic and adipogenic lineages via mediating cytoskeleton dynamics.

  5. Next Gen NEAR: Near Earth Asteroid Human Robotic Precursor Mission Concept

    NASA Technical Reports Server (NTRS)

    Rivkin, Andrew S.; Kirby, Karen; Cheng, Andrew F.; Gold, Robert; Kelly, Daniel; Reed, Cheryl; Abell, Paul; Garvin, James; Landis, Rob

    2012-01-01

    Asteroids have long held the attention of the planetary science community. In particular, asteroids that evolve into orbits near that of Earth, called near-Earth objects (NEO), are of high interest as potential targets for exploration due to the relative ease (in terms of delta V) to reach them. NASA's Flexible Path calls for missions and experiments to be conducted as intermediate steps towards the eventual goal of human exploration of Mars; piloted missions to NEOs are such example. A human NEO mission is a valuable exploratory step beyond the Earth-Moon system enhancing capabilities that surpass our current experience, while also developing infrastructure for future mars exploration capabilities. To prepare for a human rendezvous with an NEO, NASA is interested in pursuing a responsible program of robotic NEO precursor missions. Next Gen NEAR is such a mission, building on the NEAR Shoemaker mission experience at the JHU/APL Space Department, to provide an affordable, low risk solution with quick data return. Next Gen NEAR proposes to make measurements needed for human exploration to asteroids: to demonstrate proximity operations, to quantify hazards for human exploration and to characterize an environment at a near-Earth asteroid representative of those that may be future human destinations. The Johns Hopkins University Applied Physics Laboratory has demonstrated exploration-driven mission feasibility by developing a versatile spacecraft design concept using conventional technologies that satisfies a set of science, exploration and mission objectives defined by a concept development team in the summer of 2010. We will describe the mission concept and spacecraft architecture in detail. Configuration options were compared with the mission goals and objectives in order to select the spacecraft design concept that provides the lowest cost, lowest implementation risk, simplest operation and the most benefit for the mission implementation. The Next Gen NEAR

  6. In Vitro Epigenetic Reprogramming of Human Cardiac Mesenchymal Stromal Cells into Functionally Competent Cardiovascular Precursors

    PubMed Central

    Vecellio, Matteo; Meraviglia, Viviana; Nanni, Simona; Barbuti, Andrea; Scavone, Angela; DiFrancesco, Dario; Farsetti, Antonella; Pompilio, Giulio; Colombo, Gualtiero I.; Capogrossi, Maurizio C.

    2012-01-01

    Adult human cardiac mesenchymal-like stromal cells (CStC) represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS) in the presence of 5 µM all-trans Retinoic Acid (ATRA), 5 µM Phenyl Butyrate (PB), and 200 µM diethylenetriamine/nitric oxide (DETA/NO), to create a novel epigenetically active cocktail (EpiC). Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker If current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors. PMID:23284745

  7. Overexpression of human virus surface glycoprotein precursors induces cytosolic unfolded protein response in Saccharomyces cerevisiae

    PubMed Central

    2011-01-01

    Background The expression of human virus surface proteins, as well as other mammalian glycoproteins, is much more efficient in cells of higher eukaryotes rather than yeasts. The limitations to high-level expression of active viral surface glycoproteins in yeast are not well understood. To identify possible bottlenecks we performed a detailed study on overexpression of recombinant mumps hemagglutinin-neuraminidase (MuHN) and measles hemagglutinin (MeH) in yeast Saccharomyces cerevisiae, combining the analysis of recombinant proteins with a proteomic approach. Results Overexpressed recombinant MuHN and MeH proteins were present in large aggregates, were inactive and totally insoluble under native conditions. Moreover, the majority of recombinant protein was found in immature form of non-glycosylated precursors. Fractionation of yeast lysates revealed that the core of viral surface protein aggregates consists of MuHN or MeH disulfide-linked multimers involving eukaryotic translation elongation factor 1A (eEF1A) and is closely associated with small heat shock proteins (sHsps) that can be removed only under denaturing conditions. Complexes of large Hsps seem to be bound to aggregate core peripherally as they can be easily removed at high salt concentrations. Proteomic analysis revealed that the accumulation of unglycosylated viral protein precursors results in specific cytosolic unfolded protein response (UPR-Cyto) in yeast cells, characterized by different action and regulation of small Hsps versus large chaperones of Hsp70, Hsp90 and Hsp110 families. In contrast to most environmental stresses, in the response to synthesis of recombinant MuHN and MeH, only the large Hsps were upregulated whereas sHsps were not. Interestingly, the amount of eEF1A was also increased during this stress response. Conclusions Inefficient translocation of MuHN and MeH precursors through ER membrane is a bottleneck for high-level expression in yeast. Overexpression of these recombinant

  8. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells.

    PubMed

    Kim, Yi Young; Roubal, Ivan; Lee, Youn Soo; Kim, Jin Seok; Hoang, Michael; Mathiyakom, Nathan; Kim, Yong

    Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol's effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event

  9. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells

    PubMed Central

    Kim, Yi Young; Roubal, Ivan; Lee, Youn Soo; Kim, Jin Seok; Hoang, Michael; Mathiyakom, Nathan; Kim, Yong

    2016-01-01

    Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol’s effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event

  10. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy.

    PubMed

    Zhu, Liang; Dong, Chuanming; Sun, Chenxi; Ma, Rongjie; Yang, Danjing; Zhu, Hongwen; Xu, Jun

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The role of donor age and gender in the success of human muscle precursor cell transplantation.

    PubMed

    Stölting, Meline N L; Hefermehl, Lukas J; Tremp, Mathias; Azzabi, Fahd; Sulser, Tullio; Eberli, Daniel

    2017-02-01

    Autologous cell transplantation for the treatment of muscle damage is envisioned to involve the application of muscle precursor cells (MPCs) isolated from adult skeletal muscle. At the onset of trauma, these cells are recruited to proliferate and rebuild injured muscle fibres. However, a variety of donor-specific cues may directly influence the yield and quality of cells isolated from a muscle biopsy. In this study, we isolated human MPCs and assessed the role of donor gender and age on the ability of these MPCs to form functional bioengineered muscle. We analysed the cell yield, growth and molecular expression in vitro, and the muscle tissue formation and contractility of the bioengineered muscle, from cells isolated from men and women in three different age groups: young (20-39 years), adult (40-59 years) and elderly (60-80 years). Our results suggest that human MPCs can be successfully isolated and grown from patients of all ages and both genders. However, young female donors provide fast-growing cells in vitro with an optimum contractile output in vivo and are therefore an ideal cell source for muscle reconstruction. Taken together, these findings describe the donor-related limitations of MPC transplantation and provide insights for a straightforward and unbiased clinical application of these cells for muscle reconstruction. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Melatonin and its precursors in Y79 human retinoblastoma cells - Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei H.; Lopez G.-Coviella, Ignacio; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    We studied the release of melatonin and the production of its precursors, 5-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for three days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine or L-DOPA markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 ceils.

  13. Melatonin and its precursors in Y79 human retinoblastoma cells: Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei Hua; Coviella, Ignacio Lopez G.; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    The release of melatonin and the production of its precursors, S-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells were studied. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for 3 days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine (10 micro-M) or L-DOPA (100 micro-M) markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation (e.g. treatment with sodium butyrate) can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 cells. The inhibition of melatonin release by dopamine supports the hypothesis that in these cells, melatonin and dopamine are components of a retinal feedback loop.

  14. Identification of myocardial and vascular precursor cells in human and mouse epicardium.

    PubMed

    Limana, Federica; Zacheo, Antonella; Mocini, David; Mangoni, Antonella; Borsellino, Giovanna; Diamantini, Adamo; De Mori, Roberta; Battistini, Luca; Vigna, Elisa; Santini, Massimo; Loiaconi, Vincenzo; Pompilio, Giulio; Germani, Antonia; Capogrossi, Maurizio C

    2007-12-07

    During cardiac development, the epicardium is the source of multipotent mesenchymal cells, which give rise to endothelial and smooth muscle cells in coronary vessels and also, possibly, to cardiomyocytes. The aim of the present study was to determine whether stem cells are retained in the adult human and murine epicardium and to investigate the regenerative potential of these cells following acute myocardial infarction. We show that c-kit(+) and CD34(+) cells can indeed be detected in human fetal and adult epicardium and that they represent 2 distinct populations. Both subsets of cells were negative for CD45, a cell surface marker that identifies the hematopoietic cell lineage. Immunofluorescence revealed that freshly isolated c-kit(+) and CD34(+) cells expressed early and late cardiac transcription factors and could acquire an endothelial phenotype in vitro. In the murine model of myocardial infarction, there was an increase in the absolute number and proliferation of epicardial c-kit(+) cells 3 days after coronary ligation; at this time point, epicardial c-kit(+) cells were identified in the subepicardial space and expressed GATA4. Furthermore, 1 week after myocardial infarction, cells coexpressing c-kit(+), together with endothelial or smooth muscle cell markers, were identified in the wall of subepicardial blood vessels. In summary, the postnatal epicardium contains a cell population with stem cell characteristics that retains the ability to give rise to myocardial precursors and vascular cells. These cells may play a role in the regenerative response to cardiac damage.

  15. Effects of cytomegalovirus infection in human neural precursor cells depend on their differentiation state.

    PubMed

    González-Sánchez, H M; Monsiváis-Urenda, A; Salazar-Aldrete, C A; Hernández-Salinas, A; Noyola, D E; Jiménez-Capdeville, M E; Martínez-Serrano, A; Castillo, C G

    2015-08-01

    Cytomegalovirus (CMV) is the most common cause of congenital infection in developed countries and a major cause of neurological disability in children. Although CMV can affect multiple organs, the most important sequelae of intrauterine infection are related to lesions of the central nervous system. However, little is known about the pathogenesis and the cellular events responsible for neuronal damage in infants with congenital infection. Some studies have demonstrated that neural precursor cells (NPCs) show the greatest susceptibility to CMV infection in the developing brain. We sought to establish an in vitro model of CMV infection of the developing brain in order to analyze the cellular events associated with invasion by this virus. To this end, we employed two cell lines as a permanent source of NPC, avoiding the continuous use of human fetal tissue, the human SK-N-MC neuroblastoma cell line, and an immortalized cell line of human fetal neural origin, hNS-1. We also investigated the effect of the differentiation stage in relation to the susceptibility of these cell lines by comparing the neuroblastoma cell line with the multipotent cell line hNS-1. We found that the effects of the virus were more severe in the neuroblastoma cell line. Additionally, we induced hNS-1 to differentiate and evaluated the effect of CMV in these differentiated cells. Like SK-N-MC cells, hNS-1-differentiated cells were also susceptible to infection. Viability of differentiated hNS-1 cells decreased after CMV infection in contrast to undifferentiated cells. In addition, differentiated hNS-1 cells showed an extensive cytopathic effect whereas the effect was scarce in undifferentiated cells. We describe some of the effects of CMV in neural stem cells, and our observations suggest that the degree of differentiation is important in the acquisition of susceptibility.

  16. Recombinant human CD19L-sTRAIL effectively targets B cell precursor acute lymphoblastic leukemia

    PubMed Central

    Uckun, Fatih M.; Myers, Dorothea E.; Qazi, Sanjive; Ozer, Zahide; Rose, Rebecca; D’Cruz, Osmond J.; Ma, Hong

    2015-01-01

    Patients with B cell precursor acute lymphoblastic leukemia (BPL) respond well to chemotherapy at initial diagnosis; however, therapeutic options are limited for individuals with BPL who relapse. Almost all BPL cells express CD19, and we recently cloned the gene encoding a natural ligand of the human CD19 receptor (CD19L). We hypothesized that fusion of CD19L to the soluble extracellular domain of proapoptotic TNF-related apoptosis-inducing ligand (sTRAIL) would markedly enhance the potency of sTRAIL and specifically induce BPL cell apoptosis due to membrane anchoring of sTRAIL and simultaneous activation of the CD19 and TRAIL receptor (TRAIL-R) apoptosis signaling pathways. Here, we demonstrate that recombinant human CD19L-sTRAIL was substantially more potent than sTRAIL and induced apoptosis in primary leukemia cells taken directly from BPL patients. CD19L-sTRAIL effectively targeted and eliminated in vivo clonogenic BPL xenograft cells, even at femtomolar-picomolar concentrations. In mice, CD19L-sTRAIL exhibited a more favorable pharmacokinetic (PK) profile than sTRAIL and was nontoxic at doses ranging from 32 fmol/kg to 3.2 pmol/kg. CD19L-sTRAIL showed potent in vivo antileukemic activity in NOD/SCID mouse xenograft models of relapsed and chemotherapy-resistant BPL at nontoxic fmol/kg dose levels. Together, these results suggest that recombinant human CD19L-sTRAIL has clinical potential as a biotherapeutic agent against BPL. PMID:25621496

  17. Insulin acts as a myogenic differentiation signal for neural stem cells with multilineage differentiation potential.

    PubMed

    Bani-Yaghoub, Mahmud; Kendall, Stephen E; Moore, Daniel P; Bellum, Stephen; Cowling, Rebecca A; Nikopoulos, George N; Kubu, Chris J; Vary, Calvin; Verdi, Joseph M

    2004-09-01

    Reports of non-neural differentiation of neural stem cells (NSCs) have been challenged by alternative explanations for expanded differentiation potentials. In an attempt to demonstrate the plasticity of NSC, neurospheres were generated from single retrovirally labeled embryonic cortical precursors. In a defined serum-free insulin-containing media, 40% of the neurospheres contained both myogenic and neurogenic differentiated progeny. The number of NSCs displaying multilineage differentiation potential declines through gestation but does exist in the adult animal. In this system, insulin appears to function as a survival and dose-dependent myogenic differentiation signal for multilineage NSCs (MLNSC). MLNSC-derived cardiomyocytes contract synchronously, respond to sympathetic and parasympathetic stimulation, and regenerate injured heart tissues. These studies provide support for the hypothesis that MLNSCs exist throughout the lifetime of the animal, and potentially provide a population of stem cells for cell-based regenerative medicine strategies inside and outside of the nervous system.

  18. Role of JAK3 in myogenic differentiation.

    PubMed

    Jang, You-Na; Lee, Il Jae; Park, Myong Chul; Baik, Eun Joo

    2012-03-01

    Skeletal muscle differentiation is regulated by transcription factors, including members of the myogenic regulatory factor (MRF) family and many signaling pathways. The JAK1 and JAK2 pathways are known to each have different effects on myoblast proliferation and differentiation; however, the role of JAK3 in myoblast differentiation remains unclear. In this study, we investigated the effect of JAK3 inhibition on myogenic differentiation in the C2C12 mouse myoblast cell line. During myogenic differentiation, treatment with the JAK3 inhibitor WHIp154 significantly increased the number of MHC-positive multinucleated myotubes and the expressions of myosin heavy chain (MHC), myogenin (MGN), MyoD, and myogenic enhancer factor 2 (MEF2). Knockdown of the JAK3 gene using siJAK3 also significantly increased MHC, MGN and MyoD mRNA expressions as well as insulin-like growth factor-II (IGF-II) gene expression. During differentiation, JAK3 was initially activated and later decreased. Differentiation decreased STAT1, which was further decreased by WHIp154. In contrast, STAT3 gradually was elevated during differentiation, and was increased by JAK3 inhibition. Moreover, we found that up-regulation of AKT activity and down-regulation of ERK activity cooperated to accelerate myogenic differentiation. Taken together, these data indicate that JAK3 inhibition potently facilitates myoblast differentiation through antagonistic STAT1/STAT3 activities. Additionally, JAK3 inhibition induced precocious differentiation and played important roles for terminal differentiation, including fusion, which is involved with regulation of AKT and ERK pathways.

  19. Isolation of a complementary DNA clone encoding a precursor to human eosinophil major basic protein

    PubMed Central

    1988-01-01

    A 14-kD protein was purified from human PMNs and its NH2-terminal sequence was determined. Comparison of a portion of the NH2-terminal sequence of this protein to the recently reported NH2-terminal sequence of eosinophil major basic protein (MBP) showed them to be identical. To aid further characterization of the structural and functional properties of this molecule, we isolated from an HL-60 cDNA library a single class of cDNA clones whose sequence matched exactly the NH2- terminal amino acid sequence of the 14-kD polypeptide. Northern analysis of HL-60 cells suggests that MBP is constitutively expressed in HL-60 cells and is highly transcribed from a single copy gene. The sequence of the full-length cDNA clones predicts that MBP is synthesized as a 23-kD precursor form (pro-MBP) which is subsequently cleaved to release the mature 14-kD MBP. The putative pro-MBP has a predicted pI of 6.0, but both the charged and the hydrophobic residues are asymmetrically distributed, creating a bipolar molecule. The NH2- terminal half has a predicted pI of 3.7 and is hydrophilic, while the COOH-terminal half (corresponding to mature MBP) has a predicted pI of 11.1 and is hydrophobic. PMID:3199069

  20. Derivation of Neural Precursor Cells from Human Embryonic Stem Cells for DNA Methylomic Analysis.

    PubMed

    Roubal, Ivan; Park, Sun Joo; Kim, Yong

    2016-01-01

    Embryonic stem cells are self-renewing pluripotent cells with competency to differentiate into all three-germ lineages. Many studies have demonstrated the importance of genetic and epigenetic molecular mechanisms in the maintenance of self-renewal and pluripotency. Stem cells are under unique molecular and cellular regulations different from somatic cells. Proper regulation should be ensured to maintain their unique self-renewal and undifferentiated characteristics. Understanding key mechanisms in stem cell biology will be important for the successful application of stem cells for regenerative therapeutic medicine. More importantly practical use of stem cells will require our knowledge on how to properly direct and differentiate stem cells into the necessary type of cells. Embryonic stem cells and adult stem cells have been used as study models to unveil molecular and cellular mechanisms in various signaling pathways. They are especially beneficial to developmental studies where in vivo molecular/cellular study models are not available. We have derived neural stem cells from human embryonic stem cells as a model to study the effect of teratogen in neural development. We have tested commercial neural differentiation system and successfully derived neural precursor cells exhibiting key molecular features of neural stem cells, which will be useful for experimental application.

  1. Human Neural Precursor Cells Promote Neurologic Recovery in a Viral Model of Multiple Sclerosis

    PubMed Central

    Chen, Lu; Coleman, Ronald; Leang, Ronika; Tran, Ha; Kopf, Alexandra; Walsh, Craig M.; Sears-Kraxberger, Ilse; Steward, Oswald; Macklin, Wendy B.; Loring, Jeanne F.; Lane, Thomas E.

    2014-01-01

    Summary Using a viral model of the demyelinating disease multiple sclerosis (MS), we show that intraspinal transplantation of human embryonic stem cell-derived neural precursor cells (hNPCs) results in sustained clinical recovery, although hNPCs were not detectable beyond day 8 posttransplantation. Improved motor skills were associated with a reduction in neuroinflammation, decreased demyelination, and enhanced remyelination. Evidence indicates that the reduced neuroinflammation is correlated with an increased number of CD4+CD25+FOXP3+ regulatory T cells (Tregs) within the spinal cords. Coculture of hNPCs with activated T cells resulted in reduced T cell proliferation and increased Treg numbers. The hNPCs acted, in part, through secretion of TGF-β1 and TGF-β2. These findings indicate that the transient presence of hNPCs transplanted in an animal model of MS has powerful immunomodulatory effects and mediates recovery. Further investigation of the restorative effects of hNPC transplantation may aid in the development of clinically relevant MS treatments. PMID:24936469

  2. CEACAM1 in Cervical Cancer and Precursor Lesions: Association With Human Papillomavirus Infection

    PubMed Central

    Albarran-Somoza, Benibelks; Franco-Topete, Ramon; Delgado-Rizo, Vidal; Cerda-Camacho, Felipe; Acosta-Jimenez, Lourdes; Lopez-Botet, Miguel; Daneri-Navarro, Adrian

    2006-01-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is an adhesion molecule expressed in a wide variety of tissues including epithelial cells, leukocytes, and tumors that may establish both homotypic and heterotypic interactions. The aim of this work was to study the protein expression pattern of CEACAM1 in cervical cancer and precursor lesions in the context of human papillomavirus (HPV) infection. We used immunohistochemistry to analyze CEACAM1 expression in formalin-fixed, paraffin-embedded cervical tissues from 15 healthy women, 15 patients with low-grade squamous intraepithelial lesions (SIL), 15 patients with high-grade SIL, and 15 patients with squamous carcinomas. HPV types were identified by PCR. CEACAM1 was either undetectable (13/15) or low (2/15) in normal cervical tissues. By contrast, CEACAM1 expression was increased in high-grade SIL (10 samples staining intermediate/high and 4 samples staining low) as compared with low-grade SIL with undetectable (n=3) or low (n= 12) expression. CEACAM1 expression was undetectable or low in cervical carcinoma. Our results suggest that CEACAM1 may be an interesting progression marker in SIL and cervical cancer, in particular due to reported immunoregulatory properties. PMID:16924126

  3. Amyloid precursor protein in human breast cancer: an androgen-induced gene associated with cell proliferation.

    PubMed

    Takagi, Kiyoshi; Ito, Shigehiro; Miyazaki, Toshiaki; Miki, Yasuhiro; Shibahara, Yukiko; Ishida, Takanori; Watanabe, Mika; Inoue, Satoshi; Sasano, Hironobu; Suzuki, Takashi

    2013-11-01

    Amyloid precursor protein (APP) is a transmembrane protein that is highly expressed in brain tissue. Recently, APP has been implicated in some human malignancies, and its regulation by androgens has also been demonstrated. Such findings suggest the importance of APP in hormone-dependent breast carcinoma, but APP has not yet been examined in breast carcinoma tissues. Therefore, in this study, we examined the biological and clinical significance of APP in breast carcinoma using immunohistochemistry and in vitro studies. APP immunoreactivity was detected in 57 out of 117 (49%) breast carcinoma tissues examined, and it was positively associated with androgen receptor (AR) expression. APP immunoreactivity was also significantly associated with Ki-67 LI and increased risk of recurrence in the estrogen receptor (ER)-positive cases, and was an independent prognostic factor in these patients. Subsequent in vitro experiments demonstrated that APP mRNA expression was significantly induced by biologically active androgen dihydrotestosterone in both a dose-dependent and a time-dependent manner in MCF-7 breast carcinoma cells, which was potently suppressed by an AR blocker hydroxyflutamide. Moreover, cell proliferation activity of MCF-7 and MDA-MB-231 cells was significantly associated with their APP expression level. These findings suggest that APP is an androgen-induced gene that promotes proliferation activity of breast carcinoma cells. Moreover, APP immunohistochemical status is considered a potent prognostic factor in ER-positive breast cancer patients. © 2013 Japanese Cancer Association.

  4. Delayed Transplantation of Human Neural Precursor Cells Improves Outcome from Focal Cerebral Ischemia in Aged Rats

    PubMed Central

    Jin, Kunlin; Mao, XiaoOu; Xie, Lin; Greenberg, Rose B.; Peng, Botao; Moore, Alexander; Greenberg, Maeve B.; Greenberg, David A.

    2010-01-01

    SUMMARY Neural precursor cell (NPC) transplantation may have a role in restoring brain function after stroke, but how aging might affect the brain’s receptivity to such transplants is unknown. We reported previously that transplantation of human embryonic stem cell (hESC)-derived NPCs together with biomaterial (Matrigel) scaffolding into the brains of young adult Sprague-Dawley rats 3 wks after distal middle cerebral artery occlusion (MCAO) reduced infarct volume, and improved neurobehavioral performance. In this study we compared the effect of NPC and Matrigel transplants in young adult (3-mo-old) and aged (24-mo-old) Fisher 344 rats from the National Institute on Aging’s aged rodent colony. Distal MCAO was induced by electrocoagulation and hESC-derived NPCs were transplanted into the infarct cavity 3 wks later. Aged rats developed larger infarcts, but infarct volume and performance on the cylinder and elevated body swing tests, measured 6–8 wks post-transplant, were improved by transplantation. We conclude that advanced age does not preclude a beneficial response to NPC and Matrigel transplantation following experimental stroke. PMID:20883527

  5. Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells.

    PubMed

    Sobol, Anna; Galluzzo, Paola; Liang, Shuang; Rambo, Brittany; Skucha, Sylvia; Weber, Megan J; Alani, Sara; Bocchetta, Maurizio

    2015-05-01

    Hypoxic non-small cell lung cancer (NSCLC) is dependent on Notch-1 signaling for survival. Targeting Notch-1 by means of γ-secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post-mortem analysis of GSI-treated, NSCLC-burdened mice suggested enhanced phosphorylation of 4E-BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non-canonical 4E-BP1 phosphorylation pattern rearrangement-a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF-4F composition indicating increased recruitment of eIF-4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF-4A assembly into eIF-4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap- and IRES-dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin-1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC-1) inhibition affected 4E-BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC-1. Key phenomena described in this study were reversed by overexpression of the APP C-terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC-1 regulation of cap-dependent protein synthesis. © 2014 Wiley Periodicals, Inc.

  6. Gold- and Silver Nanoparticles Affect the Growth Characteristics of Human Embryonic Neural Precursor Cells

    PubMed Central

    Söderstjerna, Erika; Johansson, Fredrik; Klefbohm, Birgitta; Englund Johansson, Ulrica

    2013-01-01

    Rapid development of nanotechnologies and their applications in clinical research have raised concerns about the adverse effects of nanoparticles (NPs) on human health and environment. NPs can be directly taken up by organs exposed, but also translocated to secondary organs, such as the central nervous system (CNS) after systemic- or subcutaneous administration, or via the olfactory system. The CNS is particularly vulnerable during development and recent reports describe transport of NPs across the placenta and even into brain tissue using in vitro and in vivo experimental systems. Here, we investigated whether well-characterized commercial 20 and 80 nm Au- and AgNPs have an effect on human embryonic neural precursor cell (HNPC) growth. After two weeks of NP exposure, uptake of NPs, morphological features and the amount of viable and dead cells, proliferative cells (Ki67 immunostaining) and apoptotic cells (TUNEL assay), respectively, were studied. We demonstrate uptake of both 20 and 80 nm Au- and AgNPs respectively, by HNPCs during proliferation. A significant effect on the sphere size- and morphology was found for all cultures exposed to Au- and AgNPs. AgNPs of both sizes caused a significant increase in numbers of proliferating and apoptotic HNPCs. In contrast, only the highest dose of 20 nm AuNPs significantly affected proliferation, whereas no effect was seen on apoptotic cell death. Our data demonstrates that both Au- and AgNPs interfere with the growth profile of HNPCs, indicating the need of further detailed studies on the adverse effects of NPs on the developing CNS. PMID:23505470

  7. Tau isoforms imbalance impairs the axonal transport of the amyloid precursor protein in human neurons.

    PubMed

    Lacovich, Valentina; Espindola, Sonia L; Alloatti, Matías; Pozo Devoto, Victorio; Cromberg, Lucas; Čarná, Mária; Forte, Giancarlo; Gallo, Jean-Marc; Bruno, Luciana; Stokin, Gorazd B; Avale, M Elena; Falzone, Tomás L

    2016-11-11

    Tau, as a microtubule-associated protein, participates in key neuronal functions such as the regulation of microtubule dynamics, axonal transport and neurite outgrowth. Alternative splicing of exon 10 in the tau primary transcript gives rise to protein isoforms with three (3R) or four (4R) microtubule binding repeats. While tau isoforms are balanced in the normal adult human brain, imbalances in 3R:4R ratio have been tightly associated to the pathogenesis of several neurodegenerative disorders, yet the underlying molecular mechanisms remain elusive. Several studies exploiting tau overexpression and/or mutations suggested that perturbations in tau metabolism impair axonal transport. Nevertheless, no physiological model has yet demonstrated the consequences of altering the endogenous relative content of tau isoforms over axonal transport regulation. Here we addressed this question using a trans-splicing strategy that allows modulating tau exon 10 inclusion/exclusion in differentiated human-derived neurons. Upon changes in 3R:4R tau relative content neurons showed no morphological changes, but live imaging studies revealed that the dynamics of the amyloid precursor protein (APP) were significantly impaired. Single trajectories analyses of the moving vesicles showed that predominance of 3R tau favored the anterograde movement of APP-vesicles, increasing anterograde run lengths and reducing retrograde runs and segmental velocities. Contrarely, the imbalance towards the 4R isoform promoted a retrograde bias by a significant reduction of anterograde velocities. These findings suggest that changes in 3R:4R tau ratio has an impact on the regulation of axonal transport and specifically in APP dynamics, which might link tau isoforms imbalances with APP abnormal metabolism in neurodegenerative processes.

  8. Tau Isoforms Imbalance Impairs the Axonal Transport of the Amyloid Precursor Protein in Human Neurons.

    PubMed

    Lacovich, Valentina; Espindola, Sonia L; Alloatti, Matías; Pozo Devoto, Victorio; Cromberg, Lucas E; Čarná, Mária E; Forte, Giancarlo; Gallo, Jean-Marc; Bruno, Luciana; Stokin, Gorazd B; Avale, M Elena; Falzone, Tomás L

    2017-01-04

    Tau, as a microtubule (MT)-associated protein, participates in key neuronal functions such as the regulation of MT dynamics, axonal transport, and neurite outgrowth. Alternative splicing of exon 10 in the tau primary transcript gives rise to protein isoforms with three (3R) or four (4R) MT binding repeats. Although tau isoforms are balanced in the normal adult human brain, imbalances in 3R:4R ratio have been tightly associated with the pathogenesis of several neurodegenerative disorders, yet the underlying molecular mechanisms remain elusive. Several studies exploiting tau overexpression and/or mutations suggested that perturbations in tau metabolism impair axonal transport. Nevertheless, no physiological model has yet demonstrated the consequences of altering the endogenous relative content of tau isoforms over axonal transport regulation. Here, we addressed this issue using a trans-splicing strategy that allows modulating tau exon 10 inclusion/exclusion in differentiated human-derived neurons. Upon changes in 3R:4R tau relative content, neurons showed no morphological changes, but live imaging studies revealed that the dynamics of the amyloid precursor protein (APP) were significantly impaired. Single trajectory analyses of the moving vesicles showed that predominance of 3R tau favored the anterograde movement of APP vesicles, increasing anterograde run lengths and reducing retrograde runs and segmental velocities. Conversely, the imbalance toward the 4R isoform promoted a retrograde bias by a significant reduction of anterograde velocities. These findings suggest that changes in 3R:4R tau ratio has an impact on the regulation of axonal transport and specifically in APP dynamics, which might link tau isoform imbalances with APP abnormal metabolism in neurodegenerative processes.

  9. Amyloid Precursor Protein (APP) Affects Global Protein Synthesis in Dividing Human Cells

    PubMed Central

    Sobol, Anna; Galluzzo, Paola; Liang, Shuang; Rambo, Brittany; Skucha, Sylvia; Weber, Megan J.; Alani, Sara

    2015-01-01

    Hypoxic non‐small cell lung cancer (NSCLC) is dependent on Notch‐1 signaling for survival. Targeting Notch‐1 by means of γ‐secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post‐mortem analysis of GSI‐treated, NSCLC‐burdened mice suggested enhanced phosphorylation of 4E‐BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non‐canonical 4E‐BP1 phosphorylation pattern rearrangement—a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF‐4F composition indicating increased recruitment of eIF‐4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF‐4A assembly into eIF‐4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap‐ and IRES‐dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin‐1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC‐1) inhibition affected 4E‐BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC‐1. Key phenomena described in this study were reversed by overexpression of the APP C‐terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC‐1 regulation of cap‐dependent protein synthesis. J. Cell. Physiol. 230: 1064–1074, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:25283437

  10. Introduction of yeast artificial chromosomes containing mutant human amyloid precursor protein genes into transgenic mice

    SciTech Connect

    Call, L.M.; Lamb, B.T.; Boese, K.F.

    1994-09-01

    Several hypothetical mechanisms have been proposed for the generation and deposition of the amyloid beta (A{beta}) peptide in Alzheimer`s disease (AD). These include overexpression of the amyloid precursor protein (APP) gene, as suggested by Down Syndrome (DS, trisomy 21), and mutation of APP, as suggested by mutations associated with the presence of disease/amyloid deposition in some cases of familial AD (FAD). Although numerous in vitro studies have lead to certain insights into the molecular basis for amyloid deposition, the mechanisms(s) of amyloidogenesis in vivo remains poorly defined. To examine the effect of FAD mutations on amyloidogenesis in an animal model, we have focused on producing APP YAC transgenic mice containing the human APP gene with FAD mutations. These APP YAC transgenics are being produced by introduction of a 650 kb APP YAC through lipid-mediated transfection of ES cells. This strategy has two principal advantages: the APP genomic sequences contain transcriptional regulatory elements required for proper spatial and temporal expression and contain appropriate splice donor and acceptor sites needed to generate the entire spectrum of alternatively spliced APP transcripts. As a first step, we cloned the genomic regions surrounding APP exons 16 and 17 from an APP YAC sublibrary. Both the Swedish and the 717 mutations were then introduced into exons 16 and 17, respectively, by PCR mutagenesis, and subsequently transferred into the 650 kb APP YAC by a two step gene replacement in yeast. The mutant YACs have been introduced into ES cells, and we have determined that these cells are expressing human mutant APP mRNA and protein. These cells are being used to generate transgenic mice. This paradigm should provide the appropriate test of whether a mutant APP gene is capable of producing AD-like pathology in a mouse model.

  11. In-Situ Cryogenic Propellant Liquefaction and Storage for a Precursor to a Human Mars Mission

    NASA Astrophysics Data System (ADS)

    Mueller, Paul; Durrant, Tom

    The current mission plan for the first human mission to Mars is based on an in-situ propellant production (ISPP) approach to reduce the amount of propellants needed to be taken to Mars and ultimately to reduce mission cost. Recent restructuring of the Mars Robotic Exploration Program has removed ISPP from the early sample return missions. A need still exists to demonstrate ISPP technologies on one or more robotic missions prior to the first human mission. This paper outlines a concept for an ISPP-based precursor mission as a technology demonstration prior to the first human mission. It will also return Martian soil samples to Earth for scientific analysis. The mission will primarily demonstrate cryogenic oxygen and fuel production, liquefaction, and storage for use as propellants for the return trip. Hydrogen will be brought from Earth as a feedstock to produce the hydrocarbon fuel (most likely methane). The analysis used to develop the mission concept includes several different thermal control and liquefaction options for the cryogens. Active cooling and liquefaction devices include Stirling, pulse tube, and Brayton-cycle cryocoolers. Insulation options include multilayer insulation, evacuated microspheres, aerogel blankets, and foam insulation. The cooling capacity and amount of insulation are traded off against each other for a minimum-mass system. In the case of hydrogen feedstock, the amount of hydrogen boiloff allowed during the trip to Mars is also included in the tradeoff. The spacecraft concept includes a Lander (including the propellant production plant) with a Mars Ascent Vehicle (MAV) mounted atop it. An option is explored where the engines on the MAV are also used for descent and landing on the Martian surface at the beginning of the mission. So the MAV propellant tanks would contain oxygen and methane during the trip from Earth. This propellant would be consumed in descent to the Martian surface, resulting in nearly-empty MAV tanks to be filled by the

  12. Tripartite containing motif 32 modulates proliferation of human neural precursor cells in HIV-1 neurodegeneration

    PubMed Central

    Fatima, M; Kumari, R; Schwamborn, J C; Mahadevan, A; Shankar, S K; Raja, R; Seth, P

    2016-01-01

    In addition to glial cells, HIV-1 infection occurs in multipotent human neural precursor cells (hNPCs) and induces quiescence in NPCs. HIV-1 infection of the brain alters hNPC stemness, leading to perturbed endogenous neurorestoration of the CNS following brain damage by HIV-1, compounding the severity of dementia in adult neuroAIDS cases. In pediatric neuroAIDS cases, HIV-1 infection of neural stem cell can lead to delayed developmental milestones and impaired cognition. Using primary cultures of human fetal brain-derived hNPCs, we gained novel insights into the role of a neural stem cell determinant, tripartite containing motif 32 (TRIM32), in HIV-1 Tat-induced quiescence of NPCs. Acute HIV-1 Tat treatment of hNPCs resulted in proliferation arrest but did not induce differentiation. Cellular localization and levels of TRIM32 are critical regulators of stemness of NPCs. HIV-1 Tat exposure increased nuclear localization and levels of TRIM32 in hNPCs. The in vitro findings were validated by studying TRIM32 localization and levels in frontal cortex of HIV-1-seropositive adult patients collected at post mortem as well as by infection of hNPCs by HIV-1. We observed increased percentage of cells with nuclear localization of TRIM32 in the subventricular zone (SVZ) as compared with age-matched controls. Our quest for probing into the mechanisms revealed that TRIM32 is targeted by miR-155 as downregulation of miR-155 by HIV-1 Tat resulted in upregulation of TRIM32 levels. Furthermore, miR-155 or siRNA against TRIM32 rescued HIV-1 Tat-induced quiescence in NPCs. Our findings suggest a novel molecular cascade involving miR-155 and TRIM32 leading to HIV-1 Tat-induced attenuated proliferation of hNPCs. The study also uncovered an unidentified role for miR-155 in modulating human neural stem cell proliferation, helping in better understanding of hNPCs and diseased brain. PMID:26586575

  13. Highly efficient differentiation of neural precursors from human embryonic stem cells and benefits of transplantation after ischemic stroke in mice.

    PubMed

    Drury-Stewart, Danielle; Song, Mingke; Mohamad, Osama; Guo, Ying; Gu, Xiaohuan; Chen, Dongdong; Wei, Ling

    2013-08-08

    Ischemic stroke is a leading cause of death and disability, but treatment options are severely limited. Cell therapy offers an attractive strategy for regenerating lost tissues and enhancing the endogenous healing process. In this study, we investigated the use of human embryonic stem cell-derived neural precursors as a cell therapy in a murine stroke model. Neural precursors were derived from human embryonic stem cells by using a fully adherent SMAD inhibition protocol employing small molecules. The efficiency of neural induction and the ability of these cells to further differentiate into neurons were assessed by using immunocytochemistry. Whole-cell patch-clamp recording was used to demonstrate the electrophysiological activity of human embryonic stem cell-derived neurons. Neural precursors were transplanted into the core and penumbra regions of a focal ischemic stroke in the barrel cortex of mice. Animals received injections of bromodeoxyuridine to track regeneration. Neural differentiation of the transplanted cells and regenerative markers were measured by using immunohistochemistry. The adhesive removal test was used to determine functional improvement after stroke and intervention. After 11 days of neural induction by using the small-molecule protocol, over 95% of human embryonic stem-derived cells expressed at least one neural marker. Further in vitro differentiation yielded cells that stained for mature neuronal markers and exhibited high-amplitude, repetitive action potentials in response to depolarization. Neuronal differentiation also occurred after transplantation into the ischemic cortex. A greater level of bromodeoxyuridine co-localization with neurons was observed in the penumbra region of animals receiving cell transplantation. Transplantation also improved sensory recovery in transplant animals over that in control animals. Human embryonic stem cell-derived neural precursors derived by using a highly efficient small-molecule SMAD inhibition

  14. Osteoclast differentiation from human blood precursors on biomimetic calcium-phosphate substrates.

    PubMed

    Ciapetti, Gabriela; Di Pompo, Gemma; Avnet, Sofia; Martini, Desirée; Diez-Escudero, Anna; Montufar, Edgar B; Ginebra, Maria-Pau; Baldini, Nicola

    2017-03-01

    The design of synthetic bone grafts to foster bone formation is a challenge in regenerative medicine. Understanding the interaction of bone substitutes with osteoclasts is essential, since osteoclasts not only drive a timely resorption of the biomaterial, but also trigger osteoblast activity. In this study, the adhesion and differentiation of human blood-derived osteoclast precursors (OCP) on two different micro-nanostructured biomimetic hydroxyapatite materials consisting in coarse (HA-C) and fine HA (HA-F) crystals, in comparison with sintered stoichiometric HA (sin-HA, reference material), were investigated. Osteoclasts were induced to differentiate by RANKL-containing supernatant using cell/substrate direct and indirect contact systems, and calcium (Ca(++)) and phosphorus (P(5+)) in culture medium were measured. We observed that OCP adhered to the experimental surfaces, and that osteoclast-like cells formed at a rate influenced by the micro- and nano-structure of HA, which also modulate extracellular Ca(++). Qualitative differences were found between OCP on biomimetic HA-C and HA-F and their counterparts on plastic and sin-HA. On HA-C and HA-F cells shared typical features of mature osteoclasts, i.e. podosomes, multinuclearity, tartrate acid phosphatase (TRAP)-positive staining, and TRAP5b-enzyme release. However, cells were less in number compared to those on plastic or on sin-HA, and they did not express some specific osteoclast markers. In conclusion, blood-derived OCP are able to attach to biomimetic and sintered HA substrates, but their subsequent fusion and resorptive activity are hampered by surface micro-nano-structure. Indirect cultures suggest that fusion of OCP is sensitive to topography and to extracellular calcium.

  15. Ago2 Immunoprecipitation Identifies Predicted MicroRNAs in Human Embryonic Stem Cells and Neural Precursors

    PubMed Central

    Swerdel, Mavis R.; Moore, Jennifer C.; Cohen, Rick I.; Wu, Hao; Sun, Yi E.; Hart, Ronald P.

    2009-01-01

    Background MicroRNAs are required for maintenance of pluripotency as well as differentiation, but since more microRNAs have been computationally predicted in genome than have been found, there are likely to be undiscovered microRNAs expressed early in stem cell differentiation. Methodology/Principal Findings SOLiD ultra-deep sequencing identified >107 unique small RNAs from human embryonic stem cells (hESC) and neural-restricted precursors that were fit to a model of microRNA biogenesis to computationally predict 818 new microRNA genes. These predicted genomic loci are associated with chromatin patterns of modified histones that are predictive of regulated gene expression. 146 of the predicted microRNAs were enriched in Ago2-containing complexes along with 609 known microRNAs, demonstrating association with a functional RISC complex. This Ago2 IP-selected subset was consistently expressed in four independent hESC lines and exhibited complex patterns of regulation over development similar to previously-known microRNAs, including pluripotency-specific expression in both hESC and iPS cells. More than 30% of the Ago2 IP-enriched predicted microRNAs are new members of existing families since they share seed sequences with known microRNAs. Conclusions/Significance Extending the classic definition of microRNAs, this large number of new microRNA genes, the majority of which are less conserved than their canonical counterparts, likely represent evolutionarily recent regulators of early differentiation. The enrichment in Ago2 containing complexes, the presence of chromatin marks indicative of regulated gene expression, and differential expression over development all support the identification of 146 new microRNAs active during early hESC differentiation. PMID:19784364

  16. Cervical vestibular evoked myogenic potentials in children.

    PubMed

    Pereira, Alcione Botelho; Silva, Gabriela Souza de Melo; Assunção, Aída Regina Monteiro; Atherino, Ciriaco Cristóvão Tavares; Volpe, Fernando Madalena; Felipe, Lilian

    2015-01-01

    Cervical vestibular evoked myogenic potential is a test used in neurotological examination. It verifies the integrity of vestibular function through a muscular response evoked by an acoustic stimulation which activates the saccular macula. Normal standards in adults have been established, however, there are few published data on the normal responses in children. To establish normal standards for vestibular myogenic responses in children without neurotological complaints. This study's design is a cohort with cross-sectional analysis. The sample consisted of 30 subjects, 15 females (50%) and 15 males (50%). The age of the subjects ranged between 8 and 13 years, with a mean of 10.2 (± 1.7). P1 peak showed an average latency of 17.26 (± 1.78)ms and a mean amplitude of 49.34 (± 23.07)μV, and the N2 peak showed an average latency of 24.78 (± 2.18)ms and mean amplitude of 66.23 (± 36.18)μV. P1-N2 mean amplitude was 115.6 (± 55.7)μV. There were no statistically significant differences when comparing by gender or by laterality. We established normal values of cervical myogenic vestibular responses in children between 8 and 13 years without neurotological complaints. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  17. Induced osteoclastogenesis by fluoroquinolones in unstimulated and stimulated human osteoclast precursor cells.

    PubMed

    Costa-Rodrigues, J; Martins, E G; Fernandes, M H

    2012-07-01

    Fluoroquinolones (FQs) are a class of antibiotics with a broad spectrum of activity, known to disturb bone metabolism. The aim of this work was to characterize the cellular and molecular effects of five FQs (ofloxacin, norfloxacin, ciprofloxacin, levofloxacin and moxifloxacin) in unstimulated and stimulated human osteoclast precursors. Peripheral blood mononuclear cells (PBMC) were cultured in the absence (unstimulated) or in the presence of osteoclastogenic factors (M-CSF and RANKL, stimulated), and were treated with FQs (0.3×10(-9)-10(-3) M), for 21 days. In unstimulated PBMC cultures, FQs (excepting moxifloxacin) exhibited a high osteoclastogenic potential, as shown by a significant increase in the expression of osteoclastic genes, TRAP activity and, specially, number of TRAP-positive multinucleated cells and calcium phosphate resorbing ability, suggesting the presence of mature and functional osteoclasts. Norfloxacin and levofloxacin induced the higher effect, followed by ciprofloxacin and ofloxacin. A decrease on apoptosis and an increase on M-CSF expression might have a possible contribution in the observed cellular behavior. In stimulated PBMC cultures, FQs further increase the osteoclastogenic response induced by M-CSF and RANKL (except ofloxacin). However, the osteoclastogenic response was much lower than that observed in unstimulated PBMC cultures. Both in unstimulated and stimulated PBMC cultures, for most of the FQs, the osteoclastogenic effects were observed in a wide range of concentrations, representative of plasmatic and tissue levels attained in several clinical settings. The various FQs differed on the stimulatory concentration range, the extent of the induced osteoclastogenic response and, also, on the dose- and time-dependent profile. Nevertheless, at high concentrations all the FQs seemed to elicit an increase on apoptosis. Additionally, some differences were noted in the intracellular signaling pathways tested, namely NFkB, MEK and PGE2

  18. Two-Way Conversion between Lipogenic and Myogenic Fibroblastic Phenotypes Marks the Progression and Resolution of Lung Fibrosis.

    PubMed

    El Agha, Elie; Moiseenko, Alena; Kheirollahi, Vahid; De Langhe, Stijn; Crnkovic, Slaven; Kwapiszewska, Grazyna; Kosanovic, Djuro; Schwind, Felix; Schermuly, Ralph T; Henneke, Ingrid; MacKenzie, BreAnne; Quantius, Jennifer; Herold, Susanne; Ntokou, Aglaia; Ahlbrecht, Katrin; Morty, Rory E; Günther, Andreas; Seeger, Werner; Bellusci, Saverio

    2017-02-02

    Idiopathic pulmonary fibrosis (IPF) is a form of progressive interstitial lung disease with unknown etiology. Due to a lack of effective treatment, IPF is associated with a high mortality rate. The hallmark feature of this disease is the accumulation of activated myofibroblasts that excessively deposit extracellular matrix proteins, thus compromising lung architecture and function and hindering gas exchange. Here we investigated the origin of activated myofibroblasts and the molecular mechanisms governing fibrosis formation and resolution. Genetic engineering in mice enables the time-controlled labeling and monitoring of lipogenic or myogenic populations of lung fibroblasts during fibrosis formation and resolution. Our data demonstrate a lipogenic-to-myogenic switch in fibroblastic phenotype during fibrosis formation. Conversely, we observed a myogenic-to-lipogenic switch during fibrosis resolution. Analysis of human lung tissues and primary human lung fibroblasts indicates that this fate switching is involved in IPF pathogenesis, opening potential therapeutic avenues to treat patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Narrow Band Ultraviolet B Treatment for Human Vitiligo Is Associated with Proliferation, Migration, and Differentiation of Melanocyte Precursors.

    PubMed

    Goldstein, Nathaniel B; Koster, Maranke I; Hoaglin, Laura G; Spoelstra, Nicole S; Kechris, Katerina J; Robinson, Steven E; Robinson, William A; Roop, Dennis R; Norris, David A; Birlea, Stanca A

    2015-08-01

    In vitiligo, the autoimmune destruction of epidermal melanocytes produces white spots that can be repigmented by melanocyte precursors from the hair follicles, following stimulation with UV light. We examined by immunofluorescence the distribution of melanocyte markers (C-KIT, DCT, PAX3, and TYR) coupled with markers of proliferation (KI-67) and migration (MCAM) in precursors and mature melanocytes from the hair follicle and the epidermis of untreated and narrow band UVB (NBUVB)-treated human vitiligo skin. NBUVB was associated with a significant increase in the number of melanocytes in the infundibulum and with restoration of the normal melanocyte population in the epidermis, which was lacking in the untreated vitiligo. We identified several precursor populations (melanocyte stem cells, melanoblasts, and other immature phenotypes), and progressively differentiating melanocytes, some with putative migratory and/or proliferative abilities. The primary melanocyte germ was present in the untreated and treated hair follicle bulge, whereas a possible secondary melanocyte germ composed of C-KIT+ melanocytes was found in the infundibulum and interfollicular epidermis of UV-treated vitiligo. This is an exceptional model for studying the mobilization of melanocyte stem cells in human skin. Improved understanding of this process is essential for designing better treatments for vitiligo, ultimately based on melanocyte stem cell activation and mobilization.

  20. Narrow Band Ultraviolet B Treatment for Human Vitiligo Is Associated with Proliferation, Migration, and Differentiation of Melanocyte Precursors

    PubMed Central

    Goldstein, Nathaniel B.; Koster, Maranke I.; Hoaglin, Laura G.; Spoelstra, Nicole S.; Kechris, Katerina J.; Robinson, Steven E.; Robinson, William A.; Roop, Dennis R.; Norris, David A.; Birlea, Stanca A.

    2015-01-01

    In vitiligo, the autoimmune destruction of epidermal melanocytes produces white spots that can be repigmented by melanocyte precursors from the hair follicles, following stimulation with UV light. We examined by immunofluorescence the distribution of melanocyte markers (C-KIT, DCT, PAX3, and TYR) coupled with markers of proliferation (KI-67) and migration (MCAM) in precursors and mature melanocytes from the hair follicle and the epidermis of untreated and narrow band UVB (NBUVB)-treated human vitiligo skin. NBUVB was associated with a significant increase in the number of melanocytes in the infundibulum and with restoration of the normal melanocyte population in the epidermis, which was lacking in the untreated vitiligo. We identified several precursor populations (melanocyte stem cells, melanoblasts, and other immature phenotypes), and progressively differentiating melanocytes, some with putative migratory and/or proliferative abilities. The primary melanocyte germ was present in the untreated and treated hair follicle bulge, whereas a possible secondary melanocyte germ composed of C-KIT+ melanocytes was found in the infundibulum and interfollicular epidermis of UV-treated vitiligo. This is an exceptional model for studying the mobilization of melanocyte stem cells in human skin. Improved understanding of this process is essential for designing better treatments for vitiligo, ultimately based on melanocyte stem cell activation and mobilization. PMID:25822579

  1. Gastric secretion of platelet activating factor and precursors in healthy humans: effect of pentagastrin.

    PubMed Central

    Sobhani, I; Denizot, Y; Hochlaf, S; Rigaud, D; Vatier, J; Benveniste, J; Lewin, M J; Mignon, M

    1993-01-01

    The release of platelet activating factor (PAF-ACETHER or PAF) and its precursors in the gastric lumen was assessed in 13 normal subjects in basal condition and after stimulation by gastrin. Acid, pepsin, and sialic acid outputs were determined under the same conditions. Gastric juice was collected using a nasogastric tube after overnight fast in basal condition for 60 minutes, then under pentagastrin infusion (6 micrograms/kg/hr for 60 minutes). Platelet activating factor was detected at low concentration in 4/13 subjects under basal condition (mean (SEM) 1.2 (0.6) pg/hr) while high concentrations of lyso platelet activating factor (6.1 (1.8) microgram/hr) and of alkyl-acyl-glycerophosphocholine (AAGPC) (11.5 (3) micrograms/hr) were found in 13 and 11 subjects, respectively. Platelet activating factor was not detected during pentagastrin infusion, while lyso platelet activating factor and alkyl-acyl-glycerophosphocholine were detected in 13 and in 12 subjects, respectively. Compared with the basal condition these platelet activating factor precursors increased significantly (p < 0.001) going up to fivefold baseline (31.8 (6.8) micrograms/hr and 53 (9.3) micrograms/hr respectively) in response to pentagastrin. There was a positive correlation between platelet activating factor precursors and acid or pepsin output but not between platelet activating factor precursors and sialic acid. As sialic acid may be considered an index of mucus glycoprotein degradation, it seems that gastrin stimulation of gastric epithelial cells results in a concomittant secretion of platelet activating factor precursors, acid, and pepsin irrespective of mucus glycoprotein degradation. PMID:8174952

  2. ROCK2 and its alternatively spliced isoform ROCK2m positively control the maturation of the myogenic program.

    PubMed

    Pelosi, Michele; Marampon, Francesco; Zani, Bianca M; Prudente, Sabrina; Perlas, Emerald; Caputo, Viviana; Cianetti, Luciano; Berno, Valeria; Narumiya, Shuh; Kang, Shin W; Musarò, Antonio; Rosenthal, Nadia

    2007-09-01

    Signal transduction cascades involving Rho-associated kinases (ROCK), the serine/threonine kinases downstream effectors of Rho, have been implicated in the regulation of diverse cellular functions including cytoskeletal organization, cell size control, modulation of gene expression, differentiation, and transformation. Here we show that ROCK2, the predominant ROCK isoform in skeletal muscle, is progressively up-regulated during mouse myoblast differentiation and is highly expressed in the dermomyotome and muscle precursor cells of mouse embryos. We identify a novel and evolutionarily conserved ROCK2 splicing variant, ROCK2m, that is preferentially expressed in skeletal muscle and strongly up-regulated during in vivo and in vitro differentiation processes. The specific knockdown of ROCK2 or ROCK2m expression in C2C12 myogenic cells caused a significant and selective impairment of the expression of desmin and of the myogenic regulatory factors Mrf4 and MyoD. We demonstrate that in myogenic cells, ROCK2 and ROCK2m are positive regulators of the p42 and p44 mitogen-activated protein kinase-p90 ribosomal S6 kinase-eucaryotic elongation factor 2 intracellular signaling pathways and, thereby, positively regulate the hypertrophic effect elicited by insulin-like growth factor 1 and insulin, linking the multifactorial functions of ROCK to an important control of the myogenic maturation.

  3. ROCK2 and Its Alternatively Spliced Isoform ROCK2m Positively Control the Maturation of the Myogenic Program▿

    PubMed Central

    Pelosi, Michele; Marampon, Francesco; Zani, Bianca M.; Prudente, Sabrina; Perlas, Emerald; Caputo, Viviana; Cianetti, Luciano; Berno, Valeria; Narumiya, Shuh; Kang, Shin W.; Musarò, Antonio; Rosenthal, Nadia

    2007-01-01

    Signal transduction cascades involving Rho-associated kinases (ROCK), the serine/threonine kinases downstream effectors of Rho, have been implicated in the regulation of diverse cellular functions including cytoskeletal organization, cell size control, modulation of gene expression, differentiation, and transformation. Here we show that ROCK2, the predominant ROCK isoform in skeletal muscle, is progressively up-regulated during mouse myoblast differentiation and is highly expressed in the dermomyotome and muscle precursor cells of mouse embryos. We identify a novel and evolutionarily conserved ROCK2 splicing variant, ROCK2m, that is preferentially expressed in skeletal muscle and strongly up-regulated during in vivo and in vitro differentiation processes. The specific knockdown of ROCK2 or ROCK2m expression in C2C12 myogenic cells caused a significant and selective impairment of the expression of desmin and of the myogenic regulatory factors Mrf4 and MyoD. We demonstrate that in myogenic cells, ROCK2 and ROCK2m are positive regulators of the p42 and p44 mitogen-activated protein kinase-p90 ribosomal S6 kinase-eucaryotic elongation factor 2 intracellular signaling pathways and, thereby, positively regulate the hypertrophic effect elicited by insulin-like growth factor 1 and insulin, linking the multifactorial functions of ROCK to an important control of the myogenic maturation. PMID:17606625

  4. Enhanced functional integration of human photoreceptor precursors into human and rodent retina in an ex vivo retinal explant model system.

    PubMed

    Yanai, Anat; Laver, Christopher R J; Gregory-Evans, Cheryl Y; Liu, Ran R; Gregory-Evans, Kevin

    2015-06-01

    Retinal disease is the major cause of irreversible blindness in developed countries. Transplantation of photoreceptor precursor cells (PPCs) derived from human embryonic stem cells (hESCs) is a promising and widely applicable approach for the treatment of these blinding conditions. Previously, it has been shown that after transplantation into the degenerating retina, the percentage of PPCs that undergo functional integration is low. The factors that inhibit PPC engraftment remain largely unknown, in part, because so many adverse factors could be at play during in vivo experiments. To advance our knowledge in overcoming potential adverse effects and optimize PPC transplantation, we have developed a novel ex vivo system. Harvested neural retina was placed directly on top of cultured retinal pigment epithelial (RPE) cells from a number of different sources. To mimic PPC transplantation into the subretinal space, hESC-derived PPCs were inserted between the retinal explant and underlying RPE. Explants cocultured with hESC-derived RPE maintained normal gross morphology and viability for up to 2 weeks, whereas the explants cultured on ARPE19 and RPE-J failed by 7 days. Furthermore, the proportion of PPCs expressing ribbon synapse-specific proteins BASSOON and RIBEYE was significantly higher when cocultured with hESC-derived RPE (20% and 10%, respectively), than when cocultured with ARPE19 (only 6% and 2%, respectively). In the presence of the synaptogenic factor thrombospondin-1 (TSP-1), the proportion of BASSOON-positive and RIBEYE-positive PPCs cocultured with hESC-derived RPE increased to ∼30% and 15%, respectively. These data demonstrate the utility of an ex vivo model system to define factors, such as TSP-1, which could influence integration efficiency in future in vivo experiments in models of retinal degeneration.

  5. Effects of an oral glucose tolerance test on the myogenic response in healthy individuals.

    PubMed

    Lott, Mary E J; Hogeman, Cynthia; Herr, Michael; Gabbay, Robert; Sinoway, Lawrence I

    2007-01-01

    The myogenic response, the inherent ability of blood vessels to rapidly respond to changes in transmural pressure, is involved in local blood flow autoregulation. Animal studies suggest that both acute hyperglycemia and hyperinsulinemia may impair myogenic vasoconstriction. The purpose of this study was to examine the effects of an oral glucose load on brachial mean blood velocity (MBV) during increases in forearm transmural pressure in humans. Eight healthy men and women (38 +/- 5 yr) underwent an oral glucose tolerance test (OGTT). MBV (in cm/s; Doppler ultrasound) responses to a rise in forearm transmural pressure (arm tank suction, -50 mmHg) were studied before and every 30 min for 120 min during the OGTT. Before the start of the OGTT, MBV was lower than baseline values 30 and 60 s after the application of negative pressure. This suggests that myogenic constriction was present. During the OGTT, blood glucose rose from 88 +/- 2 to 120 +/- 6 mg/dl (P < 0.05) and insulin rose from 14 +/- 1 to 101 +/- 32 microU/ml (P < 0.05). Glucose loading attenuated the reduction in MBV with arm suction (Delta-0.73 +/- 0.14 vs. Delta-1.67 +/- 0.43 cm/s and Delta-1.07 +/- 0.14 vs. Delta-2.38 +/- 0.54 cm/s, respectively, during 30 and 60 s of suction postglucose compared with preglucose values; all P < 0.05). We observed no such time effect for myogenic responses during a sham OGTT. In an additional 5 subjects, glucose loading had no effect on brachial diameters with the application of negative pressure. Oral glucose loading leads to attenuated myogenic vasoconstriction in healthy individuals. The role that this diminished postglucose reactivity plays in mediating postprandial hypotension and/or orthostasis needs to be further explored.

  6. [Regenerative potential of human adult precursor cells: cell therapy--an option for treating cartilage defects?].

    PubMed

    Dehne, T; Tschirschmann, M; Lauster, R; Sittinger, M

    2009-05-01

    Cell-based therapeutical approaches are already in clinical use and are attracting growing interest for the treatment of joint defects. Mesenchymal stem and precursor cells (MSC) cover a wide range of properties that are useful for the regeneration process of bone and cartilage defects. The following article is an overview of the regenerative potential of MSC and discusses how the properties of these cells can be used for the development of new strategies in regenerative medicine.

  7. Myogenic Potential of Canine Craniofacial Satellite Cells

    PubMed Central

    La Rovere, Rita Maria Laura; Quattrocelli, Mattia; Pietrangelo, Tiziana; Di Filippo, Ester Sara; Maccatrozzo, Lisa; Cassano, Marco; Mascarello, Francesco; Barthélémy, Inès; Blot, Stephane; Sampaolesi, Maurilio; Fulle, Stefania

    2014-01-01

    The skeletal fibers have different embryological origin; the extraocular and jaw-closer muscles develop from prechordal mesoderm while the limb and trunk muscles from somites. These different origins characterize also the adult muscle stem cells, known as satellite cells (SCs) and responsible for the fiber growth and regeneration. The physiological properties of presomitic SCs and their epigenetics are poorly studied despite their peculiar characteristics to preserve muscle integrity during chronic muscle degeneration. Here, we isolated SCs from canine somitic [somite-derived muscle (SDM): vastus lateralis, rectus abdominis, gluteus superficialis, biceps femoris, psoas] and presomitic [pre-somite-derived muscle (PSDM): lateral rectus, temporalis, and retractor bulbi] muscles as myogenic progenitor cells from young and old animals. In addition, SDM and PSDM-SCs were obtained also from golden retrievers affected by muscular dystrophy (GRMD). We characterized the lifespan, the myogenic potential and functions, and oxidative stress of both somitic and presomitic SCs with the aim to reveal differences with aging and between healthy and dystrophic animals. The different proliferation rate was consistent with higher telomerase activity in PSDM-SCs compared to SDM-SCs, although restricted at early passages. SDM-SCs express early (Pax7, MyoD) and late (myosin heavy chain, myogenin) myogenic markers differently from PSDM-SCs resulting in a more efficient and faster cell differentiation. Taken together, our results showed that PSDM-SCs elicit a stronger stem cell phenotype compared to SDM ones. Finally, myomiR expression profile reveals a unique epigenetic signature in GRMD SCs and miR-206, highly expressed in dystrophic SCs, seems to play a critical role in muscle degeneration. Thus, miR-206 could represent a potential target for novel therapeutic approaches. PMID:24860499

  8. Myogenous temporomandibular disorders: diagnostic and management considerations.

    PubMed

    Fricton, James

    2007-01-01

    Myogenous temporomandibular disorders (or masticatory myalgia) are characterized by pain and dysfunction that arise from pathologic and functional processes in the masticatory muscles. There are several distinct muscle disorder subtypes in the masticatory system, including myofascial pain, myositis, muscle spasm, and muscle contracture. The major characteristics of masticatory myalgia include pain, muscle tenderness, limited range of motion, and other symptoms (eg, fatigability, stiffness, subjective weakness). Comorbid conditions and complicating factors also are common and are discussed. Management follows with stretching, posture, and relaxation exercises, physical therapy, reduction of contributing factors, and as necessary, muscle injections.

  9. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells

    PubMed Central

    Vacca, Paola; Vitale, Chiara; Montaldo, Elisa; Conte, Romana; Cantoni, Claudia; Fulcheri, Ezio; Darretta, Valeria; Moretta, Lorenzo; Mingari, Maria Cristina

    2011-01-01

    Natural killer (NK) cells are the main lymphoid population in the maternal decidua during the first trimester of pregnancy. Decidual NK (dNK) cells display a unique functional profile and play a key role in promoting tissue remodeling, neoangiogenesis, and immune modulation. However, little information exists on their origin and development. Here we discovered CD34+ hematopoietic precursors in human decidua (dCD34+). We show that dCD34+ cells differ from cord blood- or peripheral blood-derived CD34+ precursors. The expression of IL-15/IL-2 receptor common β-chain (CD122), IL-7 receptor α-chain (CD127), and mRNA for E4BP4 and ID2 transcription factors suggested that dCD34+ cells are committed to the NK cell lineage. Moreover, they could undergo in vitro differentiation into functional (i.e., IL-8– and IL-22–producing) CD56brightCD16−KIR+/− NK cells in the presence of growth factors or even upon coculture with decidual stromal cells. Their NK cell commitment was further supported by the failure to undergo myeloid differentiation in the presence of GM-CSF. Our findings strongly suggest that decidual NK cells may directly derive from CD34+ cell precursors present in the decidua upon specific cellular interactions with components of the decidual microenvironment. PMID:21248224

  10. CID-miRNA: A web server for prediction of novel miRNA precursors in human genome

    SciTech Connect

    Tyagi, Sonika; Vaz, Candida; Gupta, Vipin; Bhatia, Rohit; Maheshwari, Sachin; Srinivasan, Ashwin; Bhattacharya, Alok

    2008-08-08

    microRNAs (miRNA) are a class of non-protein coding functional RNAs that are thought to regulate expression of target genes by direct interaction with mRNAs. miRNAs have been identified through both experimental and computational methods in a variety of eukaryotic organisms. Though these approaches have been partially successful, there is a need to develop more tools for detection of these RNAs as they are also thought to be present in abundance in many genomes. In this report we describe a tool and a web server, named CID-miRNA, for identification of miRNA precursors in a given DNA sequence, utilising secondary structure-based filtering systems and an algorithm based on stochastic context free grammar trained on human miRNAs. CID-miRNA analyses a given sequence using a web interface, for presence of putative miRNA precursors and the generated output lists all the potential regions that can form miRNA-like structures. It can also scan large genomic sequences for the presence of potential miRNA precursors in its stand-alone form. The web server can be accessed at (http://mirna.jnu.ac.in/cidmirna/)

  11. Distribution of precursor amyloid-. beta. -protein messenger RNA in human cerebral cortex: relationship to neurofibrillary tangles and neuritic plaques

    SciTech Connect

    Lewis, D.A.; Higgins, G.A.; Young, W.G.; Goldgaber, D.; Gajdusek, D.C.; Wilson, M.C.; Morrison, J.H.

    1988-03-01

    Neurofibrillary tangles (NFT) and neuritic plaques (NP), two neuropathological markers of Alzheimer disease, may both contain peptide fragments derived from the human amyloid ..beta.. protein. However, the nature of the relationship between NFT and NP and the source of the amyloid ..beta.. proteins found in each have remained unclear. The authors used in situ hybridization techniques to map the anatomical distribution of precursor amyloid-..beta..-protein mRNA in the neocortex of brains from three subjects with no known neurologic disease and from five patients with Alzheimer disease. In brains from control subjects, positively hybridizing neurons were present in cortical regions and layers that contain a high density of neuropathological markers in Alzheimer disease, as well as in those loci that contain NP but few NFT. Quantitative analyses of in situ hybridization patterns within layers III and V of the superior frontal cortex revealed that the presence of high numbers of NFT in Alzheimer-diseased brains was associated with a decrease in the number of positively hybridizing neurons compared to controls and Alzheimer-diseased brains with few NFT. These findings suggest that the expression of precursor amyloid-..beta..-protein mRNA may be a necessary but is clearly not a sufficient prerequisite for NFT formation. In addition, these results may indicate that the amyloid ..beta.. protein, present in NP in a given region or layer of cortex, is not derived from the resident neuronal cell bodies that express the mRNA for the precursor protein.

  12. Glucocorticoid-induced Leucine Zipper (GILZ) and Long GILZ Inhibit Myogenic Differentiation and Mediate Anti-myogenic Effects of Glucocorticoids*

    PubMed Central

    Bruscoli, Stefano; Donato, Valerio; Velardi, Enrico; Di Sante, Moises; Migliorati, Graziella; Donato, Rosario; Riccardi, Carlo

    2010-01-01

    Myogenesis is a process whereby myoblasts differentiate and fuse into multinucleated myotubes, the precursors of myofibers. Various signals and factors modulate this process, and glucocorticoids (GCs) are important regulators of skeletal muscle metabolism. We show that glucocorticoid-induced leucine zipper (GILZ), a GC-induced gene, and the newly identified isoform long GILZ (L-GILZ) are expressed in skeletal muscle tissue and in C2C12 myoblasts where GILZ/L-GILZ maximum expression occurs during the first few days in differentiation medium. Moreover, we observed that GC treatment of myoblasts, which increased GILZ/L-GILZ expression, resulted in reduced myotube formation, whereas GILZ and L-GILZ silencing dampened GC effects. Inhibition of differentiation caused by GILZ/L-GILZ overexpression correlated with inhibition of MyoD function and reduced expression of myogenin. Notably, results indicate that GILZ and L-GILZ bind and regulate MyoD/HDAC1 transcriptional activity, thus mediating the anti-myogenic effect of GCs. PMID:20124407

  13. Impaired myogenic tone in mesenteric arteries from overweight rats.

    PubMed

    Sweazea, Karen L; Walker, Benjimen R

    2012-03-16

    Rats fed high fat (HFD) or high sucrose (HSD) diets develop increased adiposity as well as impaired vasodilatory responsiveness stemming from oxidative stress. Moreover, HFD rats become hypertensive compared to either control (Chow) or HSD fed rats, suggesting elevated vascular tone. We hypothesized that rats with increased adiposity and oxidative stress demonstrate augmented pressure-induced vasoconstriction (i.e. myogenic tone) that could account for the hypertensive state. Male Sprague-Dawley rats were fed Chow, HFD or HSD for 6 weeks. The effects of oxidative stress and endogenous nitric oxide on myogenic responses were examined in small mesenteric arteries by exposing the arteries to incremental intraluminal pressure steps in the presence of antioxidants or an inhibitor of nitric oxide synthase, LNNA (100 μM). Contrary to the hypothesis, rats fed either HSD or HFD had significantly impaired myogenic responses despite similar vascular morphology and passive diameter responses to increasing pressures. Vascular smooth muscle (VSM) calcium levels were normal in HFD arteries suggesting that diminished calcium sensitivity was responsible for the impaired myogenic response. In contrast, VSM calcium levels were reduced in HSD arteries but were increased with pre-exposure of arteries to the antioxidants tiron (10 mM) and catalase (1200 U/mL), also resulting in enhanced myogenic tone. These findings show that oxidative stress impairs myogenic tone in arteries from HSD rats by decreasing VSM calcium. Similarly, VSM calcium responses were increased in arteries from HFD rats following treatment with tiron and catalase, but this did not result in improved myogenic tone. Nitric oxide is involved in the impaired myogenic response in HFD, but not HSD, rats since inhibition with LNNA resulted in maximal myogenic responses at lower intraluminal pressures and VSM calcium levels, further implicating reduced calcium sensitivity in the impaired response. The impaired myogenic

  14. Human hepatitis B viral e antigen and its precursor P20 inhibit T lymphocyte proliferation

    SciTech Connect

    Purvina, Maija; Hoste, Astrid; Rossignol, Jean-Michel; Lagaudriere-Gesbert, Cecile

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer P20, precursor of the HBeAg, interacts with the cellular protein gC1qR. Black-Right-Pointing-Pointer HBeAg and P20 bind to T cell surface and inhibit mitogen-induced T cell division. Black-Right-Pointing-Pointer HBeAg and P20 inhibition of T cell proliferation is gC1qR and IL-1RAcP-independent. -- Abstract: The hepatitis B virus (HBV) Precore protein is processed through the secretory pathway directly as HBeAg or with the generation of an intermediate (P20). Precore gene has been shown to be implicated in viral persistence, but the functions of HBeAg and its precursors have not been fully elucidated. We show that the secreted proteins HBeAg and P20 interact with T cell surface and alter Kit-225 and primary T cells proliferation, a process which may facilitate the establishment of HBV persistence. Our data indicate that the N-terminal end of Precore is important for these inhibitory effects and exclude that they are dependent on the association of HBeAg and P20 with two characterized cell surface ligands, the Interleukin-1 Receptor Accessory Protein and gC1qR (present study).

  15. The amyloid precursor-like protein (APLP) gene maps to the long arm of human chromosome 19

    SciTech Connect

    Wasco, W.; Tanzi, R.E. ); Brook, J.D. )

    1993-01-01

    We have recently isolated a cDNA from a mouse brain library that encodes a protein whose predicted amino acid sequence is 42% identical and 64% similar to that of the amyloid [beta] protein precursor (APP; 16). This 653-amino-acid amyloid precursor-like protein (APLP) is similar to APP in overall structure as well as amino acid sequence. The amino acid homologies are particularly strong in three distinct regions of the proteins where the identities are 47, 54, and 56% (16). All three of these regions are also conserved in the Drosophila APP-like gene, APPL (11). Notably, 12 cysteine residues and a N -glyco-sylation site are conserved in the extracellular portion of APLP and APP, and a clathrin-binding domain is conserved in the cytoplasmic domain. The cytoplasmic domain is also conserved in a partial CDNA reported to encode an APP-like gene in rat testes (17), These data suggest that APLP and APP are members of a highly conserved gene family. A panel of DNAs from 31 human-rodent somatic cell lines of known karyotype was digested with EcoR1. These DNAs were then probed with the human APLP cDNA clone and the hybridization pattern was consistent with the assignment of the APLP locus to chromosome 19. 17 refs., 1 fig.

  16. Long-term, stable differentiation of human embryonic stem cell-derived neural precursors grafted into the adult mammalian neostriatum.

    PubMed

    Nasonkin, Igor; Mahairaki, Vasiliki; Xu, Leyan; Hatfield, Glen; Cummings, Brian J; Eberhart, Charles; Ryugo, David K; Maric, Dragan; Bar, Eli; Koliatsos, Vassilis E

    2009-10-01

    Stem cell grafts have been advocated as experimental treatments for neurological diseases by virtue of their ability to offer trophic support for injured neurons and, theoretically, to replace dead neurons. Human embryonic stem cells (HESCs) are a rich source of neural precursors (NPs) for grafting, but have been questioned for their tendency to form tumors. Here we studied the ability of HESC-derived NP grafts optimized for cell number and differentiation stage prior to transplantation, to survive and stably differentiate and integrate in the basal forebrain (neostriatum) of young adult nude rats over long periods of time (6 months). NPs were derived from adherent monolayer cultures of HESCs exposed to noggin. After transplantation, NPs showed a drastic reduction in mitotic activity and an avid differentiation into neurons that projected via major white matter tracts to a variety of forebrain targets. A third of NP-derived neurons expressed the basal forebrain-neostriatal marker dopamine-regulated and cyclic AMP-regulated phosphoprotein. Graft-derived neurons formed mature synapses with host postsynaptic structures, including dendrite shafts and spines. NPs inoculated in white matter tracts showed a tendency toward glial (primarily astrocytic) differentiation, whereas NPs inoculated in the ventricular epithelium persisted as nestin(+) precursors. Our findings demonstrate the long-term ability of noggin-derived human NPs to structurally integrate tumor-free into the mature mammalian forebrain, while maintaining some cell fate plasticity that is strongly influenced by particular central nervous system (CNS) niches.

  17. Myogenic Differential Methylation: Diverse Associations with Chromatin Structure

    PubMed Central

    Chandra, Sruti; Baribault, Carl; Lacey, Michelle; Ehrlich, Melanie

    2014-01-01

    Employing a new algorithm for identifying differentially methylated regions (DMRs) from reduced representation bisulfite sequencing profiles, we identified 1972 hypermethylated and 3250 hypomethylated myogenic DMRs in a comparison of myoblasts (Mb) and myotubes (Mt) with 16 types of nonmuscle cell cultures. DMRs co-localized with a variety of chromatin structures, as deduced from ENCODE whole-genome profiles. Myogenic hypomethylation was highly associated with both weak and strong enhancer-type chromatin, while hypermethylation was infrequently associated with enhancer-type chromatin. Both myogenic hypermethylation and hypomethylation often overlapped weak transcription-type chromatin and Polycomb-repressed-type chromatin. For representative genes, we illustrate relationships between DNA methylation, the local chromatin state, DNaseI hypersensitivity, and gene expression. For example, MARVELD2 exhibited myogenic hypermethylation in transcription-type chromatin that overlapped a silenced promoter in Mb and Mt while TEAD4 had myogenic hypomethylation in intronic subregions displaying enhancer-type or transcription-type chromatin in these cells. For LSP1, alternative promoter usage and active promoter-type chromatin were linked to highly specific myogenic or lymphogenic hypomethylated DMRs. Lastly, despite its myogenesis-associated expression, TBX15 had multiple hypermethylated myogenic DMRs framing its promoter region. This could help explain why TBX15 was previously reported to be underexpressed and, unexpectedly, its promoter undermethylated in placentas exhibiting vascular intrauterine growth restriction. PMID:24949935

  18. Phenotypic Screening Identifies Modulators of Amyloid Precursor Protein Processing in Human Stem Cell Models of Alzheimer's Disease.

    PubMed

    Brownjohn, Philip W; Smith, James; Portelius, Erik; Serneels, Lutgarde; Kvartsberg, Hlin; De Strooper, Bart; Blennow, Kaj; Zetterberg, Henrik; Livesey, Frederick J

    2017-03-06

    Human stem cell models have the potential to provide platforms for phenotypic screens to identify candidate treatments and cellular pathways involved in the pathogenesis of neurodegenerative disorders. Amyloid precursor protein (APP) processing and the accumulation of APP-derived amyloid β (Aβ) peptides are key processes in Alzheimer's disease (AD). We designed a phenotypic small-molecule screen to identify modulators of APP processing in trisomy 21/Down syndrome neurons, a complex genetic model of AD. We identified the avermectins, commonly used as anthelmintics, as compounds that increase the relative production of short Aβ peptides at the expense of longer, potentially more toxic peptides. Further studies demonstrated that this effect is not due to an interaction with the core γ-secretase responsible for Aβ production. This study demonstrates the feasibility of phenotypic drug screening in human stem cell models of Alzheimer-type dementia, and points to possibilities for indirectly modulating APP processing, independently of γ-secretase modulation.

  19. Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma

    PubMed Central

    Ozawa, Tatsuya; Riester, Markus; Cheng, Yu-Kang; Huse, Jason T; Squatrito, Massimo; Helmy, Karim; Charles, Nikki; Michor, Franziska; Holland, Eric C.

    2014-01-01

    SUMMARY To understand the relationships between the non-GCIMP glioblastoma (GBM) subgroups, we performed mathematical modeling to predict the temporal sequence of driver events during tumorigenesis. The most common order of evolutionary events is 1) chromosome (chr) 7 gain and chr10 loss, followed by 2) CDKN2A loss and/or TP53 mutation, and 3) alterations canonical for specific subtypes. We then developed a computational methodology to identify drivers of broad copy number changes, identifying PDGFA (chr7) and PTEN (chr10) as driving initial non-disjunction events. These predictions were validated using mouse modeling, showing that PDGFA is sufficient to induce proneural-like gliomas, and additional NF1 loss converts proneural to the mesenchymal subtype. Our findings suggest most non-GCIMP-mesenchymal GBMs arise as, and evolve from, a proneural-like precursor. PMID:25117714

  20. Complementary DNA sequence of human amyloidogenic immunoglobulin light-chain precursors.

    PubMed Central

    Aucouturier, P; Khamlichi, A A; Preud'homme, J L; Bauwens, M; Touchard, G; Cogné, M

    1992-01-01

    The primary structure of three amyloid precursor light chains was deduced from the sequence of complementary DNA (cDNA) from bone marrow cells from patients affected with classical lambda (patient Air) or kappa (patient Arn) amyloidosis and from a patient (Aub) in whom lambda amyloid deposits were unusual by their perimembranous location in the kidney glomerulus. All three RNAs were of normal size, as estimated by Northern blotting, and encoded normal-sized light chains. The deduced light-chain sequence from patient Arn was related to the V kappa 1 subgroup, and included ten residues that had not been previously reported at these positions, only one of which (Leu-21) was located in a beta-sheet (4-2). The unusual presence of Asn-70 determined a potential N-glycosylation site. The sequence of the light chain from patient Air belonged to the V lambda 1 subgroup, and included three unusually located amino acid residues, one of which had already been reported in an amyloidogenic lambda-chain. The sequence of the light chain from patient Aub was related to the V lambda 3 subgroup, and contained five amino acid residues that had not previously been described at the corresponding positions; two of them (His-36 and Ser-77) were located in beta-sheets (3-1 and 4-3 respectively). This sequence was also peculiar because of the presence of numerous acidic residues in the complementarity-determining regions. Such unusual primary structures might be responsible for the amyloidogenic properties of these light-chain precursors. Images Fig. 1. PMID:1379039

  1. Immunohistochemical examination of gastrin, gastrin precursors, and gastrin/CCK-2 receptor in human esophageal squamous cell carcinomas.

    PubMed

    Yuan, Aping; Liu, Jinzhong; Liu, Yiqing; Bjørnsen, Tone; Varro, Andrea; Cui, Guanglin

    2008-12-01

    A promoting effect of gastrin on stimulating Barrett's oesophagus proliferation has been demonstrated, but whether it plays a regulating role for esophageal squamous cell carcinoma (ESCC) to date has not been fully investigated. The aim of this study is to examine the expressions of gastrin, gastrin precursors and gastrin/CCK-2 receptor in ESCC. Tissue specimen sections from 38 patients with ESSC obtained from a high incidence area of north China were assessed using immunohistochemistry for amidated gastrin, gastrin precursors (progastrin and glycine-extended gastrin) and gastrin/CCK-2 receptors. Their clinical histopathological significance was also analyzed. Of 38 ESCC, the immunoreactivities of gastrin, glycine-extended gastrin and progastrin were observed in 13.2% (5/38), 7.9% (3/38) and 23.68% (9/38) cases. The expression of progastrin was obviously higher than other gastrins, though not significantly (P > 0.05). In positive cases for gastrin or glycine-extended gastrin, the scores of positive tumor cell numbers were at a lower density (<10/abundant-distributed field). However, the scores of progastrin positive tumor cell density in five of nine positive cases were over 10/abundant-distributed field. The immunoreactivity of gastrin/CCK-2 receptor was also observed in 15.8% (6/38) ESCC cases. There was not significant correlation regarding immunohistochemical results with known histomorphological parameters i.e. gender, tumor location and TNM stages. Based on our current results, ESCC tumor cells could be a possible cellular source of gastrin precursors, which has been postulated to play a role in regulating the growth in some human tumor cells.

  2. Use of long-term human marrow cultures to demonstrate progenitor cell precursors in marrow treated with 4-hydroperoxycyclophosphamide

    SciTech Connect

    Winton, E.F.; Colenda, K.W.

    1987-07-01

    The continued retrieval of progenitor cells (CFU-GEMM, BFU-E, CFU-E, CFU-GM) from human long-term marrow cultures (LTMC) is not uncommonly used as evidence that proliferation and differentiation are occurring in more primitive hematopoietic stem cells (HSC) in these cultures. Alternatively, the continued presence of progenitors in LTMC could be the result of survival and/or limited self-renewal of progenitor cells present when the culture was initiated, and such progenitors would have little relevance to the parent HSC. The following studies were designed to determine the relative contributions of precursors of progenitor cells to the total progenitor cells present in LTMC using a two-stage regeneration model. The adherent layer in LTMC was established over 3 weeks, irradiated (875 rad) to permanently eliminate resident hematopoietic cells, and recharged with autologous cryo-preserved marrow that was either treated or not treated (control) with 4-hydroperoxycyclophosphamide (4-HC, 100 micrograms/ml for 30 min). The 4-HC-treated marrow contained no progenitor cells, yet based on clinical autologous bone marrow transplant experience, has intact HSC. Within 1-3 weeks, progenitor cells reappeared in the irradiated LTMC recharged with 4-HC-treated marrow, and were preferentially located in the adherent layer. By 2-6 weeks, the number of progenitor cells in the adherent layer of LTMC recharged with 4-HC marrow was equivalent to control LTMC. The progenitors regenerating in the irradiated LTMC recharged with 4-HC-treated marrow appear to originate from precursors of progenitor cells, perhaps HSC. We propose this model may be useful in elucidating cellular and molecular correlates of progenitor cell regeneration from precursors.

  3. Isolating RNA from precursor and mature melanocytes from human vitiligo and normal skin using laser capture microdissection.

    PubMed

    Goldstein, Nathaniel B; Koster, Maranke I; Hoaglin, Laura G; Wright, Michael J; Robinson, Steven E; Robinson, William A; Roop, Dennis R; Norris, David A; Birlea, Stanca A

    2016-10-01

    To characterize the gene expression profile of regenerated melanocytes in the narrow band UVB (NBUVB)-treated vitiligo epidermis and their precursors in the hair follicle, we present here a strategy of RNA isolation from in situ melanocytes using human frozen skin. We developed a rapid immunostaining protocol using the NKI-beteb antibody, which labels differentiated and precursor melanocytes, followed by fluorescent laser capture microdissection. This technique enabled the direct isolation, from melanocyte and adjacent keratinocyte populations, of satisfactory quality RNA that was successfully amplified and analysed by qRT-PCR. The melanocyte-specific gene transcripts TYR, DCT, TYRP1 and PMEL were significantly upregulated in our NBUVB-treated melanocyte samples as compared with the keratinocyte samples, while keratinocyte-specific genes (KRT5 and KRT14) were expressed significantly higher in the keratinocyte samples as compared with the melanocyte samples. Furthermore, in both NBUVB-treated vitiligo skin and normal skin, when bulge melanocytes were compared with epidermal melanocytes, we found significantly lower expression of melanocyte-specific genes and significantly higher expression of three melanocytic stem cell genes (SOX9, WIF1 and SFRP1), while ALCAM and ALDH1A1 transcripts did not show significant variation. We found significantly higher expression of melanocyte-specific genes in the epidermis of NBUVB-treated vitiligo, as compared to the normal skin. When comparing bulge melanocyte samples from untreated vitiligo, NBUVB-treated vitiligo and normal skin, we did not find significant differences in the expression of melanocyte-specific genes or melanocytic stem cell genes. These techniques offer valuable opportunities to study melanocytes and their precursors in vitiligo and other pigmentation disorders. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Myogenic regulatory transcription factors regulate growth in rhabdomyosarcoma

    PubMed Central

    Tenente, Inês M; Hayes, Madeline N; Ignatius, Myron S; McCarthy, Karin; Yohe, Marielle; Sindiri, Sivasish; Gryder, Berkley; Oliveira, Mariana L; Ramakrishnan, Ashwin; Tang, Qin; Chen, Eleanor Y; Petur Nielsen, G; Khan, Javed; Langenau, David M

    2017-01-01

    Rhabdomyosarcoma (RMS) is a pediatric malignacy of muscle with myogenic regulatory transcription factors MYOD and MYF5 being expressed in this disease. Consensus in the field has been that expression of these factors likely reflects the target cell of transformation rather than being required for continued tumor growth. Here, we used a transgenic zebrafish model to show that Myf5 is sufficient to confer tumor-propagating potential to RMS cells and caused tumors to initiate earlier and have higher penetrance. Analysis of human RMS revealed that MYF5 and MYOD are mutually-exclusively expressed and each is required for sustained tumor growth. ChIP-seq and mechanistic studies in human RMS uncovered that MYF5 and MYOD bind common DNA regulatory elements to alter transcription of genes that regulate muscle development and cell cycle progression. Our data support unappreciated and dominant oncogenic roles for MYF5 and MYOD convergence on common transcriptional targets to regulate human RMS growth. DOI: http://dx.doi.org/10.7554/eLife.19214.001 PMID:28080960

  5. Cloning and expression of human endothelial-monocyte-activating polypeptide 2 (EMAP-2) and identification of its putative precursor.

    PubMed

    Tas, M P; Houghton, J; Jakobsen, A M; Tolmachova, T; Carmichael, J; Murray, J C

    1997-08-01

    Endothelial-monocyte-activating polypeptide 2 (EMAP-2) modulates a range of properties of endothelial cells, monocytes and neutrophils in vitro, and induces an acute inflammatory reaction and tumour regression in vivo. We generated the full-length human cDNA sequences of EMAP-2 and its putative precursor pro-EMAP-2 as PCR products. These were cloned into the pCR3 vector and subcloned into pGEX-2T for expression as fusion products with glutathione-S-transferase (GST). Recombinant EMAP-2 (rEMAP-2) was isolated by thrombin cleavage of the fusion protein, followed by affinity chromatography. rEMAP-2 retained biological activity, which was blocked by polyclonal antibodies raised against GST-EMAP-2. By Western blotting, a 34-kDa product corresponding to the predicted precursor proEMAP-2 was detected in lysates of the U937 monocytic cell line, while supernatants contained higher levels of the mature 22-kDa molecule.

  6. Identification of mitochondrial proteins and some of their precursors in two-dimensional electrophoretic maps of human cells

    SciTech Connect

    Anderson, L.

    1981-04-01

    A set of at least 30 proteins disappears from the two-dimensional electrophoretic pattern of human lymphoid cells treated with various antimitochondrial agents. This set is similar to the set of proteins found in isolated mitochondria (except for the presence of actin in the latter group), indicating that the inhibitor effect stops production of a majority of mature mitochondrial proteins. Several proteins having the characteristics of precursors to the major cytoplasmically synthesized mitochondrial proteins can be observed in cells during fast-pulse experiments and in a reticulocyte lysate system fed with total lymphoid cell RNA. In the three major instances of mitochondrial precursor-product processing, the removal peptide is quite basic in each case, suggesting that a lysine- or arginine-rich terminal sequence may be necessary for initial recognition by the mitochondrial protein uptake apparatus. The inhibitor effect allows easy identification of a large set of mitochondrial proteins in two-dimensional maps of various cells, thereby specifying a particularly tractable and functionally distinctive subset of the cellular proteins. The nature and wide scope of the effect support the concept of energy-dependent vectorial processing and indicate that such a mechanism is generally applicable to the major class of cytoplasmically synthesized mitochondrial proteins in mammalian cells.

  7. Mitochondrial dysfunction in a transgenic mouse model expressing human amyloid precursor protein (APP) with the Arctic mutation.

    PubMed

    Rönnbäck, Annica; Pavlov, Pavel F; Mansory, Mansorah; Gonze, Prisca; Marlière, Nicolas; Winblad, Bengt; Graff, Caroline; Behbahani, Homira

    2016-02-01

    Accumulation of amyloid β-peptide (Aβ) in the brain is an important event in the pathogenesis of Alzheimer disease. We have used a transgenic mouse model expressing human amyloid precursor protein (APP) with the Arctic mutation to investigate whether Aβ deposition is correlated with mitochondrial functions in these animals. We found evidence of mitochondrial dysfunction (i.e., decreased mitochondrial membrane potential, increased production of reactive oxygen species and oxidative DNA damage) at 6 months of age, when the mice showed very mild Aβ deposition. More pronounced mitochondrial abnormalities were present in 24-month-old TgAPParc mice with more extensive Aβ pathology. This study demonstrates for the first time mitochondrial dysfunction in transgenic mice with a mutation within the Aβ peptide (the Arctic APP mutation), and confirms previous studies suggesting that mitochondrial dysfunction and oxidative stress is an early event in the pathogenesis of Alzheimer disease. This study demonstrates mitochondrial dysfunction in transgenic mice with a mutation within the amyloid beta (Aβ) peptide (the Arctic amyloid precursor protein (APP) mutation). We found evidence of mitochondrial dysfunction (i.e. decreased mitochondrial membrane potential (MMP), increased production of reactive oxygen species (ROS) and oxidative DNA damage) at 6 months of age, when very mild Aβ deposition is present in the mice. Also, the cytochrome c (COX) activity was significantly decreased in mitochondria from transgenic mice at 24 months of age.

  8. Functional plasticity of the N-methyl-d-aspartate receptor in differentiating human erythroid precursor cells

    PubMed Central

    Hänggi, Pascal; Telezhkin, Vsevolod; Kemp, Paul J.; Schmugge, Markus; Gassmann, Max; Goede, Jeroen S.; Speer, Oliver

    2015-01-01

    Calcium signaling is essential to support erythroid proliferation and differentiation. Precise control of the intracellular Ca2+ levels in erythroid precursor cells (EPCs) is afforded by coordinated expression and function of several cation channels, including the recently identified N-methyl-d-aspartate receptor (NMDAR). Here, we characterized the changes in Ca2+ uptake and electric currents mediated by the NMDARs occurring during EPC differentiation using flow cytometry and patch clamp. During erythropoietic maturation, subunit composition and properties of the receptor changed; in proerythroblasts and basophilic erythroblasts, fast deactivating currents with high amplitudes were mediated by the GluN2A subunit-dominated receptors, while at the polychromatic and orthochromatic erythroblast stages, the GluN2C subunit was getting more abundant, overriding the expression of GluN2A. At these stages, the currents mediated by the NMDARs carried the features characteristic of the GluN2C-containing receptors, such as prolonged decay time and lower conductance. Kinetics of this switch in NMDAR properties and abundance varied markedly from donor to donor. Despite this variability, NMDARs were essential for survival of EPCs in any subject tested. Our findings indicate that NMDARs have a dual role during erythropoiesis, supporting survival of polychromatic erythroblasts and contributing to the Ca2+ homeostasis from the orthochromatic erythroblast stage to circulating red blood cells. PMID:25788577

  9. Functional plasticity of the N-methyl-d-aspartate receptor in differentiating human erythroid precursor cells.

    PubMed

    Hänggi, Pascal; Telezhkin, Vsevolod; Kemp, Paul J; Schmugge, Markus; Gassmann, Max; Goede, Jeroen S; Speer, Oliver; Bogdanova, Anna

    2015-06-15

    Calcium signaling is essential to support erythroid proliferation and differentiation. Precise control of the intracellular Ca(2+) levels in erythroid precursor cells (EPCs) is afforded by coordinated expression and function of several cation channels, including the recently identified N-methyl-d-aspartate receptor (NMDAR). Here, we characterized the changes in Ca(2+) uptake and electric currents mediated by the NMDARs occurring during EPC differentiation using flow cytometry and patch clamp. During erythropoietic maturation, subunit composition and properties of the receptor changed; in proerythroblasts and basophilic erythroblasts, fast deactivating currents with high amplitudes were mediated by the GluN2A subunit-dominated receptors, while at the polychromatic and orthochromatic erythroblast stages, the GluN2C subunit was getting more abundant, overriding the expression of GluN2A. At these stages, the currents mediated by the NMDARs carried the features characteristic of the GluN2C-containing receptors, such as prolonged decay time and lower conductance. Kinetics of this switch in NMDAR properties and abundance varied markedly from donor to donor. Despite this variability, NMDARs were essential for survival of EPCs in any subject tested. Our findings indicate that NMDARs have a dual role during erythropoiesis, supporting survival of polychromatic erythroblasts and contributing to the Ca(2+) homeostasis from the orthochromatic erythroblast stage to circulating red blood cells. Copyright © 2015 the American Physiological Society.

  10. Production, purification and functional validation of human secreted amyloid precursor proteins for use as neuropharmacological reagents.

    PubMed

    Turner, Paul R; Bourne, Katie; Garama, Daniel; Carne, Alan; Abraham, Wickliffe C; Tate, Warren P

    2007-08-15

    The secreted fragment of the amyloid precursor protein (sAPPalpha) generated following cleavage by alpha-secretase is an important mediator of cell function and is both neurotrophic and neuroprotective. HEK 293T cells have been stably integrated with a fragment of the APP gene to produce and secrete either sAPPalpha, or the alternative cleavage product sAPPbeta. Heparin binding domains on the proteins have been utilised to develop a one-step fast-performance-liquid-chromatography (FPLC) purification of sAPPs from the conditioned media. Immunoblotting analyses with a sAPP specific antibody coupled with highly sensitive silver staining techniques have validated the expression and purification strategy. Functional activity of the purified fragments was demonstrated by their ability to protect COS-7 and SH-SY5Y (neuroblastoma) cells against the adverse effects of glucose deprivation in a cell viability assay. The purified sAPPs also activated the NFkappaB transcription factor in COS-7 cells transfected with a luciferase reporter plasmid, with sAPPalpha the more potent activator as expected. The simple protocol to produce these mammalian expressed proteins will facilitate their use as potential neuropharmacological reagents in the elucidation of biochemical pathways modulated by sAPPs, and in the study of Alzheimer's disease mechanisms in general.

  11. Different requirements for Wnt signaling in tongue myogenic subpopulations.

    PubMed

    Zhong, Z; Zhao, H; Mayo, J; Chai, Y

    2015-03-01

    The tongue is a muscular organ that is essential in vertebrates for important functions, such as food intake and communication. Little is known about regulation of myogenic progenitors during tongue development when compared with the limb or trunk region. In this study, we investigated the relationship between different myogenic subpopulations and the function of canonical Wnt signaling in regulating these subpopulations. We found that Myf5- and MyoD-expressing myogenic subpopulations exist during embryonic tongue myogenesis. In the Myf5-expressing myogenic progenitors, there is a cell-autonomous requirement for canonical Wnt signaling for cell migration and differentiation. In contrast, the MyoD-expressing subpopulation does not require canonical Wnt signaling during tongue myogenesis. Taken together, our results demonstrate that canonical Wnt signaling differentially regulates the Myf5- and MyoD-expressing subpopulations during tongue myogenesis. © International & American Associations for Dental Research 2015.

  12. Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells.

    PubMed Central

    Goldgaber, D; Harris, H W; Hla, T; Maciag, T; Donnelly, R J; Jacobsen, J S; Vitek, M P; Gajdusek, D C

    1989-01-01

    We have analyzed the modulation of amyloid beta-protein precursor (APP) gene expression in human umbilical vein endothelial cells (HUVEC). The level of the APP mRNA transcripts increased as HUVEC reached confluency. In confluent culture the half-life of the APP mRNA was 4 hr. Treatment of the cells with human-recombinant interleukin 1 (IL-1), phorbol 12-myristate 13-acetate, or heparin-binding growth factor 1 enhanced the expression of APP gene in these cells, but calcium ionophore A23187 and dexamethasone did not. The protein kinase C inhibitor 1-(isoquinolinsulfonyl)-2-methylpiperazine (H7) inhibited IL-1-mediated increase of the level of APP transcripts. To map IL-1-responsive elements of the APP promoter, truncated portions of the APP promoter were fused to the human growth hormone reporter gene. The recombinant plasmids were transfected into mouse neuroblastoma cells, and the cell medium was assayed for the human growth hormone. A 180-base-pair region of the APP promoter located between position -485 and -305 upstream from the transcription start site was necessary for IL-1-mediated induction of the reporter gene. This region contains the upstream transcription factor AP-1 binding site. These results suggest that IL-1 upregulates APP gene expression in HUVEC through a pathway mediated by protein kinase C, utilizing the upstream AP-1 binding site of the APP promoter. Images PMID:2508093

  13. Quantitative variation in obesity-related traits and insulin precursors linked to the OB gene region on human chromosome 7.

    PubMed Central

    Duggirala, R.; Stern, M. P.; Mitchell, B. D.; Reinhart, L. J.; Shipman, P. A.; Uresandi, O. C.; Chung, W. K.; Leibel, R. L.; Hales, C. N.; O'Connell, P.; Blangero, J.

    1996-01-01

    Despite the evidence that human obesity has strong genetic determinants, efforts at identifying specific genes that influence human obesity have largely been unsuccessful. Using the sibship data obtained from 32 low income Mexican American pedigrees ascertained on a type II diabetic proband and a multipoint variance-components method, we tested for linkage between various obesity-related traits plus associated metabolic traits and 15 markers on human chromosome 7. We found evidence for linkage between markers in the OB gene region and various traits, as follows: D7S514 and extremity skinfolds (LOD = 3.1), human carboxypeptidase A1 (HCPA1) and 32,33-split proinsulin level (LOD = 4.2), and HCPA1 and proinsulin level (LOD = 3.2). A putative susceptibility locus linked to the marker D7S514 explained 56% of the total phenotypic variation in extremity skinfolds. Variation at the HCPA1 locus explained 64% of phenotypic variation in proinsulin level and approximately 73% of phenotypic variation in split proinsulin concentration, respectively. Weaker evidence for linkage to several other obesity-related traits (e.g., waist circumference, body-mass index, fat mass by bioimpedance, etc.) was observed for a genetic location, which is approximately 15 cM telomeric to OB. In conclusion, our study reveals that the OB region plays a significant role in determining the phenotypic variation of both insulin precursors and obesity-related traits, at least in Mexican Americans. PMID:8751871

  14. miR-127 enhances myogenic cell differentiation by targeting S1PR3.

    PubMed

    Zhai, Lili; Wu, Rimao; Han, Wanhong; Zhang, Yong; Zhu, Dahai

    2017-03-30

    MicroRNAs (miRNAs) have recently been implicated in muscle stem cell function. miR-127 is known to be predominantly expressed in skeletal muscle, but its roles in myogenic differentiation and muscle regeneration are unknown. Here, we show that miR-127 is upregulated during C2C12 and satellite cell (SC) differentiation and, by establishing C2C12 cells stably expressing miR-127, demonstrate that overexpression of miR-127 in C2C12 cells enhances myogenic cell differentiation. To investigate the function of miR-127 during muscle development and regeneration in vivo, we generated miR-127 transgenic mice. These mice exhibited remarkably accelerated muscle regeneration compared with wild-type mice by promoting SC differentiation. Mechanistically, we demonstrated that the gene encoding sphingosine-1-phosphate receptor 3 (S1PR3), a G-protein-coupled receptor for sphingosine-1-phosphate, is a target of miR-127 required for its function in promoting myogenic cell differentiation. Importantly, overexpression of miR-127 in muscular dystrophy model mdx mice considerably ameliorated the disease phenotype. Thus, our findings suggest that miR-127 may serve as a potential therapeutic target for the treatment of skeletal muscle disease in humans.

  15. Myogenic stem cell function is impaired in mice lacking the forkhead/winged helix protein MNF.

    PubMed

    Garry, D J; Meeson, A; Elterman, J; Zhao, Y; Yang, P; Bassel-Duby, R; Williams, R S

    2000-05-09

    Myocyte nuclear factor (MNF) is a winged helix transcription factor that is expressed selectively in myogenic stem cells (satellite cells) of adult animals. Using a gene knockout strategy to generate a functional null allele at the Mnf locus, we observed that mice lacking MNF are viable, but severely runted. Skeletal muscles of Mnf-/- animals are atrophic, and satellite cell function is impaired. Muscle regeneration after injury is delayed and incomplete, and the normal timing of expression of cell cycle regulators and myogenic determination genes is dysregulated. Mnf mutant mice were intercrossed with mdx mice that lack dystrophin and exhibit only a subtle myopathic phenotype. In contrast, mdx mice that also lack MNF die in the first few weeks of life with a severe myopathy. Haploinsufficiency at the Mnf locus (Mnf+/-) also exacerbates the mdx phenotype to more closely resemble Duchenne's muscular dystrophy in humans. We conclude that MNF acts to regulate genes that coordinate the proliferation and differentiation of myogenic stem cells after muscle injury. Animals deficient in MNF may prove useful for evaluation of potential therapeutic interventions to promote muscle regeneration for patients having Duchenne's muscular dystrophy.

  16. Equine-Induced Pluripotent Stem Cells Retain Lineage Commitment Toward Myogenic and Chondrogenic Fates

    PubMed Central

    Quattrocelli, Mattia; Giacomazzi, Giorgia; Broeckx, Sarah Y.; Ceelen, Liesbeth; Bolca, Selin; Spaas, Jan H.; Sampaolesi, Maurilio

    2016-01-01

    Summary Induced pluripotent stem cells (iPSCs) hold great potential not only for human but also for veterinary purposes. The equine industry must often deal with health issues concerning muscle and cartilage, where comprehensive regenerative strategies are still missing. In this regard, a still open question is whether equine iPSCs differentiate toward muscle and cartilage, and whether donor cell type influences their differentiation potential. We addressed these questions through an isogenic system of equine iPSCs obtained from myogenic mesoangioblasts (MAB-iPSCs) and chondrogenic mesenchymal stem cells (MSC-iPSCs). Despite similar levels of pluripotency characteristics, the myogenic differentiation appeared enhanced in MAB-iPSCs. Conversely, the chondrogenic differentiation was augmented in MSC-iPSCs through both teratoma and in vitro differentiation assays. Thus, our data suggest that equine iPSCs can differentiate toward the myogenic and chondrogenic lineages, and can present a skewed differentiation potential in favor of the source cell lineage. PMID:26771353

  17. Myogenic satellite cells differentiation with linolenic and retinoic and thiazolidenediones from prepubertal Korean black goat.

    PubMed

    Subi, Sugathan; Lee, Sungjin; Shiwani, Supriya; Singh, Naresh Kumar

    2017-09-18

    Myogenic satellite cells were isolated from semitendinosus muscle of prepubertal Korean black goat to observe the differential effect of linolenic and retinoic acid in thepresence of thiazolidinediones and also to observe the production insulin sensitive preadipocyte. Cells were characterized for its stemness with CD 34, CD 13, CD 106, CD44, Vimentin surface markers using flow cytometry. Cells characterized themselves to possess significant (p<0.05) levels of CD 13, CD 34, CD106, Vimentin revealing their stemness potential and goat myogenic satellite cells also exhibited CD 44, revealing to possess % of stemness factors of adipose lineage apart from their inherent stemness of paxillin factors 3/7. Cells during proliferation stayed absolutely and firmly within the myogenic fate without any external cues and continue to show significant (p<0.05) fusion index % to express MyoD, MHC and αSMA in 2% HS. However, confluent myogenic satellite cells were the ones easily turning into adipogenic lineage. Intriguingly, upregulation in adipose specific genetic markers such as PPARγ, AdipoQ, LPL and C/EBPα were observed and confirmed in all given treatments. However, the amount of adipogenesis was found to be statistically significant (p<0.01) with linolenic acid as compared to retinoic acid in combination with TZD's. Retinoic acid was found to produce smaller preadipocytes which has been assumed to have insulin sensitization and hence retinoic acid could be used as a potential agent to sensitize tissues to insulin in combination with TZD's to treat diabetic condtions in humans and animals in future.

  18. N-Acetyl-L-Cystein downregulates beta-amyloid precursor protein gene transcription in human neuroblastoma cells.

    PubMed

    Studer, R; Baysang, G; Brack, C

    2001-01-01

    The causes for the sporadic form of Alzheimer's disease (AD) are still poorly understood, except from the fact that age is an important risk factor. The main component of the characteristic amyloid plaques in brains of AD patients are Abeta peptides, derivatives of the amyloid precursor protein APP. Oxidative stress may contribute to the aetiology of AD by dysregulation of APP metabolism. Overexpression of the APP gene could result in an increased secretion of neurotoxic Abeta peptides, while preventing the overexpression might be protective. We here report that the antioxidant N-Acetyl-L-Cystein (NAC) downregulates APP gene transcription in human neuroblastoma cells. The effect is reversible when cells are returned to NAC free medium. These results open up new possibilities for the development of therapeutic agents that intervene at the transcriptional level.

  19. The C-Terminal Half of the Human Immunodeficiency Virus Type 1 Gag Precursor Is Sufficient for Efficient Particle Assembly

    PubMed Central

    Borsetti, Alessandra; Öhagen, Åsa; Göttlinger, Heinrich G.

    1998-01-01

    Human immunodeficiency virus type 1 particle assembly is directed by the Gag polyprotein Pr55gag, the precursor for the matrix (MA), capsid (CA), and nucleocapsid proteins of the mature virion. We now show that CA sequences N terminal to the major homology region (MHR), which form a distinct domain, are dispensable for particle formation. However, slightly larger deletions which extend into the MHR severely impair particle production. Remarkably, a deletion which removed essentially all MA and CA sequences between the N-terminal myristyl anchor and the MHR reduced the yield of extracellular particles only moderately. Particle formation even exceeded wild-type levels when additional MA sequences, either from the N or the C terminus of the domain, were retained. We conclude that no distinct region between the myristyl anchor and the MHR is required for efficient particle assembly or release. PMID:9765481

  20. Detection of the single-chain precursor in the production and purification process of recombinant human insulin.

    PubMed

    Leng, Chunsheng; Li, Qingwei; Wu, Fenfang; Chen, Liyong; Su, Peng

    2013-08-01

    High quality recombinant insulin requires being free of single-chain precursor (proinsulin), a task that depends on the selectivity and sensitivity of the monitoring process for detecting proinsulin. In this study we developed an enzyme-linked immunosorbent assay (ELISA) system that was specifically tailored to detect recombinant proinsulin. The proinsulin consists of six components: an initiating methionine, 48 amino acids from human growth hormones (HGH, used as the protection peptide), first connecting Arg-residue, B-chain of insulin, and second connecting Arg-peptide and A-chain of insulin. This form of proinsulin is more stable and can be efficiently expressed by E. coli than insulin. Herein, we evaluated the specificity, precision, recovery, sensitivity, and detection range of the proinsulin ELISA kit. The results showed that the ELISA kit is a very useful tool for monitoring the proinsulin yield in early stages of insulin production as well as the residual proinsulin in the final product, insulin.

  1. Sulphatide and its precursor galactosylceramide influence the production of cytokines in human mononuclear cells.

    PubMed

    Buschard, K; Diamant, M; Bovin, L E; Månsson, J E; Fredman, P; Bendtzen, K

    1996-12-01

    Sulphatide is expressed in the central and peripheral neural system, in islets of Langerhans, and in tissues affected by late diabetic complications. Autoantibodies to sulphatide are present in patients with insulin-dependent diabetes and the Guillain-Barré syndrome. Cytokines influence these disease processes, and we therefore studied whether sulphatide and its precursor galactosylceramide (gal-cer) influence the in vitro production of cytokines by blood mononuclear cells (MNC) originating from 15 healthy persons. Using lipopolysaccharide (LPS)-stimulated cells, sulphatide increased the IL-2 production (163 +/- 17% of controls without sulphatide, p = 0.02), and gal-cer increased the IL-1 alpha production (145 +/- 13%, p = 0.006), whereas neither gal-cer nor sulphatide had an effect on the production of IL-6, IL-10 or TNF alpha. When stimulating cells with phytohaemagglutinin (PHA), sulphatide decreased the production of IL-6 (88 +/- 5%, p = 0.009), IL-10 (66 +/- 3%, p = 0.000003), and TNF alpha (75 +/- 9% p = 0.02). Gal-cer, however, increased the production of IL-6 (188 +/- 13% p = 0.000006), and decreased the production of TNF beta (80 +/- 6%, p = 0.007). Neither gal-cer nor sulphatide had an effect on the production of IL-2 or IFN gamma from PHA-stimulated cells. Northern blot analysis using an IL-6 probe similarly showed an increased amount of IL-6 mRNA after gal-cer incubation (range 469%-150%, n = 3) of PHA-stimulated control. Thus, sulphatide and gal-cer influence the production of several cytokines thought to be involved in immunoinflammatory disease processes.

  2. Differential transgene expression patterns in Alzheimer mouse models revealed by novel human amyloid precursor protein-specific antibodies.

    PubMed

    Höfling, Corinna; Morawski, Markus; Zeitschel, Ulrike; Zanier, Elisa R; Moschke, Katrin; Serdaroglu, Alperen; Canneva, Fabio; von Hörsten, Stephan; De Simoni, Maria-Grazia; Forloni, Gianluigi; Jäger, Carsten; Kremmer, Elisabeth; Roßner, Steffen; Lichtenthaler, Stefan F; Kuhn, Peer-Hendrik

    2016-10-01

    Alzheimer's disease (AD) is histopathologically characterized by neurodegeneration, the formation of intracellular neurofibrillary tangles and extracellular Aβ deposits that derive from proteolytic processing of the amyloid precursor protein (APP). As rodents do not normally develop Aβ pathology, various transgenic animal models of AD were designed to overexpress human APP with mutations favouring its amyloidogenic processing. However, these mouse models display tremendous differences in the spatial and temporal appearance of Aβ deposits, synaptic dysfunction, neurodegeneration and the manifestation of learning deficits which may be caused by age-related and brain region-specific differences in APP transgene levels. Consequentially, a comparative temporal and regional analysis of the pathological effects of Aβ in mouse brains is difficult complicating the validation of therapeutic AD treatment strategies in different mouse models. To date, no antibodies are available that properly discriminate endogenous rodent and transgenic human APP in brains of APP-transgenic animals. Here, we developed and characterized rat monoclonal antibodies by immunohistochemistry and Western blot that detect human but not murine APP in brains of three APP-transgenic mouse and one APP-transgenic rat model. We observed remarkable differences in expression levels and brain region-specific expression of human APP among the investigated transgenic mouse lines. This may explain the differences between APP-transgenic models mentioned above. Furthermore, we provide compelling evidence that our new antibodies specifically detect endogenous human APP in immunocytochemistry, FACS and immunoprecipitation. Hence, we propose these antibodies as standard tool for monitoring expression of endogenous or transfected APP in human cells and APP expression in transgenic animals. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Kinesin Light Chain 1 Suppression Impairs Human Embryonic Stem Cell Neural Differentiation and Amyloid Precursor Protein Metabolism

    PubMed Central

    Killian, Rhiannon L.; Flippin, Jessica D.; Herrera, Cheryl M.; Almenar-Queralt, Angels; Goldstein, Lawrence S. B.

    2012-01-01

    The etiology of sporadic Alzheimer disease (AD) is largely unknown, although evidence implicates the pathological hallmark molecules amyloid beta (Aβ) and phosphorylated Tau. Work in animal models suggests that altered axonal transport caused by Kinesin-1 dysfunction perturbs levels of both Aβ and phosphorylated Tau in neural tissues, but the relevance of Kinesin-1 dependent functions to the human disease is unknown. To begin to address this issue, we generated human embryonic stem cells (hESC) expressing reduced levels of the kinesin light chain 1 (KLC1) Kinesin-1 subunit to use as a source of human neural cultures. Despite reduction of KLC1, undifferentiated hESC exhibited apparently normal colony morphology and pluripotency marker expression. Differentiated neural cultures derived from KLC1-suppressed hESC contained neural rosettes but further differentiation revealed obvious morphological changes along with reduced levels of microtubule-associated neural proteins, including Tau and less secreted Aβ, supporting the previously established connection between KLC1, Tau and Aβ. Intriguingly, KLC1-suppressed neural precursors (NPs), isolated using a cell surface marker signature known to identify cells that give rise to neurons and glia, unlike control cells, failed to proliferate. We suggest that KLC1 is required for normal human neural differentiation, ensuring proper metabolism of AD-associated molecules APP and Tau and for proliferation of NPs. Because impaired APP metabolism is linked to AD, this human cell culture model system will not only be a useful tool for understanding the role of KLC1 in regulating the production, transport and turnover of APP and Tau in neurons, but also in defining the essential function(s) of KLC1 in NPs and their progeny. This knowledge should have important implications for human neurodevelopmental and neurodegenerative diseases. PMID:22272245

  4. Robosphere: Self Sustaining Robotic Ecologies as Precursors to Human Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.

    2003-01-01

    The present sequential mission oriented approach to robotic planetary exploration, could be changed to an infrastructure building approach where a robotic presence is permanent, self sustaining and growing with each mission. We call this self-sustaining robotic ecology approach robosphere and discuss the technological issues that need to be addressed before this concept can be realized. One of the major advantages of this approach is that a robosphere would include much of the infrastructure required by human explorers and would thus lower the preparation and risk threshold inherent in the transition from robotic to human exploration. In this context we discuss some implications for space architecture.

  5. Culturing and expansion of "clinical grade" precursors cells from the fetal human central nervous system.

    PubMed

    Gelati, Maurizio; Profico, Daniela; Projetti-Pensi, Massimo; Muzi, Gianmarco; Sgaravizzi, Giada; Vescovi, Angelo Luigi

    2013-01-01

    NSCs have been demonstrated to be very useful in grafts into the mammalian central nervous system to investigate the exploitation of NSC for the therapy of neurodegenerative disorders in animal models of neurodegenerative diseases. To push cell therapy in CNS on stage of clinical application, it is necessary to establish a continuous and standardized, clinical grade (i.e., produced following the good manufacturing practice guidelines) human neural stem cell lines. In this chapter, we illustrate some of the protocols routinely used into our GMP cell bank for the production of "clinical grade" human neural stem cell lines.

  6. Bone Anabolic Effects of Soluble Si: In Vitro Studies with Human Mesenchymal Stem Cells and CD14+ Osteoclast Precursors

    PubMed Central

    Costa-Rodrigues, J.; Reis, S.; Castro, A.; Fernandes, M. H.

    2016-01-01

    Silicon (Si) is indispensable for many cellular processes including bone tissue metabolism. In this work, the effects of Si on human osteogenesis and osteoclastogenesis were characterized. Human mesenchymal stem cells (hMSC) and CD14+ stem cells, as osteoblast and osteoclast precursors, were treated with a wide range of Si concentrations, covering the physiological plasma levels. Si promoted a dose-dependent increase in hMSC proliferation, differentiation, and function, at levels similar to the normal basal plasma levels. Additionally, a decrease in the expression of the osteoclastogenic activators M-CSF and RANKL was observed. Also, Si elicited a decrease in osteoclastogenesis, which became significant at higher concentrations, as those observed after meals. Among the intracellular mechanisms studied, an upregulation of MEK and PKC signalling pathways was observed in both cell types. In conclusion, Si appears to have a direct positive effect on human osteogenesis, at basal plasma levels. On the other hand, it also seemed to be an inhibitor of osteoclastogenesis, but at higher concentrations, though yet in the physiological range. Further, an indirect effect of Si on osteoclastogenesis may also occur, through a downregulation of M-CSF and RANKL expression by osteoblasts. Thus, Si may be an important player in bone anabolic regenerative approaches. PMID:26798359

  7. Isolation and characterization of an evolutionary precursor of human monoamine oxidases A and B.

    PubMed

    Sablin, S O; Yankovskaya, V; Bernard, S; Cronin, C N; Singer, T P

    1998-04-01

    An interesting flavoprotein-type monoamine oxidase (MAO) was recently isolated from Aspergillus niger and cloned [Schilling, B. & Lerch, K. (1995a) Biochim. Biophys. Acta 1243, 529-537; Schilling, B. & Lerch, K. (1995b) Mol. Gen. Genet. 247, 430-438]. The properties of this MAO, as well as a substantial part of its amino acid sequence, resemble those of both MAO A and B from higher animals, raising the possibility that it may be an evolutionary precursor of these mitochondrial enzymes. It differs from MAO A and B in several respects, however, including the fact that it is soluble and of peroxisomal location and that the FAD is non-covalently attached. We have overexpressed the fungal enzyme (MAO-N) in Escherichia coli and isolated it in pure form. Since several of the observations of previous workers on MAO-N could not be reproduced, we have reexamined its substrate specificity, interaction with reversible and irreversible inhibitors and other catalytic and molecular properties. MAO-N has a considerably higher turnover number on many aliphatic and aromatic amines than either form of the mammalian enzyme. Some aspects of the substrate specificity resemble those of MAO B, while others are similar to MAO A, including biphasic kinetics in double reciprocal plots. Contrary to a previous report [Schilling, B. & Lerch, K. (1995a) Biochim. Biophys. Acta 1243, 529-537], however, the fungal enzyme does not oxidize serotonin, norepinephrine, dopamine or other biogenic amines. MAO-N is irreversibly inhibited by stoichiometric amounts of both (-)deprenyl and clorgyline in a mechanism-based reaction, forming flavocyanine adducts with N5 of the FAD, like the mammalian enzymes, but inactivation is much faster with clorgyline than deprenyl, suggesting a closer resemblance to MAO A than B. The dissociation constants for a large number of reversible competitive inhibitors have been determined for MAO-N and comparison with similar values for MAO A and B again pointed to a greater

  8. Persistent expression of MNF identifies myogenic stem cells in postnatal muscles.

    PubMed

    Garry, D J; Yang, Q; Bassel-Duby, R; Williams, R S

    1997-08-15

    Skeletal muscles contain an undifferentiated myogenic stem cell pool (satellite cells) that can be mobilized to regenerate myofibers in response to injury. We have determined that the winged helix transcription factor MNF is expressed selectively in quiescent satellite cells, which do not express known regulators of the myogenic program. Following muscle injury, MNF is present transiently in proliferating satellite cells and in centralized nuclei of regenerating myofibers, but expression declines as these fibers mature, until only the residual stem cell pool continues to express detectable levels of MNF. MNF also is expressed selectively but transiently at embryonic stages of myogenesis in the developing myotome, limb bud precursors, and heart tube, but by late fetal stages of development, MNF is down-regulated within differentiated cardiac and skeletal myocytes, and persistently high expression is observed only in satellite cells. These data identify MNF as a marker of quiescent satellite cells and suggest that downstream genes controlled by MNF serve to modulate proliferative growth or differentiation in this unique cell population.

  9. Nanofiber Matrices Promote the Neuronal Differentiation of Human Embryonic Stem Cell-Derived Neural Precursors In Vitro

    PubMed Central

    Lim, Shawn H.; Christopherson, Gregory T.; Xu, Leyan; Nasonkin, Igor; Yu, Christopher; Mao, Hai-Quan; Koliatsos, Vassilis E.

    2011-01-01

    The potential of human embryonic stem (ES) cells as experimental therapies for neuronal replacement has recently received considerable attention. In view of the organization of the mature nervous system into distinct neural circuits, key challenges of such therapies are the directed differentiation of human ES cell-derived neural precursors (NPs) into specific neuronal types and the directional growth of axons along specified trajectories. In the present study, we cultured human NPs derived from the NIH-approved ES line BGO1 on polycaprolactone fiber matrices of different diameter (i.e., nanofibers and microfibers) and orientation (i.e., aligned and random); fibers were coated with poly-L-ornithine/laminin to mimic the extracellular matrix and support the adhesion, viability, and differentiation of NPs. On aligned fibrous meshes, human NPs adopt polarized cell morphology with processes extending along the axis of the fiber, whereas NPs on plain tissue culture surfaces or random fiber substrates form nonpolarized neurite networks. Under differentiation conditions, human NPs cultured on aligned fibrous substrates show a higher rate of neuronal differentiation than other matrices; 62% and 86% of NPs become TUJ1 (+) early neurons on aligned micro- and nanofibers, respectively, whereas only 32% and 27% of NPs acquire the same fate on random micro- and nanofibers. Metabolic cell activity/viability studies reveal that fiber alignment and diameter also have an effect on NP viability, but only in the presence of mitogens. Our findings demonstrate that fibrous substrates serve as an artificial extracellular matrix and provide a microenviroment that influences key aspects of the neuronal differentiation of ES-derived NPs. PMID:20973749

  10. Design of Photovoltaic Power System for a Precursor Mission for Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Mcnatt, Jeremiah; Landis, Geoffrey; Fincannon, James

    2016-01-01

    This project analyzed the viability of a photovoltaic power source for technology demonstration mission to demonstrate Mars in-situ resource utilization (ISRU) to produce propellant for a future human mission, based on technology available within the next ten years. For this assessment, we performed a power-system design study for a scaled ISRU demonstrator lander on the Mars surface based on existing solar array technologies.

  11. Treatment with Tyrosine a Neurotransmitter Precursor Reduces Environmental Stress in Humans

    DTIC Science & Technology

    1989-01-01

    statistical assistance of Mr. R. V. Spring and Dr. official Department of the Army position, policy, or decision, unless so B . Chew. We also recognize the...contributions of Ms. B . L. Shukit, Ms. designated by other official documentation. REFERENCES I. Banderet, L. E. Self-rated moods of humans at 4300 m...S.; Spring, B . J.. Wurtman, R. J.: Psychological Service of the Federal Armed Forces: 1984:375-380. Growdon, J. H. The effects of dietary

  12. Lunar precursor missions for human exploration of Mars--III: studies of system reliability and maintenance.

    PubMed

    Mendell, W W; Heydorn, R P

    2004-01-01

    Discussions of future human expeditions into the solar system generally focus on whether the next explorers ought to go to the Moon or to Mars. The only mission scenario developed in any detail within NASA is an expedition to Mars with a 500-day stay at the surface. The technological capabilities and the operational experience base required for such a mission do not now exist nor has any self-consistent program plan been proposed to acquire them. In particular, the lack of an Abort-to-Earth capability implies that critical mission systems must perform reliably for 3 years or must be maintainable and repairable by the crew. As has been previously argued, a well-planned program of human exploration of the Moon would provide a context within which to develop the appropriate technologies because a lunar expedition incorporates many of the operational elements of a Mars expedition. Initial lunar expeditions can be carried out at scales consistent with the current experience base but can be expanded in any or all operational phases to produce an experience base necessary to successfully and safely conduct human exploration of Mars. Published by Elsevier Ltd.

  13. Lunar precursor missions for human exploration of Mars--III: studies of system reliability and maintenance

    NASA Technical Reports Server (NTRS)

    Mendell, W. W.; Heydorn, R. P.

    2004-01-01

    Discussions of future human expeditions into the solar system generally focus on whether the next explorers ought to go to the Moon or to Mars. The only mission scenario developed in any detail within NASA is an expedition to Mars with a 500-day stay at the surface. The technological capabilities and the operational experience base required for such a mission do not now exist nor has any self-consistent program plan been proposed to acquire them. In particular, the lack of an Abort-to-Earth capability implies that critical mission systems must perform reliably for 3 years or must be maintainable and repairable by the crew. As has been previously argued, a well-planned program of human exploration of the Moon would provide a context within which to develop the appropriate technologies because a lunar expedition incorporates many of the operational elements of a Mars expedition. Initial lunar expeditions can be carried out at scales consistent with the current experience base but can be expanded in any or all operational phases to produce an experience base necessary to successfully and safely conduct human exploration of Mars. Published by Elsevier Ltd.

  14. Lunar precursor missions for human exploration of Mars--III: studies of system reliability and maintenance

    NASA Technical Reports Server (NTRS)

    Mendell, W. W.; Heydorn, R. P.

    2004-01-01

    Discussions of future human expeditions into the solar system generally focus on whether the next explorers ought to go to the Moon or to Mars. The only mission scenario developed in any detail within NASA is an expedition to Mars with a 500-day stay at the surface. The technological capabilities and the operational experience base required for such a mission do not now exist nor has any self-consistent program plan been proposed to acquire them. In particular, the lack of an Abort-to-Earth capability implies that critical mission systems must perform reliably for 3 years or must be maintainable and repairable by the crew. As has been previously argued, a well-planned program of human exploration of the Moon would provide a context within which to develop the appropriate technologies because a lunar expedition incorporates many of the operational elements of a Mars expedition. Initial lunar expeditions can be carried out at scales consistent with the current experience base but can be expanded in any or all operational phases to produce an experience base necessary to successfully and safely conduct human exploration of Mars. Published by Elsevier Ltd.

  15. Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants.

    PubMed Central

    Salem, N; Wegher, B; Mena, P; Uauy, R

    1996-01-01

    It is becoming clear that an adequate level of long-chain highly unsaturated fatty acids in the nervous system is required for optimal function and development; however, the ability of infants to biosynthesize long-chain fatty acids is unknown. This study explores the capacity of human infants to convert 18-carbon essential fatty acids to their elongated and desaturated forms, in vivo. A newly developed gas chromatography/negative chemical ionization/mass spectrometry method employing 2H-labeled essential fatty acids allowed assessment of this in vivo conversion with very high sensitivity and selectivity. Our results demonstrate that human infants have the capacity to convert dietary essential fatty acids administered enterally as 2H-labeled ethyl esters to their longer-chain derivatives, transport them to plasma, and incorporate them into membrane lipids. The in vivo conversion of linoleic acid (18:2n6) to arachidonic acid (20:4n6) is demonstrated in human beings. All elongases/desaturases necessary for the conversion of linolenic acid (18:3n3) to docosahexaenoic acid (22:6n3) are also active in the first week after birth. Although the absolute amounts of n-3 fatty acid metabolites accumulated in plasma are greater than those of the n-6 family, estimates of the endogenous pools of 18:2n6 and 18:3n3 indicate that n-6 fatty acid conversion rates are greater than those of the n-3 family. While these data clearly demonstrate the capability of infants to biosynthesize 22:6n3, a lipid that is required for optimal neural development, the amounts produced in vivo from 18:3n3 may be inadequate to support the 22:6n3 level observed in breast-fed infants. PMID:8552667

  16. Human papillomavirus type-distribution in vulvar and vaginal cancers and their associated precursors.

    PubMed

    Smith, Jennifer S; Backes, Danielle M; Hoots, Brooke E; Kurman, Robert J; Pimenta, Jeanne M

    2009-04-01

    Data on human papillomavirus (HPV) prevalence in vulvar and vaginal cancers are limited. These data are important to predict the potential future effect of prophylactic HPV vaccines. Our aim was to conduct a systematic review of HPV type distribution in vulvar and vaginal invasive carcinomas, vulvar intraepithelial neoplasia (VIN), and vaginal intraepithelial neoplasia. A MEDLINE search was conducted using the terms vulvar/vaginal cancer, intraepithelial neoplasia, and HPV/human papillomavirus through September 2007 with no specified start date or language restrictions. A total of 725 abstracts (564 vulvar, 161 vaginal) were reviewed, of which 67 studies (56 vulvar, 11 vaginal) met the inclusion criteria of using polymerase chain reaction (PCR) or hybrid capture assays for HPV DNA detection and having more than one case with HPV data available. This review identified 2,790 vulvar (1,379 invasive, 1,340 VIN2/3, 71 VIN1) and 315 vaginal cases (83 invasive, 166 vaginal intraepithelial neoplasia 2/3, 66 vaginal intraepithelial neoplasia 1). Most cases were from North America and Europe (87.2%), with few from Asia (5.5%) and South America (7.3%). Human papillomavirus prevalence in vulvar cancer, VIN2/3, and VIN1 was 40.1%, 80.4%, and 77.5%, respectively. HPV prevalence in vaginal cancer, vaginal intraepithelial neoplasia (VAIN)2/3, and VAIN1 was relatively higher at 65.5%, 92.6%, and 98.5%, respectively. HPV16 was the most common type in vulvar (29.3%) and vaginal (55.4%) cancers, VIN2/3 (71.2%) and VAIN2/3 (65.8%). Human papillomavirus prevalence was higher among vaginal than vulvar cases, and HPV16 accounted for most HPV-positive cases for both cancers. Although the potential effect of HPV vaccines on these gynecologic cancers may not be as high as for cervical cancer due to their more diverse causes, vaccinating young women against HPV16/18 may help to reduce the incidence of HPV-related cases.

  17. DNA methyltransferase inhibitor CDA-II inhibits myogenic differentiation

    SciTech Connect

    Chen, Zirong; Jin, Guorong; Lin, Shuibin; Lin, Xiumei; Gu, Yumei; Zhu, Yujuan; Hu, Chengbin; Zhang, Qingjiong; Wu, Lizi; Shen, Huangxuan

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer CDA-II inhibits myogenic differentiation in a dose-dependent manner. Black-Right-Pointing-Pointer CDA-II repressed expression of muscle transcription factors and structural proteins. Black-Right-Pointing-Pointer CDA-II inhibited proliferation and migration of C2C12 myoblasts. -- Abstract: CDA-II (cell differentiation agent II), isolated from healthy human urine, is a DNA methyltransferase inhibitor. Previous studies indicated that CDA-II played important roles in the regulation of cell growth and certain differentiation processes. However, it has not been determined whether CDA-II affects skeletal myogenesis. In this study, we investigated effects of CDA-II treatment on skeletal muscle progenitor cell differentiation, migration and proliferation. We found that CDA-II blocked differentiation of murine myoblasts C2C12 in a dose-dependent manner. CDA-II repressed expression of muscle transcription factors, such as Myogenin and Mef2c, and structural proteins, such as myosin heavy chain (Myh3), light chain (Mylpf) and MCK. Moreover, CDA-II inhibited C1C12 cell migration and proliferation. Thus, our data provide the first evidence that CDA-II inhibits growth and differentiation of muscle progenitor cells, suggesting that the use of CDA-II might affect skeletal muscle functions.

  18. Ocular vestibular evoked myogenic potentials are abnormal in internuclear ophthalmoplegia.

    PubMed

    Rosengren, S M; Colebatch, J G

    2011-06-01

    The cervical vestibular evoked myogenic potential (cVEMP) is sensitive to lower brainstem lesions affecting the vestibulo-collic pathway. We wished to determine whether the ocular VEMP (oVEMP), a recently-described otolith-ocular reflex, is also abnormal in patients with brainstem lesions. We tested patients with internuclear ophthalmoplegia (INO), caused by a brainstem lesion in the medial longitudinal fasciculus (MLF), to investigate whether the oVEMP is abnormal in patients with a lesion of the otolith-ocular pathway. We describe a patient who developed a right INO during his first episode of demyelination, and report results from 12 additional patients, most of whom had multiple sclerosis. All subjects were stimulated with air-conducted tone bursts. cVEMPs and oVEMPs were measured using surface electrodes placed over the neck and beneath the eyes. Overall, oVEMPs showed significantly more abnormalities (69%) than cVEMPs (8%). Ocular VEMPs were absent with stimulation of 13/26 ears, significantly delayed in 5/26 cases and normal in only 8/26 cases. Ocular VEMPs are often abnormal in patients with multiple sclerosis who have an INO, while cVEMPs are usually normal. Ocular VEMPs provide a new, non-invasive method for examining central vestibular pathways in humans and are sensitive to lesions of the MLF. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Ordered processing of the human immunodeficiency virus type 1 GagPol precursor is influenced by the context of the embedded viral protease.

    PubMed

    Pettit, Steven C; Clemente, Jose C; Jeung, Jennifer A; Dunn, Ben M; Kaplan, Andrew H

    2005-08-01

    Ordered and accurate processing of the human immunodeficiency virus type 1 (HIV-1) GagPol polyprotein precursor by a virally encoded protease is an indispensable step in the appropriate assembly of infectious viral particles. The HIV-1 protease (PR) is a 99-amino-acid enzyme that is translated as part of the GagPol precursor. Previously, we have demonstrated that the initial events in precursor processing are accomplished by the PR domain within GagPol in cis, before it is released from the polyprotein. Despite the critical role that ordered processing of the precursor plays in viral replication, the forces that define the order of cleavage remain poorly understood. Using an in vitro assay in which the full-length HIV-1 GagPol is processed by the embedded PR, we examined the effect of PR context (embedded within GagPol versus the mature 99-amino-acid enzyme) on precursor processing. Our data demonstrate that the PR domain within GagPol is constrained in its ability to cleave some of the processing sites in the precursor. Further, we find that this constraint is dependent upon the presence of a proline as the initial amino acid in the embedded PR; substitution of an alanine at this position produces enhanced cleavage at additional sites when the precursor is processed by the embedded, but not the mature, PR. Overall, our data support a model in which the selection of processing sites and the order of precursor processing are defined, at least in part, by the structure of GagPol itself.

  20. New perspectives on vestibular evoked myogenic potentials.

    PubMed

    Rosengren, Sally M; Kingma, Herman

    2013-02-01

    Although the vestibular evoked myogenic potential (VEMP) measured from the cervical muscles (cVEMP, cervical VEMP) is well described and has documented clinical utility, its analogue recorded from the extraocular muscles (oVEMP, ocular VEMP) has been described only recently and is currently emerging as an additional test of otolith function. This review will, therefore, summarize recent developments in VEMP research with a focus on the oVEMP. Recent studies suggest that the oVEMP is produced by otolith afferents in the superior vestibular nerve division, whereas the cVEMP evoked by sound is thought to be an inferior vestibular nerve reflex. Correspondingly, the oVEMP correlates better with caloric and subjective visual vertical tests than sound-cVEMPs. cVEMPs are more complicated than often thought, as shown by the presence of crossed responses and conflicting results of recent vibration studies. Altered inner ear mechanics produced by the vestibular diseases superior semicircular canal dehiscence and Ménière's disease lead to changes in the preferred frequency of the oVEMP and cVEMP. The oVEMP provides complementary diagnostic information to the cVEMP and is likely to be a useful addition to the diagnostic test battery in neuro-otology.

  1. [Primary neurogenic and myogenic disorders of posture].

    PubMed

    Schranz, C; Meinck, H-M

    2004-05-01

    Disturbance of posture may occur in a variety of neurological disorders and occasionally is the presenting or even the only sign. In the majority of cases, the head or the trunk or both are bent forward (bent spine syndrome, dropped head syndrome). A feature of these primary neurogenic or myogenic postural disturbances that is in contrast to antalgic contraction or ankylosis is that they are not fixed, but the trunk or head are easily erected by the examiner and show a characteristic sagging. Neuromuscular disorders are a frequent cause. They may be confined to the paraspinal muscles. Axial computed tomography of the spine, electromyography of the involved muscles, and muscle biopsy help to make the diagnosis. However, also central movement disorders may lead to a sagging of the head or trunk or of both due to a lessened tone of the head and trunk extensors. This is frequently seen in the various parkinsonian syndromes which may, however, occur in association with a focal myopathy of the paraspinal muscles. Occasionally, sagging of the trunk is seen as a side effect of neuropharmacologic medication. Sagging of the trunk or head should be differentiated from a pathologically increased innervation of the ventral muscles in dystonic movement disorders such as antecollis or camptocormia. Pathologic reclination of the head or trunk or both is a rare disturbance of posture. It may occur in dystonia (retrocollis) or, occasionally, as a consequence of musculotendinous contractures secondary to certain neuromuscular disorders such as the rigid spine syndrome.

  2. Decorin expression in quiescent myogenic cells

    SciTech Connect

    Nishimura, Takanori Nozu, Kenjiro; Kishioka, Yasuhiro; Wakamatsu, Jun-ichi; Hattori, Akihito

    2008-06-06

    Satellite cells are quiescent muscle stem cells that promote postnatal muscle growth and repair. When satellite cells are activated by myotrauma, they proliferate, migrate, differentiate, and ultimately fuse to existing myofibers. The remainder of these cells do not differentiate, but instead return to quiescence and remain in a quiescent state until activation begins the process again. This ability to maintain their own population is important for skeletal muscle to maintain the capability to repair during postnatal life. However, the mechanisms by which satellite cells return to quiescence and maintain the quiescent state are still unclear. Here, we demonstrated that decorin mRNA expression was high in cell cultures containing a higher ratio of quiescent satellite cells when satellite cells were stimulated with various concentrations of hepatocyte growth factor. This result suggests that quiescent satellite cells express decorin at a high level compared to activated satellite cells. Furthermore, we examined the expression of decorin in reserve cells, which were undifferentiated myoblasts remaining after induction of differentiation by serum-deprivation. Decorin mRNA levels in reserve cells were higher than those in differentiated myotubes and growing myoblasts. These results suggest that decorin participates in the quiescence of myogenic cells.

  3. Clonal Human Fetal Ventral Mesencephalic Dopaminergic Neuron Precursors for Cell Therapy Research

    PubMed Central

    Ramos-Moreno, Tania; Lendínez, Javier G.; Pino-Barrio, María José; del Arco, Araceli; Martínez-Serrano, Alberto

    2012-01-01

    A major challenge for further development of drug screening procedures, cell replacement therapies and developmental studies is the identification of expandable human stem cells able to generate the cell types needed. We have previously reported the generation of an immortalized polyclonal neural stem cell (NSC) line derived from the human fetal ventral mesencephalon (hVM1). This line has been biochemically, genetically, immunocytochemically and electrophysiologically characterized to document its usefulness as a model system for the generation of A9 dopaminergic neurons (DAn). Long-term in vivo transplantation studies in parkinsonian rats showed that the grafts do not mature evenly. We reasoned that diverse clones in the hVM1 line might have different abilities to differentiate. In the present study, we have analyzed 9 hVM1 clones selected on the basis of their TH generation potential and, based on the number of v-myc copies, v-myc down-regulation after in vitro differentiation, in vivo cell cycle exit, TH+ neuron generation and expression of a neuronal mature marker (hNSE), we selected two clones for further in vivo PD cell replacement studies. The conclusion is that homogeneity and clonality of characterized NSCs allow transplantation of cells with controlled properties, which should help in the design of long-term in vivo experiments. PMID:23300748

  4. Differentiation of Neural Precursors and Dopaminergic Neurons from Human Embryonic Stem Cells

    PubMed Central

    Zhang, Xiao-Qing; Zhang, Su-Chun

    2010-01-01

    Directed differentiation of human embryonic stem cells (hESCs) to a functional cell type, including neurons, is the foundation for application of hESCs. We describe here a reproducible, chemically-defined protocol that allows directed differentiation of hESCs to nearly pure neuroectodermal cells and neurons. First, hESC colonies are detached from mouse fibroblast feeder layers and form aggregates to initiate the differentiation procedure. Second, after 4 days of suspension culture, the ESC growth medium is replaced with neural induction medium to guide neuroectodermal specification. Third, the differentiating hESC aggregates are attached onto the culture surface at day 6-7, where columnar neural epithelial cells appear and organize into rosettes. Fourth, the neural rosettes are enriched by detaching rosettes and leaving the peripheral flat cells attached, and expanded as neuroepithelial aggregates in the same medium. Finally, the neuroepithelial aggregates are dissociated and differentiated to nearly pure neurons. This stepwise differentiation protocol results in the generation of primitive neuroepithelia at day 8-10, neural progenitors at the 2nd and 3rd week, and postmitotic neurons at the 4th week, which mirrors the early phase of neural development in a human embryo. Identification of the primitive neuroepithelial cells permits efficient patterning of region-specific progenitors and neuronal subtypes such as midbrain dopaminergic neurons. PMID:19907987

  5. apl-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor.

    PubMed Central

    Daigle, I; Li, C

    1993-01-01

    The major component of senile plaques found in the brains of Alzheimer disease patients is the beta-amyloid peptide, which is derived from a larger amyloid precursor protein (APP). Recently, a number of APP and APP-related proteins have been identified in different organisms and constitute the family of APP proteins. We have isolated several cDNAs encoding an APP-related protein in the nematode Caenorhabditis elegans and have designated the corresponding gene as apl-1. The apl-1 transcripts undergo two forms of posttranscriptional modification: trans-splicing and alternative polyadenylylation. In vitro translation of an apl-1 cDNA results in a protein of approximately the expected size. Similar to the Drosophila, human, and mouse APP-related proteins, APL-1 does not appear to contain the beta-amyloid peptide. Because APP-related proteins seem to be conserved through evolution, the apl-1 gene from C. elegans should be important for determining the normal function of human APP. Images Fig. 2 Fig. 3 PMID:8265668

  6. Protocol to Isolate a Large Amount of Functional Oligodendrocyte Precursor Cells from the Cerebral Cortex of Adult Mice and Humans

    PubMed Central

    Medina-Rodríguez, Eva María; Arenzana, Francisco Javier; Bribián, Ana; de Castro, Fernando

    2013-01-01

    During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair. PMID:24303061

  7. Functional effects of cannabinoids during dopaminergic specification of human neural precursors derived from induced pluripotent stem cells.

    PubMed

    Stanslowsky, Nancy; Jahn, Kirsten; Venneri, Anna; Naujock, Maximilian; Haase, Alexandra; Martin, Ulrich; Frieling, Helge; Wegner, Florian

    2016-03-30

    Among adolescents cannabis is one of the most widely used illicit drugs. In adolescence brain development continues, characterized by neuronal maturation and synaptic plasticity. The endocannabinoid system plays an important role during brain development by modulating neuronal function and neurogenesis. Changes in endocannabinoid signaling by Δ(9) -tetrahydrocannabinol (THC), the psychoactive component of cannabis, might therefore lead to neurobiological changes influencing brain function and behavior. We investigated the functional maturation and dopaminergic specification of human cord blood-derived induced pluripotent stem cell (hCBiPSC)-derived small molecule neural precursor cells (smNPCs) after cultivation with the endogenous cannabinoid anandamide (AEA) and the exogenous THC, both potent agonists at the cannabinoid 1 receptor (CB1 R). Higher dosages of 10-μM AEA or THC significantly decreased functionality of neurons, indicated by reduced ion currents and synaptic activity. A lower concentration of 1-μM THC had no marked effect on neuronal and dopaminergic maturation, while 1-μM AEA significantly enhanced the frequency of synaptic activity. As there were no significant effects on DNA methylation in promotor regions of genes important for neuronal function, these cannabinoid actions seem to be mediated by another than this epigenetic mechanism. Our data suggest that there are concentration-dependent actions of cannabinoids on neuronal function in vitro indicating neurotoxic, dysfunctional effects of 10-μM AEA and THC during human neurogenesis.

  8. Functional signature of human islet-derived precursor cells compared to bone marrow-derived mesenchymal stem cells.

    PubMed

    Limbert, Catarina; Ebert, Regina; Schilling, Tatjana; Path, Gunter; Benisch, Peggy; Klein-Hitpass, Ludger; Seufert, Jochen; Jakob, Franz

    2010-05-01

    Pancreatic islet beta-cell replenishment can be driven by epithelial cells from exocrine pancreas via epithelial-mesenchymal transition (EMT) and the reverse process MET, while specified pancreatic mesenchymal cells control islet cell development and maintenance. The role of human islet-derived precursor cells (hIPCs) in regeneration and support of endocrine islets is under investigation. Here, we analyzed hIPCs as to their immunophenotype, multilineage differentiation capacity, and gene profiling, in comparison to human bone marrow-derived mesenchymal stem cells (hBM-MSCs). hIPCs and hBM-MSCs display a common mesenchymal character and express lineage-specific marker genes upon induction toward pancreatic endocrine and mesenchymal pathways of differentiation. hIPCs can go further along endocrine pathways while lacking some core mesenchymal differentiation attributes. Significance analysis of microarray (SAM) from 5 hBM-MSC and 3 hIPC donors mirrored such differences. Candidate gene cluster analysis disclosed differential expression of key lineage regulators, indicated a HoxA gene-associated positional memory in hIPCs and hBM-MSCs, and showed as well a clear transition state from mesenchyme to epithelium or vice versa in hIPCs. Our findings raise new research platforms to further clarify the potential of hIPCs to undergo complete MET thus contributing to islet cell replenishment, maintenance, and function.

  9. Polydatin, a natural precursor of resveratrol, induces cell cycle arrest and differentiation of human colorectal Caco-2 cell

    PubMed Central

    2013-01-01

    Background Human colon adenocarcinoma cells are resistant to chemotherapeutic agents, such as anthracyclines, that induce death by increasing the reactive oxygen species. A number of studies have been focused on chemo-preventive use of resveratrol as antioxidant against cardiovascular diseases, aging and cancer. While resveratrol cytotoxic action was due to its pro-oxidant properties. In this study, we investigate whether the Resveratrol (trans-3,5,49-trihydroxystilbene) and its natural precursor Polydatin (resveratrol-3-O-b-mono- D-glucoside, the glycoside form of resveratrol) combination, might have a cooperative antitumor effect on either growing or differentiated human adenocarcinoma colon cancer cells. Methods The polydatin and resveratrol pharmacological interaction was evaluated in vitro on growing and differentiated Caco-2 cell lines by median drug effect analysis calculating a combination index with CalcuSyn software. We have selected a synergistic combination and we have evaluated its effect on the biological and molecular mechanisms of cell death. Results Simultaneous exposure to polydatin and resveratrol produced synergistic antiproliferative effects compared with single compound treatment. We demonstrated that polydatin alone or in combination with resveratrol at 3:1 molar ratio synergistically modulated oxidative stress, cell cycle, differentiation and apoptosis. Worthy of note treatment with polydatin induced a nuclear localization and decreased expression of heat shock protein 27, and vimentin redistributed within the cell. Conclusions From morphological, and biochemical outcome we obtained evidences that polydatin induced a transition from a proliferative morphology to cell-specific differentiated structures and caused human CaCo-2 cell death by induction of apoptosis. Our data suggest the potential use of polydatin in combination chemotherapy for human colon cancer. PMID:24138806

  10. Molten globule precursor states are conformationally correlated to amyloid fibrils of human beta-2-microglobulin.

    PubMed

    Skora, Lukasz; Becker, Stefan; Zweckstetter, Markus

    2010-07-14

    Misfolding intermediates play a key role in defining aberrant protein aggregation and amyloid formation in more than 15 different human diseases. However, their experimental characterization is challenging due to the transient nature and conformational heterogeneity of the involved states. Here, we demonstrate that direct carbon-detected NMR experiments allow observation, assignment, and structural analysis of molten globule amyloid intermediates that are severely broadened by conformational exchange. The method is used to characterize the structure and dynamics of partially unfolded intermediates of the 99-residue protein beta-2-microglobulin, which is the major component of insoluble aggregates occurring in dialysis-related amyloidosis. Comparison of the conformational properties of the molten globule-like intermediates with levels of deuterium incorporation into amyloid fibrils of beta-2-microglobulin revealed a close relationship between the conformational properties of the metastable intermediates and the beta-sheet-rich insoluble aggregates of beta-2-microglobulin.

  11. Cytotoxicity of gold nanoparticles in human neural precursor cells and rat cerebral cortex.

    PubMed

    Lee, Uhn; Yoo, Chan-Jong; Kim, Yong-Jung; Yoo, Young-Mi

    2016-03-01

    Nanoparticles are promising tools for the advancement of drug delivery, medical imaging, and as diagnostic sensor. Medical nanodevices should develop miniaturization, because it would be injected into a human body. Gold nanoparticles (GNPs) with different sizes and shapes have therapeutic potential as a result of their small size, robust nature, excellent biocompatibility and optical properties. However, the application of GNPs as medical nanodevices it is necessary to know the biodegradation, biocompatibility, and development of surface coating which avoid the accumulation of nanoparticles. In this study, we carry out an in vitro toxicity and in vivo gene expression study using two kinds of GNPs. We found that GNPs toxicity is dependent on the dose or size administrated after the injected GNPs into the brain, and small particle size GNPs appeared more nestin expression compared to large particle size at short term implantation. These findings of toxicity of GNPs may play an important role in development of in vivo tools for the safety of GNPs.

  12. Production of human insulin in an E. coli system with Met-Lys-human proinsulin as the expressed precursor

    SciTech Connect

    Jin-Qiu Chen; Hong-Tao Zhang; Mei-Hao Hu; Jian-Guo Tang

    1995-10-01

    The construction of a gene encoding Lys-human proinsulin, its direct expression in E.coli, and the simple purification procedure are described here. The temperature inducible promotor was employed for induction in a very short time. The expression level could reach 20-30%. After a simple downstream processing and only one step of Sephadex G50 purification, 150 mg recombinant Lys-human proinsulin with a purity of up to 90% could be obtained easily from 1 L of high density fermentation medium. The obtained product is in the form of Met-Lys-human proinsulin because of the failure of the bacterial host to remove the initiator methionine residue. The Lys-human proinsulin could be changed into human insulin by tryspin and carboxypeptidase B treatment in later steps. After separation with DEAE Sephadex A25, human insulin with expected amino acid composition and full native biological activity could be obtained with a yield of 50 mg/L fermentation medium. 20 refs., 5 figs., 4 tabs.

  13. Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria.

    PubMed

    Jin, Jong-Sik; Zhao, Yu-Feng; Nakamura, Norio; Akao, Teruaki; Kakiuchi, Nobuko; Min, Byung-Sun; Hattori, Masao

    2007-11-01

    During the course of experiments on the transformation of lignans to phytoestrogenic substances, such as enterodiol (END) and enterolactone (ENL), a previously isolated bacterium, Eubacterium (E.) sp. strain SDG-2, capable of phenolic p-dehydroxylation in the biotransformation of secoisolariciresinol diglucoside to END and ENL, was concluded to be Eggerthella (Eg.) lenta (Eg. sp. SDG-2) on the basis of 16S rRNA gene sequence analysis. The bacterium could transform (+)-dihydroxyenterodiol (DHEND, 3a) to (+)-END (1a), but not for (-)-DHEND (3b) to (-)-END (1b) under anaerobic conditions. By incubation of a mixture of (+)- and (-)-dihydroxyenterolactone (DHENL, 4a and 4b) with Eg. sp. SDG-2, only (-)-DHENL (4b) was converted to (-)-ENL (2b), selectively. On the other hand, we isolated a different bacterium, strain ARC-1, capable of dehydroxylating (-)-DHEND (3b) to (-)-END (1b) from human feces. Strain ARC-1 could transform not only (-)-DHEND (3b) to (-)-END (1b), but also (+)-DHENL (4a) to (+)-ENL (2b). However, the bacterium could not transform (+)-DHEND (3a) and (-)-DHENL (4b). Both bacterial strains demonstrated different enantioselective dehydroxylation.

  14. Nucleotidylylation of the VPg Protein of a Human Norovirus by its Proteinase-Polymerase Precursor Protein

    PubMed Central

    Belliot, Gaël; Sosnovtsev, Stanislav V.; Chang, Kyeong-Ok; McPhie, Peter; Green, Kim Y.

    2008-01-01

    Caliciviruses have a positive strand RNA genome covalently-linked at the 5’-end to a small protein, VPg. This study examined the biochemical modification of VPg by the ProPol form of the polymerase of human norovirus strain MD145 (GII.4). Recombinant norovirus VPg was shown to be nucleotidylylated in the presence of Mn2+ by MD145 ProPol. Phosphodiesterase I treatment of the nucleotidylylated VPg released the incorporated UMP, which was consistent with linkage of RNA to VPg via a phosphodiester bond. Mutagenesis analysis of VPg identified Tyrosine 27 as the target amino acid for this linkage, and suggested that VPg conformation was important for the reaction. Nucleotidylylation was inefficient in the presence of Mg2+; however the addition of full- and subgenomic-length MD145 RNA transcripts led to a marked enhancement of the nucleotidylylation efficiency in the presence of this divalent cation. Furthermore, evidence was found for the presence of an RNA element near the 3’-end of the polyadenylated genome that enhanced the efficiency of nucleotidylylation in the presence of Mg2+. PMID:18234264

  15. Nucleotidylylation of the VPg protein of a human norovirus by its proteinase-polymerase precursor protein.

    PubMed

    Belliot, Gaël; Sosnovtsev, Stanislav V; Chang, Kyeong-Ok; McPhie, Peter; Green, Kim Y

    2008-04-25

    Caliciviruses have a positive strand RNA genome covalently-linked at the 5'-end to a small protein, VPg. This study examined the biochemical modification of VPg by the ProPol form of the polymerase of human norovirus strain MD145 (GII.4). Recombinant norovirus VPg was shown to be nucleotidylylated in the presence of Mn2+ by MD145 ProPol. Phosphodiesterase I treatment of the nucleotidylylated VPg released the incorporated UMP, which was consistent with linkage of RNA to VPg via a phosphodiester bond. Mutagenesis analysis of VPg identified Tyrosine 27 as the target amino acid for this linkage, and suggested that VPg conformation was important for the reaction. Nucleotidylylation was inefficient in the presence of Mg2+; however the addition of full- and subgenomic-length MD145 RNA transcripts led to a marked enhancement of the nucleotidylylation efficiency in the presence of this divalent cation. Furthermore, evidence was found for the presence of an RNA element near the 3'-end of the polyadenylated genome that enhanced the efficiency of nucleotidylylation in the presence of Mg2+.

  16. Cytoglobin modulates myogenic progenitor cell viability and muscle regeneration.

    PubMed

    Singh, Sarvjeet; Canseco, Diana C; Manda, Shilpa M; Shelton, John M; Chirumamilla, Rajendra R; Goetsch, Sean C; Ye, Qiu; Gerard, Robert D; Schneider, Jay W; Richardson, James A; Rothermel, Beverly A; Mammen, Pradeep P A

    2014-01-07

    Mammalian skeletal muscle can remodel, repair, and regenerate itself by mobilizing satellite cells, a resident population of myogenic progenitor cells. Muscle injury and subsequent activation of myogenic progenitor cells is associated with oxidative stress. Cytoglobin is a hemoprotein expressed in response to oxidative stress in a variety of tissues, including striated muscle. In this study, we demonstrate that cytoglobin is up-regulated in activated myogenic progenitor cells, where it localizes to the nucleus and contributes to cell viability. siRNA-mediated depletion of cytoglobin from C2C12 myoblasts increased levels of reactive oxygen species and apoptotic cell death both at baseline and in response to stress stimuli. Conversely, overexpression of cytoglobin reduced reactive oxygen species levels, caspase activity, and cell death. Mice in which cytoglobin was knocked out specifically in skeletal muscle were generated to examine the role of cytoglobin in vivo. Myogenic progenitor cells isolated from these mice were severely deficient in their ability to form myotubes as compared with myogenic progenitor cells from wild-type littermates. Consistent with this finding, the capacity for muscle regeneration was severely impaired in mice deficient for skeletal-muscle cytoglobin. Collectively, these data demonstrate that cytoglobin serves an important role in muscle repair and regeneration.

  17. (-)-Epigallocatechin-3-gallate stimulates myogenic differentiation through TAZ activation.

    PubMed

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-04-29

    Muscle loss is a typical process of aging. Green tea consumption is known to slow down the progress of aging. Their underlying mechanisms, however, remain largely unknown. In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG), a polyphenolic compound of green tea, on myogenic differentiation and found that EGCG significantly increases myogenic differentiation. After EGCG treatment, the expression of myogenic marker genes, such as myosin heavy chain, are increased through activation of TAZ, a transcriptional coactivator with a PDZ-binding motif. TAZ-knockdown does not stimulate EGCG-induced myogenic differentiation. EGCG facilitates the interaction between TAZ and MyoD, which stimulates MyoD-mediated gene transcription. EGCG induces nuclear localization of TAZ through the dephosphorylation of TAZ at its Ser89 residue, which relieves 14-3-3 binding in the cytosol. Interestingly, inactivation of Lats kinase is observed after EGCG treatment, which is responsible for the production of dephosphorylated TAZ. Together, these results suggest that EGCG induces myogenic differentiation through TAZ, suggesting that TAZ plays an important role in EGCG induced muscle regeneration.

  18. The role of melatonin in the neurodevelopmental etiology of schizophrenia: A study in human olfactory neuronal precursors.

    PubMed

    Galván-Arrieta, Tania; Trueta, Citlali; Cercós, Montserrat G; Valdés-Tovar, Marcela; Alarcón, Salvador; Oikawa, Julian; Zamudio-Meza, Horacio; Benítez-King, Gloria

    2017-10-01

    Dim light exposure of the mother during pregnancy has been proposed as one of the environmental factors that affect the fetal brain development in schizophrenia. Melatonin circulating levels are regulated by the environmental light/dark cycle. This hormone stimulates neuronal differentiation in the adult brain. However, little is known about its role in the fetal human brain development. Olfactory neuronal precursors (ONPs) are useful for studying the physiopathology of neuropsychiatric diseases because they mimic all the stages of neurodevelopment in culture. Here, we first characterized whether melatonin stimulates neuronal differentiation in cloned ONPs obtained from a healthy control subject (HCS). Then, melatonin effects were evaluated in primary cultures of ONPs derived from a patient diagnosed with schizophrenia (SZ) and an age- and gender-matched HCS. Axonal formation was evidenced morphologically by tau immunostaining and by GSK3β phosphorylated state. Potassium-evoked secretion was assessed as a functional feature of differentiated neurons. As well, we report the expression of MT1/2 receptors in human ONPs for the first time. Melatonin stimulated axonal formation and ramification in cloned ONPs through a receptor-mediated mechanism and enhanced the amount and velocity of axonal and somatic secretion. SZ ONPs displayed reduced axogenesis associated with lower levels of pGSK3β and less expression of melatonergic receptors regarding the HCS ONPs. Melatonin counteracted this reduction in SZ cells. Altogether, our results show that melatonin signaling is crucial for functional differentiation of human ONPs, strongly suggesting that a deficit of this indoleamine may lead to an impaired neurodevelopment which has been associated with the etiology of schizophrenia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    SciTech Connect

    Ohashi, Kazuya; Nagata, Yosuke; Wada, Eiji; Zammit, Peter S.; Shiozuka, Masataka; Matsuda, Ryoichi

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  20. Feasibility of a Dragon-Derived Mars Lander for Scientific and Human-Precursor Missions

    NASA Technical Reports Server (NTRS)

    Karcz, John S.; Davis, Sanford S.; Allen, Gary A.; Glass, Brian J.; Gonzales, Andrew; Heldmann, Jennifer Lynne; Lemke, Lawrence G.; McKay, Chris; Stoker, Carol R.; Wooster, Paul Douglass; Zarchi, Kerry A.

    2013-01-01

    A minimally-modified SpaceX Dragon capsule launched on a Falcon Heavy rocket presents the possibility of a new low-cost, high-capacity Mars lander for robotic missions. We have been evaluating such a "Red Dragon" platform as an option for the Icebreaker Discovery Program mission concept. Dragon is currently in service ferrying cargo to and from the International Space Station, and a crew transport version is in development. The upcoming version, unlike other Earth-return vehicles, exhibits most of the capabilities necessary to land on Mars. In particular, it has a set of high-thrust, throttleable, storable bi-propellant "SuperDraco" engines integrated directly into the capsule that are intended for launch abort and powered landings on Earth. These thrusters provide the possibility of a parachute-free, fully-propulsive deceleration at Mars from supersonic speeds to the surface, a descent approach which would also scale well to larger future human landers. We will discuss the motivations for exploring a Red Dragon lander, the current results of our analysis of its feasibility and capabilities, and the implications of the platform for the Icebreaker mission concept. In particular, we will examine entry, descent, and landing (EDL) in detail. We will also describe the modifications to Dragon necessary for interplanetary cruise, EDL, and operations on the Martian surface. Our analysis to date indicates that a Red Dragon lander is feasible and that it would be capable of delivering more than 1000 kg of payload to sites at elevations three kilometers below the Mars Orbiter Laser Altimeter (MOLA) reference, which includes sites throughout most of the northern plains and Hellas.

  1. Religious morality (and secular humanism) in Western civilization as precursors to medical ethics: A historic perspective

    PubMed Central

    Faria, Miguel A.

    2015-01-01

    In discussing bioethics and the formulation of neuroethics, the question has arisen as to whether secular humanism should be the sole philosophical guiding light, to the exclusion of any discussion (or even mention) of religious morality, in professional medical ethics. In addition, the question has arisen as to whether freedom or censorship should be part of medical (and neuroscience) journalism. Should independent medical journals abstain from discussing certain issues, or should only the major medical journals — i.e., the New England Journal of Medicine (NEJM), the Journal of the American Medical Association (JAMA) or Lancet — be heard, speaking with one “consensual,” authoritative voice? This issue is particularly important in controversial topics impacting medical politics — e.g., public health policy, socio-economics, bioethics, and the so-called redistributive justice in health care. Should all sides be heard when those controversial topics are discussed or only a consensual (monolithic) side? This historical review article discusses those issues and opts for freedom in medical and surgical practice as well as freedom in medical journalism, particularly in opinion pieces such as editorials, commentaries, or letters to the editor, as long as they relate to medicine and, in our special case, to neuroscience and neurosurgery. After answering those questions, and in response to a critical letter to the editor, this review article then expounds comprehensively on the historical and philosophical origins of ethics and religious morality. Necessarily, we discuss the Graeco-Roman legacy and the Judeo-Christian inheritance in the development of ethics and religious morality in Western civilization and their impact on moral conduct in general and on medical and neuroscience ethics in particular. PMID:26110085

  2. Dehydroepiandrosterone (DHEA)--a precursor steroid or an active hormone in human physiology.

    PubMed

    Traish, Abdulmaged M; Kang, H Paco; Saad, Farid; Guay, Andre T

    2011-11-01

    The circulation of large amounts of dehydroepiandrosterone (DHEA) and its sulfated derivative (DHEA-S) suggests a physiological role in human physiology. In the central nervous system, DHEA is considered a neurosteroid with a wide range of functions. The goal of this review is to discuss metabolism, biochemical, and physiological mechanism of DHEA action and the potential role of DHEA in aging and in ameliorating a host of pathological conditions, associated with aging. We examined preclinical and clinical data reported in various studies from the available literature concerning the effects of DHEA in normal and pathological conditions. Data reported in the literature were analyzed, reviewed, and discussed. DHEA mediates its action via multiple signaling pathways involving specific membrane receptors and via transformation into androgen and estrogen derivatives (e.g., androgens, estrogens, 7α and 7β DHEA, and 7α and 7β epiandrosterone derivatives) acting through their specific receptors. These pathways include: nitric oxide synthase activation, modulation of γ-amino butyric acid receptors, N-methyl D-aspartate, receptors sigma receptors (Sigma-1), differential expression of inflammatory factors, adhesion molecules and reactive oxygen species, among others. Clinical and epidemiological studies suggested that low DHEA levels might be associated with ischemic heart disease, endothelial dysfunction, atherosclerosis, bone loss, inflammatory diseases, and sexual dysfunction. Most importantly, no significant adverse or negative side effects of DHEA were reported in clinical studies of men and women. DHEA modulates endothelial function, reduces inflammation, improves insulin sensitivity, blood flow, cellular immunity, body composition, bone metabolism, sexual function, and physical strength in frailty and provides neuroprotection, improves cognitive function, and memory enhancement. DHEA possesses pleiotropic effects and reduced levels of DHEA and DHEA-S may be

  3. Variance of vestibular-evoked myogenic potentials.

    PubMed

    Ochi, K; Ohashi, T; Nishino, H

    2001-03-01

    Vestibular-evoked myogenic potential (VEMP) has been thought to originate from sacculus. The variance of this potential and the effectiveness of the adjustments of pInII amplitudes using average muscle tonus of ipsilateral sternocleidomastoid muscle were evaluated. In addition, clinical application of VEMP was examined in patients with acoustic tumors (ATs) and vestibular neurolabyrinthitis (VNL). Prospective evaluation of the VEMP in 18 normal volunteers and 6 patients. Variance and left-right difference of each parameter, including pI latency, nII latency, pInII amplitude, and threshold, was analyzed. Input-output function of pInII amplitude was evaluated. Average muscle tonus was calculated in 20 ears and applied for adjustment of pInII amplitude. Sensitivity of each parameter of VEMP was examined in 3 patients with ATs and 3 patients with VNL. VEMP was present in all 36 ears of 18 control subjects. Thresholds of VEMP for normal subjects were 80 to 95 dB normal hearing level (nHL). The muscle tonus affected pInII amplitude significantly; however, no statistically significant improvement was observed in test-retest investigation after adjustment using muscle tonus. The threshold of the affected side was elevated compared with the non-affected side in all patients with ATs, whereas 2 of 3 patients showed normal pInII-ratio. One patient with VNL presented normal VEMP, whereas 2 patients presented no VEMP to the highest stimulus intensity. Interaural difference of thresholds might be the most useful parameters. Adjustment using average muscle tonus is not necessary when the subject is able to get sufficient muscle tonus.

  4. Aging effect on vestibular evoked myogenic potential.

    PubMed

    Su, Hsuan-Chao; Huang, Tsung-Wei; Young, Yi-Ho; Cheng, Po-Wen

    2004-11-01

    Vestibular evoked myogenic potential (VEMP) is applied to explore the integrity of sacculocollic reflex. Although tests to evaluate vestibular-ocular reflex pathway have shown that vestibular function is adversely affected by aging, VEMP, in this study, is used as a novel test to define how aging influences sacculocollic reflex pathway. Prospective study. Academic tertiary referral center. Eighty normal subjects, equally divided into four groups according to their age, were enrolled to this study. Group I included patients aged <20 years, Group II patient ages ranged from 21 to 40 years, Group III patients were 41 to 60 years, and Group IV included patients older than 60 years. Recordings of VEMP responses. The response rate and parameters of VEMP, including p13 latency, n23 latency, amplitude, and interaural difference ratio. The VEMP response rates from Groups I to IV was 98%, 98%, 90%, and 60%, respectively, disclosing a significant difference only between Group IV and other groups (p < 0.05). The amplitude was negatively correlated with age in contrast to the n23 latency, correlating positively with age; both reached a significant difference (p < 0.05). Although the p13 latency had a trend to prolong as age increased, no significant correlation existed (p < 0.06). Moreover, the interaural difference ratio was also not significantly correlated with age. As age increased over 60 years, the VEMP response rate decreased dramatically. While age increased, the VEMP amplitude decreased in comparison to n23 latency prolonged. These findings might suggest that aging could deteriorate the saccular and corresponding neural functions. When interpreting the VEMP parameters, it should be kept in mind that aging could affect VEMP responses. Based on this study, we suggest establishing different reference values according to different age groups when evaluating VEMP response in patients with vestibular diseases.

  5. APL-1, a Caenorhabditis elegans protein related to the human β-amyloid precursor protein, is essential for viability

    PubMed Central

    Hornsten, Angela; Lieberthal, Jason; Fadia, Shruti; Malins, Richard; Ha, Lawrence; Xu, Xiaomeng; Daigle, Isabelle; Markowitz, Mindy; O'Connor, Gregory; Plasterk, Ronald; Li, Chris

    2007-01-01

    Dominant mutations in the amyloid precursor protein (APP) gene are associated with rare cases of familial Alzheimer's disease; however, the normal functions of APP and related proteins remain unclear. The nematode Caenorhabditis elegans has a single APP-related gene, apl-1, that is expressed in multiple tissues. Loss of apl-1 disrupts several developmental processes, including molting and morphogenesis, and results in larval lethality. The apl-1 lethality can be rescued by neuronal expression of the extracellular domain of APL-1. These data highlight the importance of the extracellular domain of an APP family member and suggest that APL-1 acts noncell-autonomously during development. Overexpression of APL-1 also causes several defects, including a high level of larval lethality. Decreased activity of sel-12, a C. elegans homologue of the human γ-secretase component presenilin 1, partially rescues the lethality associated with APL-1 overexpression, suggesting that SEL-12 activity regulates APL-1 activity either directly or indirectly. PMID:17267616

  6. Secreted Human Amyloid Precursor Protein Binds Semaphorin 3a and Prevents Semaphorin-Induced Growth Cone Collapse

    PubMed Central

    Guerreiro, Luiz H.; Beltrão, Paulo José I.; Carvalho, Milena M. V. F.; da S. Santos, Luís Eduardo; de Mello, Fernando G.; Reis, Ricardo A. M.; Ferreira, Sérgio T.

    2011-01-01

    The amyloid precursor protein (APP) is well known for giving rise to the amyloid-β peptide and for its role in Alzheimer's disease. Much less is known, however, on the physiological roles of APP in the development and plasticity of the central nervous system. We have used phage display of a peptide library to identify high-affinity ligands of purified recombinant human sAPPα695 (the soluble, secreted ectodomain from the main neuronal APP isoform). Two peptides thus selected exhibited significant homologies with the conserved extracellular domain of several members of the semaphorin (Sema) family of axon guidance proteins. We show that sAPPα695 binds both purified recombinant Sema3A and Sema3A secreted by transfected HEK293 cells. Interestingly, sAPPα695 inhibited the collapse of embryonic chicken (Gallus gallus domesticus) dorsal root ganglia growth cones promoted by Sema3A (Kd≤8·10−9 M). Two Sema3A-derived peptides homologous to the peptides isolated by phage display blocked sAPPα binding and its inhibitory action on Sema3A function. These two peptides are comprised within a domain previously shown to be involved in binding of Sema3A to its cellular receptor, suggesting a competitive mechanism by which sAPPα modulates the biological action of semaphorins. PMID:21829538

  7. The effect of poly(d,l-lactide-co-glycolide)-alendronate conjugate nanoparticles on human osteoclast precursors.

    PubMed

    Cenni, Elisabetta; Avnet, Sofia; Granchi, Donatella; Fotia, Caterina; Salerno, Manuela; Micieli, Dorotea; Sarpietro, Maria Grazia; Pignatello, Rosario; Castelli, Francesco; Baldini, Nicola

    2012-01-01

    Nanoparticles (NPs) formed from polymers conjugated with bisphosphonates (BPs) allow the bone targeting of loaded drugs, such as doxorubicin, for the treatment of skeletal tumours. The additional antiosteoclastic effect of the conjugated BP could contribute to the inhibition of tumour-associated bone degradation. With this aim, we have produced NPs made of poly(d,l-lactide-co-glycolide) (PLGA) conjugated with alendronate (ALE). To show if ALE retained the antiosteoclastic properties after the conjugation with PLGA and the production of NPs, we treated human osteoclasts, derived from circulating precursors, with PLGA-ALE NPs and compared the effects on actin ring generation, apoptosis and type-I collagen degradation with those of free ALE and with NPs made of pure PLGA. PLGA-ALE NPs disrupted actin ring, induced apoptosis and inhibited collagen degradation. Unexpectedly, also NPs made of pure PLGA showed similar effects. Therefore, we cannot exclude that in addition to the observed antiosteoclastic activity dependent on ALE in PLGA-ALE NPs, there was also an effect due to pure PLGA. Still, as PLGA-ALE NPs are intended for the loading with drugs for the treatment of osteolytic bone metastases, the additional antiosteoclastic effect of PLGA-ALE NPs, and even of PLGA, may contribute to the inhibition of the disease-associated bone degradation.

  8. Extensive Ex Vivo Expansion of Functional Human Erythroid Precursors Established From Umbilical Cord Blood Cells by Defined Factors

    PubMed Central

    Huang, Xiaosong; Shah, Siddharth; Wang, Jing; Ye, Zhaohui; Dowey, Sarah N; Tsang, Kit Man; Mendelsohn, Laurel G; Kato, Gregory J; Kickler, Thomas S; Cheng, Linzhao

    2014-01-01

    There is a constant shortage of red blood cells (RBCs) from sufficiently matched donors for patients who need chronic transfusion. Ex vivo expansion and maturation of human erythroid precursors (erythroblasts) from the patients or optimally matched donors could represent a potential solution. Proliferating erythroblasts can be expanded from umbilical cord blood mononuclear cells (CB MNCs) ex vivo for 106–107-fold (in ~50 days) before proliferation arrest and reaching sufficient number for broad application. Here, we report that ectopic expression of three genetic factors (Sox2, c-Myc, and an shRNA against TP53 gene) associated with iPSC derivation enables CB-derived erythroblasts to undergo extended expansion (~1068-fold in ~12 months) in a serum-free culture condition without change of cell identity or function. These expanding erythroblasts maintain immature erythroblast phenotypes and morphology, a normal diploid karyotype and dependence on a specific combination of growth factors for proliferation throughout expansion period. When being switched to a terminal differentiation condition, these immortalized erythroblasts gradually exit cell cycle, decrease cell size, accumulate hemoglobin, condense nuclei and eventually give rise to enucleated hemoglobin-containing erythrocytes that can bind and release oxygen. Our result may ultimately lead to an alternative approach to generate unlimited numbers of RBCs for personalized transfusion medicine. PMID:24002691

  9. Novel Strategy for Phenotypic Characterization of Human B Lymphocytes from Precursors to Effector Cells by Flow Cytometry.

    PubMed

    Clavarino, Giovanna; Delouche, Noémie; Vettier, Claire; Laurin, David; Pernollet, Martine; Raskovalova, Tatiana; Cesbron, Jean-Yves; Dumestre-Pérard, Chantal; Jacob, Marie-Christine

    A precise identification and phenotypic characterization of human B-cell subsets is of crucial importance in both basic research and medicine. In the literature, flow cytometry studies for the phenotypic characterization of B-lymphocytes are mainly focused on the description of a particular cell stage, or of specific cell stages observed in a single type of sample. In the present work, we propose a backbone of 6 antibodies (CD38, CD27, CD10, CD19, CD5 and CD45) and an efficient gating strategy to identify, in a single analysis tube, a large number of B-cell subsets covering the whole B-cell differentiation from precursors to memory and plasma cells. Furthermore, by adding two antibodies in an 8-color combination, our approach allows the analysis of the modulation of any cell surface marker of interest along B-cell differentiation. We thus developed a panel of seven 8-colour antibody combinations to phenotypically characterize B-cell subpopulations in bone marrow, peripheral blood, lymph node and cord blood samples. Beyond qualitative information provided by biparametric representations, we also quantified antigen expression on each of the identified B-cell subsets and we proposed a series of informative curves showing the modulation of seventeen cell surface markers along B-cell differentiation. Our approach by flow cytometry provides an efficient tool to obtain quantitative data on B-cell surface markers expression with a relative easy-to-handle technique that can be applied in routine explorations.

  10. Expression of CD86 on human marrow CD34(+) cells identifies immunocompetent committed precursors of macrophages and dendritic cells.

    PubMed

    Ryncarz, R E; Anasetti, C

    1998-05-15

    Macrophages and dendritic cells derive from a hematopoietic stem cell and the existence of a common committed progenitor has been hypothesized. We have recently found in normal human marrow a subset of CD34(+) cells that constitutively expresses HLA-DR and low levels of CD86, a natural ligand for the T cell costimulation receptor CD28. This CD34(+) subset can elicit responses from allogeneic T cells. In this study, we show that CD34(+)/CD86(+) cells can also present tetanus toxoid antigen to memory CD4(+) T cells. CD86 is expressed at low levels in macrophages and high levels in dendritic cells. Therefore, we have tested the hypothesis that CD34(+)/CD86(+) cells are the common precursors of both macrophages and dendritic cells. CD34(+)/CD86(+) marrow cells cultured in granulocyte-macrophage colony-stimulating factor (GM-CSF)-generated macrophages. In contrast, CD34(+)/CD86(-) cells cultured in GM-CSF generated a predominant population of granulocytes. CD34(+)/CD86(+) cells cultured in GM-CSF plus tumor necrosis factor-alpha (TNF-alpha) generated almost exclusively CD1a+/CD83(+) dendritic cells. In contrast, CD34(+)/CD86(-) cells cultured in GM-CSF plus TNF-alpha generated a variety of cell types, including a small population of dendritic cells. In addition, CD34(+)/CD86(+) cells cultured in granulocyte colony-stimulating factor failed to generate CD15(+) granulocytes. Therefore, CD34(+)/CD86(+) cells are committed precursors of both macrophages and dendritic cells. The ontogeny of dendritic cells was recapitulated by stimulation of CD34(+)/CD86(-) cells with TNF-alpha that induced expression of CD86. Subsequent costimulation of CD86(+) cells with GM-CSF plus TNF-alpha lead to expression of CD83 and produced terminal dendritic cell differentiation. Thus, expression of CD86 on hematopoietic progenitor cells is regulated by TNF-alpha and denotes differentiation towards the macrophage or dendritic cell lineages.

  11. Superoxide modulates myogenic contractions of mouse afferent arterioles.

    PubMed

    Lai, En Yin; Wellstein, Anton; Welch, William J; Wilcox, Christopher S

    2011-10-01

    Reactive oxygen species enhance or impair autoregulation. Because superoxide is a vasoconstrictor, we tested the hypothesis that stretch generates superoxide that mediates myogenic responses. Increasing perfusion pressure of mouse isolated perfused renal afferent arterioles from 40 to 80 mm Hg reduced their diameter by 13.3±1.8% (P<0.001) and increased reactive oxygen species (ethidium: dihydroethidium fluorescence) by 9.8±2.3% (P<0.05). Stretch-induced fluorescence was reduced significantly (P<0.05) by incubation with Tempol (3.7±0.8%), pegylated superoxide dismutase (3.2±1.0%), or apocynin (3.5±0.9%) but not by pegylated catalase, L-nitroarginine methylester, or Ca(2+)-free medium, relating it to Ca(2+)-independent vascular superoxide. Compared with vehicle, basal tone and myogenic contractions were reduced significantly (P<0.05) by pegylated superoxide dismutase (5.4±0.8), Tempol (4.1±1.0%), apocynin (1.0±1.3%), and diphenyleneiodinium (3.9±0.9%) but not by pegylated catalase (10.1±1.6%). L-Nitroarginine methylester enhanced basal tone, but neither it (15.8±3.3%) nor endothelial NO synthase knockout (10.2±1.8%) significantly changed myogenic contractions. Tempol had no further effect after superoxide dismutase but remained effective after catalase. H(2)O(2) >50 μmol/L caused contractions but at 25 μmol/L inhibited myogenic responses (7.4±0.8%; P<0.01). In conclusion, increasing the pressure within afferent arterioles led to Ca(2+)-independent increased vascular superoxide production from nicotinamide adenine dinucleotide phosphate oxidase, which enhanced myogenic contractions largely independent of NO, whereas H(2)O(2) impaired pressure-induced contractions but was not implicated in the normal myogenic response.

  12. Markers of pluripotency and differentiation in human neural precursor cells derived from embryonic stem cells and CNS tissue.

    PubMed

    Sundberg, M; Andersson, P-H; Åkesson, E; Odeberg, J; Holmberg, L; Inzunza, J; Falci, S; Öhman, J; Suuronen, R; Skottman, H; Lehtimäki, K; Hovatta, O; Narkilahti, S; Sundström, E

    2011-01-01

    Cell transplantation therapies for central nervous system (CNS) deficits such as spinal cord injury (SCI) have been shown to be effective in several animal models. One cell type that has been transplanted is neural precursor cells (NPCs), for which there are several possible sources. We have studied NPCs derived from human embryonic stem cells (hESCs) and human fetal CNS tissue (hfNPCs), cultured as neurospheres, and the expression of pluripotency and neural genes during neural induction and in vitro differentiation. mRNA for the pluripotency markers Nanog, Oct-4, Gdf3, and DNMT3b were downregulated during neural differentiation of hESCs. mRNA for these markers was found in nonpluripotent hfNPC at higher levels compared to hESC-NPCs. However, Oct-4 protein was found in hESC-NPCs after 8 weeks of culture, but not in hfNPCs. Similarly, SSEA-4 and CD326 were only found in hESC-NPCs. NPCs from both sources differentiated as expected to cells with typical features of neurons and astrocytes. The expressions of neuronal markers in hESC-NPCs were affected by the composition of cell culture medium, while this did not affect hfNPCs. Transplantation of hESC-NPC or hfNPC neurospheres into immunodeficient mouse testis or subcutaneous tissue did not result in tumor formation. In contrast, typical teratomas appeared in all animals after transplantation of hESC-NPCs to injured or noninjured spinal cords of immunodeficient rats. Our data show that transplantation to the subcutaneous tissue or the testes of immunodeficient mice is not a reliable method for evaluation of the tumor risk of remaining pluripotent cells in grafts. © 2011 Cognizant Comm. Corp.

  13. Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels.

    PubMed

    Xu, Yanyi; Li, Zhenqing; Li, Xiaofei; Fan, Zhaobo; Liu, Zhenguo; Xie, Xiaoyun; Guan, Jianjun

    2015-10-01

    Stem cell therapy has potential to regenerate skeletal muscle tissue in ischemic limb. However, the delivered stem cells experience low rate of myogenic differentiation. Employing injectable hydrogels as stem cell carriers may enhance the myogenic differentiation as their modulus may be tailored to induce the differentiation. Yet current approaches used to manipulate hydrogel modulus often simultaneously vary other properties that also affect stem cell differentiation, such as chemical structure, composition and water content. Thus it is challenging to demonstrate the decoupled effect of hydrogel modulus on stem cell differentiation. In this report, we decoupled the hydrogel modulus from chemical structure, composition, and water content using injectable and thermosensitive hydrogels. The hydrogels were synthesized from N-isopropylacrylamide (NIPAAm), acrylic acid (AAc), and degradable macromer 2-hydroxyethyl methacrylate-oligomer [oligolatide, oligohydroxybutyrate, or oligo(trimethylene carbonate)]. We found that using the same monomer composition and oligomer chemical structure but different oligomer length can independently vary hydrogel modulus. Rat bone marrow mesenchymal stem cells (MSCs) were encapsulated in the hydrogels with elastic expansion moduli of 11, 20, and 40 kPa, respectively. After 14 days of culture, significant myogenic differentiation was achieved for the hydrogel with elastic expansion modulus of 20 kPa, as judged from both the gene and protein expression. In addition, MSCs exhibited an elastic expansion modulus-dependent proliferation rate. The most significant proliferation was observed in the hydrogel with elastic expansion modulus of 40 kPa. These results demonstrate that the developed injectable and thermosensitive hydrogels with suitable modulus has the potential to deliver stem cells into ischemic limb for enhanced myogenic differentiation and muscle regeneration. Stem cell therapy for skeletal muscle regeneration in ischemic limb

  14. Structural characterization of the human platelet-derived growth factor A-chain cDNA and gene: Alternative exon usage predicts two different precursor proteins

    SciTech Connect

    Rorsman, F.; Bywater, M.; Knott, T.J.; Scott, J.; Betsholtz, C.

    1988-02-01

    The human platelet-derived growth factor (PDGF) A-chain locus was characterized by restriction endonuclease analysis, and the nucleotide sequence of its exons was determined. Seven exons were identified, spanning approximately 22 kilobase pairs of genomic DNA. Alternative exon usage, identified by cDNA cloning, occurs in a human glioblastoma cell line and may give rise to two types of A-chain precursors with different C termini. The exon-intron arrangement was similar to that of the PDGF B-chain/sis locus and seemed to divide the precursor proteins into functional domains. Southern blot analysis of genomic DNA showed that a single PDGF A-chain gene was present in the human genome.

  15. Myogenic differentiation of muscular dystrophy-specific induced pluripotent stem cells for use in drug discovery.

    PubMed

    Abujarour, Ramzey; Bennett, Monica; Valamehr, Bahram; Lee, Tom Tong; Robinson, Megan; Robbins, David; Le, Thuy; Lai, Kevin; Flynn, Peter

    2014-02-01

    Human induced pluripotent stem cells (iPSCs) represent a scalable source of potentially any cell type for disease modeling and therapeutic screening. We have a particular interest in modeling skeletal muscle from various genetic backgrounds; however, efficient and reproducible methods for the myogenic differentiation of iPSCs have not previously been demonstrated. Ectopic myogenic differentiation 1 (MyoD) expression has been shown to induce myogenesis in primary cell types, but the same effect has been unexpectedly challenging to reproduce in human iPSCs. In this study, we report that optimization of culture conditions enabled direct MyoD-mediated differentiation of iPSCs into myoblasts without the need for an intermediate step or cell sorting. MyoD induction mediated efficient cell fusion of mature myocytes yielding multinucleated myosin heavy chain-positive myotubes. We applied the same approach to dystrophic iPSCs, generating 16 iPSC lines from fibroblasts of four patients with Duchenne and Becker muscular dystrophies. As seen with iPSCs from healthy donors, within 36 hours from MyoD induction there was a clear commitment toward the myogenic identity by the majority of iPSCs in culture (50%-70%). The patient iPSC-derived myotubes successfully adopted the skeletal muscle program, as determined by global gene expression profiling, and were functionally responsive to treatment with hypertrophic proteins insulin-like growth factor 1 (IGF-1) and wingless-type MMTV integration site family, member 7A (Wnt7a), which are being investigated as potential treatments for muscular dystrophy in clinical and preclinical studies, respectively. Our results demonstrate that iPSCs have no intrinsic barriers preventing MyoD from inducing efficient and rapid myogenesis and thus providing a scalable source of normal and dystrophic myoblasts for use in disease modeling and drug discovery.

  16. Efficient derivation of human cardiac precursors and cardiomyocytes from pluripotent human embryonic stem cells with small molecule induction.

    PubMed

    Parsons, Xuejun H; Teng, Yang D; Parsons, James F; Snyder, Evan Y; Smotrich, David B; Moore, Dennis A

    2011-11-03

    To date, the lack of a suitable human cardiac cell source has been the major setback in regenerating the human myocardium, either by cell-based transplantation or by cardiac tissue engineering. Cardiomyocytes become terminally-differentiated soon after birth and lose their ability to proliferate. There is no evidence that stem/progenitor cells derived from other sources, such as the bone marrow or the cord blood, are able to give rise to the contractile heart muscle cells following transplantation into the heart. The need to regenerate or repair the damaged heart muscle has not been met by adult stem cell therapy, either endogenous or via cell delivery. The genetically stable human embryonic stem cells (hESCs) have unlimited expansion ability and unrestricted plasticity, proffering a pluripotent reservoir for in vitro derivation of large supplies of human somatic cells that are restricted to the lineage in need of repair and regeneration. Due to the prevalence of cardiovascular disease worldwide and acute shortage of donor organs, there is intense interest in developing hESC-based therapies as an alternative approach. However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity (see a schematic in Fig. 1A). In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic. To overcome these obstacles, we have resolved the elements of a defined culture

  17. Initial cleavage of the human immunodeficiency virus type 1 GagPol precursor by its activated protease occurs by an intramolecular mechanism.

    PubMed

    Pettit, Steven C; Everitt, Lorraine E; Choudhury, Sumana; Dunn, Ben M; Kaplan, Andrew H

    2004-08-01

    Processing of the GagPol polyprotein precursor of human immunodeficiency virus type 1 (HIV-1) is a critical step in viral assembly and replication. The HIV-1 protease (PR) is translated as part of GagPol and is both necessary and sufficient for precursor processing. The PR is active only as a dimer; enzyme activation is initiated when the PR domains in two GagPol precursors dimerize. The precise mechanism by which the PR becomes activated and the subsequent initial steps in precursor processing are not well understood. However, it is clear that processing is initiated by the PR domain that is embedded within the precursor itself. We have examined the earliest events in precursor processing using an in vitro assay in which full-length GagPol is cleaved by its embedded PR. We demonstrate that the embedded, immature PR is as much as 10,000-fold less sensitive to inhibition by an active-site PR inhibitor than is the mature, free enzyme. Further, we find that different concentrations of the active-site inhibitor are required to inhibit the processing of different cleavage sites within GagPol. Finally, our results indicate that the first cleavages carried out by the activated PR within GagPol are intramolecular. Overall, our data support a model of virus assembly in which the first cleavages occur in GagPol upstream of the PR. These intramolecular cleavages produce an extended form of PR that completes the final processing steps accompanying the final stages of particle assembly by an intermolecular mechanism.

  18. Neuronal Differentiation and Extensive Migration of Human Neural Precursor Cells following Co-Culture with Rat Auditory Brainstem Slices

    PubMed Central

    Novozhilova, Ekaterina; Olivius, Petri; Siratirakun, Piyaporn; Lundberg, Cecilia; Englund-Johansson, Ulrica

    2013-01-01

    Congenital or acquired hearing loss is often associated with a progressive degeneration of the auditory nerve (AN) in the inner ear. The AN is composed of processes and axons of the bipolar spiral ganglion neurons (SGN), forming the connection between the hair cells in the inner ear cochlea and the cochlear nuclei (CN) in the brainstem (BS). Therefore, replacement of SGNs for restoring the AN to improve hearing function in patients who receive a cochlear implantation or have severe AN malfunctions is an attractive idea. A human neural precursor cell (HNPC) is an appropriate donor cell to investigate, as it can be isolated and expanded in vitro with maintained potential to form neurons and glia. We recently developed a post-natal rodent in vitro auditory BS slice culture model including the CN and the central part of the AN for initial studies of candidate cells. Here we characterized the survival, distribution, phenotypic differentiation, and integration capacity of HNPCs into the auditory circuitry in vitro. HNPC aggregates (spheres) were deposited adjacent to or on top of the BS slices or as a monoculture (control). The results demonstrate that co-cultured HNPCs compared to monocultures (1) survive better, (2) distribute over a larger area, (3) to a larger extent and in a shorter time-frame form mature neuronal and glial phenotypes. HNPC showed the ability to extend neurites into host tissue. Our findings suggest that the HNPC-BS slice co-culture is appropriate for further investigations on the integration capacity of HNPCs into the auditory circuitry. PMID:23505423

  19. Intracellular Aβ pathology and early cognitive impairments in a transgenic rat overexpressing human amyloid precursor protein: a multidimensional study.

    PubMed

    Iulita, M Florencia; Allard, Simon; Richter, Luise; Munter, Lisa-Marie; Ducatenzeiler, Adriana; Weise, Christoph; Do Carmo, Sonia; Klein, William L; Multhaup, Gerhard; Cuello, A Claudio

    2014-06-05

    Numerous studies have implicated the abnormal accumulation of intraneuronal amyloid-β (Aβ) as an important contributor to Alzheimer's disease (AD) pathology, capable of triggering neuroinflammation, tau hyperphosphorylation and cognitive deficits. However, the occurrence and pathological relevance of intracellular Aβ remain a matter of controversial debate. In this study, we have used a multidimensional approach including high-magnification and super-resolution microscopy, cerebro-spinal fluid (CSF) mass spectrometry analysis and ELISA to investigate the Aβ pathology and its associated cognitive impairments, in a novel transgenic rat model overexpressing human APP. Our microscopy studies with quantitative co-localization analysis revealed the presence of intraneuronal Aβ in transgenic rats, with an immunological signal that was clearly distinguished from that of the amyloid precursor protein (APP) and its C-terminal fragments (CTFs). The early intraneuronal pathology was accompanied by a significant elevation of soluble Aβ42 peptides that paralleled the presence and progression of early cognitive deficits, several months prior to amyloid plaque deposition. Aβ38, Aβ39, Aβ40 and Aβ42 peptides were detected in the rat CSF by MALDI-MS analysis even at the plaque-free stages; suggesting that a combination of intracellular and soluble extracellular Aβ may be responsible for impairing cognition at early time points. Taken together, our results demonstrate that the intraneuronal development of AD-like amyloid pathology includes a mixture of molecular species (Aβ, APP and CTFs) of which a considerable component is Aβ; and that the early presence of these species within neurons has deleterious effects in the CNS, even before the development of full-blown AD-like pathology.

  20. ICV-transplanted human glial precursor cells are short-lived yet exert immunomodulatory effects in mice with EAE.

    PubMed

    Kim, Heechul; Walczak, Piotr; Muja, Naser; Campanelli, James T; Bulte, Jeff W M

    2012-07-01

    Human glial precursor cells (hGPs) have potential for remyelinating lesions and are an attractive cell source for cell therapy of multiple sclerosis (MS). To investigate whether transplanted hGPs can affect the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of MS, we evaluated the therapeutic effects of transplanted hGPs together with the in vivo fate of these cells using magnetic resonance imaging (MRI) and bioluminescence imaging (BLI). At 14 days post-EAE induction, mice (n = 19) were intracerebroventricularly (ICV) injected with 5 × 10(5) hGPs that were magnetically labeled with superparamagnetic iron oxide (SPIO) particles as MR contrast agent and transduced with firefly luciferase for BLI of cell survival. Control mice (n = 18) received phosphate buffered saline (PBS) vehicle only. The severity of EAE clinical disability in the hGP-transplanted group was significantly suppressed (P < 0.05) with concomitant inhibition of ConA and MOG-specific T cell proliferation in the spleen. Astrogliosis was reduced and a lower activity of macrophages and/or microglia was observed in the spinal cord (P < 0.05). On MRI, SPIO signal was detected within the lateral ventricle from 1 day post-transplantation and remained there for up to 34 days. BLI indicated that most cells did not survive beyond 5-10 days, consistent with the lack of detectable migration into the brain parenchyma and the histological presence of an abundance of apoptotic cells. Transplanted hGPs could not be detected in the spleen. We conclude that ICV transplantation of short-lived hGPs can have a remote therapeutic effect through immunomodulation from within the ventricle, without cells directly participating in remyelination.

  1. CD36 is required for myoblast fusion during myogenic differentiation

    SciTech Connect

    Park, Seung-Yoon; Yun, Youngeun; Kim, In-San

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer CD36 expression was induced during myogenic differentiation. Black-Right-Pointing-Pointer CD36 expression was localized in multinucleated myotubes. Black-Right-Pointing-Pointer The expression of myogenic markers is attenuated in CD36 knockdown C2C12 cells. Black-Right-Pointing-Pointer Knockdown of CD36 significantly inhibited myotube formation during differentiation. -- Abstract: Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion was investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.

  2. Bovine gallbladder muscularis: Source of a myogenic receptor for cholecystokinin

    SciTech Connect

    Schjoldager, B.; Shaw, M.J.; Powers, S.P.; Schmalz, P.E.; Szurszewski, J.; Miller, L.J. )

    1988-03-01

    Despite being a classic target for the gastrointestinal peptide hormone, cholecystokinin (CCK), the gallbladder CCK receptor is not well characterized. Pharmacological studies of small species suggest that CCK action can be mediated by direct myogenic or by both myogenic and neurogenic receptors. To prepare for the biochemical characterization of a gallbladder CCK receptor and to define the subtype of the receptor being studied. The authors have performed autoradiographic localization and pharmacological characterization of CCK receptors on bovine gallbladder. Autoradiography demonstrated high-affinity specific CCK-binding sites only on the muscularis. CCK-8 stimulated tonic contraction of longitudinal strips of gallbladder muscularis in a concentration-dependent manner. Antagonism at the cholinergic receptor with 1{mu}M atropine or axonal transmission with 1{mu}M tetrodotoxin did not modify CCK-induced contraction, supporting a direct myogenic effect of this hormone. Optimal electrical field stimulation to elicit a neuronal response resulted in muscle strip relaxation, which was abolished with adrenergic blockade. Although acetylcholine administration stimulated contraction, electrical field stimulation did not, even in the presence of phentolamine, propranolol, and/or CCK. Thus, in bovine gallbladder muscularis, there is evidence for a functional CCK receptor only on smooth muscle cells. Demonstration of a single, high-affinity specific CCK-binding site on an enriched plasma membrane preparation of bovine gallbladder muscularis is consistent with this representing a myogenic CCK receptor.

  3. Electroconductive nanopatterned substrates for enhanced myogenic differentiation and maturation

    PubMed Central

    Yang, Hee Seok; Lee, Bora; Tsui, Jonathan H.; Macadangdang, Jesse; Jang, Seok-Young

    2016-01-01

    Electrically conductive materials provide a suitable platform for the in vitro study of excitable cells, such as skeletal muscle cells, due to their inherent conductivity and electro-activity. Here we demonstrate that bioinspired electroconductive nanopatterned substrates enhanced myogenic differentiation and maturation. The topographical cues from the highly-aligned collagen bundles that form the extracellular matrix (ECM) of skeletal muscle tissue were mimicked using nanopatterns created with capillary force lithography. Electron beam deposition was then utilized to conformally coat nanopatterned substrates with a thin layer of either gold or titanium to create electroconductive substrates with well-defined, large-area nanotopographical features. C2C12 cells, a myoblast cell line, were cultured for 7 days on substrates, and the effects of topography and electrical conductivity on cellular morphology and myogenic differentiation were assessed. We found that biomimetic nanotopography enhanced the formation of aligned myotubes, and the addition of an electroconductive coating promoted myogenic differentiation and maturation, as indicated by the upregulation of myogenic regulatory factors Myf5, MyoD and myogenin (MyoG). These results suggest the suitability of electroconductive nanopatterned substrates as a biomimetic platform for the in vitro engineering of skeletal muscle tissue. PMID:25988569

  4. Large-scale expansion of human skin-derived precursor cells (hSKPs) in stirred suspension bioreactors.

    PubMed

    Surrao, Denver C; Boon, Kathryn; Borys, Breanna; Sinha, Sarthak; Kumar, Ranjan; Biernaskie, Jeff; Kallos, Michael S

    2016-12-01

    Human skin-derived precursor cells (hSKPs) are multipotent adult stem cells found in the dermis of human skin. Incorporation of hSKPs into split-thickness skin grafts (STSGs), the current gold standard to treat severe burns or tissue resections, has been proposed as a treatment option to enhance skin wound healing and tissue function. For this approach to be clinically viable substantial quantities of hSKPs are required, which is the rate-limiting step, as only a few thousand hSKPs can be isolated from an autologous skin biopsy without causing donor site morbidity. In order to produce sufficient quantities of clinically viable cells, we have developed a bioprocess capable of expanding hSKPs as aggregates in stirred suspension bioreactors (SSBs). In this study, we found hSKPs from adult donors to expand significantly more (P < 0.05) at 60 rpm in SSBs than in static cultures. Furthermore, the utility of the SSBs, at 60 rpm is demonstrated by serial passaging of hSKPs from a small starting population, which can be isolated from an autologous skin biopsy without causing donor site morbidity. At 60 rpm, aggregates were markedly smaller and did not experience oxygen diffusional limitations, as seen in hSKPs cultured at 40 rpm. While hSKPs also grew at 80 rpm (0.74 Pa) and 100 rpm (1 Pa), they produced smaller aggregates due to high shear stress. The pH of the media in all the SSBs was closer to biological conditions and significantly different (P < 0.05) from static cultures, which recorded acidic pH conditions. The nutrient concentrations of the media in all the SSBs and static cultures did not drop below acceptable limits. Furthermore, there was no significant build-up of waste products to limit hSKP expansion in the SSBs. In addition, hSKP markers were maintained in the 60 rpm SSB as demonstrated by immunocytochemistry. This method of growing hSKPs in a batch culture at 60 rpm in a SSB represents an important first step in developing an

  5. Mouse fetal and embryonic liver cells differentiate human umbilical cord blood (UCB) progenitors into CD56 negative NK cell precursors in the absence of IL-15

    PubMed Central

    McCullar, Valarie; Oostendorp, Robert; Panoskaltsis-Mortari, Angela; Yung, Gong; Lutz, Charles T.; Wagner, John E.; Miller, Jeffrey S.

    2008-01-01

    Objective Human NK cell maturation involves the orderly acquisition of NK cell receptors. Our aim was to understand how stromal interactions and cytokines are important in this developmental process. Methods Human UCB CD34+/Lin−/CD38− cells were cultured on two murine stromal cell lines (AFT024 and EL08-1D2) in a switch culture to study NK cell development. Results When human progenitors were cultured on AFT024 with IL-3 and Flt3-L in the absence of IL-15, NK cell differentiation occurred, albeit at low frequency. These conditions favored the accumulation of CD56− NK cell precursors (CD34+CD7−, CD34+CD7+ and CD34−CD7+ cells), which are populations rare in adult blood but abundant in fresh UCB. In secondary culture, addition of IL-3 or IL-3+Flt3L to IL-15 increased the absolute number of CD56+ NK cells from precursors and the acquisition of CD94 and KIR. To further explore the microenvironment in early NK cell maturation, a cell line derived from murine embryonic liver (EL08-1D2) was studied. NK cell development and KIR acquisition was superior with EL08-1D2 which supported the differentiation of NK cell precursors, NK cell commitment, and proliferation. Conclusion Although the earliest events in NK cell maturation do not require exogenous human IL-15, it is required at a later stage of NK cell commitment. At a minimum, murine stroma, IL-3, and Flt3-L are required to recapitulate early NK cell development and differentiation into distinct NK cell precursors. EL08-1D2 induces KIR acquisition suggesting that extrinsic signals in NK cell development are conserved between mouse and man. PMID:18295962

  6. Enhanced MyoD-Induced Transdifferentiation to a Myogenic Lineage by Fusion to a Potent Transactivation Domain

    PubMed Central

    2015-01-01

    Genetic reprogramming holds great potential for disease modeling, drug screening, and regenerative medicine. Genetic reprogramming of mammalian cells is typically achieved by forced expression of natural transcription factors that control master gene networks and cell lineage specification. However, in many instances, the natural transcription factors do not induce a sufficiently robust response to completely reprogram cell phenotype. In this study, we demonstrate that protein engineering of the master transcription factor MyoD can enhance the conversion of human dermal fibroblasts and adult stem cells to a skeletal myocyte phenotype. Fusion of potent transcriptional activation domains to MyoD led to increased myogenic gene expression, myofiber formation, cell fusion, and global reprogramming of the myogenic gene network. This work supports a general strategy for synthetically enhancing the direct conversion between cell types that can be applied in both synthetic biology and regenerative medicine. PMID:25494287

  7. Enhanced MyoD-induced transdifferentiation to a myogenic lineage by fusion to a potent transactivation domain.

    PubMed

    Kabadi, Ami M; Thakore, Pratiksha I; Vockley, Christopher M; Ousterout, David G; Gibson, Tyler M; Guilak, Farshid; Reddy, Timothy E; Gersbach, Charles A

    2015-06-19

    Genetic reprogramming holds great potential for disease modeling, drug screening, and regenerative medicine. Genetic reprogramming of mammalian cells is typically achieved by forced expression of natural transcription factors that control master gene networks and cell lineage specification. However, in many instances, the natural transcription factors do not induce a sufficiently robust response to completely reprogram cell phenotype. In this study, we demonstrate that protein engineering of the master transcription factor MyoD can enhance the conversion of human dermal fibroblasts and adult stem cells to a skeletal myocyte phenotype. Fusion of potent transcriptional activation domains to MyoD led to increased myogenic gene expression, myofiber formation, cell fusion, and global reprogramming of the myogenic gene network. This work supports a general strategy for synthetically enhancing the direct conversion between cell types that can be applied in both synthetic biology and regenerative medicine.

  8. Inhibition of Drp1-dependent mitochondrial division impairs myogenic differentiation.

    PubMed

    Kim, Boa; Kim, Ji-Seok; Yoon, Yisang; Santiago, Mayra C; Brown, Michael D; Park, Joon-Young

    2013-10-15

    Mitochondria are dynamic organelles forming a tubular network that is continuously fusing and dividing to control their morphology and functions. Recent literature has shed new light on a potential link between the dynamic behavior of mitochondria and muscle development. In this study, we investigate the role of mitochondrial fission factor dynamin-related protein 1 (Drp1) in myogenic differentiation. We found that differentiation of C2C12 myoblasts induced by serum starvation was accompanied by a gradual increase in Drp1 protein expression (to ∼350% up to 3 days) and a fast reduction of Drp1 phosphorylation at Ser-637 (to ∼30%) resulting in translocation of Drp1 protein from the cytosol to mitochondria. During differentiation, treatment of myoblasts with mitochondrial division inhibitor (mdivi-1), a specific inhibitor of Drp1 GTPase activity, caused extensive formation of elongated mitochondria, which coincided with increased apoptosis evidenced by both enhanced caspase-3 activity and increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Furthermore, the mdivi-1-treated myotubes (day 3 in differentiation media) showed a reduction in mitochondrial DNA content, mitochondrial mass, and membrane potential in a dose-dependent manner indicating defects in mitochondrial biogenesis during myogenic differentiation. Most interestingly, mdivi-1 treatment significantly suppressed myotube formation in both C2C12 cells and primary myoblasts. Likewise, stable overexpression of a dominant negative mutant Drp1 (K38A) dramatically reduced myogenic differentiation. These data suggest that Drp-1-dependent mitochondrial division is a necessary step for successful myogenic differentiation, and perturbation of mitochondrial dynamics hinders normal mitochondrial adaptations during muscle development. Therefore, in the present study, we report a novel physiological role of mitochondrial dynamics in myogenic differentiation.

  9. Mechanical control of cation channels in the myogenic response

    PubMed Central

    Carlson, Brian E.

    2011-01-01

    Microcirculatory vessel response to changes in pressure, known as the myogenic response, is a key component of a tissue's ability to regulate blood flow. Experimental studies have not clearly elucidated the mechanical signal in the vessel wall governing steady-state reduction in vessel diameter upon an increase in intraluminal pressure. In this study, a multiscale computational model is constructed from established models of vessel wall mechanics, vascular smooth muscle (VSM) force generation, and VSM Ca2+ handling and electrophysiology to compare the plausibility of vessel wall stress or strain as an effective mechanical signal controlling steady-state vascular contraction in the myogenic response. It is shown that, at the scale of a resistance vessel, wall stress, and not stretch (strain), is the likely physiological signal controlling the steady-state myogenic response. The model is then used to test nine candidate VSM stress-controlled channel variants by fitting two separate sets of steady-state myogenic response data. The channel variants include nonselective cation (NSC), supplementary Ca2+ and Na+, L-type Ca2+, and large conductance Ca2+-activated K+ channels. The nine variants are tested in turn, and model fits suggest that stress control of Ca2+ or Na+ influx through NSC, supplementary Ca2+ or Na+, or L-type Ca2+ channels is sufficient to produce observed steady-state diameter changes with pressure. However, simulations of steady-state VSM membrane potential, cytosolic Ca2+, and Na+ with pressure show only that Na+ influx through NSC channel also generates known trends with increasing pressure, indicating that stress-controlled Na+ influx through NSC is sufficient to generate the myogenic response. PMID:21572020

  10. Myogenic progenitors and imaging single-cell flow analysis: a model to study commitment of adult muscle stem cells.

    PubMed

    Trapecar, Martin; Kelc, Robi; Gradisnik, Lidija; Vogrin, Matjaz; Rupnik, Marjan Slak

    2014-12-01

    Research on skeletal muscles suffers from a lack of appropriate human models to study muscle formation and regeneration on the regulatory level of single cells. This hampers both basic understanding and the development of new therapeutic approaches. The use of imaging multicolour flow cytometry and myogenic stem cells can help fill this void by allowing researchers to visualize and quantify the reaction of individual cultured cells to bioactives or other physiological impulses. As proof of concept, we subjected human CD56+ satellite cells to reference bioactives follistatin and Malva sylvestris extracts and then used imaging multicolor flow cytometry to visualize the stepwise activation of myogenic factors MyoD and myogenin in individual cells. This approach enabled us to evaluate the potency of these bioactives to stimulate muscle commitment. To validate this method, we used multi-photon confocal microscopy to confirm the potential of bioactives to stimulate muscle differentiation and expression of desmin. Imaging multicolor flow cytometry revealed statistically significant differences between treated and untreated groups of myogenic progenitors and we propose the utilization of this concept as an integral part of future muscle research strategies.

  11. Expansion and Purification Are Critical for the Therapeutic Application of Pluripotent Stem Cell-Derived Myogenic Progenitors.

    PubMed

    Kim, Jaemin; Magli, Alessandro; Chan, Sunny S K; Oliveira, Vanessa K P; Wu, Jianbo; Darabi, Radbod; Kyba, Michael; Perlingeiro, Rita C R

    2017-07-11

    Recent reports have documented the differentiation of human pluripotent stem cells toward the skeletal myogenic lineage using transgene- and cell purification-free approaches. Although these protocols generate myocytes, they have not demonstrated scalability, safety, and in vivo engraftment, which are key aspects for their future clinical application. Here we recapitulate one prominent protocol, and show that it gives rise to a heterogeneous cell population containing myocytes and other cell types. Upon transplantation, the majority of human donor cells could not contribute to myofiber formation. As a proof-of-principle, we incorporated the inducible PAX7 lentiviral system into this protocol, which then enabled scalable expansion of a homogeneous population of skeletal myogenic progenitors capable of forming myofibers in vivo. Our findings demonstrate the methods for scalable expansion of PAX7(+) myogenic progenitors and their purification are critical for practical application to cell replacement treatment of muscle degenerative diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Restricted maternal nutrition alters myogenic regulatory factor expression in satellite cells of ovine offspring.

    PubMed

    Raja, J S; Hoffman, M L; Govoni, K E; Zinn, S A; Reed, S A

    2016-07-01

    Poor maternal nutrition inhibits muscle development and postnatal muscle growth. Satellite cells are myogenic precursor cells that contribute to postnatal muscle growth, and their activity can be evaluated by the expression of several transcription factors. Paired-box (Pax)7 is expressed in quiescent and active satellite cells. MyoD is expressed in activated and proliferating satellite cells and myogenin is expressed in terminally differentiating cells. Disruption in the expression pattern or timing of expression of myogenic regulatory factors negatively affects muscle development and growth. We hypothesized that poor maternal nutrition during gestation would alter the in vitro temporal expression of MyoD and myogenin in satellite cells from offspring at birth and 3 months of age. Ewes were fed 100% or 60% of NRC requirements from day 31±1.3 of gestation. Lambs from control-fed (CON) or restricted-fed (RES) ewes were euthanized within 24 h of birth (birth; n=5) or were fed a control diet until 3 months of age (n=5). Satellite cells isolated from the semitendinosus muscle were used for gene expression analysis or cultured for 24, 48 or 72 h and immunostained for Pax7, MyoD or myogenin. Fusion index was calculated from a subset of cells allowed to differentiate. Compared with CON, temporal expression of MyoD and myogenin was altered in cultured satellite cells isolated from RES lambs at birth. The percent of cells expressing MyoD was greater in RES than CON (P=0.03) after 24 h in culture. After 48 h of culture, there was a greater percent of cells expressing myogenin in RES compared with CON (P0.05). In satellite cells from RES lambs at 3 months of age, the percent of cells expressing MyoD and myogenin were greater than CON after 72 h in culture (P<0.05). Fusion index was reduced in RES lambs at 3 months of age compared with CON (P<0.001). Restricted nutrition during gestation alters the temporal expression of myogenic regulatory factors in satellite cells of the

  13. In-situ resource utilization for the human exploration of Mars : a Bayesian approach to valuation of precursor missions

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.

    2006-01-01

    The need for sufficient quantities of oxygen, water, and fuel resources to support a crew on the surface of Mars presents a critical logistical issue of whether to transport such resources from Earth or manufacture them on Mars. An approach based on the classical Wildcat Drilling Problem of Bayesian decision theory was applied to the problem of finding water in order to compute the expected value of precursor mission sample information. An implicit (required) probability of finding water on Mars was derived from the value of sample information using the expected mass savings of alternative precursor missions.

  14. In-situ resource utilization for the human exploration of Mars : a Bayesian approach to valuation of precursor missions

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.

    2006-01-01

    The need for sufficient quantities of oxygen, water, and fuel resources to support a crew on the surface of Mars presents a critical logistical issue of whether to transport such resources from Earth or manufacture them on Mars. An approach based on the classical Wildcat Drilling Problem of Bayesian decision theory was applied to the problem of finding water in order to compute the expected value of precursor mission sample information. An implicit (required) probability of finding water on Mars was derived from the value of sample information using the expected mass savings of alternative precursor missions.

  15. Pentosan polysulfate promotes proliferation and chondrogenic differentiation of adult human bone marrow-derived mesenchymal precursor cells

    PubMed Central

    2010-01-01

    Introduction This study was undertaken to determine whether the anti-osteoarthritis drug pentosan polysulfate (PPS) influenced mesenchymal precursor cell (MPC) proliferation and differentiation. Methods Human MPCs were maintained in monolayer, pellet or micromass cultures (MMC) for up to 10 days with PPS at concentrations of 0 to 20 μg/ml. MPC viability and proliferation was assessed using the WST-1 assay and 3H-thymidine incorporation into DNA, while apoptosis was monitored by flow cytometry. Proteoglycan (PG) biosynthesis was determined by 35SO42- incorporation and staining with Alcian blue. Proteoglycan and collagen type I and collagen type II deposition in pellet cultures was also examined by Toluidine blue and immunohistochemical staining, respectively. The production of hyaluronan (HA) by MPCs in MMC was assessed by ELISA. The relative outcome of PPS, HA, heparin or dextran sulfate (DS) on PG synthesis was compared in 5-day MMC. Gene expression of MPCs in 7-day and 10-day MMC was examined using real-time PCR. MPC differentiation was investigated by co-culturing with PPS in osteogenic or adipogenic inductive culture media for 28 days. Results Significant MPC proliferation was evident by day 3 at PPS concentrations of 1 to 5 μg/ml (P < 0.01). In the presence of 1 to 10 μg/ml PPS, a 38% reduction in IL-4/IFNγ-induced MPC apoptosis was observed. In 5-day MMC, 130% stimulation of PG synthesis occurred at 2.5 μg/ml PPS (P < 0.0001), while 5.0 μg/ml PPS achieved maximal stimulation in the 7-day and 10-day cultures (P < 0.05). HA and DS at ≥ 5 μg/ml inhibited PG synthesis (P < 0.05) in 5-day MMC. Collagen type II deposition by MMC was significant at ≥ 0.5 μg/ml PPS (P < 0.001 to 0.05). In MPC-PPS pellet cultures, more PG, collagen type II but less collagen type I was deposited than in controls. Real-time PCR results were consistent with the protein data. At 5 and 10 μg/ml PPS, MPC osteogenic differentiation was suppressed (P < 0.01). Conclusions This is

  16. Interaction of human immunodeficiency virus type 1 Vif with Gag and Gag-Pol precursors: co-encapsidation and interference with viral protease-mediated Gag processing.

    PubMed

    Bardy, M; Gay, B; Pébernard, S; Chazal, N; Courcoul, M; Vigne, R; Decroly, E; Boulanger, P

    2001-11-01

    Interactions of human immunodeficiency virus type 1 (HIV-1) Vif protein with various forms of Gag and Gag-Pol precursors expressed in insect cells were investigated in vivo and in vitro by co-encapsidation, co-precipitation and viral protease (PR)-mediated Gag processing assays. Addressing of Gag to the plasma membrane, its budding as extracellular virus-like particles (VLP) and the presence of the p6 domain were apparently not required for Vif encapsidation, as non-N-myristoylated Deltap6-Gag and Vif proteins were co-encapsidated into intracellular VLP. Encapsidation of Vif occurred at significantly higher copy numbers in extracellular VLP formed from N-myristoylated, budding-competent Gag-Pol precursors harbouring an inactive PR domain or in chimaeric VLP composed of Gag and Gag-Pol precursors compared with the Vif content of Pr55Gag VLP. Vif encapsidation efficiency did not seem to correlate directly with VLP morphology, since these chimaeric VLP were comparable in size and shape to Pr55Gag VLP. Vif apparently inhibited PR-mediated Pr55Gag processing in vitro, with preferential protection of cleavage sites at the MA-CA and CA-NC junctions. Vif was resistant to PR action in vitro under conditions that allowed full Gag processing, and no direct interaction between Vif and PR was detected in vivo or in vitro. This suggested that inhibition by Vif of PR-mediated Gag processing resulted from interaction of Vif with the Gag substrate and not with the enzyme. Likewise, the higher efficiency of Vif encapsidation by Gag-Pol precursor compared with Pr55Gag was probably not mediated by direct binding of Vif to the Gag-Pol-embedded PR domain, but more likely resulted from a particular conformation of the Gag structural domains of the Gag-Pol precursor.

  17. Isolation of the gene and hypothalamic of cDNA for the common precursor of gonadotropin-releasing hormone and prolactin release-inhibiting factor in human and rat

    SciTech Connect

    Adelman, J.P.; Mason, A.J.; Hayflick, J.S.; Seeburg, P.H.

    1986-01-01

    Cloned cDNAs encoding the precursor protein for gonadotropin-releasing hormone (Gn-RH) and prolactin release-inhibiting factor (PIF) were isolated from libraries derived from human and rat hypothalamic mRNA. Nucleotide sequence analyses predict precursor proteins of 92 amino acids for both species and show identity between the human placental and human hypothalamic precursor proteins. Whereas the Gn-RH peptide structure is completely conserved in human and rat, the PIF domain of the precursor displays 70% interspecies homology. Genomic analyses revealed the presence of a single Gn-RH-PIF gene in human and rat containing sequences corresponding to the cDNA distributed across four exons.

  18. Myogenic transcription factors regulate pro-metastatic miR-182

    PubMed Central

    Dodd, Rebecca D.; Sachdeva, Mohit; Mito, Jeffrey K.; Eward, William C.; Brigman, Brian E.; Ma, Yan; Dodd, Leslie; Kim, Youngbaek; Lev, Dina; Kirsch, David G.

    2015-01-01

    Approximately thirty percent of patients with soft-tissue sarcoma die from pulmonary metastases. The mechanisms that drive sarcoma metastasis are not well understood. Recently, we identified miR-182 as a driver of sarcoma metastasis in a primary mouse model of soft-tissue sarcoma. We also observed elevated miR-182 in a subset of primary human sarcomas that metastasized to the lungs. Here, we show that myogenic differentiation factors regulate miR-182 levels to contribute to metastasis in mouse models. We find that MyoD directly binds the miR-182 promoter to increase miR-182 expression. Furthermore, mechanistic studies revealed that Pax7 can promote sarcoma metastasis in vivo through MyoD-dependent regulation of pro-metastatic miR-182. Taken together, these results suggest that sarcoma metastasis can be partially controlled through Pax7/MyoD-dependent activation of miR-182 and provide insight into the role that myogenic transcription factors play in sarcoma progression. PMID:26234681

  19. Myogenic transcription factors regulate pro-metastatic miR-182.

    PubMed

    Dodd, R D; Sachdeva, M; Mito, J K; Eward, W C; Brigman, B E; Ma, Y; Dodd, L; Kim, Y; Lev, D; Kirsch, D G

    2016-04-07

    Approximately 30% of patients with soft-tissue sarcoma die from pulmonary metastases. The mechanisms that drive sarcoma metastasis are not well understood. Recently, we identified miR-182 as a driver of sarcoma metastasis in a primary mouse model of soft-tissue sarcoma. We also observed elevated miR-182 in a subset of primary human sarcomas that metastasized to the lungs. Here, we show that myogenic differentiation factors regulate miR-182 levels to contribute to metastasis in mouse models. We find that MyoD directly binds the miR-182 promoter to increase miR-182 expression. Furthermore, mechanistic studies revealed that Pax7 can promote sarcoma metastasis in vivo through MyoD-dependent regulation of pro-metastatic miR-182. Taken together, these results suggest that sarcoma metastasis can be partially controlled through Pax7/MyoD-dependent activation of miR-182 and provide insight into the role that myogenic transcription factors have in sarcoma progression.

  20. Transcriptome analysis of post-hatch breast muscle in legacy and modern broiler chickens reveals enrichment of several regulators of myogenic growth.

    PubMed

    Davis, Richard V N; Lamont, Susan J; Rothschild, Max F; Persia, Michael E; Ashwell, Chris M; Schmidt, Carl J

    2015-01-01

    Agriculture provides excellent model systems for understanding how selective pressure, as applied by humans, can affect the genomes of plants and animals. One such system is modern poultry breeding in which intensive genetic selection has been applied for meat production in the domesticated chicken. As a result, modern meat-type chickens (broilers) exhibit enhanced growth, especially of the skeletal muscle, relative to their legacy counterparts. Comparative studies of modern and legacy broiler chickens provide an opportunity to identify genes and pathways affected by this human-directed evolution. This study used RNA-seq to compare the transcriptomes of a modern and a legacy broiler line to identify differentially enriched genes in the breast muscle at days 6 and 21 post-hatch. Among the 15,945 genes analyzed, 10,841 were expressed at greater than 0.1 RPKM. At day 6 post-hatch 189 genes, including several regulators of myogenic growth and development, were differentially enriched between the two lines. The transcriptional profiles between lines at day 21 post-hatch identify 193 genes differentially enriched and still include genes associated with myogenic growth. This study identified differentially enriched genes that regulate myogenic growth and differentiation between the modern and legacy broiler lines. Specifically, differences in the ratios of several positive (IGF1, IGF1R, WFIKKN2) and negative (MSTN, ACE) myogenic growth regulators may help explain the differences underlying the enhanced growth characteristics of the modern broilers.

  1. Transcriptome Analysis of Post-Hatch Breast Muscle in Legacy and Modern Broiler Chickens Reveals Enrichment of Several Regulators of Myogenic Growth

    PubMed Central

    Davis, Richard V. N.; Lamont, Susan J.; Rothschild, Max F.; Persia, Michael E.; Ashwell, Chris M.; Schmidt, Carl J.

    2015-01-01

    Agriculture provides excellent model systems for understanding how selective pressure, as applied by humans, can affect the genomes of plants and animals. One such system is modern poultry breeding in which intensive genetic selection has been applied for meat production in the domesticated chicken. As a result, modern meat-type chickens (broilers) exhibit enhanced growth, especially of the skeletal muscle, relative to their legacy counterparts. Comparative studies of modern and legacy broiler chickens provide an opportunity to identify genes and pathways affected by this human-directed evolution. This study used RNA-seq to compare the transcriptomes of a modern and a legacy broiler line to identify differentially enriched genes in the breast muscle at days 6 and 21 post-hatch. Among the 15,945 genes analyzed, 10,841 were expressed at greater than 0.1 RPKM. At day 6 post-hatch 189 genes, including several regulators of myogenic growth and development, were differentially enriched between the two lines. The transcriptional profiles between lines at day 21 post-hatch identify 193 genes differentially enriched and still include genes associated with myogenic growth. This study identified differentially enriched genes that regulate myogenic growth and differentiation between the modern and legacy broiler lines. Specifically, differences in the ratios of several positive (IGF1, IGF1R, WFIKKN2) and negative (MSTN, ACE) myogenic growth regulators may help explain the differences underlying the enhanced growth characteristics of the modern broilers. PMID:25821972

  2. Recombinant human insulin IX. Investigation of factors, influencing the folding of fusion protein-S-sulfonates, biotechnological precursors of human insulin.

    PubMed

    Tikhonov, Roman V; Pechenov, Sergey E; Belacheu, Irina A; Yakimov, Sergey A; Klyushnichenko, Vadim E; Tunes, Heloisa; Thiemann, Josef E; Vilela, Luciano; Wulfson, Andrey N

    2002-11-01

    The peculiarities of molecular structures and the influence of reaction conditions on the folding efficiency of fusion proteins-biotechnological precursors of human insulin, expressed in Escherichia coli as inclusion bodies have been investigated. The fusion proteins contained proinsulin sequence with various leader peptides connected by an Arg residue to the insulin B-chain. The kind and the size of leader peptide do not have essential influence on folding efficiency. However, the efficiency of protein folding depends on the location of the (His)6 site, which is used for metal-chelating affinity chromatography. In our study the protein folding depends on the reaction medium composition (including additives), the presence of accompanied cell components, pH, temperature, concentrations of protein, and redox agents. A negative influence of nucleic acid and heavy metal ions on folding has been found. S-sulfonated fusion protein has proinsulin-like secondary structure (by CD-spectroscopy data) that is the key point for 95% efficient folding proceeding. Folded fusion proteins are transformed into insulin by enzymatic cleavage.

  3. Lentivirus Live Cell Array for Quantitative Assessment of Gene and Pathway Activation during Myogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Tian, Jun; Gaile, Daniel P.; Andreadis, Stelios T.

    2015-01-01

    Stem cell differentiation involves multiple cascades of transcriptional regulation that govern the cell fate. To study the real-time dynamics of this complex process, quantitative and high throughput live cell assays are required. Herein, we developed a lentiviral library of promoters and transcription factor binding sites to quantitatively capture the gene expression dynamics over a period of several days during myogenic differentiation of human mesenchymal stem cells (MSCs) harvested from two different anatomic locations, bone marrow and hair follicle. Our results enabled us to monitor the sequential activation of signaling pathways and myogenic gene promoters at various stages of differentiation. In conjunction with chemical inhibitors, the lentiviral array (LVA) results also revealed the relative contribution of key signaling pathways that regulate the myogenic differentiation. Our study demonstrates the potential of LVA to monitor the dynamics of gene and pathway activation during MSC differentiation as well as serve as a platform for discovery of novel molecules, genes and pathways that promote or inhibit complex biological processes. PMID:26505747

  4. Vascular Endothelial Growth Factor Induction of Muscle-Derived Stem Cells Enhances Vascular Phenotype While Preserving Myogenic Potential.

    PubMed

    Wang, Howard D; Guo, Qiongyu; Quan, Amy; Lopez, Joseph; Alonso-Escalante, Jose C; Lough, Denver M; Lee, W P Andrew; Brandacher, Gerald; Kumar, Anand R

    2017-10-01

    Previous work by our group and other laboratories have revealed that muscle-derived stem cells (MDSCs) may contain both myogenic and endothelial progenitors, making MDSCs a promising option for skeletal muscle regeneration. The purpose of this study was to investigate the impact of vascular endothelial growth factor (VEGF) induction on the vascular and myogenic potential of MDSCs. Muscle-derived stem cells were isolated from 4- to 8-week-old C57BL/6J mice using a preplate technique and recombinant human VEGFa was used as the induction agent. Cellular proliferation and migration were assessed using serial imaging and wound healing assays, respectively. Myosin heavy chain staining was performed to assess MDSC myotube formation. Vascular potential of MDSCs was measured by expression of CD31 and in vitro capillary tube formation. Vascular endothelial growth factor stimulation led to a dose-dependent increase in MDSC proliferation (P < 0.05) and migration kinetics (P < 0.01). Control MDSCs had low levels of baseline expression of CD31, which was significantly upregulated by VEGF stimulation. Similarly, MDSCs demonstrated a basal capability for capillary tube formation, which was significantly increased after VEGF induction as evidenced by increased branches (5.91 ± 0.58 vs 9.23 ± 0.67, P < 0.01) and total tube length (11.73 ± 0.97 vs 18.62 ± 1.57 mm, P < 0.01). Additionally, the myogenic potential of MDSCs as measured by fusion index remained unchanged with increasing concentration of VEGF up to 250 ng/mL (P = 0.77). Vascular endothelial growth factor induction enhances MDSC proliferation, migration, and endothelial phenotypes without negatively impacting myogenic potential. These results suggest that VEGF stimulation may improve vascularization of MDSC-based strategies for skeletal muscle regeneration.

  5. Non-myogenic tumors display altered expression of dystrophin (DMD) and a high frequency of genetic alterations

    PubMed Central

    Luce, Leonela N.; Abbate, Mercedes

    2017-01-01

    DMD gene mutations have been associated with the development of Dystrophinopathies. Interestingly, it has been recently reported that DMD is involved in the development and progression of myogenic tumors, assigning DMD a tumor suppressor activity in these types of cancer. However, there are only few reports that analyze DMD in non-myogenic tumors. Our study was designed to examine DMD expression and genetic alterations in non-myogenic tumors using public repositories. We also evaluated the overall survival of patients with and without DMD mutations. We studied 59 gene expression microarrays (GEO database) and RNAseq (cBioPortal) datasets that included 9817 human samples. We found reduced DMD expression in 15/27 (56%) pairwise comparisons performed (Fold-Change (FC) ≤ 0.70; p-value range = 0.04-1.5×10−20). The analysis of RNAseq studies revealed a median frequency of DMD genetic alterations of 3.4%, higher or similar to other well-known tumor suppressor genes. In addition, we observed significant poorer overall survival for patients with DMD mutations. The analyses of paired tumor/normal tissues showed that the majority of tumor specimens had lower DMD expression compared to their normal adjacent counterpart. Interestingly, statistical significant over-expression of DMD was found in 6/27 studies (FC ≥ 1.4; p-value range = 0.03-3.4×10−15). These results support that DMD expression and genetic alterations are frequent and relevant in non-myogenic tumors. The study and validation of DMD as a new player in tumor development and as a new prognostic factor for tumor progression and survival are warranted. PMID:27391342

  6. Determination, diversification and multipotency of mammalian myogenic cells.

    PubMed

    Cossu, G; De Angelis, L; Borello, U; Berarducci, B; Buffa, V; Sonnino, C; Coletta, M; Vivarelli, E; Bouche, M; Lattanzi, L; Tosoni, D; Di Donna, S; Berghella, L; Salvatori, G; Murphy, P; Cusella-De Angelis, M G; Molinaro, M

    2000-01-01

    In amniotes, myogenic commitment appears to be dependent upon signaling from neural tube and dorsal ectoderm, that can be replaced by members of the Wnt family and by Sonic hedgehog. Once committed, myoblasts undergo different fates, in that they can differentiate immediately to form the myotome, or later to give rise to primary and secondary muscle fibers. With fiber maturation, satellite cells are first detected; these cells contribute to fiber growth and regeneration during post-natal life. We will describe recent data, mainly from our laboratory, that suggest a different origin for some of the cells that are incorporated into the muscle fibers during late development. We propose the possibility that these myogenic cells are derived from the vasculature, are multi-potent and become committed to myogenesis by local signaling, when ingressing a differentiating muscle tissue. The implications for fetal and perinatal development of the whole mesoderm will also be discussed.

  7. Myogenic potential of chick limb bud mesenchyme in micromass culture.

    PubMed

    Archer, C W; Langille, R M; Teran, M A; Solursh, M

    1992-01-01

    The myogenic potential of chick limb mesenchyme from stages 18-25 was assessed by micromass culture under conditions conductive to myogenesis, and was measured as the proportion of differentiated (muscle myosin-positive) mononucleated cells detected. It was found that similar myogenic potentials existed in mesenchyme from whole limbs between stages 18 and 19, but this potential was halved by stage 20. At stage 21, proximal mesenchyme showed significantly more myogenesis than distal mesenchyme, but this difference was abolished by stage 22. Thereafter, myogenesis was increasingly restricted from the distal mesenchyme, whilst the potential in more proximal regions did not significantly increase after stage 23. When the ratio between total limb myoblasts which differentiated on days 1 and 4 of culture was analysed, it was found that two distinct peaks existed at stages 20 and 23. The significance of these ratio peaks is unclear, but may be related to different proliferative potentials of the pre-myoblasts at these stages.

  8. Polysialic acid modification of the synaptic cell adhesion molecule SynCAM 1 in human embryonic stem cell-derived oligodendrocyte precursor cells.

    PubMed

    Werneburg, Sebastian; Buettner, Falk F R; Mühlenhoff, Martina; Hildebrandt, Herbert

    2015-05-01

    Oligodendrocyte precursor cells (OPCs) are the progenitors of myelinating oligodendrocytes in brain development and repair. Successful myelination depends on the control of adhesiveness during OPC migration and axon contact formation. The decoration of cell surface proteins with the glycan polysialic acid (polySia) is a key regulatory element of OPC interactions during development and under pathological conditions. By far the major protein carrier of polySia is the neural cell adhesion molecule NCAM, but recently, polysialylation of the synaptic cell adhesion molecule SynCAM 1 has been detected in the developing mouse brain. In mice, polySia-SynCAM 1 is associated with cells expressing NG2, a marker of a heterogeneous precursor cell population, which is the primary source for oligodendrocytes in development and myelin repair but can also give rise to astrocytes and possibly neurons. It is not yet clear if polySia-SynCAM 1 is expressed by OPCs and its occurrence in humans is elusive. By generating uniform human embryonic stem cell-derived OPC cultures, we demonstrate that polySia is present on human OPCs but down-regulated during differentiation into myelin basic protein-positive oligodendrocytes. PolySia on NCAM resides on the isoforms NCAM-180 and NCAM-140, and SynCAM 1 is identified as a novel polySia acceptor in human OPCs.

  9. Myogenic progenitors contribute to open but not closed fracture repair

    PubMed Central

    2011-01-01

    Background Bone repair is dependent on the presence of osteocompetent progenitors that are able to differentiate and generate new bone. Muscle is found in close association with orthopaedic injury, however its capacity to make a cellular contribution to bone repair remains ambiguous. We hypothesized that myogenic cells of the MyoD-lineage are able to contribute to bone repair. Methods We employed a MyoD-Cre+:Z/AP+ conditional reporter mouse in which all cells of the MyoD-lineage are permanently labeled with a human alkaline phosphatase (hAP) reporter. We tracked the contribution of MyoD-lineage cells in mouse models of tibial bone healing. Results In the absence of musculoskeletal trauma, MyoD-expressing cells are limited to skeletal muscle and the presence of reporter-positive cells in non-muscle tissues is negligible. In a closed tibial fracture model, there was no significant contribution of hAP+ cells to the healing callus. In contrast, open tibial fractures featuring periosteal stripping and muscle fenestration had up to 50% of hAP+ cells detected in the open fracture callus. At early stages of repair, many hAP+ cells exhibited a chondrocyte morphology, with lesser numbers of osteoblast-like hAP+ cells present at the later stages. Serial sections stained for hAP and type II and type I collagen showed that MyoD-lineage cells were surrounded by cartilaginous or bony matrix, suggestive of a functional role in the repair process. To exclude the prospect that osteoprogenitors spontaneously express MyoD during bone repair, we created a metaphyseal drill hole defect in the tibia. No hAP+ staining was observed in this model suggesting that the expression of MyoD is not a normal event for endogenous osteoprogenitors. Conclusions These data document for the first time that muscle cells can play a significant secondary role in bone repair and this knowledge may lead to important translational applications in orthopaedic surgery. Please see related article: http

  10. Cervical and ocular vestibular evoked myogenic potentials in Behcet's disease.

    PubMed

    Bayram, Ali; Doğan, Murat; Koç, Ali; Kalkan, Mehmet; Akçadağ, Alper; Özcan, İbrahim

    2015-01-01

    To investigate vestibular evoked myogenic potentials combined with audiologic status in Behcet's disease (BD) and to compare the results with normal healthy subjects. Cervical vestibular evoked myogenic potential (cVEMP) test, ocular vestibular evoked myogenic potential (oVEMP) test, Dix-Hallpike test, conventional pure tone audiometry (cPTA) and high frequency audiometry (HFA), and 226 and 1000Hz tympanometry were performed to each subject of the study. Cranial magnetic resonance imaging (MRI) with contrast enhancement was also performed to evaluate the central nervous system (CNS) in patients with BD. VEMP parameters including the mean peak latencies of p13-n23 and n10-p15, AR values and thresholds were not statistically different both in cVEMP and oVEMP between the BD and control groups. Except for 250Hz, mean audiological thresholds were significantly higher in the BD group. Five of the 20 patients had pathological cranial MRI findings that may be compatible with central nervous system involvement. To our knowledge, the present study is the first report investigating oVEMP and cVEMP responses combined with MRI findings in patients with BD. The presence of high frequency hearing loss is a common finding in BD and HFA may help early detection of hearing loss in patients with BD when combined with cPTA. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Ocular vestibular evoked myogenic potentials in patients with acoustic neuroma.

    PubMed

    Piras, Gianluca; Brandolini, Cristina; Castellucci, Andrea; Modugno, Giovanni Carlo

    2013-02-01

    To assess the usefulness of vestibular testing in patients with acoustic neuroma, considering two main aspects: to compare diagnostic sensitivity of the current vestibular tests, especially considering ocular vestibular evoked myogenic potentials (OVEMPs) and to identify pre-operative localization of the tumor (inferior vestibular nerve vs. superior vestibular nerve) only with the help of vestibular electrophysiological data. Twenty-six patients with unilateral acoustic neuroma (mainly intracanalicular type) were studied with a full audio-vestibular test battery (pure tone and speech audiometry, caloric bithermal test, vibration-induced nystagmus test (VIN), cervical and OVEMPs). 18 patients (69 %) showed abnormal caloric responses. 12 patients (46.2 %) showed a pattern of VIN test suggestive of vestibular asymmetry. 16 patients (61.5 %) showed abnormal OVEMPs (12 only to AC, 4 both to AC and BC). 10 patients (38.5 %) showed abnormal cervical vestibular evoked myogenic potentials (5 both to AC and BC, 5 only to AC). In one case, results of vestibular evoked potentials and caloric test were confirmed by intra-operative and post-operative findings. Results of electrophysiological tests in AN patients could be helpful for planning the proper surgical approach, considering that sensitivity of every exam is quite low in intracanalicular lesion; clinical data allow a better interpretation of vestibular evoked myogenic potentials.

  12. Genetically distinct leukemic stem cells in human CD34− acute myeloid leukemia are arrested at a hemopoietic precursor-like stage

    PubMed Central

    Quek, Lynn; Garnett, Catherine; Karamitros, Dimitris; Stoilova, Bilyana; Doondeea, Jessica; Kennedy, Alison; Metzner, Marlen; Ivey, Adam; Sternberg, Alexander; Hunter, Hannah; Price, Andrew; Virgo, Paul; Grimwade, David; Freeman, Sylvie; Russell, Nigel; Mead, Adam

    2016-01-01

    Our understanding of the perturbation of normal cellular differentiation hierarchies to create tumor-propagating stem cell populations is incomplete. In human acute myeloid leukemia (AML), current models suggest transformation creates leukemic stem cell (LSC) populations arrested at a progenitor-like stage expressing cell surface CD34. We show that in ∼25% of AML, with a distinct genetic mutation pattern where >98% of cells are CD34−, there are multiple, nonhierarchically arranged CD34+ and CD34− LSC populations. Within CD34− and CD34+ LSC–containing populations, LSC frequencies are similar; there are shared clonal structures and near-identical transcriptional signatures. CD34− LSCs have disordered global transcription profiles, but these profiles are enriched for transcriptional signatures of normal CD34− mature granulocyte–macrophage precursors, downstream of progenitors. But unlike mature precursors, LSCs express multiple normal stem cell transcriptional regulators previously implicated in LSC function. This suggests a new refined model of the relationship between LSCs and normal hemopoiesis in which the nature of genetic/epigenetic changes determines the disordered transcriptional program, resulting in LSC differentiation arrest at stages that are most like either progenitor or precursor stages of hemopoiesis. PMID:27377587

  13. Genetically distinct leukemic stem cells in human CD34- acute myeloid leukemia are arrested at a hemopoietic precursor-like stage.

    PubMed

    Quek, Lynn; Otto, Georg W; Garnett, Catherine; Lhermitte, Ludovic; Karamitros, Dimitris; Stoilova, Bilyana; Lau, I-Jun; Doondeea, Jessica; Usukhbayar, Batchimeg; Kennedy, Alison; Metzner, Marlen; Goardon, Nicolas; Ivey, Adam; Allen, Christopher; Gale, Rosemary; Davies, Benjamin; Sternberg, Alexander; Killick, Sally; Hunter, Hannah; Cahalin, Paul; Price, Andrew; Carr, Andrew; Griffiths, Mike; Virgo, Paul; Mackinnon, Stephen; Grimwade, David; Freeman, Sylvie; Russell, Nigel; Craddock, Charles; Mead, Adam; Peniket, Andrew; Porcher, Catherine; Vyas, Paresh

    2016-07-25

    Our understanding of the perturbation of normal cellular differentiation hierarchies to create tumor-propagating stem cell populations is incomplete. In human acute myeloid leukemia (AML), current models suggest transformation creates leukemic stem cell (LSC) populations arrested at a progenitor-like stage expressing cell surface CD34. We show that in ∼25% of AML, with a distinct genetic mutation pattern where >98% of cells are CD34(-), there are multiple, nonhierarchically arranged CD34(+) and CD34(-) LSC populations. Within CD34(-) and CD34(+) LSC-containing populations, LSC frequencies are similar; there are shared clonal structures and near-identical transcriptional signatures. CD34(-) LSCs have disordered global transcription profiles, but these profiles are enriched for transcriptional signatures of normal CD34(-) mature granulocyte-macrophage precursors, downstream of progenitors. But unlike mature precursors, LSCs express multiple normal stem cell transcriptional regulators previously implicated in LSC function. This suggests a new refined model of the relationship between LSCs and normal hemopoiesis in which the nature of genetic/epigenetic changes determines the disordered transcriptional program, resulting in LSC differentiation arrest at stages that are most like either progenitor or precursor stages of hemopoiesis.

  14. N-methyl-D-aspartate receptors in human erythroid precursor cells and in circulating red blood cells contribute to the intracellular calcium regulation.

    PubMed

    Makhro, Asya; Hänggi, Pascal; Goede, Jeroen S; Wang, Jue; Brüggemann, Andrea; Gassmann, Max; Schmugge, Markus; Kaestner, Lars; Speer, Oliver; Bogdanova, Anna

    2013-12-01

    The presence of N-methyl-d-aspartate receptor (NMDAR) was previously shown in rat red blood cells (RBCs) and in a UT-7/Epo human myeloid cell line differentiating into erythroid lineage. Here we have characterized the subunit composition of the NMDAR and monitored its function during human erythropoiesis and in circulating RBCs. Expression of the NMDARs subunits was assessed in erythroid progenitors during ex vivo erythropoiesis and in circulating human RBCs using quantitative PCR and flow cytometry. Receptor activity was monitored using a radiolabeled antagonist binding assay, live imaging of Ca(2+) uptake, patch clamp, and monitoring of cell volume changes. The receptor tetramers in erythroid precursor cells are composed of the NR1, NR2A, 2C, 2D, NR3A, and 3B subunits of which the glycine-binding NR3A and 3B and glutamate-binding NR2C and 2D subunits prevailed. Functional receptor is required for survival of erythroid precursors. Circulating RBCs retain a low number of the receptor copies that is higher in young cells compared with mature and senescent RBC populations. In circulating RBCs the receptor activity is controlled by plasma glutamate and glycine. Modulation of the NMDAR activity in RBCs by agonists or antagonists is associated with the alterations in whole cell ion currents. Activation of the receptor results in the transient Ca(2+) accumulation, cell shrinkage, and alteration in the intracellular pH, which is associated with the change in hemoglobin oxygen affinity. Thus functional NMDARs are present in erythroid precursor cells and in circulating RBCs. These receptors contribute to intracellular Ca(2+) homeostasis and modulate oxygen delivery to peripheral tissues.

  15. Nampt/visfatin/PBEF affects expression of myogenic regulatory factors and is regulated by interleukin-6 in chicken skeletal muscle cells.

    PubMed

    Krzysik-Walker, Susan M; Hadley, Jill A; Pesall, Jane E; McFarland, Douglas C; Vasilatos-Younken, Regina; Ramachandran, Ramesh

    2011-08-01

    Nicotinamide phosphoribosyltransferase (Nampt/visfatin/PBEF) has been identified as a rate-limiting NAD(+) biosynthetic enzyme and an adipokine found in the circulation. Human and chicken skeletal muscles are reported to have the highest level of Nampt expression among various tissues whose functional significance remains undetermined. Expression of Nampt is regulated by interleukin-6 (IL-6), an essential cytokine for postnatal muscle growth in mammals. The objective of the current study was to characterize expression of Nampt in chicken (Gallus gallus) myogenic cells and to determine the effect of Nampt on expression of IL-6, myogenic transcription factors, and glucose uptake. We also sought to determine the effect of IL-6 on Nampt expression in chicken myogenic cells. Nampt mRNA and protein were identified in both myoblasts and myocytes, although expression did not differ between the two cell types. Treatment with recombinant human Nampt was found to decrease myoD and mrf4 expression but to increase myf5 expression in myocytes, while glucose uptake was unaffected. In response to treatment with recombinant Nampt, IL-6 expression in myocytes was increased at 24h but decreased when treated for 48 or 72 h. Forced over-expression of chicken Nampt cDNA significantly decreased myf5 expression in myoblasts. Treatment of myogenic cells with lower levels (1 ng.mL(-1)) of recombinant IL-6 increased Nampt expression, whereas a higher IL-6 concentration (100 ng.mL(-1)) decreased Nampt mRNA abundance. Collectively, these results demonstrate that Nampt, regulated in part by IL-6, alters the expression of key myogenic transcription factors and thereby may influence postnatal myogenesis.

  16. Human papillomavirus genotyping, human papillomavirus mRNA expression, and p16/Ki-67 cytology to detect anal cancer precursors in HIV-infected MSM.

    PubMed

    Wentzensen, Nicolas; Follansbee, Stephen; Borgonovo, Sylvia; Tokugawa, Diane; Schwartz, Lauren; Lorey, Thomas S; Sahasrabuddhe, Vikrant V; Lamere, Brandon; Gage, Julia C; Fetterman, Barbara; Darragh, Teresa M; Castle, Philip E

    2012-11-13

    Anal cancer incidence is high in HIV-infected MSM. Screening for anal intraepithelial lesions and cancers is performed at specialized clinics and relies on high-resolution anoscopy (HRA) and anal cytology. Both approaches have limited reproducibility and sensitivity for detecting anal cancer precursors. We evaluated biomarkers for human papillomavirus (HPV)-related disease in a population of HIV-infected MSM. A cross-sectional screening study with passive follow-up included 363 MSM followed at a HIV/AIDS clinic. All men had anal cytology samples taken and were evaluated using HRA and anal biopsies. Using a composite endpoint of biopsy results and cytology, we compared the performance of HPV16/18 genotyping, HPVE6/E7 mRNA expression, and p16/Ki-67 cytology to detect high-grade anal intraepithelial neoplasias (AINs). For all biomarkers analyzed, there was a significant trend of increasing percentage of men testing positive with increasing severity of disease (P < 0.001). HPV DNA testing had the highest sensitivity for anal intraepithelial neoplasia grade 2 and anal intraepithelial neoplasia grade 3 (AIN3), followed by p16/Ki-67, HPVE6/E7 mRNA testing, and HPV16/18 genotyping. The highest Youden's index was observed for HPVE6/E7 mRNA testing, followed by HPV16/18 genotyping, p16/Ki-67 cytology, and HPV DNA testing. Increasing the threshold for positivity of p16/Ki-67 to five or more positive cells led to significantly higher specificity, but unchanged sensitivity for detecting AIN3. Molecular features of anal disease categories are similar to those of corresponding cervical lesions. Biomarkers evaluated for cervical cancer screening may be used for primary anal cancer screening or to decide who should require immediate treatment vs. expectant management.

  17. Recombinant human insulin. VIII. Isolation of fusion protein--S-sulfonate, biotechnological precursor of human insulin, from the biomass of transformed Escherichia coli cells.

    PubMed

    Tikhonov, R V; Pechenov, S E; Belacheu, I A; Yakimov, S A; Klyushnichenko, V E; Boldireva, E F; Korobko, V G; Tunes, H; Thiemann, J E; Vilela, L; Wulfson, A N

    2001-02-01

    Various methods have been investigated for the isolation and purification of fusion proteins of precursors of human insulin in the form of S-sulfonates, from the biomass of transformed Escherichia coli cells. Fusion proteins were prepared with different sizes and structures of the leader peptide and the poly-His position (inserted for purification by metal chelate affinity chromatography). The fusion proteins contained an IgG-binding B domain of protein A from Staphylococcus aureus at the N-terminus and an Arg residue between the leader peptide of the molecule and the proinsulin sequence, for trypsin cleavage of the leader peptide. Six residues of Cys in proinsulin allow the chemical modification of the protein as a (Cys-S-SO(-)(3))(6) derivative (S-sulfonate), which increases its polyelectrolytic properties and improves the efficiency of its isolation. Various methods of oxidative sulfitolysis were compared with catalysis by sodium tetrathionate or cystine and Cu2+ or Ni2+ ions. An optimum scheme for the isolation and purification of S-sulfonated fusion proteins was developed by the combination of metal-chelating affinity and ion-exchange chromatography. Highly purified (95%) S-sulfonated fusion protein was recovered which was 85% of the fusion protein contained in the biomass of E. coli cells. Folding of fusion protein S-sulfonate occurred with high yield (up to 90-95%). We found that the fusion protein-S-sulfonate has proinsulin-like secondary structure. This structure causes highly efficient fusion protein folding. Copyright 2001 Academic Press.

  18. Effects of short-term exposure to sevoflurane on the survival, proliferation, apoptosis, and differentiation of neural precursor cells derived from human embryonic stem cells.

    PubMed

    Park, Jin-Woo; Lim, Mi-Sun; Ji, So Yeon; Cho, Myung Soo; Park, Seong-Joo; Han, Sung-Hee; Kim, Jin-Hee

    2017-09-14

    Data from animal experiments suggest that exposure to general anesthetics in early life inhibits neurogenesis and causes long-term memory deficit. Considering short operating times and the popularity of sevoflurane in pediatric anesthesia, it is important to verify the effects of short-period exposure to sevoflurane on the developing brain. We measured the effects of short-term exposure (2 h) to 3%, 6%, or 8% sevoflurane, the most commonly used anesthetic, on neural precursor cells derived from human embryonic stem cells, SNUhES32. Cell survival, proliferation, apoptosis, and differentiation on days 1, 3, 5, and 7 post treatment were analyzed. Treatment with 6% sevoflurane increased cell viability (P = 0.046) and decreased apoptosis (P = 0.014) on day 5, but the effect did not persist on day 7. Survival and apoptosis were not affected by 3% and 8% sevoflurane; there was no effect of proliferation at any of the tested concentrations. The differentiation of cells exposed to 6% or 8% sevoflurane decreased on day 1 (P = 0.033 and P = 0.036 for 6% and 8% sevoflurane, respectively) but was again normalized on days 3-7. Clinically relevant treatment with sevoflurane for 2 h induces no significant changes in the survival, proliferation, apoptosis, and differentiation of human neural precursor cells, although supraclinical doses of sevoflurane do alter human neurogenesis transiently.

  19. Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury.

    PubMed

    Kawabata, Soya; Takano, Morito; Numasawa-Kuroiwa, Yuko; Itakura, Go; Kobayashi, Yoshiomi; Nishiyama, Yuichiro; Sugai, Keiko; Nishimura, Soraya; Iwai, Hiroki; Isoda, Miho; Shibata, Shinsuke; Kohyama, Jun; Iwanami, Akio; Toyama, Yoshiaki; Matsumoto, Morio; Nakamura, Masaya; Okano, Hideyuki

    2016-01-12

    Murine- and human-induced pluripotent stem cell-derived neural stem/progenitor cells (iPSC-NS/PCs) promote functional recovery following transplantation into the injured spinal cord in rodents and primates. Although remyelination of spared demyelinated axons is a critical mechanism in the regeneration of the injured spinal cord, human iPSC-NS/PCs predominantly differentiate into neurons both in vitro and in vivo. We therefore took advantage of our recently developed protocol to obtain human-induced pluripotent stem cell-derived oligodendrocyte precursor cell-enriched neural stem/progenitor cells and report the benefits of transplanting these cells in a spinal cord injury (SCI) model. We describe how this approach contributes to the robust remyelination of demyelinated axons and facilitates functional recovery after SCI. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury

    PubMed Central

    Kawabata, Soya; Takano, Morito; Numasawa-Kuroiwa, Yuko; Itakura, Go; Kobayashi, Yoshiomi; Nishiyama, Yuichiro; Sugai, Keiko; Nishimura, Soraya; Iwai, Hiroki; Isoda, Miho; Shibata, Shinsuke; Kohyama, Jun; Iwanami, Akio; Toyama, Yoshiaki; Matsumoto, Morio; Nakamura, Masaya; Okano, Hideyuki

    2015-01-01

    Summary Murine- and human-induced pluripotent stem cell-derived neural stem/progenitor cells (iPSC-NS/PCs) promote functional recovery following transplantation into the injured spinal cord in rodents and primates. Although remyelination of spared demyelinated axons is a critical mechanism in the regeneration of the injured spinal cord, human iPSC-NS/PCs predominantly differentiate into neurons both in vitro and in vivo. We therefore took advantage of our recently developed protocol to obtain human-induced pluripotent stem cell-derived oligodendrocyte precursor cell-enriched neural stem/progenitor cells and report the benefits of transplanting these cells in a spinal cord injury (SCI) model. We describe how this approach contributes to the robust remyelination of demyelinated axons and facilitates functional recovery after SCI. PMID:26724902

  1. Primary myogenic cells see the light: improved survival of transplanted myogenic cells following low energy laser irradiation.

    PubMed

    Shefer, Gabi; Ben-Dov, Nadav; Halevy, Orna; Oron, Uri

    2008-01-01

    There is a substantial need for finding new avenues to promote muscle recovery when acute skeletal muscle loss extends beyond the natural capacity of the muscle to recover. Maintenance and regeneration of skeletal muscles depend mainly on resident stem cells known as satellite cells. Nevertheless, there are situations in which a significant loss of muscle tissue exhausts the satellite cell pool. For such cases, cell therapy and tissue engineering are becoming promising alternatives. Thus far, attempts to supplement damaged host muscles with donor satellite cells by means of myoblast transplantation therapy were mostly unsuccessful due to massive and rapid loss of donor cells within few hours after transplantation. This study aims at following the effects of low-energy-laser irradiation on the fate of implanted myoblasts. Primary myogenic cells, harvested from male rat skeletal muscles, were irradiated with low energy laser, seeded on a biodegradable scaffold and expanded in vitro. The scaffold containing cells was transplanted into partially excised muscles of host female rats. Donor cells were identified in the host muscle tissue, using Y-chromosome in situ hybridization. In this study, we show that laser irradiated donor primary myogenic cells not only survive, but also fuse with host myoblasts to form a host-donor syncytium. Our data show that the use of low energy laser irradiation (LELI), a non-surgical tool, is a promising means to enhance both the survival and functionality of transplanted primary myogenic cells.

  2. Heat shock protein-90 beta is expressed at the surface of multipotential mesenchymal precursor cells: generation of a novel monoclonal antibody, STRO-4, with specificity for mesenchymal precursor cells from human and ovine tissues.

    PubMed

    Gronthos, Stan; McCarty, Rosa; Mrozik, Krzysztof; Fitter, Stephen; Paton, Sharon; Menicanin, Danijela; Itescu, Silviu; Bartold, P Mark; Xian, Cory; Zannettino, Andrew C W

    2009-11-01

    Mesenchymal stromal cells (MSCs) and their precursor cells (MPCs) can proliferate and differentiate into multiple mesodermal and some ectodermal and endodermal tissues. Culture-expanded MSCs are currently being evaluated as a possible cell therapy to replace/repair injured or diseased tissues. While a number of mAb reagents with specificity to human MSCs, including STRO-1, STRO-3 (BLK ALP), CD71 (SH2, SH3), CD106 (VCAM-1), CD166, and CD271, have facilitated the isolation of purified populations of human MSCs from primary tissues, few if any mAb reagents have been described that can be used to isolate equivalent cells from other species. This is of particular relevance when assessing the tissue regenerative efficacy of MSCs in large immunocompetent, preclinical animal models of disease. In light of this, we sought to generate novel monoclonal antibodies (mAb) with specific reactivity against a cell surface molecule that is expressed at high levels by MSCs from different species. Using CD106 (VCAM-1)-selected ovine MSCs as an immunogen, mAb-producing hybridomas were selected for their reactivity to both human and ovine MSCs. One such hybridoma, termed STRO-4, produced an IgG mAb that reacted with <5% of human and ovine bone marrow (BM) mononuclear cells. As a single selection reagent, STRO-4 mAb was able to enrich colony-forming fibroblasts (CFU-F) in both human and ovine BM by 16- and 8-folds, respectively. Cells isolated with STRO-4 exhibited reactivity with markers commonly associated with MSCs isolated by plastic adherence including CD29, CD44, and CD166. Moreover, when placed in inductive culture conditions in vitro, STRO-4(+) MSCs exhibited multilineage differentiation potential and were capable of forming a mineralized matrix, lipid-filled adipocytes, and chondrocytes capable of forming a glycosaminoglycan-rich matrix. Biochemical analysis revealed that STRO-4 identified the beta isoform of heat shock protein-90 (Hsp90beta). In addition to identifying an

  3. Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells.

    PubMed

    Ciemerych, Maria A; Archacka, Karolina; Grabowska, Iwona; Przewoźniak, Marta

    2011-01-01

    Proliferation and differentiation of muscle precursor cells are intensively studied not only in the developing mouse embryo but also using models of skeletal muscle regeneration or analyzing in vitro cultured cells. These analyses allowed to show the universality of the cell cycle regulation and also uncovered tissue-specific interplay between major cell cycle regulators and factors crucial for the myogenic differentiation. Examination of the events accompanying proliferation and differentiation leading to the formation of functional skeletal muscle fibers allows understanding the molecular basis not only of myogenesis but also of skeletal muscle regeneration. This chapter presents the basis of the cell cycle regulation in proliferating and differentiating muscle precursor cells during development and after muscle injury. It focuses at major cell cycle regulators, myogenic factors, and extracellular environment impacting on the skeletal muscle.

  4. Toxicological effects of three types of silver nanoparticles and their salt precursors acting on human U-937 and HL-60 cells.

    PubMed

    Barbasz, Anna; Oćwieja, Magdalena; Walas, Stanisław

    2017-01-01

    The growing popularity of nanomaterials requires a systematic study of their effects on the human body. Silver nanoparticles (AgNPs), due to their antiseptic properties, are used in almost every area of life. The purpose of the study was to examine whether the precursor used for the synthesis of nanoparticles affects their bio-influence and modifies their impact on cells of the human immune system. To compare the effects of precursor silver salts (AgNO3, CH3COOAg and AgClO4) and corresponding nanoparticles (TAN TAA and TAC) cytotoxicity study was conducted on two cell lines U-937 and HL-60. For both cell lines, silver salts are more toxic than the corresponding nanoparticles. Cell viability after treatment with the two forms of silver (salt/particle) is dependent on silver dose and degree of cells differentiation. Addition of the silver salt of doses greater than 5 mg/L results in decreased cell viability by over 60%, whereas nanoparticles' addition reduces cell viability on average by 30%. On the basis of the determined LD50 values it can be stated that for the tested cells the most toxic are AgClO4 and TAC. Production of nitric oxide, which is a mediator of inflammation, is the greatest after treatment of the cells by TAC. Different interactions of studied nanoparticles with albumin has been found and it was shown that addition of albumin to the cells treated by nanoparticles reduces their toxic effects. Obtained by us highly purified, mono-disperse AgNPs exhibit diverse effects relative to the biological systems, depending on the precursor salt used.

  5. The Krüppel-like Factor 15 as a Molecular Link between Myogenic Factors and a Chromosome 4q Transcriptional Enhancer Implicated in Facioscapulohumeral Dystrophy*

    PubMed Central

    Dmitriev, Petr; Petrov, Andrei; Ansseau, Eugenie; Stankevicins, Luiza; Charron, Sébastien; Kim, Elena; Bos, Tomas Jan; Robert, Thomas; Turki, Ahmed; Coppée, Frédérique; Belayew, Alexandra; Lazar, Vladimir; Carnac, Gilles; Laoudj, Dalila; Lipinski, Marc; Vassetzky, Yegor S.

    2011-01-01

    Facioscapulohumeral muscular dystrophy (FSHD), a dominant hereditary disease with a prevalence of 7 per 100,000 individuals, is associated with a partial deletion in the subtelomeric D4Z4 repeat array on chromosome 4q. The D4Z4 repeat contains a strong transcriptional enhancer that activates promoters of several FSHD-related genes. We report here that the enhancer within the D4Z4 repeat binds the Krüppel-like factor KLF15. KLF15 was found to be up-regulated during myogenic differentiation induced by serum starvation or by overexpression of the myogenic differentiation factor MYOD. When overexpressed, KLF15 activated the D4Z4 enhancer and led to overexpression of DUX4c (Double homeobox 4, centromeric) and FRG2 (FSHD region gene 2) genes, whereas its silencing caused inactivation of the D4Z4 enhancer. In immortalized human myoblasts, the D4Z4 enhancer was activated by the myogenic factor MYOD, an effect that was abolished upon KLF15 silencing or when the KLF15-binding sites within the D4Z4 enhancer were mutated, indicating that the myogenesis-related activation of the D4Z4 enhancer was mediated by KLF15. KLF15 and several myogenesis-related factors were found to be expressed at higher levels in myoblasts, myotubes, and muscle biopsies from FSHD patients than in healthy controls. We propose that KLF15 serves as a molecular link between myogenic factors and the activity of the D4Z4 enhancer, and it thus contributes to the overexpression of the DUX4c and FRG2 genes during normal myogenic differentiation and in FSHD. PMID:21937448

  6. The Tocotrienol-Rich Fraction Is Superior to Tocopherol in Promoting Myogenic Differentiation in the Prevention of Replicative Senescence of Myoblasts

    PubMed Central

    Khor, Shy Cian; Razak, Azraul Mumtazah; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum; Abdul Karim, Norwahidah; Makpol, Suzana

    2016-01-01

    Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF) and α-tocopherol (ATF) in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal) expression, myogenic differentiation and myogenic regulatory factors (MRFs) expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts. PMID:26885980

  7. Expression of human amyloid precursor protein in the skeletal muscles of Drosophila results in age- and activity-dependent muscle weakness

    PubMed Central

    2011-01-01

    Background One of the hallmarks of Alzheimer's disease, and several other degenerative disorders such as Inclusion Body Myositis, is the abnormal accumulation of amyloid precursor protein (APP) and its proteolytic amyloid peptides. To better understand the pathological consequences of inappropriate APP expression on developing tissues, we generated transgenic flies that express wild-type human APP in the skeletal muscles, and then performed anatomical, electrophysiological, and behavioral analysis of the adults. Results We observed that neither muscle development nor animal longevity was compromised in these transgenic animals. However, human APP expressing adults developed age-dependent defects in both climbing and flying. We could advance or retard the onset of symptoms by rearing animals in vials with different surface properties, suggesting that human APP expression-mediated behavioral defects are influenced by muscle activity. Muscles from transgenic animals did not display protein aggregates or structural abnormalities at the light or transmission electron microscopic levels. In agreement with genetic studies performed with developing mammalian myoblasts, we observed that co-expression of the ubiquitin E3 ligase Parkin could ameliorate human APP-induced defects. Conclusions These data suggest that: 1) ectopic expression of human APP in fruit flies leads to age- and activity-dependent behavioral defects without overt changes to muscle development or structure; 2) environmental influences can greatly alter the phenotypic consequences of human APP toxicity; and 3) genetic modifiers of APP-induced pathology can be identified and analyzed in this model. PMID:21518451

  8. Development of a Gaussia Luciferase-Based Human Norovirus Protease Reporter System: Cell Type-Specific Profile of Norwalk Virus Protease Precursors and Evaluation of Inhibitors

    PubMed Central

    Qu, Lin; Vongpunsawad, Sompong; Atmar, Robert L.; Prasad, B. V. Venkataram

    2014-01-01

    ABSTRACT Norwalk virus (NV) is the prototype strain of human noroviruses (HuNoVs), a group of positive-strand RNA viruses in the Caliciviridae family and the leading cause of epidemic gastroenteritis worldwide. Investigation of HuNoV replication and development of antiviral therapeutics in cell culture remain challenging tasks. Here, we present NoroGLuc, a HuNoV protease reporter system based on a fusion of NV p41 protein with a naturally secreted Gaussia luciferase (GLuc), linked by the p41/p22 cleavage site for NV protease (Pro). trans cleavage of NoroGLuc by NV Pro or Pro precursors results in release and secretion of an active GLuc. Using this system, we observed a cell type-specific activity profile of NV Pro and Pro precursors, suggesting that the activity of NV Pro is modulated by other viral proteins in the precursor forms and strongly influenced by cellular factors. NoroGLuc was also cleaved by Pro and Pro precursors generated from replication of NV stool RNA in transfected cells, resulting in a measurable increase of secreted GLuc. Truncation analysis revealed that the N-terminal membrane association domain of NV p41 is critical for NoroGLuc activity. Although designed for NV, a genogroup GI.1 norovirus, NoroGLuc also efficiently detects Pro activities from GII.3 and GII.4 noroviruses. At noncytotoxic concentrations, protease inhibitors ZnCl2 and Nα-p-tosyl-l-lysine chloromethyl ketone (TLCK) exhibited dose-dependent inhibitory effects on a GII.4 Pro by NoroGLuc assay. These results establish NoroGLuc as a pan-genogroup HuNoV protease reporter system that can be used for the study of HuNoV proteases and precursors, monitoring of viral RNA replication, and evaluation of antiviral agents. IMPORTANCE Human noroviruses are the leading cause of epidemic gastroenteritis worldwide. Currently, there are no vaccines or antiviral drugs available to counter these highly contagious viruses. These viruses are currently noncultivatable in cell culture. Here, we report

  9. Clinical application of vestibular evoked myogenic potential (VEMP).

    PubMed

    Murofushi, Toshihisa

    2016-08-01

    The author reviewed clinical aspects of vestibular evoked myogenic potentials (VEMPs). Now two types of VEMPs are available. The first one is cervical VEMP, which is recorded in the sternocleidomastoid muscle and predominantly reflects sacculo-collic reflex. The other is ocular VEMP, which is usually recorded below the lower eye lid and predominantly reflects utriculo-ocular reflex. VEMPs play important roles not only for assessment of common vestibular diseases but also for establishment of new clinical entities. Clinical application in Meniere's disease, vestibular neuritis, benign paroxysmal positional vertigo, vestibular migraine, idiopathic otolithic vertigo, and central vertigo/dizziness was reviewed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Effect of regional precursor emission controls on long-range ozone transport - Part 2: Steady-state changes in ozone air quality and impacts on human mortality

    NASA Astrophysics Data System (ADS)

    West, J. J.; Naik, V.; Horowitz, L. W.; Fiore, A. M.

    2009-08-01

    Large-scale changes in ozone precursor emissions affect ozone directly in the short term, and also affect methane, which in turn causes long-term changes in ozone that affect surface ozone air quality. Here we assess the effects of changes in ozone precursor emissions on the long-term change in surface ozone via methane, as a function of the emission region, by modeling 10% reductions in anthropogenic nitrogen oxide (NOx) emissions from each of nine world regions. Reductions in NOx emissions from all world regions increase methane and long-term surface ozone. While this long-term increase is small compared to the intra-regional short-term ozone decrease, it is comparable to or larger than the short-term inter-continental ozone decrease for some source-receptor pairs. The increase in methane and long-term surface ozone per ton of NOx reduced is greatest in tropical and Southern Hemisphere regions, exceeding that from temperate Northern Hemisphere regions by roughly a factor of ten. We also assess changes in premature ozone-related human mortality associated with regional precursor reductions and long-range transport, showing that for 10% regional NOx reductions, the strongest inter-regional influence is for emissions from Europe affecting mortalities in Africa. Reductions of NOx in North America, Europe, the Former Soviet Union, and Australia are shown to reduce more mortalities outside of the source regions than within. Among world regions, NOx reductions in India cause the greatest number of avoided mortalities per ton, mainly in India itself. Finally, by increasing global methane, NOx reductions in one hemisphere tend to cause long-term increases in ozone concentration and mortalities in the opposite hemisphere. Reducing emissions of methane, and to a lesser extent carbon monoxide and non-methane volatile organic compounds, alongside NOx reductions would avoid this disbenefit.

  11. Effect of regional precursor emission controls on long-range ozone transport - Part 2: steady-state changes in ozone air quality and impacts on human mortality

    NASA Astrophysics Data System (ADS)

    West, J. J.; Naik, V.; Horowitz, L. W.; Fiore, A. M.

    2009-03-01

    Large-scale changes in ozone precursor emissions affect ozone directly in the short term, and also affect methane, which in turn causes long-term changes in ozone that affect surface ozone air quality. Here we assess the effects of changes in ozone precursor emissions on the long-term change in surface ozone via methane, as a function of the emission region, by modeling 10% reductions in anthropogenic nitrogen oxide (NOx) emissions from each of nine world regions. Reductions in NOx emissions from all world regions increase methane and long-term surface ozone. While this long-term increase is small compared to the intra-regional short-term ozone decrease, it is comparable to or larger than the short-term inter-continental ozone decrease for some source-receptor pairs. The increase in methane and long-term surface ozone per ton of NOx reduced is greatest in tropical and Southern Hemisphere regions, exceeding that from temperate Northern Hemisphere regions by roughly a factor of ten. We also assess changes in premature ozone-related human mortality associated with regional precursor reductions and long-range transport, showing that for 10% regional NOx reductions, the strongest inter-regional influence is for emissions from Europe affecting mortalities in Africa. Reductions of NOx in North America, Europe, the Former Soviet Union, and Australia are shown to reduce more mortalities outside of the source regions than within. Among world regions, NOx reductions in India cause the greatest number of avoided mortalities per ton, mainly in India itself. Finally, by increasing global methane, NOx reductions in one hemisphere tend to cause long-term increases in ozone concentration and mortalities in the opposite hemisphere. Reducing emissions of methane, and to a lesser extent carbon monoxide and non-methane volatile organic compounds, alongside NOx reductions would avoid this disbenefit.

  12. Enhanced amyloidogenic processing of the beta-amyloid precursor protein in gene-targeted mice bearing the Swedish familial Alzheimer's disease mutations and a "humanized" Abeta sequence.

    PubMed

    Reaume, A G; Howland, D S; Trusko, S P; Savage, M J; Lang, D M; Greenberg, B D; Siman, R; Scott, R W

    1996-09-20

    The processing of the beta-amyloid precursor protein (APP) in vivo has been characterized in a novel animal model that recapitulates, in part, the APP genotype of a familial form of Alzheimer's disease (AD). A gene-targeting strategy was used to introduce the Swedish familial AD mutations and convert mouse Abeta to the human sequence. The mutant APP is expressed at normal levels in brain, and cleavage at the mutant beta-secretase site is both accurate and enhanced. Furthermore, human Abeta production is significantly increased to levels 9-fold greater than those in normal human brain while nonamyloidogenic processing is depressed. The results on Abeta production extend similar findings obtained in cell culture to the brain of an animal and substantiate Abeta as a etiological factor in Swedish familial AD. These animals provide several distinguishing features over others created by conventional transgenic methodologies. The spatial and temporal expression patterns of human Abeta are expected to be faithfully reproduced because the gene encoding the mutant APP remains in its normal chromosomal context. Thus, the neuropathological consequences of human Abeta overproduction can be evaluated longitudinally in the absence of potential mitigating effects of APP overexpression or presence of the mouse Abeta peptide.

  13. Vestibular evoked myogenic potentials versus vestibular test battery in patients with Meniere's disease.

    PubMed

    Rauch, Steven D; Silveira, M Beatriz; Zhou, Guangwei; Kujawa, Sharon G; Wall, Conrad; Guinan, John J; Herrmann, Barbara S

    2004-11-01

    The present study was undertaken to assess the sensitivity of vestibular evoked myogenic potentials testing to side-of-disease in Meniere's disease patients and to test the hypothesis that information supplied by vestibular evoked myogenic potentials is complementary to that provided by a conventional vestibular test battery. Prospective cohort study. Large specialty hospital, department of otolaryngology. Twenty consenting adults (9 men and 11 women) with unilateral Meniere's disease by American Academy of Otolaryngology-Head and Neck Surgery diagnostic criteria. All subjects underwent bilateral vestibular evoked myogenic potentials testing using ipsilateral broadband click and short-toneburst stimuli at 250, 500, and 1,000 Hz. All subjects also underwent electronystagmography and sinusoidal vertical axis rotation testing. Accuracy of side-of-disease assignment by vestibular evoked myogenic potentials, caloric asymmetry, and multivariate analysis. Side-of-disease assignment was most accurate using caloric asymmetry with a 5% interaural difference criterion, achieving 85% correct assignment. The next best method was vestibular evoked myogenic potentials using 250-Hz toneburst stimuli, achieving 80% correct assignment. The least accurate method was caloric asymmetry using a traditional 30% interaural difference limen, achieving 55% correct assignment. Comparison of 5% interaural difference criterion and vestibular evoked myogenic potentials using 250-Hz toneburst stimuli showed discordant results, but in no case did both 5% interaural difference criterion and vestibular evoked myogenic potentials using 250-Hz toneburst stimuli make an incorrect assignment. Vestibular evoked myogenic potentials threshold was shown to be highly sensitive to side-of-disease in unilateral Meniere's disease. We observed instances of discordance in side-of-disease assignment by caloric asymmetry and vestibular evoked myogenic potential methods but no case in which both methods were

  14. An alternative conformation of the gp41 heptad repeat 1 region coiled coil exists in the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor

    SciTech Connect

    Mische, Claudia C.; Yuan Wen; Strack, Bettina; Craig, Stewart; Farzan, Michael; Sodroski, Joseph . E-mail: joseph_sodroski@dfci.harvard.edu

    2005-07-20

    The human immunodeficiency virus (HIV-1) transmembrane envelope glycoprotein, gp41, which mediates virus-cell fusion, exists in at least three different conformations within the trimeric envelope glycoprotein complex. The structures of the prefusogenic and intermediate states are unknown; structures representing the postfusion state have been solved. In the postfusion conformation, three helical heptad repeat 2 (HR2) regions pack in an antiparallel fashion into the hydrophobic grooves on the surface of a triple-helical coiled coil formed by the heptad repeat 1 (HR1) regions. We studied the prefusogenic conformation of gp41 by mutagenic alteration of membrane-anchored and soluble forms of the HIV-1 envelope glycoproteins. Our results indicate that, in the HIV-1 envelope glycoprotein precursor, the gp41 HR1 region is in a conformation distinct from that of a trimeric coiled coil. Thus, the central gp41 coiled coil is formed during the transition of the HIV-1 envelope glycoproteins from the precursor state to the receptor-bound intermediate.

  15. Temporal gene expression profile of human precursor B leukemia cells induced by adhesion receptor: identification of pathways regulating B-cell survival.

    PubMed

    Astier, Anne Laurence; Xu, Ronghui; Svoboda, Marek; Hinds, Esther; Munoz, Olivier; de Beaumont, Rosalie; Crean, Colin Daniel; Gabig, Theodore; Freedman, Arnold Stephen

    2003-02-01

    The physical interactions between B cells and stromal cells from the lymphoid tissue microenvironment are critical to the survival of normal and malignant B cells. They are principally mediated by integrins expressed on B cells and counterreceptors on stromal cells. Specifically, alpha4beta1 integrin engagement rescues B cells from physiological or drug-induced apoptosis. Therefore, in order to understand the mechanisms by which integrins prevent apoptosis in leukemia B cells, we compared the temporal gene expression profiles induced by beta1-integrin ligation with fibronectin (Fn) or adhesion by poly-L-Lysine in serum-starved precursor B leukemia cells. Among the 38 selected differentially expressed genes, 6 genes involved in adhesion (VAV2, EPB41L1, CORO1A), proliferation (FRAP1, CCT4), and intercellular communication (GJB3) were validated by real-time quantitative polymerase chain reaction (RT-Q-PCR). Gene expression modulation could also be validated at the protein level for 5 other genes. We show that integrin stimulation up-regulated FBI-1 expression but inhibited CD79a, Requiem, c-Fos, and caspase 7 induction when the cells underwent apoptosis. We further demonstrate that Fn stimulation also inhibits caspase 3 activation but increases XIAP and survivin expression. Moreover, integrin stimulation also prevents caspase activation induced by doxorubicin. Therefore, we identified genes modulated by adhesion of human precursor B leukemia cells that regulate proliferation and apoptosis, highlighting new pathways that might provide insights into future therapy aiming at targeting apoptosis of leukemia cells.

  16. Overproduction, purification, crystallization and preliminary X-ray analysis of human Fe65-PTB2 in complex with the amyloid precursor protein intracellular domain

    SciTech Connect

    Radzimanowski, Jens; Beyreuther, Konrad; Sinning, Irmgard; Wild, Klemens

    2008-05-01

    Alzheimer’s disease is characterized by proteolytic processing of the amyloid precursor protein (APP), which releases the aggregation-prone amyloid-β (Aβ) peptide and liberates the intracellular domain (AICD) that interacts with various adaptor proteins. The crystallized AICD–Fe65-PTB2 complex is of central importance for APP translocation, nuclear signalling, processing and Aβ generation. Alzheimer’s disease is associated with typical brain deposits (senile plaques) that mainly contain the neurotoxic amyloid β peptide. This peptide results from proteolytic processing of the type I transmembrane protein amyloid precursor protein (APP). During this proteolytic pathway the APP intracellular domain (AICD) is released into the cytosol, where it associates with various adaptor proteins. The interaction of the AICD with the C-terminal phosphotyrosine-binding domain of Fe65 (Fe65-PTB2) regulates APP translocation, signalling and processing. Human AICD and Fe65-PTB2 have been cloned, overproduced and purified in large amounts in Escherichia coli. A complex of Fe65-PTB2 with the C-terminal 32 amino acids of the AICD gave well diffracting hexagonal crystals and data have been collected to 2.1 Å resolution. Initial phases obtained by the molecular-replacement method are of good quality and revealed well defined electron density for the substrate peptide.

  17. An experimental method to identify neurogenic and myogenic active mechanical states of intestinal motility

    PubMed Central

    Costa, Marcello; Wiklendt, Lukasz; Arkwright, John W.; Spencer, Nicholas J.; Omari, Taher; Brookes, Simon J. H.; Dinning, Phil G.

    2013-01-01

    Excitatory and inhibitory enteric neural input to intestinal muscle acting on ongoing myogenic activity determines the rich repertoire of motor patterns involved in digestive function. The enteric neural activity cannot yet be established during movement of intact intestine in vivo or in vitro. We propose the hypothesis that is possible to deduce indirectly, but reliably, the state of activation of the enteric neural input to the muscle from measurements of the mechanical state of the intestinal muscle. The fundamental biomechanical model on which our hypothesis is based is the “three-element model” proposed by Hill. Our strategy is based on simultaneous video recording of changes in diameters and intraluminal pressure with a fiber-optic manometry in isolated segments of rabbit colon. We created a composite spatiotemporal map (DPMap) from diameter (DMap) and pressure changes (PMaps). In this composite map rhythmic myogenic motor patterns can readily be distinguished from the distension induced neural peristaltic contractions. Plotting the diameter changes against corresponding pressure changes at each location of the segment, generates “orbits” that represent the state of the muscle according to its ability to contract or relax actively or undergoing passive changes. With a software developed in MatLab, we identified twelve possible discrete mechanical states and plotted them showing where the intestine actively contracted and relaxed isometrically, auxotonically or isotonically, as well as where passive changes occurred or was quiescent. Clustering all discrete active contractions and relaxations states generated for the first time a spatio-temporal map of where enteric excitatory and inhibitory neural input to the muscle occurs during physiological movements. Recording internal diameter by an impedance probe proved equivalent to measuring external diameter, making possible to further develop similar strategy in vivo and humans. PMID:23596400

  18. Precursor N-cadherin mediates glial cell line-derived neurotrophic factor-promoted human malignant glioma

    PubMed Central

    Zhu, Shuang; Zhang, Baole; Qin, Yuxia; Yao, Ruiqin; Zhou, Hao; Gao, Dian Shuai

    2017-01-01

    As the most prevalent primary brain tumor, gliomas are highly metastatic, invasive and are characteristic of high levels of glial cell-line derived neurotrophic factor (GDNF). GDNF is an important factor for invasive glioma cell growth; however, the underlying mechanism involved is unclear. In this study, we affirm a significantly higher expression of the precursor of N-cadherin (proN-cadherin) in most gliomas compared with normal brain tissues. Our findings reveal that GDNF interacts with the extracellular domain of proN-cadherin, which suggests that proN-cadherin mediates GDNF-induced glioma cell migration and invasion. We hypothesize that proN-cadherin might cause homotypic adhesion loss within neighboring cells and at the same time promote heterotypic adhesion within the extracellular matrix (ECM) through a certain mechanism. This study also demonstrates that the interaction between GDNF and proN-cadherin activates specific intracellular signaling pathways; furthermore, GDNF promoted the secretion of matrix metalloproteinase-9 (MMP-9), which degrades the ECM via proN-cadherin. To reach the future goal of developing novel therapies of glioma, this study, reveals a unique mechanism of glioma cell migration and invasion. PMID:28212546

  19. Precursor N-cadherin mediates glial cell line-derived neurotrophic factor-promoted human malignant glioma.

    PubMed

    Xiong, Ye; Liu, Liyun; Zhu, Shuang; Zhang, Baole; Qin, Yuxia; Yao, Ruiqin; Zhou, Hao; Gao, Dian Shuai

    2017-02-12

    As the most prevalent primary brain tumor, gliomas are highly metastatic, invasive and are characteristic of high levels of glial cell-line derived neurotrophic factor (GDNF). GDNF is an important factor for invasive glioma cell growth; however, the underlying mechanism involved is unclear. In this study, we affirm a significantly higher expression of the precursor of N-cadherin (proN-cadherin) in most gliomas compared with normal brain tissues. Our findings reveal that GDNF interacts with the extracellular domain of proN-cadherin, which suggests that proN-cadherin mediates GDNF-induced glioma cell migration and invasion. We hypothesize that proN-cadherin might cause homotypic adhesion loss within neighboring cells and at the same time promote heterotypic adhesion within the extracellular matrix (ECM) through a certain mechanism. This study also demonstrates that the interaction between GDNF and proN-cadherin activates specific intracellular signaling pathways; furthermore, GDNF promoted the secretion of matrix metalloproteinase-9 (MMP-9), which degrades the ECM via proN-cadherin. To reach the future goal of developing novel therapies of glioma, this study, reveals a unique mechanism of glioma cell migration and invasion.

  20. Myogenic Heartbeat in the Primitive Crustacean Triops longicaudatus.

    PubMed

    Yamagishi, H; Ando, H; Makioka, T

    1997-12-01

    Pacemaker mechanisms in the heart of the primitive crustacean Triops longicaudatus were examined electrophysiologically. The heart is tubular and the heart wall consists of a single layer of myocardial cells. No nerve cells were found in the heart, either with methylene blue vital staining or by light microscopy of serial sections. The heart beats rhythmically at a frequency of 120 to 240 beats/min, and each beat is associated with a slow membrane potential change in the heart muscle. The amplitude of the slow potential varies widely and no spikes appear on it. The heart muscle cells are electrically coupled with each other and generate synchronous slow potentials. No localized portion of the heart exhibited a frequency that always preceded the others. The muscle activity could be phase-shifted by injection of a single brief current pulse and could be entrained to a lower or higher frequency by repeated brief current pulses injected into the muscle cell. The frequency of muscle activity could be changed by the injection of DC current into the muscle cell, and the change in frequency was linearly related to the intensity of the current. When the intensity of hyperpolarizing DC current exceeded a certain value, the muscle activity disappeared abruptly, and the heart stopped beating completely. These results show clearly that the heartbeat of Triops is myogenic. The heart is diffusely myogenic and should be regarded as a single muscle oscillator.

  1. Arterial Myogenic Activation through Smooth Muscle Filamin A.

    PubMed

    Retailleau, Kevin; Arhatte, Malika; Demolombe, Sophie; Peyronnet, Rémi; Baudrie, Véronique; Jodar, Martine; Bourreau, Jennifer; Henrion, Daniel; Offermanns, Stefan; Nakamura, Fumihiko; Feng, Yuanyi; Patel, Amanda; Duprat, Fabrice; Honoré, Eric

    2016-03-08

    Mutations in the filamin A (FlnA) gene are frequently associated with severe arterial abnormalities, although the physiological role for this cytoskeletal element remains poorly understood in vascular cells. We used a conditional mouse model to selectively delete FlnA in smooth muscle (sm) cells at the adult stage, thus avoiding the developmental effects of the knockout. Basal blood pressure was significantly reduced in conscious smFlnA knockout mice. Remarkably, pressure-dependent tone of the resistance caudal artery was lost, whereas reactivity to vasoconstrictors was preserved. Impairment of the myogenic behavior was correlated with a lack of calcium influx in arterial myocytes upon an increase in intraluminal pressure. Notably, the stretch activation of CaV1.2 was blunted in the absence of smFlnA. In conclusion, FlnA is a critical upstream element of the signaling cascade underlying the myogenic tone. These findings allow a better understanding of the molecular basis of arterial autoregulation and associated disease states.

  2. Expression of Transthyretin during bovine myogenic satellite cell differentiation.

    PubMed

    Pokharel, Smritee; Kamli, Majid Rasool; Mir, Bilal Ahmad; Malik, Adeel; Lee, Eun Ju; Choi, Inho

    2014-09-01

    Adult myogenesis responsible for the maintenance and repair of muscle tissue is mainly under the control of myogenic regulatory factors (MRFs) and a few other genes. Transthyretin gene (TTR), codes for a carrier protein for thyroxin (T4) and retinol binding protein bound with retinol in blood plasma, plays a critical role during the early stages of myogenesis. Herein, we investigated the relationship of TTR with other muscle-specific genes and report their expression in muscle satellite cells (MSCs), and increased messenger RNA (mRNA) and protein expression of TTR during MSCs differentiation. Silencing of TTR resulted in decreased myotube formation and decreased expression of myosin light chain (MYL2), myosin heavy chain 3 (MYH3), matrix gla protein (MGP), and voltage-dependent L type calcium channel (Cav1.1) genes. Increased mRNA expression observed in TTR and other myogenic genes with the addition of T4 decreased significantly following TTR knockdown, indicating the critical role of TTR in T4 transportation. Similarly, decreased expression of MGP and Cav1.1 following TTR knockdown signifies the dual role of TTR in controlling muscle myogenesis via regulation of T4 and calcium channel. Our computational and experimental evidences indicate that TTR has a relationship with MRFs and may act on calcium channel and related genes.

  3. Myogenic skeletal muscle satellite cells communicate by tunnelling nanotubes.

    PubMed

    Tavi, Pasi; Korhonen, Topi; Hänninen, Sandra L; Bruton, Joseph D; Lööf, Sara; Simon, Andras; Westerblad, Håkan

    2010-05-01

    Quiescent satellite cells sit on the surface of the muscle fibres under the basal lamina and are activated by a variety of stimuli to disengage, divide and differentiate into myoblasts that can regenerate or repair muscle fibres. Satellite cells adopt their parent's fibre type and must have some means of communication with the parent fibre. The mechanisms behind this communication are not known. We show here that satellite cells form dynamic connections with muscle fibres and other satellite cells by F-actin based tunnelling nanotubes (TNTs). Our results show that TNTs readily develop between satellite cells and muscle fibres. Once developed, TNTs permit transport of intracellular material, and even cellular organelles such as mitochondria between the muscle fibre and satellite cells. The onset of satellite cell differentiation markers Pax-7 and MyoD expression was slower in satellite cells cultured in the absence than in the presence of muscle cells. Furthermore physical contact between myofibre and satellite cell progeny is required to maintain subtype identity. Our data establish that TNTs constitute an integral part of myogenic cell communication and that physical cellular interaction control myogenic cell fate determination.

  4. Vestibular evoked myogenic potentials in patients with rheumatoid arthritis

    PubMed Central

    Heydari, Nahid; Hajiabolhassani, Fahimeh; Fatahi, Jamileh; Movaseghi, Shafieh; Jalaie, Shohreh

    2015-01-01

    Background: Rheumatoid arthritis (RA) is an autoimmune systemic disease. Most common autoimmune diseases are multisystem disorders that may also present with otological manifestations, and autoimmune inner ear disease accompanied by vestibular dysfunction. This study aimed to compare the vestibular function between RA patients and normal subjects using cervical vestibular evoked myogenic potentials (cVEMPs). Methods: In this cross- sectional study, 25patients with RA (19 female and 6 male: mean (±SD) age, 40.00 (±7.92) years) and 20 healthy subjects (15 female and 5 male: mean (±SD) age, 35.35 (±10.48) years) underwent cVEMPs, using 500 Hz-tone bursts at 95 dB nHL intensity level. Data were analyzed using independent sample t-test through SPSS software v. 16. Results: The mean peak latency of p13 was significantly higher in RA patients (p<0.001). The mean peak latency of n23 was significantly higher in patients in the left ear (p=0.03). Vestibular evoked myogenic potential (VEMP) responses were present in all (100%) of the participants. There were no significant differences in mean peak to peak amplitude and amplitude ratio between the two groups. Conclusion: According to the prolonged latency of VEMP responses in RA patients, lesions in the retrolabyrinthine, especially in the vestibulospinal tract are suspected. PMID:26478874

  5. Vestibular evoked myogenic potentials (VEMPs) in central neurological disorders.

    PubMed

    Venhovens, J; Meulstee, J; Verhagen, W I M

    2016-01-01

    Several types of acoustic stimulation (i.e. tone bursts or clicks), bone-conducted vibration, forehead taps, and galvanic stimulation elicit myogenic potentials. These can be recorded in cervical and ocular muscles, the so called vestibular evoked myogenic potentials (VEMPs). The cervical VEMP (cVEMP) resembles the vestibulo-collic reflex and the responses can be recorded from the ipsilateral sternocleidomastoid muscle. The ocular VEMP resembles the vestibulo-ocular reflex and can be recorded from extra-ocular muscles by a surface electrode beneath the contralateral infraorbital margin. Initially, the literature concerning VEMPs was limited to peripheral vestibular disorders, however, the field of VEMP testing is rapidly expanding, with an increasing focus on central neurological disorders. The current literature concerning VEMP abnormalities in central neurological disorders is critically reviewed, especially regarding the methodological aspects in relation to quality as well as the clinical interpretation of the VEMP results. Suggestions for further research are proposed as well as some clinically useful indications. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Characteristics and clinical applications of ocular vestibular evoked myogenic potentials.

    PubMed

    Kantner, C; Gürkov, R

    2012-12-01

    Recently, ocular vestibular evoked myogenic potentials (oVEMPs) have been described and added to the neuro-otologic test battery as a new measure for the vestibulo-ocular reflex. oVEMPs represent extraocular muscle activity in response to otolith stimulation e.g. by air-conducted sound or bone-conducted vibration. In response to vestibular stimulation, electromyographic activity of the extraocular muscles can be recorded by means of surface electrodes placed beneath the contralateral eye. oVEMPs are likely to reflect predominantly utricular function, while the widely established cervical vestibular evoked myogenic potentials (cVEMPs) assess saccular function. Thus, measuring oVEMPs and cVEMPs in addition to caloric and head impulse testing provides further evaluation of the vestibular system and enables quick and cost-effective assessment of otolith function. This review summarizes the neurophysiological properties of oVEMPs, gives recommendations for recording conditions and discusses oVEMP alterations in various disorders of the vestibular system. With increasing insight into oVEMP characteristics in vestibular disorders, e.g. Menière's disease and superior semicircular canal dehiscence syndrome, oVEMPs are becoming a promising new diagnostic tool for evaluating utricular function. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Vestibular evoked myogenic potentials: past, present and future.

    PubMed

    Rosengren, S M; Welgampola, M S; Colebatch, J G

    2010-05-01

    Since the first description of sound-evoked short-latency myogenic reflexes recorded from neck muscles, vestibular evoked myogenic potentials (VEMPs) have become an important part of the neuro-otological test battery. VEMPs provide a means of assessing otolith function: stimulation of the vestibular system with air-conducted sound activates predominantly saccular afferents, while bone-conducted vibration activates a combination of saccular and utricular afferents. The conventional method for recording the VEMP involves measuring electromyographic (EMG) activity from surface electrodes placed over the tonically-activated sternocleidomastoid (SCM) muscles. The "cervical VEMP" (cVEMP) is thus a manifestation of the vestibulo-collic reflex. However, recent research has shown that VEMPs can also be recorded from the extraocular muscles using surface electrodes placed near the eyes. These "ocular VEMPs" (oVEMPs) are a manifestation of the vestibulo-ocular reflex. Here we describe the historical development and neurophysiological properties of the cVEMP and oVEMP and provide recommendations for recording both reflexes. While the cVEMP has documented diagnostic utility in many disorders affecting vestibular function, relatively little is known as yet about the clinical value of the oVEMP. We therefore outline the known cVEMP and oVEMP characteristics in common central and peripheral disorders encountered in neuro-otology clinics.

  8. Expression of the myogenic gene MRF4 during Xenopus development.

    PubMed

    Jennings, C G

    1992-05-01

    In a search for myogenic genes in Xenopus, I have cloned homologs of the mammalian myogenic genes MRF4 and myogenin. The myogenin clone is a genomic fragment encoding an amino acid sequence with 62% identity to the N-terminal region of rat myogenin. No myogenin transcript has been detected and no cDNA has been isolated, suggesting that Xenopus myogenin, if it is expressed at all, is likely to be expressed at low levels or transiently during development. A Xenopus MRF4 cDNA has been isolated and encodes an amino acid sequence with 72% identity to rat MRF4. In adult frogs, MRF4 RNA is detectable only in skeletal muscle (whereas MyoD, unexpectedly, is also expressed at low levels in the heart). During embryonic development, MRF4 RNA appears later than MyoD, at a time when the embryonic musculature already shows many differentiated features. This implies that MRF4 is not involved in the commitment or early differentiation of muscle cells. The accumulation of Xenopus MRF4 RNA overlaps with the formation of neuromuscular connections, suggesting that it may be induced by innervation. Consistent with this possibility, the level of Xenopus MRF4, but not MyoD, RNA is reduced in response to denervation of adult frog muscle.

  9. Macrophage and NK-mediated killing of precursor-B acute lymphoblastic leukemia cells targeted with a-fucosylated anti-CD19 humanized antibodies.

    PubMed

    Matlawska-Wasowska, K; Ward, E; Stevens, S; Wang, Y; Herbst, R; Winter, S S; Wilson, B S

    2013-06-01

    This work reports the tumoricidal effects of a novel investigational humanized anti-CD19 monoclonal antibody (Medi-551). An a-fucosylated antibody with increased affinity for human FcγRIIIA, Medi-551 is shown to mediate both antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Medi-551/CD19 complexes internalize slowly (>5 h) and thus remain accessible to effector cells for prolonged periods. We evaluated in vitro ADCC and ADCP activities of primary human natural killer (NK) cells and macrophages against precursor-B (pre-B) acute lymphoblastic leukemia (ALL) cell lines and pediatric patient blasts. Fluorescent imaging studies document immunological synapses formed between anti-CD19-bound target leukemia cells and effector cells and capture the kinetics of both NK-mediated killing and macrophage phagocytosis. Genetic polymorphisms in FcγRIIIA-158F/V modulate in vitro activities of effector cells, with FcγRIIIA-158V homozygotes or heterozygotes showing the strongest activity. Medi-551 treatment of severe combined immunodeficiency (SCID) mice engrafted with human pre-B cells led to prolonged animal survival and markedly reduced disease burden in blood, liver and bone marrow. These data show that anti-CD19 antibodies effectively recruit immune cells to pre-B ALL cells and support a move forward to early phase trials in this disease.

  10. Glycogen synthase kinase 3 (GSK3)-inhibitor SB216763 promotes the conversion of human umbilical cord mesenchymal stem cells into neural precursors in adherent culture.

    PubMed

    Gao, Liyang; Zhao, Mingyan; Li, Peng; Kong, Junchao; Liu, Zhijun; Chen, Yonghua; Huang, Rui; Chu, Jiaqi; Quan, Juanhua; Zeng, Rong

    2017-01-01

    The ability to generate neural progenitor cells from human umbilical cord mesenchymal stem cells (hUC-MSCs) has provided an option to treat neurodegenerative diseases. To establish a method for this purpose, we characterized the early neural markers of hUC-MSCs-derived cells under different conditions. We found that neither the elimination of signals for alternative fate nor N2 supplement was sufficient to differentiate hUC-MSCs into neural precursor cells, but the GSK3 inhibitor SB216763 could promote an efficient neural commitment of hUC-MSCs. The results indicated that Wnt/β-catenin might play an important role during the early neural differentiation of hUC-MSCs. Here, we report a method for hUC-MSCs to commit efficiently into a neural fate within a short period of time. This protocol provides an efficient method for hUC-MSCs-based neural regeneration.

  11. Effects of phorbol esters and site-directed mutations on proteolytic processing of a cell surface precursor to human macrophage colony-stimulating factor (M-CSF, CSF-1)

    SciTech Connect

    Rettenmier, C.W.; Stein, J. Children's Hospital, Los Angeles, CA Case Western Reserve Univ., Cleveland, OH )

    1991-03-11

    Soluble forms of DSF-1 are generated by proteolytic cleavage of membrane-bound glycoprotein precursors. In eukaryotic expression systems, a 4 kilobase (kb) human cDNA encodes a 522 amino acid DSF-1 precursor which is rapidly processed within the cell to yield an efficiently secreted form of the growth factor. By contrast, an alternatively spliced 1.6 kb cDNA encodes a 224 amino acid precursor stably expressed on the cell surface where it is slowly and inefficiently cleaved to release soluble human CSF-1; this plasma membrane-bound precursor is biologically active for stimulating CSF-1-dependent cells. Treatment with phorbol ester (PMA) accelerated proteolytic processing of the cell surface CSF-1 precursor, resulting in a 30-fold increase in the recovery of soluble growth factor within 60 min. This enhanced cleavage was mediated by a cellular protease which is possibly the same enzyme responsible for the normally slow rate of processing and whose activity is stimulated by PMA activation of protein kinase C. Two mutations were introduced near the proteolytic cleavage site of the precursor. Substitution of the only basic amino acid in the vicinity had no effect on processing. However, deletion of a 6 amino acid segment in the region reduced the rate of cleavage about six-fold in the absence or presence of PMA.

  12. Proinflammatory Macrophages Enhance the Regenerative Capacity of Human Myoblasts by Modifying Their Kinetics of Proliferation and Differentiation

    PubMed Central

    Bencze, Maximilien; Negroni, Elisa; Vallese, Denis; Yacoub–Youssef, Houda; Chaouch, Soraya; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Chazaud, Bénédicte; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent; Riederer, Ingo

    2012-01-01

    Macrophages have been shown to be essential for muscle repair by delivering trophic cues to growing skeletal muscle precursors and young fibers. Here, we investigated whether human macrophages, either proinflammatory or anti-inflammatory, coinjected with human myoblasts into regenerating muscle of Rag2−/− γC−/− immunodeficient mice, could modify in vivo the kinetics of proliferation and differentiation of the transplanted human myogenic precursors. Our results clearly show that proinflammatory macrophages improve in vivo the participation of injected myoblasts to host muscle regeneration, extending the window of proliferation, increasing migration, and delaying differentiation. Interestingly, immunostaining of transplanted proinflammatory macrophages at different time points strongly suggests that these cells are able to switch to an anti-inflammatory phenotype in vivo, which then may stimulate differentiation during muscle regeneration. Conceptually, our data provide for the first time in vivo evidence strongly suggesting that proinflammatory macrophages play a supportive role in the regulation of myoblast behavior after transplantation into preinjured muscle, and could thus potentially optimize transplantation of myogenic progenitors in the context of cell therapy. PMID:23070116

  13. Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation.

    PubMed

    Bencze, Maximilien; Negroni, Elisa; Vallese, Denis; Yacoub-Youssef, Houda; Chaouch, Soraya; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Chazaud, Bénédicte; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent; Riederer, Ingo

    2012-11-01

    Macrophages have been shown to be essential for muscle repair by delivering trophic cues to growing skeletal muscle precursors and young fibers. Here, we investigated whether human macrophages, either proinflammatory or anti-inflammatory, coinjected with human myoblasts into regenerating muscle of Rag2(-/-) γC(-/-) immunodeficient mice, could modify in vivo the kinetics of proliferation and differentiation of the transplanted human myogenic precursors. Our results clearly show that proinflammatory macrophages improve in vivo the participation of injected myoblasts to host muscle regeneration, extending the window of proliferation, increasing migration, and delaying differentiation. Interestingly, immunostaining of transplanted proinflammatory macrophages at different time points strongly suggests that these cells are able to switch to an anti-inflammatory phenotype in vivo, which then may stimulate differentiation during muscle regeneration. Conceptually, our data provide for the first time in vivo evidence strongly suggesting that proinflammatory macrophages play a supportive role in the regulation of myoblast behavior after transplantation into preinjured muscle, and could thus potentially optimize transplantation of myogenic progenitors in the context of cell therapy.

  14. A Vision for the Exploration of Mars: Robotic Precursors Followed by Humans to Mars Orbit in 2033

    NASA Technical Reports Server (NTRS)

    Sellers, Piers J.; Garvin, James B.; Kinney, Anne L.; Amato, Michael J.; White, Nicholas E.

    2012-01-01

    The reformulation of the Mars program gives NASA a rare opportunity to deliver a credible vision in which humans, robots, and advancements in information technology combine to open the deep space frontier to Mars. There is a broad challenge in the reformulation of the Mars exploration program that truly sets the stage for: 'a strategic collaboration between the Science Mission Directorate (SMD), the Human Exploration and Operations Mission Directorate (HEOMD) and the Office of the Chief Technologist, for the next several decades of exploring Mars'.Any strategy that links all three challenge areas listed into a true long term strategic program necessitates discussion. NASA's SMD and HEOMD should accept the President's challenge and vision by developing an integrated program that will enable a human expedition to Mars orbit in 2033 with the goal of returning samples suitable for addressing the question of whether life exists or ever existed on Mars

  15. Influence of Connexin40 on the renal myogenic response in murine afferent arterioles

    PubMed Central

    Jacobsen, Jens Christian B; Sorensen, Charlotte M

    2015-01-01

    Renal autoregulation consists of two main mechanisms; the myogenic response and the tubuloglomerular feedback mechanism (TGF). Increases in renal perfusion pressure activate both mechanisms causing a reduction in diameter of the afferent arteriole (AA) resulting in stabilization of the glomerular pressure. It has previously been shown that connexin-40 (Cx40) is essential in the renal autoregulation and mediates the TGF mechanism. The aim of this study was to characterize the myogenic properties of the AA in wild-type and connexin-40 knockout (Cx40KO) mice using both in situ diameter measurements and modeling. We hypothesized that absence of Cx40 would not per se affect myogenic properties as Cx40 is expressed primarily in the endothelium and as the myogenic response is known to be present also in isolated, endothelium-denuded vessels. Methods used were the isolated perfused juxtamedullary nephron preparation to allow diameter measurements of the AA. A simple mathematical model of the myogenic response based on experimental parameters was implemented. Our findings show that the myogenic response is completely preserved in the AA of the Cx40KO and if anything, the stress sensitivity of the smooth muscle cell in the vascular wall is increased rather than reduced as compared to the WT. These findings are compatible with the view of the myogenic response being primarily a local response to the local transmural pressure. PMID:26009638

  16. 20-HETE modulates myogenic response of skeletal muscle resistance arteries from hypertensive Dahl-SS rats.

    PubMed

    Frisbee, J C; Roman, R J; Krishna, U M; Falck, J R; Lombard, J H

    2001-03-01

    The present study determined the role of 20-hydroxyeicosatetraenoic acid [20-HETE; produced by omega-hydroxylation of arachidonic acid via cytochrome P-450 (CP450) 4A enzymes] in regulating myogenic activation of skeletal muscle resistance arteries from normotensive (NT) and hypertensive (HT) Dahl salt-sensitive (SS) rats. Gracilis arteries (GA) were isolated from each rat and viewed via television microscopy, and changes in vessel diameter with altered transmural pressure were measured with a video micrometer. Under control conditions, GA from both groups exhibited strong, endothelium-independent myogenic activation. Treatment of GA with 17-octadecynoic acid (17-ODYA; inhibitor of CP450 4A enzymes) did not alter myogenic activation in NT rats, but impaired this response in HT animals. Treatment of GA from HT rats with dibromo-dodecynyl-methylsulfimide (DDMS; inhibitor of 20-HETE production) impaired myogenic activation, as did application of 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid, an antagonist for 20-HETE receptors. Application of iberiotoxin, a Ca(2+)-activated potassium (K(Ca)) channel inhibitor, restored myogenic activation from HT rats treated with DDMS. These results suggest that myogenic activation of skeletal muscle resistance arteries from NT Dahl-SS rats does not depend on CP450, whereas myogenic activation of these vessels in HT Dahl-SS rats is partly a function of 20-HETE production, inhibiting K(Ca) channels through a receptor-mediated process.

  17. Chronic hypertension impairs flow-induced vasodilation and augments the myogenic response in fetal lung.

    PubMed

    Storme, Laurent; Parker, Thomas A; Kinsella, John P; Rairigh, Robyn L; Abman, Steven H

    2002-01-01

    We hypothesized that altered vasoreactivity in perinatal pulmonary hypertension (PH) is characterized by abnormal responses to hemodynamic stress, including the loss of flow-induced vasodilation and an augmented myogenic response. Therefore, we studied the acute hemodynamic effects of brief compression of the ductus arteriosus (DA) in control fetal lambs and in lambs during exposure to chronic PH. In both groups, acute DA compression decreased pulmonary vascular resistance (PVR) by 20% at baseline (day 0). After 2 days of hypertension, acute DA compression paradoxically increased PVR by 50% in PH lambs, whereas PVR decreased by 25% in controls. During the 8-day study period, PVR increased during acute DA compression in PH lambs, whereas acute DA compression continued to cause vasodilation in controls. Brief treatment with the nitric oxide (NO) synthase inhibitor nitro-L-arginine (L-NA) increased basal PVR in control but not PH lambs, suggesting decreased NO production in PH lambs. Chronic hypertension increased the myogenic response after L-NA in PH lambs, whereas the myogenic response remained unchanged in controls. The myogenic response was inhibited by nifedipine in PH lambs, suggesting that the myogenic response is dependent upon the influx of extracellular calcium. We conclude that chronic PH impairs flow-induced vasodilation and increases the myogenic response in fetal lung. We speculate that decreased NO signaling and an augmented myogenic response contributes to abnormal vasoreactivity in PH.

  18. Novel role of mechanosensitive AT1B receptors in myogenic vasoconstriction.

    PubMed

    Blodow, Stephanie; Schneider, Holger; Storch, Ursula; Wizemann, Richard; Forst, Anna-Lena; Gudermann, Thomas; Mederos y Schnitzler, Michael

    2014-07-01

    Myogenic vasoconstriction is an inherent property of vascular smooth muscle cells (VSMCs) of resistance arteries harboring ill-defined mechanosensing and mechanotransducing elements. G protein-coupled receptors (GPCRs) are discussed as mechanosensors in VSMCs. In this study, we sought to identify and characterize the role and impact of GPCRs on myogenic vasoconstriction. Thus, we analyzed mRNA expression levels of GPCRs in resistance versus preceding conduit arteries revealing a significant enrichment of several GPCRs in resistance vessels. Selective pharmacological blockade of the highly expressed GPCRs in isolated murine mesenteric arteries ex vivo decreased myogenic vasoconstriction. In particular, candesartan and losartan most prominently suppressed myogenic tone, suggesting that AT1 receptors play a central role in myogenic vasoconstriction. Analyzing angiotensinogen(-/-) mice, a relevant contribution of locally produced angiotensin II to myogenic tone could be excluded. Investigation of AT1A (-/-) and AT1B (-/-) murine mesenteric arteries revealed that AT1B, but not AT1A, receptors are key components of myogenic regulation. This notion was supported by examining fura-2-loaded isolated AT1A (-/-) and AT1B (-/-) VSMCs. Our results indicate that in VSMCs, AT1B receptors are more mechanosensitive than AT1A receptors even at comparable receptor expression levels. Furthermore, we demonstrate that the mechanosensitivity of GPCRs is agonist-independent and positively correlates with receptor expression levels.

  19. Major histocompatibility complex-unrestricted cytolytic activity of human T cells: analysis of precursor frequency and effector phenotype

    SciTech Connect

    Patel, S.S.; Thiele, D.L.; Lipsky, P.E.

    1987-12-01

    The frequency and phenotype of human T cells that mediate major histocompatibility complex (MHC)-unrestricted cytolysis were analyzed. T cell clones were generated by culturing adherent cell-depleted peripheral blood mononuclear cells at a density of 0.3 cell/well with phytohemagglutinin, recombinant interleukin 2 (rIL-2), and irradiated autologous peripheral blood mononuclear cells and/or Epstein-Barr virus-transformed lymphoblastoid cell lines. All of the 198 clones generated by this method were T cells (CD2/sup +/, CD3/sup +/, CD4/sup +/ or CD2/sup +/, CD3/sup +/, CD8/sup +/) that possessed potent lytic activity against K562, an erythroleukemia line sensitive to lysis by human natural killer cells, and Cur, a renal carcinoma cell line resistant to human natural killer activity. Cytolysis, measured by /sup 51/Cr release, was MHC-unrestricted, since the clones were able to lyse MHC class I or class II negative targets, as well as MHC class I and class II negative targets. Although the clones produced tissue necrosis factor/lymphotoxin-like molecules, lysis of Cur of K562 was not mediated by a soluble factor secreted by the clones. These data indicate that the capacity for MHC-unrestricted tumoricidal activity and expression of NKH1 and CD11b, but not CD 16, are properties common to all or nearly all human peripheral blood-derived T cell clones regardless of CD4 or CD8 phenotype.

  20. The effect of hyperammonemia on myostatin and myogenic regulatory factor gene expression in broiler embryos

    PubMed Central

    Stern, R.A.; Ashwell, C.M.; Dasarathy, S.; Mozdziak, P.E.

    2015-01-01

    Myogenesis is facilitated by four myogenic regulatory factors and is significantly inhibited by myostatin. The objective of the current study was to examine embryonic gene regulation of myostatin/myogenic regulatory factors, and subsequent manipulations of protein synthesis, in broiler embryos under induced hyperammonemia. Broiler eggs were injected with ammonium acetate solution four times over 48 hours beginning on either embryonic day (ED) 15 or 17. Serum ammonia concentration was significantly higher (P < 0.05) in ammonium acetate injected embryos for both ED17 and ED19 collected samples when compared to sham-injected controls. Expression of mRNA, extracted from pectoralis major of experimental and control embryos, was measured using real-time quantitative PCR for myostatin, myogenic regulatory factors myogenic factor 5, myogenic determination factor 1, myogenin, myogenic regulatory factor 4, and paired box 7. A significantly lower (P < 0.01) myostatin expression was accompanied by a higher serum ammonia concentration in both ED17 and ED19 collected samples. Myogenic factor 5 expression was higher (P < 0.05) in ED17 collected samples administered ammonium acetate. In both ED17 and ED19 collected samples, myogenic regulatory factor 4 was lower (P ≤ 0.05) in ammonium acetate injected embryos. No significant difference was seen in myogenic determination factor 1, myogenin, or paired box 7 expression between treatment groups for either age of sample collection. Additionally, there was no significant difference in BrdU staining of histological samples taken from treated and control embryos. Myostatin protein levels were evaluated by Western blot analysis, and also showed lower myostatin expression (P < 0.05). Overall, it appears possible to inhibit myostatin expression through hyperammonemia, which is expected to have a positive effect on embryonic myogenesis and postnatal muscle growth. PMID:25689990

  1. The Influence of Elasticity and Surface Roughness on Myogenic and Osteogenic-Differentiation of Cells on Silk-Elastin Biomaterials

    PubMed Central

    Hu, Xiao; Park, Sang-Hyug; Gil, Eun Seok; Xia, Xiao-Xia; Weiss, Anthony S.; Kaplan, David L.

    2011-01-01

    The interactions of C2C12 myoblasts and human bone marrow stem cells (hMSCs) with silk-tropoelastin biomaterials, and the capacity of each to promote attachment, proliferation, and either myogenic- or osteogenic-differentiation were investigated. Temperature-controlled water vapor annealing was used to control beta-sheet crystal formation to generate insoluble silk-tropoelastin biomaterial matrices at defined ratios of the two proteins. These ratios controlled surface roughness and micro/nano-scale topological patterns, and elastic modulus, stiffness, yield stress, and tensile strength. A combination of low surface roughness and high stiffness in the silk-tropoelastin materials promoted proliferation and myogenic-differentiation of C2C12 cells. In contrast, high surface roughness with micro/nano-scale surface patterns was favored by hMSCs. Increasing the content of human tropoelastin in the silk-tropoelastin materials enhanced the proliferation and osteogenic-differentiation of hMSCs. We conclude that the silk-tropoelastin composition facilitates fine tuning of the growth and differentiation of these cells. PMID:21872326

  2. PFOS or PreFOS? Are perfluorooctane sulfonate precursors (PreFOS) important determinants of human and environmental perfluorooctane sulfonate (PFOS) exposure?

    PubMed

    Martin, Jonathan W; Asher, Brian J; Beesoon, Sanjay; Benskin, Jonathan P; Ross, Matthew S

    2010-11-01

    The extent to which perfluorooctanesulfonate precursors (PreFOS) play a role in human or environmental exposure to perfluorooctanesulfonate (PFOS) is not well characterized. The diversity of manufactured PreFOS and its degradation products (e.g. C(8)F(17)SO(2)R and C(8)F(17)SO(2)NR'R'', where R is H or F, and R' and R'' are various) has made it difficult to track their fate. Temporal trends of PFOS in both humans and wildlife are discrepant, thus it is difficult to predict future exposure, and hypotheses about the role of PreFOS have been raised. Although abiotic degradation of commercially important PreFOS materials requires further research, current data suggest that the yield of PFOS is negligible or minor. On the other hand, in vivo biotransformation of PreFOS yields PFOS as the major metabolite, and >32% yields have been observed. In Canadians, exposure to PreFOS was equivalent or greater than direct PFOS exposure prior to 2002. In most ocean water, PFOS is dominant to PreFOS, but in the oceans east of Greenland there may be more PreFOS than PFOS, consistent with the fact that whales and humans in this region also show evidence of substantial PreFOS exposure. Quantitative assessments of PFOS body-burdens coming from PreFOS are complicated by the fact that PreFOS partitions to the cellular fraction of blood, thus biomonitoring in serum under predicts PreFOS relative to PFOS. Many unknowns exist that prevent accurate modelling, thus analytical methods that can distinguish directly manufactured PFOS, from PFOS that has been biotransformed from PreFOS, should be applied in future human and environmental monitoring. Two new source tracking principles are presented and applied to human serum.

  3. Methods to uncover an antibody epitope in the KPI domain of Alzheimer's amyloid precursor protein for immunohistochemistry in human brain.

    PubMed

    Campbell, E; Pearson, R C; Parkinson, D

    1999-11-15

    A novel polyclonal antibody (Ab993), specific for a KPI domain epitope of APP, was characterised for use in immunoprecipitation, Western blotting and immunohistochemistry. Conditioned medium from NTera2/D1 cells was used for immunoprecipitation and Western blots. Paraffin-embedded human brain sections were used for immunohistochemistry. The antibody recognised KPI-containing APP on Western blots after standard solubilisation but immunoprecipitation of soluble APP required reduction with 2-mercaptoethanol followed by alkylation of reduced sulphydryl bonds with sodium iodoacetate. Immunohistochemical staining of human brain sections was significantly enhanced by this pre-treatment. Microwaving of sections also increased immunolabelling, by a mechanism that was additive to reduction and alkylation. Incubation in 80% formic acid did not confer any enhancement of immunoreactivity. Ab993, applied with the methods reported here, is expected to be valuable in investigations of the pathogenesis of Alzheimer's disease to determine the source of the beta-amyloid peptide.

  4. American Cancer Society Guideline for human papillomavirus (HPV) vaccine use to prevent cervical cancer and its precursors.

    PubMed

    Saslow, Debbie; Castle, Philip E; Cox, J Thomas; Davey, Diane D; Einstein, Mark H; Ferris, Daron G; Goldie, Sue J; Harper, Diane M; Kinney, Walter; Moscicki, Anna-Barbara; Noller, Kenneth L; Wheeler, Cosette M; Ades, Terri; Andrews, Kimberly S; Doroshenk, Mary K; Kahn, Kelly Green; Schmidt, Christy; Shafey, Omar; Smith, Robert A; Partridge, Edward E; Garcia, Francisco

    2007-01-01

    The American Cancer Society (ACS) has developed guidelines for the use of the prophylactic human papillomavirus (HPV) vaccine for the prevention of cervical intraepithelial neoplasia and cervical cancer. These recommendations are based on a formal review of the available evidence. They address the use of prophylactic HPV vaccines, including who should be vaccinated and at what age, as well as a summary of policy and implementation issues. Implications for screening are also discussed.

  5. The gag gene products of human immunodeficiency virus type 1: alignment within the gag open reading frame, identification of posttranslational modifications, and evidence for alternative gag precursors.

    PubMed

    Mervis, R J; Ahmad, N; Lillehoj, E P; Raum, M G; Salazar, F H; Chan, H W; Venkatesan, S

    1988-11-01

    Seven human immunodeficiency virus gag polypeptides were identified in the purified virus and in infected CD4+ lymphocytes by peptide mapping and limited amino acid sequencing of immune-purified proteins. Two gag polyproteins of 55,000 (p55) and 41,000 (p41) daltons were rapidly labeled and readily processed into the major internal gag proteins that were aligned within the gag open reading frame (ORF) as NH2-p16 (MA)-p24 (CA)-p9 (NC)-p7-COOH. The myristoylated p16 (matrix, MA) protein was processed from the myristoylated p55 gag precursor protein. The immunoreactivity of the p16 (MA) protein with region-specific gag antisera and the conservation of the N-terminal myristyl group of the p55 precursor protein in p16 (MA) confirmed its position as the N-terminal-most protein. The p9 (nucleocapsid, NC) protein was localized to residue 378 of the gag ORF, next to the C terminus of the p24/p25 (core antigen, CA) protein. The p9 protein had a repeating Cys residue containing motif which is found in the nucleic acid-binding Cys residue-containing proteins of retroviruses. The p24 (CA) protein, which was localized to residue 133 of the gag ORF, was apparently derived by C-terminal processing of an intermediate polypeptide, p25. Both the mature p24 (CA) and p16 (MA) proteins were phosphorylated at Ser residue(s). We also identified two forms of gag p41 species, one resulting from the C-terminal processing of p55 and the other originating either from N-terminal processing of p55 or from de novo synthesis.

  6. Optimization of heme precursors for the expression of human cytochrome P450 2A13 and its co-expression with oxidoreductase in baculovirus/sf9 system.

    PubMed

    Lu, Hui-Yuan; Qiu, Liang-Lin; Yang, Xue-Jiao; Zhang, Xiao-Ming; Zhang, Zhan; Wang, Shou-Lin

    2013-06-01

    Human cytochrome P450 2A13 (CYP2A13), mainly expressed in respiratory tract, is active towards numerous toxicants. To establish the metabolism in vitro, we expressed CYP2A13 and NADPH-CYP450 oxidoreductase (POR) in a baculovirus/sf9 system. Due to the deficiency of sf9 cells in heme incorporation, we investigated the effects of different heme precursors on the expression of CYP2A13, POR and their co-expression. The present results showed that both CYP2A13 and POR were presented the highest expression levels or activity with 0.2 mM δ-aminolaevulinic acid (5-ALA), 0.02 mM Fe(3+) and 0.5-1.0 μg/ml hemin. The combination of 0.2 mM 5-ALA and 0.02 mM Fe(3+) significantly improved CYP2A13 expression and content compared with heme precursors alone, so was POR activity. A multiplicity of infection (MOI) value of 5 pfu/cell for CYP2A13 baculovirus particles induced very high CYP2A13 expression. When co-infected with different POR MOI values, a viral ratio of 5 : 2 was associated with the highest CYP2A13 activity, whereas POR activity dose dependently increased with POR MOI. Furthermore, the expressed CYP2A13 in the optimized conduction could eliminate its substrate aflatoxin B1 at a significantly higher than those in other condition (P < 0.01). Our results provide an efficient approach for expressing functionally characterized, highly active and homogeneous CYP2A13 proteins.

  7. Accelerated degradation of 160 kDa epidermal growth factor (EGF) receptor precursor by the tyrosine kinase inhibitor herbimycin A in the endoplasmic reticulum of A431 human epidermoid carcinoma cells.

    PubMed Central

    Murakami, Y; Mizuno, S; Uehara, Y

    1994-01-01

    The effect of herbimycin A on the biosynthesis of epidermal growth factor (EGF) receptor was examined in human epidermoid carcinoma A431 cells. Cells were pulse-labelled with [35S]methionine, and EGF receptor biosynthesis was quantified by immunoprecipitation using a monoclonal anti-(EGF receptor) antibody. In the presence of herbimycin A, an immature 160 kDa EGF receptor precursor accumulated in 1 h and disappeared completely in 4 h. Pulse-labelled 160 kDa receptor precursor in the absence of herbimycin A, however, was converted normally into a 170 kDa one by chase with herbimycin A. Herbimycin A affected neither the synthesis of the secreted form of EGF receptor devoid of cytoplasmic domain, nor that of the transferrin receptor in A431 cells. The herbimycin A-induced degradation of 160 kDa EGF receptor precursor was not inhibited by an inhibitor of lysosomal enzymes, NH4Cl. Endoglycosidase H digestion of the 160 kDa precursor converted it into the deglycosylated 130 kDa precursor peptide. These results suggested that herbimycin A selectively acted on the EGF receptor precursor during the synthesis of the 160 kDa form, probably on the cytoplasmic domain, to form an aberrant molecule which was subjected to rapid degradation in the endoplasmic reticulum. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8037692

  8. Caspase-3, myogenic transcription factors and cell cycle inhibitors are regulated by leukemia inhibitory factor to mediate inhibition of myogenic differentiation

    PubMed Central

    2011-01-01

    Background Leukemia inhibitory factor (LIF) is known to inhibit myogenic differentiation as well as to inhibit apoptosis and caspase-3 activation in non-differentiating myoblasts. In addition caspase-3 activity is required for myogenic differentiation. Therefore the aim of this study was to further investigate mechanisms of the differentiation suppressing effect of LIF in particular the possibility of a caspase-3 mediated inhibition of differentiation. Results LIF dependent inhibition of differentiation appeared to involve several mechanisms. Differentiating myoblasts that were exposed to LIF displayed increased transcripts for c-fos. Transcripts for the cell cycle inhibitor p21 as well as muscle regulatory factors myoD and myogenin were decreased with LIF exposure. However, LIF did not directly induce a proliferative effect under differentiation conditions, but did prevent the proportion of myoblasts that were proliferating from decreasing as differentiation proceeded. LIF stimulation decreased the percentage of cells positive for active caspase-3 occurring during differentiation. Both the effect of LIF inhibiting caspase-3 activation and differentiation appeared dependent on mitogen activated protein kinase and extracellular signal regulated kinase kinase (MEK) signalling. The role of LIF in myogenic differentiation was further refined to demonstrate that myoblasts are unlikely to secrete LIF endogenously. Conclusions Altogether this study provides a more comprehensive view of the role of LIF in myogenic differentiation including LIF and receptor regulation in myoblasts and myotubes, mechanisms of inhibition of differentiation and the link between caspase-3 activation, apoptosis and myogenic differentiation. PMID:21798094

  9. Aligned Poly(ε-caprolactone) Nanofibers Guide the Orientation and Migration of Human Pluripotent Stem Cell-Derived Neurons, Astrocytes, and Oligodendrocyte Precursor Cells In Vitro.

    PubMed

    Hyysalo, Anu; Ristola, Mervi; Joki, Tiina; Honkanen, Mari; Vippola, Minnamari; Narkilahti, Susanna

    2017-03-15

    Stem cell transplantations for spinal cord injury (SCI) have been studied extensively for the past decade in order to replace the damaged tissue with human pluripotent stem cell (hPSC)-derived neural cells. Transplanted cells may, however, benefit from supporting and guiding structures or scaffolds in order to remain viable and integrate into the host tissue. Biomaterials can be used as supporting scaffolds, as they mimic the characteristics of the natural cellular environment. In this study, hPSC-derived neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) are cultured on aligned poly(ε-caprolactone) nanofiber platforms, which guide cell orientation to resemble that of spinal cord in vivo. All cell types are shown to efficiently spread over the nanofiber platform and orient according to the fiber alignment. Human neurons and astrocytes require extracellular matrix molecule coating for the nanofibers, but OPCs grow on nanofibers without additional treatment. Furthermore, the nanofiber platform is combined with a 3D hydrogel scaffold with controlled thickness, and nanofiber-mediated orientation of hPSC-derived neurons is also demonstrated in a 3D environment. In this work, clinically relevant materials and substrates for nanofibers, fiber coatings, and hydrogel scaffolds are used and combined with cells suitable for developing functional cell grafts for SCI repair.

  10. Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats

    PubMed Central

    Jin, Kunlin; Mao, XiaoOu; Xie, Lin; Galvan, Veronica; Lai, Bin; Wang, Yaoming; Gorostiza, Olivia; Wang, Xiaomei; Greenberg, David A

    2010-01-01

    Transplantation of neural cells is a potential approach for stroke treatment, but disruption of tissue architecture may limit transplant efficacy. One strategy for enhancing the ability of transplants to restore brain structure and function is to administer cells together with biomaterial scaffolding. We electrocoagulated the distal middle cerebral artery in adult rats and, 3 weeks later, injected one of the following into the infarct cavity: artificial cerebrospinal fluid, Matrigel scaffolding, human embryonic stem cell-derived neuronal precursor cells, scaffolding plus cells, or cells cultured in and administered together with scaffolding. Five weeks after transplantation, the latter two groups showed ∼50% and ∼60% reductions, respectively, in infarct cavity volume. Rats given cells cultured in and administered together with scaffolding also showed (1) survival and neuronal differentiation of transplanted cells shown by immunostaining for neuronal marker proteins and cleaved caspase-3, and by patch-clamp recording, 8 weeks after transplantation and (2) improved outcome on tests of sensorimotor and cognitive functions, 4 to 9 weeks after transplantation. These results indicate that transplantation of human neural cells together with biomaterial scaffolding has the potential to improve the outcome from stroke, even when treatment is delayed for several weeks after the ischemic event. PMID:19826433

  11. Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats.

    PubMed

    Jin, Kunlin; Mao, Xiaoou; Xie, Lin; Galvan, Veronica; Lai, Bin; Wang, Yaoming; Gorostiza, Olivia; Wang, Xiaomei; Greenberg, David A

    2010-03-01

    Transplantation of neural cells is a potential approach for stroke treatment, but disruption of tissue architecture may limit transplant efficacy. One strategy for enhancing the ability of transplants to restore brain structure and function is to administer cells together with biomaterial scaffolding. We electrocoagulated the distal middle cerebral artery in adult rats and, 3 weeks later, injected one of the following into the infarct cavity: artificial cerebrospinal fluid, Matrigel scaffolding, human embryonic stem cell-derived neuronal precursor cells, scaffolding plus cells, or cells cultured in and administered together with scaffolding. Five weeks after transplantation, the latter two groups showed approximately 50% and approximately 60% reductions, respectively, in infarct cavity volume. Rats given cells cultured in and administered together with scaffolding also showed (1) survival and neuronal differentiation of transplanted cells shown by immunostaining for neuronal marker proteins and cleaved caspase-3, and by patch-clamp recording, 8 weeks after transplantation and (2) improved outcome on tests of sensorimotor and cognitive functions, 4 to 9 weeks after transplantation. These results indicate that transplantation of human neural cells together with biomaterial scaffolding has the potential to improve the outcome from stroke, even when treatment is delayed for several weeks after the ischemic event.

  12. BDNF increases survival and neuronal differentiation of human neural precursor cells cotransplanted with a nanofiber gel to the auditory nerve in a rat model of neuronal damage.

    PubMed

    Jiao, Yu; Palmgren, Björn; Novozhilova, Ekaterina; Englund Johansson, Ulrica; Spieles-Engemann, Anne L; Kale, Ajay; Stupp, Samuel I; Olivius, Petri

    2014-01-01

    To study possible nerve regeneration of a damaged auditory nerve by the use of stem cell transplantation. We transplanted HNPCs to the rat AN trunk by the internal auditory meatus (IAM). Furthermore, we studied if addition of BDNF affects survival and phenotypic differentiation of the grafted HNPCs. A bioactive nanofiber gel (PA gel), in selected groups mixed with BDNF, was applied close to the implanted cells. Before transplantation, all rats had been deafened by a round window niche application of β-bungarotoxin. This neurotoxin causes a selective toxic destruction of the AN while keeping the hair cells intact. Overall, HNPCs survived well for up to six weeks in all groups. However, transplants receiving the BDNF-containing PA gel demonstrated significantly higher numbers of HNPCs and neuronal differentiation. At six weeks, a majority of the HNPCs had migrated into the brain stem and differentiated. Differentiated human cells as well as neurites were observed in the vicinity of the cochlear nucleus. Our results indicate that human neural precursor cells (HNPC) integration with host tissue benefits from additional brain derived neurotrophic factor (BDNF) treatment and that these cells appear to be good candidates for further regenerative studies on the auditory nerve (AN).

  13. Targeted analysis of sphingoid precursors in human biofluids by solid-phase extraction with in situ derivatization prior to μ-LC-LIF determination.

    PubMed

    Sánchez, B Alvarez; Capote, F Priego; Luque de Castro, M D

    2011-05-01

    A method for determination of two relevant sphingoid precursors such as sphingosine and sphinganine and the corresponding conjugates sphingosine 1-phosphate and sphinganine 1-phosphate in human urine and serum is here presented. The method is characterized by a solid- phase extraction step with in situ derivatization of the sphingolipids in the eluate (o-phthaldialdehyde derivatives) to obtain fluorescent compounds. In this way, sample preparation was completely performed in a single automated step by means of a lab-on-valve system. Derivatized analytes were injected into a liquid chromatography system operating at micro regime and detected by laser-induced fluorescence. For determination of sphingoid phosphates, they were enzymatically converted to free sphingoids to obtain stable fluorescent derivatives. The detection limits were in the range 4.2-10.2 ng mL(-1) for serum and 0.56-1.36 ng mL(-1) for urine, with repeatability ranging from 3.9% to 6.2% expressed as relative standard deviation. The method was validated by direct infusion tandem mass spectrometry in multiple reaction monitoring to compare results provided by analysis of biofluids and to confirm the identity of the target compounds. Sensitivity and precision were better than or similar to those provided by the confirmatory method. The automation of sample preparation enables to scale-down this step and improves precision by minimization of human intervention, being thus suitable for clinical analysis.

  14. Remyelination Is Correlated with Regulatory T Cell Induction Following Human Embryoid Body-Derived Neural Precursor Cell Transplantation in a Viral Model of Multiple Sclerosis.

    PubMed

    Plaisted, Warren C; Zavala, Angel; Hingco, Edna; Tran, Ha; Coleman, Ronald; Lane, Thomas E; Loring, Jeanne F; Walsh, Craig M

    2016-01-01

    We have recently described sustained clinical recovery associated with dampened neuroinflammation and remyelination following transplantation of neural precursor cells (NPCs) derived from human embryonic stem cells (hESCs) in a viral model of the human demyelinating disease multiple sclerosis. The hNPCs used in that study were derived by a novel direct differentiation method (direct differentiation, DD-NPCs) that resulted in a unique gene expression pattern when compared to hNPCs derived by conventional methods. Since the therapeutic potential of human NPCs may differ greatly depending on the method of derivation and culture, we wanted to determine whether NPCs differentiated using conventional methods would be similarly effective in improving clinical outcome under neuroinflammatory demyelinating conditions. For the current study, we utilized hNPCs differentiated from a human induced pluripotent cell line via an embryoid body intermediate stage (EB-NPCs). Intraspinal transplantation of EB-NPCs into mice infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in decreased accumulation of CD4+ T cells in the central nervous system that was concomitant with reduced demyelination at the site of injection. Dampened neuroinflammation and remyelination was correlated with a transient increase in CD4+FOXP3+ regulatory T cells (Tregs) concentrated within the peripheral lymphatics. However, compared to our earlier study, pathological improvements were modest and did not result in significant clinical recovery. We conclude that the genetic signature of NPCs is critical to their effectiveness in this model of viral-induced neurologic disease. These comparisons will be useful for understanding what factors are critical for the sustained clinical improvement.

  15. Remyelination Is Correlated with Regulatory T Cell Induction Following Human Embryoid Body-Derived Neural Precursor Cell Transplantation in a Viral Model of Multiple Sclerosis

    PubMed Central

    Plaisted, Warren C.; Zavala, Angel; Hingco, Edna; Tran, Ha; Coleman, Ronald; Lane, Thomas E.; Loring, Jeanne F.; Walsh, Craig M.

    2016-01-01

    We have recently described sustained clinical recovery associated with dampened neuroinflammation and remyelination following transplantation of neural precursor cells (NPCs) derived from human embryonic stem cells (hESCs) in a viral model of the human demyelinating disease multiple sclerosis. The hNPCs used in that study were derived by a novel direct differentiation method (direct differentiation, DD-NPCs) that resulted in a unique gene expression pattern when compared to hNPCs derived by conventional methods. Since the therapeutic potential of human NPCs may differ greatly depending on the method of derivation and culture, we wanted to determine whether NPCs differentiated using conventional methods would be similarly effective in improving clinical outcome under neuroinflammatory demyelinating conditions. For the current study, we utilized hNPCs differentiated from a human induced pluripotent cell line via an embryoid body intermediate stage (EB-NPCs). Intraspinal transplantation of EB-NPCs into mice infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in decreased accumulation of CD4+ T cells in the central nervous system that was concomitant with reduced demyelination at the site of injection. Dampened neuroinflammation and remyelination was correlated with a transient increase in CD4+FOXP3+ regulatory T cells (Tregs) concentrated within the peripheral lymphatics. However, compared to our earlier study, pathological improvements were modest and did not result in significant clinical recovery. We conclude that the genetic signature of NPCs is critical to their effectiveness in this model of viral-induced neurologic disease. These comparisons will be useful for understanding what factors are critical for the sustained clinical improvement. PMID:27310015

  16. Successful transplantation of in vitro expanded human cadaver corneal endothelial precursor cells on to a cadaver bovine's eye using a nanocomposite gel sheet.

    PubMed

    Parikumar, Periyasamy; Haraguchi, Kazutoshi; Ohbayashi, Akira; Senthilkumar, Rajappa; Abraham, Samuel J K

    2014-05-01

    In vitro expansion of human corneal endothelial precursor (HCEP) cells has been reported via production of cell aggregated spheres. However, to translate this procedure in human patients warrants maintaining the position of the eyeballs facing down for 36 h, which is not feasible. In this study, we report a method using a nanocomposite (NC) gel sheet to accomplish the integration of HCEP cells to the endothelium of cadaver bovine's eyes. HCEP cells were isolated from the corneal endothelium of a cadaver human eye and then expanded using a thermoreversible gelation polymer (TGP) as reported earlier. For the study, three cadaver bovine eyes were used. The NC gel sheets were inserted into the bovine eyes', aligned and suture-fixed in position under the host endothelium. HCEP cells previously expanded in the TGP were harvested and injected using a 26-gauge syringe between the endothelium and the NC gel sheet. The eyes were left undisturbed for three hours following which the NC gel sheets were gently removed. The corneas were harvested and subjected to histopathological studies. Histopathological studies showed that all the three corneas used for NC gel sheet implantation showed the presence of engrafted HCEP cells, seen as multi-layered cells over the native endothelium of the bovine cornea. Examination of the NC gel sheets used for implantation showed that only very few corneal endothelial cells remained on the sheets amounting to what could be considered negligible. The use of the NC gel sheet makes HCEP cell transplantation feasible for human patients. Further in vitro basic studies followed by translational studies are necessary to bring this method for clinical application in appropriate indications.

  17. Vestibular Evoked Myogenic Potentials in Normal Mice and Phex Mice With Spontaneous Endolymphatic Hydrops

    PubMed Central

    Sheykholeslami, Kianoush; Megerian, Cliff A.; Zheng, Qing Y.

    2010-01-01

    Objective and Background Vestibular evoked myogenic potentials (VEMPs) have been recorded from the neck musculature and the cervical spinal cord in humans and a limited number of laboratory animals in response to loud sound. However, the mouse VEMP has yet to be described. Evaluation of the sacculocollic pathway via VEMPs in mice can set the stage for future evaluations of mutant mice that now play an important role in research regarding human auditory and vestibular dysfunction. Materials and Methods Sound-evoked potentials were recorded from the neck extensor muscles and the cervical spinal cord in normal adult mice and in circling PhexHyp-Duk/y mice with known vestibular abnormalities, including endolymphatic hydrops (ELH). Results Biphasic potentials were recorded from all normal animals. The mean threshold of the VEMP response in normal adult mice was 60 dB normal hearing level with a mean peak latency of 6.25 ± 0.46 and 7.95 ± 0.42 milliseconds for p1 and n1 peaks, respectively. At the maximum sound intensity used (100 dB normal hearing level), 4 of 5 Phex mice did not exhibit VEMP responses, and 1 showed an elevated threshold, but normal response, with regard to peak latency and amplitude. The histologic findings in all of these Phex mice were consistent with distended membranous labyrinth, displaced Reissner membrane, ganglion cell loss, and ELH. Conclusion This is the first report of VEMP recordings in mice and the first report of abnormal VEMPs in a mouse model with ELH. The characteristics of these potentials such as higher response threshold in comparison to auditory brainstem response, myogenic nature of the response, and latency correlation with the cervical recording (accessory nerve nucleus) were similar to those of VEMPs in humans, guinea pigs, cats, and rats, suggesting that the mouse may be used as an animal model in the study of VEMPs. The simplicity and reliability of these recordings make the VEMP a uniquely informative test for assessing

  18. Human Flt3L generates dendritic cells from canine peripheral blood precursors: implications for a dog glioma clinical trial.

    PubMed

    Xiong, Weidong; Candolfi, Marianela; Liu, Chunyan; Muhammad, A K M Ghulam; Yagiz, Kader; Puntel, Mariana; Moore, Peter F; Avalos, Julie; Young, John D; Khan, Dorothy; Donelson, Randy; Pluhar, G Elizabeth; Ohlfest, John R; Wawrowsky, Kolja; Lowenstein, Pedro R; Castro, Maria G

    2010-06-11

    Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and carries a dismal prognosis. We have developed a conditional cytotoxic/immunotherapeutic approach using adenoviral vectors (Ads) encoding the immunostimulatory cytokine, human soluble fms-like tyrosine kinase 3 ligand (hsFlt3L) and the conditional cytotoxic molecule, i.e., Herpes Simplex Type 1- thymide kinase (TK). This therapy triggers an anti-tumor immune response that leads to tumor regression and anti-tumor immunological memory in intracranial rodent cancer models. We aim to test the efficacy of this immunotherapy in dogs bearing spontaneous GBM. In view of the controversy regarding the effect of human cytokines on dog immune cells, and considering that the efficacy of this treatment depends on hsFlt3L-stimulated dendritic cells (DCs), in the present work we tested the ability of Ad-encoded hsFlt3L to generate DCs from dog peripheral blood and compared its effects with canine IL-4 and GM-CSF. Our results demonstrate that hsFlT3L expressed form an Ad vector, generated DCs from peripheral blood cultures with very similar morphological and phenotypic characteristics to canine IL-4 and GM-CSF-cultured DCs. These include phagocytic activity and expression of CD11c, MHCII, CD80 and CD14. Maturation of DCs cultured under both conditions resulted in increased secretion of IL-6, TNF-alpha and IFN-gamma. Importantly, hsFlt3L-derived antigen presenting cells showed allostimulatory potential highlighting their ability to present antigen to T cells and elicit their proliferation. These results demonstrate that hsFlt3L induces the proliferation of canine DCs and support its use in upcoming clinical trials for canine GBM. Our data further support the translation of hsFlt3L to be used for dendritic cells' vaccination and gene therapeutic approaches from rodent models to canine patients and its future implementation in human clinical trials.

  19. Human Flt3L Generates Dendritic Cells from Canine Peripheral Blood Precursors: Implications for a Dog Glioma Clinical Trial

    PubMed Central

    Liu, Chunyan; Muhammad, A. K. M. Ghulam; Yagiz, Kader; Puntel, Mariana; Moore, Peter F.; Avalos, Julie; Young, John D.; Khan, Dorothy; Donelson, Randy; Pluhar, G. Elizabeth; Ohlfest, John R.; Wawrowsky, Kolja; Lowenstein, Pedro R.; Castro, Maria G.

    2010-01-01

    Background Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and carries a dismal prognosis. We have developed a conditional cytotoxic/immunotherapeutic approach using adenoviral vectors (Ads) encoding the immunostimulatory cytokine, human soluble fms-like tyrosine kinase 3 ligand (hsFlt3L) and the conditional cytotoxic molecule, i.e., Herpes Simplex Type 1- thymide kinase (TK). This therapy triggers an anti-tumor immune response that leads to tumor regression and anti-tumor immunological memory in intracranial rodent cancer models. We aim to test the efficacy of this immunotherapy in dogs bearing spontaneous GBM. In view of the controversy regarding the effect of human cytokines on dog immune cells, and considering that the efficacy of this treatment depends on hsFlt3L-stimulated dendritic cells (DCs), in the present work we tested the ability of Ad-encoded hsFlt3L to generate DCs from dog peripheral blood and compared its effects with canine IL-4 and GM-CSF. Methodology/Principal Findings Our results demonstrate that hsFlT3L expressed form an Ad vector, generated DCs from peripheral blood cultures with very similar morphological and phenotypic characteristics to canine IL-4 and GM-CSF-cultured DCs. These include phagocytic activity and expression of CD11c, MHCII, CD80 and CD14. Maturation of DCs cultured under both conditions resulted in increased secretion of IL-6, TNF-α and IFN-γ. Importantly, hsFlt3L-derived antigen presenting cells showed allostimulatory potential highlighting their ability to present antigen to T cells and elicit their proliferation. Conclusions/Significance These results demonstrate that hsFlt3L induces the proliferation of canine DCs and support its use in upcoming clinical trials for canine GBM. Our data further support the translation of hsFlt3L to be used for dendritic cells' vaccination and gene therapeutic approaches from rodent models to canine patients and its future implementation in human clinical

  20. Activation-Induced Cytidine Deaminase Expression in Human B Cell Precursors Is Essential for Central B Cell Tolerance.

    PubMed

    Cantaert, Tineke; Schickel, Jean-Nicolas; Bannock, Jason M; Ng, Yen-Shing; Massad, Christopher; Oe, Tyler; Wu, Renee; Lavoie, Aubert; Walter, Jolan E; Notarangelo, Luigi D; Al-Herz, Waleed; Kilic, Sara Sebnem; Ochs, Hans D; Nonoyama, Shigeaki; Durandy, Anne; Meffre, Eric

    2015-11-17

    Activation-induced cytidine deaminase (AID), the enzyme-mediating class-switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes, is essential for the removal of developing autoreactive B cells. How AID mediates central B cell tolerance remains unknown. We report that AID enzymes were produced in a discrete population of immature B cells that expressed recombination-activating gene 2 (RAG2), suggesting that they undergo secondary recombination to edit autoreactive antibodies. However, most AID+ immature B cells lacked anti-apoptotic MCL-1 and were deleted by apoptosis. AID inhibition using lentiviral-encoded short hairpin (sh)RNA in B cells developing in humanized mice resulted in a failure to remove autoreactive clones. Hence, B cell intrinsic AID expression mediates central B cell tolerance potentially through its RAG-coupled genotoxic activity in self-reactive immature B cells.

  1. Potential Role of Omega-3 Fatty Acids on the Myogenic Program of Satellite Cells

    PubMed Central

    Bhullar, Amritpal S.; Putman, Charles T.; Mazurak, Vera C.

    2016-01-01

    Skeletal muscle loss is associated with aging as well as pathological conditions. Satellite cells (SCs) play an important role in muscle regeneration. Omega-3 fatty acids are widely studied in a variety of muscle wasting diseases; however, little is known about their impact on skeletal muscle regeneration. The aim of this review is to evaluate studies examining the effect of omega-3 fatty acids, α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid on the regulation of SC proliferation and differentiation. This review highlights mechanisms by which omega-3 fatty acids may modulate the myogenic program of the stem cell population within skeletal muscles and identifies considerations for future studies. It is proposed that minimally three myogenic transcriptional regulatory factors, paired box 7 (Pax7), myogenic differentiation 1 protein, and myogenin, should be measured to confirm the stage of SCs within the myogenic program affected by omega-3 fatty acids. PMID:26884682

  2. Isolation of human Leydig cell mesenchymal precursors from patients with the androgen insensitivity syndrome: testosterone production and response to human chorionic gonadotropin stimulation in culture.

    PubMed

    Chemes, H; Cigorraga, S; Bergadá, C; Schteingart, H; Rey, R; Pellizzari, E

    1992-05-01

    Mature Leydig cells, the main source of testicular testosterone in mammals, arise from immature mesenchymal precursors through an LH-dependent differentiation process. In order to study the steroidogenic potential of these precursors, undifferentiated mesenchymal cells were obtained from the testicular interstitium of two patients with androgen insensitivity syndrome. After double digestion with collagenase and separation of the suspensions in a Percoll density gradient, the cells were cultured in Ham's F12 medium: Dulbecco's Modified Eagle Medium (1:1) supplemented with antibiotics, transferrin, insulin, hydrocortisone, and vitamin E with or without 1 IU of hCG/ml. At 11 days in culture, samples were removed for morphological characterization and determination of 3 beta-hydroxysteroid dehydrogenase activity (3 beta-HSD). Testosterone concentration was determined by RIA in the culture medium at different intervals. Cultured cells were mesenchymal in appearance, elongated in shape, with numerous processes running in different directions. No mature Leydig cells were present. In basal conditions, the percentages of 3 beta-HSD-positive cells at 11 days on patients 1 and 2 were 33% and 28%, respectively, and the testosterone concentrations in the culture media were 4.8 and 8.4 ng.10(6) cells.24 h, respectively. In cultures stimulated with hCG, there was an increase of histochemical reactivity (47% and 42% in patients 1 and 2, respectively) and in the amount of testosterone secreted (10.2 and 12.0 ng.10(6) cells, respectively). Electron microscopic studies of cultures grown in the absence of hCG demonstrated a homogenous population of poorly differentiated, fibroblastic-type mesenchymal cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury.

    PubMed Central

    Mestril, R; Chi, S H; Sayen, M R; O'Reilly, K; Dillmann, W H

    1994-01-01

    Myocardial ischemia markedly increases the expression of several members of the stress/heat shock protein (HSP) family, especially the inducible HSP70 isoforms. Increased expression of HSP70 has been shown to exert a protective effect against a lethal heat shock. We have examined the possibility of using this resistance to a lethal heat shock as a protective effect against an ischemic-like stress in vitro using a rat embryonic heart-derived cell line H9c2 (2-1). Myogenic cells in which the heat shock proteins have been induced by a previous heat shock are found to become resistant to a subsequent simulated ischemic stress. In addition, to address the question of how much does the presence of the HSP70 contribute to this protective effect, we have generated stably transfected cell lines overexpressing the human-inducible HSP70. Embryonal rat heart-derived H9c2(2-1) cells were used for this purpose. This stably transfected cell line was found to be significantly more resistant to an ischemic-like stress than control myogenic cells only expressing the selectable marker (neomycin) or the parental cell line H9c2(2-1). This finding implicates the inducible HSP70 protein as playing a major role in protecting cardiac cells against ischemic injury. Images PMID:8113409

  4. Human exposure to PCDDs and their precursors from heron and tern eggs in the Yangtze River Delta indicate PCP origin.

    PubMed

    Zhou, Yihui; Yin, Ge; Asplund, Lillemor; Stewart, Kathryn; Rantakokko, Panu; Bignert, Anders; Ruokojärvi, Päivi; Kiviranta, Hannu; Qiu, Yanling; Ma, Zhijun; Bergman, Åke

    2017-06-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are highly toxic to humans and wildlife. In the present study, PCDD/Fs were analyzed in the eggs of whiskered terns (Chlidonias hybrida), and genetically identified eggs from black-crowned night herons (Nycticorax nycticorax) sampled from two lakes in the Yangtze River Delta area, China. The median toxic equivalent (TEQ) of PCDD/Fs were 280 (range: 95-1500) and 400 (range: 220-1100) pg TEQ g(-1) lw (WHO, 1998 for birds) in the eggs of black-crowned night heron and whiskered tern, respectively. Compared to known sources, concentrations of PCDDs relative to the sum of PCDD/Fs in bird eggs, demonstrated high abundance of octachlorodibenzo-p-dioxin (OCDD), 1,2,3,4,6,7,8-heptaCDD and 1,2,3,6,7,8-hexaCDD indicating pentachlorophenol (PCP), and/or sodium pentachlorophenolate (Na-PCP) as significant sources of the PCDD/Fs. The presence of polychlorinated diphenyl ethers (PCDEs), hydroxylated and methoxylated polychlorinated diphenyl ethers (OH- and MeO-PCDEs, known impurities in PCP products), corroborates this hypothesis. Further, significant correlations were found between the predominant congener CDE-206, 3'-OH-CDE-207, 2'-MeO-CDE-206 and OCDD, indicating a common origin. Eggs from the two lakes are sometimes used for human consumption. The WHO health-based tolerable intake of PCDD/Fs is exceeded if eggs from the two lakes are consumed regularly on a weekly basis, particularly for children. The TEQs extensively exceed maximum levels for PCDD/Fs in hen eggs and egg products according to EU legislation (2.5 pg TEQ g(-1)lw). The results suggest immediate action should be taken to manage the contamination, and further studies evaluating the impacts of egg consumption from wild birds in China. Likewise, studies on dioxins and other POPs in common eggs need to be initiated around China. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Myogenic Growth Factor Present in Skeletal Muscle is Purified by Heparin-Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Kardami, Elissavet; Spector, Dennis; Strohman, Richard C.

    1985-12-01

    A myogenic growth factor has been purified from a skeletal muscle, the anterior latissimus dorsi, of adult chickens. In the range of 1-10 ng, this factor stimulates DNA synthesis as well as protein and muscle-specific myosin accumulation in myogenic cell cultures. Purification is achieved through binding of the factor to heparin. The factor is distinct from transferrin and works synergistically with transferrin in stimulating myogenesis in vitro.

  6. Myogenic determination and differentiation of the mouse palatal muscle in relation to the developing mandibular nerve.

    PubMed

    Zhang, L; Yoshimura, Y; Hatta, T; Otani, H

    1999-08-01

    The vertebrate palatal muscles are derived from the cranial paraxial mesoderm and start myogenesis by the expression of myogenic regulatory factors (MRFs). Predetermined myogenic cells migrate from the cranial paraxial mesoderm into the branchial arches, followed by myogenic differentiation. The objective of this study was to elucidate whether the determination, migration, and differentiation of myogenic cells during the myogenesis of the palatal muscles, particularly the tensor veli palatini (TVP), are related to the extending mandibular nerve in mouse embryos. By immunohistochemical staining at embryonic day (E) 9.5, MyoD1 and myogenin have been expressed in the mandibular arch, into which the mandibular nerve had not yet extended. At E11.5, these myogenic cells encircled the extending mandibular nerve and were distributed from the distal and lateral to the trigeminal ganglion and into the mandibular arch to form the muscle plate, a girdle-like structure. By E12.5, these myogenic cells lost their girdle-like pattern, vacated the trunk area of the mandibular nerve, and were separated into several incompletely divided masses encircling the collateral branches of the mandibular nerve. The TVP started differentiation at E13.5 with the appearance of myofilaments and acetylcholinesterase (AchE), whereas the other palatal muscles began differentiation at E14.5. We defined the differentiation process of mouse palatal muscles into five stages based on the present findings. These results suggest that the determination and initial migration of the palatal myogenic cells into the mandibular arch occur before the mandibular nerve extends out of the trigeminal ganglion, whereas the myogenic cells migrating into the final sites of differentiation intimately relate to the extending nerve.

  7. IAP-Based Cell Sorting Results in Homogeneous Transplantable Dopaminergic Precursor Cells Derived from Human Pluripotent Stem Cells.

    PubMed

    Lehnen, Daniela; Barral, Serena; Cardoso, Tiago; Grealish, Shane; Heuer, Andreas; Smiyakin, Andrej; Kirkeby, Agnete; Kollet, Jutta; Cremer, Harold; Parmar, Malin; Bosio, Andreas; Knöbel, Sebastian

    2017-09-19

    Human pluripotent stem cell (hPSC)-derived mesencephalic dopaminergic (mesDA) neurons can relieve motor deficits in animal models of Parkinson's disease (PD). Clinical translation of differentiation protocols requires standardization of production procedures, and surface-marker-based cell sorting is considered instrumental for reproducible generation of defined cell products. Here, we demonstrate that integrin-associated protein (IAP) is a cell surface marker suitable for enrichment of hPSC-derived mesDA progenitor cells. Immunomagnetically sorted IAP(+) mesDA progenitors showed increased expression of ventral midbrain floor plate markers, lacked expression of pluripotency markers, and differentiated into mature dopaminergic (DA) neurons in vitro. Intrastriatal transplantation of IAP(+) cells sorted at day 16 of differentiation in a rat model of PD resulted in functional recovery. Grafts from sorted IAP(+) mesDA progenitors were more homogeneous in size and DA neuron density. Thus, we suggest IAP-based sorting for reproducible prospective enrichment of mesDA progenitor cells in clinical cell replacement strategies. Copyright © 2017 Miltenyi Biotec GmbH. Published by Elsevier Inc. All rights reserved.

  8. DNMT3B in vitro knocking-down is able to reverse embryonal rhabdomyosarcoma cell phenotype through inhibition of proliferation and induction of myogenic differentiation

    PubMed Central

    Megiorni, Francesca; Camero, Simona; Ceccarelli, Simona; McDowell, Heather P.; Mannarino, Olga; Marampon, Francesco; Pizer, Barry; Shukla, Rajeev; Pizzuti, Antonio; Marchese, Cinzia; Clerico, Anna; Dominici, Carlo

    2016-01-01

    Aberrant DNA methylation has been frequently observed in many human cancers, including rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children. To date, the expression and function of the de novo DNA methyltransferase (DNMT) 3B in RMS have not yet been investigated. Our study show for the first time a significant up-regulation of DNMT3B levels in 14 RMS tumour samples and 4 RMS cell lines in comparison to normal skeletal muscle. Transfection of RD and TE671 cells, two in vitro models of embryonal RMS (ERMS), with a synthetic DNMT3B siRNA decreased cell proliferation by arresting cell cycle at G1 phase, as demonstrated by the reduced expression of Cyclin B1, Cyclin D1 and Cyclin E2, and by the concomitant up-regulation of the checkpoint regulators p21 and p27. DNMT3B depletion also impaired RB phosphorylation status and decreased migratory capacity and clonogenic potential. Interestingly, DNMT3B knock-down was able to commit ERMS cells towards myogenic terminal differentiation, as confirmed by the acquisition of a myogenic-like phenotype and by the increased expression of the myogenic markers MYOD1, Myogenin and MyHC. Finally, inhibition of MEK/ERK signalling by U0126 resulted in a reduction of DNMT3B protein, giving evidence that DNMT3B is a down-stream molecule of this oncogenic pathway. Taken together, our data indicate that altered expression of DNMT3B plays a key role in ERMS development since its silencing is able to reverse cell cancer phenotype by rescuing myogenic program. Epigenetic therapy, by targeting the DNA methylation machinery, may represent a novel therapeutic strategy against RMS. PMID:27764816

  9. DNMT3B in vitro knocking-down is able to reverse embryonal rhabdomyosarcoma cell phenotype through inhibition of proliferation and induction of myogenic differentiation.

    PubMed

    Megiorni, Francesca; Camero, Simona; Ceccarelli, Simona; McDowell, Heather P; Mannarino, Olga; Marampon, Francesco; Pizer, Barry; Shukla, Rajeev; Pizzuti, Antonio; Marchese, Cinzia; Clerico, Anna; Dominici, Carlo

    2016-11-29

    Aberrant DNA methylation has been frequently observed in many human cancers, including rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children. To date, the expression and function of the de novo DNA methyltransferase (DNMT) 3B in RMS have not yet been investigated. Our study show for the first time a significant up-regulation of DNMT3B levels in 14 RMS tumour samples and 4 RMS cell lines in comparison to normal skeletal muscle. Transfection of RD and TE671 cells, two in vitro models of embryonal RMS (ERMS), with a synthetic DNMT3B siRNA decreased cell proliferation by arresting cell cycle at G1 phase, as demonstrated by the reduced expression of Cyclin B1, Cyclin D1 and Cyclin E2, and by the concomitant up-regulation of the checkpoint regulators p21 and p27. DNMT3B depletion also impaired RB phosphorylation status and decreased migratory capacity and clonogenic potential. Interestingly, DNMT3B knock-down was able to commit ERMS cells towards myogenic terminal differentiation, as confirmed by the acquisition of a myogenic-like phenotype and by the increased expression of the myogenic markers MYOD1, Myogenin and MyHC. Finally, inhibition of MEK/ERK signalling by U0126 resulted in a reduction of DNMT3B protein, giving evidence that DNMT3B is a down-stream molecule of this oncogenic pathway.Taken together, our data indicate that altered expression of DNMT3B plays a key role in ERMS development since its silencing is able to reverse cell cancer phenotype by rescuing myogenic program. Epigenetic therapy, by targeting the DNA methylation machinery, may represent a novel therapeutic strategy against RMS.

  10. hUTP24 is essential for processing of the human rRNA precursor at site A1, but not at site A0.

    PubMed

    Tomecki, Rafal; Labno, Anna; Drazkowska, Karolina; Cysewski, Dominik; Dziembowski, Andrzej

    2015-01-01

    Production of ribosomes relies on more than 200 accessory factors to ensure the proper sequence of steps and faultless assembly of ribonucleoprotein machinery. Among trans-acting factors are numerous enzymes, including ribonucleases responsible for processing the large rRNA precursor synthesized by RNA polymerase I that encompasses sequences corresponding to mature 18S, 5.8S, and 25/28S rRNA. In humans, the identity of most enzymes responsible for individual processing steps, including endoribonucleases that cleave pre-rRNA at specific sites within regions flanking and separating mature rRNA, remains largely unknown. Here, we investigated the role of hUTP24 in rRNA maturation in human cells. hUTP24 is a human homolog of the Saccharomyces cerevisiae putative PIN domain-containing endoribonuclease Utp24 (yUtp24), which was suggested to participate in the U3 snoRNA-dependent processing of yeast pre-rRNA at sites A0, A1, and A2. We demonstrate that hUTP24 interacts to some extent with proteins homologous to the components of the yeast small subunit (SSU) processome. Moreover, mutation in the putative catalytic site of hUTP24 results in slowed growth of cells and reduced metabolic activity. These effects are associated with a defect in biogenesis of the 40S ribosomal subunit, which results from decreased amounts of 18S rRNA as a consequence of inaccurate pre-rRNA processing at the 5'-end of the 18S rRNA segment (site A1). Interestingly, and in contrast to yeast, site A0 located upstream of A1 is efficiently processed upon UTP24 dysfunction. Finally, hUTP24 inactivation leads to aberrant processing of 18S rRNA 2 nucleotides downstream of the normal A1 cleavage site.

  11. hUTP24 is essential for processing of the human rRNA precursor at site A1, but not at site A0

    PubMed Central

    Tomecki, Rafal; Labno, Anna; Drazkowska, Karolina; Cysewski, Dominik; Dziembowski, Andrzej

    2015-01-01

    Production of ribosomes relies on more than 200 accessory factors to ensure the proper sequence of steps and faultless assembly of ribonucleoprotein machinery. Among trans-acting factors are numerous enzymes, including ribonucleases responsible for processing the large rRNA precursor synthesized by RNA polymerase I that encompasses sequences corresponding to mature 18S, 5.8S, and 25/28S rRNA. In humans, the identity of most enzymes responsible for individual processing steps, including endoribonucleases that cleave pre-rRNA at specific sites within regions flanking and separating mature rRNA, remains largely unknown. Here, we investigated the role of hUTP24 in rRNA maturation in human cells. hUTP24 is a human homolog of the Saccharomyces cerevisiae putative PIN domain-containing endoribonuclease Utp24 (yUtp24), which was suggested to participate in the U3 snoRNA-dependent processing of yeast pre-rRNA at sites A0, A1, and A2. We demonstrate that hUTP24 interacts to some extent with proteins homologous to the components of the yeast small subunit (SSU) processome. Moreover, mutation in the putative catalytic site of hUTP24 results in slowed growth of cells and reduced metabolic activity. These effects are associated with a defect in biogenesis of the 40S ribosomal subunit, which results from decreased amounts of 18S rRNA as a consequence of inaccurate pre-rRNA processing at the 5′-end of the 18S rRNA segment (site A1). Interestingly, and in contrast to yeast, site A0 located upstream of A1 is efficiently processed upon UTP24 dysfunction. Finally, hUTP24 inactivation leads to aberrant processing of 18S rRNA 2 nucleotides downstream of the normal A1 cleavage site. PMID:26237581

  12. In vitro myogenic and adipogenic differentiation model of genetically engineered bovine embryonic fibroblast cell lines.

    PubMed

    Yin, Jinlong; Jin, Xun; Beck, Samuel; Kang, Dong Ho; Hong, Zhongshan; Li, Zhehu; Jin, Yongcheng; Zhang, Qiankun; Choi, Yun-Jaie; Kim, Sung-Chan; Kim, Hyunggee

    2010-02-01

    Our current understanding of muscle and adipose tissue development has been largely restricted to the study of murine myogenic and adipogenic cell lines, since attempts to establish these cell lines from other species have met with only limited success. Here we report that a spontaneously immortalized bovine embryonic fibroblast cell line (BEFS) undergoes differentiation into adipogenic or myogenic lineages when ectopically transduced with PPARgamma2 (an adipogenic lineage determinant) or MyoD (a myogenic lineage determinant) and grown in adipogenic and myogenic differentiation culture media (ADCM and MDCM, respectively). We also found that PPARgamma2-overexpressing BEFS cells (BEFS-PPARgamma2) grown in ADCM with or without the PPARgamma2 ligand, troglitazone, preferentially differentiate into adipogenic cells in the presence of ectopic MyoD expression. Ectopic expression of PPARgamma2 in the inducible MyoD-overepxressing BEFS cells (BEFS-TetOn-MyoD) completely suppresses myogenic differentiation and leads to a significant increase in adipogenic differentiation, suggesting that the adipogenic differentiation program might be dominant. Therefore, BEFS, BEFS-PPARgamma2, and BEFS-TetOn-MyoD would be a valuable biological model for understanding a fundamental principle underlying myogenic and adipogenic development, and for isolating various genetic and chemical factors that enable muscle and adipocyte differentiation.

  13. A myogenic factor from sea urchin embryos capable of programming muscle differentiation in mammalian cells.

    PubMed Central

    Venuti, J M; Goldberg, L; Chakraborty, T; Olson, E N; Klein, W H

    1991-01-01

    Using the basic helix-loop-helix domain of the myogenic factor myogenin as a probe, we identified a clone from a sea urchin cDNA library with considerable sequence similarity to the vertebrate myogenic factors. This cDNA, sea urchin myogenic factor 1 (SUM-1), transactivated a muscle creatine kinase-chloramphenicol acetyltransferase reporter gene in 10T1/2 fibroblasts to a level comparable to that of the vertebrate myogenic factors. In addition, bacterially expressed beta-galactosidase-SUM-1 fusion protein interacted directly with the kappa E-2 site in the muscle creatine kinase enhancer core as assayed by electrophoretic mobility shift assays. Stably transfected SUM-1 activated the muscle differentiation program and converted 10T1/2 cells from fibroblasts to myotubes. In sea urchin embryos, SUM-1 RNA was not detected before gastrulation. It accumulated to its highest levels during the prism stage when myoblasts were first detected by myosin immunostaining and then diminished as myocytes differentiated. SUM-1 protein was localized in secondary mesenchyme cells when they could first be identified as muscle cells by myosin immunostaining. These results implicate SUM-1 as a regulatory factor involved in the early decision of a pluripotent secondary mesenchyme cell to convert to a myogenic fate. SUM-1 is an example of an invertebrate myogenic factor that is capable of functioning in mammalian cells. Images PMID:2068103

  14. Structural Characterization of the E2 Domain of APL-1, a Caenorhabditis elegans Homolog of Human Amyloid Precursor Protein, and Its Heparin Binding Site*

    PubMed Central

    Hoopes, James T.; Liu, Xuying; Xu, Xiaomeng; Demeler, Borries; Folta-Stogniew, Ewa; Li, Chris; Ha, Ya

    2010-01-01

    The amyloid β-peptide deposit found in the brain tissue of patients with Alzheimer disease is derived from a large heparin-binding protein precursor APP. The biological function of APP and its homologs is not precisely known. Here we report the x-ray structure of the E2 domain of APL-1, an APP homolog in Caenorhabditis elegans, and compare it to the human APP structure. We also describe the structure of APL-1 E2 in complex with sucrose octasulfate, a highly negatively charged disaccharide, which reveals an unexpected binding pocket between the two halves of E2. Based on the crystal structure, we are able to map, using site-directed mutagenesis, a surface groove on E2 to which heparin may bind. Our biochemical data also indicate that the affinity of E2 for heparin is influenced by pH: at pH 5, the binding appears to be much stronger than that at neutral pH. This property is likely caused by histidine residues in the vicinity of the mapped heparin binding site and could be important for the proposed adhesive function of APL-1. PMID:19906646

  15. Effects of Intermittent Administration of Parathyroid Hormone (1-34) on Bone Differentiation in Stromal Precursor Antigen-1 Positive Human Periodontal Ligament Stem Cells

    PubMed Central

    Wang, Xiaoxiao; Wang, Yanlan; Dai, Xubin; Chen, Tianyu; Yang, Fanqiao; Dai, Shuangye; Ou, Qianmin; Wang, Yan; Lin, Xuefeng

    2016-01-01

    Periodontitis is the most common cause of tooth loss and bone destruction in adults worldwide. Human periodontal ligament stem cells (hPDLSCs) may represent promising new therapeutic biomaterials for tissue engineering applications. Stromal precursor antigen-1 (STRO-1) has been shown to have roles in adherence, proliferation, and multipotency. Parathyroid hormone (PTH) has been shown to enhance proliferation in osteoblasts. Therefore, in this study, we aimed to compare the functions of STRO-1(+) and STRO-1(−) hPDLSCs and to investigate the effects of PTH on the osteogenic capacity of STRO-1(+) hPDLSCs in order to evaluate their potential applications in the treatment of periodontitis. Our data showed that STRO-1(+) hPDLSCs expressed higher levels of the PTH-1 receptor (PTH1R) than STRO-1(−) hPDLSCs. In addition, intermittent PTH treatment enhanced the expression of PTH1R and osteogenesis-related genes in STRO-1(+) hPDLSCs. PTH-treated cells also exhibited increased alkaline phosphatase activity and mineralization ability. Therefore, STRO-1(+) hPDLSCs represented a more promising cell resource for biomaterials and tissue engineering applications. Intermittent PTH treatment improved the capacity for STRO-1(+) hPDLSCs to repair damaged tissue and ameliorate the symptoms of periodontitis. PMID:27069479

  16. Structural Characterization of the E2 Domain of APL-1, a C. Elegans Homolog of Human Amyloid Precursor Protein, and its Heparin Binding Site

    SciTech Connect

    Hoopes, J.; Liu, X; Xu, X; Demeler, B; Folta-Stogniew, E; Li, C; Ha, Y

    2010-01-01

    The amyloid {beta}-peptide deposit found in the brain tissue of patients with Alzheimer disease is derived from a large heparin-binding protein precursor APP. The biological function of APP and its homologs is not precisely known. Here we report the x-ray structure of the E2 domain of APL-1, an APP homolog in Caenorhabditis elegans, and compare it to the human APP structure. We also describe the structure of APL-1 E2 in complex with sucrose octasulfate, a highly negatively charged disaccharide, which reveals an unexpected binding pocket between the two halves of E2. Based on the crystal structure, we are able to map, using site-directed mutagenesis, a surface groove on E2 to which heparin may bind. Our biochemical data also indicate that the affinity of E2 for heparin is influenced by pH: at pH 5, the binding appears to be much stronger than that at neutral pH. This property is likely caused by histidine residues in the vicinity of the mapped heparin binding site and could be important for the proposed adhesive function of APL-1.

  17. Human post-thymic precursor cells in health and disease. IX. Immunoregulatory T cell circuits in peripheral blood of patients with rheumatoid arthritis.

    PubMed Central

    Palacios, R; Ruíz-Arguelles, A; Alarcón-Segovia, D

    1981-01-01

    We studied T cell subpopulations and their immunoregulatory circuits in the peripheral blood of 16 patients with rheumatoid arthritis (RA) who were receiving no medications that might interfere with the results. We found normal T cells with receptors for the Fc portion of IgG or IgM as well as autologous rosette-forming T cells (Tar cells), a subpopulation of T cells we have found to have the properties of human post-thymic precursors. We also found that peripheral blood cells of RA patients have normal concanavalin A-induced or spontaneously-expanded suppressor cell functions. Also normal were the characteristic functions of the Tar cells; feedback inhibition and the generation of suppression. The normal state of these T cell subpopulations and immunoregulatory circuits in the peripheral blood of patients with RA contrasts with their various abnormalities in other connective tissue diseases. This may either mean that the immunoregulatory aberration in RA involves primarily B cells, or, if it involves T cells, that it does so primarily in the synovial membrane. PMID:6974624

  18. Ablation of Prion Protein in Wild Type Human Amyloid Precursor Protein (APP) Transgenic Mice Does Not Alter The Proteolysis of APP, Levels of Amyloid-β or Pathologic Phenotype

    PubMed Central

    Baybutt, Herbert; Diack, Abigail B.; Kellett, Katherine A. B.; Piccardo, Pedro; Manson, Jean C.

    2016-01-01

    The cellular prion protein (PrPC) has been proposed to play an important role in the pathogenesis of Alzheimer’s disease. In cellular models PrPC inhibited the action of the β-secretase BACE1 on wild type amyloid precursor protein resulting in a reduction in amyloid-β (Aβ) peptides. Here we have assessed the effect of genetic ablation of PrPC in transgenic mice expressing human wild type amyloid precursor protein (line I5). Deletion of PrPC had no effect on the α- and β-secretase proteolysis of the amyloid precursor protein (APP) nor on the amount of Aβ38, Aβ40 or Aβ42 in the brains of the mice. In addition, ablation of PrPC did not alter Aβ deposition or histopathology phenotype in this transgenic model. Thus using this transgenic model we could not provide evidence to support the hypothesis that PrPC regulates Aβ production. PMID:27447728

  19. Photoprotective effect of the N-terminal 5-mer peptide analog P165 of amyloid precursor protein in human dermal fibroblasts.

    PubMed

    Wang, Ying; Chen, Hui; Lin, Yuying; Wang, Wen; Wang, Rong; Lian, Shi; Zhu, Wei

    2014-01-01

    We showed in our previous study that the N-terminal 17-mer peptide of amyloid precursor protein (APP17-mer peptide), an active peptide segment with trophic and antioxidative effects, protects skin fibroblasts against ultraviolet (UV) damage and downregulates matrix metalloproteinase 1 (MMP-1) expression. The aim of the current study was to explore the protective effects of P165, the N-terminal 5-mer peptide analog of amyloid precursor protein that is resistant to enzymolysis, on UVA-induced damage in human dermal fibroblasts (HDFs). HDFs were cultured in Dulbecco's modified Eagle's medium without and with P165 (concentrations were 1, 10, and 100 µmol/L). Then, 15 J/cm(2) UVA irradiation was used to obtain the UV-irradiated model. Cell proliferation was analyzed using MTT kit. The collagen type I and MMP-1 contents in cell lysate were determined by enzyme-linked immunosorbent assay (ELISA). Fluorometric assays were performed to detect the formation of intracellular reactive oxygen species (ROS) in the cells. P165 significantly protected the HDFs against UVA-induced cytotoxicity. Compared with the UVA-irradiated control, 1, 10, and 100 µmol/L P165 elevated cell proliferation by 14.98% (P < 0.05), 17.52% (P < 0.01) and 28.34% (P < 0.001), respectively. Simultaneously, 10 and 100 µmol/L P165 increased collagen type I content (both P < 0.05). Moreover, P165 treatment (all concentrations) also markedly suppressed the UVA-induced MMP-1 expression (all P < 0.001). P165 at 1, 10, and 100 µmol/L also reduced UVA-induced ROS generation by 11.27%, 13.69% (both P < 0.05), and 25.48% (P < 0.001), respectively. P165 could protect the HDFs against UVA-induced photodamage, including cytotoxicity, and MMP-1 generation. Furthermore, it also increased the collagen type I content in the cells. The inhibitory effect on intracellular ROS generation might be involved in these photoprotective effects. Thus, P165 may be a useful candidate in the prevention and treatment of skin

  20. Regeneration and myogenic cell proliferation correlate with taurine levels in dystrophin- and MyoD-deficient muscles.

    PubMed

    McIntosh, L M; Garrett, K L; Megeney, L; Rudnicki, M A; Anderson, J E

    1998-10-01

    This study coupled proton magnetic resonance spectroscopy (1H-NMR) and in situ hybridization plus autoradiography in a novel examination of different phenotypes of adult myogenesis that arise from genetic disruptions in mice. Study of muscle extracts from normal and dystrophin-deficient mdx limb and diaphragm muscles confirmed our previous findings linking taurine and muscle regeneration at the peak of damage and repair. 1H-NMR distinguished biochemical differences in regenerating muscles that were consistent with the extent of repair in three strains: mdx dystrophic mice; MyoD(-/-) mice that lack expression of the early myogenic regulatory gene MyoD; and a double-mutant mdx:MyoD(-/-) strain lacking expression of both MyoD and dystrophin. We tested the hypothesis that differences in spectra according to genotype and the regeneration phenotype are related specifically to proliferation by committed myogenic precursor cells. 1H-NMR distinguished the three mutant strains: Taurine was highest in mdx muscles, with the phenotype of most effective regeneration; lowest in MyoD(-/-) muscles, with the least effective formation of new muscle in repair, as reported previously; and intermediate in double-mutant muscles, now reported to show an intermediate repair phenotype. The early and late muscle precursors (mpcs) expressing myf5 and myogenin were examined for proliferation. Eighteen percent of mdx myf5-positive mpcs were proliferative, whereas myf5-positive mpcs did not proliferate in regenerating muscles that lacked MyoD expression. By contrast, whereas 30% of myogenin-positive mpcs were proliferative in mdx muscles, almost none were proliferative in MyoD(-/-) muscles, and 12% were proliferative in double-mutant muscles. Therefore, the extent of accumulated structural regeneration, taurine levels, and proliferation of late mpc (expressing myogenin) were congruent across genotypes. Proliferation by early mpc (expressing myf5) was inhibited by the lack of MyoD expression

  1. PSA-NCAM(+) neural precursor cells from human embryonic stem cells promote neural tissue integrity and behavioral performance in a rat stroke model.

    PubMed

    Kim, Han-Soo; Choi, Seong-Mi; Yang, Wonsuk; Kim, Dae-Sung; Lee, Dongjin R; Cho, Sung-Rae; Kim, Dong-Wook

    2014-12-01

    Recently, cell-based therapy has been highlighted as an alternative to treating ischemic brain damage in stroke patients. The present study addresses the therapeutic potential of polysialic acid-neural cell adhesion molecule (PSA-NCAM)-positive neural precursor cells (NPC(PSA-NCAM+)) derived from human embryonic stem cells (hESCs) in a rat stroke model with permanent middle cerebral artery occlusion. Data showed that rats transplanted with NPC(PSA-NCAM+) are superior to those treated with phosphate buffered saline (PBS) or mesenchymal stem cells (MSCs) in behavioral performance throughout time points. In order to investigate its underlying events, immunohistochemical analysis was performed on rat ischemic brains treated with PBS, MSCs, and NPC(PSA-NCAM+). Unlike MSCs, NPC(PSA-NCAM+) demonstrated a potent immunoreactivity against human specific nuclei, doublecortin, and Tuj1 at day 26 post-transplantation, implying their survival, differentiation, and integration in the host brain. Significantly, NPC(PSA-NCAM+) evidently lowered the positivity of microglial ED-1 and astrocytic GFAP, suggesting a suppression of adverse glial activation in the host brain. In addition, NPC(PSA-NCAM+) elevated α-SMA(+) immunoreactivity and the expression of angiopoietin-1 indicating angiogenic stimulation in the host brain. Taken together, the current data demonstrate that transplanted NPC(PSA-NCAM+) preserve brain tissue with reduced infarct size and improve behavioral performance through actions encompassing anti-reactive glial activation and pro-angiogenic activity in a rat stroke model. In conclusion, the present findings support the potentiality of NPC(PSA-NCAM+) as the promising source in the development of cell-based therapy for neurological diseases including ischemic stroke.

  2. Calcium-Sensing Receptor Antagonist NPS 2143 Restores Amyloid Precursor Protein Physiological Non-Amyloidogenic Processing in Aβ-Exposed Adult Human Astrocytes.

    PubMed

    Chiarini, Anna; Armato, Ubaldo; Liu, Daisong; Dal Prà, Ilaria

    2017-04-28

    Physiological non-amyloidogenic processing (NAP) of amyloid precursor holoprotein (hAPP) by α-secretases (e.g., ADAM10) extracellularly sheds neurotrophic/neuroprotective soluble (s)APPα and precludes amyloid-β peptides (Aβs) production via β-secretase amyloidogenic processing (AP). Evidence exists that Aβs interact with calcium-sensing receptors (CaSRs) in human astrocytes and neurons, driving the overrelease of toxic Aβ42/Aβ42-os (oligomers), which is completely blocked by CaSR antagonist (calcilytic) NPS 2143. Here, we investigated the mechanisms underlying NPS 2143 beneficial effects in human astrocytes. Moreover, because Alzheimer's disease (AD) involves neuroinflammation, we examined whether NPS 2143 remained beneficial when both fibrillary (f)Aβ25-35 and a microglial cytokine mixture (CMT) were present. Thus, hAPP NAP prevailed over AP in untreated astrocytes, which extracellularly shed all synthesized sAPPα while secreting basal Aβ40/42 amounts. Conversely, fAβ25-35 alone dramatically reduced sAPPα extracellular shedding while driving Aβ42/Aβ42-os oversecretion that CMT accelerated but not increased, despite a concurring hAPP overexpression. NPS 2143 promoted hAPP and ADAM10 translocation to the plasma membrane, thereby restoring sAPPα extracellular shedding and fully suppressing any Aβ42/Aβ42-os oversecretion, but left hAPP expression unaffected. Therefore, as anti-AD therapeutics calcilytics support neuronal viability by safeguarding astrocytes neurotrophic/neuroprotective sAPPα shedding, suppressing neurons and astrocytes Aβ42/Aβ42-os build-up/secretion, and remaining effective even under AD-typical neuroinflammatory conditions.

  3. Effects of huperzine A on amyloid precursor protein processing and beta-amyloid generation in human embryonic kidney 293 APP Swedish mutant cells.

    PubMed

    Peng, Ying; Jiang, Liying; Lee, David Y W; Schachter, Steven C; Ma, Zhongze; Lemere, Cynthia A

    2006-09-01

    The amyloid precursor protein (APP) is cleaved enzymatically by nonamyloidogenic and amyloidogenic pathways. alpha-Secretase (alpha-secretase), cleaves APP within the beta-amyloid (Abeta) sequence, resulting in the release of a secreted fragment of APP (alphaAPPs) and precluding Abeta generation. In this study, we investigated the effects of an acetylcholinesterase inhibitor, huperzine A (Hup A), on APP processing and Abeta generation in human embryonic kidney 293 cells transfected with human APP bearing the Swedish mutation (HEK293 APPsw). Hup A dose dependently (0-10 microM) increased alphaAPPs release and membrane-coupled APP CTF-C83, suggesting increased APP metabolism toward the nonamyloidogenic alpha-secretase pathway. The metalloprotease inhibitor TAPI-2 inhibited the Hup A-induced increase in alphaAPPs release, further suggesting a modulatory effect of Hup A on alpha-secretase activity. The synthesis of full-length APP and cell viability were unchanged after Hup A incubation, whereas the level of Abeta(Total) was significantly decreased, suggesting an inhibitory effect of Hup A on Abeta production. Hup A-induced alphaAPPs release was significantly reduced by the protein kinase C (PKC) inhibitors GF109203X and Calphostin C. These data, together with the finding that the PKCalpha level was enhanced prior to the increase of alphaAPPs secretion, indicate that PKC may be involved in Hup A-induced alphaAPPs secretion by HEK293 APPsw cells. Our data suggest alternative pharmacological mechanisms of Hup A relevant to the treatment of Alzheimer's disease.

  4. Seventeen copies of the human 37 kDa laminin receptor precursor/p40 ribosome-associated protein gene are processed pseudogenes arisen from retropositional events.

    PubMed

    Jackers, P; Clausse, N; Fernandez, M; Berti, A; Princen, F; Wewer, U; Sobel, M E; Castronovo, V

    1996-02-07

    A cDNA coding for a 37 kDa polypeptide has been identified in several species as both the potential precursor of the 67 kDa laminin receptor (37LRP) and a putative ribosome-associated protein (p40). Interestingly, increased expression of this polypeptide (37LRP/p40) is consistently observed in invasive and metastatic cancer cells and is associated with poor prognosis. Southern-blot analysis of human genomic DNA predicted multiple copies of the 37LRP/p40 gene. In this study, we report that the number of copies of this sequence in the human genome is 26 +/- 2. We have sequenced and analyzed 19 genomic clones corresponding to the 37LRP/p40 gene and found that they were all processed pseudogenes. They all lack intronic sequences and show multiple genetic alterations leading in some cases to the appearance of stop codons. Moreover, they all bear characteristic features of retroposons as the presence of a poly(A)-tail at their 3' end and short direct repeated flanking DNA sequences. None of the pseudogenes analyzed present cis-elements in their 5' flanking region such as TATA or GC boxes. Our date reveal that over 50% of the 37LRP/p40 gene copies are pseudogenes most probably generated by retropositional events. The finding of multiple pseudogenes for the 37LRP/p40 suggests that the accumulation of several copies of this gene might have given a survival advantage to the cell in the course of evolution.

  5. OTX2 exhibits cell-context-dependent effects on cellular and molecular properties of human embryonic neural precursors and medulloblastoma cells.

    PubMed

    Kaur, Ravinder; Aiken, Christopher; Morrison, Ludivine Coudière; Rao, Radhika; Del Bigio, Marc R; Rampalli, Shravanti; Werbowetski-Ogilvie, Tamra

    2015-10-01

    Medulloblastoma (MB) is the most common malignant primary pediatric brain tumor and is currently divided into four subtypes based on different genomic alterations, gene expression profiles and response to treatment: WNT, Sonic Hedgehog (SHH), Group 3 and Group 4. This extensive heterogeneity has made it difficult to assess the functional relevance of genes to malignant progression. For example, expression of the transcription factor Orthodenticle homeobox2 (OTX2) is frequently dysregulated in multiple MB variants; however, its role may be subtype specific. We recently demonstrated that neural precursors derived from transformed human embryonic stem cells (trans-hENs), but not their normal counterparts (hENs), resemble Groups 3 and 4 MB in vitro and in vivo. Here, we tested the utility of this model system as a means of dissecting the role of OTX2 in MB using gain- and loss-of-function studies in hENs and trans-hENs, respectively. Parallel experiments with MB cells revealed that OTX2 exerts inhibitory effects on hEN and SHH MB cells by regulating growth, self-renewal and migration in vitro and tumor growth in vivo. This was accompanied by decreased expression of pluripotent genes, such as SOX2, and was supported by overexpression of SOX2 in OTX2+ SHH MB and hENs that resulted in significant rescue of self-renewal and cell migration. By contrast, OTX2 is oncogenic and promotes self-renewal of trans-hENs and Groups 3 and 4 MB independent of pluripotent gene expression. Our results demonstrate a novel role for OTX2 in self-renewal and migration of hENs and MB cells and reveal a cell-context-dependent link between OTX2 and pluripotent genes. Our study underscores the value of human embryonic stem cell derivatives as alternatives to cell lines and heterogeneous patient samples for investigating the contribution of key developmental regulators to MB progression.

  6. Bortezomib interferes with adhesion of B cell precursor acute lymphoblastic leukemia cells through SPARC up-regulation in human bone marrow mesenchymal stromal/stem cells.

    PubMed

    Iwasa, Masaki; Miura, Yasuo; Fujishiro, Aya; Fujii, Sumie; Sugino, Noriko; Yoshioka, Satoshi; Yokota, Asumi; Hishita, Terutoshi; Hirai, Hideyo; Andoh, Akira; Ichinohe, Tatsuo; Maekawa, Taira

    2017-01-02

    The poor prognosis of adults with B cell precursor acute lymphoblastic leukemia (BCP-ALL) is attributed to leukemia cells that are protected by the bone marrow (BM) microenvironment. In the present study, we explored the pharmacological targeting of mesenchymal stromal/stem cells in BM (BM-MSCs) to eliminate chemoresistant BCP-ALL cells. Human BCP-ALL cells (NALM-6 cells) that adhered to human BM-MSCs (NALM-6/Ad) were highly resistant to multiple anti-cancer drugs, and exhibited pro-survival characteristics, such as an enhanced Akt/Bcl-2 pathway and increased populations in the G0 and G2/S/M cell cycle stages. Bortezomib, a proteasome inhibitor, interfered with adhesion between BM-MSCs and NALM-6 cells and up-regulated the matricellular protein SPARC (secreted protein acidic and rich in cysteine) in BM-MSCs, thereby reducing the NALM-6/Ad population. Inhibition of SPARC expression in BM-MSCs using a small interfering RNA enhanced adhesion of NALM-6 cells. Conversely, recombinant SPARC protein interfered with adhesion of NALM-6 cells. These results suggest that SPARC disrupts adhesion between BM-MSCs and NALM-6 cells. Co-treatment with bortezomib and doxorubicin prolonged the survival of BCP-ALL xenograft mice, with a significant reduction of leukemia cells in BM. Our findings demonstrate that bortezomib contributes to the elimination of BCP-ALL cells through disruption of their adhesion to BM-MSCs, and offer a novel therapeutic strategy for BCP-ALL through targeting of BM-MSCs.

  7. Isolation and myogenic differentiation of mesenchymal stem cells for urologic tissue engineering.

    PubMed

    Wu, Rongpei; Liu, Guihua; Bharadwaj, Shantaram; Zhang, Yuanyuan

    2013-01-01

    the bladders repopulate and reorganize the tissue rapidly, thus reducing fibrosis and restoring appropriate neural functionality.In this chapter, we describe the methods we use for the isolation of human bone marrow mesenchymal stem cells (BMSC), and demonstrate evidence of their myogenic differentiation capacity for potential use in urologic tissue engineering.

  8. Time course and side-by-side analysis of mesodermal, pre-myogenic, myogenic and differentiated cell markers in the chicken model for skeletal muscle formation

    PubMed Central

    Berti, Federica; Nogueira, Júlia Meireles; Wöhrle, Svenja; Sobreira, Débora Rodrigues; Hawrot, Katarzyna; Dietrich, Susanne

    2015-01-01

    The chicken is a well-established model for amniote (including human) skeletal muscle formation because the developmental anatomy of chicken skeletal muscle matches that of mammals. The accessibility of the chicken in the egg as well as the sequencing of its genome and novel molecular techniques have raised the profile of this model. Over the years, a number of regulatory and marker genes have been identified that are suited to monitor the progress of skeletal myogenesis both in wildtype and in experimental embryos. However, in the various studies, differing markers at different stages of development have been used. Moreover, contradictory results on the hierarchy of regulatory factors are now emerging, and clearly, factors need to be able to cooperate. Thus, a reference paper describing in detail and side-by-side the time course of marker gene expression during avian myogenesis is needed. We comparatively analysed onset and expression patterns of the key markers for the chicken immature paraxial mesoderm, for muscle-competent cells, for cells committed to myogenesis and for cells entering terminal differentiation. We performed this analysis from stages when the first paraxial mesoderm is being laid down to the stage when mesoderm formation comes to a conclusion. Our data show that, although the sequence of marker gene expression is the same at the various stages of development, the timing of the expression onset is quite different. Moreover, marker gene expression in myogenic cells being deployed from the dorsomedial and ventrolateral lips of the dermomyotome is different from those being deployed from the rostrocaudal lips, suggesting different molecular programs. Furthermore, expression of Myosin Heavy Chain genes is overlapping but different along the length of a myotube. Finally, Mef2c is the most likely partner of Mrf proteins, and, in contrast to the mouse and more alike frog and zebrafish fish, chicken Mrf4 is co-expressed with MyoG as cells enter terminal

  9. Synthetic carbon precursor materials

    SciTech Connect

    Frame, B.J.

    1986-03-01

    Synthetic carbon precursor systems offer advantages over natural petroleum and coal-tar pitch precursors in that they can reproducibly provide a material with a known and uniform composition. They also permit controlled modifications of the derived carbon's properties through variations in the precursor's properties and processing conditions. Extensive research efforts at Oak Ridge have been directed toward the production and characterization of synthetic carbon precursors and the correlations that exist between carbon precursor properties and the properties of the ultimate carbon. This report describes how synthetic carbon precursors can be used to tailor and develop reproducible carbon structures for advanced materials applications. The potential and capability for performing carbon material development at Oak Ridge is also described.

  10. Adipogenic and myogenic gene expression in rotator cuff muscle of the sheep after tendon tear.

    PubMed

    Frey, Eric; Regenfelder, Felix; Sussmann, Patrick; Zumstein, Matthias; Gerber, Christian; Born, Walter; Fuchs, Bruno

    2009-04-01

    Chronic rotator cuff tendon tears lead to fatty infiltration and muscle atrophy with impaired physiological functions of the affected muscles. However, the cellular and molecular mechanisms of corresponding pathophysiological processes remain unknown. The purpose of this study was to characterize the expression pattern of adipogenic (PPARgamma, C/EBPbeta) and myogenic (myostatin, myogenin, Myf-5) transcription factors in infraspinatus muscle of sheep after tenotomy, implantation of a tension device, refixation of the tendon, and rehabilitation, reflecting a model of chronic rotator cuff tears. In contrast to human patients, the presented sheep model allows a temporal evaluation of the expression of a given marker in the same individual over time. Semiquantitative RT/PCR analysis of PPARgammaã, myostatin, myogenin, Myf-5, and C/EBPbeta transcript levels was carried out with sheep muscle biopsy-derived total RNA. We found a significantly increased expression of Myf-5 and PPARgamma after tenotomy and a significant change for Myf-5 and C/EBPbeta after continuous traction and refixation. This experimental sheep model allows the molecular analysis of pathomechanisms of muscular changes after rotator cuff tear. The results point to a crucial role of the transcription factors PPARgamma, C/EBPbeta, and Myf-5 in impairment and regeneration of rotator cuff muscles after tendon tears in sheep.

  11. Myogenic factors that regulate expression of muscle-specific microRNAs.

    PubMed

    Rao, Prakash K; Kumar, Roshan M; Farkhondeh, Mina; Baskerville, Scott; Lodish, Harvey F

    2006-06-06

    Since their discovery as key regulators of early animal development, microRNAs now are recognized as widespread regulators of gene expression. Despite their abundance, little is known regarding the regulation of microRNA biogenesis. We show that three highly conserved muscle-specific microRNAs, miR-1, miR-133 and miR-206, are robustly induced during the myoblast-myotube transition, both in primary human myoblasts and in the mouse mesenchymal C2C12 stem cell line. These microRNAs were not induced during osteogenic conversion of C2C12 cells. Moreover, both loci encoding miR-1, miR-1-1, and miR-1-2, and two of the three encoding miR-133, miR-133a-1 and miR-133a-2, are strongly induced during myogenesis. Some of the induced microRNAs are in intergenic regions, whereas two are transcribed in the opposite direction to the nonmuscle-specific gene in which they are embedded. By using CHIP analysis, we demonstrate that the myogenic factors Myogenin and MyoD bind to regions upstream of these microRNAs and, therefore, are likely to regulate their expression. Because miR-1 and miR-206 are predicted to repress similar mRNA targets, our work suggests that induction of these microRNAs is important in regulating the expression of muscle-specific proteins.

  12. Juvenile growth reduces the influence of epithelial sodium channels on myogenic tone in skeletal muscle arterioles.

    PubMed

    Kang, Lori S; Masilamani, Shyama; Boegehold, Matthew A

    2016-12-01

    Previous studies have documented that rapid juvenile growth is accompanied by functional changes in the arteriolar endothelium, but much less is known about functional changes in arteriolar smooth muscle over this period. In this study, we investigate the possible contribution of epithelial sodium channels (ENaC) to the myogenic behaviour of arterioles at two stages of juvenile growth. The effects of the ENaC inhibitor benzamil on different levels of myogenic tone were studied in isolated gracilis muscle arterioles from rats aged 21-28 days ("weanlings") and 42-49 days ("juveniles"). ENaC subunit expression in the arteriolar wall was also determined, and the interaction between ENaC and nitric oxide (NO) in regulating vascular tone was explored by combined use of benzamil and N(G) -monomethyl-l-arginine (l-NMMA). At physiological pressures, both steady-state myogenic tone and the dynamic adjustments in this tone triggered by acute pressure changes were less in juvenile arterioles than in weanling arterioles. α, β and γ ENaC protein was present in arterioles at both ages, but benzamil only had an effect on myogenic tone in weanling arterioles. In these vessels, benzamil increased, rather than decreased, myogenic tone, and this effect was prevented by l-NMMA or endothelial removal. These findings suggest that although ENaC is present in gracilis muscle arterioles of both weanling and juvenile rats, it is not obligatory for the genesis of myogenic activity in these vessels at either age. However, ENaC activity can significantly modulate the level of myogenic tone through stimulation of endothelial NO release at an early stage of growth. © 2016 John Wiley & Sons Australia, Ltd.

  13. Histone deacetylase inhibitor trichostatin A enhances myogenesis by coordinating muscle regulatory factors and myogenic repressors

    SciTech Connect

    Hagiwara, Hiroki; Saito, Fumiaki; Masaki, Toshihiro; Ikeda, Miki; Nakamura-Ohkuma, Ayami; Shimizu, Teruo; Matsumura, Kiichiro

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We investigated the effect of TSA, one of most potent HDACIs, on myogenesis using the C2C12 skeletal muscle cell line. Black-Right-Pointing-Pointer TSA enhances the expression of myosin heavy chain without affecting DAPC expression. Black-Right-Pointing-Pointer TSA enhances the expression of the early MRFs, Myf5 and MEF2, and suppresses the late MRF, myogenin, after 24 h treatment. Black-Right-Pointing-Pointer TSA enhances the expression of the myogenic repressors, Ids, which inhibit myogenic differentiation. Black-Right-Pointing-Pointer TSA promotes myogenesis by coordinating the expression of MRFs and myogenic repressors. -- Abstract: Histone deacetylase inhibitors (HDACIs) are known to promote skeletal muscle formation. However, their mechanisms that include effects on the expression of major muscle components such as the dystrophin-associated proteins complex (DAPC) or myogenic regulatory factors (MRFs) remain unknown. In this study, we investigated the effects of HDACIs on skeletal muscle formation using the C2C12 cell culture system. C2C12 myoblasts were exposed to trichostatin A (TSA), one of the most potent HDACIs, and differentiation was subsequently induced. We found that TSA enhances the expression of myosin heavy chain without affecting DAPC expression. In addition, TSA increases the expression of the early MRFs, Myf5 and MEF2, whereas it suppresses the expression of the late MRF, myogenin. Interestingly, TSA also enhances the expression of Id1, Id2, and Id3 (Ids). Ids are myogenic repressors that inhibit myogenic differentiation. These findings suggest that TSA promotes gene expression in proliferation and suppresses it in the differentiation stage of muscle formation. Taken together, our data demonstrate that TSA enhances myogenesis by coordinating the expression of MRFs and myogenic repressors.

  14. Mesenchymal Stromal Cells for Sphincter Regeneration: Role of Laminin Isoforms upon Myogenic Differentiation.

    PubMed

    Seeger, Tanja; Hart, Melanie; Patarroyo, Manuel; Rolauffs, Bernd; Aicher, Wilhelm K; Klein, Gerd

    2015-01-01

    Multipotent mesenchymal stromal cells (MSCs) are well known for their tri-lineage potential and ability to differentiate in vitro into osteogenic, chondrogenic or adipogenic lineages. By selecting appropriate conditions MSCs can also be differentiated in vitro into the myogenic lineage and are therefore a promising option for cell-based regeneration of muscle tissue such as an aged or damaged sphincter muscle. For the differentiation into the myogenic lineage there is still a need to evaluate the effects of extracellular matrix proteins such as laminins (LM) which are crucial for different stem cell types and for normal muscle function. The laminin family consists of 16 functionally different isoforms with LM-211 being the most abundant isoform of adult muscle tissues. In the sphincter tissue a strong expression of the isoforms LM-211/221, LM-411/421 and LM-511/521 can be detected in the different cell layers. Bone marrow-derived MSCs in culture, however, mainly express the isoforms LM-411 and LM-511, but not LM-211. Even after myogenic differentiation, LM-211 can har