Feedforward object-vision models only tolerate small image variations compared to human
Ghodrati, Masoud; Farzmahdi, Amirhossein; Rajaei, Karim; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi
2014-01-01
Invariant object recognition is a remarkable ability of primates' visual system that its underlying mechanism has constantly been under intense investigations. Computational modeling is a valuable tool toward understanding the processes involved in invariant object recognition. Although recent computational models have shown outstanding performances on challenging image databases, they fail to perform well in image categorization under more complex image variations. Studies have shown that making sparse representation of objects by extracting more informative visual features through a feedforward sweep can lead to higher recognition performances. Here, however, we show that when the complexity of image variations is high, even this approach results in poor performance compared to humans. To assess the performance of models and humans in invariant object recognition tasks, we built a parametrically controlled image database consisting of several object categories varied in different dimensions and levels, rendered from 3D planes. Comparing the performance of several object recognition models with human observers shows that only in low-level image variations the models perform similar to humans in categorization tasks. Furthermore, the results of our behavioral experiments demonstrate that, even under difficult experimental conditions (i.e., briefly presented masked stimuli with complex image variations), human observers performed outstandingly well, suggesting that the models are still far from resembling humans in invariant object recognition. Taken together, we suggest that learning sparse informative visual features, although desirable, is not a complete solution for future progresses in object-vision modeling. We show that this approach is not of significant help in solving the computational crux of object recognition (i.e., invariant object recognition) when the identity-preserving image variations become more complex. PMID:25100986
Raber, Jacob
2015-05-15
Object recognition is a sensitive cognitive test to detect effects of genetic and environmental factors on cognition in rodents. There are various versions of object recognition that have been used since the original test was reported by Ennaceur and Delacour in 1988. There are nonhuman primate and human primate versions of object recognition as well, allowing cross-species comparisons. As no language is required for test performance, object recognition is a very valuable test for human research studies in distinct parts of the world, including areas where there might be less years of formal education. The main focus of this review is to illustrate how object recognition can be used to assess cognition in humans under normal physiological and neurological conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.
2015-01-01
To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887
Comparison of Object Recognition Behavior in Human and Monkey
Rajalingham, Rishi; Schmidt, Kailyn
2015-01-01
Although the rhesus monkey is used widely as an animal model of human visual processing, it is not known whether invariant visual object recognition behavior is quantitatively comparable across monkeys and humans. To address this question, we systematically compared the core object recognition behavior of two monkeys with that of human subjects. To test true object recognition behavior (rather than image matching), we generated several thousand naturalistic synthetic images of 24 basic-level objects with high variation in viewing parameters and image background. Monkeys were trained to perform binary object recognition tasks on a match-to-sample paradigm. Data from 605 human subjects performing the same tasks on Mechanical Turk were aggregated to characterize “pooled human” object recognition behavior, as well as 33 separate Mechanical Turk subjects to characterize individual human subject behavior. Our results show that monkeys learn each new object in a few days, after which they not only match mean human performance but show a pattern of object confusion that is highly correlated with pooled human confusion patterns and is statistically indistinguishable from individual human subjects. Importantly, this shared human and monkey pattern of 3D object confusion is not shared with low-level visual representations (pixels, V1+; models of the retina and primary visual cortex) but is shared with a state-of-the-art computer vision feature representation. Together, these results are consistent with the hypothesis that rhesus monkeys and humans share a common neural shape representation that directly supports object perception. SIGNIFICANCE STATEMENT To date, several mammalian species have shown promise as animal models for studying the neural mechanisms underlying high-level visual processing in humans. In light of this diversity, making tight comparisons between nonhuman and human primates is particularly critical in determining the best use of nonhuman primates to further the goal of the field of translating knowledge gained from animal models to humans. To the best of our knowledge, this study is the first systematic attempt at comparing a high-level visual behavior of humans and macaque monkeys. PMID:26338324
Implications of Animal Object Memory Research for Human Amnesia
ERIC Educational Resources Information Center
Winters, Boyer D.; Saksida, Lisa M.; Bussey, Timothy J.
2010-01-01
Damage to structures in the human medial temporal lobe causes severe memory impairment. Animal object recognition tests gained prominence from attempts to model "global" human medial temporal lobe amnesia, such as that observed in patient HM. These tasks, such as delayed nonmatching-to-sample and spontaneous object recognition, for assessing…
Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J
2015-09-30
To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. Copyright © 2015 the authors 0270-6474/15/3513402-17$15.00/0.
Combining heterogenous features for 3D hand-held object recognition
NASA Astrophysics Data System (ADS)
Lv, Xiong; Wang, Shuang; Li, Xiangyang; Jiang, Shuqiang
2014-10-01
Object recognition has wide applications in the area of human-machine interaction and multimedia retrieval. However, due to the problem of visual polysemous and concept polymorphism, it is still a great challenge to obtain reliable recognition result for the 2D images. Recently, with the emergence and easy availability of RGB-D equipment such as Kinect, this challenge could be relieved because the depth channel could bring more information. A very special and important case of object recognition is hand-held object recognition, as hand is a straight and natural way for both human-human interaction and human-machine interaction. In this paper, we study the problem of 3D object recognition by combining heterogenous features with different modalities and extraction techniques. For hand-craft feature, although it reserves the low-level information such as shape and color, it has shown weakness in representing hiconvolutionalgh-level semantic information compared with the automatic learned feature, especially deep feature. Deep feature has shown its great advantages in large scale dataset recognition but is not always robust to rotation or scale variance compared with hand-craft feature. In this paper, we propose a method to combine hand-craft point cloud features and deep learned features in RGB and depth channle. First, hand-held object segmentation is implemented by using depth cues and human skeleton information. Second, we combine the extracted hetegerogenous 3D features in different stages using linear concatenation and multiple kernel learning (MKL). Then a training model is used to recognize 3D handheld objects. Experimental results validate the effectiveness and gerneralization ability of the proposed method.
Gandarias, Juan M; Gómez-de-Gabriel, Jesús M; García-Cerezo, Alfonso J
2018-02-26
The use of tactile perception can help first response robotic teams in disaster scenarios, where visibility conditions are often reduced due to the presence of dust, mud, or smoke, distinguishing human limbs from other objects with similar shapes. Here, the integration of the tactile sensor in adaptive grippers is evaluated, measuring the performance of an object recognition task based on deep convolutional neural networks (DCNNs) using a flexible sensor mounted in adaptive grippers. A total of 15 classes with 50 tactile images each were trained, including human body parts and common environment objects, in semi-rigid and flexible adaptive grippers based on the fin ray effect. The classifier was compared against the rigid configuration and a support vector machine classifier (SVM). Finally, a two-level output network has been proposed to provide both object-type recognition and human/non-human classification. Sensors in adaptive grippers have a higher number of non-null tactels (up to 37% more), with a lower mean of pressure values (up to 72% less) than when using a rigid sensor, with a softer grip, which is needed in physical human-robot interaction (pHRI). A semi-rigid implementation with 95.13% object recognition rate was chosen, even though the human/non-human classification had better results (98.78%) with a rigid sensor.
Interactive object recognition assistance: an approach to recognition starting from target objects
NASA Astrophysics Data System (ADS)
Geisler, Juergen; Littfass, Michael
1999-07-01
Recognition of target objects in remotely sensed imagery required detailed knowledge about the target object domain as well as about mapping properties of the sensing system. The art of object recognition is to combine both worlds appropriately and to provide models of target appearance with respect to sensor characteristics. Common approaches to support interactive object recognition are either driven from the sensor point of view and address the problem of displaying images in a manner adequate to the sensing system. Or they focus on target objects and provide exhaustive encyclopedic information about this domain. Our paper discusses an approach to assist interactive object recognition based on knowledge about target objects and taking into account the significance of object features with respect to characteristics of the sensed imagery, e.g. spatial and spectral resolution. An `interactive recognition assistant' takes the image analyst through the interpretation process by indicating step-by-step the respectively most significant features of objects in an actual set of candidates. The significance of object features is expressed by pregenerated trees of significance, and by the dynamic computation of decision relevance for every feature at each step of the recognition process. In the context of this approach we discuss the question of modeling and storing the multisensorial/multispectral appearances of target objects and object classes as well as the problem of an adequate dynamic human-machine-interface that takes into account various mental models of human image interpretation.
Nguyen, Dat Tien; Park, Kang Ryoung
2016-07-21
With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images.
Nguyen, Dat Tien; Park, Kang Ryoung
2016-01-01
With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images. PMID:27455264
Contini, Erika W; Wardle, Susan G; Carlson, Thomas A
2017-10-01
Visual object recognition is a complex, dynamic process. Multivariate pattern analysis methods, such as decoding, have begun to reveal how the brain processes complex visual information. Recently, temporal decoding methods for EEG and MEG have offered the potential to evaluate the temporal dynamics of object recognition. Here we review the contribution of M/EEG time-series decoding methods to understanding visual object recognition in the human brain. Consistent with the current understanding of the visual processing hierarchy, low-level visual features dominate decodable object representations early in the time-course, with more abstract representations related to object category emerging later. A key finding is that the time-course of object processing is highly dynamic and rapidly evolving, with limited temporal generalisation of decodable information. Several studies have examined the emergence of object category structure, and we consider to what degree category decoding can be explained by sensitivity to low-level visual features. Finally, we evaluate recent work attempting to link human behaviour to the neural time-course of object processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Coordinate Transformations in Object Recognition
ERIC Educational Resources Information Center
Graf, Markus
2006-01-01
A basic problem of visual perception is how human beings recognize objects after spatial transformations. Three central classes of findings have to be accounted for: (a) Recognition performance varies systematically with orientation, size, and position; (b) recognition latencies are sequentially additive, suggesting analogue transformation…
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude
2016-01-01
The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude
2016-06-10
The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.
NASA Astrophysics Data System (ADS)
El Bekri, Nadia; Angele, Susanne; Ruckhäberle, Martin; Peinsipp-Byma, Elisabeth; Haelke, Bruno
2015-10-01
This paper introduces an interactive recognition assistance system for imaging reconnaissance. This system supports aerial image analysts on missions during two main tasks: Object recognition and infrastructure analysis. Object recognition concentrates on the classification of one single object. Infrastructure analysis deals with the description of the components of an infrastructure and the recognition of the infrastructure type (e.g. military airfield). Based on satellite or aerial images, aerial image analysts are able to extract single object features and thereby recognize different object types. It is one of the most challenging tasks in the imaging reconnaissance. Currently, there are no high potential ATR (automatic target recognition) applications available, as consequence the human observer cannot be replaced entirely. State-of-the-art ATR applications cannot assume in equal measure human perception and interpretation. Why is this still such a critical issue? First, cluttered and noisy images make it difficult to automatically extract, classify and identify object types. Second, due to the changed warfare and the rise of asymmetric threats it is nearly impossible to create an underlying data set containing all features, objects or infrastructure types. Many other reasons like environmental parameters or aspect angles compound the application of ATR supplementary. Due to the lack of suitable ATR procedures, the human factor is still important and so far irreplaceable. In order to use the potential benefits of the human perception and computational methods in a synergistic way, both are unified in an interactive assistance system. RecceMan® (Reconnaissance Manual) offers two different modes for aerial image analysts on missions: the object recognition mode and the infrastructure analysis mode. The aim of the object recognition mode is to recognize a certain object type based on the object features that originated from the image signatures. The infrastructure analysis mode pursues the goal to analyze the function of the infrastructure. The image analyst extracts visually certain target object signatures, assigns them to corresponding object features and is finally able to recognize the object type. The system offers him the possibility to assign the image signatures to features given by sample images. The underlying data set contains a wide range of objects features and object types for different domains like ships or land vehicles. Each domain has its own feature tree developed by aerial image analyst experts. By selecting the corresponding features, the possible solution set of objects is automatically reduced and matches only the objects that contain the selected features. Moreover, we give an outlook of current research in the field of ground target analysis in which we deal with partly automated methods to extract image signatures and assign them to the corresponding features. This research includes methods for automatically determining the orientation of an object and geometric features like width and length of the object. This step enables to reduce automatically the possible object types offered to the image analyst by the interactive recognition assistance system.
Branstetter, Brian K; DeLong, Caroline M; Dziedzic, Brandon; Black, Amy; Bakhtiari, Kimberly
2016-01-01
Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin's (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin's ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin's acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition.
Branstetter, Brian K.; DeLong, Caroline M.; Dziedzic, Brandon; Black, Amy; Bakhtiari, Kimberly
2016-01-01
Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin’s (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin’s ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin’s acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition. PMID:26863519
NASA Technical Reports Server (NTRS)
Tescher, Andrew G. (Editor)
1989-01-01
Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.
Integration trumps selection in object recognition.
Saarela, Toni P; Landy, Michael S
2015-03-30
Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several "cues" (color, luminance, texture, etc.), and humans can integrate sensory cues to improve detection and recognition [1-3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue invariance by responding to a given shape independent of the visual cue defining it [5-8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10, 11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11, 12], imaging [13-16], and single-cell and neural population recordings [17, 18]. Besides single features, attention can select whole objects [19-21]. Objects are among the suggested "units" of attention because attention to a single feature of an object causes the selection of all of its features [19-21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Integration trumps selection in object recognition
Saarela, Toni P.; Landy, Michael S.
2015-01-01
Summary Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several “cues” (color, luminance, texture etc.), and humans can integrate sensory cues to improve detection and recognition [1–3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue-invariance by responding to a given shape independent of the visual cue defining it [5–8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10,11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11,12], imaging [13–16], and single-cell and neural population recordings [17,18]. Besides single features, attention can select whole objects [19–21]. Objects are among the suggested “units” of attention because attention to a single feature of an object causes the selection of all of its features [19–21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near-optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. PMID:25802154
Coding of visual object features and feature conjunctions in the human brain.
Martinovic, Jasna; Gruber, Thomas; Müller, Matthias M
2008-01-01
Object recognition is achieved through neural mechanisms reliant on the activity of distributed coordinated neural assemblies. In the initial steps of this process, an object's features are thought to be coded very rapidly in distinct neural assemblies. These features play different functional roles in the recognition process--while colour facilitates recognition, additional contours and edges delay it. Here, we selectively varied the amount and role of object features in an entry-level categorization paradigm and related them to the electrical activity of the human brain. We found that early synchronizations (approx. 100 ms) increased quantitatively when more image features had to be coded, without reflecting their qualitative contribution to the recognition process. Later activity (approx. 200-400 ms) was modulated by the representational role of object features. These findings demonstrate that although early synchronizations may be sufficient for relatively crude discrimination of objects in visual scenes, they cannot support entry-level categorization. This was subserved by later processes of object model selection, which utilized the representational value of object features such as colour or edges to select the appropriate model and achieve identification.
1988-04-30
side it necessary and Identify’ by’ block n~nmbot) haptic hand, touch , vision, robot, object recognition, categorization 20. AGSTRPACT (Continue an...established that the haptic system has remarkable capabilities for object recognition. We define haptics as purposive touch . The basic tactual system...gathered ratings of the importance of dimensions for categorizing common objects by touch . Texture and hardness ratings strongly co-vary, which is
Recognition-induced forgetting of faces in visual long-term memory.
Rugo, Kelsi F; Tamler, Kendall N; Woodman, Geoffrey F; Maxcey, Ashleigh M
2017-10-01
Despite more than a century of evidence that long-term memory for pictures and words are different, much of what we know about memory comes from studies using words. Recent research examining visual long-term memory has demonstrated that recognizing an object induces the forgetting of objects from the same category. This recognition-induced forgetting has been shown with a variety of everyday objects. However, unlike everyday objects, faces are objects of expertise. As a result, faces may be immune to recognition-induced forgetting. However, despite excellent memory for such stimuli, we found that faces were susceptible to recognition-induced forgetting. Our findings have implications for how models of human memory account for recognition-induced forgetting as well as represent objects of expertise and consequences for eyewitness testimony and the justice system.
Fast neuromimetic object recognition using FPGA outperforms GPU implementations.
Orchard, Garrick; Martin, Jacob G; Vogelstein, R Jacob; Etienne-Cummings, Ralph
2013-08-01
Recognition of objects in still images has traditionally been regarded as a difficult computational problem. Although modern automated methods for visual object recognition have achieved steadily increasing recognition accuracy, even the most advanced computational vision approaches are unable to obtain performance equal to that of humans. This has led to the creation of many biologically inspired models of visual object recognition, among them the hierarchical model and X (HMAX) model. HMAX is traditionally known to achieve high accuracy in visual object recognition tasks at the expense of significant computational complexity. Increasing complexity, in turn, increases computation time, reducing the number of images that can be processed per unit time. In this paper we describe how the computationally intensive and biologically inspired HMAX model for visual object recognition can be modified for implementation on a commercial field-programmable aate Array, specifically the Xilinx Virtex 6 ML605 evaluation board with XC6VLX240T FPGA. We show that with minor modifications to the traditional HMAX model we can perform recognition on images of size 128 × 128 pixels at a rate of 190 images per second with a less than 1% loss in recognition accuracy in both binary and multiclass visual object recognition tasks.
NASA Astrophysics Data System (ADS)
Kushwaha, Alok Kumar Singh; Srivastava, Rajeev
2015-09-01
An efficient view invariant framework for the recognition of human activities from an input video sequence is presented. The proposed framework is composed of three consecutive modules: (i) detect and locate people by background subtraction, (ii) view invariant spatiotemporal template creation for different activities, (iii) and finally, template matching is performed for view invariant activity recognition. The foreground objects present in a scene are extracted using change detection and background modeling. The view invariant templates are constructed using the motion history images and object shape information for different human activities in a video sequence. For matching the spatiotemporal templates for various activities, the moment invariants and Mahalanobis distance are used. The proposed approach is tested successfully on our own viewpoint dataset, KTH action recognition dataset, i3DPost multiview dataset, MSR viewpoint action dataset, VideoWeb multiview dataset, and WVU multiview human action recognition dataset. From the experimental results and analysis over the chosen datasets, it is observed that the proposed framework is robust, flexible, and efficient with respect to multiple views activity recognition, scale, and phase variations.
Huang, Lijie; Song, Yiying; Li, Jingguang; Zhen, Zonglei; Yang, Zetian; Liu, Jia
2014-01-01
In functional magnetic resonance imaging studies, object selectivity is defined as a higher neural response to an object category than other object categories. Importantly, object selectivity is widely considered as a neural signature of a functionally-specialized area in processing its preferred object category in the human brain. However, the behavioral significance of the object selectivity remains unclear. In the present study, we used the individual differences approach to correlate participants' face selectivity in the face-selective regions with their behavioral performance in face recognition measured outside the scanner in a large sample of healthy adults. Face selectivity was defined as the z score of activation with the contrast of faces vs. non-face objects, and the face recognition ability was indexed as the normalized residual of the accuracy in recognizing previously-learned faces after regressing out that for non-face objects in an old/new memory task. We found that the participants with higher face selectivity in the fusiform face area (FFA) and the occipital face area (OFA), but not in the posterior part of the superior temporal sulcus (pSTS), possessed higher face recognition ability. Importantly, the association of face selectivity in the FFA and face recognition ability cannot be accounted for by FFA response to objects or behavioral performance in object recognition, suggesting that the association is domain-specific. Finally, the association is reliable, confirmed by the replication from another independent participant group. In sum, our finding provides empirical evidence on the validity of using object selectivity as a neural signature in defining object-selective regions in the human brain. PMID:25071513
Invariant recognition drives neural representations of action sequences
Poggio, Tomaso
2017-01-01
Recognizing the actions of others from visual stimuli is a crucial aspect of human perception that allows individuals to respond to social cues. Humans are able to discriminate between similar actions despite transformations, like changes in viewpoint or actor, that substantially alter the visual appearance of a scene. This ability to generalize across complex transformations is a hallmark of human visual intelligence. Advances in understanding action recognition at the neural level have not always translated into precise accounts of the computational principles underlying what representations of action sequences are constructed by human visual cortex. Here we test the hypothesis that invariant action discrimination might fill this gap. Recently, the study of artificial systems for static object perception has produced models, Convolutional Neural Networks (CNNs), that achieve human level performance in complex discriminative tasks. Within this class, architectures that better support invariant object recognition also produce image representations that better match those implied by human and primate neural data. However, whether these models produce representations of action sequences that support recognition across complex transformations and closely follow neural representations of actions remains unknown. Here we show that spatiotemporal CNNs accurately categorize video stimuli into action classes, and that deliberate model modifications that improve performance on an invariant action recognition task lead to data representations that better match human neural recordings. Our results support our hypothesis that performance on invariant discrimination dictates the neural representations of actions computed in the brain. These results broaden the scope of the invariant recognition framework for understanding visual intelligence from perception of inanimate objects and faces in static images to the study of human perception of action sequences. PMID:29253864
Humans and Deep Networks Largely Agree on Which Kinds of Variation Make Object Recognition Harder.
Kheradpisheh, Saeed R; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée
2016-01-01
View-invariant object recognition is a challenging problem that has attracted much attention among the psychology, neuroscience, and computer vision communities. Humans are notoriously good at it, even if some variations are presumably more difficult to handle than others (e.g., 3D rotations). Humans are thought to solve the problem through hierarchical processing along the ventral stream, which progressively extracts more and more invariant visual features. This feed-forward architecture has inspired a new generation of bio-inspired computer vision systems called deep convolutional neural networks (DCNN), which are currently the best models for object recognition in natural images. Here, for the first time, we systematically compared human feed-forward vision and DCNNs at view-invariant object recognition task using the same set of images and controlling the kinds of transformation (position, scale, rotation in plane, and rotation in depth) as well as their magnitude, which we call "variation level." We used four object categories: car, ship, motorcycle, and animal. In total, 89 human subjects participated in 10 experiments in which they had to discriminate between two or four categories after rapid presentation with backward masking. We also tested two recent DCNNs (proposed respectively by Hinton's group and Zisserman's group) on the same tasks. We found that humans and DCNNs largely agreed on the relative difficulties of each kind of variation: rotation in depth is by far the hardest transformation to handle, followed by scale, then rotation in plane, and finally position (much easier). This suggests that DCNNs would be reasonable models of human feed-forward vision. In addition, our results show that the variation levels in rotation in depth and scale strongly modulate both humans' and DCNNs' recognition performances. We thus argue that these variations should be controlled in the image datasets used in vision research.
Visual working memory is more tolerant than visual long-term memory.
Schurgin, Mark W; Flombaum, Jonathan I
2018-05-07
Human visual memory is tolerant, meaning that it supports object recognition despite variability across encounters at the image level. Tolerant object recognition remains one capacity in which artificial intelligence trails humans. Typically, tolerance is described as a property of human visual long-term memory (VLTM). In contrast, visual working memory (VWM) is not usually ascribed a role in tolerant recognition, with tests of that system usually demanding discriminatory power-identifying changes, not sameness. There are good reasons to expect that VLTM is more tolerant; functionally, recognition over the long-term must accommodate the fact that objects will not be viewed under identical conditions; and practically, the passive and massive nature of VLTM may impose relatively permissive criteria for thinking that two inputs are the same. But empirically, tolerance has never been compared across working and long-term visual memory. We therefore developed a novel paradigm for equating encoding and test across different memory types. In each experiment trial, participants saw two objects, memory for one tested immediately (VWM) and later for the other (VLTM). VWM performance was better than VLTM and remained robust despite the introduction of image and object variability. In contrast, VLTM performance suffered linearly as more variability was introduced into test stimuli. Additional experiments excluded interference effects as causes for the observed differences. These results suggest the possibility of a previously unidentified role for VWM in the acquisition of tolerant representations for object recognition. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Deep Neural Networks as a Computational Model for Human Shape Sensitivity
Op de Beeck, Hans P.
2016-01-01
Theories of object recognition agree that shape is of primordial importance, but there is no consensus about how shape might be represented, and so far attempts to implement a model of shape perception that would work with realistic stimuli have largely failed. Recent studies suggest that state-of-the-art convolutional ‘deep’ neural networks (DNNs) capture important aspects of human object perception. We hypothesized that these successes might be partially related to a human-like representation of object shape. Here we demonstrate that sensitivity for shape features, characteristic to human and primate vision, emerges in DNNs when trained for generic object recognition from natural photographs. We show that these models explain human shape judgments for several benchmark behavioral and neural stimulus sets on which earlier models mostly failed. In particular, although never explicitly trained for such stimuli, DNNs develop acute sensitivity to minute variations in shape and to non-accidental properties that have long been implicated to form the basis for object recognition. Even more strikingly, when tested with a challenging stimulus set in which shape and category membership are dissociated, the most complex model architectures capture human shape sensitivity as well as some aspects of the category structure that emerges from human judgments. As a whole, these results indicate that convolutional neural networks not only learn physically correct representations of object categories but also develop perceptually accurate representational spaces of shapes. An even more complete model of human object representations might be in sight by training deep architectures for multiple tasks, which is so characteristic in human development. PMID:27124699
Presentations of Shape in Object Recognition and Long-Term Visual Memory
1994-04-05
theory of human image understanding . Psychological Review, 94, 115-147. Biederman, I., & Gerhardstein, P. C. (1993). Recognizing depth-rotated...Kybemetik. Submitted to Journal of Experimental Psychology: Human Perception and Performance. REFERENCES Biederman, I. (1987). Recognition-by-components: A
Neural network application for thermal image recognition of low-resolution objects
NASA Astrophysics Data System (ADS)
Fang, Yi-Chin; Wu, Bo-Wen
2007-02-01
In the ever-changing situation on a battle field, accurate recognition of a distant object is critical to a commander's decision-making and the general public's safety. Efficiently distinguishing between an enemy's armoured vehicles and ordinary civilian houses under all weather conditions has become an important research topic. This study presents a system for recognizing an armoured vehicle by distinguishing marks and contours. The characteristics of 12 different shapes and 12 characters are used to explore thermal image recognition under the circumstance of long distance and low resolution. Although the recognition capability of human eyes is superior to that of artificial intelligence under normal conditions, it tends to deteriorate substantially under long-distance and low-resolution scenarios. This study presents an effective method for choosing features and processing images. The artificial neural network technique is applied to further improve the probability of accurate recognition well beyond the limit of the recognition capability of human eyes.
Sticht, Martin A; Jacklin, Derek L; Mechoulam, Raphael; Parker, Linda A; Winters, Boyer D
2015-03-25
Cannabinoids disrupt learning and memory in human and nonhuman participants. Object recognition memory, which is particularly susceptible to the impairing effects of cannabinoids, relies critically on the perirhinal cortex (PRh); however, to date, the effects of cannabinoids within PRh have not been assessed. In the present study, we evaluated the effects of localized administration of the synthetic cannabinoid, HU210 (0.01, 1.0 μg/hemisphere), into PRh on spontaneous object recognition in Long-Evans rats. Animals received intra-PRh infusions of HU210 before the sample phase, and object recognition memory was assessed at various delays in a subsequent retention test. We found that presample intra-PRh HU210 dose dependently (1.0 μg but not 0.01 μg) interfered with spontaneous object recognition performance, exerting an apparently more pronounced effect when memory demands were increased. These novel findings show that cannabinoid agonists in PRh disrupt object recognition memory. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
Compensation for Blur Requires Increase in Field of View and Viewing Time
Kwon, MiYoung; Liu, Rong; Chien, Lillian
2016-01-01
Spatial resolution is an important factor for human pattern recognition. In particular, low resolution (blur) is a defining characteristic of low vision. Here, we examined spatial (field of view) and temporal (stimulus duration) requirements for blurry object recognition. The spatial resolution of an image such as letter or face, was manipulated with a low-pass filter. In experiment 1, studying spatial requirement, observers viewed a fixed-size object through a window of varying sizes, which was repositioned until object identification (moving window paradigm). Field of view requirement, quantified as the number of “views” (window repositions) for correct recognition, was obtained for three blur levels, including no blur. In experiment 2, studying temporal requirement, we determined threshold viewing time, the stimulus duration yielding criterion recognition accuracy, at six blur levels, including no blur. For letter and face recognition, we found blur significantly increased the number of views, suggesting a larger field of view is required to recognize blurry objects. We also found blur significantly increased threshold viewing time, suggesting longer temporal integration is necessary to recognize blurry objects. The temporal integration reflects the tradeoff between stimulus intensity and time. While humans excel at recognizing blurry objects, our findings suggest compensating for blur requires increased field of view and viewing time. The need for larger spatial and longer temporal integration for recognizing blurry objects may further challenge object recognition in low vision. Thus, interactions between blur and field of view should be considered for developing low vision rehabilitation or assistive aids. PMID:27622710
Liu, Hesheng; Agam, Yigal; Madsen, Joseph R.; Kreiman, Gabriel
2010-01-01
Summary The difficulty of visual recognition stems from the need to achieve high selectivity while maintaining robustness to object transformations within hundreds of milliseconds. Theories of visual recognition differ in whether the neuronal circuits invoke recurrent feedback connections or not. The timing of neurophysiological responses in visual cortex plays a key role in distinguishing between bottom-up and top-down theories. Here we quantified at millisecond resolution the amount of visual information conveyed by intracranial field potentials from 912 electrodes in 11 human subjects. We could decode object category information from human visual cortex in single trials as early as 100 ms post-stimulus. Decoding performance was robust to depth rotation and scale changes. The results suggest that physiological activity in the temporal lobe can account for key properties of visual recognition. The fast decoding in single trials is compatible with feed-forward theories and provides strong constraints for computational models of human vision. PMID:19409272
Human detection in sensitive security areas through recognition of omega shapes using MACH filters
NASA Astrophysics Data System (ADS)
Rehman, Saad; Riaz, Farhan; Hassan, Ali; Liaquat, Muwahida; Young, Rupert
2015-03-01
Human detection has gained considerable importance in aggravated security scenarios over recent times. An effective security application relies strongly on detailed information regarding the scene under consideration. A larger accumulation of humans than the number of personal authorized to visit a security controlled area must be effectively detected, amicably alarmed and immediately monitored. A framework involving a novel combination of some existing techniques allows an immediate detection of an undesirable crowd in a region under observation. Frame differencing provides a clear visibility of moving objects while highlighting those objects in each frame acquired by a real time camera. Training of a correlation pattern recognition based filter on desired shapes such as elliptical representations of human faces (variants of an Omega Shape) yields correct detections. The inherent ability of correlation pattern recognition filters caters for angular rotations in the target object and renders decision regarding the existence of the number of persons exceeding an allowed figure in the monitored area.
Kitada, Ryo; Johnsrude, Ingrid S; Kochiyama, Takanori; Lederman, Susan J
2009-10-01
Humans can recognize common objects by touch extremely well whenever vision is unavailable. Despite its importance to a thorough understanding of human object recognition, the neuroscientific study of this topic has been relatively neglected. To date, the few published studies have addressed the haptic recognition of nonbiological objects. We now focus on haptic recognition of the human body, a particularly salient object category for touch. Neuroimaging studies demonstrate that regions of the occipito-temporal cortex are specialized for visual perception of faces (fusiform face area, FFA) and other body parts (extrastriate body area, EBA). Are the same category-sensitive regions activated when these components of the body are recognized haptically? Here, we use fMRI to compare brain organization for haptic and visual recognition of human body parts. Sixteen subjects identified exemplars of faces, hands, feet, and nonbiological control objects using vision and haptics separately. We identified two discrete regions within the fusiform gyrus (FFA and the haptic face region) that were each sensitive to both haptically and visually presented faces; however, these two regions differed significantly in their response patterns. Similarly, two regions within the lateral occipito-temporal area (EBA and the haptic body region) were each sensitive to body parts in both modalities, although the response patterns differed. Thus, although the fusiform gyrus and the lateral occipito-temporal cortex appear to exhibit modality-independent, category-sensitive activity, our results also indicate a degree of functional specialization related to sensory modality within these structures.
Short temporal asynchrony disrupts visual object recognition
Singer, Jedediah M.; Kreiman, Gabriel
2014-01-01
Humans can recognize objects and scenes in a small fraction of a second. The cascade of signals underlying rapid recognition might be disrupted by temporally jittering different parts of complex objects. Here we investigated the time course over which shape information can be integrated to allow for recognition of complex objects. We presented fragments of object images in an asynchronous fashion and behaviorally evaluated categorization performance. We observed that visual recognition was significantly disrupted by asynchronies of approximately 30 ms, suggesting that spatiotemporal integration begins to break down with even small deviations from simultaneity. However, moderate temporal asynchrony did not completely obliterate recognition; in fact, integration of visual shape information persisted even with an asynchrony of 100 ms. We describe the data with a concise model based on the dynamic reduction of uncertainty about what image was presented. These results emphasize the importance of timing in visual processing and provide strong constraints for the development of dynamical models of visual shape recognition. PMID:24819738
Representations of Shape in Object Recognition and Long-Term Visual Memory
1993-02-11
in anything other than linguistic terms ( Biederman , 1987 , for example). STATUS 1. Viewpoint-Dependent Features in Object Representation Tarr and...is object- based orientation-independent representations sufficient for "basic-level" categorization ( Biederman , 1987 ; Corballis, 1988). Alternatively...space. REFERENCES Biederman , I. ( 1987 ). Recognition-by-components: A theory of human image understanding. Psychological Review, 94,115-147. Cooper, L
Towards discrete wavelet transform-based human activity recognition
NASA Astrophysics Data System (ADS)
Khare, Manish; Jeon, Moongu
2017-06-01
Providing accurate recognition of human activities is a challenging problem for visual surveillance applications. In this paper, we present a simple and efficient algorithm for human activity recognition based on a wavelet transform. We adopt discrete wavelet transform (DWT) coefficients as a feature of human objects to obtain advantages of its multiresolution approach. The proposed method is tested on multiple levels of DWT. Experiments are carried out on different standard action datasets including KTH and i3D Post. The proposed method is compared with other state-of-the-art methods in terms of different quantitative performance measures. The proposed method is found to have better recognition accuracy in comparison to the state-of-the-art methods.
Neural network face recognition using wavelets
NASA Astrophysics Data System (ADS)
Karunaratne, Passant V.; Jouny, Ismail I.
1997-04-01
The recognition of human faces is a phenomenon that has been mastered by the human visual system and that has been researched extensively in the domain of computer neural networks and image processing. This research is involved in the study of neural networks and wavelet image processing techniques in the application of human face recognition. The objective of the system is to acquire a digitized still image of a human face, carry out pre-processing on the image as required, an then, given a prior database of images of possible individuals, be able to recognize the individual in the image. The pre-processing segment of the system includes several procedures, namely image compression, denoising, and feature extraction. The image processing is carried out using Daubechies wavelets. Once the images have been passed through the wavelet-based image processor they can be efficiently analyzed by means of a neural network. A back- propagation neural network is used for the recognition segment of the system. The main constraints of the system is with regard to the characteristics of the images being processed. The system should be able to carry out effective recognition of the human faces irrespective of the individual's facial-expression, presence of extraneous objects such as head-gear or spectacles, and face/head orientation. A potential application of this face recognition system would be as a secondary verification method in an automated teller machine.
Mechanisms of object recognition: what we have learned from pigeons
Soto, Fabian A.; Wasserman, Edward A.
2014-01-01
Behavioral studies of object recognition in pigeons have been conducted for 50 years, yielding a large body of data. Recent work has been directed toward synthesizing this evidence and understanding the visual, associative, and cognitive mechanisms that are involved. The outcome is that pigeons are likely to be the non-primate species for which the computational mechanisms of object recognition are best understood. Here, we review this research and suggest that a core set of mechanisms for object recognition might be present in all vertebrates, including pigeons and people, making pigeons an excellent candidate model to study the neural mechanisms of object recognition. Behavioral and computational evidence suggests that error-driven learning participates in object category learning by pigeons and people, and recent neuroscientific research suggests that the basal ganglia, which are homologous in these species, may implement error-driven learning of stimulus-response associations. Furthermore, learning of abstract category representations can be observed in pigeons and other vertebrates. Finally, there is evidence that feedforward visual processing, a central mechanism in models of object recognition in the primate ventral stream, plays a role in object recognition by pigeons. We also highlight differences between pigeons and people in object recognition abilities, and propose candidate adaptive specializations which may explain them, such as holistic face processing and rule-based category learning in primates. From a modern comparative perspective, such specializations are to be expected regardless of the model species under study. The fact that we have a good idea of which aspects of object recognition differ in people and pigeons should be seen as an advantage over other animal models. From this perspective, we suggest that there is much to learn about human object recognition from studying the “simple” brains of pigeons. PMID:25352784
Component-based target recognition inspired by human vision
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Agyepong, Kwabena
2009-05-01
In contrast with machine vision, human can recognize an object from complex background with great flexibility. For example, given the task of finding and circling all cars (no further information) in a picture, you may build a virtual image in mind from the task (or target) description before looking at the picture. Specifically, the virtual car image may be composed of the key components such as driver cabin and wheels. In this paper, we propose a component-based target recognition method by simulating the human recognition process. The component templates (equivalent to the virtual image in mind) of the target (car) are manually decomposed from the target feature image. Meanwhile, the edges of the testing image can be extracted by using a difference of Gaussian (DOG) model that simulates the spatiotemporal response in visual process. A phase correlation matching algorithm is then applied to match the templates with the testing edge image. If all key component templates are matched with the examining object, then this object is recognized as the target. Besides the recognition accuracy, we will also investigate if this method works with part targets (half cars). In our experiments, several natural pictures taken on streets were used to test the proposed method. The preliminary results show that the component-based recognition method is very promising.
Holdstock, J S; Mayes, A R; Roberts, N; Cezayirli, E; Isaac, C L; O'Reilly, R C; Norman, K A
2002-01-01
The claim that recognition memory is spared relative to recall after focal hippocampal damage has been disputed in the literature. We examined this claim by investigating object and object-location recall and recognition memory in a patient, YR, who has adult-onset selective hippocampal damage. Our aim was to identify the conditions under which recognition was spared relative to recall in this patient. She showed unimpaired forced-choice object recognition but clearly impaired recall, even when her control subjects found the object recognition task to be numerically harder than the object recall task. However, on two other recognition tests, YR's performance was not relatively spared. First, she was clearly impaired at an equivalently difficult yes/no object recognition task, but only when targets and foils were very similar. Second, YR was clearly impaired at forced-choice recognition of object-location associations. This impairment was also unrelated to difficulty because this task was no more difficult than the forced-choice object recognition task for control subjects. The clear impairment of yes/no, but not of forced-choice, object recognition after focal hippocampal damage, when targets and foils are very similar, is predicted by the neural network-based Complementary Learning Systems model of recognition. This model postulates that recognition is mediated by hippocampally dependent recollection and cortically dependent familiarity; thus hippocampal damage should not impair item familiarity. The model postulates that familiarity is ineffective when very similar targets and foils are shown one at a time and subjects have to identify which items are old (yes/no recognition). In contrast, familiarity is effective in discriminating which of similar targets and foils, seen together, is old (forced-choice recognition). Independent evidence from the remember/know procedure also indicates that YR's familiarity is normal. The Complementary Learning Systems model can also accommodate the clear impairment of forced-choice object-location recognition memory if it incorporates the view that the most complete convergence of spatial and object information, represented in different cortical regions, occurs in the hippocampus.
Halliday, Drew W R; MacDonald, Stuart W S; Scherf, K Suzanne; Sherf, Suzanne K; Tanaka, James W
2014-01-01
Although not a core symptom of the disorder, individuals with autism often exhibit selective impairments in their face processing abilities. Importantly, the reciprocal connection between autistic traits and face perception has rarely been examined within the typically developing population. In this study, university participants from the social sciences, physical sciences, and humanities completed a battery of measures that assessed face, object and emotion recognition abilities, general perceptual-cognitive style, and sub-clinical autistic traits (the Autism Quotient (AQ)). We employed separate hierarchical multiple regression analyses to evaluate which factors could predict face recognition scores and AQ scores. Gender, object recognition performance, and AQ scores predicted face recognition behaviour. Specifically, males, individuals with more autistic traits, and those with lower object recognition scores performed more poorly on the face recognition test. Conversely, university major, gender and face recognition performance reliably predicted AQ scores. Science majors, males, and individuals with poor face recognition skills showed more autistic-like traits. These results suggest that the broader autism phenotype is associated with lower face recognition abilities, even among typically developing individuals.
Halliday, Drew W. R.; MacDonald, Stuart W. S.; Sherf, Suzanne K.; Tanaka, James W.
2014-01-01
Although not a core symptom of the disorder, individuals with autism often exhibit selective impairments in their face processing abilities. Importantly, the reciprocal connection between autistic traits and face perception has rarely been examined within the typically developing population. In this study, university participants from the social sciences, physical sciences, and humanities completed a battery of measures that assessed face, object and emotion recognition abilities, general perceptual-cognitive style, and sub-clinical autistic traits (the Autism Quotient (AQ)). We employed separate hierarchical multiple regression analyses to evaluate which factors could predict face recognition scores and AQ scores. Gender, object recognition performance, and AQ scores predicted face recognition behaviour. Specifically, males, individuals with more autistic traits, and those with lower object recognition scores performed more poorly on the face recognition test. Conversely, university major, gender and face recognition performance reliably predicted AQ scores. Science majors, males, and individuals with poor face recognition skills showed more autistic-like traits. These results suggest that the broader autism phenotype is associated with lower face recognition abilities, even among typically developing individuals. PMID:24853862
It's all connected: Pathways in visual object recognition and early noun learning.
Smith, Linda B
2013-11-01
A developmental pathway may be defined as the route, or chain of events, through which a new structure or function forms. For many human behaviors, including object name learning and visual object recognition, these pathways are often complex and multicausal and include unexpected dependencies. This article presents three principles of development that suggest the value of a developmental psychology that explicitly seeks to trace these pathways and uses empirical evidence on developmental dependencies among motor development, action on objects, visual object recognition, and object name learning in 12- to 24-month-old infants to make the case. The article concludes with a consideration of the theoretical implications of this approach. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Recognition-by-Components: A Theory of Human Image Understanding.
ERIC Educational Resources Information Center
Biederman, Irving
1987-01-01
The theory proposed (recognition-by-components) hypothesizes the perceptual recognition of objects to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components. Experiments on the perception of briefly presented pictures support the theory. (Author/LMO)
Exploiting range imagery: techniques and applications
NASA Astrophysics Data System (ADS)
Armbruster, Walter
2009-07-01
Practically no applications exist for which automatic processing of 2D intensity imagery can equal human visual perception. This is not the case for range imagery. The paper gives examples of 3D laser radar applications, for which automatic data processing can exceed human visual cognition capabilities and describes basic processing techniques for attaining these results. The examples are drawn from the fields of helicopter obstacle avoidance, object detection in surveillance applications, object recognition at high range, multi-object-tracking, and object re-identification in range image sequences. Processing times and recognition performances are summarized. The techniques used exploit the bijective continuity of the imaging process as well as its independence of object reflectivity, emissivity and illumination. This allows precise formulations of the probability distributions involved in figure-ground segmentation, feature-based object classification and model based object recognition. The probabilistic approach guarantees optimal solutions for single images and enables Bayesian learning in range image sequences. Finally, due to recent results in 3D-surface completion, no prior model libraries are required for recognizing and re-identifying objects of quite general object categories, opening the way to unsupervised learning and fully autonomous cognitive systems.
Toward a unified model of face and object recognition in the human visual system
Wallis, Guy
2013-01-01
Our understanding of the mechanisms and neural substrates underlying visual recognition has made considerable progress over the past 30 years. During this period, accumulating evidence has led many scientists to conclude that objects and faces are recognised in fundamentally distinct ways, and in fundamentally distinct cortical areas. In the psychological literature, in particular, this dissociation has led to a palpable disconnect between theories of how we process and represent the two classes of object. This paper follows a trend in part of the recognition literature to try to reconcile what we know about these two forms of recognition by considering the effects of learning. Taking a widely accepted, self-organizing model of object recognition, this paper explains how such a system is affected by repeated exposure to specific stimulus classes. In so doing, it explains how many aspects of recognition generally regarded as unusual to faces (holistic processing, configural processing, sensitivity to inversion, the other-race effect, the prototype effect, etc.) are emergent properties of category-specific learning within such a system. Overall, the paper describes how a single model of recognition learning can and does produce the seemingly very different types of representation associated with faces and objects. PMID:23966963
Fields, Chris
2011-01-01
The perception of persisting visual objects is mediated by transient intermediate representations, object files, that are instantiated in response to some, but not all, visual trajectories. The standard object file concept does not, however, provide a mechanism sufficient to account for all experimental data on visual object persistence, object tracking, and the ability to perceive spatially disconnected stimuli as continuously existing objects. Based on relevant anatomical, functional, and developmental data, a functional model is constructed that bases visual object individuation on the recognition of temporal sequences of apparent center-of-mass positions that are specifically identified as trajectories by dedicated “trajectory recognition networks” downstream of the medial–temporal motion-detection area. This model is shown to account for a wide range of data, and to generate a variety of testable predictions. Individual differences in the recognition, abstraction, and encoding of trajectory information are expected to generate distinct object persistence judgments and object recognition abilities. Dominance of trajectory information over feature information in stored object tokens during early infancy, in particular, is expected to disrupt the ability to re-identify human and other individuals across perceptual episodes, and lead to developmental outcomes with characteristics of autism spectrum disorders. PMID:21716599
Human recognition based on head-shoulder contour extraction and BP neural network
NASA Astrophysics Data System (ADS)
Kong, Xiao-fang; Wang, Xiu-qin; Gu, Guohua; Chen, Qian; Qian, Wei-xian
2014-11-01
In practical application scenarios like video surveillance and human-computer interaction, human body movements are uncertain because the human body is a non-rigid object. Based on the fact that the head-shoulder part of human body can be less affected by the movement, and will seldom be obscured by other objects, in human detection and recognition, a head-shoulder model with its stable characteristics can be applied as a detection feature to describe the human body. In order to extract the head-shoulder contour accurately, a head-shoulder model establish method with combination of edge detection and the mean-shift algorithm in image clustering has been proposed in this paper. First, an adaptive method of mixture Gaussian background update has been used to extract targets from the video sequence. Second, edge detection has been used to extract the contour of moving objects, and the mean-shift algorithm has been combined to cluster parts of target's contour. Third, the head-shoulder model can be established, according to the width and height ratio of human head-shoulder combined with the projection histogram of the binary image, and the eigenvectors of the head-shoulder contour can be acquired. Finally, the relationship between head-shoulder contour eigenvectors and the moving objects will be formed by the training of back-propagation (BP) neural network classifier, and the human head-shoulder model can be clustered for human detection and recognition. Experiments have shown that the method combined with edge detection and mean-shift algorithm proposed in this paper can extract the complete head-shoulder contour, with low calculating complexity and high efficiency.
Model-Driven Study of Visual Memory
2004-12-01
dimensional stimuli (synthetic human faces ) afford important insights into episodic recognition memory. The results were well accommodated by a summed...the unusual properties of the z-transformed ROCS. 15. SUBJECT TERMS Memory, visual memory, computational model, human memory, faces , identity 16...3 Accomplishments/New Findings 3 Work on Objective One: Recognition Memory for Synthetic Faces . 3 Experim ent 1
Joint object and action recognition via fusion of partially observable surveillance imagery data
NASA Astrophysics Data System (ADS)
Shirkhodaie, Amir; Chan, Alex L.
2017-05-01
Partially observable group activities (POGA) occurring in confined spaces are epitomized by their limited observability of the objects and actions involved. In many POGA scenarios, different objects are being used by human operators for the conduct of various operations. In this paper, we describe the ontology of such as POGA in the context of In-Vehicle Group Activity (IVGA) recognition. Initially, we describe the virtue of ontology modeling in the context of IVGA and show how such an ontology and a priori knowledge about the classes of in-vehicle activities can be fused for inference of human actions that consequentially leads to understanding of human activity inside the confined space of a vehicle. In this paper, we treat the problem of "action-object" as a duality problem. We postulate a correlation between observed human actions and the object that is being utilized within those actions, and conversely, if an object being handled is recognized, we may be able to expect a number of actions that are likely to be performed on that object. In this study, we use partially observable human postural sequences to recognition actions. Inspired by convolutional neural networks (CNNs) learning capability, we present an architecture design using a new CNN model to learn "action-object" perception from surveillance videos. In this study, we apply a sequential Deep Hidden Markov Model (DHMM) as a post-processor to CNN to decode realized observations into recognized actions and activities. To generate the needed imagery data set for the training and testing of these new methods, we use the IRIS virtual simulation software to generate high-fidelity and dynamic animated scenarios that depict in-vehicle group activities under different operational contexts. The results of our comparative investigation are discussed and presented in detail.
Modal-Power-Based Haptic Motion Recognition
NASA Astrophysics Data System (ADS)
Kasahara, Yusuke; Shimono, Tomoyuki; Kuwahara, Hiroaki; Sato, Masataka; Ohnishi, Kouhei
Motion recognition based on sensory information is important for providing assistance to human using robots. Several studies have been carried out on motion recognition based on image information. However, in the motion of humans contact with an object can not be evaluated precisely by image-based recognition. This is because the considering force information is very important for describing contact motion. In this paper, a modal-power-based haptic motion recognition is proposed; modal power is considered to reveal information on both position and force. Modal power is considered to be one of the defining features of human motion. A motion recognition algorithm based on linear discriminant analysis is proposed to distinguish between similar motions. Haptic information is extracted using a bilateral master-slave system. Then, the observed motion is decomposed in terms of primitive functions in a modal space. The experimental results show the effectiveness of the proposed method.
Cross, Laura; Brown, Malcolm W; Aggleton, John P; Warburton, E Clea
2012-12-21
In humans recognition memory deficits, a typical feature of diencephalic amnesia, have been tentatively linked to mediodorsal thalamic nucleus (MD) damage. Animal studies have occasionally investigated the role of the MD in single-item recognition, but have not systematically analyzed its involvement in other recognition memory processes. In Experiment 1 rats with bilateral excitotoxic lesions in the MD or the medial prefrontal cortex (mPFC) were tested in tasks that assessed single-item recognition (novel object preference), associative recognition memory (object-in-place), and recency discrimination (recency memory task). Experiment 2 examined the functional importance of the interactions between the MD and mPFC using disconnection techniques. Unilateral excitotoxic lesions were placed in both the MD and the mPFC in either the same (MD + mPFC Ipsi) or opposite hemispheres (MD + mPFC Contra group). Bilateral lesions in the MD or mPFC impaired object-in-place and recency memory tasks, but had no effect on novel object preference. In Experiment 2 the MD + mPFC Contra group was significantly impaired in the object-in-place and recency memory tasks compared with the MD + mPFC Ipsi group, but novel object preference was intact. Thus, connections between the MD and mPFC are critical for recognition memory when the discriminations involve associative or recency information. However, the rodent MD is not necessary for single-item recognition memory.
NASA Astrophysics Data System (ADS)
Graham, James; Ternovskiy, Igor V.
2013-06-01
We applied a two stage unsupervised hierarchical learning system to model complex dynamic surveillance and cyber space monitoring systems using a non-commercial version of the NeoAxis visualization software. The hierarchical scene learning and recognition approach is based on hierarchical expectation maximization, and was linked to a 3D graphics engine for validation of learning and classification results and understanding the human - autonomous system relationship. Scene recognition is performed by taking synthetically generated data and feeding it to a dynamic logic algorithm. The algorithm performs hierarchical recognition of the scene by first examining the features of the objects to determine which objects are present, and then determines the scene based on the objects present. This paper presents a framework within which low level data linked to higher-level visualization can provide support to a human operator and be evaluated in a detailed and systematic way.
Mitchnick, Krista A; Wideman, Cassidy E; Huff, Andrew E; Palmer, Daniel; McNaughton, Bruce L; Winters, Boyer D
2018-05-15
The capacity to recognize objects from different view-points or angles, referred to as view-invariance, is an essential process that humans engage in daily. Currently, the ability to investigate the neurobiological underpinnings of this phenomenon is limited, as few ethologically valid view-invariant object recognition tasks exist for rodents. Here, we report two complementary, novel view-invariant object recognition tasks in which rodents physically interact with three-dimensional objects. Prior to experimentation, rats and mice were given extensive experience with a set of 'pre-exposure' objects. In a variant of the spontaneous object recognition task, novelty preference for pre-exposed or new objects was assessed at various angles of rotation (45°, 90° or 180°); unlike control rodents, for whom the objects were novel, rats and mice tested with pre-exposed objects did not discriminate between rotated and un-rotated objects in the choice phase, indicating substantial view-invariant object recognition. Secondly, using automated operant touchscreen chambers, rats were tested on pre-exposed or novel objects in a pairwise discrimination task, where the rewarded stimulus (S+) was rotated (180°) once rats had reached acquisition criterion; rats tested with pre-exposed objects re-acquired the pairwise discrimination following S+ rotation more effectively than those tested with new objects. Systemic scopolamine impaired performance on both tasks, suggesting involvement of acetylcholine at muscarinic receptors in view-invariant object processing. These tasks present novel means of studying the behavioral and neural bases of view-invariant object recognition in rodents. Copyright © 2018 Elsevier B.V. All rights reserved.
An Intelligent Systems Approach to Automated Object Recognition: A Preliminary Study
Maddox, Brian G.; Swadley, Casey L.
2002-01-01
Attempts at fully automated object recognition systems have met with varying levels of success over the years. However, none of the systems have achieved high enough accuracy rates to be run unattended. One of the reasons for this may be that they are designed from the computer's point of view and rely mainly on image-processing methods. A better solution to this problem may be to make use of modern advances in computational intelligence and distributed processing to try to mimic how the human brain is thought to recognize objects. As humans combine cognitive processes with detection techniques, such a system would combine traditional image-processing techniques with computer-based intelligence to determine the identity of various objects in a scene.
Atoms of recognition in human and computer vision.
Ullman, Shimon; Assif, Liav; Fetaya, Ethan; Harari, Daniel
2016-03-08
Discovering the visual features and representations used by the brain to recognize objects is a central problem in the study of vision. Recently, neural network models of visual object recognition, including biological and deep network models, have shown remarkable progress and have begun to rival human performance in some challenging tasks. These models are trained on image examples and learn to extract features and representations and to use them for categorization. It remains unclear, however, whether the representations and learning processes discovered by current models are similar to those used by the human visual system. Here we show, by introducing and using minimal recognizable images, that the human visual system uses features and processes that are not used by current models and that are critical for recognition. We found by psychophysical studies that at the level of minimal recognizable images a minute change in the image can have a drastic effect on recognition, thus identifying features that are critical for the task. Simulations then showed that current models cannot explain this sensitivity to precise feature configurations and, more generally, do not learn to recognize minimal images at a human level. The role of the features shown here is revealed uniquely at the minimal level, where the contribution of each feature is essential. A full understanding of the learning and use of such features will extend our understanding of visual recognition and its cortical mechanisms and will enhance the capacity of computational models to learn from visual experience and to deal with recognition and detailed image interpretation.
Changes in Visual Object Recognition Precede the Shape Bias in Early Noun Learning
Yee, Meagan; Jones, Susan S.; Smith, Linda B.
2012-01-01
Two of the most formidable skills that characterize human beings are language and our prowess in visual object recognition. They may also be developmentally intertwined. Two experiments, a large sample cross-sectional study and a smaller sample 6-month longitudinal study of 18- to 24-month-olds, tested a hypothesized developmental link between changes in visual object representation and noun learning. Previous findings in visual object recognition indicate that children’s ability to recognize common basic level categories from sparse structural shape representations of object shape emerges between the ages of 18 and 24 months, is related to noun vocabulary size, and is lacking in children with language delay. Other research shows in artificial noun learning tasks that during this same developmental period, young children systematically generalize object names by shape, that this shape bias predicts future noun learning, and is lacking in children with language delay. The two experiments examine the developmental relation between visual object recognition and the shape bias for the first time. The results show that developmental changes in visual object recognition systematically precede the emergence of the shape bias. The results suggest a developmental pathway in which early changes in visual object recognition that are themselves linked to category learning enable the discovery of higher-order regularities in category structure and thus the shape bias in novel noun learning tasks. The proposed developmental pathway has implications for understanding the role of specific experience in the development of both visual object recognition and the shape bias in early noun learning. PMID:23227015
Multilevel depth and image fusion for human activity detection.
Ni, Bingbing; Pei, Yong; Moulin, Pierre; Yan, Shuicheng
2013-10-01
Recognizing complex human activities usually requires the detection and modeling of individual visual features and the interactions between them. Current methods only rely on the visual features extracted from 2-D images, and therefore often lead to unreliable salient visual feature detection and inaccurate modeling of the interaction context between individual features. In this paper, we show that these problems can be addressed by combining data from a conventional camera and a depth sensor (e.g., Microsoft Kinect). We propose a novel complex activity recognition and localization framework that effectively fuses information from both grayscale and depth image channels at multiple levels of the video processing pipeline. In the individual visual feature detection level, depth-based filters are applied to the detected human/object rectangles to remove false detections. In the next level of interaction modeling, 3-D spatial and temporal contexts among human subjects or objects are extracted by integrating information from both grayscale and depth images. Depth information is also utilized to distinguish different types of indoor scenes. Finally, a latent structural model is developed to integrate the information from multiple levels of video processing for an activity detection. Extensive experiments on two activity recognition benchmarks (one with depth information) and a challenging grayscale + depth human activity database that contains complex interactions between human-human, human-object, and human-surroundings demonstrate the effectiveness of the proposed multilevel grayscale + depth fusion scheme. Higher recognition and localization accuracies are obtained relative to the previous methods.
Perceptual Learning of Object Shape
Golcu, Doruk; Gilbert, Charles D.
2009-01-01
Recognition of objects is accomplished through the use of cues that depend on internal representations of familiar shapes. We used a paradigm of perceptual learning during visual search to explore what features human observers use to identify objects. Human subjects were trained to search for a target object embedded in an array of distractors, until their performance improved from near-chance levels to over 80% of trials in an object specific manner. We determined the role of specific object components in the recognition of the object as a whole by measuring the transfer of learning from the trained object to other objects sharing components with it. Depending on the geometric relationship of the trained object with untrained objects, transfer to untrained objects was observed. Novel objects that shared a component with the trained object were identified at much higher levels than those that did not, and this could be used as an indicator of which features of the object were important for recognition. Training on an object also transferred to the components of the object when these components were embedded in an array of distractors of similar complexity. These results suggest that objects are not represented in a holistic manner during learning, but that their individual components are encoded. Transfer between objects was not complete, and occurred for more than one component, regardless of how well they distinguish the object from distractors. This suggests that a joint involvement of multiple components was necessary for full performance. PMID:19864574
Zelinsky, Gregory J; Peng, Yifan; Berg, Alexander C; Samaras, Dimitris
2013-10-08
Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery.
Zelinsky, Gregory J.; Peng, Yifan; Berg, Alexander C.; Samaras, Dimitris
2013-01-01
Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery. PMID:24105460
ERIC Educational Resources Information Center
Siakaluk, Paul D.; Pexman, Penny M.; Aguilera, Laura; Owen, William J.; Sears, Christopher R.
2008-01-01
We examined the effects of sensorimotor experience in two visual word recognition tasks. Body-object interaction (BOI) ratings were collected for a large set of words. These ratings assess perceptions of the ease with which a human body can physically interact with a word's referent. A set of high BOI words (e.g., "mask") and a set of low BOI…
Robust selectivity to two-object images in human visual cortex
Agam, Yigal; Liu, Hesheng; Papanastassiou, Alexander; Buia, Calin; Golby, Alexandra J.; Madsen, Joseph R.; Kreiman, Gabriel
2010-01-01
SUMMARY We can recognize objects in a fraction of a second in spite of the presence of other objects [1–3]. The responses in macaque areas V4 and inferior temporal cortex [4–15] to a neuron’s preferred stimuli are typically suppressed by the addition of a second object within the receptive field (see however [16, 17]). How can this suppression be reconciled with rapid visual recognition in complex scenes? One option is that certain “special categories” are unaffected by other objects [18] but this leaves the problem unsolved for other categories. Another possibility is that serial attentional shifts help ameliorate the problem of distractor objects [19–21]. Yet, psychophysical studies [1–3], scalp recordings [1] and neurophysiological recordings [14, 16, 22–24], suggest that the initial sweep of visual processing contains a significant amount of information. We recorded intracranial field potentials in human visual cortex during presentation of flashes of two-object images. Visual selectivity from temporal cortex during the initial ~200 ms was largely robust to the presence of other objects. We could train linear decoders on the responses to isolated objects and decode information in two-object images. These observations are compatible with parallel, hierarchical and feed-forward theories of rapid visual recognition [25] and may provide a neural substrate to begin to unravel rapid recognition in natural scenes. PMID:20417105
Lactobacillus helveticus-fermented milk improves learning and memory in mice.
Ohsawa, Kazuhito; Uchida, Naoto; Ohki, Kohji; Nakamura, Yasunori; Yokogoshi, Hidehiko
2015-07-01
To investigate the effects of Calpis sour milk whey, a Lactobacillus helveticus-fermented milk product, on learning and memory. We evaluated improvement in scopolamine-induced memory impairment using the spontaneous alternation behaviour test, a measure of short-term memory. We also evaluated learning and working memory in mice using the novel object recognition test, which does not involve primary reinforcement (food or electric shocks). A total of 195 male ddY mice were used in the spontaneous alternation behaviour test and 60 in the novel object recognition test. Forced orally administered Calpis sour milk whey powder (200 and 2000 mg/kg) significantly improved scopolamine-induced cognitive impairments (P < 0.05 and P < 0.01, respectively) and object recognition memory (2000 mg/kg; P < 0.05). These results suggest that Calpis sour milk whey may be useful for the prevention of neurodegenerative disorders, such as Alzheimer's disease, and enhancing learning and memory in healthy human subjects; however, human clinical studies are necessary.
Human target acquisition performance
NASA Astrophysics Data System (ADS)
Teaney, Brian P.; Du Bosq, Todd W.; Reynolds, Joseph P.; Thompson, Roger; Aghera, Sameer; Moyer, Steven K.; Flug, Eric; Espinola, Richard; Hixson, Jonathan
2012-06-01
The battlefield has shifted from armored vehicles to armed insurgents. Target acquisition (identification, recognition, and detection) range performance involving humans as targets is vital for modern warfare. The acquisition and neutralization of armed insurgents while at the same time minimizing fratricide and civilian casualties is a mounting concern. U.S. Army RDECOM CERDEC NVESD has conducted many experiments involving human targets for infrared and reflective band sensors. The target sets include human activities, hand-held objects, uniforms & armament, and other tactically relevant targets. This paper will define a set of standard task difficulty values for identification and recognition associated with human target acquisition performance.
Two speed factors of visual recognition independently correlated with fluid intelligence.
Tachibana, Ryosuke; Namba, Yuri; Noguchi, Yasuki
2014-01-01
Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeking for visuo-cognitive factors of human intelligence indicated a significant correlation between fluid intelligence and the inspection time (IT), an index for a speed of object recognition performed in the ventral pathway. We thus presently examined a possibility that neural processing speed in the dorsal pathway also represented a factor of intelligence. Specifically, we used the mental rotation (MR) task, a popular psychometric measure for mental speed of spatial processing in the dorsal pathway. We found that the speed of MR was significantly correlated with intelligence scores, while it had no correlation with one's IT (recognition speed of visual objects). Our results support the new possibility that intelligence could be explained by two types of mental speed, one related to object recognition (IT) and another for manipulation of mental images (MR).
Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex.
Malach, R; Reppas, J B; Benson, R R; Kwong, K K; Jiang, H; Kennedy, W A; Ledden, P J; Brady, T J; Rosen, B R; Tootell, R B
1995-01-01
The stages of integration leading from local feature analysis to object recognition were explored in human visual cortex by using the technique of functional magnetic resonance imaging. Here we report evidence for object-related activation. Such activation was located at the lateral-posterior aspect of the occipital lobe, just abutting the posterior aspect of the motion-sensitive area MT/V5, in a region termed the lateral occipital complex (LO). LO showed preferential activation to images of objects, compared to a wide range of texture patterns. This activation was not caused by a global difference in the Fourier spatial frequency content of objects versus texture images, since object images produced enhanced LO activation compared to textures matched in power spectra but randomized in phase. The preferential activation to objects also could not be explained by different patterns of eye movements: similar levels of activation were observed when subjects fixated on the objects and when they scanned the objects with their eyes. Additional manipulations such as spatial frequency filtering and a 4-fold change in visual size did not affect LO activation. These results suggest that the enhanced responses to objects were not a manifestation of low-level visual processing. A striking demonstration that activity in LO is uniquely correlated to object detectability was produced by the "Lincoln" illusion, in which blurring of objects digitized into large blocks paradoxically increases their recognizability. Such blurring led to significant enhancement of LO activation. Despite the preferential activation to objects, LO did not seem to be involved in the final, "semantic," stages of the recognition process. Thus, objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree. These results are thus evidence for an intermediate link in the chain of processing stages leading to object recognition in human visual cortex. Images Fig. 1 Fig. 2 Fig. 3 PMID:7667258
Spatiotemporal dynamics underlying object completion in human ventral visual cortex.
Tang, Hanlin; Buia, Calin; Madhavan, Radhika; Crone, Nathan E; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel
2014-08-06
Natural vision often involves recognizing objects from partial information. Recognition of objects from parts presents a significant challenge for theories of vision because it requires spatial integration and extrapolation from prior knowledge. Here we recorded intracranial field potentials of 113 visually selective electrodes from epilepsy patients in response to whole and partial objects. Responses along the ventral visual stream, particularly the inferior occipital and fusiform gyri, remained selective despite showing only 9%-25% of the object areas. However, these visually selective signals emerged ∼100 ms later for partial versus whole objects. These processing delays were particularly pronounced in higher visual areas within the ventral stream. This latency difference persisted when controlling for changes in contrast, signal amplitude, and the strength of selectivity. These results argue against a purely feedforward explanation of recognition from partial information, and provide spatiotemporal constraints on theories of object recognition that involve recurrent processing. Copyright © 2014 Elsevier Inc. All rights reserved.
3D visual mechinism by neural networkings
NASA Astrophysics Data System (ADS)
Sugiyama, Shigeki
2007-04-01
There are some computer vision systems that are available on a market but those are quite far from a real usage of our daily life in a sense of security guard or in a sense of a usage of recognition of a target object behaviour. Because those surroundings' sensing might need to recognize a detail description of an object, like "the distance to an object" and "an object detail figure" and "its figure of edging", which are not possible to have a clear picture of the mechanisms of them with the present recognition system. So for doing this, here studies on mechanisms of how a pair of human eyes can recognize a distance apart, an object edging, and an object in order to get basic essences of vision mechanisms. And those basic mechanisms of object recognition are simplified and are extended logically for applying to a computer vision system. Some of the results of these studies are introduced on this paper.
Using Prosopagnosia to Test and Modify Visual Recognition Theory.
O'Brien, Alexander M
2018-02-01
Biederman's contemporary theory of basic visual object recognition (Recognition-by-Components) is based on structural descriptions of objects and presumes 36 visual primitives (geons) people can discriminate, but there has been no empirical test of the actual use of these 36 geons to visually distinguish objects. In this study, we tested for the actual use of these geons in basic visual discrimination by comparing object discrimination performance patterns (when distinguishing varied stimuli) of an acquired prosopagnosia patient (LB) and healthy control participants. LB's prosopagnosia left her heavily reliant on structural descriptions or categorical object differences in visual discrimination tasks versus the control participants' additional ability to use face recognition or coordinate systems (Coordinate Relations Hypothesis). Thus, when LB performed comparably to control participants with a given stimulus, her restricted reliance on basic or categorical discriminations meant that the stimuli must be distinguishable on the basis of a geon feature. By varying stimuli in eight separate experiments and presenting all 36 geons, we discerned that LB coded only 12 (vs. 36) distinct visual primitives (geons), apparently reflective of human visual systems generally.
Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition.
Spoerer, Courtney J; McClure, Patrick; Kriegeskorte, Nikolaus
2017-01-01
Feedforward neural networks provide the dominant model of how the brain performs visual object recognition. However, these networks lack the lateral and feedback connections, and the resulting recurrent neuronal dynamics, of the ventral visual pathway in the human and non-human primate brain. Here we investigate recurrent convolutional neural networks with bottom-up (B), lateral (L), and top-down (T) connections. Combining these types of connections yields four architectures (B, BT, BL, and BLT), which we systematically test and compare. We hypothesized that recurrent dynamics might improve recognition performance in the challenging scenario of partial occlusion. We introduce two novel occluded object recognition tasks to test the efficacy of the models, digit clutter (where multiple target digits occlude one another) and digit debris (where target digits are occluded by digit fragments). We find that recurrent neural networks outperform feedforward control models (approximately matched in parametric complexity) at recognizing objects, both in the absence of occlusion and in all occlusion conditions. Recurrent networks were also found to be more robust to the inclusion of additive Gaussian noise. Recurrent neural networks are better in two respects: (1) they are more neurobiologically realistic than their feedforward counterparts; (2) they are better in terms of their ability to recognize objects, especially under challenging conditions. This work shows that computer vision can benefit from using recurrent convolutional architectures and suggests that the ubiquitous recurrent connections in biological brains are essential for task performance.
Exploiting core knowledge for visual object recognition.
Schurgin, Mark W; Flombaum, Jonathan I
2017-03-01
Humans recognize thousands of objects, and with relative tolerance to variable retinal inputs. The acquisition of this ability is not fully understood, and it remains an area in which artificial systems have yet to surpass people. We sought to investigate the memory process that supports object recognition. Specifically, we investigated the association of inputs that co-occur over short periods of time. We tested the hypothesis that human perception exploits expectations about object kinematics to limit the scope of association to inputs that are likely to have the same token as a source. In several experiments we exposed participants to images of objects, and we then tested recognition sensitivity. Using motion, we manipulated whether successive encounters with an image took place through kinematics that implied the same or a different token as the source of those encounters. Images were injected with noise, or shown at varying orientations, and we included 2 manipulations of motion kinematics. Across all experiments, memory performance was better for images that had been previously encountered with kinematics that implied a single token. A model-based analysis similarly showed greater memory strength when images were shown via kinematics that implied a single token. These results suggest that constraints from physics are built into the mechanisms that support memory about objects. Such constraints-often characterized as 'Core Knowledge'-are known to support perception and cognition broadly, even in young infants. But they have never been considered as a mechanism for memory with respect to recognition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Objects predict fixations better than early saliency.
Einhäuser, Wolfgang; Spain, Merrielle; Perona, Pietro
2008-11-20
Humans move their eyes while looking at scenes and pictures. Eye movements correlate with shifts in attention and are thought to be a consequence of optimal resource allocation for high-level tasks such as visual recognition. Models of attention, such as "saliency maps," are often built on the assumption that "early" features (color, contrast, orientation, motion, and so forth) drive attention directly. We explore an alternative hypothesis: Observers attend to "interesting" objects. To test this hypothesis, we measure the eye position of human observers while they inspect photographs of common natural scenes. Our observers perform different tasks: artistic evaluation, analysis of content, and search. Immediately after each presentation, our observers are asked to name objects they saw. Weighted with recall frequency, these objects predict fixations in individual images better than early saliency, irrespective of task. Also, saliency combined with object positions predicts which objects are frequently named. This suggests that early saliency has only an indirect effect on attention, acting through recognized objects. Consequently, rather than treating attention as mere preprocessing step for object recognition, models of both need to be integrated.
Two Speed Factors of Visual Recognition Independently Correlated with Fluid Intelligence
Tachibana, Ryosuke; Namba, Yuri; Noguchi, Yasuki
2014-01-01
Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeking for visuo-cognitive factors of human intelligence indicated a significant correlation between fluid intelligence and the inspection time (IT), an index for a speed of object recognition performed in the ventral pathway. We thus presently examined a possibility that neural processing speed in the dorsal pathway also represented a factor of intelligence. Specifically, we used the mental rotation (MR) task, a popular psychometric measure for mental speed of spatial processing in the dorsal pathway. We found that the speed of MR was significantly correlated with intelligence scores, while it had no correlation with one’s IT (recognition speed of visual objects). Our results support the new possibility that intelligence could be explained by two types of mental speed, one related to object recognition (IT) and another for manipulation of mental images (MR). PMID:24825574
Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition
Kheradpisheh, Saeed Reza; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée
2016-01-01
Deep convolutional neural networks (DCNNs) have attracted much attention recently, and have shown to be able to recognize thousands of object categories in natural image databases. Their architecture is somewhat similar to that of the human visual system: both use restricted receptive fields, and a hierarchy of layers which progressively extract more and more abstracted features. Yet it is unknown whether DCNNs match human performance at the task of view-invariant object recognition, whether they make similar errors and use similar representations for this task, and whether the answers depend on the magnitude of the viewpoint variations. To investigate these issues, we benchmarked eight state-of-the-art DCNNs, the HMAX model, and a baseline shallow model and compared their results to those of humans with backward masking. Unlike in all previous DCNN studies, we carefully controlled the magnitude of the viewpoint variations to demonstrate that shallow nets can outperform deep nets and humans when variations are weak. When facing larger variations, however, more layers were needed to match human performance and error distributions, and to have representations that are consistent with human behavior. A very deep net with 18 layers even outperformed humans at the highest variation level, using the most human-like representations. PMID:27601096
Guidance of visual attention by semantic information in real-world scenes
Wu, Chia-Chien; Wick, Farahnaz Ahmed; Pomplun, Marc
2014-01-01
Recent research on attentional guidance in real-world scenes has focused on object recognition within the context of a scene. This approach has been valuable for determining some factors that drive the allocation of visual attention and determine visual selection. This article provides a review of experimental work on how different components of context, especially semantic information, affect attentional deployment. We review work from the areas of object recognition, scene perception, and visual search, highlighting recent studies examining semantic structure in real-world scenes. A better understanding on how humans parse scene representations will not only improve current models of visual attention but also advance next-generation computer vision systems and human-computer interfaces. PMID:24567724
2005-03-01
added to address such worn or carried objects, and facial recognition . The definitions also address commercial and modified commercial vehicles that...or revolver - Uniform worn by French or US or Chinese infantry - Facial recognition /identification (A particular person can be discriminated out of a
2005-04-08
category, feature identification, has been added to address such worn or carried objects, and facial recognition . The definitions also address commercial...Cell phone or revolver − Uniform worn by French or US or Chinese infantry − Facial recognition /identification (A particular person can be
Summative Evaluation of the Foreign Credential Recognition Program. Final Report
ERIC Educational Resources Information Center
Human Resources and Skills Development Canada, 2010
2010-01-01
A summative evaluation of the Foreign Credential Recognition Program (FCRP) funded by Human Resources and Skills Development Canada (HRSDC) was conducted during the spring, summer and fall of 2008. The main objective of the evaluation was to measure the relevance, impacts, and cost-effectiveness of the program. Given the timing of the evaluation…
2016-07-01
reconstruction, video synchronization, multi - view tracking, action recognition, reasoning with uncertainty 16. SECURITY CLASSIFICATION OF: 17...3.4.2. Human action recognition across multi - views ......................................................................................... 44 3.4.3...68 4.2.1. Multi - view Multi -object Tracking with 3D cues
Human brain regions involved in recognizing environmental sounds.
Lewis, James W; Wightman, Frederic L; Brefczynski, Julie A; Phinney, Raymond E; Binder, Jeffrey R; DeYoe, Edgar A
2004-09-01
To identify the brain regions preferentially involved in environmental sound recognition (comprising portions of a putative auditory 'what' pathway), we collected functional imaging data while listeners attended to a wide range of sounds, including those produced by tools, animals, liquids and dropped objects. These recognizable sounds, in contrast to unrecognizable, temporally reversed control sounds, evoked activity in a distributed network of brain regions previously associated with semantic processing, located predominantly in the left hemisphere, but also included strong bilateral activity in posterior portions of the middle temporal gyri (pMTG). Comparisons with earlier studies suggest that these bilateral pMTG foci partially overlap cortex implicated in high-level visual processing of complex biological motion and recognition of tools and other artifacts. We propose that the pMTG foci process multimodal (or supramodal) information about objects and object-associated motion, and that this may represent 'action' knowledge that can be recruited for purposes of recognition of familiar environmental sound-sources. These data also provide a functional and anatomical explanation for the symptoms of pure auditory agnosia for environmental sounds reported in human lesion studies.
Comparing object recognition from binary and bipolar edge images for visual prostheses.
Jung, Jae-Hyun; Pu, Tian; Peli, Eli
2016-11-01
Visual prostheses require an effective representation method due to the limited display condition which has only 2 or 3 levels of grayscale in low resolution. Edges derived from abrupt luminance changes in images carry essential information for object recognition. Typical binary (black and white) edge images have been used to represent features to convey essential information. However, in scenes with a complex cluttered background, the recognition rate of the binary edge images by human observers is limited and additional information is required. The polarity of edges and cusps (black or white features on a gray background) carries important additional information; the polarity may provide shape from shading information missing in the binary edge image. This depth information may be restored by using bipolar edges. We compared object recognition rates from 16 binary edge images and bipolar edge images by 26 subjects to determine the possible impact of bipolar filtering in visual prostheses with 3 or more levels of grayscale. Recognition rates were higher with bipolar edge images and the improvement was significant in scenes with complex backgrounds. The results also suggest that erroneous shape from shading interpretation of bipolar edges resulting from pigment rather than boundaries of shape may confound the recognition.
Comparing visual representations across human fMRI and computational vision
Leeds, Daniel D.; Seibert, Darren A.; Pyles, John A.; Tarr, Michael J.
2013-01-01
Feedforward visual object perception recruits a cortical network that is assumed to be hierarchical, progressing from basic visual features to complete object representations. However, the nature of the intermediate features related to this transformation remains poorly understood. Here, we explore how well different computer vision recognition models account for neural object encoding across the human cortical visual pathway as measured using fMRI. These neural data, collected during the viewing of 60 images of real-world objects, were analyzed with a searchlight procedure as in Kriegeskorte, Goebel, and Bandettini (2006): Within each searchlight sphere, the obtained patterns of neural activity for all 60 objects were compared to model responses for each computer recognition algorithm using representational dissimilarity analysis (Kriegeskorte et al., 2008). Although each of the computer vision methods significantly accounted for some of the neural data, among the different models, the scale invariant feature transform (Lowe, 2004), encoding local visual properties gathered from “interest points,” was best able to accurately and consistently account for stimulus representations within the ventral pathway. More generally, when present, significance was observed in regions of the ventral-temporal cortex associated with intermediate-level object perception. Differences in model effectiveness and the neural location of significant matches may be attributable to the fact that each model implements a different featural basis for representing objects (e.g., more holistic or more parts-based). Overall, we conclude that well-known computer vision recognition systems may serve as viable proxies for theories of intermediate visual object representation. PMID:24273227
Poth, Christian H.; Schneider, Werner X.
2016-01-01
Human vision is organized in discrete processing episodes (e.g., eye fixations or task-steps). Object information must be transmitted across episodes to enable episodic short-term recognition: recognizing whether a current object has been seen in a previous episode. We ask whether episodic short-term recognition presupposes that objects have been encoded into capacity-limited visual working memory (VWM), which retains visual information for report. Alternatively, it could rely on the activation of visual features or categories that occurs before encoding into VWM. We assessed the dependence of episodic short-term recognition on VWM by a new paradigm combining letter report and probe recognition. Participants viewed displays of 10 letters and reported as many as possible after a retention interval (whole report). Next, participants viewed a probe letter and indicated whether it had been one of the 10 letters (probe recognition). In Experiment 1, probe recognition was more accurate for letters that had been encoded into VWM (reported letters) compared with non-encoded letters (non-reported letters). Interestingly, those letters that participants reported in their whole report had been near to one another within the letter displays. This suggests that the encoding into VWM proceeded in a spatially clustered manner. In Experiment 2, participants reported only one of 10 letters (partial report) and probes either referred to this letter, to letters that had been near to it, or far from it. Probe recognition was more accurate for near than for far letters, although none of these letters had to be reported. These findings indicate that episodic short-term recognition is constrained to a small number of simultaneously presented objects that have been encoded into VWM. PMID:27713722
Poth, Christian H; Schneider, Werner X
2016-01-01
Human vision is organized in discrete processing episodes (e.g., eye fixations or task-steps). Object information must be transmitted across episodes to enable episodic short-term recognition: recognizing whether a current object has been seen in a previous episode. We ask whether episodic short-term recognition presupposes that objects have been encoded into capacity-limited visual working memory (VWM), which retains visual information for report. Alternatively, it could rely on the activation of visual features or categories that occurs before encoding into VWM. We assessed the dependence of episodic short-term recognition on VWM by a new paradigm combining letter report and probe recognition. Participants viewed displays of 10 letters and reported as many as possible after a retention interval (whole report). Next, participants viewed a probe letter and indicated whether it had been one of the 10 letters (probe recognition). In Experiment 1, probe recognition was more accurate for letters that had been encoded into VWM (reported letters) compared with non-encoded letters (non-reported letters). Interestingly, those letters that participants reported in their whole report had been near to one another within the letter displays. This suggests that the encoding into VWM proceeded in a spatially clustered manner. In Experiment 2, participants reported only one of 10 letters (partial report) and probes either referred to this letter, to letters that had been near to it, or far from it. Probe recognition was more accurate for near than for far letters, although none of these letters had to be reported. These findings indicate that episodic short-term recognition is constrained to a small number of simultaneously presented objects that have been encoded into VWM.
Real-time Human Activity Recognition
NASA Astrophysics Data System (ADS)
Albukhary, N.; Mustafah, Y. M.
2017-11-01
The traditional Closed-circuit Television (CCTV) system requires human to monitor the CCTV for 24/7 which is inefficient and costly. Therefore, there’s a need for a system which can recognize human activity effectively in real-time. This paper concentrates on recognizing simple activity such as walking, running, sitting, standing and landing by using image processing techniques. Firstly, object detection is done by using background subtraction to detect moving object. Then, object tracking and object classification are constructed so that different person can be differentiated by using feature detection. Geometrical attributes of tracked object, which are centroid and aspect ratio of identified tracked are manipulated so that simple activity can be detected.
Bilateral Theta-Burst TMS to Influence Global Gestalt Perception
Ritzinger, Bernd; Huberle, Elisabeth; Karnath, Hans-Otto
2012-01-01
While early and higher visual areas along the ventral visual pathway in the inferotemporal cortex are critical for the recognition of individual objects, the neural representation of human perception of complex global visual scenes remains under debate. Stroke patients with a selective deficit in the perception of a complex global Gestalt with intact recognition of individual objects – a deficit termed simultanagnosia – greatly helped to study this question. Interestingly, simultanagnosia typically results from bilateral lesions of the temporo-parietal junction (TPJ). The present study aimed to verify the relevance of this area for human global Gestalt perception. We applied continuous theta-burst TMS either unilaterally (left or right) or bilateral simultaneously over TPJ. Healthy subjects were presented with hierarchically organized visual stimuli that allowed parametrical degrading of the object at the global level. Identification of the global Gestalt was significantly modulated only for the bilateral TPJ stimulation condition. Our results strengthen the view that global Gestalt perception in the human brain involves TPJ and is co-dependent on both hemispheres. PMID:23110106
Bilateral theta-burst TMS to influence global gestalt perception.
Ritzinger, Bernd; Huberle, Elisabeth; Karnath, Hans-Otto
2012-01-01
While early and higher visual areas along the ventral visual pathway in the inferotemporal cortex are critical for the recognition of individual objects, the neural representation of human perception of complex global visual scenes remains under debate. Stroke patients with a selective deficit in the perception of a complex global Gestalt with intact recognition of individual objects - a deficit termed simultanagnosia - greatly helped to study this question. Interestingly, simultanagnosia typically results from bilateral lesions of the temporo-parietal junction (TPJ). The present study aimed to verify the relevance of this area for human global Gestalt perception. We applied continuous theta-burst TMS either unilaterally (left or right) or bilateral simultaneously over TPJ. Healthy subjects were presented with hierarchically organized visual stimuli that allowed parametrical degrading of the object at the global level. Identification of the global Gestalt was significantly modulated only for the bilateral TPJ stimulation condition. Our results strengthen the view that global Gestalt perception in the human brain involves TPJ and is co-dependent on both hemispheres.
Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory.
Hall, Jessica H; Wiseman, Frances K; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Harwood, John L; Good, Mark A
2016-04-01
The present study examined memory function in Tc1 mice, a transchromosomic model of Down syndrome (DS). Tc1 mice demonstrated an unusual delay-dependent deficit in recognition memory. More specifically, Tc1 mice showed intact immediate (30sec), impaired short-term (10-min) and intact long-term (24-h) memory for objects. A similar pattern was observed for olfactory stimuli, confirming the generality of the pattern across sensory modalities. The specificity of the behavioural deficits in Tc1 mice was confirmed using APP overexpressing mice that showed the opposite pattern of object memory deficits. In contrast to object memory, Tc1 mice showed no deficit in either immediate or long-term memory for object-in-place information. Similarly, Tc1 mice showed no deficit in short-term memory for object-location information. The latter result indicates that Tc1 mice were able to detect and react to spatial novelty at the same delay interval that was sensitive to an object novelty recognition impairment. These results demonstrate (1) that novelty detection per se and (2) the encoding of visuo-spatial information was not disrupted in adult Tc1 mice. The authors conclude that the task specific nature of the short-term recognition memory deficit suggests that the trisomy of genes on human chromosome 21 in Tc1 mice impacts on (perirhinal) cortical systems supporting short-term object and olfactory recognition memory. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Infants' Recognition of Objects Using Canonical Color
ERIC Educational Resources Information Center
Kimura, Atsushi; Wada, Yuji; Yang, Jiale; Otsuka, Yumiko; Dan, Ippeita; Masuda, Tomohiro; Kanazawa, So; Yamaguchi, Masami K.
2010-01-01
We explored infants' ability to recognize the canonical colors of daily objects, including two color-specific objects (human face and fruit) and a non-color-specific object (flower), by using a preferential looking technique. A total of 58 infants between 5 and 8 months of age were tested with a stimulus composed of two color pictures of an object…
View-Based Models of 3D Object Recognition and Class-Specific Invariance
1994-04-01
underlie recognition of geon-like com- ponents (see Edelman, 1991 and Biederman , 1987 ). I(X -_ ta)II1y = (X - ta)TWTW(x -_ ta) (3) View-invariant features...Institute of Technology, 1993. neocortex. Biological Cybernetics, 1992. 14] I. Biederman . Recognition by components: a theory [20] B. Olshausen, C...Anderson, and D. Van Essen. A of human image understanding. Psychol. Review, neural model of visual attention and invariant pat- 94:115-147, 1987 . tern
In search of memory tests equivalent for experiments on animals and humans.
Brodziak, Andrzej; Kołat, Estera; Różyk-Myrta, Alicja
2014-12-19
Older people often exhibit memory impairments. Contemporary demographic trends cause aging of the society. In this situation, it is important to conduct clinical trials of drugs and use training methods to improve memory capacity. Development of new memory tests requires experiments on animals and then clinical trials in humans. Therefore, we decided to review the assessment methods and search for tests that evaluate analogous cognitive processes in animals and humans. This review has enabled us to propose 2 pairs of tests of the efficiency of working memory capacity in animals and humans. We propose a basic set of methods for complex clinical trials of drugs and training methods to improve memory, consisting of 2 pairs of tests: 1) the Novel Object Recognition Test - Sternberg Item Recognition Test and 2) the Object-Location Test - Visuospatial Memory Test. We postulate that further investigations of methods that are equivalent in animals experiments and observations performed on humans are necessary.
Fang, Yi-Chin; Wu, Bo-Wen
2008-12-01
Thermal imaging is an important technology in both national defense and the private sector. An advantage of thermal imaging is its ability to be deployed while fully engaged in duties, not limited by weather or the brightness of indoor or outdoor conditions. However, in an outdoor environment, many factors, including atmospheric decay, target shape, great distance, fog, temperature out of range and diffraction limits can lead to bad image formation, which directly affects the accuracy of object recognition. The visual characteristics of the human eye mean that it has a much better capacity for picture recognition under normal conditions than artificial intelligence does. However, conditions of interference significantly reduce this capacity for picture recognition for instance, fatigue impairs human eyesight. Hence, psychological and physiological factors can affect the result when the human eye is adopted to measure MRTD (minimum resolvable temperature difference) and MRCTD (minimum resolvable circle temperature difference). This study explores thermal imaging recognition, and presents a method for effectively choosing the characteristic values and processing the images fully. Neural network technology is successfully applied to recognize thermal imaging and predict MRTD and MRCTD (Appendix A), exceeding thermal imaging recognition under fatigue and the limits of the human eye.
Optimized Periocular Template Selection for Human Recognition
Sa, Pankaj K.; Majhi, Banshidhar
2013-01-01
A novel approach for selecting a rectangular template around periocular region optimally potential for human recognition is proposed. A comparatively larger template of periocular image than the optimal one can be slightly more potent for recognition, but the larger template heavily slows down the biometric system by making feature extraction computationally intensive and increasing the database size. A smaller template, on the contrary, cannot yield desirable recognition though the smaller template performs faster due to low computation for feature extraction. These two contradictory objectives (namely, (a) to minimize the size of periocular template and (b) to maximize the recognition through the template) are aimed to be optimized through the proposed research. This paper proposes four different approaches for dynamic optimal template selection from periocular region. The proposed methods are tested on publicly available unconstrained UBIRISv2 and FERET databases and satisfactory results have been achieved. Thus obtained template can be used for recognition of individuals in an organization and can be generalized to recognize every citizen of a nation. PMID:23984370
Automated Recognition of 3D Features in GPIR Images
NASA Technical Reports Server (NTRS)
Park, Han; Stough, Timothy; Fijany, Amir
2007-01-01
A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.
Preserved Haptic Shape Processing after Bilateral LOC Lesions.
Snow, Jacqueline C; Goodale, Melvyn A; Culham, Jody C
2015-10-07
The visual and haptic perceptual systems are understood to share a common neural representation of object shape. A region thought to be critical for recognizing visual and haptic shape information is the lateral occipital complex (LOC). We investigated whether LOC is essential for haptic shape recognition in humans by studying behavioral responses and brain activation for haptically explored objects in a patient (M.C.) with bilateral lesions of the occipitotemporal cortex, including LOC. Despite severe deficits in recognizing objects using vision, M.C. was able to accurately recognize objects via touch. M.C.'s psychophysical response profile to haptically explored shapes was also indistinguishable from controls. Using fMRI, M.C. showed no object-selective visual or haptic responses in LOC, but her pattern of haptic activation in other brain regions was remarkably similar to healthy controls. Although LOC is routinely active during visual and haptic shape recognition tasks, it is not essential for haptic recognition of object shape. The lateral occipital complex (LOC) is a brain region regarded to be critical for recognizing object shape, both in vision and in touch. However, causal evidence linking LOC with haptic shape processing is lacking. We studied recognition performance, psychophysical sensitivity, and brain response to touched objects, in a patient (M.C.) with extensive lesions involving LOC bilaterally. Despite being severely impaired in visual shape recognition, M.C. was able to identify objects via touch and she showed normal sensitivity to a haptic shape illusion. M.C.'s brain response to touched objects in areas of undamaged cortex was also very similar to that observed in neurologically healthy controls. These results demonstrate that LOC is not necessary for recognizing objects via touch. Copyright © 2015 the authors 0270-6474/15/3513745-16$15.00/0.
Human-inspired sound environment recognition system for assistive vehicles
NASA Astrophysics Data System (ADS)
González Vidal, Eduardo; Fredes Zarricueta, Ernesto; Auat Cheein, Fernando
2015-02-01
Objective. The human auditory system acquires environmental information under sound stimuli faster than visual or touch systems, which in turn, allows for faster human responses to such stimuli. It also complements senses such as sight, where direct line-of-view is necessary to identify objects, in the environment recognition process. This work focuses on implementing human reaction to sound stimuli and environment recognition on assistive robotic devices, such as robotic wheelchairs or robotized cars. These vehicles need environment information to ensure safe navigation. Approach. In the field of environment recognition, range sensors (such as LiDAR and ultrasonic systems) and artificial vision devices are widely used; however, these sensors depend on environment constraints (such as lighting variability or color of objects), and sound can provide important information for the characterization of an environment. In this work, we propose a sound-based approach to enhance the environment recognition process, mainly for cases that compromise human integrity, according to the International Classification of Functioning (ICF). Our proposal is based on a neural network implementation that is able to classify up to 15 different environments, each selected according to the ICF considerations on environment factors in the community-based physical activities of people with disabilities. Main results. The accuracy rates in environment classification ranges from 84% to 93%. This classification is later used to constrain assistive vehicle navigation in order to protect the user during daily activities. This work also includes real-time outdoor experimentation (performed on an assistive vehicle) by seven volunteers with different disabilities (but without cognitive impairment and experienced in the use of wheelchairs), statistical validation, comparison with previously published work, and a discussion section where the pros and cons of our system are evaluated. Significance. The proposed sound-based system is very efficient at providing general descriptions of the environment. Such descriptions are focused on vulnerable situations described by the ICF. The volunteers answered a questionnaire regarding the importance of constraining the vehicle velocities in risky environments, showing that all the volunteers felt comfortable with the system and its performance.
Face recognition increases during saccade preparation.
Lin, Hai; Rizak, Joshua D; Ma, Yuan-ye; Yang, Shang-chuan; Chen, Lin; Hu, Xin-tian
2014-01-01
Face perception is integral to human perception system as it underlies social interactions. Saccadic eye movements are frequently made to bring interesting visual information, such as faces, onto the fovea for detailed processing. Just before eye movement onset, the processing of some basic features, such as the orientation, of an object improves at the saccade landing point. Interestingly, there is also evidence that indicates faces are processed in early visual processing stages similar to basic features. However, it is not known whether this early enhancement of processing includes face recognition. In this study, three experiments were performed to map the timing of face presentation to the beginning of the eye movement in order to evaluate pre-saccadic face recognition. Faces were found to be similarly processed as simple objects immediately prior to saccadic movements. Starting ∼ 120 ms before a saccade to a target face, independent of whether or not the face was surrounded by other faces, the face recognition gradually improved and the critical spacing of the crowding decreased as saccade onset was approaching. These results suggest that an upcoming saccade prepares the visual system for new information about faces at the saccade landing site and may reduce the background in a crowd to target the intended face. This indicates an important role of pre-saccadic eye movement signals in human face recognition.
Resolving human object recognition in space and time
Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude
2014-01-01
A comprehensive picture of object processing in the human brain requires combining both spatial and temporal information about brain activity. Here, we acquired human magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) responses to 92 object images. Multivariate pattern classification applied to MEG revealed the time course of object processing: whereas individual images were discriminated by visual representations early, ordinate and superordinate category levels emerged relatively later. Using representational similarity analysis, we combine human fMRI and MEG to show content-specific correspondence between early MEG responses and primary visual cortex (V1), and later MEG responses and inferior temporal (IT) cortex. We identified transient and persistent neural activities during object processing, with sources in V1 and IT., Finally, human MEG signals were correlated to single-unit responses in monkey IT. Together, our findings provide an integrated space- and time-resolved view of human object categorization during the first few hundred milliseconds of vision. PMID:24464044
Liquid lens: advances in adaptive optics
NASA Astrophysics Data System (ADS)
Casey, Shawn Patrick
2010-12-01
'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.
Recognition memory in tree shrew (Tupaia belangeri) after repeated familiarization sessions.
Khani, Abbas; Rainer, Gregor
2012-07-01
Recognition memories are formed during perceptual experience and allow subsequent recognition of previously encountered objects as well as their distinction from novel objects. As a consequence, novel objects are generally explored longer than familiar objects by many species. This novelty preference has been documented in rodents using the novel object recognition (NOR) test, as well is in primates including humans using preferential looking time paradigms. Here, we examine novelty preference using the NOR task in tree shrew, a small animal species that is considered to be an intermediary between rodents and primates. Our paradigm consisted of three phases: arena familiarization, object familiarization sessions with two identical objects in the arena and finally a test session following a 24-h retention period with a familiar and a novel object in the arena. We employed two different object familiarization durations: one and three sessions on consecutive days. After three object familiarization sessions, tree shrews exhibited robust preference for novel objects on the test day. This was accompanied by significant reduction in familiar object exploration time, occurring largely between the first and second day of object familiarization. By contrast, tree shrews did not show a significant preference for the novel object after a one-session object familiarization. Nonetheless, they spent significantly less time exploring the familiar object on the test day compared to the object familiarization day, indicating that they did maintain a memory trace for the familiar object. Our study revealed different time courses for familiar object habituation and emergence of novelty preference, suggesting that novelty preference is dependent on well-consolidated memory of the competing familiar object. Taken together, our results demonstrate robust novelty preference of tree shrews, in general similarity to previous findings in rodents and primates. Copyright © 2012 Elsevier B.V. All rights reserved.
Beyond sensory images: Object-based representation in the human ventral pathway
Pietrini, Pietro; Furey, Maura L.; Ricciardi, Emiliano; Gobbini, M. Ida; Wu, W.-H. Carolyn; Cohen, Leonardo; Guazzelli, Mario; Haxby, James V.
2004-01-01
We investigated whether the topographically organized, category-related patterns of neural response in the ventral visual pathway are a representation of sensory images or a more abstract representation of object form that is not dependent on sensory modality. We used functional MRI to measure patterns of response evoked during visual and tactile recognition of faces and manmade objects in sighted subjects and during tactile recognition in blind subjects. Results showed that visual and tactile recognition evoked category-related patterns of response in a ventral extrastriate visual area in the inferior temporal gyrus that were correlated across modality for manmade objects. Blind subjects also demonstrated category-related patterns of response in this “visual” area, and in more ventral cortical regions in the fusiform gyrus, indicating that these patterns are not due to visual imagery and, furthermore, that visual experience is not necessary for category-related representations to develop in these cortices. These results demonstrate that the representation of objects in the ventral visual pathway is not simply a representation of visual images but, rather, is a representation of more abstract features of object form. PMID:15064396
Comparing object recognition from binary and bipolar edge images for visual prostheses
Jung, Jae-Hyun; Pu, Tian; Peli, Eli
2017-01-01
Visual prostheses require an effective representation method due to the limited display condition which has only 2 or 3 levels of grayscale in low resolution. Edges derived from abrupt luminance changes in images carry essential information for object recognition. Typical binary (black and white) edge images have been used to represent features to convey essential information. However, in scenes with a complex cluttered background, the recognition rate of the binary edge images by human observers is limited and additional information is required. The polarity of edges and cusps (black or white features on a gray background) carries important additional information; the polarity may provide shape from shading information missing in the binary edge image. This depth information may be restored by using bipolar edges. We compared object recognition rates from 16 binary edge images and bipolar edge images by 26 subjects to determine the possible impact of bipolar filtering in visual prostheses with 3 or more levels of grayscale. Recognition rates were higher with bipolar edge images and the improvement was significant in scenes with complex backgrounds. The results also suggest that erroneous shape from shading interpretation of bipolar edges resulting from pigment rather than boundaries of shape may confound the recognition. PMID:28458481
3D abnormal behavior recognition in power generation
NASA Astrophysics Data System (ADS)
Wei, Zhenhua; Li, Xuesen; Su, Jie; Lin, Jie
2011-06-01
So far most research of human behavior recognition focus on simple individual behavior, such as wave, crouch, jump and bend. This paper will focus on abnormal behavior with objects carrying in power generation. Such as using mobile communication device in main control room, taking helmet off during working and lying down in high place. Taking account of the color and shape are fixed, we adopted edge detecting by color tracking to recognize object in worker. This paper introduces a method, which using geometric character of skeleton and its angle to express sequence of three-dimensional human behavior data. Then adopting Semi-join critical step Hidden Markov Model, weighing probability of critical steps' output to reduce the computational complexity. Training model for every behavior, mean while select some skeleton frames from 3D behavior sample to form a critical step set. This set is a bridge linking 2D observation behavior with 3D human joints feature. The 3D reconstruction is not required during the 2D behavior recognition phase. In the beginning of recognition progress, finding the best match for every frame of 2D observed sample in 3D skeleton set. After that, 2D observed skeleton frames sample will be identified as a specifically 3D behavior by behavior-classifier. The effectiveness of the proposed algorithm is demonstrated with experiments in similar power generation environment.
Metric invariance in object recognition: a review and further evidence.
Cooper, E E; Biederman, I; Hummel, J E
1992-06-01
Phenomenologically, human shape recognition appears to be invariant with changes of orientation in depth (up to parts occlusion), position in the visual field, and size. Recent versions of template theories (e.g., Ullman, 1989; Lowe, 1987) assume that these invariances are achieved through the application of transformations such as rotation, translation, and scaling of the image so that it can be matched metrically to a stored template. Presumably, such transformations would require time for their execution. We describe recent priming experiments in which the effects of a prior brief presentation of an image on its subsequent recognition are assessed. The results of these experiments indicate that the invariance is complete: The magnitude of visual priming (as distinct from name or basic level concept priming) is not affected by a change in position, size, orientation in depth, or the particular lines and vertices present in the image, as long as representations of the same components can be activated. An implemented seven layer neural network model (Hummel & Biederman, 1992) that captures these fundamental properties of human object recognition is described. Given a line drawing of an object, the model activates a viewpoint-invariant structural description of the object, specifying its parts and their interrelations. Visual priming is interpreted as a change in the connection weights for the activation of: a) cells, termed geon feature assemblies (GFAs), that conjoin the output of units that represent invariant, independent properties of a single geon and its relations (such as its type, aspect ratio, relations to other geons), or b) a change in the connection weights by which several GFAs activate a cell representing an object.
Recognizing Materials using Perceptually Inspired Features
Sharan, Lavanya; Liu, Ce; Rosenholtz, Ruth; Adelson, Edward H.
2013-01-01
Our world consists not only of objects and scenes but also of materials of various kinds. Being able to recognize the materials that surround us (e.g., plastic, glass, concrete) is important for humans as well as for computer vision systems. Unfortunately, materials have received little attention in the visual recognition literature, and very few computer vision systems have been designed specifically to recognize materials. In this paper, we present a system for recognizing material categories from single images. We propose a set of low and mid-level image features that are based on studies of human material recognition, and we combine these features using an SVM classifier. Our system outperforms a state-of-the-art system [Varma and Zisserman, 2009] on a challenging database of real-world material categories [Sharan et al., 2009]. When the performance of our system is compared directly to that of human observers, humans outperform our system quite easily. However, when we account for the local nature of our image features and the surface properties they measure (e.g., color, texture, local shape), our system rivals human performance. We suggest that future progress in material recognition will come from: (1) a deeper understanding of the role of non-local surface properties (e.g., extended highlights, object identity); and (2) efforts to model such non-local surface properties in images. PMID:23914070
Learning to distinguish similar objects
NASA Astrophysics Data System (ADS)
Seibert, Michael; Waxman, Allen M.; Gove, Alan N.
1995-04-01
This paper describes how the similarities and differences among similar objects can be discovered during learning to facilitate recognition. The application domain is single views of flying model aircraft captured in silhouette by a CCD camera. The approach was motivated by human psychovisual and monkey neurophysiological data. The implementation uses neural net processing mechanisms to build a hierarchy that relates similar objects to superordinate classes, while simultaneously discovering the salient differences between objects within a class. Learning and recognition experiments both with and without the class similarity and difference learning show the effectiveness of the approach on this visual data. To test the approach, the hierarchical approach was compared to a non-hierarchical approach, and was found to improve the average percentage of correctly classified views from 77% to 84%.
The impact of privacy protection filters on gender recognition
NASA Astrophysics Data System (ADS)
Ruchaud, Natacha; Antipov, Grigory; Korshunov, Pavel; Dugelay, Jean-Luc; Ebrahimi, Touradj; Berrani, Sid-Ahmed
2015-09-01
Deep learning-based algorithms have become increasingly efficient in recognition and detection tasks, especially when they are trained on large-scale datasets. Such recent success has led to a speculation that deep learning methods are comparable to or even outperform human visual system in its ability to detect and recognize objects and their features. In this paper, we focus on the specific task of gender recognition in images when they have been processed by privacy protection filters (e.g., blurring, masking, and pixelization) applied at different strengths. Assuming a privacy protection scenario, we compare the performance of state of the art deep learning algorithms with a subjective evaluation obtained via crowdsourcing to understand how privacy protection filters affect both machine and human vision.
A Robust and Device-Free System for the Recognition and Classification of Elderly Activities.
Li, Fangmin; Al-Qaness, Mohammed Abdulaziz Aide; Zhang, Yong; Zhao, Bihai; Luan, Xidao
2016-12-01
Human activity recognition, tracking and classification is an essential trend in assisted living systems that can help support elderly people with their daily activities. Traditional activity recognition approaches depend on vision-based or sensor-based techniques. Nowadays, a novel promising technique has obtained more attention, namely device-free human activity recognition that neither requires the target object to wear or carry a device nor install cameras in a perceived area. The device-free technique for activity recognition uses only the signals of common wireless local area network (WLAN) devices available everywhere. In this paper, we present a novel elderly activities recognition system by leveraging the fluctuation of the wireless signals caused by human motion. We present an efficient method to select the correct data from the Channel State Information (CSI) streams that were neglected in previous approaches. We apply a Principle Component Analysis method that exposes the useful information from raw CSI. Thereafter, Forest Decision (FD) is adopted to classify the proposed activities and has gained a high accuracy rate. Extensive experiments have been conducted in an indoor environment to test the feasibility of the proposed system with a total of five volunteer users. The evaluation shows that the proposed system is applicable and robust to electromagnetic noise.
Bonin, Patrick; Guillemard-Tsaparina, Diana; Méot, Alain
2013-09-01
We report object-naming and object recognition times collected from Russian native speakers for the colorized version of the Snodgrass and Vanderwart (Journal of Experimental Psychology: Human Learning and Memory 6:174-215, 1980) pictures (Rossion & Pourtois, Perception 33:217-236, 2004). New norms for image variability, body-object interaction [BOI], and subjective frequency collected in Russian, as well as new name agreement scores for the colorized pictures in French, are also reported. In both object-naming and object comprehension times, the name agreement, image agreement, and age-of-acquisition variables made significant independent contributions. Objective word frequency was reliable in object-naming latencies only. The variables of image variability, BOI, and subjective frequency were not significant in either object naming or object comprehension. Finally, imageability was reliable in both tasks. The new norms and object-naming and object recognition times are provided as supplemental materials.
Differential modulatory effects of cocaine on marmoset monkey recognition memory.
Melamed, Jonathan L; de Jesus, Fernando M; Aquino, Jéssica; Vannuchi, Clarissa R S; Duarte, Renata B M; Maior, Rafael S; Tomaz, Carlos; Barros, Marilia
2017-01-01
Acute and repeated exposure to cocaine alters the cognitive performance of humans and animals. How each administration schedule affects the same memory task has yet to be properly established in nonhuman primates. Therefore, we assessed the performance of marmoset monkeys in a spontaneous object-location (SOL) recognition memory task after acute and repeated exposure to cocaine (COC; 5mg/kg, ip). Two identical neutral stimuli were explored on the 10-min sample trial, after which preferential exploration of the displaced vs the stationary object was analyzed on the 10-min test trial. For the acute treatment, cocaine was given immediately after the sample presentation, and spatial recognition was then tested after a 24-h interval. For the repeated exposure schedule, daily cocaine injections were given on 7 consecutive days. After a 7-day drug-free period, the SOL task was carried out with a 10-min intertrial interval. When given acutely postsample, COC improved the marmosets' recognition memory, whereas it had a detrimental effect after the repeated exposure. Thus, depending on the administration schedule, COC exerted opposing effects on the marmosets' ability to recognize spatial changes. This agrees with recent studies in rodents and the recognition impairment seen in human addicts. Further studies related to the effects of cocaine's acute×prior drug history on the same cognitive domain are warranted. © 2017 Elsevier B.V. All rights reserved.
Behavioral model of visual perception and recognition
NASA Astrophysics Data System (ADS)
Rybak, Ilya A.; Golovan, Alexander V.; Gusakova, Valentina I.
1993-09-01
In the processes of visual perception and recognition human eyes actively select essential information by way of successive fixations at the most informative points of the image. A behavioral program defining a scanpath of the image is formed at the stage of learning (object memorizing) and consists of sequential motor actions, which are shifts of attention from one to another point of fixation, and sensory signals expected to arrive in response to each shift of attention. In the modern view of the problem, invariant object recognition is provided by the following: (1) separated processing of `what' (object features) and `where' (spatial features) information at high levels of the visual system; (2) mechanisms of visual attention using `where' information; (3) representation of `what' information in an object-based frame of reference (OFR). However, most recent models of vision based on OFR have demonstrated the ability of invariant recognition of only simple objects like letters or binary objects without background, i.e. objects to which a frame of reference is easily attached. In contrast, we use not OFR, but a feature-based frame of reference (FFR), connected with the basic feature (edge) at the fixation point. This has provided for our model, the ability for invariant representation of complex objects in gray-level images, but demands realization of behavioral aspects of vision described above. The developed model contains a neural network subsystem of low-level vision which extracts a set of primary features (edges) in each fixation, and high- level subsystem consisting of `what' (Sensory Memory) and `where' (Motor Memory) modules. The resolution of primary features extraction decreases with distances from the point of fixation. FFR provides both the invariant representation of object features in Sensor Memory and shifts of attention in Motor Memory. Object recognition consists in successive recall (from Motor Memory) and execution of shifts of attention and successive verification of the expected sets of features (stored in Sensory Memory). The model shows the ability of recognition of complex objects (such as faces) in gray-level images invariant with respect to shift, rotation, and scale.
Object recognition based on Google's reverse image search and image similarity
NASA Astrophysics Data System (ADS)
Horváth, András.
2015-12-01
Image classification is one of the most challenging tasks in computer vision and a general multiclass classifier could solve many different tasks in image processing. Classification is usually done by shallow learning for predefined objects, which is a difficult task and very different from human vision, which is based on continuous learning of object classes and one requires years to learn a large taxonomy of objects which are not disjunct nor independent. In this paper I present a system based on Google image similarity algorithm and Google image database, which can classify a large set of different objects in a human like manner, identifying related classes and taxonomies.
Fleming, Stephen A; Dilger, Ryan N
2017-03-15
Novelty preference paradigms have been widely used to study recognition memory and its neural substrates. The piglet model continues to advance the study of neurodevelopment, and as such, tasks that use novelty preference will serve especially useful due to their translatable nature to humans. However, there has been little use of this behavioral paradigm in the pig, and previous studies using the novel object recognition paradigm in piglets have yielded inconsistent results. The current study was conducted to determine if piglets were capable of displaying a novelty preference. Herein a series of experiments were conducted using novel object recognition or location in 3- and 4-week-old piglets. In the novel object recognition task, piglets were able to discriminate between novel and sample objects after delays of 2min, 1h, 1 day, and 2 days (all P<0.039) at both ages. Performance was sex-dependent, as females could perform both 1- and 2-day delays (P<0.036) and males could perform the 2-day delay (P=0.008) but not the 1-day delay (P=0.347). Furthermore, 4-week-old piglets and females tended to exhibit greater exploratory behavior compared with males. Such performance did not extend to novel location recognition tasks, as piglets were only able to discriminate between novel and sample locations after a short delay (P>0.046). In conclusion, this study determined that piglets are able to perform the novel object and location recognition tasks at 3-to-4 weeks of age, however performance was dependent on sex, age, and delay. Copyright © 2016 Elsevier B.V. All rights reserved.
The role of line junctions in object recognition: The case of reading musical notation.
Wong, Yetta Kwailing; Wong, Alan C-N
2018-04-30
Previous work has shown that line junctions are informative features for visual perception of objects, letters, and words. However, the sources of such sensitivity and their generalizability to other object categories are largely unclear. We addressed these questions by studying perceptual expertise in reading musical notation, a domain in which individuals with different levels of expertise are readily available. We observed that removing line junctions created by the contact between musical notes and staff lines selectively impaired recognition performance in experts and intermediate readers, but not in novices. The degree of performance impairment was predicted by individual fluency in reading musical notation. Our findings suggest that line junctions provide diagnostic information about object identity across various categories, including musical notation. However, human sensitivity to line junctions does not readily transfer from familiar to unfamiliar object categories, and has to be acquired through perceptual experience with the specific objects.
A Single-System Model Predicts Recognition Memory and Repetition Priming in Amnesia
Kessels, Roy P.C.; Wester, Arie J.; Shanks, David R.
2014-01-01
We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with amnesia categorized pictures of objects at study and then, at test, identified fragmented versions of studied (old) and nonstudied (new) objects (providing a measure of priming), and made a recognition memory judgment (old vs new) for each object. Numerous results in the amnesic patients were predicted in advance by the single-system model, as follows: (1) deficits in recognition memory and priming were evident relative to a control group; (2) items judged as old were identified at greater levels of fragmentation than items judged new, regardless of whether the items were actually old or new; and (3) the magnitude of the priming effect (the identification advantage for old vs new items) overall was greater than that of items judged new. Model evidence measures also favored the single-system model over two formal multiple-systems models. The findings support the single-system model, which explains the pattern of recognition and priming in amnesia primarily as a reduction in the strength of a single dimension of memory strength, rather than a selective explicit memory system deficit. PMID:25122896
Animacy and real-world size shape object representations in the human medial temporal lobes.
Blumenthal, Anna; Stojanoski, Bobby; Martin, Chris B; Cusack, Rhodri; Köhler, Stefan
2018-06-26
Identifying what an object is, and whether an object has been encountered before, is a crucial aspect of human behavior. Despite this importance, we do not yet have a complete understanding of the neural basis of these abilities. Investigations into the neural organization of human object representations have revealed category specific organization in the ventral visual stream in perceptual tasks. Interestingly, these categories fall within broader domains of organization, with reported distinctions between animate, inanimate large, and inanimate small objects. While there is some evidence for category specific effects in the medial temporal lobe (MTL), in particular in perirhinal and parahippocampal cortex, it is currently unclear whether domain level organization is also present across these structures. To this end, we used fMRI with a continuous recognition memory task. Stimuli were images of objects from several different categories, which were either animate or inanimate, or large or small within the inanimate domain. We employed representational similarity analysis (RSA) to test the hypothesis that object-evoked responses in MTL structures during recognition-memory judgments also show evidence for domain-level organization along both dimensions. Our data support this hypothesis. Specifically, object representations were shaped by either animacy, real-world size, or both, in perirhinal and parahippocampal cortex, and the hippocampus. While sensitivity to these dimensions differed across structures when probed individually, hinting at interesting links to functional differentiation, similarities in organization across MTL structures were more prominent overall. These results argue for continuity in the organization of object representations in the ventral visual stream and the MTL. © 2018 Wiley Periodicals, Inc.
The role of the hippocampus in recognition memory.
Bird, Chris M
2017-08-01
Many theories of declarative memory propose that it is supported by partially separable processes underpinned by different brain structures. The hippocampus plays a critical role in binding together item and contextual information together and processing the relationships between individual items. By contrast, the processing of individual items and their later recognition can be supported by extrahippocampal regions of the medial temporal lobes (MTL), particularly when recognition is based on feelings of familiarity without the retrieval of any associated information. These theories are domain-general in that "items" might be words, faces, objects, scenes, etc. However, there is mixed evidence that item recognition does not require the hippocampus, or that familiarity-based recognition can be supported by extrahippocampal regions. By contrast, there is compelling evidence that in humans, hippocampal damage does not affect recognition memory for unfamiliar faces, whilst recognition memory for several other stimulus classes is impaired. I propose that regions outside of the hippocampus can support recognition of unfamiliar faces because they are perceived as discrete items and have no prior conceptual associations. Conversely, extrahippocampal processes are inadequate for recognition of items which (a) have been previously experienced, (b) are conceptually meaningful, or (c) are perceived as being comprised of individual elements. This account reconciles findings from primate and human studies of recognition memory. Furthermore, it suggests that while the hippocampus is critical for binding and relational processing, these processes are required for item recognition memory in most situations. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Visual Texture Agnosia in Humans].
Suzuki, Kyoko
2015-06-01
Visual object recognition requires the processing of both geometric and surface properties. Patients with occipital lesions may have visual agnosia, which is impairment in the recognition and identification of visually presented objects primarily through their geometric features. An analogous condition involving the failure to recognize an object by its texture may exist, which can be called visual texture agnosia. Here we present two cases with visual texture agnosia. Case 1 had left homonymous hemianopia and right upper quadrantanopia, along with achromatopsia, prosopagnosia, and texture agnosia, because of damage to his left ventromedial occipitotemporal cortex and right lateral occipito-temporo-parietal cortex due to multiple cerebral embolisms. Although he showed difficulty matching and naming textures of real materials, he could readily name visually presented objects by their contours. Case 2 had right lower quadrantanopia, along with impairment in stereopsis and recognition of texture in 2D images, because of subcortical hemorrhage in the left occipitotemporal region. He failed to recognize shapes based on texture information, whereas shape recognition based on contours was well preserved. Our findings, along with those of three reported cases with texture agnosia, indicate that there are separate channels for processing texture, color, and geometric features, and that the regions around the left collateral sulcus are crucial for texture processing.
The hierarchical brain network for face recognition.
Zhen, Zonglei; Fang, Huizhen; Liu, Jia
2013-01-01
Numerous functional magnetic resonance imaging (fMRI) studies have identified multiple cortical regions that are involved in face processing in the human brain. However, few studies have characterized the face-processing network as a functioning whole. In this study, we used fMRI to identify face-selective regions in the entire brain and then explore the hierarchical structure of the face-processing network by analyzing functional connectivity among these regions. We identified twenty-five regions mainly in the occipital, temporal and frontal cortex that showed a reliable response selective to faces (versus objects) across participants and across scan sessions. Furthermore, these regions were clustered into three relatively independent sub-networks in a face-recognition task on the basis of the strength of functional connectivity among them. The functionality of the sub-networks likely corresponds to the recognition of individual identity, retrieval of semantic knowledge and representation of emotional information. Interestingly, when the task was switched to object recognition from face recognition, the functional connectivity between the inferior occipital gyrus and the rest of the face-selective regions were significantly reduced, suggesting that this region may serve as an entry node in the face-processing network. In sum, our study provides empirical evidence for cognitive and neural models of face recognition and helps elucidate the neural mechanisms underlying face recognition at the network level.
A new selective developmental deficit: Impaired object recognition with normal face recognition.
Germine, Laura; Cashdollar, Nathan; Düzel, Emrah; Duchaine, Bradley
2011-05-01
Studies of developmental deficits in face recognition, or developmental prosopagnosia, have shown that individuals who have not suffered brain damage can show face recognition impairments coupled with normal object recognition (Duchaine and Nakayama, 2005; Duchaine et al., 2006; Nunn et al., 2001). However, no developmental cases with the opposite dissociation - normal face recognition with impaired object recognition - have been reported. The existence of a case of non-face developmental visual agnosia would indicate that the development of normal face recognition mechanisms does not rely on the development of normal object recognition mechanisms. To see whether a developmental variant of non-face visual object agnosia exists, we conducted a series of web-based object and face recognition tests to screen for individuals showing object recognition memory impairments but not face recognition impairments. Through this screening process, we identified AW, an otherwise normal 19-year-old female, who was then tested in the lab on face and object recognition tests. AW's performance was impaired in within-class visual recognition memory across six different visual categories (guns, horses, scenes, tools, doors, and cars). In contrast, she scored normally on seven tests of face recognition, tests of memory for two other object categories (houses and glasses), and tests of recall memory for visual shapes. Testing confirmed that her impairment was not related to a general deficit in lower-level perception, object perception, basic-level recognition, or memory. AW's results provide the first neuropsychological evidence that recognition memory for non-face visual object categories can be selectively impaired in individuals without brain damage or other memory impairment. These results indicate that the development of recognition memory for faces does not depend on intact object recognition memory and provide further evidence for category-specific dissociations in visual recognition. Copyright © 2010 Elsevier Srl. All rights reserved.
Ahlfors, Seppo P.; Jones, Stephanie R.; Ahveninen, Jyrki; Hämäläinen, Matti S.; Belliveau, John W.; Bar, Moshe
2014-01-01
Identifying inter-area communication in terms of the hierarchical organization of functional brain areas is of considerable interest in human neuroimaging. Previous studies have suggested that the direction of magneto- and electroencephalography (MEG, EEG) source currents depends on the layer-specific input patterns into a cortical area. We examined the direction in MEG source currents in a visual object recognition experiment in which there were specific expectations of activation in the fusiform region being driven by either feedforward or feedback inputs. The source for the early non-specific visual evoked response, presumably corresponding to feedforward driven activity, pointed outward, i.e., away from the white matter. In contrast, the source for the later, object-recognition related signals, expected to be driven by feedback inputs, pointed inward, toward the white matter. Associating specific features of the MEG/EEG source waveforms to feedforward and feedback inputs could provide unique information about the activation patterns within hierarchically organized cortical areas. PMID:25445356
Kesby, James P; Markou, Athina; Semenova, Svetlana
2015-01-01
Methamphetamine abuse is common among individuals infected by human immunodeficiency virus (HIV). Neurocognitive outcomes tend to be worse in methamphetamine users with HIV. However, it is unclear whether discrete cognitive domains are susceptible to impairment after combined HIV infection and methamphetamine abuse. The expression of HIV/gp120 protein induces neuropathology in mice similar to HIV-induced pathology in humans. We investigated the separate and combined effects of methamphetamine exposure and gp120 expression on cognitive function in transgenic (gp120-tg) and control mice. The mice underwent an escalating methamphetamine binge regimen and were tested in novel object/location recognition, object-in-place recognition, and Barnes maze tests. gp120 expression disrupted performance in the object-in-place test (i.e. similar time spent with all objects, regardless of location), indicating deficits in associative recognition memory. gp120 expression also altered reversal learning in the Barnes maze, suggesting impairments in executive function. Methamphetamine exposure impaired spatial strategy in the Barnes maze, indicating deficits in spatial learning. Methamphetamine-exposed gp120-tg mice had the lowest spatial strategy scores in the final acquisition trials in the Barnes maze, suggesting greater deficits in spatial learning than all of the other groups. Although HIV infection involves interactions between multiple proteins and processes, in addition to gp120, our findings in gp120-tg mice suggest that humans with the dual insult of HIV infection and methamphetamine abuse may exhibit a broader spectrum of cognitive deficits than those with either factor alone. Depending on the cognitive domain, the combination of both insults may exacerbate deficits in cognitive performance compared with each individual insult. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
Kesby, James P.; Markou, Athina; Semenova, Svetlana
2014-01-01
Methamphetamine abuse is common among individuals infected by human immunodeficiency virus (HIV). Neurocognitive outcomes tend to be worse in methamphetamine users with HIV. However, it is unclear whether discrete cognitive domains are susceptible to impairment after combined HIV infection and methamphetamine abuse. The expression of HIV/gp120 protein induces neuropathology in mice similar to HIV-induced pathology in humans. We investigated the separate and combined effects of methamphetamine exposure and gp120 expression on cognitive function in transgenic (gp120-tg) and control mice. The mice underwent an escalating methamphetamine binge regimen and were tested in novel object/location recognition, object-in-place recognition, and Barnes maze tests. gp120 expression disrupted performance in the object-in-place test (i.e., similar time spent with all objects, regardless of location), indicating deficits in associative recognition memory. gp120 expression also altered reversal learning in the Barnes maze, suggesting impairments in executive function. Methamphetamine exposure impaired spatial strategy in the Barnes maze, indicating deficits in spatial learning. Methamphetamine-exposed gp120-tg mice had the lowest spatial strategy scores in the final acquisition trials in the Barnes maze, suggesting greater deficits in spatial learning than all of the other groups. Although HIV infection involves interactions between multiple proteins and processes, in addition to gp120, our findings in gp120-tg mice suggest that humans with the dual insult of HIV infection and methamphetamine abuse may exhibit a broader spectrum of cognitive deficits than those with either factor alone. Depending on the cognitive domain, the combination of both insults may exacerbate deficits in cognitive performance compared with each individual insult. PMID:25476577
Grossberg, Stephen; Markowitz, Jeffrey; Cao, Yongqiang
2011-12-01
Visual object recognition is an essential accomplishment of advanced brains. Object recognition needs to be tolerant, or invariant, with respect to changes in object position, size, and view. In monkeys and humans, a key area for recognition is the anterior inferotemporal cortex (ITa). Recent neurophysiological data show that ITa cells with high object selectivity often have low position tolerance. We propose a neural model whose cells learn to simulate this tradeoff, as well as ITa responses to image morphs, while explaining how invariant recognition properties may arise in stages due to processes across multiple cortical areas. These processes include the cortical magnification factor, multiple receptive field sizes, and top-down attentive matching and learning properties that may be tuned by task requirements to attend to either concrete or abstract visual features with different levels of vigilance. The model predicts that data from the tradeoff and image morph tasks emerge from different levels of vigilance in the animals performing them. This result illustrates how different vigilance requirements of a task may change the course of category learning, notably the critical features that are attended and incorporated into learned category prototypes. The model outlines a path for developing an animal model of how defective vigilance control can lead to symptoms of various mental disorders, such as autism and amnesia. Copyright © 2011 Elsevier Ltd. All rights reserved.
Baldominos, Alejandro; Saez, Yago; Isasi, Pedro
2018-04-23
Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures.
2018-01-01
Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures. PMID:29690587
Bidirectional Modulation of Recognition Memory
Ho, Jonathan W.; Poeta, Devon L.; Jacobson, Tara K.; Zolnik, Timothy A.; Neske, Garrett T.; Connors, Barry W.
2015-01-01
Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects. For example, animals and humans with perirhinal damage are unable to distinguish familiar from novel objects in recognition memory tasks. In the normal brain, perirhinal neurons respond to novelty and familiarity by increasing or decreasing firing rates. Recent work also implicates oscillatory activity in the low-beta and low-gamma frequency bands in sensory detection, perception, and recognition. Using optogenetic methods in a spontaneous object exploration (SOR) task, we altered recognition memory performance in rats. In the SOR task, normal rats preferentially explore novel images over familiar ones. We modulated exploratory behavior in this task by optically stimulating channelrhodopsin-expressing perirhinal neurons at various frequencies while rats looked at novel or familiar 2D images. Stimulation at 30–40 Hz during looking caused rats to treat a familiar image as if it were novel by increasing time looking at the image. Stimulation at 30–40 Hz was not effective in increasing exploration of novel images. Stimulation at 10–15 Hz caused animals to treat a novel image as familiar by decreasing time looking at the image, but did not affect looking times for images that were already familiar. We conclude that optical stimulation of PER at different frequencies can alter visual recognition memory bidirectionally. SIGNIFICANCE STATEMENT Recognition of novelty and familiarity are important for learning, memory, and decision making. Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects, but how novelty and familiarity are encoded and transmitted in the brain is not known. Perirhinal neurons respond to novelty and familiarity by changing firing rates, but recent work suggests that brain oscillations may also be important for recognition. In this study, we showed that stimulation of the PER could increase or decrease exploration of novel and familiar images depending on the frequency of stimulation. Our findings suggest that optical stimulation of PER at specific frequencies can predictably alter recognition memory. PMID:26424881
New technologies lead to a new frontier: cognitive multiple data representation
NASA Astrophysics Data System (ADS)
Buffat, S.; Liege, F.; Plantier, J.; Roumes, C.
2005-05-01
The increasing number and complexity of operational sensors (radar, infrared, hyperspectral...) and availability of huge amount of data, lead to more and more sophisticated information presentations. But one key element of the IMINT line cannot be improved beyond initial system specification: the operator.... In order to overcome this issue, we have to better understand human visual object representation. Object recognition theories in human vision balance between matching 2D templates representation with viewpoint-dependant information, and a viewpoint-invariant system based on structural description. Spatial frequency content is relevant due to early vision filtering. Orientation in depth is an important variable to challenge object constancy. Three objects, seen from three different points of view in a natural environment made the original images in this study. Test images were a combination of spatial frequency filtered original images and an additive contrast level of white noise. In the first experiment, the observer's task was a same versus different forced choice with spatial alternative. Test images had the same noise level in a presentation row. Discrimination threshold was determined by modifying the white noise contrast level by means of an adaptative method. In the second experiment, a repetition blindness paradigm was used to further investigate the viewpoint effect on object recognition. The results shed some light on the human visual system processing of objects displayed under different physical descriptions. This is an important achievement because targets which not always match physical properties of usual visual stimuli can increase operational workload.
Biologically Inspired Visual Model With Preliminary Cognition and Active Attention Adjustment.
Qiao, Hong; Xi, Xuanyang; Li, Yinlin; Wu, Wei; Li, Fengfu
2015-11-01
Recently, many computational models have been proposed to simulate visual cognition process. For example, the hierarchical Max-Pooling (HMAX) model was proposed according to the hierarchical and bottom-up structure of V1 to V4 in the ventral pathway of primate visual cortex, which could achieve position- and scale-tolerant recognition. In our previous work, we have introduced memory and association into the HMAX model to simulate visual cognition process. In this paper, we improve our theoretical framework by mimicking a more elaborate structure and function of the primate visual cortex. We will mainly focus on the new formation of memory and association in visual processing under different circumstances as well as preliminary cognition and active adjustment in the inferior temporal cortex, which are absent in the HMAX model. The main contributions of this paper are: 1) in the memory and association part, we apply deep convolutional neural networks to extract various episodic features of the objects since people use different features for object recognition. Moreover, to achieve a fast and robust recognition in the retrieval and association process, different types of features are stored in separated clusters and the feature binding of the same object is stimulated in a loop discharge manner and 2) in the preliminary cognition and active adjustment part, we introduce preliminary cognition to classify different types of objects since distinct neural circuits in a human brain are used for identification of various types of objects. Furthermore, active cognition adjustment of occlusion and orientation is implemented to the model to mimic the top-down effect in human cognition process. Finally, our model is evaluated on two face databases CAS-PEAL-R1 and AR. The results demonstrate that our model exhibits its efficiency on visual recognition process with much lower memory storage requirement and a better performance compared with the traditional purely computational methods.
Human-inspired sound environment recognition system for assistive vehicles.
Vidal, Eduardo González; Zarricueta, Ernesto Fredes; Cheein, Fernando Auat
2015-02-01
The human auditory system acquires environmental information under sound stimuli faster than visual or touch systems, which in turn, allows for faster human responses to such stimuli. It also complements senses such as sight, where direct line-of-view is necessary to identify objects, in the environment recognition process. This work focuses on implementing human reaction to sound stimuli and environment recognition on assistive robotic devices, such as robotic wheelchairs or robotized cars. These vehicles need environment information to ensure safe navigation. In the field of environment recognition, range sensors (such as LiDAR and ultrasonic systems) and artificial vision devices are widely used; however, these sensors depend on environment constraints (such as lighting variability or color of objects), and sound can provide important information for the characterization of an environment. In this work, we propose a sound-based approach to enhance the environment recognition process, mainly for cases that compromise human integrity, according to the International Classification of Functioning (ICF). Our proposal is based on a neural network implementation that is able to classify up to 15 different environments, each selected according to the ICF considerations on environment factors in the community-based physical activities of people with disabilities. The accuracy rates in environment classification ranges from 84% to 93%. This classification is later used to constrain assistive vehicle navigation in order to protect the user during daily activities. This work also includes real-time outdoor experimentation (performed on an assistive vehicle) by seven volunteers with different disabilities (but without cognitive impairment and experienced in the use of wheelchairs), statistical validation, comparison with previously published work, and a discussion section where the pros and cons of our system are evaluated. The proposed sound-based system is very efficient at providing general descriptions of the environment. Such descriptions are focused on vulnerable situations described by the ICF. The volunteers answered a questionnaire regarding the importance of constraining the vehicle velocities in risky environments, showing that all the volunteers felt comfortable with the system and its performance.
NASA Technical Reports Server (NTRS)
Schulte, Erin
2017-01-01
As augmented and virtual reality grows in popularity, and more researchers focus on its development, other fields of technology have grown in the hopes of integrating with the up-and-coming hardware currently on the market. Namely, there has been a focus on how to make an intuitive, hands-free human-computer interaction (HCI) utilizing AR and VR that allows users to control their technology with little to no physical interaction with hardware. Computer vision, which is utilized in devices such as the Microsoft Kinect, webcams and other similar hardware has shown potential in assisting with the development of a HCI system that requires next to no human interaction with computing hardware and software. Object and facial recognition are two subsets of computer vision, both of which can be applied to HCI systems in the fields of medicine, security, industrial development and other similar areas.
A rodent model for the study of invariant visual object recognition
Zoccolan, Davide; Oertelt, Nadja; DiCarlo, James J.; Cox, David D.
2009-01-01
The human visual system is able to recognize objects despite tremendous variation in their appearance on the retina resulting from variation in view, size, lighting, etc. This ability—known as “invariant” object recognition—is central to visual perception, yet its computational underpinnings are poorly understood. Traditionally, nonhuman primates have been the animal model-of-choice for investigating the neuronal substrates of invariant recognition, because their visual systems closely mirror our own. Meanwhile, simpler and more accessible animal models such as rodents have been largely overlooked as possible models of higher-level visual functions, because their brains are often assumed to lack advanced visual processing machinery. As a result, little is known about rodents' ability to process complex visual stimuli in the face of real-world image variation. In the present work, we show that rats possess more advanced visual abilities than previously appreciated. Specifically, we trained pigmented rats to perform a visual task that required them to recognize objects despite substantial variation in their appearance, due to changes in size, view, and lighting. Critically, rats were able to spontaneously generalize to previously unseen transformations of learned objects. These results provide the first systematic evidence for invariant object recognition in rats and argue for an increased focus on rodents as models for studying high-level visual processing. PMID:19429704
A defense of the subordinate-level expertise account for the N170 component.
Rossion, Bruno; Curran, Tim; Gauthier, Isabel
2002-09-01
A recent paper in this journal reports two event-related potential (ERP) experiments interpreted as supporting the domain specificity of the visual mechanisms implicated in processing faces (Cognition 83 (2002) 1). The authors argue that because a large neurophysiological response to faces (N170) is less influenced by the task than the response to objects, and because the response for human faces extends to ape faces (for which we are not expert), we should reject the hypothesis that the face-sensitivity reflected by the N170 can be accounted for by the subordinate-level expertise model of object recognition (Nature Neuroscience 3 (2000) 764). In this commentary, we question this conclusion based on some of our own ERP work on expert object recognition as well as the work of others.
Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision
Kwon, MiYoung; Legge, Gordon E.
2011-01-01
It is well known that object recognition requires spatial frequencies exceeding some critical cutoff value. People with central scotomas who rely on peripheral vision have substantial difficulty with reading and face recognition. Deficiencies of pattern recognition in peripheral vision, might result in higher cutoff requirements, and may contribute to the functional problems of people with central-field loss. Here we asked about differences in spatial-cutoff requirements in central and peripheral vision for letter and face recognition. The stimuli were the 26 letters of the English alphabet and 26 celebrity faces. Each image was blurred using a low-pass filter in the spatial frequency domain. Critical cutoffs (defined as the minimum low-pass filter cutoff yielding 80% accuracy) were obtained by measuring recognition accuracy as a function of cutoff (in cycles per object). Our data showed that critical cutoffs increased from central to peripheral vision by 20% for letter recognition and by 50% for face recognition. We asked whether these differences could be accounted for by central/peripheral differences in the contrast sensitivity function (CSF). We addressed this question by implementing an ideal-observer model which incorporates empirical CSF measurements and tested the model on letter and face recognition. The success of the model indicates that central/peripheral differences in the cutoff requirements for letter and face recognition can be accounted for by the information content of the stimulus limited by the shape of the human CSF, combined with a source of internal noise and followed by an optimal decision rule. PMID:21854800
Siakaluk, Paul D; Pexman, Penny M; Aguilera, Laura; Owen, William J; Sears, Christopher R
2008-01-01
We examined the effects of sensorimotor experience in two visual word recognition tasks. Body-object interaction (BOI) ratings were collected for a large set of words. These ratings assess perceptions of the ease with which a human body can physically interact with a word's referent. A set of high BOI words (e.g., mask) and a set of low BOI words (e.g., ship) were created, matched on imageability and concreteness. Facilitatory BOI effects were observed in lexical decision and phonological lexical decision tasks: responses were faster for high BOI words than for low BOI words. We discuss how our findings may be accounted for by (a) semantic feedback within the visual word recognition system, and (b) an embodied view of cognition (e.g., Barsalou's perceptual symbol systems theory), which proposes that semantic knowledge is grounded in sensorimotor interactions with the environment.
Familiarity Breeds Attempts: A Critical Review of Dual-Process Theories of Recognition.
Mandler, George
2008-09-01
Recognition memory and recall/recollection are the major divisions of the psychology of human memory. Theories of recognition have shifted from a "strength" approach to a dual-process view, which distinguishes between knowing that one has experienced an object before and knowing what it was. In this article, I discuss the history of this approach and the two processes of familiarity and recollection and locate their origin in pattern matching and organization. I evaluate various theories in terms of their basic requirements and their defining research and propose the extension of the original two process theory to domains such as pictorial recognition. Finally, I present the main phenomena that a dual-process theory of recognition must account for and discuss future needs and directions of research and development. © 2008 Association for Psychological Science.
The Hierarchical Brain Network for Face Recognition
Zhen, Zonglei; Fang, Huizhen; Liu, Jia
2013-01-01
Numerous functional magnetic resonance imaging (fMRI) studies have identified multiple cortical regions that are involved in face processing in the human brain. However, few studies have characterized the face-processing network as a functioning whole. In this study, we used fMRI to identify face-selective regions in the entire brain and then explore the hierarchical structure of the face-processing network by analyzing functional connectivity among these regions. We identified twenty-five regions mainly in the occipital, temporal and frontal cortex that showed a reliable response selective to faces (versus objects) across participants and across scan sessions. Furthermore, these regions were clustered into three relatively independent sub-networks in a face-recognition task on the basis of the strength of functional connectivity among them. The functionality of the sub-networks likely corresponds to the recognition of individual identity, retrieval of semantic knowledge and representation of emotional information. Interestingly, when the task was switched to object recognition from face recognition, the functional connectivity between the inferior occipital gyrus and the rest of the face-selective regions were significantly reduced, suggesting that this region may serve as an entry node in the face-processing network. In sum, our study provides empirical evidence for cognitive and neural models of face recognition and helps elucidate the neural mechanisms underlying face recognition at the network level. PMID:23527282
van den Berg, Ronald; Roerdink, Jos B T M; Cornelissen, Frans W
2010-01-22
An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called "crowding". Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, "compulsory averaging", and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality.
Jurado-Berbel, Patricia; Costa-Miserachs, David; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Portell-Cortés, Isabel
2010-02-11
The present work examined whether post-training systemic epinephrine (EPI) is able to modulate short-term (3h) and long-term (24 h and 48 h) memory of standard object recognition, as well as long-term (24 h) memory of separate "what" (object identity) and "where" (object location) components of object recognition. Although object recognition training is associated to low arousal levels, all the animals received habituation to the training box in order to further reduce emotional arousal. Post-training EPI improved long-term (24 h and 48 h), but not short-term (3 h), memory in the standard object recognition task, as well as 24 h memory for both object identity and object location. These data indicate that post-training epinephrine: (1) facilitates long-term memory for standard object recognition; (2) exerts separate facilitatory effects on "what" (object identity) and "where" (object location) components of object recognition; and (3) is capable of improving memory for a low arousing task even in highly habituated rats.
Soh, Harold; Demiris, Yiannis
2014-01-01
Human beings not only possess the remarkable ability to distinguish objects through tactile feedback but are further able to improve upon recognition competence through experience. In this work, we explore tactile-based object recognition with learners capable of incremental learning. Using the sparse online infinite Echo-State Gaussian process (OIESGP), we propose and compare two novel discriminative and generative tactile learners that produce probability distributions over objects during object grasping/palpation. To enable iterative improvement, our online methods incorporate training samples as they become available. We also describe incremental unsupervised learning mechanisms, based on novelty scores and extreme value theory, when teacher labels are not available. We present experimental results for both supervised and unsupervised learning tasks using the iCub humanoid, with tactile sensors on its five-fingered anthropomorphic hand, and 10 different object classes. Our classifiers perform comparably to state-of-the-art methods (C4.5 and SVM classifiers) and findings indicate that tactile signals are highly relevant for making accurate object classifications. We also show that accurate "early" classifications are possible using only 20-30 percent of the grasp sequence. For unsupervised learning, our methods generate high quality clusterings relative to the widely-used sequential k-means and self-organising map (SOM), and we present analyses into the differences between the approaches.
Experience moderates overlap between object and face recognition, suggesting a common ability
Gauthier, Isabel; McGugin, Rankin W.; Richler, Jennifer J.; Herzmann, Grit; Speegle, Magen; Van Gulick, Ana E.
2014-01-01
Some research finds that face recognition is largely independent from the recognition of other objects; a specialized and innate ability to recognize faces could therefore have little or nothing to do with our ability to recognize objects. We propose a new framework in which recognition performance for any category is the product of domain-general ability and category-specific experience. In Experiment 1, we show that the overlap between face and object recognition depends on experience with objects. In 256 subjects we measured face recognition, object recognition for eight categories, and self-reported experience with these categories. Experience predicted neither face recognition nor object recognition but moderated their relationship: Face recognition performance is increasingly similar to object recognition performance with increasing object experience. If a subject has a lot of experience with objects and is found to perform poorly, they also prove to have a low ability with faces. In a follow-up survey, we explored the dimensions of experience with objects that may have contributed to self-reported experience in Experiment 1. Different dimensions of experience appear to be more salient for different categories, with general self-reports of expertise reflecting judgments of verbal knowledge about a category more than judgments of visual performance. The complexity of experience and current limitations in its measurement support the importance of aggregating across multiple categories. Our findings imply that both face and object recognition are supported by a common, domain-general ability expressed through experience with a category and best measured when accounting for experience. PMID:24993021
Experience moderates overlap between object and face recognition, suggesting a common ability.
Gauthier, Isabel; McGugin, Rankin W; Richler, Jennifer J; Herzmann, Grit; Speegle, Magen; Van Gulick, Ana E
2014-07-03
Some research finds that face recognition is largely independent from the recognition of other objects; a specialized and innate ability to recognize faces could therefore have little or nothing to do with our ability to recognize objects. We propose a new framework in which recognition performance for any category is the product of domain-general ability and category-specific experience. In Experiment 1, we show that the overlap between face and object recognition depends on experience with objects. In 256 subjects we measured face recognition, object recognition for eight categories, and self-reported experience with these categories. Experience predicted neither face recognition nor object recognition but moderated their relationship: Face recognition performance is increasingly similar to object recognition performance with increasing object experience. If a subject has a lot of experience with objects and is found to perform poorly, they also prove to have a low ability with faces. In a follow-up survey, we explored the dimensions of experience with objects that may have contributed to self-reported experience in Experiment 1. Different dimensions of experience appear to be more salient for different categories, with general self-reports of expertise reflecting judgments of verbal knowledge about a category more than judgments of visual performance. The complexity of experience and current limitations in its measurement support the importance of aggregating across multiple categories. Our findings imply that both face and object recognition are supported by a common, domain-general ability expressed through experience with a category and best measured when accounting for experience. © 2014 ARVO.
Realism and Perspectivism: a Reevaluation of Rival Theories of Spatial Vision.
NASA Astrophysics Data System (ADS)
Thro, E. Broydrick
1990-01-01
My study reevaluates two theories of human space perception, a trigonometric surveying theory I call perspectivism and a "scene recognition" theory I call realism. Realists believe that retinal image geometry can supply no unambiguous information about an object's size and distance--and that, as a result, viewers can locate objects in space only by making discretionary interpretations based on familiar experience of object types. Perspectivists, in contrast, think viewers can disambiguate object sizes/distances on the basis of retinal image information alone. More specifically, they believe the eye responds to perspective image geometry with an automatic trigonometric calculation that not only fixes the directions and shapes, but also roughly fixes the sizes and distances of scene elements in space. Today this surveyor theory has been largely superceded by the realist approach, because most vision scientists believe retinal image geometry is ambiguous about the scale of space. However, I show that there is a considerable body of neglected evidence, both past and present, tending to call this scale ambiguity claim into question. I maintain that this evidence against scale ambiguity could hardly be more important, if one considers its subversive implications for the scene recognition theory that is not only today's reigning approach to spatial vision, but also the foundation for computer scientists' efforts to create space-perceiving robots. If viewers were deemed to be capable of automatic surveying calculations, the discretionary scene recognition theory would lose its main justification. Clearly, it would be difficult for realists to maintain that we viewers rely on scene recognition for space perception in spite of our ability to survey. And in reality, as I show, the surveyor theory does a much better job of describing the everyday space we viewers actually see--a space featuring stable, unambiguous relationships among scene elements, and a single horizon and vanishing point for (meter-scale) receding objects. In addition, I argue, the surveyor theory raises fewer philosophical difficulties, because it is more in harmony with our everyday concepts of material objects, human agency and the self.
Generalization between canonical and non-canonical views in object recognition
Ghose, Tandra; Liu, Zili
2013-01-01
Viewpoint generalization in object recognition is the process that allows recognition of a given 3D object from many different viewpoints despite variations in its 2D projections. We used the canonical view effects as a foundation to empirically test the validity of a major theory in object recognition, the view-approximation model (Poggio & Edelman, 1990). This model predicts that generalization should be better when an object is first seen from a non-canonical view and then a canonical view than when seen in the reversed order. We also manipulated object similarity to study the degree to which this view generalization was constrained by shape details and task instructions (object vs. image recognition). Old-new recognition performance for basic and subordinate level objects was measured in separate blocks. We found that for object recognition, view generalization between canonical and non-canonical views was comparable for basic level objects. For subordinate level objects, recognition performance was more accurate from non-canonical to canonical views than the other way around. When the task was changed from object recognition to image recognition, the pattern of the results reversed. Interestingly, participants responded “old” to “new” images of “old” objects with a substantially higher rate than to “new” objects, despite instructions to the contrary, thereby indicating involuntary view generalization. Our empirical findings are incompatible with the prediction of the view-approximation theory, and argue against the hypothesis that views are stored independently. PMID:23283692
Neural Dynamics Underlying Target Detection in the Human Brain
Bansal, Arjun K.; Madhavan, Radhika; Agam, Yigal; Golby, Alexandra; Madsen, Joseph R.
2014-01-01
Sensory signals must be interpreted in the context of goals and tasks. To detect a target in an image, the brain compares input signals and goals to elicit the correct behavior. We examined how target detection modulates visual recognition signals by recording intracranial field potential responses from 776 electrodes in 10 epileptic human subjects. We observed reliable differences in the physiological responses to stimuli when a cued target was present versus absent. Goal-related modulation was particularly strong in the inferior temporal and fusiform gyri, two areas important for object recognition. Target modulation started after 250 ms post stimulus, considerably after the onset of visual recognition signals. While broadband signals exhibited increased or decreased power, gamma frequency power showed predominantly increases during target presence. These observations support models where task goals interact with sensory inputs via top-down signals that influence the highest echelons of visual processing after the onset of selective responses. PMID:24553944
Selection of Norway spruce somatic embryos by computer vision
NASA Astrophysics Data System (ADS)
Hamalainen, Jari J.; Jokinen, Kari J.
1993-05-01
A computer vision system was developed for the classification of plant somatic embryos. The embryos are in a Petri dish that is transferred with constant speed and they are recognized as they pass a line scan camera. A classification algorithm needs to be installed for every plant species. This paper describes an algorithm for the recognition of Norway spruce (Picea abies) embryos. A short review of conifer micropropagation by somatic embryogenesis is also given. The recognition algorithm is based on features calculated from the boundary of the object. Only part of the boundary corresponding to the developing cotyledons (2 - 15) and the straight sides of the embryo are used for recognition. An index of the length of the cotyledons describes the developmental stage of the embryo. The testing set for classifier performance consisted of 118 embryos and 478 nonembryos. With the classification tolerances chosen 69% of the objects classified as embryos by a human classifier were selected and 31$% rejected. Less than 1% of the nonembryos were classified as embryos. The basic features developed can probably be easily adapted for the recognition of other conifer somatic embryos.
Gesture-controlled interfaces for self-service machines and other applications
NASA Technical Reports Server (NTRS)
Cohen, Charles J. (Inventor); Jacobus, Charles J. (Inventor); Paul, George (Inventor); Beach, Glenn (Inventor); Foulk, Gene (Inventor); Obermark, Jay (Inventor); Cavell, Brook (Inventor)
2004-01-01
A gesture recognition interface for use in controlling self-service machines and other devices is disclosed. A gesture is defined as motions and kinematic poses generated by humans, animals, or machines. Specific body features are tracked, and static and motion gestures are interpreted. Motion gestures are defined as a family of parametrically delimited oscillatory motions, modeled as a linear-in-parameters dynamic system with added geometric constraints to allow for real-time recognition using a small amount of memory and processing time. A linear least squares method is preferably used to determine the parameters which represent each gesture. Feature position measure is used in conjunction with a bank of predictor bins seeded with the gesture parameters, and the system determines which bin best fits the observed motion. Recognizing static pose gestures is preferably performed by localizing the body/object from the rest of the image, describing that object, and identifying that description. The disclosure details methods for gesture recognition, as well as the overall architecture for using gesture recognition to control of devices, including self-service machines.
Face recognition in newly hatched chicks at the onset of vision.
Wood, Samantha M W; Wood, Justin N
2015-04-01
How does face recognition emerge in the newborn brain? To address this question, we used an automated controlled-rearing method with a newborn animal model: the domestic chick (Gallus gallus). This automated method allowed us to examine chicks' face recognition abilities at the onset of both face experience and object experience. In the first week of life, newly hatched chicks were raised in controlled-rearing chambers that contained no objects other than a single virtual human face. In the second week of life, we used an automated forced-choice testing procedure to examine whether chicks could distinguish that familiar face from a variety of unfamiliar faces. Chicks successfully distinguished the familiar face from most of the unfamiliar faces-for example, chicks were sensitive to changes in the face's age, gender, and orientation (upright vs. inverted). Thus, chicks can build an accurate representation of the first face they see in their life. These results show that the initial state of face recognition is surprisingly powerful: Newborn visual systems can begin encoding and recognizing faces at the onset of vision. (c) 2015 APA, all rights reserved).
Pohl, Rüdiger F; Michalkiewicz, Martha; Erdfelder, Edgar; Hilbig, Benjamin E
2017-07-01
According to the recognition-heuristic theory, decision makers solve paired comparisons in which one object is recognized and the other not by recognition alone, inferring that recognized objects have higher criterion values than unrecognized ones. However, success-and thus usefulness-of this heuristic depends on the validity of recognition as a cue, and adaptive decision making, in turn, requires that decision makers are sensitive to it. To this end, decision makers could base their evaluation of the recognition validity either on the selected set of objects (the set's recognition validity), or on the underlying domain from which the objects were drawn (the domain's recognition validity). In two experiments, we manipulated the recognition validity both in the selected set of objects and between domains from which the sets were drawn. The results clearly show that use of the recognition heuristic depends on the domain's recognition validity, not on the set's recognition validity. In other words, participants treat all sets as roughly representative of the underlying domain and adjust their decision strategy adaptively (only) with respect to the more general environment rather than the specific items they are faced with.
Texture- and deformability-based surface recognition by tactile image analysis.
Khasnobish, Anwesha; Pal, Monalisa; Tibarewala, D N; Konar, Amit; Pal, Kunal
2016-08-01
Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material recognition based on its deformability and texture.
Eye movements during object recognition in visual agnosia.
Charles Leek, E; Patterson, Candy; Paul, Matthew A; Rafal, Robert; Cristino, Filipe
2012-07-01
This paper reports the first ever detailed study about eye movement patterns during single object recognition in visual agnosia. Eye movements were recorded in a patient with an integrative agnosic deficit during two recognition tasks: common object naming and novel object recognition memory. The patient showed normal directional biases in saccades and fixation dwell times in both tasks and was as likely as controls to fixate within object bounding contour regardless of recognition accuracy. In contrast, following initial saccades of similar amplitude to controls, the patient showed a bias for short saccades. In object naming, but not in recognition memory, the similarity of the spatial distributions of patient and control fixations was modulated by recognition accuracy. The study provides new evidence about how eye movements can be used to elucidate the functional impairments underlying object recognition deficits. We argue that the results reflect a breakdown in normal functional processes involved in the integration of shape information across object structure during the visual perception of shape. Copyright © 2012 Elsevier Ltd. All rights reserved.
The role of color information on object recognition: a review and meta-analysis.
Bramão, Inês; Reis, Alexandra; Petersson, Karl Magnus; Faísca, Luís
2011-09-01
In this study, we systematically review the scientific literature on the effect of color on object recognition. Thirty-five independent experiments, comprising 1535 participants, were included in a meta-analysis. We found a moderate effect of color on object recognition (d=0.28). Specific effects of moderator variables were analyzed and we found that color diagnosticity is the factor with the greatest moderator effect on the influence of color in object recognition; studies using color diagnostic objects showed a significant color effect (d=0.43), whereas a marginal color effect was found in studies that used non-color diagnostic objects (d=0.18). The present study did not permit the drawing of specific conclusions about the moderator effect of the object recognition task; while the meta-analytic review showed that color information improves object recognition mainly in studies using naming tasks (d=0.36), the literature review revealed a large body of evidence showing positive effects of color information on object recognition in studies using a large variety of visual recognition tasks. We also found that color is important for the ability to recognize artifacts and natural objects, to recognize objects presented as types (line-drawings) or as tokens (photographs), and to recognize objects that are presented without surface details, such as texture or shadow. Taken together, the results of the meta-analysis strongly support the contention that color plays a role in object recognition. This suggests that the role of color should be taken into account in models of visual object recognition. Copyright © 2011 Elsevier B.V. All rights reserved.
The role of perceptual load in object recognition.
Lavie, Nilli; Lin, Zhicheng; Zokaei, Nahid; Thoma, Volker
2009-10-01
Predictions from perceptual load theory (Lavie, 1995, 2005) regarding object recognition across the same or different viewpoints were tested. Results showed that high perceptual load reduces distracter recognition levels despite always presenting distracter objects from the same view. They also showed that the levels of distracter recognition were unaffected by a change in the distracter object view under conditions of low perceptual load. These results were found both with repetition priming measures of distracter recognition and with performance on a surprise recognition memory test. The results support load theory proposals that distracter recognition critically depends on the level of perceptual load. The implications for the role of attention in object recognition theories are discussed. PsycINFO Database Record (c) 2009 APA, all rights reserved.
Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image
NASA Astrophysics Data System (ADS)
Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; Ernastuti
2016-06-01
An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.
Daud-Gallotti, Renata Mahfuz; Morinaga, Christian Valle; Arlindo-Rodrigues, Marcelo; Velasco, Irineu Tadeu; Arruda Martins, Milton; Tiberio, Iolanda Calvo
2011-01-01
INTRODUCTION: Patient safety is seldom assessed using objective evaluations during undergraduate medical education. OBJECTIVE: To evaluate the performance of fifth-year medical students using an objective structured clinical examination focused on patient safety after implementation of an interactive program based on adverse events recognition and disclosure. METHODS: In 2007, a patient safety program was implemented in the internal medicine clerkship of our hospital. The program focused on human error theory, epidemiology of incidents, adverse events, and disclosure. Upon completion of the program, students completed an objective structured clinical examination with five stations and standardized patients. One station focused on patient safety issues, including medical error recognition/disclosure, the patient-physician relationship and humanism issues. A standardized checklist was completed by each standardized patient to assess the performance of each student. The student's global performance at each station and performance in the domains of medical error, the patient-physician relationship and humanism were determined. The correlations between the student performances in these three domains were calculated. RESULTS: A total of 95 students participated in the objective structured clinical examination. The mean global score at the patient safety station was 87.59±1.24 points. Students' performance in the medical error domain was significantly lower than their performance on patient-physician relationship and humanistic issues. Less than 60% of students (n = 54) offered the simulated patient an apology after a medical error occurred. A significant correlation was found between scores obtained in the medical error domains and scores related to both the patient-physician relationship and humanistic domains. CONCLUSIONS: An objective structured clinical examination is a useful tool to evaluate patient safety competencies during the medical student clerkship. PMID:21876976
It Takes Two–Skilled Recognition of Objects Engages Lateral Areas in Both Hemispheres
Bilalić, Merim; Kiesel, Andrea; Pohl, Carsten; Erb, Michael; Grodd, Wolfgang
2011-01-01
Our object recognition abilities, a direct product of our experience with objects, are fine-tuned to perfection. Left temporal and lateral areas along the dorsal, action related stream, as well as left infero-temporal areas along the ventral, object related stream are engaged in object recognition. Here we show that expertise modulates the activity of dorsal areas in the recognition of man-made objects with clearly specified functions. Expert chess players were faster than chess novices in identifying chess objects and their functional relations. Experts' advantage was domain-specific as there were no differences between groups in a control task featuring geometrical shapes. The pattern of eye movements supported the notion that experts' extensive knowledge about domain objects and their functions enabled superior recognition even when experts were not directly fixating the objects of interest. Functional magnetic resonance imaging (fMRI) related exclusively the areas along the dorsal stream to chess specific object recognition. Besides the commonly involved left temporal and parietal lateral brain areas, we found that only in experts homologous areas on the right hemisphere were also engaged in chess specific object recognition. Based on these results, we discuss whether skilled object recognition does not only involve a more efficient version of the processes found in non-skilled recognition, but also qualitatively different cognitive processes which engage additional brain areas. PMID:21283683
Higher-Order Neural Networks Applied to 2D and 3D Object Recognition
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Reid, Max B.
1994-01-01
A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.
Generic decoding of seen and imagined objects using hierarchical visual features.
Horikawa, Tomoyasu; Kamitani, Yukiyasu
2017-05-22
Object recognition is a key function in both human and machine vision. While brain decoding of seen and imagined objects has been achieved, the prediction is limited to training examples. We present a decoding approach for arbitrary objects using the machine vision principle that an object category is represented by a set of features rendered invariant through hierarchical processing. We show that visual features, including those derived from a deep convolutional neural network, can be predicted from fMRI patterns, and that greater accuracy is achieved for low-/high-level features with lower-/higher-level visual areas, respectively. Predicted features are used to identify seen/imagined object categories (extending beyond decoder training) from a set of computed features for numerous object images. Furthermore, decoding of imagined objects reveals progressive recruitment of higher-to-lower visual representations. Our results demonstrate a homology between human and machine vision and its utility for brain-based information retrieval.
Xu, Dong; Yan, Shuicheng; Tao, Dacheng; Lin, Stephen; Zhang, Hong-Jiang
2007-11-01
Dimensionality reduction algorithms, which aim to select a small set of efficient and discriminant features, have attracted great attention for human gait recognition and content-based image retrieval (CBIR). In this paper, we present extensions of our recently proposed marginal Fisher analysis (MFA) to address these problems. For human gait recognition, we first present a direct application of MFA, then inspired by recent advances in matrix and tensor-based dimensionality reduction algorithms, we present matrix-based MFA for directly handling 2-D input in the form of gray-level averaged images. For CBIR, we deal with the relevance feedback problem by extending MFA to marginal biased analysis, in which within-class compactness is characterized only by the distances between each positive sample and its neighboring positive samples. In addition, we present a new technique to acquire a direct optimal solution for MFA without resorting to objective function modification as done in many previous algorithms. We conduct comprehensive experiments on the USF HumanID gait database and the Corel image retrieval database. Experimental results demonstrate that MFA and its extensions outperform related algorithms in both applications.
Method and System for Object Recognition Search
NASA Technical Reports Server (NTRS)
Duong, Tuan A. (Inventor); Duong, Vu A. (Inventor); Stubberud, Allen R. (Inventor)
2012-01-01
A method for object recognition using shape and color features of the object to be recognized. An adaptive architecture is used to recognize and adapt the shape and color features for moving objects to enable object recognition.
Peterson, M A; de Gelder, B; Rapcsak, S Z; Gerhardstein, P C; Bachoud-Lévi, A
2000-01-01
In three experiments we investigated whether conscious object recognition is necessary or sufficient for effects of object memories on figure assignment. In experiment 1, we examined a brain-damaged participant, AD, whose conscious object recognition is severely impaired. AD's responses about figure assignment do reveal effects from memories of object structure, indicating that conscious object recognition is not necessary for these effects, and identifying the figure-ground test employed here as a new implicit test of access to memories of object structure. In experiments 2 and 3, we tested a second brain-damaged participant, WG, for whom conscious object recognition was relatively spared. Nevertheless, effects from memories of object structure on figure assignment were not evident in WG's responses about figure assignment in experiment 2, indicating that conscious object recognition is not sufficient for effects of object memories on figure assignment. WG's performance sheds light on AD's performance, and has implications for the theoretical understanding of object memory effects on figure assignment.
ERIC Educational Resources Information Center
Bard, Kim A.; Todd, Brenda K.; Bernier, Chris; Love, Jennifer; Leavens, David A.
2006-01-01
The objective study of self-recognition, with a mirror and a mark applied to the face, was conducted independently by Gallup (1970) for use with chimpanzees and monkeys, and by Amsterdam (1972) for use with infant humans. Comparative psychologists have followed the model (and assumptions) set by Gallup, whereas developmental psychologists have…
Software for Partly Automated Recognition of Targets
NASA Technical Reports Server (NTRS)
Opitz, David; Blundell, Stuart; Bain, William; Morris, Matthew; Carlson, Ian; Mangrich, Mark; Selinsky, T.
2002-01-01
The Feature Analyst is a computer program for assisted (partially automated) recognition of targets in images. This program was developed to accelerate the processing of high-resolution satellite image data for incorporation into geographic information systems (GIS). This program creates an advanced user interface that embeds proprietary machine-learning algorithms in commercial image-processing and GIS software. A human analyst provides samples of target features from multiple sets of data, then the software develops a data-fusion model that automatically extracts the remaining features from selected sets of data. The program thus leverages the natural ability of humans to recognize objects in complex scenes, without requiring the user to explain the human visual recognition process by means of lengthy software. Two major subprograms are the reactive agent and the thinking agent. The reactive agent strives to quickly learn the user's tendencies while the user is selecting targets and to increase the user's productivity by immediately suggesting the next set of pixels that the user may wish to select. The thinking agent utilizes all available resources, taking as much time as needed, to produce the most accurate autonomous feature-extraction model possible.
2017-01-01
The role of stereo disparity in the recognition of 3-dimensional (3D) object shape remains an unresolved issue for theoretical models of the human visual system. We examined this issue using high-density (128 channel) recordings of event-related potentials (ERPs). A recognition memory task was used in which observers were trained to recognize a subset of complex, multipart, 3D novel objects under conditions of either (bi-) monocular or stereo viewing. In a subsequent test phase they discriminated previously trained targets from untrained distractor objects that shared either local parts, 3D spatial configuration, or neither dimension, across both previously seen and novel viewpoints. The behavioral data showed a stereo advantage for target recognition at untrained viewpoints. ERPs showed early differential amplitude modulations to shape similarity defined by local part structure and global 3D spatial configuration. This occurred initially during an N1 component around 145–190 ms poststimulus onset, and then subsequently during an N2/P3 component around 260–385 ms poststimulus onset. For mono viewing, amplitude modulation during the N1 was greatest between targets and distracters with different local parts for trained views only. For stereo viewing, amplitude modulation during the N2/P3 was greatest between targets and distracters with different global 3D spatial configurations and generalized across trained and untrained views. The results show that image classification is modulated by stereo information about the local part, and global 3D spatial configuration of object shape. The findings challenge current theoretical models that do not attribute functional significance to stereo input during the computation of 3D object shape. PMID:29022728
Rosselli, Federica B.; Alemi, Alireza; Ansuini, Alessio; Zoccolan, Davide
2015-01-01
In recent years, a number of studies have explored the possible use of rats as models of high-level visual functions. One central question at the root of such an investigation is to understand whether rat object vision relies on the processing of visual shape features or, rather, on lower-order image properties (e.g., overall brightness). In a recent study, we have shown that rats are capable of extracting multiple features of an object that are diagnostic of its identity, at least when those features are, structure-wise, distinct enough to be parsed by the rat visual system. In the present study, we have assessed the impact of object structure on rat perceptual strategy. We trained rats to discriminate between two structurally similar objects, and compared their recognition strategies with those reported in our previous study. We found that, under conditions of lower stimulus discriminability, rat visual discrimination strategy becomes more view-dependent and subject-dependent. Rats were still able to recognize the target objects, in a way that was largely tolerant (i.e., invariant) to object transformation; however, the larger structural and pixel-wise similarity affected the way objects were processed. Compared to the findings of our previous study, the patterns of diagnostic features were: (i) smaller and more scattered; (ii) only partially preserved across object views; and (iii) only partially reproducible across rats. On the other hand, rats were still found to adopt a multi-featural processing strategy and to make use of part of the optimal discriminatory information afforded by the two objects. Our findings suggest that, as in humans, rat invariant recognition can flexibly rely on either view-invariant representations of distinctive object features or view-specific object representations, acquired through learning. PMID:25814936
A Neural-Dynamic Architecture for Concurrent Estimation of Object Pose and Identity
Lomp, Oliver; Faubel, Christian; Schöner, Gregor
2017-01-01
Handling objects or interacting with a human user about objects on a shared tabletop requires that objects be identified after learning from a small number of views and that object pose be estimated. We present a neurally inspired architecture that learns object instances by storing features extracted from a single view of each object. Input features are color and edge histograms from a localized area that is updated during processing. The system finds the best-matching view for the object in a novel input image while concurrently estimating the object’s pose, aligning the learned view with current input. The system is based on neural dynamics, computationally operating in real time, and can handle dynamic scenes directly off live video input. In a scenario with 30 everyday objects, the system achieves recognition rates of 87.2% from a single training view for each object, while also estimating pose quite precisely. We further demonstrate that the system can track moving objects, and that it can segment the visual array, selecting and recognizing one object while suppressing input from another known object in the immediate vicinity. Evaluation on the COIL-100 dataset, in which objects are depicted from different viewing angles, revealed recognition rates of 91.1% on the first 30 objects, each learned from four training views. PMID:28503145
Luo, Jiebo; Boutell, Matthew
2005-05-01
Automatic image orientation detection for natural images is a useful, yet challenging research topic. Humans use scene context and semantic object recognition to identify the correct image orientation. However, it is difficult for a computer to perform the task in the same way because current object recognition algorithms are extremely limited in their scope and robustness. As a result, existing orientation detection methods were built upon low-level vision features such as spatial distributions of color and texture. Discrepant detection rates have been reported for these methods in the literature. We have developed a probabilistic approach to image orientation detection via confidence-based integration of low-level and semantic cues within a Bayesian framework. Our current accuracy is 90 percent for unconstrained consumer photos, impressive given the findings of a psychophysical study conducted recently. The proposed framework is an attempt to bridge the gap between computer and human vision systems and is applicable to other problems involving semantic scene content understanding.
Neural correlates of auditory recognition memory in the primate dorsal temporal pole
Ng, Chi-Wing; Plakke, Bethany
2013-01-01
Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324
Fragility of haptic memory in human full-term newborns.
Lejeune, Fleur; Borradori Tolsa, Cristina; Gentaz, Edouard; Barisnikov, Koviljka
2018-05-31
Numerous studies have established that newborns can memorize tactile information about the specific features of an object with their hands and detect differences with another object. However, the robustness of haptic memory abilities has already been examined in preterm newborns and in full-term infants, but not yet in full-term newborns. This research is aimed to better understand the robustness of haptic memory abilities at birth by examining the effects of a change in the objects' temperature and haptic interference. Sixty-eight full-term newborns (mean postnatal age: 2.5 days) were included. The two experiments were conducted in three phases: habituation (repeated presentation of the same object, a prism or cylinder in the newborn's hand), discrimination (presentation of a novel object), and recognition (presentation of the familiar object). In Experiment 1, the change in the objects' temperature was controlled during the three phases. Results reveal that newborns can memorize specific features that differentiate prism and cylinder shapes by touch, and discriminate between them, but surprisingly they did not show evidence of recognizing them after interference. As no significant effect of the temperature condition was observed in habituation, discrimination and recognition abilities, these findings suggest that discrimination abilities in newborns may be determined by the detection of shape differences. Overall, it seems that the ontogenesis of haptic recognition memory is not linear. The developmental schedule is likely crucial for haptic development between 34 and 40 GW. Copyright © 2018 Elsevier Inc. All rights reserved.
The development of newborn object recognition in fast and slow visual worlds
Wood, Justin N.; Wood, Samantha M. W.
2016-01-01
Object recognition is central to perception and cognition. Yet relatively little is known about the environmental factors that cause invariant object recognition to emerge in the newborn brain. Is this ability a hardwired property of vision? Or does the development of invariant object recognition require experience with a particular kind of visual environment? Here, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) require visual experience with slowly changing objects to develop invariant object recognition abilities. When newborn chicks were raised with a slowly rotating virtual object, the chicks built invariant object representations that generalized across novel viewpoints and rotation speeds. In contrast, when newborn chicks were raised with a virtual object that rotated more quickly, the chicks built viewpoint-specific object representations that failed to generalize to novel viewpoints and rotation speeds. Moreover, there was a direct relationship between the speed of the object and the amount of invariance in the chick's object representation. Thus, visual experience with slowly changing objects plays a critical role in the development of invariant object recognition. These results indicate that invariant object recognition is not a hardwired property of vision, but is learned rapidly when newborns encounter a slowly changing visual world. PMID:27097925
Niimi, Ryosuke; Yokosawa, Kazuhiko
2009-01-01
Visual recognition of three-dimensional (3-D) objects is relatively impaired for some particular views, called accidental views. For most familiar objects, the front and top views are considered to be accidental views. Previous studies have shown that foreshortening of the axes of elongation of objects in these views impairs recognition, but the influence of other possible factors is largely unknown. Using familiar objects without a salient axis of elongation, we found that a foreshortened symmetry plane of the object and low familiarity of the viewpoint accounted for the relatively worse recognition for front views and top views, independently of the effect of a foreshortened axis of elongation. We found no evidence that foreshortened front-back axes impaired recognition in front views. These results suggest that the viewpoint dependence of familiar object recognition is not a unitary phenomenon. The possible role of symmetry (either 2-D or 3-D) in familiar object recognition is also discussed.
Automatic anatomy recognition via multiobject oriented active shape models.
Chen, Xinjian; Udupa, Jayaram K; Alavi, Abass; Torigian, Drew A
2010-12-01
This paper studies the feasibility of developing an automatic anatomy recognition (AAR) system in clinical radiology and demonstrates its operation on clinical 2D images. The anatomy recognition method described here consists of two main components: (a) multiobject generalization of OASM and (b) object recognition strategies. The OASM algorithm is generalized to multiple objects by including a model for each object and assigning a cost structure specific to each object in the spirit of live wire. The delineation of multiobject boundaries is done in MOASM via a three level dynamic programming algorithm, wherein the first level is at pixel level which aims to find optimal oriented boundary segments between successive landmarks, the second level is at landmark level which aims to find optimal location for the landmarks, and the third level is at the object level which aims to find optimal arrangement of object boundaries over all objects. The object recognition strategy attempts to find that pose vector (consisting of translation, rotation, and scale component) for the multiobject model that yields the smallest total boundary cost for all objects. The delineation and recognition accuracies were evaluated separately utilizing routine clinical chest CT, abdominal CT, and foot MRI data sets. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF and FPVF). The recognition accuracy was assessed (1) in terms of the size of the space of the pose vectors for the model assembly that yielded high delineation accuracy, (2) as a function of the number of objects and objects' distribution and size in the model, (3) in terms of the interdependence between delineation and recognition, and (4) in terms of the closeness of the optimum recognition result to the global optimum. When multiple objects are included in the model, the delineation accuracy in terms of TPVF can be improved to 97%-98% with a low FPVF of 0.1%-0.2%. Typically, a recognition accuracy of > or = 90% yielded a TPVF > or = 95% and FPVF < or = 0.5%. Over the three data sets and over all tested objects, in 97% of the cases, the optimal solutions found by the proposed method constituted the true global optimum. The experimental results showed the feasibility and efficacy of the proposed automatic anatomy recognition system. Increasing the number of objects in the model can significantly improve both recognition and delineation accuracy. More spread out arrangement of objects in the model can lead to improved recognition and delineation accuracy. Including larger objects in the model also improved recognition and delineation. The proposed method almost always finds globally optimum solutions.
Role of PFC during retrieval of recognition memory in rodents.
Bekinschtein, Pedro; Weisstaub, Noelia
2014-01-01
One of the challenges for memory researches is the study of the neurobiology of episodic memory which is defined by the integration of all the different components of experiences that support the conscious recollection of events. The features of episodic memory includes a particular object or person ("what"), the context in which the experience took place ("where") and the particular time at which the event occurred ("when"). Although episodic memory has been mainly studied in humans, there are many studies that demonstrate these features in non-human animals. Here, we summarize a set of studies that employ different versions of recognition memory tasks in animals to study the role of the medial prefrontal cortex in episodic memory. Copyright © 2014 Elsevier Ltd. All rights reserved.
Incidental Context Information Increases Recollection
ERIC Educational Resources Information Center
Ameen-Ali, Kamar E.; Norman, Liam J.; Eacott, Madeline J.; Easton, Alexander
2017-01-01
The current study describes a receiver-operating characteristic (ROC) task for human participants based on the spontaneous recognition memory paradigms typically used with rodents. Recollection was significantly higher when an object was in the same location and background as at encoding, a combination used to assess episodic-like memory in…
DORSAL HIPPOCAMPAL PROGESTERONE INFUSIONS ENHANCE OBJECT RECOGNITION IN YOUNG FEMALE MICE
Orr, Patrick T.; Lewis, Michael C.; Frick, Karyn M.
2009-01-01
The effects of progesterone on memory are not nearly as well studied as the effects of estrogens. Although progesterone can reportedly enhance spatial and/or object recognition in female rodents when given immediately after training, previous studies have injected progesterone systemically, and therefore, the brain regions mediating this enhancement are not clear. As such, this study was designed to determine the role of the dorsal hippocampus in mediating the beneficial effect of progesterone on object recognition. Young ovariectomized C57BL/6 mice were trained in a hippocampal-dependent object recognition task utilizing two identical objects, and then immediately or 2 hrs afterwards, received bilateral dorsal hippocampal infusions of vehicle or 0.01, 0.1, or 1.0 μg/μl water-soluble progesterone. Forty-eight hours later, object recognition memory was tested using a previously explored object and a novel object. Relative to the vehicle group, memory for the familiar object was enhanced in all groups receiving immediate infusions of progesterone. Progesterone infusion delayed 2 hrs after training did not affect object recognition. These data suggest that the dorsal hippocampus may play a critical role in progesterone-induced enhancement of object recognition. PMID:19477194
NASA Technical Reports Server (NTRS)
Wolf, Jared J.
1977-01-01
The following research was discussed: (1) speech signal processing; (2) automatic speech recognition; (3) continuous speech understanding; (4) speaker recognition; (5) speech compression; (6) subjective and objective evaluation of speech communication system; (7) measurement of the intelligibility and quality of speech when degraded by noise or other masking stimuli; (8) speech synthesis; (9) instructional aids for second-language learning and for training of the deaf; and (10) investigation of speech correlates of psychological stress. Experimental psychology, control systems, and human factors engineering, which are often relevant to the proper design and operation of speech systems are described.
When a Picasso is a "Picasso": the entry point in the identification of visual art.
Belke, B; Leder, H; Harsanyi, G; Carbon, C C
2010-02-01
We investigated whether art is distinguished from other real world objects in human cognition, in that art allows for a special memorial representation and identification based on artists' specific stylistic appearances. Testing art-experienced viewers, converging empirical evidence from three experiments, which have proved sensitive to addressing the question of initial object recognition, suggest that identification of visual art is at the subordinate level of the producing artist. Specifically, in a free naming task it was found that art-objects as opposed to non-art-objects were most frequently named with subordinate level categories, with the artist's name as the most frequent category (Experiment 1). In a category-verification task (Experiment 2), art-objects were recognized faster than non-art-objects on the subordinate level with the artist's name. In a conceptual priming task, subordinate primes of artists' names facilitated matching responses to art-objects but subordinate primes did not facilitate responses to non-art-objects (Experiment 3). Collectively, these results suggest that the artist's name has a special status in the memorial representation of visual art and serves as a predominant entry point in recognition in art perception. Copyright 2009 Elsevier B.V. All rights reserved.
van den Berg, Ronald; Roerdink, Jos B. T. M.; Cornelissen, Frans W.
2010-01-01
An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called “crowding”. Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, “compulsory averaging”, and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality. PMID:20098499
Infant Visual Attention and Object Recognition
Reynolds, Greg D.
2015-01-01
This paper explores the role visual attention plays in the recognition of objects in infancy. Research and theory on the development of infant attention and recognition memory are reviewed in three major sections. The first section reviews some of the major findings and theory emerging from a rich tradition of behavioral research utilizing preferential looking tasks to examine visual attention and recognition memory in infancy. The second section examines research utilizing neural measures of attention and object recognition in infancy as well as research on brain-behavior relations in the early development of attention and recognition memory. The third section addresses potential areas of the brain involved in infant object recognition and visual attention. An integrated synthesis of some of the existing models of the development of visual attention is presented which may account for the observed changes in behavioral and neural measures of visual attention and object recognition that occur across infancy. PMID:25596333
1990-02-07
performance assessment, human intervention, or operator training. Algorithms on different levels are allowed to deal with the world with different degrees...have on the decisions made by the driver are a complex combination of human factors, driving experience, mission objectives, tactics, etc., and...motion. The distinction here is that the decision making program may I 12 1 I not necessarily make its decisions based on the same factors as the human
Recognition-induced forgetting is not due to category-based set size.
Maxcey, Ashleigh M
2016-01-01
What are the consequences of accessing a visual long-term memory representation? Previous work has shown that accessing a long-term memory representation via retrieval improves memory for the targeted item and hurts memory for related items, a phenomenon called retrieval-induced forgetting. Recently we found a similar forgetting phenomenon with recognition of visual objects. Recognition-induced forgetting occurs when practice recognizing an object during a two-alternative forced-choice task, from a group of objects learned at the same time, leads to worse memory for objects from that group that were not practiced. An alternative explanation of this effect is that category-based set size is inducing forgetting, not recognition practice as claimed by some researchers. This alternative explanation is possible because during recognition practice subjects make old-new judgments in a two-alternative forced-choice task, and are thus exposed to more objects from practiced categories, potentially inducing forgetting due to set-size. Herein I pitted the category-based set size hypothesis against the recognition-induced forgetting hypothesis. To this end, I parametrically manipulated the amount of practice objects received in the recognition-induced forgetting paradigm. If forgetting is due to category-based set size, then the magnitude of forgetting of related objects will increase as the number of practice trials increases. If forgetting is recognition induced, the set size of exemplars from any given category should not be predictive of memory for practiced objects. Consistent with this latter hypothesis, additional practice systematically improved memory for practiced objects, but did not systematically affect forgetting of related objects. These results firmly establish that recognition practice induces forgetting of related memories. Future directions and important real-world applications of using recognition to access our visual memories of previously encountered objects are discussed.
Jacklin, Derek L; Cloke, Jacob M; Potvin, Alphonse; Garrett, Inara; Winters, Boyer D
2016-01-27
Rats, humans, and monkeys demonstrate robust crossmodal object recognition (CMOR), identifying objects across sensory modalities. We have shown that rats' performance of a spontaneous tactile-to-visual CMOR task requires functional integration of perirhinal (PRh) and posterior parietal (PPC) cortices, which seemingly provide visual and tactile object feature processing, respectively. However, research with primates has suggested that PRh is sufficient for multisensory object representation. We tested this hypothesis in rats using a modification of the CMOR task in which multimodal preexposure to the to-be-remembered objects significantly facilitates performance. In the original CMOR task, with no preexposure, reversible lesions of PRh or PPC produced patterns of impairment consistent with modality-specific contributions. Conversely, in the CMOR task with preexposure, PPC lesions had no effect, whereas PRh involvement was robust, proving necessary for phases of the task that did not require PRh activity when rats did not have preexposure; this pattern was supported by results from c-fos imaging. We suggest that multimodal preexposure alters the circuitry responsible for object recognition, in this case obviating the need for PPC contributions and expanding PRh involvement, consistent with the polymodal nature of PRh connections and results from primates indicating a key role for PRh in multisensory object representation. These findings have significant implications for our understanding of multisensory information processing, suggesting that the nature of an individual's past experience with an object strongly determines the brain circuitry involved in representing that object's multisensory features in memory. The ability to integrate information from multiple sensory modalities is crucial to the survival of organisms living in complex environments. Appropriate responses to behaviorally relevant objects are informed by integration of multisensory object features. We used crossmodal object recognition tasks in rats to study the neurobiological basis of multisensory object representation. When rats had no prior exposure to the to-be-remembered objects, the spontaneous ability to recognize objects across sensory modalities relied on functional interaction between multiple cortical regions. However, prior multisensory exploration of the task-relevant objects remapped cortical contributions, negating the involvement of one region and significantly expanding the role of another. This finding emphasizes the dynamic nature of cortical representation of objects in relation to past experience. Copyright © 2016 the authors 0270-6474/16/361273-17$15.00/0.
Purpura, Giulia; Cioni, Giovanni; Tinelli, Francesca
2018-07-01
Object recognition is a long and complex adaptive process and its full maturation requires combination of many different sensory experiences as well as cognitive abilities to manipulate previous experiences in order to develop new percepts and subsequently to learn from the environment. It is well recognized that the transfer of visual and haptic information facilitates object recognition in adults, but less is known about development of this ability. In this study, we explored the developmental course of object recognition capacity in children using unimodal visual information, unimodal haptic information, and visuo-haptic information transfer in children from 4 years to 10 years and 11 months of age. Participants were tested through a clinical protocol, involving visual exploration of black-and-white photographs of common objects, haptic exploration of real objects, and visuo-haptic transfer of these two types of information. Results show an age-dependent development of object recognition abilities for visual, haptic, and visuo-haptic modalities. A significant effect of time on development of unimodal and crossmodal recognition skills was found. Moreover, our data suggest that multisensory processes for common object recognition are active at 4 years of age. They facilitate recognition of common objects, and, although not fully mature, are significant in adaptive behavior from the first years of age. The study of typical development of visuo-haptic processes in childhood is a starting point for future studies regarding object recognition in impaired populations.
O'Neil, Edward B; Watson, Hilary C; Dhillon, Sonya; Lobaugh, Nancy J; Lee, Andy C H
2015-09-01
Recent work has demonstrated that the perirhinal cortex (PRC) supports conjunctive object representations that aid object recognition memory following visual object interference. It is unclear, however, how these representations interact with other brain regions implicated in mnemonic retrieval and how congruent and incongruent interference influences the processing of targets and foils during object recognition. To address this, multivariate partial least squares was applied to fMRI data acquired during an interference match-to-sample task, in which participants made object or scene recognition judgments after object or scene interference. This revealed a pattern of activity sensitive to object recognition following congruent (i.e., object) interference that included PRC, prefrontal, and parietal regions. Moreover, functional connectivity analysis revealed a common pattern of PRC connectivity across interference and recognition conditions. Examination of eye movements during the same task in a separate study revealed that participants gazed more at targets than foils during correct object recognition decisions, regardless of interference congruency. By contrast, participants viewed foils more than targets for incorrect object memory judgments, but only after congruent interference. Our findings suggest that congruent interference makes object foils appear familiar and that a network of regions, including PRC, is recruited to overcome the effects of interference.
Understanding human visual systems and its impact on our intelligent instruments
NASA Astrophysics Data System (ADS)
Strojnik Scholl, Marija; Páez, Gonzalo; Scholl, Michelle K.
2013-09-01
We review the evolution of machine vision and comment on the cross-fertilization from the neural sciences onto flourishing fields of neural processing, parallel processing, and associative memory in optical sciences and computing. Then we examine how the intensive efforts in mapping the human brain have been influenced by concepts in computer sciences, control theory, and electronic circuits. We discuss two neural paths that employ the input from the vision sense to determine the navigational options and object recognition. They are ventral temporal pathway for object recognition (what?) and dorsal parietal pathway for navigation (where?), respectively. We describe the reflexive and conscious decision centers in cerebral cortex involved with visual attention and gaze control. Interestingly, these require return path though the midbrain for ocular muscle control. We find that the cognitive psychologists currently study human brain employing low-spatial-resolution fMRI with temporal response on the order of a second. In recent years, the life scientists have concentrated on insect brains to study neural processes. We discuss how reflexive and conscious gaze-control decisions are made in the frontal eye field and inferior parietal lobe, constituting the fronto-parietal attention network. We note that ethical and experiential learnings impact our conscious decisions.
Adrenergic enhancement of consolidation of object recognition memory.
Dornelles, Arethuza; de Lima, Maria Noemia Martins; Grazziotin, Manoela; Presti-Torres, Juliana; Garcia, Vanessa Athaide; Scalco, Felipe Siciliani; Roesler, Rafael; Schröder, Nadja
2007-07-01
Extensive evidence indicates that epinephrine (EPI) modulates memory consolidation for emotionally arousing tasks in animals and human subjects. However, previous studies have not examined the effects of EPI on consolidation of recognition memory. Here we report that systemic administration of EPI enhances consolidation of memory for a novel object recognition (NOR) task under different training conditions. Control male rats given a systemic injection of saline (0.9% NaCl) immediately after NOR training showed significant memory retention when tested at 1.5 or 24, but not 96h after training. In contrast, rats given a post-training injection of EPI showed significant retention of NOR at all delays. In a second experiment using a different training condition, rats treated with EPI, but not SAL-treated animals, showed significant NOR retention at both 1.5 and 24-h delays. We next showed that the EPI-induced enhancement of retention tested at 96h after training was prevented by pretraining systemic administration of the beta-adrenoceptor antagonist propranolol. The findings suggest that, as previously observed in experiments using aversively motivated tasks, epinephrine modulates consolidation of recognition memory and that the effects require activation of beta-adrenoceptors.
The Role of Perceptual Load in Object Recognition
ERIC Educational Resources Information Center
Lavie, Nilli; Lin, Zhicheng; Zokaei, Nahid; Thoma, Volker
2009-01-01
Predictions from perceptual load theory (Lavie, 1995, 2005) regarding object recognition across the same or different viewpoints were tested. Results showed that high perceptual load reduces distracter recognition levels despite always presenting distracter objects from the same view. They also showed that the levels of distracter recognition were…
Object Recognition and Localization: The Role of Tactile Sensors
Aggarwal, Achint; Kirchner, Frank
2014-01-01
Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments. PMID:24553087
Summary of tracking and identification methods
NASA Astrophysics Data System (ADS)
Blasch, Erik; Yang, Chun; Kadar, Ivan
2014-06-01
Over the last two decades, many solutions have arisen to combine target tracking estimation with classification methods. Target tracking includes developments from linear to non-linear and Gaussian to non-Gaussian processing. Pattern recognition includes detection, classification, recognition, and identification methods. Integrating tracking and pattern recognition has resulted in numerous approaches and this paper seeks to organize the various approaches. We discuss the terminology so as to have a common framework for various standards such as the NATO STANAG 4162 - Identification Data Combining Process. In a use case, we provide a comparative example highlighting that location information (as an example) with additional mission objectives from geographical, human, social, cultural, and behavioral modeling is needed to determine identification as classification alone does not allow determining identification or intent.
Yamashita, Wakayo; Wang, Gang; Tanaka, Keiji
2010-01-01
One usually fails to recognize an unfamiliar object across changes in viewing angle when it has to be discriminated from similar distractor objects. Previous work has demonstrated that after long-term experience in discriminating among a set of objects seen from the same viewing angle, immediate recognition of the objects across 30-60 degrees changes in viewing angle becomes possible. The capability for view-invariant object recognition should develop during the within-viewing-angle discrimination, which includes two kinds of experience: seeing individual views and discriminating among the objects. The aim of the present study was to determine the relative contribution of each factor to the development of view-invariant object recognition capability. Monkeys were first extensively trained in a task that required view-invariant object recognition (Object task) with several sets of objects. The animals were then exposed to a new set of objects over 26 days in one of two preparatory tasks: one in which each object view was seen individually, and a second that required discrimination among the objects at each of four viewing angles. After the preparatory period, we measured the monkeys' ability to recognize the objects across changes in viewing angle, by introducing the object set to the Object task. Results indicated significant view-invariant recognition after the second but not first preparatory task. These results suggest that discrimination of objects from distractors at each of several viewing angles is required for the development of view-invariant recognition of the objects when the distractors are similar to the objects.
Keijser, Jan N; van Heuvelen, Marieke J G; Nyakas, Csaba; Tóth, Kata; Schoemaker, Regien G; Zeinstra, Edzard; van der Zee, Eddy A
2017-01-01
Whole body vibration (WBV) is a form of physical stimulation via mechanical vibrations transmitted to a subject. It is assumed that WBV induces sensory stimulation in cortical brain regions through the activation of skin and muscle receptors responding to the vibration. The effects of WBV on muscle strength are well described. However, little is known about the impact of WBV on the brain. Recently, it was shown in humans that WBV improves attention in an acute WBV protocol. Preclinical research is needed to unravel the underlying brain mechanism. As a first step, we examined whether chronic WBV improves attention in mice. A custom made vibrating platform for mice with low intensity vibrations was used. Male CD1 mice (3 months of age) received five weeks WBV (30 Hz; 1.9 G), five days a week with sessions of five (n=12) or 30 (n=10) minutes. Control mice (pseudo-WBV; n=12 and 10 for the five and 30 minute sessions, respectively) were treated in a similar way, but did not receive the actual vibration. Object recognition tasks were used as an attention test (novel and spatial object recognition - the primary outcome measure). A Balance beam was used for motor performance, serving as a secondary outcome measure. WBV sessions of five (but not WBV sessions of 30 minutes) improved balance beam performance (mice gained 28% in time needed to cross the beam) and novel object recognition (mice paid significantly more attention to the novel object) as compared to pseudo WBV, but no change was found for spatial object performance (mice did not notice the relocation). Although 30 minutes WBV sessions were not beneficial, it did not impair either attention or motor performance. These results show that brief sessions of WBV improve, next to motor performance, attention for object recognition, but not spatial cues of the objects. The selective improvement of attention in mice opens the avenue to unravel the underlying brain mechanisms.
Measuring sensitivity to viewpoint change with and without stereoscopic cues.
Bell, Jason; Dickinson, Edwin; Badcock, David R; Kingdom, Frederick A A
2013-12-04
The speed and accuracy of object recognition is compromised by a change in viewpoint; demonstrating that human observers are sensitive to this transformation. Here we discuss a novel method for simulating the appearance of an object that has undergone a rotation-in-depth, and include an exposition of the differences between perspective and orthographic projections. Next we describe a method by which human sensitivity to rotation-in-depth can be measured. Finally we discuss an apparatus for creating a vivid percept of a 3-dimensional rotation-in-depth; the Wheatstone Eight Mirror Stereoscope. By doing so, we reveal a means by which to evaluate the role of stereoscopic cues in the discrimination of viewpoint rotated shapes and objects.
Characterizing age-related decline of recognition memory and brain activation profile in mice.
Belblidia, Hassina; Leger, Marianne; Abdelmalek, Abdelouadoud; Quiedeville, Anne; Calocer, Floriane; Boulouard, Michel; Jozet-Alves, Christelle; Freret, Thomas; Schumann-Bard, Pascale
2018-06-01
Episodic memory decline is one of the earlier deficits occurring during normal aging in humans. The question of spatial versus non-spatial sensitivity to age-related memory decline is of importance for a full understanding of these changes. Here, we characterized the effect of normal aging on both non-spatial (object) and spatial (object location) memory performances as well as on associated neuronal activation in mice. Novel-object (NOR) and object-location (OLR) recognition tests, respectively assessing the identity and spatial features of object memory, were examined at different ages. We show that memory performances in both tests were altered by aging as early as 15 months of age: NOR memory was partially impaired whereas OLR memory was found to be fully disrupted at 15 months of age. Brain activation profiles were assessed for both tests using immunohistochemical detection of c-Fos (neuronal activation marker) in 3and 15 month-old mice. Normal performances in NOR task by 3 month-old mice were associated to an activation of the hippocampus and a trend towards an activation in the perirhinal cortex, in a way that did significantly differ with 15 month-old mice. During OLR task, brain activation took place in the hippocampus in 3 month-old but not significantly in 15 month-old mice, which were fully impaired at this task. These differential alterations of the object- and object-location recognition memory may be linked to differential alteration of the neuronal networks supporting these tasks. Copyright © 2018 Elsevier Inc. All rights reserved.
Infant visual attention and object recognition.
Reynolds, Greg D
2015-05-15
This paper explores the role visual attention plays in the recognition of objects in infancy. Research and theory on the development of infant attention and recognition memory are reviewed in three major sections. The first section reviews some of the major findings and theory emerging from a rich tradition of behavioral research utilizing preferential looking tasks to examine visual attention and recognition memory in infancy. The second section examines research utilizing neural measures of attention and object recognition in infancy as well as research on brain-behavior relations in the early development of attention and recognition memory. The third section addresses potential areas of the brain involved in infant object recognition and visual attention. An integrated synthesis of some of the existing models of the development of visual attention is presented which may account for the observed changes in behavioral and neural measures of visual attention and object recognition that occur across infancy. Copyright © 2015 Elsevier B.V. All rights reserved.
Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory.
Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto
2015-08-06
Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer's disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory.
Appearance-based face recognition and light-fields.
Gross, Ralph; Matthews, Iain; Baker, Simon
2004-04-01
Arguably the most important decision to be made when developing an object recognition algorithm is selecting the scene measurements or features on which to base the algorithm. In appearance-based object recognition, the features are chosen to be the pixel intensity values in an image of the object. These pixel intensities correspond directly to the radiance of light emitted from the object along certain rays in space. The set of all such radiance values over all possible rays is known as the plenoptic function or light-field. In this paper, we develop a theory of appearance-based object recognition from light-fields. This theory leads directly to an algorithm for face recognition across pose that uses as many images of the face as are available, from one upwards. All of the pixels, whichever image they come from, are treated equally and used to estimate the (eigen) light-field of the object. The eigen light-field is then used as the set of features on which to base recognition, analogously to how the pixel intensities are used in appearance-based face and object recognition.
Graf, M; Kaping, D; Bülthoff, H H
2005-03-01
How do observers recognize objects after spatial transformations? Recent neurocomputational models have proposed that object recognition is based on coordinate transformations that align memory and stimulus representations. If the recognition of a misoriented object is achieved by adjusting a coordinate system (or reference frame), then recognition should be facilitated when the object is preceded by a different object in the same orientation. In the two experiments reported here, two objects were presented in brief masked displays that were in close temporal contiguity; the objects were in either congruent or incongruent picture-plane orientations. Results showed that naming accuracy was higher for congruent than for incongruent orientations. The congruency effect was independent of superordinate category membership (Experiment 1) and was found for objects with different main axes of elongation (Experiment 2). The results indicate congruency effects for common familiar objects even when they have dissimilar shapes. These findings are compatible with models in which object recognition is achieved by an adjustment of a perceptual coordinate system.
Software for Partly Automated Recognition of Targets
NASA Technical Reports Server (NTRS)
Opitz, David; Blundell, Stuart; Bain, William; Morris, Matthew; Carlson, Ian; Mangrich, Mark
2003-01-01
The Feature Analyst is a computer program for assisted (partially automated) recognition of targets in images. This program was developed to accelerate the processing of high-resolution satellite image data for incorporation into geographic information systems (GIS). This program creates an advanced user interface that embeds proprietary machine-learning algorithms in commercial image-processing and GIS software. A human analyst provides samples of target features from multiple sets of data, then the software develops a data-fusion model that automatically extracts the remaining features from selected sets of data. The program thus leverages the natural ability of humans to recognize objects in complex scenes, without requiring the user to explain the human visual recognition process by means of lengthy software. Two major subprograms are the reactive agent and the thinking agent. The reactive agent strives to quickly learn the user s tendencies while the user is selecting targets and to increase the user s productivity by immediately suggesting the next set of pixels that the user may wish to select. The thinking agent utilizes all available resources, taking as much time as needed, to produce the most accurate autonomous feature-extraction model possible.
Oberman, Lindsay M; Ramachandran, Vilayanur S
2007-03-01
The mechanism by which humans perceive others differs greatly from how humans perceive inanimate objects. Unlike inanimate objects, humans have the distinct property of being "like me" in the eyes of the observer. This allows us to use the same systems that process knowledge about self-performed actions, self-conceived thoughts, and self-experienced emotions to understand actions, thoughts, and emotions in others. The authors propose that internal simulation mechanisms, such as the mirror neuron system, are necessary for normal development of recognition, imitation, theory of mind, empathy, and language. Additionally, the authors suggest that dysfunctional simulation mechanisms may underlie the social and communicative deficits seen in individuals with autism spectrum disorders.
Measuring the Speed of Newborn Object Recognition in Controlled Visual Worlds
ERIC Educational Resources Information Center
Wood, Justin N.; Wood, Samantha M. W.
2017-01-01
How long does it take for a newborn to recognize an object? Adults can recognize objects rapidly, but measuring object recognition speed in newborns has not previously been possible. Here we introduce an automated controlled-rearing method for measuring the speed of newborn object recognition in controlled visual worlds. We raised newborn chicks…
Improving human object recognition performance using video enhancement techniques
NASA Astrophysics Data System (ADS)
Whitman, Lucy S.; Lewis, Colin; Oakley, John P.
2004-12-01
Atmospheric scattering causes significant degradation in the quality of video images, particularly when imaging over long distances. The principle problem is the reduction in contrast due to scattered light. It is known that when the scattering particles are not too large compared with the imaging wavelength (i.e. Mie scattering) then high spatial resolution information may be contained within a low-contrast image. Unfortunately this information is not easily perceived by a human observer, particularly when using a standard video monitor. A secondary problem is the difficulty of achieving a sharp focus since automatic focus techniques tend to fail in such conditions. Recently several commercial colour video processing systems have become available. These systems use various techniques to improve image quality in low contrast conditions whilst retaining colour content. These systems produce improvements in subjective image quality in some situations, particularly in conditions of haze and light fog. There is also some evidence that video enhancement leads to improved ATR performance when used as a pre-processing stage. Psychological literature indicates that low contrast levels generally lead to a reduction in the performance of human observers in carrying out simple visual tasks. The aim of this paper is to present the results of an empirical study on object recognition in adverse viewing conditions. The chosen visual task was vehicle number plate recognition at long ranges (500 m and beyond). Two different commercial video enhancement systems are evaluated using the same protocol. The results show an increase in effective range with some differences between the different enhancement systems.
Deletion of the GluA1 AMPA receptor subunit impairs recency-dependent object recognition memory
Sanderson, David J.; Hindley, Emma; Smeaton, Emily; Denny, Nick; Taylor, Amy; Barkus, Chris; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.
2011-01-01
Deletion of the GluA1 AMPA receptor subunit impairs short-term spatial recognition memory. It has been suggested that short-term recognition depends upon memory caused by the recent presentation of a stimulus that is independent of contextual–retrieval processes. The aim of the present set of experiments was to test whether the role of GluA1 extends to nonspatial recognition memory. Wild-type and GluA1 knockout mice were tested on the standard object recognition task and a context-independent recognition task that required recency-dependent memory. In a first set of experiments it was found that GluA1 deletion failed to impair performance on either of the object recognition or recency-dependent tasks. However, GluA1 knockout mice displayed increased levels of exploration of the objects in both the sample and test phases compared to controls. In contrast, when the time that GluA1 knockout mice spent exploring the objects was yoked to control mice during the sample phase, it was found that GluA1 deletion now impaired performance on both the object recognition and the recency-dependent tasks. GluA1 deletion failed to impair performance on a context-dependent recognition task regardless of whether object exposure in knockout mice was yoked to controls or not. These results demonstrate that GluA1 is necessary for nonspatial as well as spatial recognition memory and plays an important role in recency-dependent memory processes. PMID:21378100
Recognition of human activity characteristics based on state transitions modeling technique
NASA Astrophysics Data System (ADS)
Elangovan, Vinayak; Shirkhodaie, Amir
2012-06-01
Human Activity Discovery & Recognition (HADR) is a complex, diverse and challenging task but yet an active area of ongoing research in the Department of Defense. By detecting, tracking, and characterizing cohesive Human interactional activity patterns, potential threats can be identified which can significantly improve situation awareness, particularly, in Persistent Surveillance Systems (PSS). Understanding the nature of such dynamic activities, inevitably involves interpretation of a collection of spatiotemporally correlated activities with respect to a known context. In this paper, we present a State Transition model for recognizing the characteristics of human activities with a link to a prior contextbased ontology. Modeling the state transitions between successive evidential events determines the activities' temperament. The proposed state transition model poses six categories of state transitions including: Human state transitions of Object handling, Visibility, Entity-entity relation, Human Postures, Human Kinematics and Distance to Target. The proposed state transition model generates semantic annotations describing the human interactional activities via a technique called Casual Event State Inference (CESI). The proposed approach uses a low cost kinect depth camera for indoor and normal optical camera for outdoor monitoring activities. Experimental results are presented here to demonstrate the effectiveness and efficiency of the proposed technique.
NASA Astrophysics Data System (ADS)
Moses, David A.; Mesgarani, Nima; Leonard, Matthew K.; Chang, Edward F.
2016-10-01
Objective. The superior temporal gyrus (STG) and neighboring brain regions play a key role in human language processing. Previous studies have attempted to reconstruct speech information from brain activity in the STG, but few of them incorporate the probabilistic framework and engineering methodology used in modern speech recognition systems. In this work, we describe the initial efforts toward the design of a neural speech recognition (NSR) system that performs continuous phoneme recognition on English stimuli with arbitrary vocabulary sizes using the high gamma band power of local field potentials in the STG and neighboring cortical areas obtained via electrocorticography. Approach. The system implements a Viterbi decoder that incorporates phoneme likelihood estimates from a linear discriminant analysis model and transition probabilities from an n-gram phonemic language model. Grid searches were used in an attempt to determine optimal parameterizations of the feature vectors and Viterbi decoder. Main results. The performance of the system was significantly improved by using spatiotemporal representations of the neural activity (as opposed to purely spatial representations) and by including language modeling and Viterbi decoding in the NSR system. Significance. These results emphasize the importance of modeling the temporal dynamics of neural responses when analyzing their variations with respect to varying stimuli and demonstrate that speech recognition techniques can be successfully leveraged when decoding speech from neural signals. Guided by the results detailed in this work, further development of the NSR system could have applications in the fields of automatic speech recognition and neural prosthetics.
Lawson, Rebecca
2014-02-01
The limits of generalization of our 3-D shape recognition system to identifying objects by touch was investigated by testing exploration at unusual locations and using untrained effectors. In Experiments 1 and 2, people found identification by hand of real objects, plastic 3-D models of objects, and raised line drawings placed in front of themselves no easier than when exploration was behind their back. Experiment 3 compared one-handed, two-handed, one-footed, and two-footed haptic object recognition of familiar objects. Recognition by foot was slower (7 vs. 13 s) and much less accurate (9 % vs. 47 % errors) than recognition by either one or both hands. Nevertheless, item difficulty was similar across hand and foot exploration, and there was a strong correlation between an individual's hand and foot performance. Furthermore, foot recognition was better with the largest 20 of the 80 items (32 % errors), suggesting that physical limitations hampered exploration by foot. Thus, object recognition by hand generalized efficiently across the spatial location of stimuli, while object recognition by foot seemed surprisingly good given that no prior training was provided. Active touch (haptics) thus efficiently extracts 3-D shape information and accesses stored representations of familiar objects from novel modes of input.
Domestic Violence Encountered among Kurdish Women
ERIC Educational Resources Information Center
Ali, Sirwan Kamil
2015-01-01
Background and objective; There is growing recognition that violence against women has a large public health impact, in addition to being a gross violation of women's human rights. The study's aims were: To show the types of domestic abuse encountered by Kurdish women, and study the relationship between them. Methods; The study conducted in the…
Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin C.F.; Cassaday, Helen J.
2015-01-01
Previous studies have shown that dopamine D1 receptor antagonists impair novel object recognition memory but the effects of dopamine D1 receptor stimulation remain to be determined. This study investigated the effects of the selective dopamine D1 receptor agonist SKF81297 on acquisition and retrieval in the novel object recognition task in male Wistar rats. SKF81297 (0.4 and 0.8 mg/kg s.c.) given 15 min before the sampling phase impaired novel object recognition evaluated 10 min or 24 h later. The same treatments also reduced novel object recognition memory tested 24 h after the sampling phase and when given 15 min before the choice session. These data indicate that D1 receptor stimulation modulates both the encoding and retrieval of object recognition memory. Microinfusion of SKF81297 (0.025 or 0.05 μg/side) into the prelimbic sub-region of the medial prefrontal cortex (mPFC) in this case 10 min before the sampling phase also impaired novel object recognition memory, suggesting that the mPFC is one important site mediating the effects of D1 receptor stimulation on visual recognition memory. PMID:26277743
Remote Safety Monitoring for Elderly Persons Based on Omni-Vision Analysis
Xiang, Yun; Tang, Yi-ping; Ma, Bao-qing; Yan, Hang-chen; Jiang, Jun; Tian, Xu-yuan
2015-01-01
Remote monitoring service for elderly persons is important as the aged populations in most developed countries continue growing. To monitor the safety and health of the elderly population, we propose a novel omni-directional vision sensor based system, which can detect and track object motion, recognize human posture, and analyze human behavior automatically. In this work, we have made the following contributions: (1) we develop a remote safety monitoring system which can provide real-time and automatic health care for the elderly persons and (2) we design a novel motion history or energy images based algorithm for motion object tracking. Our system can accurately and efficiently collect, analyze, and transfer elderly activity information and provide health care in real-time. Experimental results show that our technique can improve the data analysis efficiency by 58.5% for object tracking. Moreover, for the human posture recognition application, the success rate can reach 98.6% on average. PMID:25978761
Cognitive object recognition system (CORS)
NASA Astrophysics Data System (ADS)
Raju, Chaitanya; Varadarajan, Karthik Mahesh; Krishnamurthi, Niyant; Xu, Shuli; Biederman, Irving; Kelley, Troy
2010-04-01
We have developed a framework, Cognitive Object Recognition System (CORS), inspired by current neurocomputational models and psychophysical research in which multiple recognition algorithms (shape based geometric primitives, 'geons,' and non-geometric feature-based algorithms) are integrated to provide a comprehensive solution to object recognition and landmarking. Objects are defined as a combination of geons, corresponding to their simple parts, and the relations among the parts. However, those objects that are not easily decomposable into geons, such as bushes and trees, are recognized by CORS using "feature-based" algorithms. The unique interaction between these algorithms is a novel approach that combines the effectiveness of both algorithms and takes us closer to a generalized approach to object recognition. CORS allows recognition of objects through a larger range of poses using geometric primitives and performs well under heavy occlusion - about 35% of object surface is sufficient. Furthermore, geon composition of an object allows image understanding and reasoning even with novel objects. With reliable landmarking capability, the system improves vision-based robot navigation in GPS-denied environments. Feasibility of the CORS system was demonstrated with real stereo images captured from a Pioneer robot. The system can currently identify doors, door handles, staircases, trashcans and other relevant landmarks in the indoor environment.
Meuwese, Julia D I; van Loon, Anouk M; Lamme, Victor A F; Fahrenfort, Johannes J
2014-05-01
Perceptual decisions seem to be made automatically and almost instantly. Constructing a unitary subjective conscious experience takes more time. For example, when trying to avoid a collision with a car on a foggy road you brake or steer away in a reflex, before realizing you were in a near accident. This subjective aspect of object recognition has been given little attention. We used metacognition (assessed with confidence ratings) to measure subjective experience during object detection and object categorization for degraded and masked objects, while objective performance was matched. Metacognition was equal for degraded and masked objects, but categorization led to higher metacognition than did detection. This effect turned out to be driven by a difference in metacognition for correct rejection trials, which seemed to be caused by an asymmetry of the distractor stimulus: It does not contain object-related information in the detection task, whereas it does contain such information in the categorization task. Strikingly, this asymmetry selectively impacted metacognitive ability when objective performance was matched. This finding reveals a fundamental difference in how humans reflect versus act on information: When matching the amount of information required to perform two tasks at some objective level of accuracy (acting), metacognitive ability (reflecting) is still better in tasks that rely on positive evidence (categorization) than in tasks that rely more strongly on an absence of evidence (detection).
Shape and Color Features for Object Recognition Search
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Duong, Vu A.; Stubberud, Allen R.
2012-01-01
A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future.
Ponce, Hiram; Martínez-Villaseñor, María de Lourdes; Miralles-Pechuán, Luis
2016-07-05
Human activity recognition has gained more interest in several research communities given that understanding user activities and behavior helps to deliver proactive and personalized services. There are many examples of health systems improved by human activity recognition. Nevertheless, the human activity recognition classification process is not an easy task. Different types of noise in wearable sensors data frequently hamper the human activity recognition classification process. In order to develop a successful activity recognition system, it is necessary to use stable and robust machine learning techniques capable of dealing with noisy data. In this paper, we presented the artificial hydrocarbon networks (AHN) technique to the human activity recognition community. Our artificial hydrocarbon networks novel approach is suitable for physical activity recognition, noise tolerance of corrupted data sensors and robust in terms of different issues on data sensors. We proved that the AHN classifier is very competitive for physical activity recognition and is very robust in comparison with other well-known machine learning methods.
Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.
Ming, Yue; Wang, Guangchao; Fan, Chunxiao
2015-01-01
With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.
Al-Nawashi, Malek; Al-Hazaimeh, Obaida M; Saraee, Mohamad
2017-01-01
Abnormal activity detection plays a crucial role in surveillance applications, and a surveillance system that can perform robustly in an academic environment has become an urgent need. In this paper, we propose a novel framework for an automatic real-time video-based surveillance system which can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment. To develop our system, we have divided the work into three phases: preprocessing phase, abnormal human activity detection phase, and content-based image retrieval phase. For motion object detection, we used the temporal-differencing algorithm and then located the motions region using the Gaussian function. Furthermore, the shape model based on OMEGA equation was used as a filter for the detected objects (i.e., human and non-human). For object activities analysis, we evaluated and analyzed the human activities of the detected objects. We classified the human activities into two groups: normal activities and abnormal activities based on the support vector machine. The machine then provides an automatic warning in case of abnormal human activities. It also embeds a method to retrieve the detected object from the database for object recognition and identification using content-based image retrieval. Finally, a software-based simulation using MATLAB was performed and the results of the conducted experiments showed an excellent surveillance system that can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment with no human intervention.
Robust Pedestrian Tracking and Recognition from FLIR Video: A Unified Approach via Sparse Coding
Li, Xin; Guo, Rui; Chen, Chao
2014-01-01
Sparse coding is an emerging method that has been successfully applied to both robust object tracking and recognition in the vision literature. In this paper, we propose to explore a sparse coding-based approach toward joint object tracking-and-recognition and explore its potential in the analysis of forward-looking infrared (FLIR) video to support nighttime machine vision systems. A key technical contribution of this work is to unify existing sparse coding-based approaches toward tracking and recognition under the same framework, so that they can benefit from each other in a closed-loop. On the one hand, tracking the same object through temporal frames allows us to achieve improved recognition performance through dynamical updating of template/dictionary and combining multiple recognition results; on the other hand, the recognition of individual objects facilitates the tracking of multiple objects (i.e., walking pedestrians), especially in the presence of occlusion within a crowded environment. We report experimental results on both the CASIAPedestrian Database and our own collected FLIR video database to demonstrate the effectiveness of the proposed joint tracking-and-recognition approach. PMID:24961216
Multi-tasking arbitration and behaviour design for human-interactive robots
NASA Astrophysics Data System (ADS)
Kobayashi, Yuichi; Onishi, Masaki; Hosoe, Shigeyuki; Luo, Zhiwei
2013-05-01
Robots that interact with humans in household environments are required to handle multiple real-time tasks simultaneously, such as carrying objects, collision avoidance and conversation with human. This article presents a design framework for the control and recognition processes to meet these requirements taking into account stochastic human behaviour. The proposed design method first introduces a Petri net for synchronisation of multiple tasks. The Petri net formulation is converted to Markov decision processes and processed in an optimal control framework. Three tasks (safety confirmation, object conveyance and conversation) interact and are expressed by the Petri net. Using the proposed framework, tasks that normally tend to be designed by integrating many if-then rules can be designed in a systematic manner in a state estimation and optimisation framework from the viewpoint of the shortest time optimal control. The proposed arbitration method was verified by simulations and experiments using RI-MAN, which was developed for interactive tasks with humans.
Object recognition of ladar with support vector machine
NASA Astrophysics Data System (ADS)
Sun, Jian-Feng; Li, Qi; Wang, Qi
2005-01-01
Intensity, range and Doppler images can be obtained by using laser radar. Laser radar can detect much more object information than other detecting sensor, such as passive infrared imaging and synthetic aperture radar (SAR), so it is well suited as the sensor of object recognition. Traditional method of laser radar object recognition is extracting target features, which can be influenced by noise. In this paper, a laser radar recognition method-Support Vector Machine is introduced. Support Vector Machine (SVM) is a new hotspot of recognition research after neural network. It has well performance on digital written and face recognition. Two series experiments about SVM designed for preprocessing and non-preprocessing samples are performed by real laser radar images, and the experiments results are compared.
NASA Technical Reports Server (NTRS)
Schenker, Paul S. (Editor)
1990-01-01
Various papers on human and machine strategies in sensor fusion are presented. The general topics addressed include: active vision, measurement and analysis of visual motion, decision models for sensor fusion, implementation of sensor fusion algorithms, applying sensor fusion to image analysis, perceptual modules and their fusion, perceptual organization and object recognition, planning and the integration of high-level knowledge with perception, using prior knowledge and context in sensor fusion.
In search of a recognition memory engram
Brown, M.W.; Banks, P.J.
2015-01-01
A large body of data from human and animal studies using psychological, recording, imaging, and lesion techniques indicates that recognition memory involves at least two separable processes: familiarity discrimination and recollection. Familiarity discrimination for individual visual stimuli seems to be effected by a system centred on the perirhinal cortex of the temporal lobe. The fundamental change that encodes prior occurrence within the perirhinal cortex is a reduction in the responses of neurones when a stimulus is repeated. Neuronal network modelling indicates that a system based on such a change in responsiveness is potentially highly efficient in information theoretic terms. A review is given of findings indicating that perirhinal cortex acts as a storage site for recognition memory of objects and that such storage depends upon processes producing synaptic weakening. PMID:25280908
Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude
2016-01-01
Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG–fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50–80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG–fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099
Exploring the feasibility of traditional image querying tasks for industrial radiographs
NASA Astrophysics Data System (ADS)
Bray, Iliana E.; Tsai, Stephany J.; Jimenez, Edward S.
2015-08-01
Although there have been great strides in object recognition with optical images (photographs), there has been comparatively little research into object recognition for X-ray radiographs. Our exploratory work contributes to this area by creating an object recognition system designed to recognize components from a related database of radiographs. Object recognition for radiographs must be approached differently than for optical images, because radiographs have much less color-based information to distinguish objects, and they exhibit transmission overlap that alters perceived object shapes. The dataset used in this work contained more than 55,000 intermixed radiographs and photographs, all in a compressed JPEG form and with multiple ways of describing pixel information. For this work, a robust and efficient system is needed to combat problems presented by properties of the X-ray imaging modality, the large size of the given database, and the quality of the images contained in said database. We have explored various pre-processing techniques to clean the cluttered and low-quality images in the database, and we have developed our object recognition system by combining multiple object detection and feature extraction methods. We present the preliminary results of the still-evolving hybrid object recognition system.
Yang, Mu; Lewis, Freeman C; Sarvi, Michael S; Foley, Gillian M; Crawley, Jacqueline N
2015-12-01
Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/-) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2+/- mice, confirming previous findings. A similarly robust deficit in object location memory was discovered in +/-, indicating impaired spatial novelty recognition. Generalizability of novelty recognition deficits in +/- mice extended to preference for social novelty. Robust learning deficits and cognitive inflexibility were detected using Bussey-Saksida touchscreen operant chambers. During acquisition of pairwise visual discrimination, +/- mice required significantly more training trials to reach criterion than wild-type littermates (+/+), and made more errors and correction errors than +/+. In the reversal phase, all +/+ reached criterion, whereas most +/- failed to reach criterion by the 30-d cutoff. Contextual and cued fear conditioning were normal in +/-. These cognitive phenotypes may be relevant to some aspects of cognitive impairments in humans with 16p11.2 deletion, and support the use of 16p11.2+/- mice as a model system for discovering treatments for cognitive impairments in 16p11.2 deletion syndrome. © 2015 Yang et al.; Published by Cold Spring Harbor Laboratory Press.
Automatic anatomy recognition on CT images with pathology
NASA Astrophysics Data System (ADS)
Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.
2016-03-01
Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.
Gerlach, Christian; Starrfelt, Randi
2018-03-20
There has been an increase in studies adopting an individual difference approach to examine visual cognition and in particular in studies trying to relate face recognition performance with measures of holistic processing (the face composite effect and the part-whole effect). In the present study we examine whether global precedence effects, measured by means of non-face stimuli in Navon's paradigm, can also account for individual differences in face recognition and, if so, whether the effect is of similar magnitude for faces and objects. We find evidence that global precedence effects facilitate both face and object recognition, and to a similar extent. Our results suggest that both face and object recognition are characterized by a coarse-to-fine temporal dynamic, where global shape information is derived prior to local shape information, and that the efficiency of face and object recognition is related to the magnitude of the global precedence effect.
Decreased acetylcholine release delays the consolidation of object recognition memory.
De Jaeger, Xavier; Cammarota, Martín; Prado, Marco A M; Izquierdo, Iván; Prado, Vania F; Pereira, Grace S
2013-02-01
Acetylcholine (ACh) is important for different cognitive functions such as learning, memory and attention. The release of ACh depends on its vesicular loading by the vesicular acetylcholine transporter (VAChT). It has been demonstrated that VAChT expression can modulate object recognition memory. However, the role of VAChT expression on object recognition memory persistence still remains to be understood. To address this question we used distinct mouse lines with reduced expression of VAChT, as well as pharmacological manipulations of the cholinergic system. We showed that reduction of cholinergic tone impairs object recognition memory measured at 24h. Surprisingly, object recognition memory, measured at 4 days after training, was impaired by substantial, but not moderate, reduction in VAChT expression. Our results suggest that levels of acetylcholine release strongly modulate object recognition memory consolidation and appear to be of particular importance for memory persistence 4 days after training. Copyright © 2012 Elsevier B.V. All rights reserved.
Poth, Christian H; Schneider, Werner X
2016-09-01
Rapid saccadic eye movements bring the foveal region of the eye's retina onto objects for high-acuity vision. Saccades change the location and resolution of objects' retinal images. To perceive objects as visually stable across saccades, correspondence between the objects before and after the saccade must be established. We have previously shown that breaking object correspondence across the saccade causes a decrement in object recognition (Poth, Herwig, & Schneider, 2015). Color and luminance can establish object correspondence, but it is unknown how these surface features contribute to transsaccadic visual processing. Here, we investigated whether changing the surface features color-and-luminance and color alone across saccades impairs postsaccadic object recognition. Participants made saccades to peripheral objects, which either maintained or changed their surface features across the saccade. After the saccade, participants briefly viewed a letter within the saccade target object (terminated by a pattern mask). Postsaccadic object recognition was assessed as participants' accuracy in reporting the letter. Experiment A used the colors green and red with different luminances as surface features, Experiment B blue and yellow with approximately the same luminances. Changing the surface features across the saccade deteriorated postsaccadic object recognition in both experiments. These findings reveal a link between object recognition and object correspondence relying on the surface features colors and luminance, which is currently not addressed in theories of transsaccadic perception. We interpret the findings within a recent theory ascribing this link to visual attention (Schneider, 2013).
Rapid effects of dorsal hippocampal G-protein coupled estrogen receptor on learning in female mice.
Lymer, Jennifer; Robinson, Alana; Winters, Boyer D; Choleris, Elena
2017-03-01
Through rapid mechanisms of action, estrogens affect learning and memory processes. It has been shown that 17β-estradiol and an Estrogen Receptor (ER) α agonist enhances performance in social recognition, object recognition, and object placement tasks when administered systemically or infused in the dorsal hippocampus. In contrast, systemic and dorsal hippocampal ERβ activation only promote spatial learning. In addition, 17β-estradiol, the ERα and the G-protein coupled estrogen receptor (GPER) agonists increase dendritic spine density in the CA1 hippocampus. Recently, we have shown that selective systemic activation of the GPER also rapidly facilitated social recognition, object recognition, and object placement learning in female mice. Whether activation the GPER specifically in the dorsal hippocampus can also rapidly improve learning and memory prior to acquisition is unknown. Here, we investigated the rapid effects of infusion of the GPER agonist, G-1 (dose: 50nM, 100nM, 200nM), in the dorsal hippocampus on social recognition, object recognition, and object placement learning tasks in home cage. These paradigms were completed within 40min, which is within the range of rapid estrogenic effects. Dorsal hippocampal administration of G-1 improved social (doses: 50nM, 200nM G-1) and object (dose: 200nM G-1) recognition with no effect on object placement. Additionally, when spatial cues were minimized by testing in a Y-apparatus, G-1 administration promoted social (doses: 100nM, 200nM G-1) and object (doses: 50nM, 100nM, 200nM G-1) recognition. Therefore, like ERα, the GPER in the hippocampus appears to be sufficient for the rapid facilitation of social and object recognition in female mice, but not for the rapid facilitation of object placement learning. Thus, the GPER in the dorsal hippocampus is involved in estrogenic mediation of learning and memory and these effects likely occur through rapid signalling mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of sex and gonadectomy on social investigation and social recognition in mice.
Karlsson, Sara A; Haziri, Kaltrina; Hansson, Evelyn; Kettunen, Petronella; Westberg, Lars
2015-11-25
An individual's ability to recognise and pay attention to others is crucial in order to behave appropriately in various social situations. Studies in humans have shown a sex bias in sociability as well as social memory, indicating that females have better face memory and gaze more at the eyes of others, but information about the factors that underpin these differences is sparse. Our aim was therefore to investigate if sociability and social recognition differ between female and male mice, and if so, to what extent gonadal hormones may be involved. Intact and gonadectomised male and female mice were assessed for sociability and social recognition using the three-chambered sociability paradigm, as well as the social discrimination test. Furthermore, we conducted a novel object recognition test, a locomotor activity test and an odour habituation/dishabituation test. The present study showed that the ability to recognise other individuals is intact in males with and without gonads, as well as in intact females, whereas it is hampered in gonadectomised females. Additionally, intact male mice displayed more persistent investigatory behaviour compared to the other groups, although the intact females showed elevated basal locomotor activity. In addition, all groups had intact object memory and habituated to odours. Our results suggest that intact male mice investigate conspecifics more than females do, and these differences seem to depend upon circulating hormones released from the testis. As these results seem to contrast what is known from human studies, they should be taken into consideration when using the three-chambered apparatus, and similar paradigms as animal models of social deficits in e.g. autism. Other behavioural tests, and animal models, may be more suitable for translational studies between patients and experimental animals.
McGugin, Rankin W.; Richler, Jennifer J.; Herzmann, Grit; Speegle, Magen; Gauthier, Isabel
2012-01-01
Individual differences in face recognition are often contrasted with differences in object recognition using a single object category. Likewise, individual differences in perceptual expertise for a given object domain have typically been measured relative to only a single category baseline. In Experiment 1, we present a new test of object recognition, the Vanderbilt Expertise Test (VET), which is comparable in methods to the Cambridge Face Memory Task (CFMT) but uses eight different object categories. Principal component analysis reveals that the underlying structure of the VET can be largely explained by two independent factors, which demonstrate good reliability and capture interesting sex differences inherent in the VET structure. In Experiment 2, we show how the VET can be used to separate domain-specific from domain-general contributions to a standard measure of perceptual expertise. While domain-specific contributions are found for car matching for both men and women and for plane matching in men, women in this sample appear to use more domain-general strategies to match planes. In Experiment 3, we use the VET to demonstrate that holistic processing of faces predicts face recognition independently of general object recognition ability, which has a sex-specific contribution to face recognition. Overall, the results suggest that the VET is a reliable and valid measure of object recognition abilities and can measure both domain-general skills and domain-specific expertise, which were both found to depend on the sex of observers. PMID:22877929
Recognizing 3 D Objects from 2D Images Using Structural Knowledge Base of Genetic Views
1988-08-31
technical report. [BIE85] I. Biederman , "Human image understanding: Recent research and a theory", Computer Vision, Graphics, and Image Processing, vol...model bases", Technical Report 87-85, COINS Dept, University of Massachusetts, Amherst, MA 01003, August 1987 . [BUR87b) Burns, J. B. and L. J. Kitchen...34Recognition in 2D images of 3D objects from large model bases using prediction hierarchies", Proc. IJCAI-10, 1987 . [BUR891 J. B. Burns, forthcoming
NASA Astrophysics Data System (ADS)
Zou, Jie; Gattani, Abhishek
2005-01-01
When completely automated systems don't yield acceptable accuracy, many practical pattern recognition systems involve the human either at the beginning (pre-processing) or towards the end (handling rejects). We believe that it may be more useful to involve the human throughout the recognition process rather than just at the beginning or end. We describe a methodology of interactive visual recognition for human-centered low-throughput applications, Computer Assisted Visual InterActive Recognition (CAVIAR), and discuss the prospects of implementing CAVIAR over the Internet. The novelty of CAVIAR is image-based interaction through a domain-specific parameterized geometrical model, which reduces the semantic gap between humans and computers. The user may interact with the computer anytime that she considers its response unsatisfactory. The interaction improves the accuracy of the classification features by improving the fit of the computer-proposed model. The computer makes subsequent use of the parameters of the improved model to refine not only its own statistical model-fitting process, but also its internal classifier. The CAVIAR methodology was applied to implement a flower recognition system. The principal conclusions from the evaluation of the system include: 1) the average recognition time of the CAVIAR system is significantly shorter than that of the unaided human; 2) its accuracy is significantly higher than that of the unaided machine; 3) it can be initialized with as few as one training sample per class and still achieve high accuracy; and 4) it demonstrates a self-learning ability. We have also implemented a Mobile CAVIAR system, where a pocket PC, as a client, connects to a server through wireless communication. The motivation behind a mobile platform for CAVIAR is to apply the methodology in a human-centered pervasive environment, where the user can seamlessly interact with the system for classifying field-data. Deploying CAVIAR to a networked mobile platform poses the challenge of classifying field images and programming under constraints of display size, network bandwidth, processor speed, and memory size. Editing of the computer-proposed model is performed on the handheld while statistical model fitting and classification take place on the server. The possibility that the user can easily take several photos of the object poses an interesting information fusion problem. The advantage of the Internet is that the patterns identified by different users can be pooled together to benefit all peer users. When users identify patterns with CAVIAR in a networked setting, they also collect training samples and provide opportunities for machine learning from their intervention. CAVIAR implemented over the Internet provides a perfect test bed for, and extends, the concept of Open Mind Initiative proposed by David Stork. Our experimental evaluation focuses on human time, machine and human accuracy, and machine learning. We devoted much effort to evaluating the use of our image-based user interface and on developing principles for the evaluation of interactive pattern recognition system. The Internet architecture and Mobile CAVIAR methodology have many applications. We are exploring in the directions of teledermatology, face recognition, and education.
Object, spatial and social recognition testing in a single test paradigm.
Lian, Bin; Gao, Jun; Sui, Nan; Feng, Tingyong; Li, Ming
2018-07-01
Animals have the ability to process information about an object or a conspecific's physical features and location, and alter its behavior when such information is updated. In the laboratory, the object, spatial and social recognition are often studied in separate tasks, making them unsuitable to study the potential dissociations and interactions among various types of recognition memories. The present study introduced a single paradigm to detect the object and spatial recognition, and social recognition of a familiar and novel conspecific. Specifically, male and female Sprague-Dawley adult (>75 days old) or preadolescent (25-28 days old) rats were tested with two objects and one social partner in an open-field arena for four 10-min sessions with a 20-min inter-session interval. After the first sample session, a new object replaced one of the sampled objects in the second session, and the location of one of the old objects was changed in the third session. Finally, a new social partner was introduced in the fourth session and replaced the familiar one. Exploration time with each stimulus was recorded and measures for the three recognitions were calculated based on the discrimination ratio. Overall results show that adult and preadolescent male and female rats spent more time exploring the social partner than the objects, showing a clear preference for social stimulus over nonsocial one. They also did not differ in their abilities to discriminate a new object, a new location and a new social partner from a familiar one, and to recognize a familiar conspecific. Acute administration of MK-801 (a NMDA receptor antagonist, 0.025 and 0.10 mg/kg, i.p.) after the sample session dose-dependently reduced the total time spent on exploring the social partner and objects in the adult rats, and had a significantly larger effect in the females than in the males. MK-801 also dose-dependently increased motor activity. However, it did not alter the object, spatial and social recognitions. These findings indicate that the new triple recognition paradigm is capable of recording the object, spatial location and social recognition together and revealing potential sex and age differences. This paradigm is also useful for the study of object and social exploration concurrently and can be used to evaluate cognition-altering drugs in various stages of recognition memories. Copyright © 2018. Published by Elsevier Inc.
Nie, Haitao; Long, Kehui; Ma, Jun; Yue, Dan; Liu, Jinguo
2015-01-01
Partial occlusions, large pose variations, and extreme ambient illumination conditions generally cause the performance degradation of object recognition systems. Therefore, this paper presents a novel approach for fast and robust object recognition in cluttered scenes based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy closed-loop control method. First, a fast SIFT algorithm is proposed by classifying SIFT features into several clusters based on several attributes computed from the sub-orientation histogram (SOH), in the feature matching phase only features that share nearly the same corresponding attributes are compared. Second, a feature matching step is performed following a prioritized order based on the scale factor, which is calculated between the object image and the target object image, guaranteeing robust feature matching. Finally, a fuzzy closed-loop control strategy is applied to increase the accuracy of the object recognition and is essential for autonomous object manipulation process. Compared to the original SIFT algorithm for object recognition, the result of the proposed method shows that the number of SIFT features extracted from an object has a significant increase, and the computing speed of the object recognition processes increases by more than 40%. The experimental results confirmed that the proposed method performs effectively and accurately in cluttered scenes. PMID:25714094
HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation
NASA Astrophysics Data System (ADS)
Guo, Shuhang; Wang, Jian; Wang, Tong
2017-09-01
Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.
Banos, Oresti; Damas, Miguel; Pomares, Hector; Rojas, Ignacio
2012-01-01
The main objective of fusion mechanisms is to increase the individual reliability of the systems through the use of the collectivity knowledge. Moreover, fusion models are also intended to guarantee a certain level of robustness. This is particularly required for problems such as human activity recognition where runtime changes in the sensor setup seriously disturb the reliability of the initial deployed systems. For commonly used recognition systems based on inertial sensors, these changes are primarily characterized as sensor rotations, displacements or faults related to the batteries or calibration. In this work we show the robustness capabilities of a sensor-weighted fusion model when dealing with such disturbances under different circumstances. Using the proposed method, up to 60% outperformance is obtained when a minority of the sensors are artificially rotated or degraded, independent of the level of disturbance (noise) imposed. These robustness capabilities also apply for any number of sensors affected by a low to moderate noise level. The presented fusion mechanism compensates the poor performance that otherwise would be obtained when just a single sensor is considered. PMID:22969386
Banos, Oresti; Damas, Miguel; Pomares, Hector; Rojas, Ignacio
2012-01-01
The main objective of fusion mechanisms is to increase the individual reliability of the systems through the use of the collectivity knowledge. Moreover, fusion models are also intended to guarantee a certain level of robustness. This is particularly required for problems such as human activity recognition where runtime changes in the sensor setup seriously disturb the reliability of the initial deployed systems. For commonly used recognition systems based on inertial sensors, these changes are primarily characterized as sensor rotations, displacements or faults related to the batteries or calibration. In this work we show the robustness capabilities of a sensor-weighted fusion model when dealing with such disturbances under different circumstances. Using the proposed method, up to 60% outperformance is obtained when a minority of the sensors are artificially rotated or degraded, independent of the level of disturbance (noise) imposed. These robustness capabilities also apply for any number of sensors affected by a low to moderate noise level. The presented fusion mechanism compensates the poor performance that otherwise would be obtained when just a single sensor is considered.
ERIC Educational Resources Information Center
Greene, Michelle R.; Oliva, Aude
2009-01-01
Human observers are able to rapidly and accurately categorize natural scenes, but the representation mediating this feat is still unknown. Here we propose a framework of rapid scene categorization that does not segment a scene into objects and instead uses a vocabulary of global, ecological properties that describe spatial and functional aspects…
ERIC Educational Resources Information Center
Lapid, Maria; Moutier, Christine; Dunn, Laura; Hammond, Katherine Green; Roberts, Laura Weiss
2009-01-01
Objective: Awareness of the privileges and limits of one's role as physician, as well as recognition and respect for the patient as a human being, are central to ethical medical practice. The authors were particularly interested in examining the attitudes and perceived needs of psychiatric residents toward education on professional boundaries and…
General tensor discriminant analysis and gabor features for gait recognition.
Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J
2007-10-01
The traditional image representations are not suited to conventional classification methods, such as the linear discriminant analysis (LDA), because of the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. Motivated by the successes of the two dimensional LDA (2DLDA) for face recognition, we develop a general tensor discriminant analysis (GTDA) as a preprocessing step for LDA. The benefits of GTDA compared with existing preprocessing methods, e.g., principal component analysis (PCA) and 2DLDA, include 1) the USP is reduced in subsequent classification by, for example, LDA; 2) the discriminative information in the training tensors is preserved; and 3) GTDA provides stable recognition rates because the alternating projection optimization algorithm to obtain a solution of GTDA converges, while that of 2DLDA does not. We use human gait recognition to validate the proposed GTDA. The averaged gait images are utilized for gait representation. Given the popularity of Gabor function based image decompositions for image understanding and object recognition, we develop three different Gabor function based image representations: 1) the GaborD representation is the sum of Gabor filter responses over directions, 2) GaborS is the sum of Gabor filter responses over scales, and 3) GaborSD is the sum of Gabor filter responses over scales and directions. The GaborD, GaborS and GaborSD representations are applied to the problem of recognizing people from their averaged gait images.A large number of experiments were carried out to evaluate the effectiveness (recognition rate) of gait recognition based on first obtaining a Gabor, GaborD, GaborS or GaborSD image representation, then using GDTA to extract features and finally using LDA for classification. The proposed methods achieved good performance for gait recognition based on image sequences from the USF HumanID Database. Experimental comparisons are made with nine state of the art classification methods in gait recognition.
Health needs: the interface between the discourse of health professionals and victimized women1
de Oliveira, Rebeca Nunes Guedes; da Fonseca, Rosa Maria Godoy Serpa
2015-01-01
Objective: to understand the limits and the evaluative possibilities of the Family Health Strategy regarding the recognition of the health needs of women who experience violence. Method: a study with a qualitative approach, grounded in the perspective of gender, and which adopted health needs as the analytical category. The data were collected through interviews with health professionals and women who made use of a health service, and were analyzed using the method of discourse analysis. Results: the meeting between the discourses of women who use the services and the professionals of the health service revealed, as the interface, human needs, as in the example of autonomy and of bonds. The understanding regarding the needs was limited to the recognition of health problems of physical and psychological natures, just as the predominance of the recognition of needs for maintaining life in the light of essentially human needs was revealed in the professionals' discourses as an important limitation of the practices. Conclusion: emphasis is placed on the perspective of gender as a tool which must be aggregated to the routine of the professional practices in health so as to confirm or deny the transformative character of the care in place regarding the recognition and confronting of the women's health needs. PMID:26039301
Post-Training Reversible Inactivation of the Hippocampus Enhances Novel Object Recognition Memory
ERIC Educational Resources Information Center
Oliveira, Ana M. M.; Hawk, Joshua D.; Abel, Ted; Havekes, Robbert
2010-01-01
Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory…
Shape and texture fused recognition of flying targets
NASA Astrophysics Data System (ADS)
Kovács, Levente; Utasi, Ákos; Kovács, Andrea; Szirányi, Tamás
2011-06-01
This paper presents visual detection and recognition of flying targets (e.g. planes, missiles) based on automatically extracted shape and object texture information, for application areas like alerting, recognition and tracking. Targets are extracted based on robust background modeling and a novel contour extraction approach, and object recognition is done by comparisons to shape and texture based query results on a previously gathered real life object dataset. Application areas involve passive defense scenarios, including automatic object detection and tracking with cheap commodity hardware components (CPU, camera and GPS).
Incidental Memory of Younger and Older Adults for Objects Encountered in a Real World Context
Qin, Xiaoyan; Bochsler, Tiana M.; Aizpurua, Alaitz; Cheong, Allen M. Y.; Koutstaal, Wilma; Legge, Gordon E.
2014-01-01
Effects of context on the perception of, and incidental memory for, real-world objects have predominantly been investigated in younger individuals, under conditions involving a single static viewpoint. We examined the effects of prior object context and object familiarity on both older and younger adults’ incidental memory for real objects encountered while they traversed a conference room. Recognition memory for context-typical and context-atypical objects was compared with a third group of unfamiliar objects that were not readily named and that had no strongly associated context. Both older and younger adults demonstrated a typicality effect, showing significantly lower 2-alternative-forced-choice recognition of context-typical than context-atypical objects; for these objects, the recognition of older adults either significantly exceeded, or numerically surpassed, that of younger adults. Testing-awareness elevated recognition but did not interact with age or with object type. Older adults showed significantly higher recognition for context-atypical objects than for unfamiliar objects that had no prior strongly associated context. The observation of a typicality effect in both age groups is consistent with preserved semantic schemata processing in aging. The incidental recognition advantage of older over younger adults for the context-typical and context-atypical objects may reflect aging-related differences in goal-related processing, with older adults under comparatively more novel circumstances being more likely to direct their attention to the external environment, or age-related differences in top-down effortful distraction regulation, with older individuals’ attention more readily captured by salient objects in the environment. Older adults’ reduced recognition of unfamiliar objects compared to context-atypical objects may reflect possible age differences in contextually driven expectancy violations. The latter finding underscores the theoretical and methodological value of including a third type of objects–that are comparatively neutral with respect to their contextual associations–to help differentiate between contextual integration effects (for schema-consistent objects) and expectancy violations (for schema-inconsistent objects). PMID:24941065
Han, Ren-Wen; Xu, Hong-Jiao; Zhang, Rui-San; Wang, Pei; Chang, Min; Peng, Ya-Li; Deng, Ke-Yu; Wang, Rui
2014-01-01
The noradrenergic activity in the basolateral amygdala (BLA) was reported to be involved in the regulation of object recognition memory. As the BLA expresses high density of receptors for Neuropeptide S (NPS), we investigated whether the BLA is involved in mediating NPS's effects on object recognition memory consolidation and whether such effects require noradrenergic activity. Intracerebroventricular infusion of NPS (1nmol) post training facilitated 24-h memory in a mouse novel object recognition task. The memory-enhancing effect of NPS could be blocked by the β-adrenoceptor antagonist propranolol. Furthermore, post-training intra-BLA infusions of NPS (0.5nmol/side) improved 24-h memory for objects, which was impaired by co-administration of propranolol (0.5μg/side). Taken together, these results indicate that NPS interacts with the BLA noradrenergic system in improving object recognition memory during consolidation. Copyright © 2013 Elsevier Inc. All rights reserved.
Three-dimensional object recognition using similar triangles and decision trees
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly
1993-01-01
A system, TRIDEC, that is capable of distinguishing between a set of objects despite changes in the objects' positions in the input field, their size, or their rotational orientation in 3D space is described. TRIDEC combines very simple yet effective features with the classification capabilities of inductive decision tree methods. The feature vector is a list of all similar triangles defined by connecting all combinations of three pixels in a coarse coded 127 x 127 pixel input field. The classification is accomplished by building a decision tree using the information provided from a limited number of translated, scaled, and rotated samples. Simulation results are presented which show that TRIDEC achieves 94 percent recognition accuracy in the 2D invariant object recognition domain and 98 percent recognition accuracy in the 3D invariant object recognition domain after training on only a small sample of transformed views of the objects.
Vision-based object detection and recognition system for intelligent vehicles
NASA Astrophysics Data System (ADS)
Ran, Bin; Liu, Henry X.; Martono, Wilfung
1999-01-01
Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.
ERIC Educational Resources Information Center
Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico
2008-01-01
These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…
Peterson, M A; Gibson, B S
1994-11-01
In previous research, replicated here, we found that some object recognition processes influence figure-ground organization. We have proposed that these object recognition processes operate on edges (or contours) detected early in visual processing, rather than on regions. Consistent with this proposal, influences from object recognition on figure-ground organization were previously observed in both pictures and stereograms depicting regions of different luminance, but not in random-dot stereograms, where edges arise late in processing (Peterson & Gibson, 1993). In the present experiments, we examined whether or not two other types of contours--outlines and subjective contours--enable object recognition influences on figure-ground organization. For both types of contours we observed a pattern of effects similar to that originally obtained with luminance edges. The results of these experiments are valuable for distinguishing between alternative views of the mechanisms mediating object recognition influences on figure-ground organization. In addition, in both Experiments 1 and 2, fixated regions were seen as figure longer than nonfixated regions, suggesting that fixation location must be included among the variables relevant to figure-ground organization.
In search of a recognition memory engram.
Brown, M W; Banks, P J
2015-03-01
A large body of data from human and animal studies using psychological, recording, imaging, and lesion techniques indicates that recognition memory involves at least two separable processes: familiarity discrimination and recollection. Familiarity discrimination for individual visual stimuli seems to be effected by a system centred on the perirhinal cortex of the temporal lobe. The fundamental change that encodes prior occurrence within the perirhinal cortex is a reduction in the responses of neurones when a stimulus is repeated. Neuronal network modelling indicates that a system based on such a change in responsiveness is potentially highly efficient in information theoretic terms. A review is given of findings indicating that perirhinal cortex acts as a storage site for recognition memory of objects and that such storage depends upon processes producing synaptic weakening. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Case study of 3D fingerprints applications
Liu, Feng; Liang, Jinrong; Shen, Linlin; Yang, Meng; Zhang, David; Lai, Zhihui
2017-01-01
Human fingers are 3D objects. More information will be provided if three dimensional (3D) fingerprints are available compared with two dimensional (2D) fingerprints. Thus, this paper firstly collected 3D finger point cloud data by Structured-light Illumination method. Additional features from 3D fingerprint images are then studied and extracted. The applications of these features are finally discussed. A series of experiments are conducted to demonstrate the helpfulness of 3D information to fingerprint recognition. Results show that a quick alignment can be easily implemented under the guidance of 3D finger shape feature even though this feature does not work for fingerprint recognition directly. The newly defined distinctive 3D shape ridge feature can be used for personal authentication with Equal Error Rate (EER) of ~8.3%. Also, it is helpful to remove false core point. Furthermore, a promising of EER ~1.3% is realized by combining this feature with 2D features for fingerprint recognition which indicates the prospect of 3D fingerprint recognition. PMID:28399141
Robust Point Set Matching for Partial Face Recognition.
Weng, Renliang; Lu, Jiwen; Tan, Yap-Peng
2016-03-01
Over the past three decades, a number of face recognition methods have been proposed in computer vision, and most of them use holistic face images for person identification. In many real-world scenarios especially some unconstrained environments, human faces might be occluded by other objects, and it is difficult to obtain fully holistic face images for recognition. To address this, we propose a new partial face recognition approach to recognize persons of interest from their partial faces. Given a pair of gallery image and probe face patch, we first detect keypoints and extract their local textural features. Then, we propose a robust point set matching method to discriminatively match these two extracted local feature sets, where both the textural information and geometrical information of local features are explicitly used for matching simultaneously. Finally, the similarity of two faces is converted as the distance between these two aligned feature sets. Experimental results on four public face data sets show the effectiveness of the proposed approach.
Case study of 3D fingerprints applications.
Liu, Feng; Liang, Jinrong; Shen, Linlin; Yang, Meng; Zhang, David; Lai, Zhihui
2017-01-01
Human fingers are 3D objects. More information will be provided if three dimensional (3D) fingerprints are available compared with two dimensional (2D) fingerprints. Thus, this paper firstly collected 3D finger point cloud data by Structured-light Illumination method. Additional features from 3D fingerprint images are then studied and extracted. The applications of these features are finally discussed. A series of experiments are conducted to demonstrate the helpfulness of 3D information to fingerprint recognition. Results show that a quick alignment can be easily implemented under the guidance of 3D finger shape feature even though this feature does not work for fingerprint recognition directly. The newly defined distinctive 3D shape ridge feature can be used for personal authentication with Equal Error Rate (EER) of ~8.3%. Also, it is helpful to remove false core point. Furthermore, a promising of EER ~1.3% is realized by combining this feature with 2D features for fingerprint recognition which indicates the prospect of 3D fingerprint recognition.
Method of synthesized phase objects for pattern recognition with rotation invariance
NASA Astrophysics Data System (ADS)
Ostroukh, Alexander P.; Butok, Alexander M.; Shvets, Rostislav A.; Yezhov, Pavel V.; Kim, Jin-Tae; Kuzmenko, Alexander V.
2015-11-01
We present a development of the method of synthesized phase objects (SPO-method) [1] for the rotation-invariant pattern recognition. For the standard method of recognition and the SPO-method, the comparison of the parameters of correlation signals for a number of amplitude objects is executed at the realization of a rotation in an optical-digital correlator with the joint Fourier transformation. It is shown that not only the invariance relative to a rotation at a realization of the joint correlation for synthesized phase objects (SP-objects) but also the main advantage of the method of SP-objects over the reference one such as the unified δ-like recognition signal with the largest possible signal-to-noise ratio independent of the type of an object are attained.
Experiences with a Barista Robot, FusionBot
NASA Astrophysics Data System (ADS)
Limbu, Dilip Kumar; Tan, Yeow Kee; Wong, Chern Yuen; Jiang, Ridong; Wu, Hengxin; Li, Liyuan; Kah, Eng Hoe; Yu, Xinguo; Li, Dong; Li, Haizhou
In this paper, we describe the implemented service robot, called FusionBot. The goal of this research is to explore and demonstrate the utility of an interactive service robot in a smart home environment, thereby improving the quality of human life. The robot has four main features: 1) speech recognition, 2) object recognition, 3) object grabbing and fetching and 4) communication with a smart coffee machine. Its software architecture employs a multimodal dialogue system that integrates different components, including spoken dialog system, vision understanding, navigation and smart device gateway. In the experiments conducted during the TechFest 2008 event, the FusionBot successfully demonstrated that it could autonomously serve coffee to visitors on their request. Preliminary survey results indicate that the robot has potential to not only aid in the general robotics but also contribute towards the long term goal of intelligent service robotics in smart home environment.
Modeling recall memory for emotional objects in Alzheimer's disease.
Sundstrøm, Martin
2011-07-01
To examine whether emotional memory (EM) of objects with self-reference in Alzheimer's disease (AD) can be modeled with binomial logistic regression in a free recall and an object recognition test to predict EM enhancement. Twenty patients with AD and twenty healthy controls were studied. Six objects (three presented as gifts) were shown to each participant. Ten minutes later, a free recall and a recognition test were applied. The recognition test had target-objects mixed with six similar distracter objects. Participants were asked to name any object in the recall test and identify each object in the recognition test as known or unknown. The total of gift objects recalled in AD patients (41.6%) was larger than neutral objects (13.3%) and a significant EM recall effect for gifts was found (Wilcoxon: p < .003). EM was not found for recognition in AD patients due to a ceiling effect. Healthy older adults scored overall higher in recall and recognition but showed no EM enhancement due to a ceiling effect. A logistic regression showed that likelihood of emotional recall memory can be modeled as a function of MMSE score (p < .014) and object status (p < .0001) as gift or non-gift. Recall memory was enhanced in AD patients for emotional objects indicating that EM in mild to moderate AD although impaired can be provoked with strong emotional load. The logistic regression model suggests that EM declines with the progression of AD rather than disrupts and may be a useful tool for evaluating magnitude of emotional load.
Estimation of muscle strength during motion recognition using multichannel surface EMG signals.
Nagata, Kentaro; Nakano, Takemi; Magatani, Kazushige; Yamada, Masafumi
2008-01-01
The use of kinesiological electromyography is established as an evaluation tool for various kinds of applied research, and surface electromyogram (SEMG) has been widely used as a control source for human interfaces such as in a myoelectric prosthetic hand (we call them 'SEMG interfaces'). It is desirable to be able to control the SEMG interfaces with the same feeling as body movement. The existing SEMG interface mainly focuses on how to achieve accurate recognition of the intended movement. However, detecting muscular strength and reduced number of electrodes are also an important factor in controlling them. Therefore, our objective in this study is the development of and the estimation method for muscular strength that maintains the accuracy of hand motion recognition to reflect the result of measured power in a controlled object. Although the muscular strength can be evaluated by various methods, in this study a grasp force index was applied to evaluate the muscular strength. In order to achieve our objective, we directed our attention to measuring all valuable information for SEMG. This work proposes an application method of two simple linear models, and the selection method of an optimal electrode configuration to use them effectively. Our system required four SEMG measurement electrodes in which locations differed for every subject depending on the individual's characteristics, and those were selected from a 96ch multi electrode using the Monte Carlo method. From the experimental results, the performance in six normal subjects indicated that the recognition rate of four motions were perfect and the grasp force estimated result fit well with the actual measurement result.
Abada, Yah-se K.; Nguyen, Huu Phuc; Schreiber, Rudy; Ellenbroek, Bart
2013-01-01
Rationale Huntington disease (HD) is frequently first diagnosed by the appearance of motor symptoms; the diagnosis is subsequently confirmed by the presence of expanded CAG repeats (> 35) in the HUNTINGTIN (HTT) gene. A BACHD rat model for HD carrying the human full length mutated HTT with 97 CAG-CAA repeats has been established recently. Behavioral phenotyping of BACHD rats will help to determine the validity of this model and its potential use in preclinical drug discovery studies. Objectives The present study seeks to characterize the progressive emergence of motor, sensorimotor and cognitive deficits in BACHD rats. Materials and Methods Wild type and transgenic rats were tested from 1 till 12 months of age. Motor tests were selected to measure spontaneous locomotor activity (open field) and gait coordination. Sensorimotor gating was assessed in acoustic startle response paradigms and recognition memory was evaluated in an object recognition test. Results Transgenic rats showed hyperactivity at 1 month and hypoactivity starting at 4 months of age. Motor coordination imbalance in a Rotarod test was present at 2 months and gait abnormalities were seen in a Catwalk test at 12 months. Subtle sensorimotor changes were observed, whereas object recognition was unimpaired in BACHD rats up to 12 months of age. Conclusion The current BACHD rat model recapitulates certain symptoms from HD patients, especially the marked motor deficits. A subtle neuropsychological phenotype was found and further studies are needed to fully address the sensorimotor phenotype and the potential use of BACHD rats for drug discovery purposes. PMID:23874679
Tcheng, David K.; Nayak, Ashwin K.; Fowlkes, Charless C.; Punyasena, Surangi W.
2016-01-01
Discriminating between black and white spruce (Picea mariana and Picea glauca) is a difficult palynological classification problem that, if solved, would provide valuable data for paleoclimate reconstructions. We developed an open-source visual recognition software (ARLO, Automated Recognition with Layered Optimization) capable of differentiating between these two species at an accuracy on par with human experts. The system applies pattern recognition and machine learning to the analysis of pollen images and discovers general-purpose image features, defined by simple features of lines and grids of pixels taken at different dimensions, size, spacing, and resolution. It adapts to a given problem by searching for the most effective combination of both feature representation and learning strategy. This results in a powerful and flexible framework for image classification. We worked with images acquired using an automated slide scanner. We first applied a hash-based “pollen spotting” model to segment pollen grains from the slide background. We next tested ARLO’s ability to reconstruct black to white spruce pollen ratios using artificially constructed slides of known ratios. We then developed a more scalable hash-based method of image analysis that was able to distinguish between the pollen of black and white spruce with an estimated accuracy of 83.61%, comparable to human expert performance. Our results demonstrate the capability of machine learning systems to automate challenging taxonomic classifications in pollen analysis, and our success with simple image representations suggests that our approach is generalizable to many other object recognition problems. PMID:26867017
An Effective 3D Shape Descriptor for Object Recognition with RGB-D Sensors
Liu, Zhong; Zhao, Changchen; Wu, Xingming; Chen, Weihai
2017-01-01
RGB-D sensors have been widely used in various areas of computer vision and graphics. A good descriptor will effectively improve the performance of operation. This article further analyzes the recognition performance of shape features extracted from multi-modality source data using RGB-D sensors. A hybrid shape descriptor is proposed as a representation of objects for recognition. We first extracted five 2D shape features from contour-based images and five 3D shape features over point cloud data to capture the global and local shape characteristics of an object. The recognition performance was tested for category recognition and instance recognition. Experimental results show that the proposed shape descriptor outperforms several common global-to-global shape descriptors and is comparable to some partial-to-global shape descriptors that achieved the best accuracies in category and instance recognition. Contribution of partial features and computational complexity were also analyzed. The results indicate that the proposed shape features are strong cues for object recognition and can be combined with other features to boost accuracy. PMID:28245553
A method of object recognition for single pixel imaging
NASA Astrophysics Data System (ADS)
Li, Boxuan; Zhang, Wenwen
2018-01-01
Computational ghost imaging(CGI), utilizing a single-pixel detector, has been extensively used in many fields. However, in order to achieve a high-quality reconstructed image, a large number of iterations are needed, which limits the flexibility of using CGI in practical situations, especially in the field of object recognition. In this paper, we purpose a method utilizing the feature matching to identify the number objects. In the given system, approximately 90% of accuracy of recognition rates can be achieved, which provides a new idea for the application of single pixel imaging in the field of object recognition
Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish.
Hamilton, Trevor J; Tresguerres, Martin; Kline, David I
2017-07-01
Object recognition memory is the ability to identify previously seen objects and is an adaptive mechanism that increases survival for many species throughout the animal kingdom. Previously believed to be possessed by only the highest order mammals, it is now becoming clear that fish are also capable of this type of memory formation. Similar to the mammalian hippocampus, the dorsolateral pallium regulates distinct memory processes and is modulated by neurotransmitters such as dopamine. Caribbean bicolour damselfish ( Stegastes partitus ) live in complex environments dominated by coral reef structures and thus likely possess many types of complex memory abilities including object recognition. This study used a novel object recognition test in which fish were first presented two identical objects, then after a retention interval of 10 min with no objects, the fish were presented with a novel object and one of the objects they had previously encountered in the first trial. We demonstrate that the dopamine D 1 -receptor agonist (SKF 38393) induces the formation of object recognition memories in these fish. Thus, our results suggest that dopamine-receptor mediated enhancement of spatial memory formation in fish represents an evolutionarily conserved mechanism in vertebrates. © 2017 The Author(s).
[Comparative studies of face recognition].
Kawai, Nobuyuki
2012-07-01
Every human being is proficient in face recognition. However, the reason for and the manner in which humans have attained such an ability remain unknown. These questions can be best answered-through comparative studies of face recognition in non-human animals. Studies in both primates and non-primates show that not only primates, but also non-primates possess the ability to extract information from their conspecifics and from human experimenters. Neural specialization for face recognition is shared with mammals in distant taxa, suggesting that face recognition evolved earlier than the emergence of mammals. A recent study indicated that a social insect, the golden paper wasp, can distinguish their conspecific faces, whereas a closely related species, which has a less complex social lifestyle with just one queen ruling a nest of underlings, did not show strong face recognition for their conspecifics. Social complexity and the need to differentiate between one another likely led humans to evolve their face recognition abilities.
Superior voice recognition in a patient with acquired prosopagnosia and object agnosia.
Hoover, Adria E N; Démonet, Jean-François; Steeves, Jennifer K E
2010-11-01
Anecdotally, it has been reported that individuals with acquired prosopagnosia compensate for their inability to recognize faces by using other person identity cues such as hair, gait or the voice. Are they therefore superior at the use of non-face cues, specifically voices, to person identity? Here, we empirically measure person and object identity recognition in a patient with acquired prosopagnosia and object agnosia. We quantify person identity (face and voice) and object identity (car and horn) recognition for visual, auditory, and bimodal (visual and auditory) stimuli. The patient is unable to recognize faces or cars, consistent with his prosopagnosia and object agnosia, respectively. He is perfectly able to recognize people's voices and car horns and bimodal stimuli. These data show a reverse shift in the typical weighting of visual over auditory information for audiovisual stimuli in a compromised visual recognition system. Moreover, the patient shows selectively superior voice recognition compared to the controls revealing that two different stimulus domains, persons and objects, may not be equally affected by sensory adaptation effects. This also implies that person and object identity recognition are processed in separate pathways. These data demonstrate that an individual with acquired prosopagnosia and object agnosia can compensate for the visual impairment and become quite skilled at using spared aspects of sensory processing. In the case of acquired prosopagnosia it is advantageous to develop a superior use of voices for person identity recognition in everyday life. Copyright © 2010 Elsevier Ltd. All rights reserved.
Detection and recognition of targets by using signal polarization properties
NASA Astrophysics Data System (ADS)
Ponomaryov, Volodymyr I.; Peralta-Fabi, Ricardo; Popov, Anatoly V.; Babakov, Mikhail F.
1999-08-01
The quality of radar target recognition can be enhanced by exploiting its polarization signatures. A specialized X-band polarimetric radar was used for target recognition in experimental investigations. The following polarization characteristics connected to the object geometrical properties were investigated: the amplitudes of the polarization matrix elements; an anisotropy coefficient; depolarization coefficient; asymmetry coefficient; the energy of a backscattering signal; object shape factor. A large quantity of polarimetric radar data was measured and processed to form a database of different object and different weather conditions. The histograms of polarization signatures were approximated by a Nakagami distribution, then used for real- time target recognition. The Neyman-Pearson criterion was used for the target detection, and the criterion of the maximum of a posterior probability was used for recognition problem. Some results of experimental verification of pattern recognition and detection of objects with different electrophysical and geometrical characteristics urban in clutter are presented in this paper.
Learned Non-Rigid Object Motion is a View-Invariant Cue to Recognizing Novel Objects
Chuang, Lewis L.; Vuong, Quoc C.; Bülthoff, Heinrich H.
2012-01-01
There is evidence that observers use learned object motion to recognize objects. For instance, studies have shown that reversing the learned direction in which a rigid object rotated in depth impaired recognition accuracy. This motion reversal can be achieved by playing animation sequences of moving objects in reverse frame order. In the current study, we used this sequence-reversal manipulation to investigate whether observers encode the motion of dynamic objects in visual memory, and whether such dynamic representations are encoded in a way that is dependent on the viewing conditions. Participants first learned dynamic novel objects, presented as animation sequences. Following learning, they were then tested on their ability to recognize these learned objects when their animation sequence was shown in the same sequence order as during learning or in the reverse sequence order. In Experiment 1, we found that non-rigid motion contributed to recognition performance; that is, sequence-reversal decreased sensitivity across different tasks. In subsequent experiments, we tested the recognition of non-rigidly deforming (Experiment 2) and rigidly rotating (Experiment 3) objects across novel viewpoints. Recognition performance was affected by viewpoint changes for both experiments. Learned non-rigid motion continued to contribute to recognition performance and this benefit was the same across all viewpoint changes. By comparison, learned rigid motion did not contribute to recognition performance. These results suggest that non-rigid motion provides a source of information for recognizing dynamic objects, which is not affected by changes to viewpoint. PMID:22661939
Parallel and distributed computation for fault-tolerant object recognition
NASA Technical Reports Server (NTRS)
Wechsler, Harry
1988-01-01
The distributed associative memory (DAM) model is suggested for distributed and fault-tolerant computation as it relates to object recognition tasks. The fault-tolerance is with respect to geometrical distortions (scale and rotation), noisy inputs, occulsion/overlap, and memory faults. An experimental system was developed for fault-tolerant structure recognition which shows the feasibility of such an approach. The approach is futher extended to the problem of multisensory data integration and applied successfully to the recognition of colored polyhedral objects.
ERIC Educational Resources Information Center
de la Rosa, Stephan; Choudhery, Rabia N.; Chatziastros, Astros
2011-01-01
Recent evidence suggests that the recognition of an object's presence and its explicit recognition are temporally closely related. Here we re-examined the time course (using a fine and a coarse temporal resolution) and the sensitivity of three possible component processes of visual object recognition. In particular, participants saw briefly…
An ERP Study on Self-Relevant Object Recognition
ERIC Educational Resources Information Center
Miyakoshi, Makoto; Nomura, Michio; Ohira, Hideki
2007-01-01
We performed an event-related potential study to investigate the self-relevance effect in object recognition. Three stimulus categories were prepared: SELF (participant's own objects), FAMILIAR (disposable and public objects, defined as objects with less-self-relevant familiarity), and UNFAMILIAR (others' objects). The participants' task was to…
The Phenomenon of "Global Education Space" as an Object of Scientific-Pedagogical Research
ERIC Educational Resources Information Center
Avshenyuk, Natalia
2014-01-01
The characteristics of global education space as a social idea of creating a system of measures to ensure the right for education to any individual as well as its converting, that is recognition regardless of the nationality and country of study; and as a specific area of human activity, which forms the internal and external environment for…
It's All in Your Head: Why Is the Body Inversion Effect Abolished for Headless Bodies?
ERIC Educational Resources Information Center
Yovel, Galit; Pelc, Tatiana; Lubetzky, Ida
2010-01-01
It has been recently argued that human bodies are processed by a specialized processing mechanism. Central evidence was that body inversion reduces recognition abilities (body inversion effect; BIE) as much as it does for faces, but more than for other objects. Here we showed that the BIE is markedly reduced for headless bodies and examined the…
Aging and solid shape recognition: Vision and haptics.
Norman, J Farley; Cheeseman, Jacob R; Adkins, Olivia C; Cox, Andrea G; Rogers, Connor E; Dowell, Catherine J; Baxter, Michael W; Norman, Hideko F; Reyes, Cecia M
2015-10-01
The ability of 114 younger and older adults to recognize naturally-shaped objects was evaluated in three experiments. The participants viewed or haptically explored six randomly-chosen bell peppers (Capsicum annuum) in a study session and were later required to judge whether each of twelve bell peppers was "old" (previously presented during the study session) or "new" (not presented during the study session). When recognition memory was tested immediately after study, the younger adults' (Experiment 1) performance for vision and haptics was identical when the individual study objects were presented once. Vision became superior to haptics, however, when the individual study objects were presented multiple times. When 10- and 20-min delays (Experiment 2) were inserted in between study and test sessions, no significant differences occurred between vision and haptics: recognition performance in both modalities was comparable. When the recognition performance of older adults was evaluated (Experiment 3), a negative effect of age was found for visual shape recognition (younger adults' overall recognition performance was 60% higher). There was no age effect, however, for haptic shape recognition. The results of the present experiments indicate that the visual recognition of natural object shape is different from haptic recognition in multiple ways: visual shape recognition can be superior to that of haptics and is affected by aging, while haptic shape recognition is less accurate and unaffected by aging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D
2016-09-15
Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. Copyright © 2016 Elsevier B.V. All rights reserved.
Representation of 3-Dimenstional Objects by the Rat Perirhinal Cortex
Burke, S.N.; Maurer, A.P.; Hartzell, A.L.; Nematollahi, S.; Uprety, A.; Wallace, J.L.; Barnes, C.A.
2012-01-01
The perirhinal cortex (PRC) is known to play an important role in object recognition. Little is known, however, regarding the activity of PRC neurons during the presentation of stimuli that are commonly used for recognition memory tasks in rodents, that is, 3-dimensional objects. Rats in the present study were exposed to 3-dimensional objects while they traversed a circular track for food reward. Under some behavioral conditions the track contained novel objects, familiar objects, or no objects. Approximately 38% of PRC neurons demonstrated ‘object fields’ (a selective increase in firing at the location of one or more objects). Although the rats spent more time exploring the objects when they were novel compared to familiar, indicating successful recognition memory, the proportion of object fields and the firing rates of PRC neurons were not affected by the rats’ previous experience with the objects. Together these data indicate that the activity of PRC cells is powerfully affected by the presence of objects while animals navigate through an environment, but under these conditions, the firing patterns are not altered by the relative novelty of objects during successful object recognition. PMID:22987680
Angelone, Bonnie L; Levin, Daniel T; Simons, Daniel J
2003-01-01
Observers typically detect changes to central objects more readily than changes to marginal objects, but they sometimes miss changes to central, attended objects as well. However, even if observers do not report such changes, they may be able to recognize the changed object. In three experiments we explored change detection and recognition memory for several types of changes to central objects in motion pictures. Observers who failed to detect a change still performed at above chance levels on a recognition task in almost all conditions. In addition, observers who detected the change were no more accurate in their recognition than those who did not detect the change. Despite large differences in the detectability of changes across conditions, those observers who missed the change did not vary in their ability to recognize the changing object.
Herring, Nicole R.; Schaefer, Tori L.; Gudelsky, Gary A.; Vorhees, Charles V.; Williams, Michael T.
2008-01-01
Rationale Methamphetamine (MA) has been implicated in cognitive deficits in humans after chronic use. Animal models of neurotoxic MA exposure reveal persistent damage to monoaminergic systems, but few associated cognitive effects. Objectives Since, questions have been raised about the typical neurotoxic dosing regimen used in animals and whether it adequately models human cumulative drug exposure, these experiments examined two different dosing regimens. Methods Rats were treated with one of two regimens, one the typical neurotoxic regimen (4 × 10 mg/kg every 2 h) and one based on pharmacokinetic modeling (Cho et al. 2001) designed to better represent accumulating plasma concentrations of MA as seen in human users (24 ×1.67 mg/kg once every 15 min); matched for total daily dose. In two separate experiments, dosing regimens were compared for their effects on markers of neurotoxicity or on behavior. Results On markers of neurotoxicity, MA showed decreased DA and 5-HT, and increased glial fibrillary acidic protein and increased corticosterone levels regardless of dosing regimen 3 days post-treatment. Behaviorally, MA-treated groups, regardless of dosing regimen, showed hypoactivity, increased initial hyperactivity to a subsequent MA challenge, impaired novel object recognition, impaired learning in a multiple-T water maze test of path integration, and no differences on spatial navigation or reference memory in the Morris water maze. After behavioral testing, reductions of DA and 5-HT remained. Conclusions MA treatment induces an effect on path integration learning not previously reported. Dosing regimen had no differential effects on behavior or neurotoxicity. PMID:18509623
NASA Astrophysics Data System (ADS)
Alkilani, Amjad; Shirkhodaie, Amir
2013-05-01
Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.
Recognition Of Complex Three Dimensional Objects Using Three Dimensional Moment Invariants
NASA Astrophysics Data System (ADS)
Sadjadi, Firooz A.
1985-01-01
A technique for the recognition of complex three dimensional objects is presented. The complex 3-D objects are represented in terms of their 3-D moment invariants, algebraic expressions that remain invariant independent of the 3-D objects' orientations and locations in the field of view. The technique of 3-D moment invariants has been used successfully for simple 3-D object recognition in the past. In this work we have extended this method for the representation of more complex objects. Two complex objects are represented digitally; their 3-D moment invariants have been calculated, and then the invariancy of these 3-D invariant moment expressions is verified by changing the orientation and the location of the objects in the field of view. The results of this study have significant impact on 3-D robotic vision, 3-D target recognition, scene analysis and artificial intelligence.
A Taxonomy of 3D Occluded Objects Recognition Techniques
NASA Astrophysics Data System (ADS)
Soleimanizadeh, Shiva; Mohamad, Dzulkifli; Saba, Tanzila; Al-ghamdi, Jarallah Saleh
2016-03-01
The overall performances of object recognition techniques under different condition (e.g., occlusion, viewpoint, and illumination) have been improved significantly in recent years. New applications and hardware are shifted towards digital photography, and digital media. This faces an increase in Internet usage requiring object recognition for certain applications; particularly occulded objects. However occlusion is still an issue unhandled, interlacing the relations between extracted feature points through image, research is going on to develop efficient techniques and easy to use algorithms that would help users to source images; this need to overcome problems and issues regarding occlusion. The aim of this research is to review recognition occluded objects algorithms and figure out their pros and cons to solve the occlusion problem features, which are extracted from occluded object to distinguish objects from other co-existing objects by determining the new techniques, which could differentiate the occluded fragment and sections inside an image.
Exogenous temporal cues enhance recognition memory in an object-based manner.
Ohyama, Junji; Watanabe, Katsumi
2010-11-01
Exogenous attention enhances the perception of attended items in both a space-based and an object-based manner. Exogenous attention also improves recognition memory for attended items in the space-based mode. However, it has not been examined whether object-based exogenous attention enhances recognition memory. To address this issue, we examined whether a sudden visual change in a task-irrelevant stimulus (an exogenous cue) would affect participants' recognition memory for items that were serially presented around a cued time. The results showed that recognition accuracy for an item was strongly enhanced when the visual cue occurred at the same location and time as the item (Experiments 1 and 2). The memory enhancement effect occurred when the exogenous visual cue and an item belonged to the same object (Experiments 3 and 4) and even when the cue was counterpredictive of the timing of an item to be asked about (Experiment 5). The present study suggests that an exogenous temporal cue automatically enhances the recognition accuracy for an item that is presented at close temporal proximity to the cue and that recognition memory enhancement occurs in an object-based manner.
Parts and Relations in Young Children's Shape-Based Object Recognition
ERIC Educational Resources Information Center
Augustine, Elaine; Smith, Linda B.; Jones, Susan S.
2011-01-01
The ability to recognize common objects from sparse information about geometric shape emerges during the same period in which children learn object names and object categories. Hummel and Biederman's (1992) theory of object recognition proposes that the geometric shapes of objects have two components--geometric volumes representing major object…
Mechanisms and neural basis of object and pattern recognition: a study with chess experts.
Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang
2010-11-01
Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception.
Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation
Khaligh-Razavi, Seyed-Mahdi; Kriegeskorte, Nikolaus
2014-01-01
Inferior temporal (IT) cortex in human and nonhuman primates serves visual object recognition. Computational object-vision models, although continually improving, do not yet reach human performance. It is unclear to what extent the internal representations of computational models can explain the IT representation. Here we investigate a wide range of computational model representations (37 in total), testing their categorization performance and their ability to account for the IT representational geometry. The models include well-known neuroscientific object-recognition models (e.g. HMAX, VisNet) along with several models from computer vision (e.g. SIFT, GIST, self-similarity features, and a deep convolutional neural network). We compared the representational dissimilarity matrices (RDMs) of the model representations with the RDMs obtained from human IT (measured with fMRI) and monkey IT (measured with cell recording) for the same set of stimuli (not used in training the models). Better performing models were more similar to IT in that they showed greater clustering of representational patterns by category. In addition, better performing models also more strongly resembled IT in terms of their within-category representational dissimilarities. Representational geometries were significantly correlated between IT and many of the models. However, the categorical clustering observed in IT was largely unexplained by the unsupervised models. The deep convolutional network, which was trained by supervision with over a million category-labeled images, reached the highest categorization performance and also best explained IT, although it did not fully explain the IT data. Combining the features of this model with appropriate weights and adding linear combinations that maximize the margin between animate and inanimate objects and between faces and other objects yielded a representation that fully explained our IT data. Overall, our results suggest that explaining IT requires computational features trained through supervised learning to emphasize the behaviorally important categorical divisions prominently reflected in IT. PMID:25375136
ERIC Educational Resources Information Center
Collin, Charles A.; Liu, Chang Hong; Troje, Nikolaus F.; McMullen, Patricia A.; Chaudhuri, Avi
2004-01-01
Previous studies have suggested that face identification is more sensitive to variations in spatial frequency content than object recognition, but none have compared how sensitive the 2 processes are to variations in spatial frequency overlap (SFO). The authors tested face and object matching accuracy under varying SFO conditions. Their results…
ERIC Educational Resources Information Center
Kuusikko-Gauffin, Sanna; Jansson-Verkasalo, Eira; Carter, Alice; Pollock-Wurman, Rachel; Jussila, Katja; Mattila, Marja-Leena; Rahko, Jukka; Ebeling, Hanna; Pauls, David; Moilanen, Irma
2011-01-01
Children with Autism Spectrum Disorders (ASDs) have reported to have impairments in face, recognition and face memory, but intact object recognition and object memory. Potential abnormalities, in these fields at the family level of high-functioning children with ASD remains understudied despite, the ever-mounting evidence that ASDs are genetic and…
NASA Astrophysics Data System (ADS)
Buryi, E. V.
1998-05-01
The main problems in the synthesis of an object recognition system, based on the principles of operation of neuron networks, are considered. Advantages are demonstrated of a hierarchical structure of the recognition algorithm. The use of reading of the amplitude spectrum of signals as information tags is justified and a method is developed for determination of the dimensionality of the tag space. Methods are suggested for ensuring the stability of object recognition in the optical range. It is concluded that it should be possible to recognise perspectives of complex objects.
Lateral entorhinal cortex is necessary for associative but not nonassociative recognition memory
Wilson, David IG; Watanabe, Sakurako; Milner, Helen; Ainge, James A
2013-01-01
The lateral entorhinal cortex (LEC) provides one of the two major input pathways to the hippocampus and has been suggested to process the nonspatial contextual details of episodic memory. Combined with spatial information from the medial entorhinal cortex it is hypothesised that this contextual information is used to form an integrated spatially selective, context-specific response in the hippocampus that underlies episodic memory. Recently, we reported that the LEC is required for recognition of objects that have been experienced in a specific context (Wilson et al. (2013) Hippocampus 23:352-366). Here, we sought to extend this work to assess the role of the LEC in recognition of all associative combinations of objects, places and contexts within an episode. Unlike controls, rats with excitotoxic lesions of the LEC showed no evidence of recognizing familiar combinations of object in place, place in context, or object in place and context. However, LEC lesioned rats showed normal recognition of objects and places independently from each other (nonassociative recognition). Together with our previous findings, these data suggest that the LEC is critical for associative recognition memory and may bind together information relating to objects, places, and contexts needed for episodic memory formation. PMID:23836525
Webly-Supervised Fine-Grained Visual Categorization via Deep Domain Adaptation.
Xu, Zhe; Huang, Shaoli; Zhang, Ya; Tao, Dacheng
2018-05-01
Learning visual representations from web data has recently attracted attention for object recognition. Previous studies have mainly focused on overcoming label noise and data bias and have shown promising results by learning directly from web data. However, we argue that it might be better to transfer knowledge from existing human labeling resources to improve performance at nearly no additional cost. In this paper, we propose a new semi-supervised method for learning via web data. Our method has the unique design of exploiting strong supervision, i.e., in addition to standard image-level labels, our method also utilizes detailed annotations including object bounding boxes and part landmarks. By transferring as much knowledge as possible from existing strongly supervised datasets to weakly supervised web images, our method can benefit from sophisticated object recognition algorithms and overcome several typical problems found in webly-supervised learning. We consider the problem of fine-grained visual categorization, in which existing training resources are scarce, as our main research objective. Comprehensive experimentation and extensive analysis demonstrate encouraging performance of the proposed approach, which, at the same time, delivers a new pipeline for fine-grained visual categorization that is likely to be highly effective for real-world applications.
Safe trajectory estimation at a pedestrian crossing to assist visually impaired people.
Alghamdi, Saleh; van Schyndel, Ron; Khalil, Ibrahim
2012-01-01
The aim of this paper is to present a service for blind and people with low vision to assist them to cross the street independently. The presented approach provides the user with significant information such as detection of pedestrian crossing signal from any point of view, when the pedestrian crossing signal light is green, the detection of dynamic and fixed obstacles, predictions of the movement of fellow pedestrians and information on objects which may intersect his path. Our approach is based on capturing multiple frames using a depth camera which is attached to a user's headgear. Currently a testbed system is built on a helmet and is connected to a laptop in the user's backpack. In this paper, we discussed efficiency of using Speeded-Up Robust Features (SURF) algorithm for object recognition for purposes of blind people assistance. The system predicts the movement of objects of interest to provide the user with information on the safest path to navigate and information on the surrounding area. Evaluation of this approach on real sequence video frames provides 90% of human detection and more than 80% for recognition of other related objects.
Goswami, Sonal; Samuel, Sherin; Sierra, Olga R; Cascardi, Michele; Paré, Denis
2012-01-01
Despite recent progress, the causes and pathophysiology of post-traumatic stress disorder (PTSD) remain poorly understood, partly because of ethical limitations inherent to human studies. One approach to circumvent this obstacle is to study PTSD in a valid animal model of the human syndrome. In one such model, extreme and long-lasting behavioral manifestations of anxiety develop in a subset of Lewis rats after exposure to an intense predatory threat that mimics the type of life-and-death situation known to precipitate PTSD in humans. This study aimed to assess whether the hippocampus-associated deficits observed in the human syndrome are reproduced in this rodent model. Prior to predatory threat, different groups of rats were each tested on one of three object recognition memory tasks that varied in the types of contextual clues (i.e., that require the hippocampus or not) the rats could use to identify novel items. After task completion, the rats were subjected to predatory threat and, one week later, tested on the elevated plus maze (EPM). Based on their exploratory behavior in the plus maze, rats were then classified as resilient or PTSD-like and their performance on the pre-threat object recognition tasks compared. The performance of PTSD-like rats was inferior to that of resilient rats but only when subjects relied on an allocentric frame of reference to identify novel items, a process thought to be critically dependent on the hippocampus. Therefore, these results suggest that even prior to trauma PTSD-like rats show a deficit in hippocampal-dependent functions, as reported in twin studies of human PTSD.
Semantic and visual determinants of face recognition in a prosopagnosic patient.
Dixon, M J; Bub, D N; Arguin, M
1998-05-01
Prosopagnosia is the neuropathological inability to recognize familiar people by their faces. It can occur in isolation or can coincide with recognition deficits for other nonface objects. Often, patients whose prosopagnosia is accompanied by object recognition difficulties have more trouble identifying certain categories of objects relative to others. In previous research, we demonstrated that objects that shared multiple visual features and were semantically close posed severe recognition difficulties for a patient with temporal lobe damage. We now demonstrate that this patient's face recognition is constrained by these same parameters. The prosopagnosic patient ELM had difficulties pairing faces to names when the faces shared visual features and the names were semantically related (e.g., Tonya Harding, Nancy Kerrigan, and Josee Chouinard -three ice skaters). He made tenfold fewer errors when the exact same faces were associated with semantically unrelated people (e.g., singer Celine Dion, actress Betty Grable, and First Lady Hillary Clinton). We conclude that prosopagnosia and co-occurring category-specific recognition problems both stem from difficulties disambiguating the stored representations of objects that share multiple visual features and refer to semantically close identities or concepts.
Magical thinking and memory: distinctiveness effect for tv commercials with magical content.
Subbotsky, Eugene; Mathews, Jayne
2011-10-01
The aim of this study was to examine whether memorizing advertised products of television advertisements with magical effects (i.e., talking animals, inanimate objects which turn into humans, objects that appear from thin air or instantly turn into other objects) is easier than memorizing products of advertisements without such effects, by testing immediate and delayed retention. Adolescents and adults viewed two films containing television advertisements and were asked to recall and recognize the films' characters, events, and advertised products. Film 1 included magical effects, but Film 2 did not. On a free-recall test, no differences in the number of items recalled were noted for the two films. On the immediate recognition test, adolescents, but not adults, showed significantly better recognition for the magical than the nonmagical film. When this test was repeated two weeks later, results were reversed: adults, but not adolescents, recognized a significantly larger number of items from the magical film than the nonmagical one. These results are interpreted to accentuate the role of magical thinking in cognitive processes.
Examining object recognition and object-in-Place memory in plateau zokors, Eospalax baileyi.
Hegab, Ibrahim M; Tan, Yuchen; Wang, Chan; Yao, Baohui; Wang, Haifang; Ji, Weihong; Su, Junhu
2018-01-01
Recognition memory is important for the survival and fitness of subterranean rodents due to the barren underground conditions that require avoiding the burden of higher energy costs or possible conflict with conspecifics. Our study aims to examine the object and object/place recognition memories in plateau zokors (Eospalax baileyi) and test whether their underground life exerts sex-specific differences in memory functions using Novel Object Recognition (NOR) and Object-in-Place (OiP) paradigms. Animals were tested in the NOR with short (10min) and long-term (24h) inter-trial intervals (ITI) and in the OiP for a 30-min ITI between the familiarization and testing sessions. Plateau zokors showed a strong preference for novel objects manifested by a longer exploration time for the novel object after 10min ITI but failed to remember the familiar object when tested after 24h, suggesting a lack of long-term memory. In the OiP test, zokors effectively formed an association between the objects and the place where they were formerly encountered, resulting in a higher duration of exploration to the switched objects. However, both sexes showed equivalent results in exploration time during the NOR and OiP tests, which eliminates the possibility of discovering sex-specific variations in memory performance. Taken together, our study illustrates robust novelty preference and an effective short-term recognition memory without marked sex-specific differences, which might elucidate the dynamics of recognition memory formation and retrieval in plateau zokors. Copyright © 2017 Elsevier B.V. All rights reserved.
Implicit and Explicit Contributions to Object Recognition: Evidence from Rapid Perceptual Learning
Hassler, Uwe; Friese, Uwe; Gruber, Thomas
2012-01-01
The present study investigated implicit and explicit recognition processes of rapidly perceptually learned objects by means of steady-state visual evoked potentials (SSVEP). Participants were initially exposed to object pictures within an incidental learning task (living/non-living categorization). Subsequently, degraded versions of some of these learned pictures were presented together with degraded versions of unlearned pictures and participants had to judge, whether they recognized an object or not. During this test phase, stimuli were presented at 15 Hz eliciting an SSVEP at the same frequency. Source localizations of SSVEP effects revealed for implicit and explicit processes overlapping activations in orbito-frontal and temporal regions. Correlates of explicit object recognition were additionally found in the superior parietal lobe. These findings are discussed to reflect facilitation of object-specific processing areas within the temporal lobe by an orbito-frontal top-down signal as proposed by bi-directional accounts of object recognition. PMID:23056558
González, Betina; Raineri, Mariana; Cadet, Jean Lud; García-Rill, Edgar; Urbano, Francisco J; Bisagno, Veronica
2014-12-01
Chronic use of methamphetamine (METH) leads to long-lasting cognitive dysfunction in humans and in animal models. Modafinil is a wake-promoting compound approved for the treatment of sleeping disorders. It is also prescribed off label to treat METH dependence. In the present study, we investigated whether modafinil could improve cognitive deficits induced by sub-chronic METH treatment in mice by measuring visual retention in a Novel Object Recognition (NOR) task. After sub-chronic METH treatment (1 mg/kg, once a day for 7 days), mice performed the NOR task, which consisted of habituation to the object recognition arena (5 min a day, 3 consecutive days), training session (2 equal objects, 10 min, day 4), and a retention session (1 novel object, 5 min, day 5). One hour before the training session, mice were given a single dose of modafinil (30 or 90 mg/kg). METH-treated mice showed impairments in visual memory retention, evidenced by equal preference of familiar and novel objects during the retention session. The lower dose of modafinil (30 mg/kg) had no effect on visual retention scores in METH-treated mice, while the higher dose (90 mg/kg) rescued visual memory retention to control values. We also measured extracellular signal-regulated kinase (ERK) phosphorylation in medial prefrontal cortex (mPFC), hippocampus, and nucleus accumbens (NAc) of METH- and vehicle-treated mice that received modafinil 1 h before exposure to novel objects in the training session, compared to mice placed in the arena without objects. Elevated ERK phosphorylation was found in the mPFC of vehicle-treated mice, but not in METH-treated mice, exposed to objects. The lower dose of modafinil had no effect on ERK phosphorylation in METH-treated mice, while 90 mg/kg modafinil treatment restored the ERK phosphorylation induced by novelty in METH-treated mice to values comparable to controls. We found neither a novelty nor treatment effect on ERK phosphorylation in hippocampus or NAc of vehicle- and METH-treated mice receiving acute 90 mg/kg modafinil treatment. Our results showed a palliative role of modafinil against METH-induced visual cognitive impairments, possibly by normalizing ERK signaling pathways in mPFC. Modafinil may be a valuable pharmacological tool for the treatment of cognitive deficits observed in human METH abusers as well as in other neuropsychiatric conditions. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Single prolonged stress impairs social and object novelty recognition in rats.
Eagle, Andrew L; Fitzpatrick, Chris J; Perrine, Shane A
2013-11-01
Posttraumatic stress disorder (PTSD) results from exposure to a traumatic event and manifests as re-experiencing, arousal, avoidance, and negative cognition/mood symptoms. Avoidant symptoms, as well as the newly defined negative cognitions/mood, are a serious complication leading to diminished interest in once important or positive activities, such as social interaction; however, the basis of these symptoms remains poorly understood. PTSD patients also exhibit impaired object and social recognition, which may underlie the avoidance and symptoms of negative cognition, such as social estrangement or diminished interest in activities. Previous studies have demonstrated that single prolonged stress (SPS), models PTSD phenotypes, including impairments in learning and memory. Therefore, it was hypothesized that SPS would impair social and object recognition memory. Male Sprague Dawley rats were exposed to SPS then tested in the social choice test (SCT) or novel object recognition test (NOR). These tests measure recognition of novelty over familiarity, a natural preference of rodents. Results show that SPS impaired preference for both social and object novelty. In addition, SPS impairment in social recognition may be caused by impaired behavioral flexibility, or an inability to shift behavior during the SCT. These results demonstrate that traumatic stress can impair social and object recognition memory, which may underlie certain avoidant symptoms or negative cognition in PTSD and be related to impaired behavioral flexibility. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Babayan, Pavel; Smirnov, Sergey; Strotov, Valery
2017-10-01
This paper describes the aerial object recognition algorithm for on-board and stationary vision system. Suggested algorithm is intended to recognize the objects of a specific kind using the set of the reference objects defined by 3D models. The proposed algorithm based on the outer contour descriptor building. The algorithm consists of two stages: learning and recognition. Learning stage is devoted to the exploring of reference objects. Using 3D models we can build the database containing training images by rendering the 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the recognition stage of the algorithm. The recognition stage is focusing on estimating the similarity of the captured object and the reference objects by matching an observed image descriptor and the reference object descriptors. The experimental research was performed using a set of the models of the aircraft of the different types (airplanes, helicopters, UAVs). The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.
Affective and contextual values modulate spatial frequency use in object recognition
Caplette, Laurent; West, Gregory; Gomot, Marie; Gosselin, Frédéric; Wicker, Bruno
2014-01-01
Visual object recognition is of fundamental importance in our everyday interaction with the environment. Recent models of visual perception emphasize the role of top-down predictions facilitating object recognition via initial guesses that limit the number of object representations that need to be considered. Several results suggest that this rapid and efficient object processing relies on the early extraction and processing of low spatial frequencies (LSF). The present study aimed to investigate the SF content of visual object representations and its modulation by contextual and affective values of the perceived object during a picture-name verification task. Stimuli consisted of pictures of objects equalized in SF content and categorized as having low or high affective and contextual values. To access the SF content of stored visual representations of objects, SFs of each image were then randomly sampled on a trial-by-trial basis. Results reveal that intermediate SFs between 14 and 24 cycles per object (2.3–4 cycles per degree) are correlated with fast and accurate identification for all categories of objects. Moreover, there was a significant interaction between affective and contextual values over the SFs correlating with fast recognition. These results suggest that affective and contextual values of a visual object modulate the SF content of its internal representation, thus highlighting the flexibility of the visual recognition system. PMID:24904514
Face Recognition in Humans and Machines
NASA Astrophysics Data System (ADS)
O'Toole, Alice; Tistarelli, Massimo
The study of human face recognition by psychologists and neuroscientists has run parallel to the development of automatic face recognition technologies by computer scientists and engineers. In both cases, there are analogous steps of data acquisition, image processing, and the formation of representations that can support the complex and diverse tasks we accomplish with faces. These processes can be understood and compared in the context of their neural and computational implementations. In this chapter, we present the essential elements of face recognition by humans and machines, taking a perspective that spans psychological, neural, and computational approaches. From the human side, we overview the methods and techniques used in the neurobiology of face recognition, the underlying neural architecture of the system, the role of visual attention, and the nature of the representations that emerges. From the computational side, we discuss face recognition technologies and the strategies they use to overcome challenges to robust operation over viewing parameters. Finally, we conclude the chapter with a look at some recent studies that compare human and machine performances at face recognition.
Rupp, Kyle; Roos, Matthew; Milsap, Griffin; Caceres, Carlos; Ratto, Christopher; Chevillet, Mark; Crone, Nathan E; Wolmetz, Michael
2017-03-01
Non-invasive neuroimaging studies have shown that semantic category and attribute information are encoded in neural population activity. Electrocorticography (ECoG) offers several advantages over non-invasive approaches, but the degree to which semantic attribute information is encoded in ECoG responses is not known. We recorded ECoG while patients named objects from 12 semantic categories and then trained high-dimensional encoding models to map semantic attributes to spectral-temporal features of the task-related neural responses. Using these semantic attribute encoding models, untrained objects were decoded with accuracies comparable to whole-brain functional Magnetic Resonance Imaging (fMRI), and we observed that high-gamma activity (70-110Hz) at basal occipitotemporal electrodes was associated with specific semantic dimensions (manmade-animate, canonically large-small, and places-tools). Individual patient results were in close agreement with reports from other imaging modalities on the time course and functional organization of semantic processing along the ventral visual pathway during object recognition. The semantic attribute encoding model approach is critical for decoding objects absent from a training set, as well as for studying complex semantic encodings without artificially restricting stimuli to a small number of semantic categories. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
[October 4: World Housing Day].
1993-08-01
World Housing Day will be celebrated October 4th, 1993. Its theme this year is women and housing development. Its purpose is to promote the recognition of women as active partners in the development of human establishments. World Housing Day is celebrated every year on the first Monday of October. The UN's Organization for Human Establishments, based in Nairobi, Kenya, organizes this day. The objective of this annual presentation is to attract the attention of the entire world to the importance of housing, which plays a determining role in health, productivity, and the feeling of social well-being.
Neural-Network Object-Recognition Program
NASA Technical Reports Server (NTRS)
Spirkovska, L.; Reid, M. B.
1993-01-01
HONTIOR computer program implements third-order neural network exhibiting invariance under translation, change of scale, and in-plane rotation. Invariance incorporated directly into architecture of network. Only one view of each object needed to train network for two-dimensional-translation-invariant recognition of object. Also used for three-dimensional-transformation-invariant recognition by training network on only set of out-of-plane rotated views. Written in C language.
Transfer learning for visual categorization: a survey.
Shao, Ling; Zhu, Fan; Li, Xuelong
2015-05-01
Regular machine learning and data mining techniques study the training data for future inferences under a major assumption that the future data are within the same feature space or have the same distribution as the training data. However, due to the limited availability of human labeled training data, training data that stay in the same feature space or have the same distribution as the future data cannot be guaranteed to be sufficient enough to avoid the over-fitting problem. In real-world applications, apart from data in the target domain, related data in a different domain can also be included to expand the availability of our prior knowledge about the target future data. Transfer learning addresses such cross-domain learning problems by extracting useful information from data in a related domain and transferring them for being used in target tasks. In recent years, with transfer learning being applied to visual categorization, some typical problems, e.g., view divergence in action recognition tasks and concept drifting in image classification tasks, can be efficiently solved. In this paper, we survey state-of-the-art transfer learning algorithms in visual categorization applications, such as object recognition, image classification, and human action recognition.
Human Action Recognition in Surveillance Videos using Abductive Reasoning on Linear Temporal Logic
2012-08-29
help of the optical flows (Lucas 75 and Kanade, 1981). 76 3.2 Atomic Propositions 77 isAt (ti, Oj, Lk) Object Oj is at location Lk at time...simultaneously at two locations in the same frame. This can 84 be represented mathematically as: 85 isAt (ti, Oj, Lk... isAt (ti, Oj, Lm) Lk Lm
NASA Astrophysics Data System (ADS)
Lahamy, H.; Lichti, D.
2012-07-01
The automatic interpretation of human gestures can be used for a natural interaction with computers without the use of mechanical devices such as keyboards and mice. The recognition of hand postures have been studied for many years. However, most of the literature in this area has considered 2D images which cannot provide a full description of the hand gestures. In addition, a rotation-invariant identification remains an unsolved problem even with the use of 2D images. The objective of the current study is to design a rotation-invariant recognition process while using a 3D signature for classifying hand postures. An heuristic and voxelbased signature has been designed and implemented. The tracking of the hand motion is achieved with the Kalman filter. A unique training image per posture is used in the supervised classification. The designed recognition process and the tracking procedure have been successfully evaluated. This study has demonstrated the efficiency of the proposed rotation invariant 3D hand posture signature which leads to 98.24% recognition rate after testing 12723 samples of 12 gestures taken from the alphabet of the American Sign Language.
Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.
2011-01-01
Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation required for long-term memory. Several studies have shown that CBP and histone acetylation are necessary for hippocampus-dependent long-term memory and hippocampal long-term potentiation (LTP). Importantly, every genetically modified Cbp mutant mouse exhibits long-term memory impairments in object recognition. However, the role of the hippocampus in object recognition is controversial. To better understand how chromatin-modifying enzymes modulate long-term memory for object recognition, we first examined the role of the hippocampus in retrieval of long-term memory for object recognition or object location. Muscimol inactivation of the dorsal hippocampus prior to retrieval had no effect on long-term memory for object recognition, but completely blocked long-term memory for object location. This was consistent with experiments showing that muscimol inactivation of the hippocampus had no effect on long-term memory for the object itself, supporting the idea that the hippocampus encodes spatial information about an object (such as location or context), whereas cortical areas (such as the perirhinal or insular cortex) encode information about the object itself. Using location-dependent object recognition tasks that engage the hippocampus, we demonstrate that CBP is essential for the modulation of long-term memory via HDAC inhibition. Together, these results indicate that HDAC inhibition modulates memory in the hippocampus via CBP and that different brain regions utilize different chromatin-modifying enzymes to regulate learning and memory. PMID:21224411
NASA Astrophysics Data System (ADS)
Yan, Fengxia; Udupa, Jayaram K.; Tong, Yubing; Xu, Guoping; Odhner, Dewey; Torigian, Drew A.
2018-03-01
The recently developed body-wide Automatic Anatomy Recognition (AAR) methodology depends on fuzzy modeling of individual objects, hierarchically arranging objects, constructing an anatomy ensemble of these models, and a dichotomous object recognition-delineation process. The parent-to-offspring spatial relationship in the object hierarchy is crucial in the AAR method. We have found this relationship to be quite complex, and as such any improvement in capturing this relationship information in the anatomy model will improve the process of recognition itself. Currently, the method encodes this relationship based on the layout of the geometric centers of the objects. Motivated by the concept of virtual landmarks (VLs), this paper presents a new one-shot AAR recognition method that utilizes the VLs to learn object relationships by training a neural network to predict the pose and the VLs of an offspring object given the VLs of the parent object in the hierarchy. We set up two neural networks for each parent-offspring object pair in a body region, one for predicting the VLs and another for predicting the pose parameters. The VL-based learning/prediction method is evaluated on two object hierarchies involving 14 objects. We utilize 54 computed tomography (CT) image data sets of head and neck cancer patients and the associated object contours drawn by dosimetrists for routine radiation therapy treatment planning. The VL neural network method is found to yield more accurate object localization than the currently used simple AAR method.
Tran, Dominic M D; Westbrook, R Frederick
2018-05-31
Exposure to a high-fat high-sugar (HFHS) diet rapidly impairs novel-place- but not novel-object-recognition memory in rats (Tran & Westbrook, 2015, 2017). Three experiments sought to investigate the generality of diet-induced cognitive deficits by examining whether there are conditions under which object-recognition memory is impaired. Experiments 1 and 3 tested the strength of short- and long-term object-memory trace, respectively, by varying the interval of time between object familiarization and subsequent novel object test. Experiment 2 tested the effect of increasing working memory load on object-recognition memory by interleaving additional object exposures between familiarization and test in an n-back style task. Experiments 1-3 failed to detect any differences in object recognition between HFHS and control rats. Experiment 4 controlled for object novelty by separately familiarizing both objects presented at test, which included one remote-familiar and one recent-familiar object. Under these conditions, when test objects differed in their relative recency, HFHS rats showed a weaker memory trace for the remote object compared to chow rats. This result suggests that the diet leaves intact recollection judgments, but impairs familiarity judgments. We speculate that the HFHS diet adversely affects "where" memories as well as the quality of "what" memories, and discuss these effects in relation to recollection and familiarity memory models, hippocampal-dependent functions, and episodic food memories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Motion Imagery Processing and Exploitation (MIPE)
2013-01-01
facial recognition —i.e., the identification of a specific person.37 Object detection is often (but not always) considered a prerequisite for instance...The goal of segmentation is to distinguish objects and identify boundaries in images. Some of the earliest approaches to facial recognition involved...methods of instance recognition are at varying levels of maturity. Facial recognition methods are arguably the most mature; the technology is well
Perirhinal Cortex Lesions in Rats: Novelty Detection and Sensitivity to Interference
2015-01-01
Rats with perirhinal cortex lesions received multiple object recognition trials within a continuous session to examine whether they show false memories. Experiment 1 focused on exploration patterns during the first object recognition test postsurgery, in which each trial contained 1 novel and 1 familiar object. The perirhinal cortex lesions reduced time spent exploring novel objects, but did not affect overall time spent exploring the test objects (novel plus familiar). Replications with subsequent cohorts of rats (Experiments 2, 3, 4.1) repeated this pattern of results. When all recognition memory data were combined (Experiments 1–4), giving totals of 44 perirhinal lesion rats and 40 surgical sham controls, the perirhinal cortex lesions caused a marginal reduction in total exploration time. That decrease in time with novel objects was often compensated by increased exploration of familiar objects. Experiment 4 also assessed the impact of proactive interference on recognition memory. Evidence emerged that prior object experience could additionally impair recognition performance in rats with perirhinal cortex lesions. Experiment 5 examined exploration levels when rats were just given pairs of novel objects to explore. Despite their perirhinal cortex lesions, exploration levels were comparable with those of control rats. While the results of Experiment 4 support the notion that perirhinal lesions can increase sensitivity to proactive interference, the overall findings question whether rats lacking a perirhinal cortex typically behave as if novel objects are familiar, that is, show false recognition. Rather, the rats retain a signal of novelty but struggle to discriminate the identity of that signal. PMID:26030425
Innate Pattern Recognition and Categorization in a Jumping Spider
Dolev, Yinnon; Nelson, Ximena J.
2014-01-01
The East African jumping spider Evarcha culicivora feeds indirectly on vertebrate blood by preferentially preying upon blood-fed Anopheles mosquitoes, the vectors of human malaria1, using the distinct resting posture and engorged abdomen characteristic of these specific prey as key elements for their recognition. To understand perceptual categorization of objects by these spiders, we investigated their predatory behavior toward different digital stimuli - abstract ‘stick figure’ representations of Anopheles constructed solely by known key identification elements, disarranged versions of these, as well as non-prey items and detailed images of alternative prey. We hypothesized that the abstract images representing Anopheles would be perceived as potential prey, and would be preferred to those of non-preferred prey. Spiders perceived the abstract stick figures of Anopheles specifically as their preferred prey, attacking them significantly more often than non-preferred prey, even when the comprising elements of the Anopheles stick figures were disarranged and disconnected from each other. However, if the relative angles between the elements of the disconnected stick figures of Anopheles were altered, the otherwise identical set of elements was no longer perceived as prey. These data show that E. culicivora is capable of making discriminations based on abstract concepts, such as the hypothetical angle formed by discontinuous elements. It is this inter-element angle rather than resting posture that is important for correct identification of Anopheles. Our results provide a glimpse of the underlying processes of object recognition in animals with minute brains, and suggest that these spiders use a local processing approach for object recognition, rather than a holistic or global approach. This study provides an excellent basis for a comparative analysis on feature extraction and detection by animals as diverse as bees and mammals. PMID:24893306
ERIC Educational Resources Information Center
Li, Ming
2013-01-01
The goal of this work is to enhance the robustness and efficiency of the multimodal human states recognition task. Human states recognition can be considered as a joint term for identifying/verifing various kinds of human related states, such as biometric identity, language spoken, age, gender, emotion, intoxication level, physical activity, vocal…
Differential Effects of Acute and Regular Physical Exercise on Cognition and Affect
Hopkins, Michael E.; Davis, F. Caroline; VanTieghem, Michelle R.; Whalen, Paul J.; Bucci, David J.
2012-01-01
The effects of regular exercise versus a single bout of exercise on cognition, anxiety, and mood were systematically examined in healthy, sedentary young adults who were genotyped to determine brain-derived neurotrophic factor (BDNF) allelic status (i.e., Val-Val or Val66Met polymorphism). Participants were evaluated on novel object recognition (NOR) memory and a battery of mental health surveys before and after engaging in either a) a four-week exercise program, with exercise on the final test day, b) a four-week exercise program, without exercise on the final test day, c) a single bout of exercise on the final test day, or d) remaining sedentary between test days. Exercise enhanced object recognition memory and produced a beneficial decrease in perceived stress, but only in participants who exercised for four weeks including the final day of testing. In contrast, a single bout of exercise did not affect recognition memory and resulted in increased perceived stress levels. An additional novel finding was that the improvements on the NOR task were observed exclusively in participants who were homozygous for the BDNF Val allele, indicating that altered activity-dependent release of BDNF in Met allele carriers may attenuate the cognitive benefits of exercise. Importantly, exercise-induced changes in cognition were not correlated with changes in mood/anxiety, suggesting that separate neural systems mediate these effects. These data in humans mirror recent data from our group in rodents. Taken together, these current findings provide new insights into the behavioral and neural mechanisms that mediate the effects of physical exercise on memory and mental health in humans. PMID:22554780
Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach
NASA Technical Reports Server (NTRS)
Henderson, Steve
2005-01-01
Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.
Running Improves Pattern Separation during Novel Object Recognition.
Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef
2015-10-09
Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.
Brown, M.W.; Barker, G.R.I.; Aggleton, J.P.; Warburton, E.C.
2012-01-01
Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty/familiarity). PMID:22841990
Nakamura, Kimihiro; Makuuchi, Michiru; Nakajima, Yasoichi
2014-01-01
Previous studies show that the primate and human visual system automatically generates a common and invariant representation from a visual object image and its mirror reflection. For humans, however, this mirror-image generalization seems to be partially suppressed through literacy acquisition, since literate adults have greater difficulty in recognizing mirror images of letters than those of other visual objects. At the neural level, such category-specific effect on mirror-image processing has been associated with the left occpitotemporal cortex (L-OTC), but it remains unclear whether the apparent "inhibition" on mirror letters is mediated by suppressing mirror-image representations covertly generated from normal letter stimuli. Using transcranial magnetic stimulation (TMS), we examined how transient disruption of the L-OTC affects mirror-image recognition during a same-different judgment task, while varying the semantic category (letters and non-letter objects), identity (same or different), and orientation (same or mirror-reversed) of the first and second stimuli. We found that magnetic stimulation of the L-OTC produced a significant delay in mirror-image recognition for letter-strings but not for other objects. By contrast, this category specific impact was not observed when TMS was applied to other control sites, including the right homologous area and vertex. These results thus demonstrate a causal link between the L-OTC and mirror-image discrimination in literate people. We further suggest that left-right sensitivity for letters is not achieved by a local inhibitory mechanism in the L-OTC but probably relies on the inter-regional coupling with other orientation-sensitive occipito-parietal regions.
Barker, Gareth R I; Warburton, Elizabeth Clea
2018-03-28
Recognition memory for single items requires the perirhinal cortex (PRH), whereas recognition of an item and its associated location requires a functional interaction among the PRH, hippocampus (HPC), and medial prefrontal cortex (mPFC). Although the precise mechanisms through which these interactions are effected are unknown, the nucleus reuniens (NRe) has bidirectional connections with each regions and thus may play a role in recognition memory. Here we investigated, in male rats, whether specific manipulations of NRe function affected performance of recognition memory for single items, object location, or object-in-place associations. Permanent lesions in the NRe significantly impaired long-term, but not short-term, object-in-place associative recognition memory, whereas single item recognition memory and object location memory were unaffected. Temporary inactivation of the NRe during distinct phases of the object-in-place task revealed its importance in both the encoding and retrieval stages of long-term associative recognition memory. Infusions of specific receptor antagonists showed that encoding was dependent on muscarinic and nicotinic cholinergic neurotransmission, whereas NMDA receptor neurotransmission was not required. Finally, we found that long-term object-in-place memory required protein synthesis within the NRe. These data reveal a specific role for the NRe in long-term associative recognition memory through its interactions with the HPC and mPFC, but not the PRH. The delay-dependent involvement of the NRe suggests that it is not a simple relay station between brain regions, but, rather, during high mnemonic demand, facilitates interactions between the mPFC and HPC, a process that requires both cholinergic neurotransmission and protein synthesis. SIGNIFICANCE STATEMENT Recognizing an object and its associated location, which is fundamental to our everyday memory, requires specific hippocampal-cortical interactions, potentially facilitated by the nucleus reuniens (NRe) of the thalamus. However, the role of the NRe itself in associative recognition memory is unknown. Here, we reveal the crucial role of the NRe in encoding and retrieval of long-term object-in-place memory, but not for remembrance of an individual object or individual location and such involvement is cholinergic receptor and protein synthesis dependent. This is the first demonstration that the NRe is a key node within an associative recognition memory network and is not just a simple relay for information within the network. Rather, we argue, the NRe actively modulates information processing during long-term associative memory formation. Copyright © 2018 the authors 0270-6474/18/383208-10$15.00/0.
Bello-Medina, Paola C; Sánchez-Carrasco, Livia; González-Ornelas, Nadia R; Jeffery, Kathryn J; Ramírez-Amaya, Víctor
2013-08-01
Here we tested whether the well-known superiority of spaced training over massed training is equally evident in both object identity and object location recognition memory. We trained animals with objects placed in a variable or in a fixed location to produce a location-independent object identity memory or a location-dependent object representation. The training consisted of 5 trials that occurred either on one day (Massed) or over the course of 5 consecutive days (Spaced). The memory test was done in independent groups of animals either 24h or 7 days after the last training trial. In each test the animals were exposed to either a novel object, when trained with the objects in variable locations, or to a familiar object in a novel location, when trained with objects in fixed locations. The difference in time spent exploring the changed versus the familiar objects was used as a measure of recognition memory. For the object-identity-trained animals, spaced training produced clear evidence of recognition memory after both 24h and 7 days, but massed-training animals showed it only after 24h. In contrast, for the object-location-trained animals, recognition memory was evident after both retention intervals and with both training procedures. When objects were placed in variable locations for the two types of training and the test was done with a brand-new location, only the spaced-training animals showed recognition at 24h, but surprisingly, after 7 days, animals trained using both procedures were able to recognize the change, suggesting a post-training consolidation process. We suggest that the two training procedures trigger different neural mechanisms that may differ in the two segregated streams that process object information and that may consolidate differently. Copyright © 2013 Elsevier B.V. All rights reserved.
1989-10-01
weight based on how powerful the corresponding feature is for object recognition and discrimination. For example, consider an arbitrary weight, denoted...quality of the segmentation, how powerful the features and spatial constraints in the knowledge base are (as far as object recognition is concern...that are powerful for object recognition and discrimination. At this point, this selection is performed heuristically through trial-and-error. As a
High speed optical object recognition processor with massive holographic memory
NASA Technical Reports Server (NTRS)
Chao, T.; Zhou, H.; Reyes, G.
2002-01-01
Real-time object recognition using a compact grayscale optical correlator will be introduced. A holographic memory module for storing a large bank of optimum correlation filters, to accommodate the large data throughput rate needed for many real-world applications, has also been developed. System architecture of the optical processor and the holographic memory will be presented. Application examples of this object recognition technology will also be demonstrated.
General object recognition is specific: Evidence from novel and familiar objects.
Richler, Jennifer J; Wilmer, Jeremy B; Gauthier, Isabel
2017-09-01
In tests of object recognition, individual differences typically correlate modestly but nontrivially across familiar categories (e.g. cars, faces, shoes, birds, mushrooms). In theory, these correlations could reflect either global, non-specific mechanisms, such as general intelligence (IQ), or more specific mechanisms. Here, we introduce two separate methods for effectively capturing category-general performance variation, one that uses novel objects and one that uses familiar objects. In each case, we show that category-general performance variance is unrelated to IQ, thereby implicating more specific mechanisms. The first approach examines three newly developed novel object memory tests (NOMTs). We predicted that NOMTs would exhibit more shared, category-general variance than familiar object memory tests (FOMTs) because novel objects, unlike familiar objects, lack category-specific environmental influences (e.g. exposure to car magazines or botany classes). This prediction held, and remarkably, virtually none of the substantial shared variance among NOMTs was explained by IQ. Also, while NOMTs correlated nontrivially with two FOMTs (faces, cars), these correlations were smaller than among NOMTs and no larger than between the face and car tests themselves, suggesting that the category-general variance captured by NOMTs is specific not only relative to IQ, but also, to some degree, relative to both face and car recognition. The second approach averaged performance across multiple FOMTs, which we predicted would increase category-general variance by averaging out category-specific factors. This prediction held, and as with NOMTs, virtually none of the shared variance among FOMTs was explained by IQ. Overall, these results support the existence of object recognition mechanisms that, though category-general, are specific relative to IQ and substantially separable from face and car recognition. They also add sensitive, well-normed NOMTs to the tools available to study object recognition. Copyright © 2017 Elsevier B.V. All rights reserved.
Yamada, Kazuo; Arai, Misaki; Suenaga, Toshiko; Ichitani, Yukio
2017-07-28
The hippocampus is thought to be involved in object location recognition memory, yet the contribution of hippocampal NMDA receptors to the memory processes, such as encoding, retention and retrieval, is unknown. First, we confirmed that hippocampal infusion of a competitive NMDA receptor antagonist, AP5 (2-amino-5-phosphonopentanoic acid, 20-40nmol), impaired performance of spontaneous object location recognition test but not that of novel object recognition test in Wistar rats. Next, the effects of hippocampal AP5 treatment on each process of object location recognition memory were examined with three different injection times using a 120min delay-interposed test: 15min before the sample phase (Time I), immediately after the sample phase (Time II), and 15min before the test phase (Time III). The blockade of hippocampal NMDA receptors before and immediately after the sample phase, but not before the test phase, markedly impaired performance of object location recognition test, suggesting that hippocampal NMDA receptors play an important role in encoding and consolidation/retention, but not retrieval, of spontaneous object location memory. Copyright © 2017 Elsevier B.V. All rights reserved.
Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.
NASA Technical Reports Server (NTRS)
Leonard, Desiree M.
1991-01-01
Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.
The Last Meter: Blind Visual Guidance to a Target.
Manduchi, Roberto; Coughlan, James M
2014-01-01
Smartphone apps can use object recognition software to provide information to blind or low vision users about objects in the visual environment. A crucial challenge for these users is aiming the camera properly to take a well-framed picture of the desired target object. We investigate the effects of two fundamental constraints of object recognition - frame rate and camera field of view - on a blind person's ability to use an object recognition smartphone app. The app was used by 18 blind participants to find visual targets beyond arm's reach and approach them to within 30 cm. While we expected that a faster frame rate or wider camera field of view should always improve search performance, our experimental results show that in many cases increasing the field of view does not help, and may even hurt, performance. These results have important implications for the design of object recognition systems for blind users.
Li, Heng; Su, Xiaofan; Wang, Jing; Kan, Han; Han, Tingting; Zeng, Yajie; Chai, Xinyu
2018-01-01
Current retinal prostheses can only generate low-resolution visual percepts constituted of limited phosphenes which are elicited by an electrode array and with uncontrollable color and restricted grayscale. Under this visual perception, prosthetic recipients can just complete some simple visual tasks, but more complex tasks like face identification/object recognition are extremely difficult. Therefore, it is necessary to investigate and apply image processing strategies for optimizing the visual perception of the recipients. This study focuses on recognition of the object of interest employing simulated prosthetic vision. We used a saliency segmentation method based on a biologically plausible graph-based visual saliency model and a grabCut-based self-adaptive-iterative optimization framework to automatically extract foreground objects. Based on this, two image processing strategies, Addition of Separate Pixelization and Background Pixel Shrink, were further utilized to enhance the extracted foreground objects. i) The results showed by verification of psychophysical experiments that under simulated prosthetic vision, both strategies had marked advantages over Direct Pixelization in terms of recognition accuracy and efficiency. ii) We also found that recognition performance under two strategies was tied to the segmentation results and was affected positively by the paired-interrelated objects in the scene. The use of the saliency segmentation method and image processing strategies can automatically extract and enhance foreground objects, and significantly improve object recognition performance towards recipients implanted a high-density implant. Copyright © 2017 Elsevier B.V. All rights reserved.
Object recognition with severe spatial deficits in Williams syndrome: sparing and breakdown.
Landau, Barbara; Hoffman, James E; Kurz, Nicole
2006-07-01
Williams syndrome (WS) is a rare genetic disorder that results in severe visual-spatial cognitive deficits coupled with relative sparing in language, face recognition, and certain aspects of motion processing. Here, we look for evidence for sparing or impairment in another cognitive system-object recognition. Children with WS, normal mental-age (MA) and chronological age-matched (CA) children, and normal adults viewed pictures of a large range of objects briefly presented under various conditions of degradation, including canonical and unusual orientations, and clear or blurred contours. Objects were shown as either full-color views (Experiment 1) or line drawings (Experiment 2). Across both experiments, WS and MA children performed similarly in all conditions while CA children performed better than both WS group and MA groups with unusual views. This advantage, however, was eliminated when images were also blurred. The error types and relative difficulty of different objects were similar across all participant groups. The results indicate selective sparing of basic mechanisms of object recognition in WS, together with developmental delay or arrest in recognition of objects from unusual viewpoints. These findings are consistent with the growing literature on brain abnormalities in WS which points to selective impairment in the parietal areas of the brain. As a whole, the results lend further support to the growing literature on the functional separability of object recognition mechanisms from other spatial functions, and raise intriguing questions about the link between genetic deficits and cognition.
Central administration of angiotensin IV rapidly enhances novel object recognition among mice.
Paris, Jason J; Eans, Shainnel O; Mizrachi, Elisa; Reilley, Kate J; Ganno, Michelle L; McLaughlin, Jay P
2013-07-01
Angiotensin IV (Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6)) has demonstrated potential cognitive-enhancing effects. The present investigation assessed and characterized: (1) dose-dependency of angiotensin IV's cognitive enhancement in a C57BL/6J mouse model of novel object recognition, (2) the time-course for these effects, (3) the identity of residues in the hexapeptide important to these effects and (4) the necessity of actions at angiotensin IV receptors for procognitive activity. Assessment of C57BL/6J mice in a novel object recognition task demonstrated that prior administration of angiotensin IV (0.1, 1.0, or 10.0, but not 0.01 nmol, i.c.v.) significantly enhanced novel object recognition in a dose-dependent manner. These effects were time dependent, with improved novel object recognition observed when angiotensin IV (0.1 nmol, i.c.v.) was administered 10 or 20, but not 30 min prior to the onset of the novel object recognition testing. An alanine scan of the angiotensin IV peptide revealed that replacement of the Val(1), Ile(3), His(4), or Phe(6) residues with Ala attenuated peptide-induced improvements in novel object recognition, whereas Tyr(2) or Pro(5) replacement did not significantly affect performance. Administration of the angiotensin IV receptor antagonist, divalinal-Ang IV (20 nmol, i.c.v.), reduced (but did not abolish) novel object recognition; however, this antagonist completely blocked the procognitive effects of angiotensin IV (0.1 nmol, i.c.v.) in this task. Rotorod testing demonstrated no locomotor effects with any angiotensin IV or divalinal-Ang IV dose tested. These data demonstrate that angiotensin IV produces a rapid enhancement of associative learning and memory performance in a mouse model that was dependent on the angiotensin IV receptor. Copyright © 2013 Elsevier Ltd. All rights reserved.
Central administration of angiotensin IV rapidly enhances novel object recognition among mice
Paris, Jason J.; Eans, Shainnel O.; Mizrachi, Elisa; Reilley, Kate J.; Ganno, Michelle L.; McLaughlin, Jay P.
2013-01-01
Angiotensin IV (Val1-Tyr2-Ile3-His4-Pro5-Phe6) has demonstrated potential cognitive-enhancing effects. The present investigation assessed and characterized: (1) dose-dependency of angiotensin IV's cognitive enhancement in a C57BL/6J mouse model of novel object recognition, (2) the time-course for these effects, (3) the identity of residues in the hexapeptide important to these effects and (4) the necessity of actions at angiotensin IV receptors for pro-cognitive activity. Assessment of C57BL/6J mice in a novel object recognition task demonstrated that prior administration of angiotensin IV (0.1, 1.0, or 10.0, but not 0.01, nmol, i.c.v.) significantly enhanced novel object recognition in a dose-dependent manner. These effects were time dependent, with improved novel object recognition observed when angiotensin IV (0.1 nmol, i.c.v.) was administered 10 or 20, but not 30, min prior to the onset of the novel object recognition testing. An alanine scan of the angiotensin IV peptide revealed that replacement of the Val1, Ile3, His4, or Phe6 residues with Ala attenuated peptide-induced improvements in novel object recognition, whereas Tyr2 or Pro5 replacement did not significantly affect performance. Administration of the angiotensin IV receptor antagonist, divalinal-Ang IV (20 nmol, i.c.v.), reduced (but did not abolish) novel object recognition; however, this antagonist completely blocked the pro-cognitive effects of angiotensin IV (0.1 nmol, i.c.v.) in this task. Rotorod testing demonstrated no locomotor effects for any angiotensin IV or divalinal-Ang IV dose tested. These data demonstrate that angiotensin IV produces a rapid enhancement of associative learning and memory performance in a mouse model that was dependent on the angiotensin IV receptor. PMID:23416700
A color-coded vision scheme for robotics
NASA Technical Reports Server (NTRS)
Johnson, Kelley Tina
1991-01-01
Most vision systems for robotic applications rely entirely on the extraction of information from gray-level images. Humans, however, regularly depend on color to discriminate between objects. Therefore, the inclusion of color in a robot vision system seems a natural extension of the existing gray-level capabilities. A method for robot object recognition using a color-coding classification scheme is discussed. The scheme is based on an algebraic system in which a two-dimensional color image is represented as a polynomial of two variables. The system is then used to find the color contour of objects. In a controlled environment, such as that of the in-orbit space station, a particular class of objects can thus be quickly recognized by its color.
1992-12-23
predominance of structural models of recognition, of which a recent example is the Recognition By Components (RBC) theory ( Biederman , 1987 ). Structural...related to recent statistical theory (Huber, 1985; Friedman, 1987 ) and is derived from a biologically motivated computational theory (Bienenstock et...dimensional object recognition (Intrator and Gold, 1991). The method is related to recent statistical theory (Huber, 1985; Friedman, 1987 ) and is derived
Object Recognition Memory and the Rodent Hippocampus
ERIC Educational Resources Information Center
Broadbent, Nicola J.; Gaskin, Stephane; Squire, Larry R.; Clark, Robert E.
2010-01-01
In rodents, the novel object recognition task (NOR) has become a benchmark task for assessing recognition memory. Yet, despite its widespread use, a consensus has not developed about which brain structures are important for task performance. We assessed both the anterograde and retrograde effects of hippocampal lesions on performance in the NOR…
Self-Recognition in Autistic Children.
ERIC Educational Resources Information Center
Dawson, Geraldine; McKissick, Fawn Celeste
1984-01-01
Fifteen autistic children (four to six years old) were assessed for visual self-recognition ability, as well as for object permanence and gestural imitation. It was found that 13 of 15 autistic children showed evidence of self-recognition. Consistent relationships were suggested between self-cognition and object permanence but not between…
Developmental Commonalities between Object and Face Recognition in Adolescence
Jüttner, Martin; Wakui, Elley; Petters, Dean; Davidoff, Jules
2016-01-01
In the visual perception literature, the recognition of faces has often been contrasted with that of non-face objects, in terms of differences with regard to the role of parts, part relations and holistic processing. However, recent evidence from developmental studies has begun to blur this sharp distinction. We review evidence for a protracted development of object recognition that is reminiscent of the well-documented slow maturation observed for faces. The prolonged development manifests itself in a retarded processing of metric part relations as opposed to that of individual parts and offers surprising parallels to developmental accounts of face recognition, even though the interpretation of the data is less clear with regard to holistic processing. We conclude that such results might indicate functional commonalities between the mechanisms underlying the recognition of faces and non-face objects, which are modulated by different task requirements in the two stimulus domains. PMID:27014176
Muñoz, Pablo C; Aspé, Mauricio A; Contreras, Luis S; Palacios, Adrián G
2010-01-01
Object recognition memory allows discrimination between novel and familiar objects. This kind of memory consists of two components: recollection, which depends on the hippocampus, and familiarity, which depends on the perirhinal cortex (Pcx). The importance of brain-derived neurotrophic factor (BDNF) for recognition memory has already been recognized. Recent evidence suggests that DNA methylation regulates the expression of BDNF and memory. Behavioral and molecular approaches were used to understand the potential contribution of DNA methylation to recognition memory. To that end, rats were tested for their ability to distinguish novel from familiar objects by using a spontaneous object recognition task. Furthermore, the level of DNA methylation was estimated after trials with a methyl-sensitive PCR. We found a significant correlation between performance on the novel object task and the expression of BDNF, negatively in hippocampal slices and positively in perirhinal cortical slices. By contrast, methylation of DNA in CpG island 1 in the promoter of exon 1 in BDNF only correlated in hippocampal slices, but not in the Pxc cortical slices from trained animals. These results suggest that DNA methylation may be involved in the regulation of the BDNF gene during recognition memory, at least in the hippocampus.
Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.
Meyer, Bernd T; Brand, Thomas; Kollmeier, Birger
2011-01-01
The aim of this study is to quantify the gap between the recognition performance of human listeners and an automatic speech recognition (ASR) system with special focus on intrinsic variations of speech, such as speaking rate and effort, altered pitch, and the presence of dialect and accent. Second, it is investigated if the most common ASR features contain all information required to recognize speech in noisy environments by using resynthesized ASR features in listening experiments. For the phoneme recognition task, the ASR system achieved the human performance level only when the signal-to-noise ratio (SNR) was increased by 15 dB, which is an estimate for the human-machine gap in terms of the SNR. The major part of this gap is attributed to the feature extraction stage, since human listeners achieve comparable recognition scores when the SNR difference between unaltered and resynthesized utterances is 10 dB. Intrinsic variabilities result in strong increases of error rates, both in human speech recognition (HSR) and ASR (with a relative increase of up to 120%). An analysis of phoneme duration and recognition rates indicates that human listeners are better able to identify temporal cues than the machine at low SNRs, which suggests incorporating information about the temporal dynamics of speech into ASR systems.
NASA Astrophysics Data System (ADS)
Guo, Dongwei; Wang, Zhe
2018-05-01
Convolutional neural networks (CNN) achieve great success in computer vision, it can learn hierarchical representation from raw pixels and has outstanding performance in various image recognition tasks [1]. However, CNN is easy to be fraudulent in terms of it is possible to produce images totally unrecognizable to human eyes that CNNs believe with near certainty are familiar objects. [2]. In this paper, an associative memory model based on multiple features is proposed. Within this model, feature extraction and classification are carried out by CNN, T-SNE and exponential bidirectional associative memory neural network (EBAM). The geometric features extracted from CNN and the digital features extracted from T-SNE are associated by EBAM. Thus we ensure the recognition of robustness by a comprehensive assessment of the two features. In our model, we can get only 8% error rate with fraudulent data. In systems that require a high safety factor or some key areas, strong robustness is extremely important, if we can ensure the image recognition robustness, network security will be greatly improved and the social production efficiency will be extremely enhanced.
Rolls, Edmund T; Mills, W Patrick C
2018-05-01
When objects transform into different views, some properties are maintained, such as whether the edges are convex or concave, and these non-accidental properties are likely to be important in view-invariant object recognition. The metric properties, such as the degree of curvature, may change with different views, and are less likely to be useful in object recognition. It is shown that in a model of invariant visual object recognition in the ventral visual stream, VisNet, non-accidental properties are encoded much more than metric properties by neurons. Moreover, it is shown how with the temporal trace rule training in VisNet, non-accidental properties of objects become encoded by neurons, and how metric properties are treated invariantly. We also show how VisNet can generalize between different objects if they have the same non-accidental property, because the metric properties are likely to overlap. VisNet is a 4-layer unsupervised model of visual object recognition trained by competitive learning that utilizes a temporal trace learning rule to implement the learning of invariance using views that occur close together in time. A second crucial property of this model of object recognition is, when neurons in the level corresponding to the inferior temporal visual cortex respond selectively to objects, whether neurons in the intermediate layers can respond to combinations of features that may be parts of two or more objects. In an investigation using the four sides of a square presented in every possible combination, it was shown that even though different layer 4 neurons are tuned to encode each feature or feature combination orthogonally, neurons in the intermediate layers can respond to features or feature combinations present is several objects. This property is an important part of the way in which high capacity can be achieved in the four-layer ventral visual cortical pathway. These findings concerning non-accidental properties and the use of neurons in intermediate layers of the hierarchy help to emphasise fundamental underlying principles of the computations that may be implemented in the ventral cortical visual stream used in object recognition. Copyright © 2018 Elsevier Inc. All rights reserved.
Examining Object Location and Object Recognition Memory in Mice
Vogel-Ciernia, Annie; Wood, Marcelo A.
2014-01-01
Unit Introduction The ability to store and recall our life experiences defines a person's identity. Consequently, the loss of long-term memory is a particularly devastating part of a variety of cognitive disorders, diseases and injuries. There is a great need to develop therapeutics to treat memory disorders, and thus a variety of animal models and memory paradigms have been developed. Mouse models have been widely used both to study basic disease mechanisms and to evaluate potential drug targets for therapeutic development. The relative ease of genetic manipulation of Mus musculus has led to a wide variety of genetically altered mice that model cognitive disorders ranging from Alzheimer's disease to autism. Rodents, including mice, are particularly adept at encoding and remembering spatial relationships, and these long-term spatial memories are dependent on the medial temporal lobe of the brain. These brain regions are also some of the first and most heavily impacted in disorders of human memory including Alzheimer's disease. Consequently, some of the simplest and most commonly used tests of long-term memory in mice are those that examine memory for objects and spatial relationships. However, many of these tasks, such as Morris water maze and contextual fear conditioning, are dependent upon the encoding and retrieval of emotionally aversive and inherently stressful training events. While these types of memories are important, they do not reflect the typical day-to-day experiences or memories most commonly affected in human disease. In addition, stress hormone release alone can modulate memory and thus obscure or artificially enhance these types of tasks. To avoid these sorts of confounds, we and many others have utilized tasks testing animals’ memory for object location and novel object recognition. These tasks involve exploiting rodents’ innate preference for novelty, and are inherently not stressful. In this protocol we detail how memory for object location and object identity can be used to evaluate a wide variety of mouse models and treatments. PMID:25297693
Sensor agnostic object recognition using a map seeking circuit
NASA Astrophysics Data System (ADS)
Overman, Timothy L.; Hart, Michael
2012-05-01
Automatic object recognition capabilities are traditionally tuned to exploit the specific sensing modality they were designed to. Their successes (and shortcomings) are tied to object segmentation from the background, they typically require highly skilled personnel to train them, and they become cumbersome with the introduction of new objects. In this paper we describe a sensor independent algorithm based on the biologically inspired technology of map seeking circuits (MSC) which overcomes many of these obstacles. In particular, the MSC concept offers transparency in object recognition from a common interface to all sensor types, analogous to a USB device. It also provides a common core framework that is independent of the sensor and expandable to support high dimensionality decision spaces. Ease in training is assured by using commercially available 3D models from the video game community. The search time remains linear no matter how many objects are introduced, ensuring rapid object recognition. Here, we report results of an MSC algorithm applied to object recognition and pose estimation from high range resolution radar (1D), electrooptical imagery (2D), and LIDAR point clouds (3D) separately. By abstracting the sensor phenomenology from the underlying a prior knowledge base, MSC shows promise as an easily adaptable tool for incorporating additional sensor inputs.
Calderone, Daniel J.; Hoptman, Matthew J.; Martínez, Antígona; Nair-Collins, Sangeeta; Mauro, Cristina J.; Bar, Moshe; Javitt, Daniel C.; Butler, Pamela D.
2013-01-01
Patients with schizophrenia exhibit cognitive and sensory impairment, and object recognition deficits have been linked to sensory deficits. The “frame and fill” model of object recognition posits that low spatial frequency (LSF) information rapidly reaches the prefrontal cortex (PFC) and creates a general shape of an object that feeds back to the ventral temporal cortex to assist object recognition. Visual dysfunction findings in schizophrenia suggest a preferential loss of LSF information. This study used functional magnetic resonance imaging (fMRI) and resting state functional connectivity (RSFC) to investigate the contribution of visual deficits to impaired object “framing” circuitry in schizophrenia. Participants were shown object stimuli that were intact or contained only LSF or high spatial frequency (HSF) information. For controls, fMRI revealed preferential activation to LSF information in precuneus, superior temporal, and medial and dorsolateral PFC areas, whereas patients showed a preference for HSF information or no preference. RSFC revealed a lack of connectivity between early visual areas and PFC for patients. These results demonstrate impaired processing of LSF information during object recognition in schizophrenia, with patients instead displaying increased processing of HSF information. This is consistent with findings of a preference for local over global visual information in schizophrenia. PMID:22735157
Physical environment virtualization for human activities recognition
NASA Astrophysics Data System (ADS)
Poshtkar, Azin; Elangovan, Vinayak; Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen
2015-05-01
Human activity recognition research relies heavily on extensive datasets to verify and validate performance of activity recognition algorithms. However, obtaining real datasets are expensive and highly time consuming. A physics-based virtual simulation can accelerate the development of context based human activity recognition algorithms and techniques by generating relevant training and testing videos simulating diverse operational scenarios. In this paper, we discuss in detail the requisite capabilities of a virtual environment to aid as a test bed for evaluating and enhancing activity recognition algorithms. To demonstrate the numerous advantages of virtual environment development, a newly developed virtual environment simulation modeling (VESM) environment is presented here to generate calibrated multisource imagery datasets suitable for development and testing of recognition algorithms for context-based human activities. The VESM environment serves as a versatile test bed to generate a vast amount of realistic data for training and testing of sensor processing algorithms. To demonstrate the effectiveness of VESM environment, we present various simulated scenarios and processed results to infer proper semantic annotations from the high fidelity imagery data for human-vehicle activity recognition under different operational contexts.
Yildiz, Izzet B.; von Kriegstein, Katharina; Kiebel, Stefan J.
2013-01-01
Our knowledge about the computational mechanisms underlying human learning and recognition of sound sequences, especially speech, is still very limited. One difficulty in deciphering the exact means by which humans recognize speech is that there are scarce experimental findings at a neuronal, microscopic level. Here, we show that our neuronal-computational understanding of speech learning and recognition may be vastly improved by looking at an animal model, i.e., the songbird, which faces the same challenge as humans: to learn and decode complex auditory input, in an online fashion. Motivated by striking similarities between the human and songbird neural recognition systems at the macroscopic level, we assumed that the human brain uses the same computational principles at a microscopic level and translated a birdsong model into a novel human sound learning and recognition model with an emphasis on speech. We show that the resulting Bayesian model with a hierarchy of nonlinear dynamical systems can learn speech samples such as words rapidly and recognize them robustly, even in adverse conditions. In addition, we show that recognition can be performed even when words are spoken by different speakers and with different accents—an everyday situation in which current state-of-the-art speech recognition models often fail. The model can also be used to qualitatively explain behavioral data on human speech learning and derive predictions for future experiments. PMID:24068902
Yildiz, Izzet B; von Kriegstein, Katharina; Kiebel, Stefan J
2013-01-01
Our knowledge about the computational mechanisms underlying human learning and recognition of sound sequences, especially speech, is still very limited. One difficulty in deciphering the exact means by which humans recognize speech is that there are scarce experimental findings at a neuronal, microscopic level. Here, we show that our neuronal-computational understanding of speech learning and recognition may be vastly improved by looking at an animal model, i.e., the songbird, which faces the same challenge as humans: to learn and decode complex auditory input, in an online fashion. Motivated by striking similarities between the human and songbird neural recognition systems at the macroscopic level, we assumed that the human brain uses the same computational principles at a microscopic level and translated a birdsong model into a novel human sound learning and recognition model with an emphasis on speech. We show that the resulting Bayesian model with a hierarchy of nonlinear dynamical systems can learn speech samples such as words rapidly and recognize them robustly, even in adverse conditions. In addition, we show that recognition can be performed even when words are spoken by different speakers and with different accents-an everyday situation in which current state-of-the-art speech recognition models often fail. The model can also be used to qualitatively explain behavioral data on human speech learning and derive predictions for future experiments.
ERIC Educational Resources Information Center
Richler, Jennifer J.; Gauthier, Isabel; Palmeri, Thomas J.
2011-01-01
Are there consequences of calling objects by their names? Lupyan (2008) suggested that overtly labeling objects impairs subsequent recognition memory because labeling shifts stored memory representations of objects toward the category prototype (representational shift hypothesis). In Experiment 1, we show that processing objects at the basic…
Lee, Choong‐Hee; Ryu, Jungwon; Lee, Sang‐Hun; Kim, Hakjin
2016-01-01
ABSTRACT The hippocampus plays critical roles in both object‐based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object‐based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object‐place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object‐cueing period) to searching for its paired‐associate place (object‐cued place recognition period). Furthermore, the efficient retrieval of object‐place paired associate memory (object‐cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27009679
Markman, Adam; Shen, Xin; Hua, Hong; Javidi, Bahram
2016-01-15
An augmented reality (AR) smartglass display combines real-world scenes with digital information enabling the rapid growth of AR-based applications. We present an augmented reality-based approach for three-dimensional (3D) optical visualization and object recognition using axially distributed sensing (ADS). For object recognition, the 3D scene is reconstructed, and feature extraction is performed by calculating the histogram of oriented gradients (HOG) of a sliding window. A support vector machine (SVM) is then used for classification. Once an object has been identified, the 3D reconstructed scene with the detected object is optically displayed in the smartglasses allowing the user to see the object, remove partial occlusions of the object, and provide critical information about the object such as 3D coordinates, which are not possible with conventional AR devices. To the best of our knowledge, this is the first report on combining axially distributed sensing with 3D object visualization and recognition for applications to augmented reality. The proposed approach can have benefits for many applications, including medical, military, transportation, and manufacturing.
Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei
2014-09-01
In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Cao, Yongqiang; Grossberg, Stephen; Markowitz, Jeffrey
2011-12-01
All primates depend for their survival on being able to rapidly learn about and recognize objects. Objects may be visually detected at multiple positions, sizes, and viewpoints. How does the brain rapidly learn and recognize objects while scanning a scene with eye movements, without causing a combinatorial explosion in the number of cells that are needed? How does the brain avoid the problem of erroneously classifying parts of different objects together at the same or different positions in a visual scene? In monkeys and humans, a key area for such invariant object category learning and recognition is the inferotemporal cortex (IT). A neural model is proposed to explain how spatial and object attention coordinate the ability of IT to learn invariant category representations of objects that are seen at multiple positions, sizes, and viewpoints. The model clarifies how interactions within a hierarchy of processing stages in the visual brain accomplish this. These stages include the retina, lateral geniculate nucleus, and cortical areas V1, V2, V4, and IT in the brain's What cortical stream, as they interact with spatial attention processes within the parietal cortex of the Where cortical stream. The model builds upon the ARTSCAN model, which proposed how view-invariant object representations are generated. The positional ARTSCAN (pARTSCAN) model proposes how the following additional processes in the What cortical processing stream also enable position-invariant object representations to be learned: IT cells with persistent activity, and a combination of normalizing object category competition and a view-to-object learning law which together ensure that unambiguous views have a larger effect on object recognition than ambiguous views. The model explains how such invariant learning can be fooled when monkeys, or other primates, are presented with an object that is swapped with another object during eye movements to foveate the original object. The swapping procedure is predicted to prevent the reset of spatial attention, which would otherwise keep the representations of multiple objects from being combined by learning. Li and DiCarlo (2008) have presented neurophysiological data from monkeys showing how unsupervised natural experience in a target swapping experiment can rapidly alter object representations in IT. The model quantitatively simulates the swapping data by showing how the swapping procedure fools the spatial attention mechanism. More generally, the model provides a unifying framework, and testable predictions in both monkeys and humans, for understanding object learning data using neurophysiological methods in monkeys, and spatial attention, episodic learning, and memory retrieval data using functional imaging methods in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.
Using GOMS and Bayesian plan recognition to develop recognition models of operator behavior
NASA Astrophysics Data System (ADS)
Zaientz, Jack D.; DeKoven, Elyon; Piegdon, Nicholas; Wood, Scott D.; Huber, Marcus J.
2006-05-01
Trends in combat technology research point to an increasing role for uninhabited vehicles in modern warfare tactics. To support increased span of control over these vehicles human responsibilities need to be transformed from tedious, error-prone and cognition intensive operations into tasks that are more supervisory and manageable, even under intensely stressful conditions. The goal is to move away from only supporting human command of low-level system functions to intention-level human-system dialogue about the operator's tasks and situation. A critical element of this process is developing the means to identify when human operators need automated assistance and to identify what assistance they need. Toward this goal, we are developing an unmanned vehicle operator task recognition system that combines work in human behavior modeling and Bayesian plan recognition. Traditionally, human behavior models have been considered generative, meaning they describe all possible valid behaviors. Basing behavior recognition on models designed for behavior generation can offers advantages in improved model fidelity and reuse. It is not clear, however, how to reconcile the structural differences between behavior recognition and behavior modeling approaches. Our current work demonstrates that by pairing a cognitive psychology derived human behavior modeling approach, GOMS, with a Bayesian plan recognition engine, ASPRN, we can translate a behavior generation model into a recognition model. We will discuss the implications for using human performance models in this manner as well as suggest how this kind of modeling may be used to support the real-time control of multiple, uninhabited battlefield vehicles and other semi-autonomous systems.
The contribution of local features to familiarity judgments in music.
Bigand, Emmanuel; Gérard, Yannick; Molin, Paul
2009-07-01
The contributions of local and global features to object identification depend upon the context. For example, while local features play an essential role in identification of words and objects, the global features are more influential in face recognition. In order to evaluate the respective strengths of local and global features for face recognition, researchers usually ask participants to recognize human faces (famous or learned) in normal and scrambled pictures. In this paper, we address a similar issue in music. We present the results of an experiment in which musically untrained participants were asked to differentiate famous from unknown musical excerpts that were presented in normal or scrambled ways. Manipulating the size of the temporal window on which the scrambling procedure was applied allowed us to evaluate the minimal length of time necessary for participants to make a familiarity judgment. Quite surprisingly, the minimum duration for differentiation of famous from unknown pieces is extremely short. This finding highlights the contribution of very local features to music memory.
NASA Astrophysics Data System (ADS)
Runnova, Anastasiya E.; Zhuravlev, Maksim O.; Pysarchik, Alexander N.; Khramova, Marina V.; Grubov, Vadim V.
2017-03-01
In the paper we study the appearance of the complex patterns in human EEG data during a psychophysiological experiment by stimulating cognitive activity with the perception of ambiguous object. A new method based on the calculation of the maximum energy component for the continuous wavelet transform (skeletons) is proposed. Skeleton analysis allows us to identify specific patterns in the EEG data set, appearing in the perception of ambiguous objects. Thus, it becomes possible to diagnose some cognitive processes associated with the concentration of attention and recognition of complex visual objects. The article presents the processing results of experimental data for 6 male volunteers.
Formal implementation of a performance evaluation model for the face recognition system.
Shin, Yong-Nyuo; Kim, Jason; Lee, Yong-Jun; Shin, Woochang; Choi, Jin-Young
2008-01-01
Due to usability features, practical applications, and its lack of intrusiveness, face recognition technology, based on information, derived from individuals' facial features, has been attracting considerable attention recently. Reported recognition rates of commercialized face recognition systems cannot be admitted as official recognition rates, as they are based on assumptions that are beneficial to the specific system and face database. Therefore, performance evaluation methods and tools are necessary to objectively measure the accuracy and performance of any face recognition system. In this paper, we propose and formalize a performance evaluation model for the biometric recognition system, implementing an evaluation tool for face recognition systems based on the proposed model. Furthermore, we performed evaluations objectively by providing guidelines for the design and implementation of a performance evaluation system, formalizing the performance test process.
Recognition vs Reverse Engineering in Boolean Concepts Learning
ERIC Educational Resources Information Center
Shafat, Gabriel; Levin, Ilya
2012-01-01
This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…
Bio-inspired approach for intelligent unattended ground sensors
NASA Astrophysics Data System (ADS)
Hueber, Nicolas; Raymond, Pierre; Hennequin, Christophe; Pichler, Alexander; Perrot, Maxime; Voisin, Philippe; Moeglin, Jean-Pierre
2015-05-01
Improving the surveillance capacity over wide zones requires a set of smart battery-powered Unattended Ground Sensors capable of issuing an alarm to a decision-making center. Only high-level information has to be sent when a relevant suspicious situation occurs. In this paper we propose an innovative bio-inspired approach that mimics the human bi-modal vision mechanism and the parallel processing ability of the human brain. The designed prototype exploits two levels of analysis: a low-level panoramic motion analysis, the peripheral vision, and a high-level event-focused analysis, the foveal vision. By tracking moving objects and fusing multiple criteria (size, speed, trajectory, etc.), the peripheral vision module acts as a fast relevant event detector. The foveal vision module focuses on the detected events to extract more detailed features (texture, color, shape, etc.) in order to improve the recognition efficiency. The implemented recognition core is able to acquire human knowledge and to classify in real-time a huge amount of heterogeneous data thanks to its natively parallel hardware structure. This UGS prototype validates our system approach under laboratory tests. The peripheral analysis module demonstrates a low false alarm rate whereas the foveal vision correctly focuses on the detected events. A parallel FPGA implementation of the recognition core succeeds in fulfilling the embedded application requirements. These results are paving the way of future reconfigurable virtual field agents. By locally processing the data and sending only high-level information, their energy requirements and electromagnetic signature are optimized. Moreover, the embedded Artificial Intelligence core enables these bio-inspired systems to recognize and learn new significant events. By duplicating human expertise in potentially hazardous places, our miniature visual event detector will allow early warning and contribute to better human decision making.
Ball-scale based hierarchical multi-object recognition in 3D medical images
NASA Astrophysics Data System (ADS)
Bağci, Ulas; Udupa, Jayaram K.; Chen, Xinjian
2010-03-01
This paper investigates, using prior shape models and the concept of ball scale (b-scale), ways of automatically recognizing objects in 3D images without performing elaborate searches or optimization. That is, the goal is to place the model in a single shot close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. This is achieved via the following set of key ideas: (a) A semi-automatic way of constructing a multi-object shape model assembly. (b) A novel strategy of encoding, via b-scale, the pose relationship between objects in the training images and their intensity patterns captured in b-scale images. (c) A hierarchical mechanism of positioning the model, in a one-shot way, in a given image from a knowledge of the learnt pose relationship and the b-scale image of the given image to be segmented. The evaluation results on a set of 20 routine clinical abdominal female and male CT data sets indicate the following: (1) Incorporating a large number of objects improves the recognition accuracy dramatically. (2) The recognition algorithm can be thought as a hierarchical framework such that quick replacement of the model assembly is defined as coarse recognition and delineation itself is known as finest recognition. (3) Scale yields useful information about the relationship between the model assembly and any given image such that the recognition results in a placement of the model close to the actual pose without doing any elaborate searches or optimization. (4) Effective object recognition can make delineation most accurate.
Critical object recognition in millimeter-wave images with robustness to rotation and scale.
Mohammadzade, Hoda; Ghojogh, Benyamin; Faezi, Sina; Shabany, Mahdi
2017-06-01
Locating critical objects is crucial in various security applications and industries. For example, in security applications, such as in airports, these objects might be hidden or covered under shields or secret sheaths. Millimeter-wave images can be utilized to discover and recognize the critical objects out of the hidden cases without any health risk due to their non-ionizing features. However, millimeter-wave images usually have waves in and around the detected objects, making object recognition difficult. Thus, regular image processing and classification methods cannot be used for these images and additional pre-processings and classification methods should be introduced. This paper proposes a novel pre-processing method for canceling rotation and scale using principal component analysis. In addition, a two-layer classification method is introduced and utilized for recognition. Moreover, a large dataset of millimeter-wave images is collected and created for experiments. Experimental results show that a typical classification method such as support vector machines can recognize 45.5% of a type of critical objects at 34.2% false alarm rate (FAR), which is a drastically poor recognition. The same method within the proposed recognition framework achieves 92.9% recognition rate at 0.43% FAR, which indicates a highly significant improvement. The significant contribution of this work is to introduce a new method for analyzing millimeter-wave images based on machine vision and learning approaches, which is not yet widely noted in the field of millimeter-wave image analysis.
An innovative multimodal virtual platform for communication with devices in a natural way
NASA Astrophysics Data System (ADS)
Kinkar, Chhayarani R.; Golash, Richa; Upadhyay, Akhilesh R.
2012-03-01
As technology grows people are diverted and are more interested in communicating with machine or computer naturally. This will make machine more compact and portable by avoiding remote, keyboard etc. also it will help them to live in an environment free from electromagnetic waves. This thought has made 'recognition of natural modality in human computer interaction' a most appealing and promising research field. Simultaneously it has been observed that using single mode of interaction limit the complete utilization of commands as well as data flow. In this paper a multimodal platform, where out of many natural modalities like eye gaze, speech, voice, face etc. human gestures are combined with human voice is proposed which will minimize the mean square error. This will loosen the strict environment needed for accurate and robust interaction while using single mode. Gesture complement Speech, gestures are ideal for direct object manipulation and natural language is used for descriptive tasks. Human computer interaction basically requires two broad sections recognition and interpretation. Recognition and interpretation of natural modality in complex binary instruction is a tough task as it integrate real world to virtual environment. The main idea of the paper is to develop a efficient model for data fusion coming from heterogeneous sensors, camera and microphone. Through this paper we have analyzed that the efficiency is increased if heterogeneous data (image & voice) is combined at feature level using artificial intelligence. The long term goal of this paper is to design a robust system for physically not able or having less technical knowledge.
ERIC Educational Resources Information Center
Acres, K.; Taylor, K. I.; Moss, H. E.; Stamatakis, E. A.; Tyler, L. K.
2009-01-01
Cognitive neuroscientific research proposes complementary hemispheric asymmetries in naming and recognising visual objects, with a left temporal lobe advantage for object naming and a right temporal lobe advantage for object recognition. Specifically, it has been proposed that the left inferior temporal lobe plays a mediational role linking…
Priming Contour-Deleted Images: Evidence for Immediate Representations in Visual Object Recognition.
ERIC Educational Resources Information Center
Biederman, Irving; Cooper, Eric E.
1991-01-01
Speed and accuracy of identification of pictures of objects are facilitated by prior viewing. Contributions of image features, convex or concave components, and object models in a repetition priming task were explored in 2 studies involving 96 college students. Results provide evidence of intermediate representations in visual object recognition.…
Electrophysiological evidence for effects of color knowledge in object recognition.
Lu, Aitao; Xu, Guiping; Jin, Hua; Mo, Lei; Zhang, Jijia; Zhang, John X
2010-01-29
Knowledge about the typical colors associated with familiar everyday objects (i.e., strawberries are red) is well-known to be represented in the conceptual semantic system. Evidence that such knowledge may also play a role in early perceptual processes for object recognition is scant. In the present ERP study, participants viewed a list of object pictures and detected infrequent stimulus repetitions. Results show that shortly after stimulus onset, ERP components indexing early perceptual processes, including N1, P2, and N2, differentiated between objects in their appropriate or congruent color from these objects in an inappropriate or incongruent color. Such congruence effect also occurred in N3 associated with semantic processing of pictures but not in N4 for domain-general semantic processing. Our results demonstrate a clear effect of color knowledge in early object recognition stages and support the following proposal-color as a surface property is stored in a multiple-memory system where pre-semantic perceptual and semantic conceptual representations interact during object recognition. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Gerasimenko, N Iu; Slavutskaia, A V; Kalinin, S A; Kulikov, M A; Mikhaĭlova, E S
2013-01-01
In 38 healthy subjects accuracy and response time were examined during recognition of two categories of images--animals andnonliving objects--under forward masking. We revealed new data that masking effects depended of categorical similarity of target and masking stimuli. The recognition accuracy was the lowest and the response time was the most slow, when the target and masking stimuli belongs to the same category, that was combined with high dispersion of response times. The revealed effects were more clear in the task of animal recognition in comparison with the recognition of nonliving objects. We supposed that the revealed effects connected with interference between cortical representations of the target and masking stimuli and discussed our results in context of cortical interference and negative priming.
Recognition of complex human behaviours using 3D imaging for intelligent surveillance applications
NASA Astrophysics Data System (ADS)
Yao, Bo; Lepley, Jason J.; Peall, Robert; Butler, Michael; Hagras, Hani
2016-10-01
We introduce a system that exploits 3-D imaging technology as an enabler for the robust recognition of the human form. We combine this with pose and feature recognition capabilities from which we can recognise high-level human behaviours. We propose a hierarchical methodology for the recognition of complex human behaviours, based on the identification of a set of atomic behaviours, individual and sequential poses (e.g. standing, sitting, walking, drinking and eating) that provides a framework from which we adopt time-based machine learning techniques to recognise complex behaviour patterns.
Human-assisted sound event recognition for home service robots.
Do, Ha Manh; Sheng, Weihua; Liu, Meiqin
This paper proposes and implements an open framework of active auditory learning for a home service robot to serve the elderly living alone at home. The framework was developed to realize the various auditory perception capabilities while enabling a remote human operator to involve in the sound event recognition process for elderly care. The home service robot is able to estimate the sound source position and collaborate with the human operator in sound event recognition while protecting the privacy of the elderly. Our experimental results validated the proposed framework and evaluated auditory perception capabilities and human-robot collaboration in sound event recognition.
2014-01-01
Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM) as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM) has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility. PMID:25276860
Scofield, Michael D; Trantham-Davidson, Heather; Schwendt, Marek; Leong, Kah-Chung; Peters, Jamie; See, Ronald E; Reichel, Carmela M
2015-01-01
Exposure to methamphetamine (meth) can produce lasting memory impairments in humans and rodents. We recently demonstrated that extended access meth self-administration results in novel object recognition (NOR) memory deficits in rats. Recognition of novelty depends upon intact perirhinal (pRh) cortex function, which is compromised by meth-induced downregulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors. NMDA receptors containing this subunit have a critical role in pRh long-term depression (LTD), one of the primary physiological processes thought to underlie object recognition memory. We hypothesized that meth-induced downregulation of GluN2B receptors would compromise pRh LTD, leading to loss of NOR memory. We found that meth self-administration resulted in an inability to induce pRh LTD following 1 Hz stimulation, an effect that was reversed with bath application of the NMDA receptor partial agonist D-cycloserine (DCS). In addition, pRh microinfusion of DCS restored meth-induced memory deficits. Furthermore, blockade of GluN2B-containing NMDA receptors with Ro 25-6981 prevented DCS restoration of pRh LTD in meth subjects. Thus, targeting pRh LTD may be a promising strategy to treat meth-induced cognitive impairment. PMID:25865928
Track Everything: Limiting Prior Knowledge in Online Multi-Object Recognition.
Wong, Sebastien C; Stamatescu, Victor; Gatt, Adam; Kearney, David; Lee, Ivan; McDonnell, Mark D
2017-10-01
This paper addresses the problem of online tracking and classification of multiple objects in an image sequence. Our proposed solution is to first track all objects in the scene without relying on object-specific prior knowledge, which in other systems can take the form of hand-crafted features or user-based track initialization. We then classify the tracked objects with a fast-learning image classifier, that is based on a shallow convolutional neural network architecture and demonstrate that object recognition improves when this is combined with object state information from the tracking algorithm. We argue that by transferring the use of prior knowledge from the detection and tracking stages to the classification stage, we can design a robust, general purpose object recognition system with the ability to detect and track a variety of object types. We describe our biologically inspired implementation, which adaptively learns the shape and motion of tracked objects, and apply it to the Neovision2 Tower benchmark data set, which contains multiple object types. An experimental evaluation demonstrates that our approach is competitive with the state-of-the-art video object recognition systems that do make use of object-specific prior knowledge in detection and tracking, while providing additional practical advantages by virtue of its generality.
Harris, Jill D; Cutmore, Tim R H; O'Gorman, John; Finnigan, Simon; Shum, David
2009-02-01
The aim of this study was to identify ERP correlates of perceptual object priming that are insensitive to factors affecting explicit, episodic memory. EEG was recorded from 21 participants while they performed a visual object recognition test on a combination of unstudied items and old items that were previously encountered during either a 'deep' or 'shallow' levels-of-processing (LOP) study task. The results demonstrated a midline P150 old/new effect which was sensitive only to objects' old/new status and not to the accuracy of recognition responses to old items, or to the LOP manipulation. Similar outcomes were observed for the subsequent P200 and N400 effects, the former of which had a parietal scalp maximum and the latter, a broadly distributed topography. In addition an LPC old/new effect typical of those reported in past ERP recognition studies was observed. These outcomes support the proposal that the P150 effect is reflective of perceptual object priming and moreover, provide novel evidence that this and the P200 effect are independent of explicit recognition memory process(es).
Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung
2017-03-16
The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body.
Gross, Hans J
2011-09-01
Human inborn numerical competence means our ability to recognize object numbers precisely under circumstances which do not allow sequential counting. This archaic process has been called "subitizing," from the Latin "subito" = suddenly, immediately, indicating that the objects in question are presented to test persons only for a fraction of a second in order to prevent counting. In contrast, however, sequential counting, an outstanding cultural achievement of mankind, means to count "1, 2, 3, 4, 5, 6, 7, 8…" without a limit. The following essay will explain how the limit of numerical competence, i.e., the recognition of object numbers without counting, has been determined for humans and how this has been achieved for the first time in case of an invertebrate, the honeybee. Finally, a hypothesis explaining the influence of our limited, inborn numerical competence on counting in our times, e.g., in the Russian language, will be presented. Subitizing versus counting by young Down syndrome infants and autistics and the Savant syndrome will be discussed.
Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.
Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei
2016-01-13
An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.
Acoustic Event Detection and Classification
NASA Astrophysics Data System (ADS)
Temko, Andrey; Nadeu, Climent; Macho, Dušan; Malkin, Robert; Zieger, Christian; Omologo, Maurizio
The human activity that takes place in meeting rooms or classrooms is reflected in a rich variety of acoustic events (AE), produced either by the human body or by objects handled by humans, so the determination of both the identity of sounds and their position in time may help to detect and describe that human activity. Indeed, speech is usually the most informative sound, but other kinds of AEs may also carry useful information, for example, clapping or laughing inside a speech, a strong yawn in the middle of a lecture, a chair moving or a door slam when the meeting has just started. Additionally, detection and classification of sounds other than speech may be useful to enhance the robustness of speech technologies like automatic speech recognition.
Typical and Atypical Development of Functional Connectivity in the Face Network.
Song, Yiying; Zhu, Qi; Li, Jingguang; Wang, Xu; Liu, Jia
2015-10-28
Extensive studies have demonstrated that face recognition performance does not reach adult levels until adolescence. However, there is no consensus on whether such prolonged improvement stems from development of general cognitive factors or face-specific mechanisms. Here, we used behavioral experiments and functional magnetic resonance imaging (fMRI) to evaluate these two hypotheses. With a large cohort of children (n = 379), we found that the ability of face-specific recognition in humans increased with age throughout childhood and into late adolescence in both face memory and face perception. Neurally, to circumvent the potential problem of age differences in task performance, attention, or cognitive strategies in task-state fMRI studies, we measured the resting-state functional connectivity (RSFC) between the occipital face area (OFA) and fusiform face area (FFA) in human brain and found that the OFA-FFA RSFC increased until 11-13 years of age. Moreover, the OFA-FFA RSFC was selectively impaired in adults with developmental prosopagnosia (DP). In contrast, no age-related changes or differences between DP and normal adults were observed for RSFCs in the object system. Finally, the OFA-FFA RSFC matured earlier than face selectivity in either the OFA or FFA. These results suggest the critical role of the OFA-FFA RSFC in the development of face recognition. Together, our findings support the hypothesis that prolonged development of face recognition is face specific, not domain general. Copyright © 2015 the authors 0270-6474/15/3514624-12$15.00/0.
Puri, Vanita; Wang, Xiaohai; Vardigan, Joshua D; Kuduk, Scott D; Uslaner, Jason M
2015-01-01
We have recently shown that the M1 muscarinic receptor positive allosteric modulator, PQCA, improves cognitive performance in rodents and non-human primates administered the muscarinic receptor antagonist scopolamine. The purpose of the present experiments was to characterize the effects of PQCA in a model more relevant to the disease pathology of Alzheimer's disease. Tg2576 transgenic mice that have elevated Aβ were tested in the novel object recognition task to characterize recognition memory as a function of age and treatment with the PQCA. The effects of PQCA were compared to the acetylcholinesterase inhibitor donepezil, the standard of care for Alzheimer's disease. In addition, the effect of co-administering PQCA and donepezil was evaluated. Aged Tg2576 mice demonstrated a deficit in recognition memory that was significantly attenuated by PQCA. The positive control donepezil also reversed the deficit. Furthermore, doses of PQCA and donepezil that were inactive on their own were found to improve recognition memory when given together. These studies suggest that M1 muscarinic receptor positive allosteric modulation can ameliorate memory deficits in disease relevant models of Alzheimer's disease. These data, combined with our previous findings demonstrating PQCA improves scopolamine-induced cognitive deficits in both rodents and non-human primates, suggest that M1 positive allosteric modulators have therapeutic potential for the treatment of Alzheimer's disease. Copyright © 2015 Elsevier B.V. All rights reserved.
A validated set of tool pictures with matched objects and non-objects for laterality research.
Verma, Ark; Brysbaert, Marc
2015-01-01
Neuropsychological and neuroimaging research has established that knowledge related to tool use and tool recognition is lateralized to the left cerebral hemisphere. Recently, behavioural studies with the visual half-field technique have confirmed the lateralization. A limitation of this research was that different sets of stimuli had to be used for the comparison of tools to other objects and objects to non-objects. Therefore, we developed a new set of stimuli containing matched triplets of tools, other objects and non-objects. With the new stimulus set, we successfully replicated the findings of no visual field advantage for objects in an object recognition task combined with a significant right visual field advantage for tools in a tool recognition task. The set of stimuli is available as supplemental data to this article.
Exploring Techniques for Vision Based Human Activity Recognition: Methods, Systems, and Evaluation
Xu, Xin; Tang, Jinshan; Zhang, Xiaolong; Liu, Xiaoming; Zhang, Hong; Qiu, Yimin
2013-01-01
With the wide applications of vision based intelligent systems, image and video analysis technologies have attracted the attention of researchers in the computer vision field. In image and video analysis, human activity recognition is an important research direction. By interpreting and understanding human activities, we can recognize and predict the occurrence of crimes and help the police or other agencies react immediately. In the past, a large number of papers have been published on human activity recognition in video and image sequences. In this paper, we provide a comprehensive survey of the recent development of the techniques, including methods, systems, and quantitative evaluation of the performance of human activity recognition. PMID:23353144
Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor.
Kim, Dong Seop; Arsalan, Muhammad; Park, Kang Ryoung
2018-03-23
Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR) light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR) open database, show that our method outperforms previous works.
Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor
Kim, Dong Seop; Arsalan, Muhammad; Park, Kang Ryoung
2018-01-01
Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR) light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR) open database, show that our method outperforms previous works. PMID:29570690
The development, assessment and validation of virtual reality for human anatomy instruction
NASA Technical Reports Server (NTRS)
Marshall, Karen Benn
1996-01-01
This research project seeks to meet the objective of science training by developing, assessing, validating and utilizing VR as a human anatomy training medium. Current anatomy instruction is primarily in the form of lectures and usage of textbooks. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three-dimensional, unlike the one-dimensional depiction found in textbooks and the two-dimensional depiction found on the computer. Virtual reality allows one to step through the computer screen into a 3-D artificial world. The primary objective of this project is to produce a virtual reality application of the abdominopelvic region of a human cadaver that can be taken back to the classroom. The hypothesis is that an immersive learning environment affords quicker anatomic recognition and orientation and a greater level of retention in human anatomy instruction. The goal is to augment not replace traditional modes of instruction.
Working and Learning with Knowledge in the Lobes of a Humanoid's Mind
NASA Technical Reports Server (NTRS)
Ambrose, Robert; Savely, Robert; Bluethmann, William; Kortenkamp, David
2003-01-01
Humanoid class robots must have sufficient dexterity to assist people and work in an environment designed for human comfort and productivity. This dexterity, in particular the ability to use tools, requires a cognitive understanding of self and the world that exceeds contemporary robotics. Our hypothesis is that the sense-think-act paradigm that has proven so successful for autonomous robots is missing one or more key elements that will be needed for humanoids to meet their full potential as autonomous human assistants. This key ingredient is knowledge. The presented work includes experiments conducted on the Robonaut system, a NASA and the Defense Advanced research Projects Agency (DARPA) joint project, and includes collaborative efforts with a DARPA Mobile Autonomous Robot Software technical program team of researchers at NASA, MIT, USC, NRL, UMass and Vanderbilt. The paper reports on results in the areas of human-robot interaction (human tracking, gesture recognition, natural language, supervised control), perception (stereo vision, object identification, object pose estimation), autonomous grasping (tactile sensing, grasp reflex, grasp stability) and learning (human instruction, task level sequences, and sensorimotor association).
ERIC Educational Resources Information Center
Wolk, D.A.; Coslett, H.B.; Glosser, G.
2005-01-01
The role of sensory-motor representations in object recognition was investigated in experiments involving AD, a patient with mild visual agnosia who was impaired in the recognition of visually presented living as compared to non-living entities. AD named visually presented items for which sensory-motor information was available significantly more…
Use of Authentic-Speech Technique for Teaching Sound Recognition to EFL Students
ERIC Educational Resources Information Center
Sersen, William J.
2011-01-01
The main objective of this research was to test an authentic-speech technique for improving the sound-recognition skills of EFL (English as a foreign language) students at Roi-Et Rajabhat University. The secondary objective was to determine the correlation, if any, between students' self-evaluation of sound-recognition progress and the actual…
Binary optical filters for scale invariant pattern recognition
NASA Technical Reports Server (NTRS)
Reid, Max B.; Downie, John D.; Hine, Butler P.
1992-01-01
Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.
Infrared detection, recognition and identification of handheld objects
NASA Astrophysics Data System (ADS)
Adomeit, Uwe
2012-10-01
A main criterion for comparison and selection of thermal imagers for military applications is their nominal range performance. This nominal range performance is calculated for a defined task and standardized target and environmental conditions. The only standardization available to date is STANAG 4347. The target defined there is based on a main battle tank in front view. Because of modified military requirements, this target is no longer up-to-date. Today, different topics of interest are of interest, especially differentiation between friend and foe and identification of humans. There is no direct way to differentiate between friend and foe in asymmetric scenarios, but one clue can be that someone is carrying a weapon. This clue can be transformed in the observer tasks detection: a person is carrying or is not carrying an object, recognition: the object is a long / medium / short range weapon or civil equipment and identification: the object can be named (e. g. AK-47, M-4, G36, RPG7, Axe, Shovel etc.). These tasks can be assessed experimentally and from the results of such an assessment, a standard target for handheld objects may be derived. For a first assessment, a human carrying 13 different handheld objects in front of his chest was recorded at four different ranges with an IR-dual-band camera. From the recorded data, a perception experiment was prepared. It was conducted with 17 observers in a 13-alternative forced choice, unlimited observation time arrangement. The results of the test together with Minimum Temperature Difference Perceived measurements of the camera and temperature difference and critical dimension derived from the recorded imagery allowed defining a first standard target according to the above tasks. This standard target consist of 2.5 / 3.5 / 5 DRI line pairs on target, 0.24 m critical size and 1 K temperature difference. The values are preliminary and have to be refined in the future. Necessary are different aspect angles, different carriage and movement.
Rajaei, Karim; Khaligh-Razavi, Seyed-Mahdi; Ghodrati, Masoud; Ebrahimpour, Reza; Shiri Ahmad Abadi, Mohammad Ebrahim
2012-01-01
The brain mechanism of extracting visual features for recognizing various objects has consistently been a controversial issue in computational models of object recognition. To extract visual features, we introduce a new, biologically motivated model for facial categorization, which is an extension of the Hubel and Wiesel simple-to-complex cell hierarchy. To address the synaptic stability versus plasticity dilemma, we apply the Adaptive Resonance Theory (ART) for extracting informative intermediate level visual features during the learning process, which also makes this model stable against the destruction of previously learned information while learning new information. Such a mechanism has been suggested to be embedded within known laminar microcircuits of the cerebral cortex. To reveal the strength of the proposed visual feature learning mechanism, we show that when we use this mechanism in the training process of a well-known biologically motivated object recognition model (the HMAX model), it performs better than the HMAX model in face/non-face classification tasks. Furthermore, we demonstrate that our proposed mechanism is capable of following similar trends in performance as humans in a psychophysical experiment using a face versus non-face rapid categorization task.
Combining color and shape information for illumination-viewpoint invariant object recognition.
Diplaros, Aristeidis; Gevers, Theo; Patras, Ioannis
2006-01-01
In this paper, we propose a new scheme that merges color- and shape-invariant information for object recognition. To obtain robustness against photometric changes, color-invariant derivatives are computed first. Color invariance is an important aspect of any object recognition scheme, as color changes considerably with the variation in illumination, object pose, and camera viewpoint. These color invariant derivatives are then used to obtain similarity invariant shape descriptors. Shape invariance is equally important as, under a change in camera viewpoint and object pose, the shape of a rigid object undergoes a perspective projection on the image plane. Then, the color and shape invariants are combined in a multidimensional color-shape context which is subsequently used as an index. As the indexing scheme makes use of a color-shape invariant context, it provides a high-discriminative information cue robust against varying imaging conditions. The matching function of the color-shape context allows for fast recognition, even in the presence of object occlusion and cluttering. From the experimental results, it is shown that the method recognizes rigid objects with high accuracy in 3-D complex scenes and is robust against changing illumination, camera viewpoint, object pose, and noise.
Eye Movements to Pictures Reveal Transient Semantic Activation during Spoken Word Recognition
ERIC Educational Resources Information Center
Yee, Eiling; Sedivy, Julie C.
2006-01-01
Two experiments explore the activation of semantic information during spoken word recognition. Experiment 1 shows that as the name of an object unfolds (e.g., lock), eye movements are drawn to pictorial representations of both the named object and semantically related objects (e.g., key). Experiment 2 shows that objects semantically related to an…
Raj, Vidya; Liang, Han-Chun; Woodward, Neil D.; Bauernfeind, Amy L.; Lee, Junghee; Dietrich, Mary; Park, Sohee; Cowan, Ronald L.
2011-01-01
Objectives MDMA users have impaired verbal memory, and voxel-based morphometry has demonstrated decreased gray matter in Brodmann area (BA) 18, 21 and 45. Because these regions play a role in verbal memory, we hypothesized that MDMA users would show altered brain activation in these areas during performance of an fMRI task that probed semantic verbal memory. Methods Polysubstance users enriched for MDMA exposure participated in a semantic memory encoding and recognition fMRI task that activated left BA 9, 18, 21/22 and 45. Primary outcomes were percent BOLD signal change in left BA 9, 18, 21/22 and 45, accuracy and response time. Results During semantic recognition, lifetime MDMA use was associated with decreased activation in left BA 9, 18 and 21/22 but not 45. This was partly influenced by contributions from cannabis and cocaine use. MDMA exposure was not associated with accuracy or response time during the semantic recognition task. Conclusions During semantic recognition, MDMA exposure is associated with reduced regional brain activation in regions mediating verbal memory. These findings partially overlap with prior structural evidence for reduced gray matter in MDMA users and may, in part, explain the consistent verbal memory impairments observed in other studies of MDMA users. PMID:19304866
Development of a sonar-based object recognition system
NASA Astrophysics Data System (ADS)
Ecemis, Mustafa Ihsan
2001-02-01
Sonars are used extensively in mobile robotics for obstacle detection, ranging and avoidance. However, these range-finding applications do not exploit the full range of information carried in sonar echoes. In addition, mobile robots need robust object recognition systems. Therefore, a simple and robust object recognition system using ultrasonic sensors may have a wide range of applications in robotics. This dissertation develops and analyzes an object recognition system that uses ultrasonic sensors of the type commonly found on mobile robots. Three principal experiments are used to test the sonar recognition system: object recognition at various distances, object recognition during unconstrained motion, and softness discrimination. The hardware setup, consisting of an inexpensive Polaroid sonar and a data acquisition board, is described first. The software for ultrasound signal generation, echo detection, data collection, and data processing is then presented. Next, the dissertation describes two methods to extract information from the echoes, one in the frequency domain and the other in the time domain. The system uses the fuzzy ARTMAP neural network to recognize objects on the basis of the information content of their echoes. In order to demonstrate that the performance of the system does not depend on the specific classification method being used, the K- Nearest Neighbors (KNN) Algorithm is also implemented. KNN yields a test accuracy similar to fuzzy ARTMAP in all experiments. Finally, the dissertation describes a method for extracting features from the envelope function in order to reduce the dimension of the input vector used by the classifiers. Decreasing the size of the input vectors reduces the memory requirements of the system and makes it run faster. It is shown that this method does not affect the performance of the system dramatically and is more appropriate for some tasks. The results of these experiments demonstrate that sonar can be used to develop a low-cost, low-computation system for real-time object recognition tasks on mobile robots. This system differs from all previous approaches in that it is relatively simple, robust, fast, and inexpensive.
The roles of perceptual and conceptual information in face recognition.
Schwartz, Linoy; Yovel, Galit
2016-11-01
The representation of familiar objects is comprised of perceptual information about their visual properties as well as the conceptual knowledge that we have about them. What is the relative contribution of perceptual and conceptual information to object recognition? Here, we examined this question by designing a face familiarization protocol during which participants were either exposed to rich perceptual information (viewing each face in different angles and illuminations) or with conceptual information (associating each face with a different name). Both conditions were compared with single-view faces presented with no labels. Recognition was tested on new images of the same identities to assess whether learning generated a view-invariant representation. Results showed better recognition of novel images of the learned identities following association of a face with a name label, but no enhancement following exposure to multiple face views. Whereas these findings may be consistent with the role of category learning in object recognition, face recognition was better for labeled faces only when faces were associated with person-related labels (name, occupation), but not with person-unrelated labels (object names or symbols). These findings suggest that association of meaningful conceptual information with an image shifts its representation from an image-based percept to a view-invariant concept. They further indicate that the role of conceptual information should be considered to account for the superior recognition that we have for familiar faces and objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
3-D Object Recognition from Point Cloud Data
NASA Astrophysics Data System (ADS)
Smith, W.; Walker, A. S.; Zhang, B.
2011-09-01
The market for real-time 3-D mapping includes not only traditional geospatial applications but also navigation of unmanned autonomous vehicles (UAVs). Massively parallel processes such as graphics processing unit (GPU) computing make real-time 3-D object recognition and mapping achievable. Geospatial technologies such as digital photogrammetry and GIS offer advanced capabilities to produce 2-D and 3-D static maps using UAV data. The goal is to develop real-time UAV navigation through increased automation. It is challenging for a computer to identify a 3-D object such as a car, a tree or a house, yet automatic 3-D object recognition is essential to increasing the productivity of geospatial data such as 3-D city site models. In the past three decades, researchers have used radiometric properties to identify objects in digital imagery with limited success, because these properties vary considerably from image to image. Consequently, our team has developed software that recognizes certain types of 3-D objects within 3-D point clouds. Although our software is developed for modeling, simulation and visualization, it has the potential to be valuable in robotics and UAV applications. The locations and shapes of 3-D objects such as buildings and trees are easily recognizable by a human from a brief glance at a representation of a point cloud such as terrain-shaded relief. The algorithms to extract these objects have been developed and require only the point cloud and minimal human inputs such as a set of limits on building size and a request to turn on a squaring option. The algorithms use both digital surface model (DSM) and digital elevation model (DEM), so software has also been developed to derive the latter from the former. The process continues through the following steps: identify and group 3-D object points into regions; separate buildings and houses from trees; trace region boundaries; regularize and simplify boundary polygons; construct complex roofs. Several case studies have been conducted using a variety of point densities, terrain types and building densities. The results have been encouraging. More work is required for better processing of, for example, forested areas, buildings with sides that are not at right angles or are not straight, and single trees that impinge on buildings. Further work may also be required to ensure that the buildings extracted are of fully cartographic quality. A first version will be included in production software later in 2011. In addition to the standard geospatial applications and the UAV navigation, the results have a further advantage: since LiDAR data tends to be accurately georeferenced, the building models extracted can be used to refine image metadata whenever the same buildings appear in imagery for which the GPS/IMU values are poorer than those for the LiDAR.
Differential effects of acute and regular physical exercise on cognition and affect.
Hopkins, M E; Davis, F C; Vantieghem, M R; Whalen, P J; Bucci, D J
2012-07-26
The effects of regular exercise versus a single bout of exercise on cognition, anxiety, and mood were systematically examined in healthy, sedentary young adults who were genotyped to determine brain-derived neurotrophic factor (BDNF) allelic status (i.e., Val-Val or Val66Met polymorphism). Participants were evaluated on novel object recognition (NOR) memory and a battery of mental health surveys before and after engaging in either (a) a 4-week exercise program, with exercise on the final test day, (b) a 4-week exercise program, without exercise on the final test day, (c) a single bout of exercise on the final test day, or (d) remaining sedentary between test days. Exercise enhanced object recognition memory and produced a beneficial decrease in perceived stress, but only in participants who exercised for 4 weeks including the final day of testing. In contrast, a single bout of exercise did not affect recognition memory and resulted in increased perceived stress levels. An additional novel finding was that the improvements on the NOR task were observed exclusively in participants who were homozygous for the BDNF Val allele, indicating that altered activity-dependent release of BDNF in Met allele carriers may attenuate the cognitive benefits of exercise. Importantly, exercise-induced changes in cognition were not correlated with changes in mood/anxiety, suggesting that separate neural systems mediate these effects. These data in humans mirror recent data from our group in rodents. Taken together, these current findings provide new insights into the behavioral and neural mechanisms that mediate the effects of physical exercise on memory and mental health in humans. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Progestogens’ effects and mechanisms for object recognition memory across the lifespan
Walf, Alicia A.; Koonce, Carolyn J.; Frye, Cheryl A.
2016-01-01
This review explores the effects of female reproductive hormones, estrogens and progestogens, with a focus on progesterone and allopregnanolone, on object memory. Progesterone and its metabolites, in particular allopregnanolone, exert various effects on both cognitive and non-mnemonic functions in females. The well-known object recognition task is a valuable experimental paradigm that can be used to determine the effects and mechanisms of progestogens for mnemonic effects across the lifespan, which will be discussed herein. In this task there is little test-decay when different objects are used as targets and baseline valance for objects is controlled. This allows repeated testing, within-subjects designs, and longitudinal assessments, which aid understanding of changes in hormonal milieu. Objects are not aversive or food-based, which are hormone-sensitive factors. This review focuses on published data from our laboratory, and others, using the object recognition task in rodents to assess the role and mechanisms of progestogens throughout the lifespan. Improvements in object recognition performance of rodents are often associated with higher hormone levels in the hippocampus and prefrontal cortex during natural cycles, with hormone replacement following ovariectomy in young animals, or with aging. The capacity for reversal of age- and reproductive senescence-related decline in cognitive performance, and changes in neural plasticity that may be dissociated from peripheral effects with such decline, are discussed. The focus here will be on the effects of brain-derived factors, such as the neurosteroid, allopregnanolone, and other hormones, for enhancing object recognition across the lifespan. PMID:26235328
Human Activity Recognition Supported on Indoor Localization: A Systematic Review.
Cerón, Jesús; López, Diego M
2018-01-01
The number of older adults is growing worldwide. This has a social and economic impact in all countries because of the increased number of older adults affected by chronic diseases, health emergencies, and disabilities, representing at the end high cost for the health system. To face this problem, the Ambient Assisted Living (AAL) domain has emerged. Its main objective is to extend the time that older adults can live independently in their homes. AAL is supported by different fields and technologies, being Human Activity Recognition (HAR), control of vital signs and location tracking the three of most interest during the last years. To perform a systematic review about Human Activity Recognition (HAR) approaches supported on Indoor Localization (IL) and vice versa, describing the methods they have used, the accuracy they have obtained and whether they have been directed towards the AAL domain or not. A systematic review of six databases was carried out (ACM, IEEE Xplore, PubMed, Science Direct and Springer). 27 papers were found. They were categorised into three groups according their approach: paper focus on 1. HAR, 2. IL, 3. HAR and IL. A detailed analysis of the following factors was performed: type of methods and technologies used for HAR, IL and data fusion, as well as the precision obtained for them. This systematic review shows that the relationship between HAR and IL has been very little studied, therefore providing insights of its potential mutual support to provide AAL solutions.
ERIC Educational Resources Information Center
Chawarska, Katarzyna; Volkmar, Fred
2007-01-01
Face recognition impairments are well documented in older children with Autism Spectrum Disorders (ASD); however, the developmental course of the deficit is not clear. This study investigates the progressive specialization of face recognition skills in children with and without ASD. Experiment 1 examines human and monkey face recognition in…
Peiker, Ina; David, Nicole; Schneider, Till R; Nolte, Guido; Schöttle, Daniel; Engel, Andreas K
2015-12-16
The integration of visual details into a holistic percept is essential for object recognition. This integration has been reported as a key deficit in patients with autism spectrum disorders (ASDs). The weak central coherence account posits an altered disposition to integrate features into a coherent whole in ASD. Here, we test the hypothesis that such weak perceptual coherence may be reflected in weak neural coherence across different cortical sites. We recorded magnetoencephalography from 20 adult human participants with ASD and 20 matched controls, who performed a slit-viewing paradigm, in which objects gradually passed behind a vertical or horizontal slit so that only fragments of the object were visible at any given moment. Object recognition thus required perceptual integration over time and, in case of the horizontal slit, also across visual hemifields. ASD participants were selectively impaired in the horizontal slit condition, indicating specific difficulties in long-range synchronization between the hemispheres. Specifically, the ASD group failed to show condition-related enhancement of imaginary coherence between the posterior superior temporal sulci in both hemispheres during horizontal slit-viewing in contrast to controls. Moreover, local synchronization reflected in occipitocerebellar beta-band power was selectively reduced for horizontal compared with vertical slit-viewing in ASD. Furthermore, we found disturbed connectivity between right posterior superior temporal sulcus and left cerebellum. Together, our results suggest that perceptual integration deficits co-occur with specific patterns of abnormal global and local synchronization in ASD. The weak central coherence account proposes a tendency of individuals with autism spectrum disorders (ASDs) to focus on details at the cost of an integrated coherent whole. Here, we provide evidence, at the behavioral and the neural level, that visual integration in object recognition is impaired in ASD, when details had to be integrated across both visual hemifields. We found enhanced interhemispheric gamma-band coherence in typically developed participants when communication between cortical hemispheres was required by the task. Importantly, participants with ASD failed to show this enhanced coherence between bilateral posterior superior temporal sulci. The findings suggest that visual integration is disturbed at the local and global synchronization scale, which might bear implications for object recognition in ASD. Copyright © 2015 the authors 0270-6474/15/3516352-10$15.00/0.
Bimodal Benefits on Objective and Subjective Outcomes for Adult Cochlear Implant Users
Heo, Ji-Hye; Lee, Won-Sang
2013-01-01
Background and Objectives Given that only a few studies have focused on the bimodal benefits on objective and subjective outcomes and emphasized the importance of individual data, the present study aimed to measure the bimodal benefits on the objective and subjective outcomes for adults with cochlear implant. Subjects and Methods Fourteen listeners with bimodal devices were tested on the localization and recognition abilities using environmental sounds, 1-talker, and 2-talker speech materials. The localization ability was measured through an 8-loudspeaker array. For the recognition measures, listeners were asked to repeat the sentences or say the environmental sounds the listeners heard. As a subjective questionnaire, three domains of Korean-version of Speech, Spatial, Qualities of Hearing scale (K-SSQ) were used to explore any relationships between objective and subjective outcomes. Results Based on the group-mean data, the bimodal hearing enhanced both localization and recognition regardless of test material. However, the inter- and intra-subject variability appeared to be large across test materials for both localization and recognition abilities. Correlation analyses revealed that the relationships were not always consistent between the objective outcomes and the subjective self-reports with bimodal devices. Conclusions Overall, this study supports significant bimodal advantages on localization and recognition measures, yet the large individual variability in bimodal benefits should be considered carefully for the clinical assessment as well as counseling. The discrepant relations between objective and subjective results suggest that the bimodal benefits in traditional localization or recognition measures might not necessarily correspond to the self-reported subjective advantages in everyday listening environments. PMID:24653909
EMG-based speech recognition using hidden markov models with global control variables.
Lee, Ki-Seung
2008-03-01
It is well known that a strong relationship exists between human voices and the movement of articulatory facial muscles. In this paper, we utilize this knowledge to implement an automatic speech recognition scheme which uses solely surface electromyogram (EMG) signals. The sequence of EMG signals for each word is modelled by a hidden Markov model (HMM) framework. The main objective of the work involves building a model for state observation density when multichannel observation sequences are given. The proposed model reflects the dependencies between each of the EMG signals, which are described by introducing a global control variable. We also develop an efficient model training method, based on a maximum likelihood criterion. In a preliminary study, 60 isolated words were used as recognition variables. EMG signals were acquired from three articulatory facial muscles. The findings indicate that such a system may have the capacity to recognize speech signals with an accuracy of up to 87.07%, which is superior to the independent probabilistic model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, D.G.; Parks, J.M.
1984-04-01
Silhouette shapes are two-dimensional projections of three-dimensional objects such as sand grains, gravel, and fossils. Within-the-margin markings such as chamber boundaries, sutures, or ribs are ignored. Comparisons between populations of objects from similar and differential origins (i.e., environments, species or genera, growth series, etc) is aided by quantifying the shapes. The Multiple Rotations Method (MRM) uses a variation of ''eigenshapes'', which is capable of distinguishing most of the subtle variations that the ''trained eye'' can detect. With a video-digitizer and microcomputer, MRM is fast, more accurate, and more objective than the human eye. The resulting shape descriptors comprise 5 ormore » 6 numbers per object that can be stored and retrieved to compare with similar descriptions of other objects. The original-shape outlines can be reconstituted sufficiently for gross recognition from these few numerical descriptors. Thus, a semi-automated data-retrieval system becomes feasible, with silhouette-shape descriptions as one of several recognition criteria. MRM consists of four ''rotations'': rotation about a center to a comparable orientation; a principal-components rotation to reduce the many original shape descriptors to a few; a VARIMAX orthogonal-factor rotation to achieve simple structure; and a rotation to achieve factor scores on individual objects. A variety of subtly different shapes includes sand grains from several locations, ages, and environments, and fossils of several types. This variety illustrates the feasibility of quantitative comparisons by MRM.« less
Akirav, Irit; Maroun, Mouna
2006-12-01
Once consolidated, a long-term memory item could regain susceptibility to consolidation blockers, that is, reconsolidate, upon its reactivation. Both consolidation and reconsolidation require protein synthesis, but it is not yet known how similar these processes are in terms of molecular, cellular, and neural circuit mechanisms. Whereas most previous studies focused on aversive conditioning in the amygdala and the hippocampus, here we examine the role of the ventromedial prefrontal cortex (vmPFC) in consolidation and reconsolidation of object recognition memory. Object recognition memory is the ability to discriminate the familiarity of previously encountered objects. We found that microinfusion of the protein synthesis inhibitor anisomycin or the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphonovaleric acid (APV) into the vmPFC, immediately after training, resulted in impairment of long-term (24 h) but not short-term (3 h) recognition memory. Similarly, microinfusion of anisomycin or APV into the vmPFC immediately after reactivation of the long-term memory impaired recognition memory 24 h, but not 3 h, post-reactivation. These results indicate that both protein synthesis and NMDA receptors are required for consolidation and reconsolidation of recognition memory in the vmPFC.
Bimodal benefits on objective and subjective outcomes for adult cochlear implant users.
Heo, Ji-Hye; Lee, Jae-Hee; Lee, Won-Sang
2013-09-01
Given that only a few studies have focused on the bimodal benefits on objective and subjective outcomes and emphasized the importance of individual data, the present study aimed to measure the bimodal benefits on the objective and subjective outcomes for adults with cochlear implant. Fourteen listeners with bimodal devices were tested on the localization and recognition abilities using environmental sounds, 1-talker, and 2-talker speech materials. The localization ability was measured through an 8-loudspeaker array. For the recognition measures, listeners were asked to repeat the sentences or say the environmental sounds the listeners heard. As a subjective questionnaire, three domains of Korean-version of Speech, Spatial, Qualities of Hearing scale (K-SSQ) were used to explore any relationships between objective and subjective outcomes. Based on the group-mean data, the bimodal hearing enhanced both localization and recognition regardless of test material. However, the inter- and intra-subject variability appeared to be large across test materials for both localization and recognition abilities. Correlation analyses revealed that the relationships were not always consistent between the objective outcomes and the subjective self-reports with bimodal devices. Overall, this study supports significant bimodal advantages on localization and recognition measures, yet the large individual variability in bimodal benefits should be considered carefully for the clinical assessment as well as counseling. The discrepant relations between objective and subjective results suggest that the bimodal benefits in traditional localization or recognition measures might not necessarily correspond to the self-reported subjective advantages in everyday listening environments.
Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung
2017-01-01
The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body. PMID:28300783
Ultra-fast Object Recognition from Few Spikes
2005-07-06
Computer Science and Artificial Intelligence Laboratory Ultra-fast Object Recognition from Few Spikes Chou Hung, Gabriel Kreiman , Tomaso Poggio...neural code for different kinds of object-related information. *The authors, Chou Hung and Gabriel Kreiman , contributed equally to this work...Supplementary Material is available at http://ramonycajal.mit.edu/ kreiman /resources/ultrafast
The Neural Regions Sustaining Episodic Encoding and Recognition of Objects
ERIC Educational Resources Information Center
Hofer, Alex; Siedentopf, Christian M.; Ischebeck, Anja; Rettenbacher, Maria A.; Widschwendter, Christian G.; Verius, Michael; Golaszewski, Stefan M.; Koppelstaetter, Florian; Felber, Stephan; Wolfgang Fleischhacker, W.
2007-01-01
In this functional MRI experiment, encoding of objects was associated with activation in left ventrolateral prefrontal/insular and right dorsolateral prefrontal and fusiform regions as well as in the left putamen. By contrast, correct recognition of previously learned objects (R judgments) produced activation in left superior frontal, bilateral…
Crowded and Sparse Domains in Object Recognition: Consequences for Categorization and Naming
ERIC Educational Resources Information Center
Gale, Tim M.; Laws, Keith R.; Foley, Kerry
2006-01-01
Some models of object recognition propose that items from structurally crowded categories (e.g., living things) permit faster access to superordinate semantic information than structurally dissimilar categories (e.g., nonliving things), but slower access to individual object information when naming items. We present four experiments that utilize…
Automatic anatomy recognition in whole-body PET/CT images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huiqian; Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Odhner, Dewey
Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity ofmore » anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process, to bring performance to the level achieved on diagnostic CT and MR images in body-region-wise approaches. The intermodality approach fosters the use of already existing fuzzy models, previously created from diagnostic CT images, on PET/CT and other derived images, thus truly separating the modality-independent object assembly anatomy from modality-specific tissue property portrayal in the image. Results: Key ways of combining the above three basic ideas lead them to 15 different strategies for recognizing objects in PET/CT images. Utilizing 50 diagnostic CT image data sets from the thoracic and abdominal body regions and 16 whole-body PET/CT image data sets, the authors compare the recognition performance among these 15 strategies on 18 objects from the thorax, abdomen, and pelvis in object localization error and size estimation error. Particularly on texture membership images, object localization is within three voxels on whole-body low-dose CT images and 2 voxels on body-region-wise low-dose images of known true locations. Surprisingly, even on direct body-region-wise PET images, localization error within 3 voxels seems possible. Conclusions: The previous body-region-wise approach can be extended to whole-body torso with similar object localization performance. Combined use of image texture and intensity property yields the best object localization accuracy. In both body-region-wise and whole-body approaches, recognition performance on low-dose CT images reaches levels previously achieved on diagnostic CT images. The best object recognition strategy varies among objects; the proposed framework however allows employing a strategy that is optimal for each object.« less
Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L.; Schwandt, Melanie; Heilig, Markus
2010-01-01
Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9–15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. PMID:20849966
Intelligent data processing of an ultrasonic sensor system for pattern recognition improvements
NASA Astrophysics Data System (ADS)
Na, Seung You; Park, Min-Sang; Hwang, Won-Gul; Kee, Chang-Doo
1999-05-01
Though conventional time-of-flight ultrasonic sensor systems are popular due to the advantages of low cost and simplicity, the usage of the sensors is rather narrowly restricted within object detection and distance readings. There is a strong need to enlarge the amount of environmental information for mobile applications to provide intelligent autonomy. Wide sectors of such neighboring object recognition problems can be satisfactorily handled with coarse vision data such as sonar maps instead of accurate laser or optic measurements. For the usage of object pattern recognition, ultrasonic senors have inherent shortcomings of poor directionality and specularity which result in low spatial resolution and indistinctiveness of object patterns. To resolve these problems an array of increased number of sensor elements has been used for large objects. In this paper we propose a method of sensor array system with improved recognition capability using electronic circuits accompanying the sensor array and neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. Relying upon the known sensor characteristics, a set of different return signals from neighboring senors is manipulated to provide an enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.
ERIC Educational Resources Information Center
Lawson, Rebecca
2009-01-01
A sequential matching task was used to compare how the difficulty of shape discrimination influences the achievement of object constancy for depth rotations across haptic and visual object recognition. Stimuli were nameable, 3-dimensional plastic models of familiar objects (e.g., bed, chair) and morphs midway between these endpoint shapes (e.g., a…
On the three-quarter view advantage of familiar object recognition.
Nonose, Kohei; Niimi, Ryosuke; Yokosawa, Kazuhiko
2016-11-01
A three-quarter view, i.e., an oblique view, of familiar objects often leads to a higher subjective goodness rating when compared with other orientations. What is the source of the high goodness for oblique views? First, we confirmed that object recognition performance was also best for oblique views around 30° view, even when the foreshortening disadvantage of front- and side-views was minimized (Experiments 1 and 2). In Experiment 3, we measured subjective ratings of view goodness and two possible determinants of view goodness: familiarity of view, and subjective impression of three-dimensionality. Three-dimensionality was measured as the subjective saliency of visual depth information. The oblique views were rated best, most familiar, and as approximating greatest three-dimensionality on average; however, the cluster analyses showed that the "best" orientation systematically varied among objects. We found three clusters of objects: front-preferred objects, oblique-preferred objects, and side-preferred objects. Interestingly, recognition performance and the three-dimensionality rating were higher for oblique views irrespective of the clusters. It appears that recognition efficiency is not the major source of the three-quarter view advantage. There are multiple determinants and variability among objects. This study suggests that the classical idea that a canonical view has a unique advantage in object perception requires further discussion.
Single-pixel non-imaging object recognition by means of Fourier spectrum acquisition
NASA Astrophysics Data System (ADS)
Chen, Huichao; Shi, Jianhong; Liu, Xialin; Niu, Zhouzhou; Zeng, Guihua
2018-04-01
Single-pixel imaging has emerged over recent years as a novel imaging technique, which has significant application prospects. In this paper, we propose and experimentally demonstrate a scheme that can achieve single-pixel non-imaging object recognition by acquiring the Fourier spectrum. In an experiment, a four-step phase-shifting sinusoid illumination light is used to irradiate the object image, the value of the light intensity is measured with a single-pixel detection unit, and the Fourier coefficients of the object image are obtained by a differential measurement. The Fourier coefficients are first cast into binary numbers to obtain the hash value. We propose a new method of perceptual hashing algorithm, which is combined with a discrete Fourier transform to calculate the hash value. The hash distance is obtained by calculating the difference of the hash value between the object image and the contrast images. By setting an appropriate threshold, the object image can be quickly and accurately recognized. The proposed scheme realizes single-pixel non-imaging perceptual hashing object recognition by using fewer measurements. Our result might open a new path for realizing object recognition with non-imaging.
Lateral Entorhinal Cortex is Critical for Novel Object-Context Recognition
Wilson, David IG; Langston, Rosamund F; Schlesiger, Magdalene I; Wagner, Monica; Watanabe, Sakurako; Ainge, James A
2013-01-01
Episodic memory incorporates information about specific events or occasions including spatial locations and the contextual features of the environment in which the event took place. It has been modeled in rats using spontaneous exploration of novel configurations of objects, their locations, and the contexts in which they are presented. While we have a detailed understanding of how spatial location is processed in the brain relatively little is known about where the nonspatial contextual components of episodic memory are processed. Initial experiments measured c-fos expression during an object-context recognition (OCR) task to examine which networks within the brain process contextual features of an event. Increased c-fos expression was found in the lateral entorhinal cortex (LEC; a major hippocampal afferent) during OCR relative to control conditions. In a subsequent experiment it was demonstrated that rats with lesions of LEC were unable to recognize object-context associations yet showed normal object recognition and normal context recognition. These data suggest that contextual features of the environment are integrated with object identity in LEC and demonstrate that recognition of such object-context associations requires the LEC. This is consistent with the suggestion that contextual features of an event are processed in LEC and that this information is combined with spatial information from medial entorhinal cortex to form episodic memory in the hippocampus. © 2013 Wiley Periodicals, Inc. PMID:23389958
NASA Astrophysics Data System (ADS)
Scharenborg, Odette; ten Bosch, Louis; Boves, Lou; Norris, Dennis
2003-12-01
This letter evaluates potential benefits of combining human speech recognition (HSR) and automatic speech recognition by building a joint model of an automatic phone recognizer (APR) and a computational model of HSR, viz., Shortlist [Norris, Cognition 52, 189-234 (1994)]. Experiments based on ``real-life'' speech highlight critical limitations posed by some of the simplifying assumptions made in models of human speech recognition. These limitations could be overcome by avoiding hard phone decisions at the output side of the APR, and by using a match between the input and the internal lexicon that flexibly copes with deviations from canonical phonemic representations.
Object Recognition using Feature- and Color-Based Methods
NASA Technical Reports Server (NTRS)
Duong, Tuan; Duong, Vu; Stubberud, Allen
2008-01-01
An improved adaptive method of processing image data in an artificial neural network has been developed to enable automated, real-time recognition of possibly moving objects under changing (including suddenly changing) conditions of illumination and perspective. The method involves a combination of two prior object-recognition methods one based on adaptive detection of shape features and one based on adaptive color segmentation to enable recognition in situations in which either prior method by itself may be inadequate. The chosen prior feature-based method is known as adaptive principal-component analysis (APCA); the chosen prior color-based method is known as adaptive color segmentation (ACOSE). These methods are made to interact with each other in a closed-loop system to obtain an optimal solution of the object-recognition problem in a dynamic environment. One of the results of the interaction is to increase, beyond what would otherwise be possible, the accuracy of the determination of a region of interest (containing an object that one seeks to recognize) within an image. Another result is to provide a minimized adaptive step that can be used to update the results obtained by the two component methods when changes of color and apparent shape occur. The net effect is to enable the neural network to update its recognition output and improve its recognition capability via an adaptive learning sequence. In principle, the improved method could readily be implemented in integrated circuitry to make a compact, low-power, real-time object-recognition system. It has been proposed to demonstrate the feasibility of such a system by integrating a 256-by-256 active-pixel sensor with APCA, ACOSE, and neural processing circuitry on a single chip. It has been estimated that such a system on a chip would have a volume no larger than a few cubic centimeters, could operate at a rate as high as 1,000 frames per second, and would consume in the order of milliwatts of power.
NASA Astrophysics Data System (ADS)
Yu, Francis T. S.; Jutamulia, Suganda
2008-10-01
Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.
Neuroscience-inspired computational systems for speech recognition under noisy conditions
NASA Astrophysics Data System (ADS)
Schafer, Phillip B.
Humans routinely recognize speech in challenging acoustic environments with background music, engine sounds, competing talkers, and other acoustic noise. However, today's automatic speech recognition (ASR) systems perform poorly in such environments. In this dissertation, I present novel methods for ASR designed to approach human-level performance by emulating the brain's processing of sounds. I exploit recent advances in auditory neuroscience to compute neuron-based representations of speech, and design novel methods for decoding these representations to produce word transcriptions. I begin by considering speech representations modeled on the spectrotemporal receptive fields of auditory neurons. These representations can be tuned to optimize a variety of objective functions, which characterize the response properties of a neural population. I propose an objective function that explicitly optimizes the noise invariance of the neural responses, and find that it gives improved performance on an ASR task in noise compared to other objectives. The method as a whole, however, fails to significantly close the performance gap with humans. I next consider speech representations that make use of spiking model neurons. The neurons in this method are feature detectors that selectively respond to spectrotemporal patterns within short time windows in speech. I consider a number of methods for training the response properties of the neurons. In particular, I present a method using linear support vector machines (SVMs) and show that this method produces spikes that are robust to additive noise. I compute the spectrotemporal receptive fields of the neurons for comparison with previous physiological results. To decode the spike-based speech representations, I propose two methods designed to work on isolated word recordings. The first method uses a classical ASR technique based on the hidden Markov model. The second method is a novel template-based recognition scheme that takes advantage of the neural representation's invariance in noise. The scheme centers on a speech similarity measure based on the longest common subsequence between spike sequences. The combined encoding and decoding scheme outperforms a benchmark system in extremely noisy acoustic conditions. Finally, I consider methods for decoding spike representations of continuous speech. To help guide the alignment of templates to words, I design a syllable detection scheme that robustly marks the locations of syllabic nuclei. The scheme combines SVM-based training with a peak selection algorithm designed to improve noise tolerance. By incorporating syllable information into the ASR system, I obtain strong recognition results in noisy conditions, although the performance in noiseless conditions is below the state of the art. The work presented here constitutes a novel approach to the problem of ASR that can be applied in the many challenging acoustic environments in which we use computer technologies today. The proposed spike-based processing methods can potentially be exploited in effcient hardware implementations and could significantly reduce the computational costs of ASR. The work also provides a framework for understanding the advantages of spike-based acoustic coding in the human brain.
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Editor)
1988-01-01
The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.
Posture recognition based on fuzzy logic for home monitoring of the elderly.
Brulin, Damien; Benezeth, Yannick; Courtial, Estelle
2012-09-01
We propose in this paper a computer vision-based posture recognition method for home monitoring of the elderly. The proposed system performs human detection prior to the posture analysis; posture recognition is performed only on a human silhouette. The human detection approach has been designed to be robust to different environmental stimuli. Thus, posture is analyzed with simple and efficient features that are not designed to manage constraints related to the environment but only designed to describe human silhouettes. The posture recognition method, based on fuzzy logic, identifies four static postures and is robust to variation in the distance between the camera and the person, and to the person's morphology. With an accuracy of 74.29% of satisfactory posture recognition, this approach can detect emergency situations such as a fall within a health smart home.
Faillace, M P; Pisera-Fuster, A; Medrano, M P; Bejarano, A C; Bernabeu, R O
2017-03-01
Zebrafish have a sophisticated color- and shape-sensitive visual system, so we examined color cue-based novel object recognition in zebrafish. We evaluated preference in the absence or presence of drugs that affect attention and memory retention in rodents: nicotine and the histone deacetylase inhibitor (HDACi) phenylbutyrate (PhB). The objective of this study was to evaluate whether nicotine and PhB affect innate preferences of zebrafish for familiar and novel objects after short- and long-retention intervals. We developed modified object recognition (OR) tasks using neutral novel and familiar objects in different colors. We also tested objects which differed with respect to the exploratory behavior they elicited from naïve zebrafish. Zebrafish showed an innate preference for exploring red or green objects rather than yellow or blue objects. Zebrafish were better at discriminating color changes than changes in object shape or size. Nicotine significantly enhanced or changed short-term innate novel object preference whereas PhB had similar effects when preference was assessed 24 h after training. Analysis of other zebrafish behaviors corroborated these results. Zebrafish were innately reluctant or prone to explore colored novel objects, so drug effects on innate preference for objects can be evaluated changing the color of objects with a simple geometry. Zebrafish exhibited recognition memory for novel objects with similar innate significance. Interestingly, nicotine and PhB significantly modified innate object preference.
Does object view influence the scene consistency effect?
Sastyin, Gergo; Niimi, Ryosuke; Yokosawa, Kazuhiko
2015-04-01
Traditional research on the scene consistency effect only used clearly recognizable object stimuli to show mutually interactive context effects for both the object and background components on scene perception (Davenport & Potter in Psychological Science, 15, 559-564, 2004). However, in real environments, objects are viewed from multiple viewpoints, including an accidental, hard-to-recognize one. When the observers named target objects in scenes (Experiments 1a and 1b, object recognition task), we replicated the scene consistency effect (i.e., there was higher accuracy for the objects with consistent backgrounds). However, there was a significant interaction effect between consistency and object viewpoint, which indicated that the scene consistency effect was more important for identifying objects in the accidental view condition than in the canonical view condition. Therefore, the object recognition system may rely more on the scene context when the object is difficult to recognize. In Experiment 2, the observers identified the background (background recognition task) while the scene consistency and object views were manipulated. The results showed that object viewpoint had no effect, while the scene consistency effect was observed. More specifically, the canonical and accidental views both equally provided contextual information for scene perception. These findings suggested that the mechanism for conscious recognition of objects could be dissociated from the mechanism for visual analysis of object images that were part of a scene. The "context" that the object images provided may have been derived from its view-invariant, relatively low-level visual features (e.g., color), rather than its semantic information.
Three-dimensional object recognition based on planar images
NASA Astrophysics Data System (ADS)
Mital, Dinesh P.; Teoh, Eam-Khwang; Au, K. C.; Chng, E. K.
1993-01-01
This paper presents the development and realization of a robotic vision system for the recognition of 3-dimensional (3-D) objects. The system can recognize a single object from among a group of known regular convex polyhedron objects that is constrained to lie on a calibrated flat platform. The approach adopted comprises a series of image processing operations on a single 2-dimensional (2-D) intensity image to derive an image line drawing. Subsequently, a feature matching technique is employed to determine 2-D spatial correspondences of the image line drawing with the model in the database. Besides its identification ability, the system can also provide important position and orientation information of the recognized object. The system was implemented on an IBM-PC AT machine executing at 8 MHz without the 80287 Maths Co-processor. In our overall performance evaluation based on a 600 recognition cycles test, the system demonstrated an accuracy of above 80% with recognition time well within 10 seconds. The recognition time is, however, indirectly dependent on the number of models in the database. The reliability of the system is also affected by illumination conditions which must be clinically controlled as in any industrial robotic vision system.
A Flexible Approach for Human Activity Recognition Using Artificial Hydrocarbon Networks
Ponce, Hiram; Miralles-Pechuán, Luis; Martínez-Villaseñor, María de Lourdes
2016-01-01
Physical activity recognition based on sensors is a growing area of interest given the great advances in wearable sensors. Applications in various domains are taking advantage of the ease of obtaining data to monitor personal activities and behavior in order to deliver proactive and personalized services. Although many activity recognition systems have been developed for more than two decades, there are still open issues to be tackled with new techniques. We address in this paper one of the main challenges of human activity recognition: Flexibility. Our goal in this work is to present artificial hydrocarbon networks as a novel flexible approach in a human activity recognition system. In order to evaluate the performance of artificial hydrocarbon networks based classifier, experimentation was designed for user-independent, and also for user-dependent case scenarios. Our results demonstrate that artificial hydrocarbon networks classifier is flexible enough to be used when building a human activity recognition system with either user-dependent or user-independent approaches. PMID:27792136
A Flexible Approach for Human Activity Recognition Using Artificial Hydrocarbon Networks.
Ponce, Hiram; Miralles-Pechuán, Luis; Martínez-Villaseñor, María de Lourdes
2016-10-25
Physical activity recognition based on sensors is a growing area of interest given the great advances in wearable sensors. Applications in various domains are taking advantage of the ease of obtaining data to monitor personal activities and behavior in order to deliver proactive and personalized services. Although many activity recognition systems have been developed for more than two decades, there are still open issues to be tackled with new techniques. We address in this paper one of the main challenges of human activity recognition: Flexibility. Our goal in this work is to present artificial hydrocarbon networks as a novel flexible approach in a human activity recognition system. In order to evaluate the performance of artificial hydrocarbon networks based classifier, experimentation was designed for user-independent, and also for user-dependent case scenarios. Our results demonstrate that artificial hydrocarbon networks classifier is flexible enough to be used when building a human activity recognition system with either user-dependent or user-independent approaches.
What puts the how in where? Tool use and the divided visual streams hypothesis.
Frey, Scott H
2007-04-01
An influential theory suggests that the dorsal (occipito-parietal) visual stream computes representations of objects for purposes of guiding actions (determining 'how') independently of ventral (occipito-temporal) stream processes supporting object recognition and semantic processing (determining 'what'). Yet, the ability of the dorsal stream alone to account for one of the most common forms of human action, tool use, is limited. While experience-dependent modifications to existing dorsal stream representations may explain simple tool use behaviors (e.g., using sticks to extend reach) found among a variety of species, skillful use of manipulable artifacts (e.g., cups, hammers, pencils) requires in addition access to semantic representations of objects' functions and uses. Functional neuroimaging suggests that this latter information is represented in a left-lateralized network of temporal, frontal and parietal areas. I submit that the well-established dominance of the human left hemisphere in the representation of familiar skills stems from the ability for this acquired knowledge to influence the organization of actions within the dorsal pathway.
Building machines that learn and think like people.
Lake, Brenden M; Ullman, Tomer D; Tenenbaum, Joshua B; Gershman, Samuel J
2017-01-01
Recent progress in artificial intelligence has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats that of humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn and how they learn it. Specifically, we argue that these machines should (1) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (2) ground learning in intuitive theories of physics and psychology to support and enrich the knowledge that is learned; and (3) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes toward these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
Bennetts, Rachel J; Mole, Joseph; Bate, Sarah
2017-09-01
Face recognition abilities vary widely. While face recognition deficits have been reported in children, it is unclear whether superior face recognition skills can be encountered during development. This paper presents O.B., a 14-year-old female with extraordinary face recognition skills: a "super-recognizer" (SR). O.B. demonstrated exceptional face-processing skills across multiple tasks, with a level of performance that is comparable to adult SRs. Her superior abilities appear to be specific to face identity: She showed an exaggerated face inversion effect and her superior abilities did not extend to object processing or non-identity aspects of face recognition. Finally, an eye-movement task demonstrated that O.B. spent more time than controls examining the nose - a pattern previously reported in adult SRs. O.B. is therefore particularly skilled at extracting and using identity-specific facial cues, indicating that face and object recognition are dissociable during development, and that super recognition can be detected in adolescence.
Human action recognition based on point context tensor shape descriptor
NASA Astrophysics Data System (ADS)
Li, Jianjun; Mao, Xia; Chen, Lijiang; Wang, Lan
2017-07-01
Motion trajectory recognition is one of the most important means to determine the identity of a moving object. A compact and discriminative feature representation method can improve the trajectory recognition accuracy. This paper presents an efficient framework for action recognition using a three-dimensional skeleton kinematic joint model. First, we put forward a rotation-scale-translation-invariant shape descriptor based on point context (PC) and the normal vector of hypersurface to jointly characterize local motion and shape information. Meanwhile, an algorithm for extracting the key trajectory based on the confidence coefficient is proposed to reduce the randomness and computational complexity. Second, to decrease the eigenvalue decomposition time complexity, a tensor shape descriptor (TSD) based on PC that can globally capture the spatial layout and temporal order to preserve the spatial information of each frame is proposed. Then, a multilinear projection process is achieved by tensor dynamic time warping to map the TSD to a low-dimensional tensor subspace of the same size. Experimental results show that the proposed shape descriptor is effective and feasible, and the proposed approach obtains considerable performance improvement over the state-of-the-art approaches with respect to accuracy on a public action dataset.
Ding, Fang; Zheng, Limin; Liu, Min; Chen, Rongfa; Leung, L Stan; Luo, Tao
2016-08-01
Exposure to volatile anesthetics has been reported to cause temporary or sustained impairments in learning and memory in pre-clinical studies. The selective antagonists of the histamine H3 receptors (H3R) are considered to be a promising group of novel therapeutic agents for the treatment of cognitive disorders. The aim of this study was to evaluate the effect of H3R antagonist ciproxifan on isoflurane-induced deficits in an object recognition task. Adult C57BL/6 J mice were exposed to isoflurane (1.3 %) or vehicle gas for 2 h. The object recognition tests were carried at 24 h or 7 days after exposure to anesthesia to exploit the tendency of mice to prefer exploring novel objects in an environment when a familiar object is also present. During the training phase, two identical objects were placed in two defined sites of the chamber. During the test phase, performed 1 or 24 h after the training phase, one of the objects was replaced by a new object with a different shape. The time spent exploring each object was recorded. A robust deficit in object recognition memory occurred 1 day after exposure to isoflurane anesthesia. Isoflurane-treated mice spent significantly less time exploring a novel object at 1 h but not at 24 h after the training phase. The deficit in short-term memory was reversed by the administration of ciproxifan 30 min before behavioral training. Isoflurane exposure induces reversible deficits in object recognition memory. Ciproxifan appears to be a potential therapeutic agent for improving post-anesthesia cognitive memory performance.
Amesz, Sarah; Tessari, Alessia; Ottoboni, Giovanni; Marsden, Jon
2016-01-01
To explore the relationship between laterality recognition after stroke and impairments in attention, 3D object rotation and functional ability. Observational cross-sectional study. Acute care teaching hospital. Thirty-two acute and sub-acute people with stroke and 36 healthy, age-matched controls. Laterality recognition, attention and mental rotation of objects. Within the stroke group, the relationship between laterality recognition and functional ability, neglect, hemianopia and dyspraxia were further explored. People with stroke were significantly less accurate (69% vs 80%) and showed delayed reaction times (3.0 vs 1.9 seconds) when determining the laterality of a pictured hand. Deficits either in accuracy or reaction times were seen in 53% of people with stroke. The accuracy of laterality recognition was associated with reduced functional ability (R(2) = 0.21), less accurate mental rotation of objects (R(2) = 0.20) and dyspraxia (p = 0.03). Implicit motor imagery is affected in a significant number of patients after stroke with these deficits related to lesions to the motor networks as well as other deficits seen after stroke. This research provides new insights into how laterality recognition is related to a number of other deficits after stroke, including the mental rotation of 3D objects, attention and dyspraxia. Further research is required to determine if treatment programmes can improve deficits in laterality recognition and impact functional outcomes after stroke.
Dissociated active and passive tactile shape recognition: a case study of pure tactile apraxia.
Valenza, N; Ptak, R; Zimine, I; Badan, M; Lazeyras, F; Schnider, A
2001-11-01
Disorders of tactile object recognition (TOR) may result from primary motor or sensory deficits or higher cognitive impairment of tactile shape representations or semantic memory. Studies with healthy participants suggest the existence of exploratory motor procedures directly linked to the extraction of specific properties of objects. A pure deficit of these procedures without concomitant gnostic disorders has never been described in a brain-damaged patient. Here, we present a patient with a right hemispheric infarction who, in spite of intact sensorimotor functions, had impaired TOR with the left hand. Recognition of 2D shapes and objects was severely deficient under the condition of spontaneous exploration. Tactile exploration of shapes was disorganized and exploratory procedures, such as the contour-following strategy, which is necessary to identify the precise shape of an object, were severely disturbed. However, recognition of 2D shapes under manually or verbally guided exploration and the recognition of shapes traced on the skin were intact, indicating a dissociation in shape recognition between active and passive touch. Functional MRI during sensory stimulation of the left hand showed preserved activation of the spared primary sensory cortex in the right hemisphere. We interpret the deficit of our patient as a pure tactile apraxia without tactile agnosia, i.e. a specific inability to use tactile feedback to generate the exploratory procedures necessary for tactile shape recognition.
Contributions of visual and embodied expertise to body perception.
Reed, Catherine L; Nyberg, Andrew A; Grubb, Jefferson D
2012-01-01
Recent research has demonstrated that our perception of the human body differs from that of inanimate objects. This study investigated whether the visual perception of the human body differs from that of other animate bodies and, if so, whether that difference could be attributed to visual experience and/or embodied experience. To dissociate differential effects of these two types of expertise, inversion effects (recognition of inverted stimuli is slower and less accurate than recognition of upright stimuli) were compared for two types of bodies in postures that varied in typicality: humans in human postures (human-typical), humans in dog postures (human-atypical), dogs in dog postures (dog-typical), and dogs in human postures (dog-atypical). Inversion disrupts global configural processing. Relative changes in the size and presence of inversion effects reflect changes in visual processing. Both visual and embodiment expertise predict larger inversion effects for human over dog postures because we see humans more and we have experience producing human postures. However, our design that crosses body type and typicality leads to distinct predictions for visual and embodied experience. Visual expertise predicts an interaction between typicality and orientation: greater inversion effects should be found for typical over atypical postures regardless of body type. Alternatively, embodiment expertise predicts a body, typicality, and orientation interaction: larger inversion effects should be found for all human postures but only for atypical dog postures because humans can map their bodily experience onto these postures. Accuracy data supported embodiment expertise with the three-way interaction. However, response-time data supported contributions of visual expertise with larger inversion effects for typical over atypical postures. Thus, both types of expertise affect the visual perception of bodies.
USDA-ARS?s Scientific Manuscript database
Objective Previously, four months of a blueberry-enriched (BB) antioxidant diet prevented impaired object recognition memory in aged rats. Experiment 1 determined whether one and two-month BB diets would have a similar effect and whether the benefits would disappear promptly after terminating the d...
Qualitative Differences in the Representation of Spatial Relations for Different Object Classes
ERIC Educational Resources Information Center
Cooper, Eric E.; Brooks, Brian E.
2004-01-01
Two experiments investigated whether the representations used for animal, produce, and object recognition code spatial relations in a similar manner. Experiment 1 tested the effects of planar rotation on the recognition of animals and nonanimal objects. Response times for recognizing animals followed an inverted U-shaped function, whereas those…
Wahl, Devin; Coogan, Sean CP; Solon-Biet, Samantha M; de Cabo, Rafael; Haran, James B; Raubenheimer, David; Cogger, Victoria C; Mattson, Mark P; Simpson, Stephen J; Le Couteur, David G
2017-01-01
Evaluation of behavior and cognition in rodent models underpins mechanistic and interventional studies of brain aging and neurodegenerative diseases, especially dementia. Commonly used tests include Morris water maze, Barnes maze, object recognition, fear conditioning, radial arm water maze, and Y maze. Each of these tests reflects some aspects of human memory including episodic memory, recognition memory, semantic memory, spatial memory, and emotional memory. Although most interventional studies in rodent models of dementia have focused on pharmacological agents, there are an increasing number of studies that have evaluated nutritional interventions including caloric restriction, intermittent fasting, and manipulation of macronutrients. Dietary interventions have been shown to influence various cognitive and behavioral tests in rodents indicating that nutrition can influence brain aging and possibly neurodegeneration. PMID:28932108
Computational Intelligence Techniques for Tactile Sensing Systems
Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo
2014-01-01
Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach. PMID:24949646
Computational intelligence techniques for tactile sensing systems.
Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo
2014-06-19
Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach.
Deep Learning for Computer Vision: A Brief Review
Doulamis, Nikolaos; Doulamis, Anastasios; Protopapadakis, Eftychios
2018-01-01
Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein. PMID:29487619
Wasilewska-Sampaio, Ana Paula; Santos, Tiago G; Lopes, Marilene Hohmuth; Cammarota, Martin; Martins, Vilma Regina
2014-01-17
Cognitive dysfunction is found in patients with brain tumors and there is a need to determine whether it can be replicated in an experimental model. In the present study, the object recognition (OR) paradigm was used to investigate cognitive performance in nude mice, which represent one of the most important animal models available to study human tumors in vivo. Mice with orthotopic xenografts of the human U87MG glioblastoma cell line were trained at 9, 14, and 18days (D9, D14, and D18, respectively) after implantation of 5×10(5) cells. At D9, the mice showed normal behavior when tested 90min or 24h after training and compared to control nude mice. Animals at D14 were still able to discriminate between familiar and novel objects, but exhibited a lower performance than animals at D9. Total impairment in the OR memory was observed when animals were evaluated on D18. These alterations were detected earlier than any other clinical symptoms, which were observed only 22-24days after tumor implantation. There was a significant correlation between the discrimination index (d2) and time after tumor implantation as well as between d2 and tumor volume. These data indicate that the OR task is a robust test to identify early behavior alterations caused by glioblastoma in nude mice. In addition, these results suggest that OR task can be a reliable tool to test the efficacy of new therapies against these tumors. © 2013 Elsevier Inc. All rights reserved.
Levin, Edward D.; Cauley, Marty; Johnson, Joshua E.; Cooper, Ellen M.; Stapleton, Heather M.; Ferguson, P. Lee; Seidler, Frederic J.; Slotkin, Theodore A.
2014-01-01
Glucocorticoids are the consensus treatment given in preterm labor and are also elevated by maternal stress; organophosphate exposures are virtually ubiquitous, so human developmental coexposures to these two agents are common. This study explores how prenatal dexamethasone exposure modifies the neurobehavioral teratology of chlorpyrifos, one of the most widely used organophosphates. We administered dexamethasone to pregnant rats on gestational days 17-19 at a standard therapeutic dose (0.2 mg/kg); offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1 mg/kg) that produces barely-detectable (<10%) inhibition of brain cholinesterase activity. Dexamethasone did not alter brain chlorpyrifos concentrations, nor did either agent alone or in combination affect brain thyroxine levels. Assessments were carried out from adolescence through adulthood encompassing T-maze alternation, Figure-8 maze (locomotor activity, habituation), novelty-suppressed feeding and novel object recognition tests. For behaviors where chlorpyrifos or dexamethasone individually had small effects, the dual exposure produced larger, significant effects that reflected additivity (locomotor activity, novelty-suppressed feeding, novel object recognition). Where the individual effects were in opposite directions or were restricted to only one agent, we found enhancement of chlorpyrifos’ effects by prenatal dexamethasone (habituation). Finally, for behaviors where controls displayed a normal sex difference in performance, the combined treatment either eliminated or reversed the difference (locomotor activity, novel object recognition). Combined exposure to dexamethasone and chlorpyrifos results in a worsened neurobehavioral outcome, providing a proof-of-principle that prenatal glucocorticoids can create a subpopulation with enhanced vulnerability to environmental toxicants. PMID:24177596
Object memory and change detection: dissociation as a function of visual and conceptual similarity.
Yeh, Yei-Yu; Yang, Cheng-Ta
2008-01-01
People often fail to detect a change between two visual scenes, a phenomenon referred to as change blindness. This study investigates how a post-change object's similarity to the pre-change object influences memory of the pre-change object and affects change detection. The results of Experiment 1 showed that similarity lowered detection sensitivity but did not affect the speed of identifying the pre-change object, suggesting that similarity between the pre- and post-change objects does not degrade the pre-change representation. Identification speed for the pre-change object was faster than naming the new object regardless of detection accuracy. Similarity also decreased detection sensitivity in Experiment 2 but improved the recognition of the pre-change object under both correct detection and detection failure. The similarity effect on recognition was greatly reduced when 20% of each pre-change stimulus was masked by random dots in Experiment 3. Together the results suggest that the level of pre-change representation under detection failure is equivalent to the level under correct detection and that the pre-change representation is almost complete. Similarity lowers detection sensitivity but improves explicit access in recognition. Dissociation arises between recognition and change detection as the two judgments rely on the match-to-mismatch signal and mismatch-to-match signal, respectively.
Human sperm bind to the N-terminal domain of ZP2 in humanized zonae pellucidae in transgenic mice
Baibakov, Boris; Boggs, Nathan A.; Yauger, Belinda; Baibakov, Galina
2012-01-01
Fertilization requires taxon-specific gamete recognition, and human sperm do not bind to zonae pellucidae (ZP1–3) surrounding mouse eggs. Using transgenesis to replace endogenous mouse proteins with human homologues, gain-of-function sperm-binding assays were established to evaluate human gamete recognition. Human sperm bound only to zonae pellucidae containing human ZP2, either alone or coexpressed with other human zona proteins. Binding to the humanized matrix was a dominant effect that resulted in human sperm penetration of the zona pellucida and accumulation in the perivitelline space, where they were unable to fuse with mouse eggs. Using recombinant peptides, the site of gamete recognition was located to a defined domain in the N terminus of ZP2. These results provide experimental evidence for the role of ZP2 in mediating sperm binding to the zona pellucida and support a model in which human sperm–egg recognition is dependent on an N-terminal domain of ZP2, which is degraded after fertilization to provide a definitive block to polyspermy. PMID:22734000
Gomes, Karin M; Souza, Renan P; Valvassori, Samira S; Réus, Gislaine Z; Inácio, Cecília G; Martins, Márcio R; Comim, Clarissa M; Quevedo, João
2009-11-01
In this study age-, circadian rhythm- and methylphenidate administration- effect on open field habituation and object recognition were analyzed. Young and adult male Wistar rats were treated with saline or methylphenidate 2.0 mg/kg for 28 days. Experiments were performed during the light and the dark cycle. Locomotor activity was significantly altered by circadian cycle and methylphenidate treatment during the training session and by drug treatment during the testing session. Exploratory activity was significantly modulated by age during the training session and by age and drug treatment during the testing session. Object recognition memory was altered by cycle at the training session; by age 1.5 h later and by cycle and age 24 h after the training session. These results show that methylphenidate treatment was the major modulator factor on open-field test while cycle and age had an important effect on object recognition experiment.
The representation of object viewpoint in human visual cortex.
Andresen, David R; Vinberg, Joakim; Grill-Spector, Kalanit
2009-04-01
Understanding the nature of object representations in the human brain is critical for understanding the neural basis of invariant object recognition. However, the degree to which object representations are sensitive to object viewpoint is unknown. Using fMRI we employed a parametric approach to examine the sensitivity to object view as a function of rotation (0 degrees-180 degrees ), category (animal/vehicle) and fMRI-adaptation paradigm (short or long-lagged). For both categories and fMRI-adaptation paradigms, object-selective regions recovered from adaptation when a rotated view of an object was shown after adaptation to a specific view of that object, suggesting that representations are sensitive to object rotation. However, we found evidence for differential representations across categories and ventral stream regions. Rotation cross-adaptation was larger for animals than vehicles, suggesting higher sensitivity to vehicle than animal rotation, and was largest in the left fusiform/occipito-temporal sulcus (pFUS/OTS), suggesting that this region has low sensitivity to rotation. Moreover, right pFUS/OTS and FFA responded more strongly to front than back views of animals (without adaptation) and rotation cross-adaptation depended both on the level of rotation and the adapting view. This result suggests a prevalence of neurons that prefer frontal views of animals in fusiform regions. Using a computational model of view-tuned neurons, we demonstrate that differential neural view tuning widths and relative distributions of neural-tuned populations in fMRI voxels can explain the fMRI results. Overall, our findings underscore the utility of parametric approaches for studying the neural basis of object invariance and suggest that there is no complete invariance to object view in the human ventral stream.
Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun
2018-01-01
Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition. PMID:29786665
Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun
2018-05-22
Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition.
NASA Astrophysics Data System (ADS)
Millán, María S.
2012-10-01
On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.
Object Detection Applied to Indoor Environments for Mobile Robot Navigation.
Hernández, Alejandra Carolina; Gómez, Clara; Crespo, Jonathan; Barber, Ramón
2016-07-28
To move around the environment, human beings depend on sight more than their other senses, because it provides information about the size, shape, color and position of an object. The increasing interest in building autonomous mobile systems makes the detection and recognition of objects in indoor environments a very important and challenging task. In this work, a vision system to detect objects considering usual human environments, able to work on a real mobile robot, is developed. In the proposed system, the classification method used is Support Vector Machine (SVM) and as input to this system, RGB and depth images are used. Different segmentation techniques have been applied to each kind of object. Similarly, two alternatives to extract features of the objects are explored, based on geometric shape descriptors and bag of words. The experimental results have demonstrated the usefulness of the system for the detection and location of the objects in indoor environments. Furthermore, through the comparison of two proposed methods for extracting features, it has been determined which alternative offers better performance. The final results have been obtained taking into account the proposed problem and that the environment has not been changed, that is to say, the environment has not been altered to perform the tests.
Object Detection Applied to Indoor Environments for Mobile Robot Navigation
Hernández, Alejandra Carolina; Gómez, Clara; Crespo, Jonathan; Barber, Ramón
2016-01-01
To move around the environment, human beings depend on sight more than their other senses, because it provides information about the size, shape, color and position of an object. The increasing interest in building autonomous mobile systems makes the detection and recognition of objects in indoor environments a very important and challenging task. In this work, a vision system to detect objects considering usual human environments, able to work on a real mobile robot, is developed. In the proposed system, the classification method used is Support Vector Machine (SVM) and as input to this system, RGB and depth images are used. Different segmentation techniques have been applied to each kind of object. Similarly, two alternatives to extract features of the objects are explored, based on geometric shape descriptors and bag of words. The experimental results have demonstrated the usefulness of the system for the detection and location of the objects in indoor environments. Furthermore, through the comparison of two proposed methods for extracting features, it has been determined which alternative offers better performance. The final results have been obtained taking into account the proposed problem and that the environment has not been changed, that is to say, the environment has not been altered to perform the tests. PMID:27483264
Salience of the lambs: a test of the saliency map hypothesis with pictures of emotive objects.
Humphrey, Katherine; Underwood, Geoffrey; Lambert, Tony
2012-01-25
Humans have an ability to rapidly detect emotive stimuli. However, many emotional objects in a scene are also highly visually salient, which raises the question of how dependent the effects of emotionality are on visual saliency and whether the presence of an emotional object changes the power of a more visually salient object in attracting attention. Participants were shown a set of positive, negative, and neutral pictures and completed recall and recognition memory tests. Eye movement data revealed that visual saliency does influence eye movements, but the effect is reliably reduced when an emotional object is present. Pictures containing negative objects were recognized more accurately and recalled in greater detail, and participants fixated more on negative objects than positive or neutral ones. Initial fixations were more likely to be on emotional objects than more visually salient neutral ones, suggesting that the processing of emotional features occurs at a very early stage of perception.
Satterthwaite, Theodore D.; Wolf, Daniel H.; Loughead, James; Ruparel, Kosha; Valdez, Jeffrey N.; Siegel, Steven J.; Kohler, Christian G.; Gur, Raquel E.; Gur, Ruben C.
2014-01-01
Objective Recognition memory of faces is impaired in patients with schizophrenia, as is the neural processing of threat-related signals, but how these deficits interact to produce symptoms is unclear. Here we used an affective face recognition paradigm to examine possible interactions between cognitive and affective neural systems in schizophrenia. Methods fMRI (3T) BOLD response was examined in 21 controls and 16 patients during a two-choice recognition task using images of human faces. Each target face had previously been displayed with a threatening or non-threatening affect, but here were displayed with neutral affect. Responses to successful recognition and for the effect of previously threatening vs. non-threatening affect were evaluated, and correlations with total BPRS examined. Functional connectivity analyses examined the relationship between activation in the amygdala and cortical regions involved in recognition memory. Results Patients performed the task more slowly than controls. Controls recruited the expected cortical regions to a greater degree than patients, and patients with more severe symptoms demonstrated proportionally less recruitment. Increased symptoms were also correlated with augmented amygdala and orbitofrontal cortex response to threatening faces. Controls exhibited a negative correlation between activity in the amygdala and cortical regions involved in cognition, while patients showed a weakening of that relationship. Conclusions Increased symptoms were related to an enhanced threat response in limbic regions and a diminished recognition memory response in cortical regions, supporting a link between two brain systems often examined in isolation. This finding suggests that abnormal processing of threat-related signals in the environment may exacerbate cognitive impairment in schizophrenia. PMID:20194482
2015-09-02
human behavior. In this project, we hypothesized that visual memory of past motion trajectories may be used for selecting future behavior. In other...34Decoding sequence of actions using fMRI ", Society for Neuroscience Annual Meeting, San Diego, CA, USA, Nov 9-13 2013 (only abstract) 3. Hansol Choi, Dae...Shik Kim, "Planning as inference in a Hierarchical Predictive Memory ", Proceedings of International Conference on Neural Information Processing
Sleep, Torpor and Memory Impairment
NASA Astrophysics Data System (ADS)
Palchykova, S.; Tobler, I.
It is now well known that daily torpor induces a sleep deficit. Djungarian hamsters emerging from this hypometabolic state spend most of the time in sleep. This sleep is characterized by high initial values of EEG slow-wave activity (SWA) that monotonically decline during recovery sleep. These features resemble the changes seen in numerous species during recovery after prolonged wakefulness or sleep deprivation (SD). When hamsters are totally or partially sleep deprived immediately after emerging from torpor, an additional increase in SWA can be induced. It has been therefore postulated, that these slow- waves are homeostatically regulated, as predicted by the two-process model of sleep regulation, and that during daily torpor a sleep deficit is accumulated as it is during prolonged waking. The predominance of SWA in the frontal EEG observed both after SD and daily torpor provides further evidence for the similarity of these conditions. It has been shown in several animal and human studies that sleep can enhance memory consolidation, and that SD leads to memory impairment. Preliminary data obtained in the Djungarian hamster showed that both SD and daily torpor result in object recognition deficits. Thus, animals subjected to SD immediately after learning, or if they underwent an episode of daily torpor between learning and retention, displayed impaired recognition memory for complex object scenes. The investigation of daily torpor can reveal mechanisms that could have important implications for hypometabolic state induction in other mammalian species, including humans.
Linear and Non-Linear Visual Feature Learning in Rat and Humans
Bossens, Christophe; Op de Beeck, Hans P.
2016-01-01
The visual system processes visual input in a hierarchical manner in order to extract relevant features that can be used in tasks such as invariant object recognition. Although typically investigated in primates, recent work has shown that rats can be trained in a variety of visual object and shape recognition tasks. These studies did not pinpoint the complexity of the features used by these animals. Many tasks might be solved by using a combination of relatively simple features which tend to be correlated. Alternatively, rats might extract complex features or feature combinations which are nonlinear with respect to those simple features. In the present study, we address this question by starting from a small stimulus set for which one stimulus-response mapping involves a simple linear feature to solve the task while another mapping needs a well-defined nonlinear combination of simpler features related to shape symmetry. We verified computationally that the nonlinear task cannot be trivially solved by a simple V1-model. We show how rats are able to solve the linear feature task but are unable to acquire the nonlinear feature. In contrast, humans are able to use the nonlinear feature and are even faster in uncovering this solution as compared to the linear feature. The implications for the computational capabilities of the rat visual system are discussed. PMID:28066201
Human Activity Recognition from Body Sensor Data using Deep Learning.
Hassan, Mohammad Mehedi; Huda, Shamsul; Uddin, Md Zia; Almogren, Ahmad; Alrubaian, Majed
2018-04-16
In recent years, human activity recognition from body sensor data or wearable sensor data has become a considerable research attention from academia and health industry. This research can be useful for various e-health applications such as monitoring elderly and physical impaired people at Smart home to improve their rehabilitation processes. However, it is not easy to accurately and automatically recognize physical human activity through wearable sensors due to the complexity and variety of body activities. In this paper, we address the human activity recognition problem as a classification problem using wearable body sensor data. In particular, we propose to utilize a Deep Belief Network (DBN) model for successful human activity recognition. First, we extract the important initial features from the raw body sensor data. Then, a kernel principal component analysis (KPCA) and linear discriminant analysis (LDA) are performed to further process the features and make them more robust to be useful for fast activity recognition. Finally, the DBN is trained by these features. Various experiments were performed on a real-world wearable sensor dataset to verify the effectiveness of the deep learning algorithm. The results show that the proposed DBN outperformed other algorithms and achieves satisfactory activity recognition performance.
Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L; Schwandt, Melanie; Heilig, Markus
2010-11-01
Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9-15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Dong, Zhen; Liu, Yuan; Liang, Fuxun; Wang, Yongjun
2017-04-01
In recent years, updating the inventory of road infrastructures based on field work is labor intensive, time consuming, and costly. Fortunately, vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. However, robust recognition of road facilities from huge volumes of 3D point clouds is still a challenging issue because of complicated and incomplete structures, occlusions and varied point densities. Most existing methods utilize point or object based features to recognize object candidates, and can only extract limited types of objects with a relatively low recognition rate, especially for incomplete and small objects. To overcome these drawbacks, this paper proposes a semantic labeling framework by combing multiple aggregation levels (point-segment-object) of features and contextual features to recognize road facilities, such as road surfaces, road boundaries, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, and cars, for highway infrastructure inventory. The proposed method first identifies ground and non-ground points, and extracts road surfaces facilities from ground points. Non-ground points are segmented into individual candidate objects based on the proposed multi-rule region growing method. Then, the multiple aggregation levels of features and the contextual features (relative positions, relative directions, and spatial patterns) associated with each candidate object are calculated and fed into a SVM classifier to label the corresponding candidate object. The recognition performance of combining multiple aggregation levels and contextual features was compared with single level (point, segment, or object) based features using large-scale highway scene point clouds. Comparative studies demonstrated that the proposed semantic labeling framework significantly improves road facilities recognition precision (90.6%) and recall (91.2%), particularly for incomplete and small objects.
Neurocomputational bases of object and face recognition.
Biederman, I; Kalocsai, P
1997-01-01
A number of behavioural phenomena distinguish the recognition of faces and objects, even when members of a set of objects are highly similar. Because faces have the same parts in approximately the same relations, individuation of faces typically requires specification of the metric variation in a holistic and integral representation of the facial surface. The direct mapping of a hypercolumn-like pattern of activation onto a representation layer that preserves relative spatial filter values in a two-dimensional (2D) coordinate space, as proposed by C. von der Malsburg and his associates, may account for many of the phenomena associated with face recognition. An additional refinement, in which each column of filters (termed a 'jet') is centred on a particular facial feature (or fiducial point), allows selectivity of the input into the holistic representation to avoid incorporation of occluding or nearby surfaces. The initial hypercolumn representation also characterizes the first stage of object perception, but the image variation for objects at a given location in a 2D coordinate space may be too great to yield sufficient predictability directly from the output of spatial kernels. Consequently, objects can be represented by a structural description specifying qualitative (typically, non-accidental) characterizations of an object's parts, the attributes of the parts, and the relations among the parts, largely based on orientation and depth discontinuities (as shown by Hummel & Biederman). A series of experiments on the name priming or physical matching of complementary images (in the Fourier domain) of objects and faces documents that whereas face recognition is strongly dependent on the original spatial filter values, evidence from object recognition indicates strong invariance to these values, even when distinguishing among objects that are as similar as faces. PMID:9304687
Herring, Nicole R; Schaefer, Tori L; Gudelsky, Gary A; Vorhees, Charles V; Williams, Michael T
2008-09-01
Methamphetamine (MA) has been implicated in cognitive deficits in humans after chronic use. Animal models of neurotoxic MA exposure reveal persistent damage to monoaminergic systems but few associated cognitive effects. Since questions have been raised about the typical neurotoxic dosing regimen used in animals and whether it adequately models human cumulative drug exposure, these experiments examined two different dosing regimens. Rats were treated with one of the two regimens: one based on the typical neurotoxic regimen (4 x 10 mg/kg every 2 h) and one based on pharmacokinetic modeling (Cho AK, Melega WP, Kuczenski R, Segal DS Synapse 39:161-166, 2001) designed to better represent accumulating plasma concentrations of MA as seen in human users (24 x 1.67 mg/kg once every 15 min) matched for total daily dose. In two separate experiments, dosing regimens were compared for their effects on markers of neurotoxicity or on behavior. On markers of neurotoxicity, MA showed decreased dopamine (DA) and 5-HT, increased glial fibrillary acidic protein, and increased corticosterone levels regardless of dosing regimen 3 days post-treatment. Behaviorally, MA-treated groups, regardless of dosing regimen, showed hypoactivity, increased initial hyperactivity to a subsequent MA challenge, impaired novel object recognition, impaired learning in a multiple T water maze test of path integration, and no differences on spatial navigation or reference memory in the Morris water maze. After behavioral testing, reductions of DA and 5-HT remained. MA treatment induces an effect on path integration learning not previously reported. Dosing regimen had no differential effects on behavior or neurotoxicity.
Episodic Reasoning for Vision-Based Human Action Recognition
Martinez-del-Rincon, Jesus
2014-01-01
Smart Spaces, Ambient Intelligence, and Ambient Assisted Living are environmental paradigms that strongly depend on their capability to recognize human actions. While most solutions rest on sensor value interpretations and video analysis applications, few have realized the importance of incorporating common-sense capabilities to support the recognition process. Unfortunately, human action recognition cannot be successfully accomplished by only analyzing body postures. On the contrary, this task should be supported by profound knowledge of human agency nature and its tight connection to the reasons and motivations that explain it. The combination of this knowledge and the knowledge about how the world works is essential for recognizing and understanding human actions without committing common-senseless mistakes. This work demonstrates the impact that episodic reasoning has in improving the accuracy of a computer vision system for human action recognition. This work also presents formalization, implementation, and evaluation details of the knowledge model that supports the episodic reasoning. PMID:24959602
Decoding ensemble activity from neurophysiological recordings in the temporal cortex.
Kreiman, Gabriel
2011-01-01
We study subjects with pharmacologically intractable epilepsy who undergo semi-chronic implantation of electrodes for clinical purposes. We record physiological activity from tens to more than one hundred electrodes implanted in different parts of neocortex. These recordings provide higher spatial and temporal resolution than non-invasive measures of human brain activity. Here we discuss our efforts to develop hardware and algorithms to interact with the human brain by decoding ensemble activity in single trials. We focus our discussion on decoding visual information during a variety of visual object recognition tasks but the same technologies and algorithms can also be directly applied to other cognitive phenomena.
Genetic specificity of face recognition.
Shakeshaft, Nicholas G; Plomin, Robert
2015-10-13
Specific cognitive abilities in diverse domains are typically found to be highly heritable and substantially correlated with general cognitive ability (g), both phenotypically and genetically. Recent twin studies have found the ability to memorize and recognize faces to be an exception, being similarly heritable but phenotypically substantially uncorrelated both with g and with general object recognition. However, the genetic relationships between face recognition and other abilities (the extent to which they share a common genetic etiology) cannot be determined from phenotypic associations. In this, to our knowledge, first study of the genetic associations between face recognition and other domains, 2,000 18- and 19-year-old United Kingdom twins completed tests assessing their face recognition, object recognition, and general cognitive abilities. Results confirmed the substantial heritability of face recognition (61%), and multivariate genetic analyses found that most of this genetic influence is unique and not shared with other cognitive abilities.
Genetic specificity of face recognition
Shakeshaft, Nicholas G.; Plomin, Robert
2015-01-01
Specific cognitive abilities in diverse domains are typically found to be highly heritable and substantially correlated with general cognitive ability (g), both phenotypically and genetically. Recent twin studies have found the ability to memorize and recognize faces to be an exception, being similarly heritable but phenotypically substantially uncorrelated both with g and with general object recognition. However, the genetic relationships between face recognition and other abilities (the extent to which they share a common genetic etiology) cannot be determined from phenotypic associations. In this, to our knowledge, first study of the genetic associations between face recognition and other domains, 2,000 18- and 19-year-old United Kingdom twins completed tests assessing their face recognition, object recognition, and general cognitive abilities. Results confirmed the substantial heritability of face recognition (61%), and multivariate genetic analyses found that most of this genetic influence is unique and not shared with other cognitive abilities. PMID:26417086
Bekinschtein, Pedro; Renner, Maria Constanza; Gonzalez, Maria Carolina; Weisstaub, Noelia
2013-10-02
Often, retrieval cues are not uniquely related to one specific memory, which could lead to memory interference. Controlling interference is particularly important during episodic memory retrieval or when remembering specific events in a spatiotemporal context. Despite a clear involvement of prefrontal cortex (PFC) in episodic memory in human studies, information regarding the mechanisms and neurotransmitter systems in PFC involved in memory is scarce. Although the serotoninergic system has been linked to PFC functionality and modulation, its role in memory processing is poorly understood. We hypothesized that the serotoninergic system in PFC, in particular the 5-HT2A receptor (5-HT2AR) could have a role in the control of memory retrieval. In this work we used different versions of the object recognition task in rats to study the role of the serotoninergic modulation in the medial PFC (mPFC) in memory retrieval. We found that blockade of 5-HT2AR in mPFC affects retrieval of an object in context memory in a spontaneous novelty preference task, while sparing single-item recognition memory. We also determined that 5-HT2ARs in mPFC are required for hippocampal-mPFC interaction during retrieval of this type of memory, suggesting that the mPFC controls the expression of memory traces stored in the hippocampus biasing retrieval to the most relevant one.
Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia.
Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo
2011-01-25
The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.
Deficits in Long-Term Recognition Memory Reveal Dissociated Subtypes in Congenital Prosopagnosia
Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo
2011-01-01
The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception. PMID:21283572
Figure-ground organization and object recognition processes: an interactive account.
Vecera, S P; O'Reilly, R C
1998-04-01
Traditional bottom-up models of visual processing assume that figure-ground organization precedes object recognition. This assumption seems logically necessary: How can object recognition occur before a region is labeled as figure? However, some behavioral studies find that familiar regions are more likely to be labeled figure than less familiar regions, a problematic finding for bottom-up models. An interactive account is proposed in which figure-ground processes receive top-down input from object representations in a hierarchical system. A graded, interactive computational model is presented that accounts for behavioral results in which familiarity effects are found. The interactive model offers an alternative conception of visual processing to bottom-up models.
Orientation estimation of anatomical structures in medical images for object recognition
NASA Astrophysics Data System (ADS)
Bağci, Ulaş; Udupa, Jayaram K.; Chen, Xinjian
2011-03-01
Recognition of anatomical structures is an important step in model based medical image segmentation. It provides pose estimation of objects and information about "where" roughly the objects are in the image and distinguishing them from other object-like entities. In,1 we presented a general method of model-based multi-object recognition to assist in segmentation (delineation) tasks. It exploits the pose relationship that can be encoded, via the concept of ball scale (b-scale), between the binary training objects and their associated grey images. The goal was to place the model, in a single shot, close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. Unlike position and scale parameters, we observe that orientation parameters require more attention when estimating the pose of the model as even small differences in orientation parameters can lead to inappropriate recognition. Motivated from the non-Euclidean nature of the pose information, we propose in this paper the use of non-Euclidean metrics to estimate orientation of the anatomical structures for more accurate recognition and segmentation. We statistically analyze and evaluate the following metrics for orientation estimation: Euclidean, Log-Euclidean, Root-Euclidean, Procrustes Size-and-Shape, and mean Hermitian metrics. The results show that mean Hermitian and Cholesky decomposition metrics provide more accurate orientation estimates than other Euclidean and non-Euclidean metrics.
Cultural differences in visual object recognition in 3-year-old children
Kuwabara, Megumi; Smith, Linda B.
2016-01-01
Recent research indicates that culture penetrates fundamental processes of perception and cognition (e.g. Nisbett & Miyamoto, 2005). Here, we provide evidence that these influences begin early and influence how preschool children recognize common objects. The three tasks (n=128) examined the degree to which nonface object recognition by 3 year olds was based on individual diagnostic features versus more configural and holistic processing. Task 1 used a 6-alternative forced choice task in which children were asked to find a named category in arrays of masked objects in which only 3 diagnostic features were visible for each object. U.S. children outperformed age-matched Japanese children. Task 2 presented pictures of objects to children piece by piece. U.S. children recognized the objects given fewer pieces than Japanese children and likelihood of recognition increased for U.S., but not Japanese children when the piece added was rated by both U.S. and Japanese adults as highly defining. Task 3 used a standard measure of configural progressing, asking the degree to which recognition of matching pictures was disrupted by the rotation of one picture. Japanese children’s recognition was more disrupted by inversion than was that of U.S. children, indicating more configural processing by Japanese than U.S. children. The pattern suggests early cross-cultural differences in visual processing; findings that raise important questions about how visual experiences differ across cultures and about universal patterns of cognitive development. PMID:26985576
Cultural differences in visual object recognition in 3-year-old children.
Kuwabara, Megumi; Smith, Linda B
2016-07-01
Recent research indicates that culture penetrates fundamental processes of perception and cognition. Here, we provide evidence that these influences begin early and influence how preschool children recognize common objects. The three tasks (N=128) examined the degree to which nonface object recognition by 3-year-olds was based on individual diagnostic features versus more configural and holistic processing. Task 1 used a 6-alternative forced choice task in which children were asked to find a named category in arrays of masked objects where only three diagnostic features were visible for each object. U.S. children outperformed age-matched Japanese children. Task 2 presented pictures of objects to children piece by piece. U.S. children recognized the objects given fewer pieces than Japanese children, and the likelihood of recognition increased for U.S. children, but not Japanese children, when the piece added was rated by both U.S. and Japanese adults as highly defining. Task 3 used a standard measure of configural progressing, asking the degree to which recognition of matching pictures was disrupted by the rotation of one picture. Japanese children's recognition was more disrupted by inversion than was that of U.S. children, indicating more configural processing by Japanese than U.S. children. The pattern suggests early cross-cultural differences in visual processing; findings that raise important questions about how visual experiences differ across cultures and about universal patterns of cognitive development. Copyright © 2016 Elsevier Inc. All rights reserved.
Associative (prosop)agnosia without (apparent) perceptual deficits: a case-study.
Anaki, David; Kaufman, Yakir; Freedman, Morris; Moscovitch, Morris
2007-04-09
In associative agnosia early perceptual processing of faces or objects are considered to be intact, while the ability to access stored semantic information about the individual face or object is impaired. Recent claims, however, have asserted that associative agnosia is also characterized by deficits at the perceptual level, which are too subtle to be detected by current neuropsychological tests. Thus, the impaired identification of famous faces or common objects in associative agnosia stems from difficulties in extracting the minute perceptual details required to identify a face or an object. In the present study, we report the case of a patient DBO with a left occipital infarct, who shows impaired object and famous face recognition. Despite his disability, he exhibits a face inversion effect, and is able to select a famous face from among non-famous distractors. In addition, his performance is normal in an immediate and delayed recognition memory for faces, whose external features were deleted. His deficits in face recognition are apparent only when he is required to name a famous face, or select two faces from among a triad of famous figures based on their semantic relationships (a task which does not require access to names). The nature of his deficits in object perception and recognition are similar to his impairments in the face domain. This pattern of behavior supports the notion that apperceptive and associative agnosia reflect distinct and dissociated deficits, which result from damage to different stages of the face and object recognition process.
NASA Astrophysics Data System (ADS)
Yellen, H. W.
1983-03-01
Literature pertaining to Voice Recognition abounds with information relevant to the assessment of transitory speech recognition devices. In the past, engineering requirements have dictated the path this technology followed. But, other factors do exist that influence recognition accuracy. This thesis explores the impact of Human Factors on the successful recognition of speech, principally addressing the differences or variability among users. A Threshold Technology T-600 was used for a 100 utterance vocubalary to test 44 subjects. A statistical analysis was conducted on 5 generic categories of Human Factors: Occupational, Operational, Psychological, Physiological and Personal. How the equipment is trained and the experience level of the speaker were found to be key characteristics influencing recognition accuracy. To a lesser extent computer experience, time or week, accent, vital capacity and rate of air flow, speaker cooperativeness and anxiety were found to affect overall error rates.
Multi-objects recognition for distributed intelligent sensor networks
NASA Astrophysics Data System (ADS)
He, Haibo; Chen, Sheng; Cao, Yuan; Desai, Sachi; Hohil, Myron E.
2008-04-01
This paper proposes an innovative approach for multi-objects recognition for homeland security and defense based intelligent sensor networks. Unlike the conventional way of information analysis, data mining in such networks is typically characterized with high information ambiguity/uncertainty, data redundancy, high dimensionality and real-time constrains. Furthermore, since a typical military based network normally includes multiple mobile sensor platforms, ground forces, fortified tanks, combat flights, and other resources, it is critical to develop intelligent data mining approaches to fuse different information resources to understand dynamic environments, to support decision making processes, and finally to achieve the goals. This paper aims to address these issues with a focus on multi-objects recognition. Instead of classifying a single object as in the traditional image classification problems, the proposed method can automatically learn multiple objectives simultaneously. Image segmentation techniques are used to identify the interesting regions in the field, which correspond to multiple objects such as soldiers or tanks. Since different objects will come with different feature sizes, we propose a feature scaling method to represent each object in the same number of dimensions. This is achieved by linear/nonlinear scaling and sampling techniques. Finally, support vector machine (SVM) based learning algorithms are developed to learn and build the associations for different objects, and such knowledge will be adaptively accumulated for objects recognition in the testing stage. We test the effectiveness of proposed method in different simulated military environments.
Grouping in object recognition: the role of a Gestalt law in letter identification.
Pelli, Denis G; Majaj, Najib J; Raizman, Noah; Christian, Christopher J; Kim, Edward; Palomares, Melanie C
2009-02-01
The Gestalt psychologists reported a set of laws describing how vision groups elements to recognize objects. The Gestalt laws "prescribe for us what we are to recognize 'as one thing'" (Kohler, 1920). Were they right? Does object recognition involve grouping? Tests of the laws of grouping have been favourable, but mostly assessed only detection, not identification, of the compound object. The grouping of elements seen in the detection experiments with lattices and "snakes in the grass" is compelling, but falls far short of the vivid everyday experience of recognizing a familiar, meaningful, named thing, which mediates the ordinary identification of an object. Thus, after nearly a century, there is hardly any evidence that grouping plays a role in ordinary object recognition. To assess grouping in object recognition, we made letters out of grating patches and measured threshold contrast for identifying these letters in visual noise as a function of perturbation of grating orientation, phase, and offset. We define a new measure, "wiggle", to characterize the degree to which these various perturbations violate the Gestalt law of good continuation. We find that efficiency for letter identification is inversely proportional to wiggle and is wholly determined by wiggle, independent of how the wiggle was produced. Thus the effects of three different kinds of shape perturbation on letter identifiability are predicted by a single measure of goodness of continuation. This shows that letter identification obeys the Gestalt law of good continuation and may be the first confirmation of the original Gestalt claim that object recognition involves grouping.
Visual memory in unilateral spatial neglect: immediate recall versus delayed recognition.
Moreh, Elior; Malkinson, Tal Seidel; Zohary, Ehud; Soroker, Nachum
2014-09-01
Patients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center. Unlike healthy controls, USN patients showed a left-side disadvantage and a vertical bias in the immediate free recall task (69% vs. 42% recall for right- and left-sided objects, respectively). In the recognition task, the patients correctly recognized half of "old" items, and their correct rejection rate was 95.5%. Importantly, when the analysis focused on previously recalled items (in the immediate task), no statistically significant difference was found in the delayed recognition of objects according to their original quadrant of presentation. Furthermore, USN patients were able to recollect the correct original location of the recognized objects in 60% of the cases, well beyond chance level. This suggests that the memory trace formed in these cases was not only semantic but also contained a visuospatial tag. Finally, successful recognition of objects missed in recall trials points to formation of memory traces for neglected contralesional objects, which may become accessible to retrieval processes in explicit memory.
Grouping in object recognition: The role of a Gestalt law in letter identification
Pelli, Denis G.; Majaj, Najib J.; Raizman, Noah; Christian, Christopher J.; Kim, Edward; Palomares, Melanie C.
2009-01-01
The Gestalt psychologists reported a set of laws describing how vision groups elements to recognize objects. The Gestalt laws “prescribe for us what we are to recognize ‘as one thing’” (Köhler, 1920). Were they right? Does object recognition involve grouping? Tests of the laws of grouping have been favourable, but mostly assessed only detection, not identification, of the compound object. The grouping of elements seen in the detection experiments with lattices and “snakes in the grass” is compelling, but falls far short of the vivid everyday experience of recognizing a familiar, meaningful, named thing, which mediates the ordinary identification of an object. Thus, after nearly a century, there is hardly any evidence that grouping plays a role in ordinary object recognition. To assess grouping in object recognition, we made letters out of grating patches and measured threshold contrast for identifying these letters in visual noise as a function of perturbation of grating orientation, phase, and offset. We define a new measure, “wiggle”, to characterize the degree to which these various perturbations violate the Gestalt law of good continuation. We find that efficiency for letter identification is inversely proportional to wiggle and is wholly determined by wiggle, independent of how the wiggle was produced. Thus the effects of three different kinds of shape perturbation on letter identifiability are predicted by a single measure of goodness of continuation. This shows that letter identification obeys the Gestalt law of good continuation and may be the first confirmation of the original Gestalt claim that object recognition involves grouping. PMID:19424881
Pitsikas, Nikolaos; Sakellaridis, Nikolaos
2007-10-01
The effects of the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist memantine on recognition memory were investigated in the rat by using the object recognition task. In addition, a possible interaction between memantine and the nitric oxide (NO) donor molsidomine in antagonizing extinction of recognition memory was also evaluated utilizing the same behavioral procedure. In a first dose-response study, post-training administration of memantine (10 and 20, but not 3 mg/kg) antagonized recognition memory deficits in the rat, suggesting that memantine modulates storage and/or retrieval of information. In a subsequent study, combination of sub-threshold doses of memantine (3 mg/kg) and the NO donor molsidomine (1 mg/kg) counteracted delay-dependent impairments in the same task. Neither memantine (3 mg/kg) nor molsidomine (1 mg/kg) alone reduced object recognition performance deficits. The present findings indicate a) that memantine is involved in recognition memory and b) support a functional interaction between memantine and molsidomine on recognition memory mechanisms.
Tian, Moqian; Grill-Spector, Kalanit
2015-01-01
Recognizing objects is difficult because it requires both linking views of an object that can be different and distinguishing objects with similar appearance. Interestingly, people can learn to recognize objects across views in an unsupervised way, without feedback, just from the natural viewing statistics. However, there is intense debate regarding what information during unsupervised learning is used to link among object views. Specifically, researchers argue whether temporal proximity, motion, or spatiotemporal continuity among object views during unsupervised learning is beneficial. Here, we untangled the role of each of these factors in unsupervised learning of novel three-dimensional (3-D) objects. We found that after unsupervised training with 24 object views spanning a 180° view space, participants showed significant improvement in their ability to recognize 3-D objects across rotation. Surprisingly, there was no advantage to unsupervised learning with spatiotemporal continuity or motion information than training with temporal proximity. However, we discovered that when participants were trained with just a third of the views spanning the same view space, unsupervised learning via spatiotemporal continuity yielded significantly better recognition performance on novel views than learning via temporal proximity. These results suggest that while it is possible to obtain view-invariant recognition just from observing many views of an object presented in temporal proximity, spatiotemporal information enhances performance by producing representations with broader view tuning than learning via temporal association. Our findings have important implications for theories of object recognition and for the development of computational algorithms that learn from examples. PMID:26024454
Multiple degree of freedom optical pattern recognition
NASA Technical Reports Server (NTRS)
Casasent, D.
1987-01-01
Three general optical approaches to multiple degree of freedom object pattern recognition (where no stable object rest position exists) are advanced. These techniques include: feature extraction, correlation, and artificial intelligence. The details of the various processors are advanced together with initial results.
Products recognition on shop-racks from local scale-invariant features
NASA Astrophysics Data System (ADS)
Zawistowski, Jacek; Kurzejamski, Grzegorz; Garbat, Piotr; Naruniec, Jacek
2016-04-01
This paper presents a system designed for the multi-object detection purposes and adjusted for the application of product search on the market shelves. System uses well known binary keypoint detection algorithms for finding characteristic points in the image. One of the main idea is object recognition based on Implicit Shape Model method. Authors of the article proposed many improvements of the algorithm. Originally fiducial points are matched with a very simple function. This leads to the limitations in the number of objects parts being success- fully separated, while various methods of classification may be validated in order to achieve higher performance. Such an extension implies research on training procedure able to deal with many objects categories. Proposed solution opens a new possibilities for many algorithms demanding fast and robust multi-object recognition.
Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention
Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei
2016-01-01
An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features. PMID:26759193
An adaptive Hidden Markov Model for activity recognition based on a wearable multi-sensor device
USDA-ARS?s Scientific Manuscript database
Human activity recognition is important in the study of personal health, wellness and lifestyle. In order to acquire human activity information from the personal space, many wearable multi-sensor devices have been developed. In this paper, a novel technique for automatic activity recognition based o...
A bio-inspired method and system for visual object-based attention and segmentation
NASA Astrophysics Data System (ADS)
Huber, David J.; Khosla, Deepak
2010-04-01
This paper describes a method and system of human-like attention and object segmentation in visual scenes that (1) attends to regions in a scene in their rank of saliency in the image, (2) extracts the boundary of an attended proto-object based on feature contours, and (3) can be biased to boost the attention paid to specific features in a scene, such as those of a desired target object in static and video imagery. The purpose of the system is to identify regions of a scene of potential importance and extract the region data for processing by an object recognition and classification algorithm. The attention process can be performed in a default, bottom-up manner or a directed, top-down manner which will assign a preference to certain features over others. One can apply this system to any static scene, whether that is a still photograph or imagery captured from video. We employ algorithms that are motivated by findings in neuroscience, psychology, and cognitive science to construct a system that is novel in its modular and stepwise approach to the problems of attention and region extraction, its application of a flooding algorithm to break apart an image into smaller proto-objects based on feature density, and its ability to join smaller regions of similar features into larger proto-objects. This approach allows many complicated operations to be carried out by the system in a very short time, approaching real-time. A researcher can use this system as a robust front-end to a larger system that includes object recognition and scene understanding modules; it is engineered to function over a broad range of situations and can be applied to any scene with minimal tuning from the user.
The effect of colour congruency on shape discriminations of novel objects.
Nicholson, Karen G; Humphrey, G Keith
2004-01-01
Although visual object recognition is primarily shape driven, colour assists the recognition of some objects. It is unclear, however, just how colour information is coded with respect to shape in long-term memory and how the availability of colour in the visual image facilitates object recognition. We examined the role of colour in the recognition of novel, 3-D objects by manipulating the congruency of object colour across the study and test phases, using an old/new shape-identification task. In experiment 1, we found that participants were faster at correctly identifying old objects on the basis of shape information when these objects were presented in their original colour, rather than in a different colour. In experiments 2 and 3, we found that participants were faster at correctly identifying old objects on the basis of shape information when these objects were presented with their original part-colour conjunctions, rather than in different or in reversed part-colour conjunctions. In experiment 4, we found that participants were quite poor at the verbal recall of part-colour conjunctions for correctly identified old objects, presented as grey-scale images at test. In experiment 5, we found that participants were significantly slower at correctly identifying old objects when object colour was incongruent across study and test, than when background colour was incongruent across study and test. The results of these experiments suggest that both shape and colour information are stored as part of the long-term representation of these novel objects. Results are discussed in terms of how colour might be coded with respect to shape in stored object representations.
Owls see in stereo much like humans do.
van der Willigen, Robert F
2011-06-10
While 3D experiences through binocular disparity sensitivity have acquired special status in the understanding of human stereo vision, much remains to be learned about how binocularity is put to use in animals. The owl provides an exceptional model to study stereo vision as it displays one of the highest degrees of binocular specialization throughout the animal kingdom. In a series of six behavioral experiments, equivalent to hallmark human psychophysical studies, I compiled an extensive body of stereo performance data from two trained owls. Computer-generated, binocular random-dot patterns were used to ensure pure stereo performance measurements. In all cases, I found that owls perform much like humans do, viz.: (1) disparity alone can evoke figure-ground segmentation; (2) selective use of "relative" rather than "absolute" disparity; (3) hyperacute sensitivity; (4) disparity processing allows for the avoidance of monocular feature detection prior to object recognition; (5) large binocular disparities are not tolerated; (6) disparity guides the perceptual organization of 2D shape. The robustness and very nature of these binocular disparity-based perceptual phenomena bear out that owls, like humans, exploit the third dimension to facilitate early figure-ground segmentation of tangible objects.
Dashniani, M G; Burjanadze, M A; Naneishvili, T L; Chkhikvishvili, N C; Beselia, G V; Kruashvili, L B; Pochkhidze, N O; Chighladze, M R
2015-01-01
In the present study, the effect of the medial septal (MS) lesions on exploratory activity in the open field and the spatial and object recognition memory has been investigated. This experiment compares three types of MS lesions: electrolytic lesions that destroy cells and fibers of passage, neurotoxic - ibotenic acid lesions that spare fibers of passage but predominantly affect the septal noncholinergic neurons, and immunotoxin - 192 IgG-saporin infusions that only eliminate cholinergic neurons. The main results are: the MS electrolytic lesioned rats were impaired in habituating to the environment in the repeated spatial environment, but rats with immuno- or neurotoxic lesions of the MS did not differ from control ones; the MS electrolytic and ibotenic acid lesioned rats showed an increase in their exploratory activity to the objects and were impaired in habituating to the objects in the repeated spatial environment; rats with immunolesions of the MS did not differ from control rats; electrolytic lesions of the MS disrupt spatial recognition memory; rats with immuno- or neurotoxic lesions of the MS were normal in detecting spatial novelty; all of the MS-lesioned and control rats clearly reacted to the object novelty by exploring the new object more than familiar ones. Results observed across lesion techniques indicate that: (i) the deficits after nonselective damage of MS are limited to a subset of cognitive processes dependent on the hippocampus, (ii) MS is substantial for spatial, but not for object recognition memory - the object recognition memory can be supported outside the septohippocampal system; (iii) the selective loss of septohippocampal cholinergic or noncholinergic projections does not disrupt the function of the hippocampus to a sufficient extent to impair spatial recognition memory; (iv) there is dissociation between the two major components (cholinergic and noncholinergic) of the septohippocampal pathway in exploratory behavior assessed in the open field - the memory exhibited by decrements in exploration of repeated object presentations is affected by either electrolytic or ibotenic lesions, but not saporin.
Picture object recognition in an American black bear (Ursus americanus).
Johnson-Ulrich, Zoe; Vonk, Jennifer; Humbyrd, Mary; Crowley, Marilyn; Wojtkowski, Ela; Yates, Florence; Allard, Stephanie
2016-11-01
Many animals have been tested for conceptual discriminations using two-dimensional images as stimuli, and many of these species appear to transfer knowledge from 2D images to analogous real life objects. We tested an American black bear for picture-object recognition using a two alternative forced choice task. She was presented with four unique sets of objects and corresponding pictures. The bear showed generalization from both objects to pictures and pictures to objects; however, her transfer was superior when transferring from real objects to pictures, suggesting that bears can recognize visual features from real objects within photographic images during discriminations.
Statistics of high-level scene context.
Greene, Michelle R
2013-01-01
CONTEXT IS CRITICAL FOR RECOGNIZING ENVIRONMENTS AND FOR SEARCHING FOR OBJECTS WITHIN THEM: contextual associations have been shown to modulate reaction time and object recognition accuracy, as well as influence the distribution of eye movements and patterns of brain activations. However, we have not yet systematically quantified the relationships between objects and their scene environments. Here I seek to fill this gap by providing descriptive statistics of object-scene relationships. A total of 48, 167 objects were hand-labeled in 3499 scenes using the LabelMe tool (Russell et al., 2008). From these data, I computed a variety of descriptive statistics at three different levels of analysis: the ensemble statistics that describe the density and spatial distribution of unnamed "things" in the scene; the bag of words level where scenes are described by the list of objects contained within them; and the structural level where the spatial distribution and relationships between the objects are measured. The utility of each level of description for scene categorization was assessed through the use of linear classifiers, and the plausibility of each level for modeling human scene categorization is discussed. Of the three levels, ensemble statistics were found to be the most informative (per feature), and also best explained human patterns of categorization errors. Although a bag of words classifier had similar performance to human observers, it had a markedly different pattern of errors. However, certain objects are more useful than others, and ceiling classification performance could be achieved using only the 64 most informative objects. As object location tends not to vary as a function of category, structural information provided little additional information. Additionally, these data provide valuable information on natural scene redundancy that can be exploited for machine vision, and can help the visual cognition community to design experiments guided by statistics rather than intuition.
Liu, Xunying; Zhang, Chao; Woodland, Phil; Fonteneau, Elisabeth
2017-01-01
There is widespread interest in the relationship between the neurobiological systems supporting human cognition and emerging computational systems capable of emulating these capacities. Human speech comprehension, poorly understood as a neurobiological process, is an important case in point. Automatic Speech Recognition (ASR) systems with near-human levels of performance are now available, which provide a computationally explicit solution for the recognition of words in continuous speech. This research aims to bridge the gap between speech recognition processes in humans and machines, using novel multivariate techniques to compare incremental ‘machine states’, generated as the ASR analysis progresses over time, to the incremental ‘brain states’, measured using combined electro- and magneto-encephalography (EMEG), generated as the same inputs are heard by human listeners. This direct comparison of dynamic human and machine internal states, as they respond to the same incrementally delivered sensory input, revealed a significant correspondence between neural response patterns in human superior temporal cortex and the structural properties of ASR-derived phonetic models. Spatially coherent patches in human temporal cortex responded selectively to individual phonetic features defined on the basis of machine-extracted regularities in the speech to lexicon mapping process. These results demonstrate the feasibility of relating human and ASR solutions to the problem of speech recognition, and suggest the potential for further studies relating complex neural computations in human speech comprehension to the rapidly evolving ASR systems that address the same problem domain. PMID:28945744
Object recognition with hierarchical discriminant saliency networks.
Han, Sunhyoung; Vasconcelos, Nuno
2014-01-01
The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and computer vision literatures. This demonstrates benefits for all the functional enhancements of the HDSN, the class tuning inherent to discriminant saliency, and saliency layers based on templates of increasing target selectivity and invariance. Altogether, these experiments suggest that there are non-trivial benefits in integrating attention and recognition.
Lawson, Rebecca
2004-10-01
In two experiments, the identification of novel 3-D objects was worse for depth-rotated and mirror-reflected views, compared with the study view in an implicit affective preference memory task, as well as in an explicit recognition memory task. In Experiment 1, recognition was worse and preference was lower when depth-rotated views of an object were paired with an unstudied object relative to trials when the study view of that object was shown. There was a similar trend for mirror-reflected views. In Experiment 2, the study view of an object was both recognized and preferred above chance when it was paired with either depth-rotated or mirror-reflected views of that object. These results suggest that view-sensitive representations of objects mediate performance in implicit, as well as explicit, memory tasks. The findings do not support the claim that separate episodic and structural description representations underlie performance in implicit and explicit memory tasks, respectively.
Hilbig, Benjamin E; Pohl, Rüdiger F
2009-09-01
According to part of the adaptive toolbox notion of decision making known as the recognition heuristic (RH), the decision process in comparative judgments-and its duration-is determined by whether recognition discriminates between objects. By contrast, some recently proposed alternative models predict that choices largely depend on the amount of evidence speaking for each of the objects and that decision times thus depend on the evidential difference between objects, or the degree of conflict between options. This article presents 3 experiments that tested predictions derived from the RH against those from alternative models. All experiments used naturally recognized objects without teaching participants any information and thus provided optimal conditions for application of the RH. However, results supported the alternative, evidence-based models and often conflicted with the RH. Recognition was not the key determinant of decision times, whereas differences between objects with respect to (both positive and negative) evidence predicted effects well. In sum, alternative models that allow for the integration of different pieces of information may well provide a better account of comparative judgments. (c) 2009 APA, all rights reserved.
Generation, recognition, and consistent fusion of partial boundary representations from range images
NASA Astrophysics Data System (ADS)
Kohlhepp, Peter; Hanczak, Andrzej M.; Li, Gang
1994-10-01
This paper presents SOMBRERO, a new system for recognizing and locating 3D, rigid, non- moving objects from range data. The objects may be polyhedral or curved, partially occluding, touching or lying flush with each other. For data collection, we employ 2D time- of-flight laser scanners mounted to a moving gantry robot. By combining sensor and robot coordinates, we obtain 3D cartesian coordinates. Boundary representations (Brep's) provide view independent geometry models that are both efficiently recognizable and derivable automatically from sensor data. SOMBRERO's methods for generating, matching and fusing Brep's are highly synergetic. A split-and-merge segmentation algorithm with dynamic triangular builds a partial (21/2D) Brep from scattered data. The recognition module matches this scene description with a model database and outputs recognized objects, their positions and orientations, and possibly surfaces corresponding to unknown objects. We present preliminary results in scene segmentation and recognition. Partial Brep's corresponding to different range sensors or viewpoints can be merged into a consistent, complete and irredundant 3D object or scene model. This fusion algorithm itself uses the recognition and segmentation methods.
Object recognition for autonomous robot utilizing distributed knowledge database
NASA Astrophysics Data System (ADS)
Takatori, Jiro; Suzuki, Kenji; Hartono, Pitoyo; Hashimoto, Shuji
2003-10-01
In this paper we present a novel method of object recognition utilizing a remote knowledge database for an autonomous robot. The developed robot has three robot arms with different sensors; two CCD cameras and haptic sensors. It can see, touch and move the target object from different directions. Referring to remote knowledge database of geometry and material, the robot observes and handles the objects to understand them including their physical characteristics.
What Three-Year-Olds Remember from Their Past: Long-Term Memory for Persons, Objects, and Actions
ERIC Educational Resources Information Center
Hirte, Monika; Graf, Frauke; Kim, Ziyon; Knopf, Monika
2017-01-01
From birth on, infants show long-term recognition memory for persons. Furthermore, infants from six months onwards are able to store and retrieve demonstrated actions over long-term intervals in deferred imitation tasks. Thus, information about the model demonstrating the object-related actions is stored and recognition memory for the objects as…
The Dark Side of Context: Context Reinstatement Can Distort Memory.
Doss, Manoj K; Picart, Jamila K; Gallo, David A
2018-04-01
It is widely assumed that context reinstatement benefits memory, but our experiments revealed that context reinstatement can systematically distort memory. Participants viewed pictures of objects superimposed over scenes, and we later tested their ability to differentiate these old objects from similar new objects. Context reinstatement was manipulated by presenting objects on the reinstated or switched scene at test. Not only did context reinstatement increase correct recognition of old objects, but it also consistently increased incorrect recognition of similar objects as old ones. This false recognition effect was robust, as it was found in several experiments, occurred after both immediate and delayed testing, and persisted with high confidence even after participants were warned to avoid the distorting effects of context. To explain this memory illusion, we propose that context reinstatement increases the likelihood of confusing conceptual and perceptual information, potentially in medial temporal brain regions that integrate this information.