Science.gov

Sample records for human ocular cells

  1. Co-ordinated ocular development from human iPS cells and recovery of corneal function.

    PubMed

    Hayashi, Ryuhei; Ishikawa, Yuki; Sasamoto, Yuzuru; Katori, Ryosuke; Nomura, Naoki; Ichikawa, Tatsuya; Araki, Saori; Soma, Takeshi; Kawasaki, Satoshi; Sekiguchi, Kiyotoshi; Quantock, Andrew J; Tsujikawa, Motokazu; Nishida, Kohji

    2016-03-17

    The eye is a complex organ with highly specialized constituent tissues derived from different primordial cell lineages. The retina, for example, develops from neuroectoderm via the optic vesicle, the corneal epithelium is descended from surface ectoderm, while the iris and collagen-rich stroma of the cornea have a neural crest origin. Recent work with pluripotent stem cells in culture has revealed a previously under-appreciated level of intrinsic cellular self-organization, with a focus on the retina and retinal cells. Moreover, we and others have demonstrated the in vitro induction of a corneal epithelial cell phenotype from pluripotent stem cells. These studies, however, have a single, tissue-specific focus and fail to reflect the complexity of whole eye development. Here we demonstrate the generation from human induced pluripotent stem cells of a self-formed ectodermal autonomous multi-zone (SEAM) of ocular cells. In some respects the concentric SEAM mimics whole-eye development because cell location within different zones is indicative of lineage, spanning the ocular surface ectoderm, lens, neuro-retina, and retinal pigment epithelium. It thus represents a promising resource for new and ongoing studies of ocular morphogenesis. The approach also has translational potential and to illustrate this we show that cells isolated from the ocular surface ectodermal zone of the SEAM can be sorted and expanded ex vivo to form a corneal epithelium that recovers function in an experimentally induced animal model of corneal blindness.

  2. Human ocular anatomy.

    PubMed

    Kels, Barry D; Grzybowski, Andrzej; Grant-Kels, Jane M

    2015-01-01

    We review the normal anatomy of the human globe, eyelids, and lacrimal system. This contribution explores both the form and function of numerous anatomic features of the human ocular system, which are vital to a comprehensive understanding of the pathophysiology of many oculocutaneous diseases. The review concludes with a reference glossary of selective ophthalmologic terms that are relevant to a thorough understanding of many oculocutaneous disease processes.

  3. Mesenchymal Stem Cells from Human Extra Ocular Muscle Harbor Neuroectodermal Differentiation Potential

    PubMed Central

    Magdalene, Damaris; Bhattacharyya, Jina; Jaganathan, Bithiah Grace

    2016-01-01

    Mesenchymal stem cells (MSC) have been proposed as suitable candidates for cell therapy for neurological disorderssince they exhibit good neuronal differentiation capacity. However, for better therapeutic outcomes, it is necessary to isolate MSC from a suitable tissue sourcethat posses high neuronal differentiation. In this context, we isolated MSC from extra ocular muscle (EOM) tissue and tested the in vitro neuronal differentiation potential. In the current study, EOM tissue derived MSC were characterized and compared with bone marrow derived MSC. We found that EOM derived MSC proliferated as a monolayer and showed similarities in morphology, growth properties and cell surface marker expression with bone marrow derived MSC and expressed high levels of NES, OCT4, NANOG and SOX2 in its undifferentiated state. They also expressed embryonic cell surface marker SSEA4 and their intracellular mitochondrial distribution pattern was similar to that of multipotent stem cells. Although EOM derived MSC differentiated readily into adipocytes, osteocytes and chondrocytes, they differentiated more efficiently into neuroectodermal cells. The differentiation into neuroectodermal cellswas confirmed by the expression of neuronal markers NGFR and MAP2B. Thus, EOM derived MSC might be good candidates for stem cell based therapies for treating neurodegenerative diseases. PMID:27248788

  4. Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming.

    PubMed

    Poon, Ming-Wai; He, Jia; Fang, Xiaowei; Zhang, Zhao; Wang, Weixin; Wang, Junwen; Qiu, Fangfang; Tse, Hung-Fat; Li, Wei; Liu, Zuguo; Lian, Qizhou

    2015-01-01

    A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs) generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs) exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming) and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs). Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2) reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%). Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells) was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs) cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs). This cell type may also have advantages in retinal pigmented epithelial differentiation.

  5. Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming

    PubMed Central

    Fang, Xiaowei; Zhang, Zhao; Wang, Weixin; Wang, Junwen; Qiu, Fangfang; Tse, Hung-Fat; Li, Wei; Liu, Zuguo; Lian, Qizhou

    2015-01-01

    A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs) generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs) exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming) and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs). Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2) reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%). Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells) was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs) cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs). This cell type may also have advantages in retinal pigmented epithelial differentiation. PMID:26131692

  6. Epigalloccatechin-3-gallate inhibits ocular neovascularization and vascular permeability in human retinal pigment epithelial and human retinal microvascular endothelial cells via suppression of MMP-9 and VEGF activation.

    PubMed

    Lee, Hak Sung; Jun, Jae-Hyun; Jung, Eun-Ha; Koo, Bon Am; Kim, Yeong Shik

    2014-08-13

    Epigalloccatechin-3-gallate (EGCG) is the main polyphenol component of green tea (leaves of Camellia sinensis). EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play a key role in the processes of extracellular matrix (ECM) remodeling and microvascular permeability during angiogenesis. We investigated the inhibitory effects of EGCG on ocular neovascularization and vascular permeability using the retina oriented cells and animal models induced by VEGF and alkaline burn. EGCG treatment significantly decreased mRNA and protein expression levels of MMP-9 in the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA) and tumor necrosis factor alpha (TNF-α) in human retinal pigment epithelial cells (HRPECs). EGCG also effectively protected ARPE-19 cells from cell death and attenuated mRNA expressions of key angiogenic factors (MMP-9, VEGF, VEGF Receptor-2) by inhibiting generation of reactive oxygen species (ROS). EGCG significantly inhibited proliferation, vascular permeability, and tube formation in VEGF-induced human retinal microvascular endothelial cells (HRMECs). Furthermore, EGCG significantly reduced vascular leakage and permeability by blood-retinal barrier breakdown in VEGF-induced animal models. In addition, EGCG effectively limited upregulation of MMP-9 and platelet endothelial cell adhesion molecule (PECAM/CD31) on corneal neovascularization (CNV) induced by alkaline burn. Our data suggest that MMP-9 and VEGF are key therapeutic targets of EGCG for treatment and prevention of ocular angiogenic diseases such as age-related macular degeneration, diabetic retinopathy, and corneal neovascularization.

  7. Dynamic change in natural killer cell type in the human ocular mucosa in situ as means of immune evasion by adenovirus infection.

    PubMed

    Yawata, N; Selva, K J; Liu, Y-C; Tan, K P; Lee, A W L; Siak, J; Lan, W; Vania, M; Arundhati, A; Tong, L; Li, J; Mehta, J S; Yawata, M

    2016-01-01

    The most severe form of virus-induced inflammation at the ocular surface is epidemic keratoconjunctivitis (EKC), often caused by group D human adenoviruses (HAdVs). We investigated the dynamics and mechanisms of changes in natural killer (NK) cell types in the human ocular mucosal surface in situ over the course of infection. In the acute phase of infection, the mature CD56(dim)NK cells that comprise a major subpopulation in the normal human conjunctiva are replaced by CD56(bright)NK cells recruited to the ocular surface by chemokines produced by the infected epithelium, and NKG2A-expressing CD56(dim) and CD56(bright) NK cells become the major subpopulations in severe inflammation. These NK cells attracted to the mucosal surface are however incapable of mounting a strong antiviral response because of upregulation of the inhibitory ligand human leukocyte antigen-E (HLA-E) on infected epithelium. Furthermore, group D HAdVs downregulate ligands for activating NK cell receptors, thus rendering even the mature NKG2A(-)NK cells unresponsive, an immune-escape mechanism distinct from other adenoviruses. Our findings imply that the EKC-causing group D HAdVs utilize these multiple pathways to inhibit antiviral NK cell responses in the initial stages of the infection.

  8. Progenitor cells for ocular surface regenerative therapy.

    PubMed

    Casaroli-Marano, Ricardo P; Nieto-Nicolau, Nuria; Martínez-Conesa, Eva M

    2013-01-01

    The integrity and normal function of the corneal epithelium are essential for maintaining the cornea's transparency and vision. The existence of a cell population with progenitor characteristics in the limbus maintains a dynamic of constant epithelial repair and renewal. Currently, cell-based therapies for bio-replacement, such as cultured limbal epithelial transplantation and cultured oral mucosal epithelial transplantation, present very encouraging clinical results for treating limbal stem cell deficiencies. Another emerging therapeutic strategy consists of obtaining and implementing human progenitor cells of different origins using tissue engineering methods. The development of cell-based therapies using stem cells, such as human adult mesenchymal stromal cells, represents a significant breakthrough in the treatment of certain eye diseases and also offers a more rational, less invasive and more physiological approach to ocular surface regeneration. PMID:23257987

  9. Progenitor cells for ocular surface regenerative therapy.

    PubMed

    Casaroli-Marano, Ricardo P; Nieto-Nicolau, Nuria; Martínez-Conesa, Eva M

    2013-01-01

    The integrity and normal function of the corneal epithelium are essential for maintaining the cornea's transparency and vision. The existence of a cell population with progenitor characteristics in the limbus maintains a dynamic of constant epithelial repair and renewal. Currently, cell-based therapies for bio-replacement, such as cultured limbal epithelial transplantation and cultured oral mucosal epithelial transplantation, present very encouraging clinical results for treating limbal stem cell deficiencies. Another emerging therapeutic strategy consists of obtaining and implementing human progenitor cells of different origins using tissue engineering methods. The development of cell-based therapies using stem cells, such as human adult mesenchymal stromal cells, represents a significant breakthrough in the treatment of certain eye diseases and also offers a more rational, less invasive and more physiological approach to ocular surface regeneration.

  10. [Principles of treatment in ocular burns regarding the ocular surface and limbal stem cells].

    PubMed

    Potop, V; Dumitrache, Marieta

    2005-01-01

    The term ocular surface emphasizes the functional interdependence of the nonkeratinizing epithelium of cornea and conjunctiva. The limbal stem cells are responsible for replacement of corneal epithelium following ocular surface injuries. Over the past decades important advances in the management of chemical injury have occurred based on the application of theories on ocular surface and limbal stem cells. PMID:16245740

  11. Effects of benzalkonium chloride-preserved, polyquad-preserved, and sofZia-preserved topical glaucoma medications on human ocular epithelial cells.

    PubMed

    Ammar, David A; Noecker, Robert J; Kahook, Malik Y

    2010-11-01

    INTRODUCTION|: To investigate potentially adverse effects of different topical glaucoma medications and preservatives on cultured ocular epithelial cells. METHODS|: Confluent cultures of human corneal (10.014 pRSV-T) and conjunctival cells (1-5c-4) were assayed with 100 μL of different glaucoma medications for 25 minutes at 37°C and 5% CO₂. We also tested the preservative sofZia® (Alcon Laboratories, Fort Worth, TX, USA), as well as a range of concentrations of the preservative benzalkonium chloride (BAK; 0.001% to 0.050%). Balanced salt solution was used as the "live" control and a solution containing 70% methanol and 0.2% saponin was used as a "dead" control. The LIVE/DEAD viability/cytotoxicity kit (Invitrogen, Carlsbad, CA, USA) was used to determine the percentage of dead and live cells via ethidium homodimer and calcein fluorescence, respectively. RESULTS|: The toxicity of the prostaglandin analogs latanoprost, tafluprost and travoprost preserved with BAK was similar to the toxicity observed in their respective BAK concentrations. The prostaglandin analog travoprost (0.004%) preserved with the oxidizing preservative sofZia had much greater corneal and conjunctival cell survival than travoprost preserved with BAK. Travoprost (0.004%) containing polyquad also performed statistically better than its BAK-preserved formulation. CONCLUSION|: Ocular surface side effects have previously been demonstrated with chronic, long-term exposure to intraocular pressure-lowering medications containing the common preservative BAK. BAK alone has significant in-vitro cytotoxicity to cultured ocular epithelial cells. Substitution of BAK with polyquad or sofZia resulted in significantly higher percentages of live conjunctival and corneal cells. Further studies are needed to understand the- clinical implications of these findings. PMID:20931366

  12. Toxicity analysis of ocular prosthesis acrylic resin with or without pigment incorporation in human conjunctival cell line.

    PubMed

    da Silva, Emily Vivianne Freitas; Goiato, Marcelo Coelho; Bonatto, Liliane da Rocha; de Medeiros, Rodrigo Antonio; Santos, Daniela Micheline Dos; Rangel, Elidiane Cipriano; Oliveira, Sandra Helena Penha de

    2016-10-01

    The aim of this study was to evaluate the influence of pigment incorporation on the cytotoxicity of ocular prosthesis N1 color acrylic resin. Nine samples were manufactured by heat-polymerization in water bath and divided into 3 groups: acrylic resin without pigment incorporation (group R), acrylic resin with pigment incorporation (group RP), and acrylic pigment (group P). Eluates formed after 72h of sample immersion in medium were incubated with conjunctival cell line (Chang conjunctival cells) for 72h. The negative control group consisted in medium without samples (group C). The cytotoxic effect from the eluates was evaluated using MTT assay (cell proliferation), ELISA assay (quantification of IL1β, IL6, TNF α and CCL3/MIP1α) and RT-PCR assay (mRNA expression of COL IV, TGF β and MMP9). Data were submitted to ANOVA with Bonferroni post-tests (p<0.05). All groups were considered non-cytotoxic based on cell proliferation. However, resin with pigment incorporation showed significant IL6 quantity increase. Resin without pigment incorporation exhibited higher mRNA expression of COL IV, MMP9 and TGF β, however it was also observed for the negative control group. The materials exhibited divergent biological behavior. Despite the pigment incorporation that resulted in an increase of IL6, no cytotoxicity was observed based on cell proliferation. PMID:27521695

  13. Toxicity analysis of ocular prosthesis acrylic resin with or without pigment incorporation in human conjunctival cell line.

    PubMed

    da Silva, Emily Vivianne Freitas; Goiato, Marcelo Coelho; Bonatto, Liliane da Rocha; de Medeiros, Rodrigo Antonio; Santos, Daniela Micheline Dos; Rangel, Elidiane Cipriano; Oliveira, Sandra Helena Penha de

    2016-10-01

    The aim of this study was to evaluate the influence of pigment incorporation on the cytotoxicity of ocular prosthesis N1 color acrylic resin. Nine samples were manufactured by heat-polymerization in water bath and divided into 3 groups: acrylic resin without pigment incorporation (group R), acrylic resin with pigment incorporation (group RP), and acrylic pigment (group P). Eluates formed after 72h of sample immersion in medium were incubated with conjunctival cell line (Chang conjunctival cells) for 72h. The negative control group consisted in medium without samples (group C). The cytotoxic effect from the eluates was evaluated using MTT assay (cell proliferation), ELISA assay (quantification of IL1β, IL6, TNF α and CCL3/MIP1α) and RT-PCR assay (mRNA expression of COL IV, TGF β and MMP9). Data were submitted to ANOVA with Bonferroni post-tests (p<0.05). All groups were considered non-cytotoxic based on cell proliferation. However, resin with pigment incorporation showed significant IL6 quantity increase. Resin without pigment incorporation exhibited higher mRNA expression of COL IV, MMP9 and TGF β, however it was also observed for the negative control group. The materials exhibited divergent biological behavior. Despite the pigment incorporation that resulted in an increase of IL6, no cytotoxicity was observed based on cell proliferation.

  14. A Herpes Simplex Virus Type 1 Human Asymptomatic CD8+ T-Cell Epitopes-Based Vaccine Protects Against Ocular Herpes in a “Humanized” HLA Transgenic Rabbit Model

    PubMed Central

    Srivastava, Ruchi; Khan, Arif A.; Huang, Jiawei; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2015-01-01

    Purpose. A clinical vaccine that protects from ocular herpes simplex virus type 1 (HSV-1) infection and disease still is lacking. In the present study, preclinical vaccine trials of nine asymptomatic (ASYMP) peptides, selected from HSV-1 glycoproteins B (gB), and tegument proteins VP11/12 and VP13/14, were performed in the “humanized” HLA–transgenic rabbit (HLA-Tg rabbit) model of ocular herpes. We recently reported that these peptides are highly recognized by CD8+ T cells from “naturally” protected HSV-1–seropositive healthy ASYMP individuals (who have never had clinical herpes disease). Methods. Mixtures of three ASYMP CD8+ T-cell peptides derived from either HSV-1 gB, VP11/12, or VP13/14 were delivered subcutaneously to different groups of HLA-Tg rabbits (n = 10) in incomplete Freund's adjuvant, twice at 15-day intervals. The frequency and function of HSV-1 epitope-specific CD8+ T cells induced by these peptides and their protective efficacy, in terms of survival, virus replication in the eye, and ocular herpetic disease were assessed after an ocular challenge with HSV-1 (strain McKrae). Results. All mixtures elicited strong and polyfunctional IFN-γ– and TNF-α–producing CD107+CD8+ cytotoxic T cells, associated with a significant reduction in death, ocular herpes infection, and disease (P < 0.015). Conclusions. The results of this preclinical trial support the screening strategy used to select the HSV-1 ASYMP CD8+ T-cell epitopes, emphasize their valuable immunogenic and protective efficacy against ocular herpes, and provide a prototype vaccine formulation that may be highly efficacious for preventing ocular herpes in humans. PMID:26098469

  15. Ocular Stem Cell Research from Basic Science to Clinical Application: A Report from Zhongshan Ophthalmic Center Ocular Stem Cell Symposium

    PubMed Central

    Ouyang, Hong; Goldberg, Jeffrey L.; Chen, Shuyi; Li, Wei; Xu, Guo-Tong; Li, Wei; Zhang, Kang; Nussenblatt, Robert B.; Liu, Yizhi; Xie, Ting; Chan, Chi-Chao; Zack, Donald J.

    2016-01-01

    Stem cells hold promise for treating a wide variety of diseases, including degenerative disorders of the eye. The eye is an ideal organ for stem cell therapy because of its relative immunological privilege, surgical accessibility, and its being a self-contained system. The eye also has many potential target diseases amenable to stem cell-based treatment, such as corneal limbal stem cell deficiency, glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa (RP). Among them, AMD and glaucoma are the two most common diseases, affecting over 200 million people worldwide. Recent results on the clinical trial of retinal pigment epithelial (RPE) cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) in treating dry AMD and Stargardt’s disease in the US, Japan, England, and China have generated great excitement and hope. This marks the beginning of the ocular stem cell therapy era. The recent Zhongshan Ophthalmic Center Ocular Stem Cell Symposium discussed the potential applications of various stem cell types in stem cell-based therapies, drug discoveries and tissue engineering for treating ocular diseases. PMID:27102165

  16. IGF-1 Signaling Plays an Important Role in the Formation of Three-Dimensional Laminated Neural Retina and Other Ocular Structures From Human Embryonic Stem Cells.

    PubMed

    Mellough, Carla B; Collin, Joseph; Khazim, Mahmoud; White, Kathryn; Sernagor, Evelyne; Steel, David H W; Lako, Majlinda

    2015-08-01

    We and others have previously demonstrated that retinal cells can be derived from human embryonic stem cells (hESCs) and induced pluripotent stem cells under defined culture conditions. While both cell types can give rise to retinal derivatives in the absence of inductive cues, this requires extended culture periods and gives lower overall yield. Further understanding of this innate differentiation ability, the identification of key factors that drive the differentiation process, and the development of clinically compatible culture conditions to reproducibly generate functional neural retina is an important goal for clinical cell based therapies. We now report that insulin-like growth factor 1 (IGF-1) can orchestrate the formation of three-dimensional ocular-like structures from hESCs which, in addition to retinal pigmented epithelium and neural retina, also contain primitive lens and corneal-like structures. Inhibition of IGF-1 receptor signaling significantly reduces the formation of optic vesicle and optic cups, while exogenous IGF-1 treatment enhances the formation of correctly laminated retinal tissue composed of multiple retinal phenotypes that is reminiscent of the developing vertebrate retina. Most importantly, hESC-derived photoreceptors exhibit advanced maturation features such as the presence of primitive rod- and cone-like photoreceptor inner and outer segments and phototransduction-related functional responses as early as 6.5 weeks of differentiation, making these derivatives promising candidates for cell replacement studies and in vitro disease modeling.

  17. IGF-1 Signaling Plays an Important Role in the Formation of Three-Dimensional Laminated Neural Retina and Other Ocular Structures From Human Embryonic Stem Cells.

    PubMed

    Mellough, Carla B; Collin, Joseph; Khazim, Mahmoud; White, Kathryn; Sernagor, Evelyne; Steel, David H W; Lako, Majlinda

    2015-08-01

    We and others have previously demonstrated that retinal cells can be derived from human embryonic stem cells (hESCs) and induced pluripotent stem cells under defined culture conditions. While both cell types can give rise to retinal derivatives in the absence of inductive cues, this requires extended culture periods and gives lower overall yield. Further understanding of this innate differentiation ability, the identification of key factors that drive the differentiation process, and the development of clinically compatible culture conditions to reproducibly generate functional neural retina is an important goal for clinical cell based therapies. We now report that insulin-like growth factor 1 (IGF-1) can orchestrate the formation of three-dimensional ocular-like structures from hESCs which, in addition to retinal pigmented epithelium and neural retina, also contain primitive lens and corneal-like structures. Inhibition of IGF-1 receptor signaling significantly reduces the formation of optic vesicle and optic cups, while exogenous IGF-1 treatment enhances the formation of correctly laminated retinal tissue composed of multiple retinal phenotypes that is reminiscent of the developing vertebrate retina. Most importantly, hESC-derived photoreceptors exhibit advanced maturation features such as the presence of primitive rod- and cone-like photoreceptor inner and outer segments and phototransduction-related functional responses as early as 6.5 weeks of differentiation, making these derivatives promising candidates for cell replacement studies and in vitro disease modeling. PMID:25827910

  18. Plasticity of the human otolith-ocular reflex

    NASA Technical Reports Server (NTRS)

    Wall, C. 3rd; Smith, T. R.; Furman, J. M.

    1992-01-01

    The eye movement response to earth vertical axis rotation in the dark, a semicircular canal stimulus, can be altered by prior exposure to combined visual-vestibular stimuli. Such plasticity of the vestibulo-ocular reflex has not been described for earth horizontal axis rotation, a dynamic otolith stimulus. Twenty normal human subjects underwent one of two types of adaptation paradigms designed either to attenuate or enhance the gain of the semicircular canal-ocular reflex prior to undergoing otolith-ocular reflex testing with horizontal axis rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about a vertical axis with a 0.2 Hz optokinetic stripe pattern that was deliberately mismatched in peak velocity. Pre- and post-adaptation horizontal axis rotations were at 60 degrees/s in the dark and produced a modulation in the slow component velocity of nystagmus having a frequency of 0.17 Hz due to putative stimulation of the otolith organs. Results showed that the magnitude of this modulation component response was altered in a manner similar to the alteration in semicircular canal-ocular responses. These results suggest that physiologic alteration of the vestibulo-ocular reflex using deliberately mismatched visual and semicircular canal stimuli induces changes in both canal-ocular and otolith-ocular responses. We postulate, therefore, that central nervous system pathways responsible for controlling the gains of canal-ocular and otolith-ocular reflexes are shared.

  19. Ocular cells and light: harmony or conflict?

    PubMed

    Jurja, Sanda; Hîncu, Mihaela; Dobrescu, Mihaela Amelia; Golu, Andreea Elena; Bălăşoiu, Andrei Theodor; Coman, Mălina

    2014-01-01

    Vision is based on the sensitivity of the eye to visible rays of the solar spectrum, which allows the recording and transfer of visual information by photoelectric reaction. Any electromagnetic radiation, if sufficiently intense, may cause damages in living tissues. In a changing environment, the aim of this paper is to point out the impact of light radiation on ocular cells, with its phototoxicity potential on eye tissues. In fact, faced with light and oxygen, the eye behaves like an ephemeral aggregate of unstable molecules, like a temporary crystallization threatened with entropia.

  20. Neurological and ocular fascioliasis in humans.

    PubMed

    Mas-Coma, Santiago; Agramunt, Verónica H; Valero, María Adela

    2014-01-01

    Fascioliasis is a food-borne parasitic disease caused by the trematode species Fasciola hepatica, distributed worldwide, and Fasciola gigantica, restricted to given regions of Africa and Asia. This disease in humans shows an increasing importance, which relies on its recent widespread emergence related to climate and global changes and also on its pathogenicity in the invasive, biliary, and advanced chronic phases in the human endemic areas, mainly of developing countries. In spite of the large neurological affection capacity of Fasciola, this important pathogenic aspect of the disease has been pronouncedly overlooked in the past decades and has not even appear within the numerous reviews on the parasitic diseases of the central nervous system. The aim of this wide retrospective review is an in-depth analysis of the characteristics of neurological and ocular fascioliasis caused by these two fasciolid species. The terms of neurofascioliasis and ophthalmofascioliasis are restricted to cases in which the direct affection of the central nervous system or the eye by a migrant ectopic fasciolid fluke is demonstrated by an aetiological diagnosis of recovered flukes after surgery or spontaneous moving-out of the fluke through the orbit. Cases in which the ectopic fluke is not recovered and the symptoms cannot be explained by an indirect affection at distance may also be included in these terms. Neurofascioliasis and ophthalmofascioliasis cases are reviewed and discussed. With regard to fascioliasis infection giving an indirect rise to neurological affection, the distribution and frequency of cases are analysed according to geography, sex, and age. Minor symptoms and major manifestations are discussed. Three main types of cases are distinguished depending on the characteristics of their manifestations: genuine neurological, meningeal, and psychiatric or neuropsychic. The impressive symptoms and signs appearing in each type of these cases are included. Brain examination

  1. Human cytokines activate JAK–STAT signaling pathway in porcine ocular tissue

    PubMed Central

    Fasler-Kan, Elizaveta; Barteneva, Natasha S; Ketterer, Sylvia; Wunderlich, Kerstin; Reschner, Anca; Nurzhanova, Asil; Flammer, Josef; Huwyler, Jörg; Meyer, Peter

    2013-01-01

    Background The JAK/STAT (Janus Tyrosine Kinase, Signal Transducers and Activators of Transcription) pathway is associated with cytokine or growth factor receptors and it is critical for growth control, developmental regulation and homeostasis. The use of porcine ocular cells as putative xenotransplants appears theoretically possible. The aim of this study was to investigate the response of various porcine ocular cells in vitro to human cytokines in regard to the activation of JAK-STAT signaling pathways. Methods Porcine lens epithelial cells, pigmented iris epithelial cells and pigmented ciliary body cells were used in this study. These cells were isolated from freshly enucleated porcine eyes by enzymatic digestion. Cultured cells between passages 3–8 were used in all experiments. Electromobility shift assay (EMSA), proliferation assay, immunofluorescence staining and flow cytometry were used to evaluate the JAK-STAT signaling pathway in these cells. Results JAK/STAT signaling pathways could be activated in porcine pigmented epithelial ciliary body cells, in pigmented iris epithelial cells and in lens epithelial cells in response to porcine and human interferons and cytokines. All cells showed very strong STAT1 activation upon stimulation with porcine interferon-gamma. Porcine ocular cells also respond to human cytokines; IFN-alpha induced strong activation of STAT1 in EMSA, flow cytometry and immunofluorescence experiments whereas activation of STAT3 was less strong in EMSA, but strong in flow cytometry and immunofluorescence. Human recombinant IL-6 activated STAT3 and human IL-4 activated STAT6. With the help of immunofluorescence assay and flow cytometry we observed nuclear localization of STAT proteins after activation of porcine ocular cells with cytokines and interferons. Human IFN-α had an inhibitory effect on porcine ocular cells in proliferation assays. Conclusion Our study demonstrated that some types of human cytokines and interferon activate

  2. ELECTRICAL SIGNALING IN CONTROL OF OCULAR CELL BEHAVIORS

    PubMed Central

    Zhao, Min; Chalmers, Laura; Cao, Lin; Viera, Ana C.; Mannis, Mark; Reid, Brian

    2011-01-01

    Epithelia of the cornea, lens and retina contain a vast array of ion channels and pumps. Together they produce a polarized flow of ions in and out of cells, as well as across the epithelia. These naturally occurring ion fluxes are essential to the hydration and metabolism of the ocular tissues, especially for the avascular cornea and lens. The directional transport of ions generates electric fields and currents in those tissues. Applied electric fields affect migration, division and proliferation of ocular cells which are important in homeostasis and healing of the ocular tissues. Abnormalities in any of those aspects may underlie many ocular diseases, for example chronic corneal ulcers, posterior capsule opacity after cataract surgery, and retinopathies. Electric field-inducing cellular responses, termed electrical signaling here, therefore may be an unexpected yet powerful mechanism in regulating ocular cell behavior. Both endogenous electric fields and applied electric fields could be exploited to regulate ocular cells. We aim to briefly describe the physiology of the naturally occurring electrical activities in the corneal, lens, and retinal epithelia, to provide experimental evidence of the effects of electric fields on ocular cell behaviors, and to suggest possible clinical implications. PMID:22020127

  3. An Update on Ocular Surface Epithelial Stem Cells: Cornea and Conjunctiva

    PubMed Central

    Ramos, Tiago; Scott, Deborah; Ahmad, Sajjad

    2015-01-01

    The human ocular surface (front surface of the eye) is formed by two different types of epithelia: the corneal epithelium centrally and the conjunctival epithelium that surrounds this. These two epithelia are maintained by different stem cell populations (limbal stem cells for the corneal epithelium and the conjunctival epithelial stem cells). In this review, we provide an update on our understanding of these epithelia and their stem cells systems, including embryology, new markers, and controversy around the location of these stem cells. We also provide an update on the translation of this understanding into clinical applications for the treatment of debilitating ocular surface diseases. PMID:26146504

  4. An Update on Ocular Surface Epithelial Stem Cells: Cornea and Conjunctiva.

    PubMed

    Ramos, Tiago; Scott, Deborah; Ahmad, Sajjad

    2015-01-01

    The human ocular surface (front surface of the eye) is formed by two different types of epithelia: the corneal epithelium centrally and the conjunctival epithelium that surrounds this. These two epithelia are maintained by different stem cell populations (limbal stem cells for the corneal epithelium and the conjunctival epithelial stem cells). In this review, we provide an update on our understanding of these epithelia and their stem cells systems, including embryology, new markers, and controversy around the location of these stem cells. We also provide an update on the translation of this understanding into clinical applications for the treatment of debilitating ocular surface diseases. PMID:26146504

  5. Ocular surface reconstruction with a tissue-engineered nasal mucosal epithelial cell sheet for the treatment of severe ocular surface diseases.

    PubMed

    Kobayashi, Masakazu; Nakamura, Takahiro; Yasuda, Makoto; Hata, Yuiko; Okura, Shoki; Iwamoto, Miyu; Nagata, Maho; Fullwood, Nigel J; Koizumi, Noriko; Hisa, Yasuo; Kinoshita, Shigeru

    2015-01-01

    Severe ocular surface diseases (OSDs) with severe dry eye can be devastating and are currently some of the most challenging eye disorders to treat. To investigate the feasibility of using an autologous tissue-engineered cultivated nasal mucosal epithelial cell sheet (CNMES) for ocular surface reconstruction, we developed a novel technique for the culture of nasal mucosal epithelial cells expanded ex vivo from biopsy-derived human nasal mucosal tissues. After the protocol, the CNMESs had 4-5 layers of stratified, well-differentiated cells, and we successfully generated cultured epithelial sheets, including numerous goblet cells. Immunohistochemistry confirmed the presence of keratins 3, 4, and 13; mucins 1, 16, and 5AC; cell junction and basement membrane assembly proteins; and stem/progenitor cell marker p75 in the CNMESs. We then transplanted the CNMESs onto the ocular surfaces of rabbits and confirmed the survival of this tissue, including the goblet cells, up to 2 weeks. The present report describes an attempt to overcome the problems of treating severe OSDs with the most severe dry eye by treating them using tissue-engineered CNMESs to supply functional goblet cells and to stabilize and reconstruct the ocular surface. The present study is a first step toward assessing the use of tissue-engineered goblet-cell transplantation of nonocular surface origin for ocular surface reconstruction.

  6. Dental stem cells: a future asset of ocular cell therapy.

    PubMed

    Yam, Gary Hin-Fai; Peh, Gary Swee-Lim; Singhal, Shweta; Goh, Bee-Tin; Mehta, Jodhbir S

    2015-11-10

    Regenerative medicine using patient's own stem cells (SCs) to repair dysfunctional tissues is an attractive approach to complement surgical and pharmacological treatments for aging and degenerative disorders. Recently, dental SCs have drawn much attention owing to their accessibility, plasticity and applicability for regenerative use not only for dental, but also other body tissues. In ophthalmology, there has been increasing interest to differentiate dental pulp SC and periodontal ligament SC (PDLSC) towards ocular lineage. Both can commit to retinal fate expressing eye field transcription factors and generate rhodopsin-positive photoreceptor-like cells. This proposes a novel therapeutic alternative for retinal degeneration diseases. Moreover, as PDLSC shares similar cranial neural crest origin and proteoglycan secretion with corneal stromal keratoctyes and corneal endothelial cells, this offers the possibility of differentiating PDLSC to these corneal cell types. The advance could lead to a shift in the medical management of corneal opacities and endothelial disorders from highly invasive corneal transplantation using limited donor tissue to cell therapy utilizing autologous cells. This article provides an overview of dental SC research and the perspective of utilizing dental SCs for ocular regenerative medicine.

  7. EcPV2 DNA in equine squamous cell carcinomas and normal genital and ocular mucosa.

    PubMed

    Vanderstraeten, Eva; Bogaert, Lies; Bravo, Ignacio G; Martens, Ann

    2011-01-27

    Squamous cell carcinoma (SCC) represents the most common malignant tumour of the eye and external genitals in horses. Comparable to humans, papillomaviruses (PV) have been proposed as etiological agents of cancer in horses and recently, Equine papillomavirus type 2 (EcPV2) has been identified in genital SCCs. Hitherto it had never been demonstrated in ocular SCCs. The first goal of this study was to determine the prevalence of EcPV2 DNA in tissue samples from equine genital and ocular SCCs, genital papillomas and penile intraepithelial neoplasia (PIN) lesions, using EcPV2-specific PCR. The second goal was to investigate the possibility of latent EcPV2 infection in the genital and ocular mucosa of healthy horses on swabs obtained from the eye, penis, vulvovaginal region and cervix. EcPV2 DNA was detected in all genital SCCs (17/17), genital papillomas (8/8), PIN lesions (11/11) and ocular SCCs (9/9). In healthy horses, EcPV2 DNA was detected in 43% (17/40) of penile swabs, 53% (9/17) of vulvovaginal swabs, 47% (8/17) of cervical swabs and 57% (32/56) of ocular swabs. This study confirms the presence of EcPV2 DNA in equine genital SCCs. Moreover, we demonstrate for the first time its involvement in other genital lesions and in ocular SCCs and latent EcPV2 infections in normal genital (including cervical) and ocular equine mucosa. The close relatives of EcPV2 are associated to cutaneous lesions, and this virus is not related to high-risk human papillomaviruses causing cervical cancer. Thus, similar viral tropism does not imply close evolutionary relationship.

  8. Porcine retinal cell line VIDO R1 and Chlamydia suis to modelize ocular chlamydiosis.

    PubMed

    Käser, Tobias; Cnudde, Thomas; Hamonic, Glenn; Rieder, Meghanne; Pasternak, J Alex; Lai, Ken; Tikoo, Suresh K; Wilson, Heather L; Meurens, François

    2015-08-15

    Human ocular Chlamydia trachomatis infections can lead to trachoma, the major cause of infectious blindness worldwide. Trachoma control strategies are very helpful but logistically challenging, and a trachoma vaccine is needed but not available. Pigs are a valuable large animal model for various immunological questions and could facilitate the study of human ocular chlamydial infections. In addition, a recent study identified the zoonotic potential of Chlamydia suis, the natural pathogen of pigs. In terms of the One Health Initiative, understanding the host-pathogen-interactions and finding a vaccine for porcine chlamydia infections would also benefit human health. Thus, we infected the porcine retinal cell line VIDO R1 with C. suis and analyzed the chlamydial life cycle and the innate immune response of the infected cells. Our results indicate that C. suis completes its life cycle in VIDO R1 cells within 48 h, comparable to C. trachomatis in humans. C. suis infection of VIDO R1 cells led to increased levels of various innate immune mediators like pathogen recognition receptors, cytokines and chemokines including IL6, TNFα, and MMP9, also most relevant in human C. trachomatis infections. These results illustrate the first steps in the host-pathogen-interactions of ocular C. suis infections in pigs and show their similarity to C. trachomatis infections in humans, justifying further testing of pigs as an animal model for human trachoma. PMID:26103808

  9. Porcine retinal cell line VIDO R1 and Chlamydia suis to modelize ocular chlamydiosis.

    PubMed

    Käser, Tobias; Cnudde, Thomas; Hamonic, Glenn; Rieder, Meghanne; Pasternak, J Alex; Lai, Ken; Tikoo, Suresh K; Wilson, Heather L; Meurens, François

    2015-08-15

    Human ocular Chlamydia trachomatis infections can lead to trachoma, the major cause of infectious blindness worldwide. Trachoma control strategies are very helpful but logistically challenging, and a trachoma vaccine is needed but not available. Pigs are a valuable large animal model for various immunological questions and could facilitate the study of human ocular chlamydial infections. In addition, a recent study identified the zoonotic potential of Chlamydia suis, the natural pathogen of pigs. In terms of the One Health Initiative, understanding the host-pathogen-interactions and finding a vaccine for porcine chlamydia infections would also benefit human health. Thus, we infected the porcine retinal cell line VIDO R1 with C. suis and analyzed the chlamydial life cycle and the innate immune response of the infected cells. Our results indicate that C. suis completes its life cycle in VIDO R1 cells within 48 h, comparable to C. trachomatis in humans. C. suis infection of VIDO R1 cells led to increased levels of various innate immune mediators like pathogen recognition receptors, cytokines and chemokines including IL6, TNFα, and MMP9, also most relevant in human C. trachomatis infections. These results illustrate the first steps in the host-pathogen-interactions of ocular C. suis infections in pigs and show their similarity to C. trachomatis infections in humans, justifying further testing of pigs as an animal model for human trachoma.

  10. Transplant related ocular surface disorders: Advanced techniques for ocular surface rehabilitation after ocular complications secondary to hematopoietic stem cell transplantation.

    PubMed

    Stahl, Erin D; Mahomed, Faheem; Hans, Amneet K; Dalal, Jignesh D

    2016-05-01

    HSCT has been linked to the development of an assortment of ocular surface complications with the potential to lead to permanent visual impairment if left untreated or if not treated early in the course of disease. Strategies for therapy include maintenance of lubrication and tear preservation, prevention of evaporation, decreasing inflammation, and providing epithelial support. The ultimate aim of treatment is to prevent permanent ocular sequelae through prompt ophthalmology consultation and the use of advanced techniques for ocular surface rehabilitation. We describe several rehabilitation options of ocular surface complications occurring secondarily during the post-HSCT course.

  11. Characterization of full-length recombinant human Proteoglycan 4 as an ocular surface boundary lubricant.

    PubMed

    Samsom, Michael L; Morrison, Sheila; Masala, Nemanja; Sullivan, Benjamin D; Sullivan, David A; Sheardown, Heather; Schmidt, Tannin A

    2014-10-01

    Proteoglycan 4 (PRG4, or lubricin) is a lubricating mucin-like glycoprotein recently discovered at the ocular surface, where it functions as a boundary lubricant and appears to play a protective role. Recent technological advances have enabled abundant expression of full-length recombinant human PRG4 (rhPRG4). The objectives of this study were to 1) biochemically characterize the gross structure and glycosylations of full-length rhPRG4, and 2) assess the ocular surface boundary lubricating ability of rhPRG4 at both human cornea-eyelid and human cornea-polydimethylsiloxane (PDMS) biointerfaces. rhPRG4 expressed by a Chinese hamster ovary cell line was characterized and compared to native bovine PRG4 by SDS-PAGE western blotting, and protein identity was assessed by tandem mass spectrometry (MS/MS). Human corneas were articulated against PDMS or human eyelids, at effective sliding velocities of 0.3-30 mm/s under physiological loads of ∼15 kPa, to assess and compare the ocular lubricating ability of rhPRG4 to PRG4. Samples were tested serially in PRG4, rhPRG4 (both 300 μg/ml), then saline. Western blotting indicated that rhPRG4 had immunoreactivity at the appropriate apparent molecular weight, and possessed O-linked glycosylation consistent with that of PRG4. rhPRG4 protein identity was confirmed by MS/MS. Both PRG4 and rhPRG4 significantly, and similarly, reduced friction compared to saline at both human cornea - PDMS and human cornea-eyelid biointerfaces. In conclusion, the rhPRG4 studied here demonstrated appropriate higher order structure, O-linked glycosylations, and ocular surface boundary lubricating. Purified rhPRG4 may have clinical utility as a topical treatment of dry eye disease or contact lens biomaterial coating to promote more comfortable wear. PMID:24997456

  12. Disinfection of Ocular Cells and Tissues by Atmospheric-Pressure Cold Plasma

    PubMed Central

    Vono, Maria; Venier, Paola; Tarricone, Elena; Deligianni, Velika; Martines, Emilio; Zuin, Matteo; Spagnolo, Silvia; Cavazzana, Roberto; Cardin, Romilda; Castagliuolo, Ignazio; La Gloria Valerio, Alvise; Leonardi, Andrea

    2012-01-01

    Background Low temperature plasmas have been proposed in medicine as agents for tissue disinfection and have received increasing attention due to the frequency of bacterial resistance to antibiotics. This study explored whether atmospheric-pressure cold plasma (APCP) generated by a new portable device that ionizes a flow of helium gas can inactivate ocular pathogens without causing significant tissue damage. Methodology/Principal Findings We tested the APCP effects on cultured Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus fumigatus and Herpes simplex virus-1, ocular cells (conjunctival fibroblasts and keratocytes) and ex-vivo corneas. Exposure to APCP for 0.5 to 5 minutes significantly reduced microbial viability (colony-forming units) but not human cell viability (MTT assay, FACS and Tunel analysis) or the number of HSV-1 plaque-forming units. Increased levels of intracellular reactive oxygen species (ROS) in exposed microorganisms and cells were found using a FACS-activated 2′,7′-dichlorofluorescein diacetate probe. Immunoassays demonstrated no induction of thymine dimers in cell cultures and corneal tissues. A transient increased expression of 8-OHdG, genes and proteins related to oxidative stress (OGG1, GPX, NFE2L2), was determined in ocular cells and corneas by HPLC, qRT-PCR and Western blot analysis. Conclusions A short application of APCP appears to be an efficient and rapid ocular disinfectant for bacteria and fungi without significant damage on ocular cells and tissues, although the treatment of conjunctival fibroblasts and keratocytes caused a time-restricted generation of intracellular ROS and oxidative stress-related responses. PMID:22432007

  13. Ocular stem cells: a status update!

    PubMed Central

    2014-01-01

    Stem cells are unspecialized cells that have been a major focus of the field of regenerative medicine, opening new frontiers and regarded as the future of medicine. The ophthalmology branch of the medical sciences was the first to directly benefit from stem cells for regenerative treatment. The success stories of regenerative medicine in ophthalmology can be attributed to its accessibility, ease of follow-up and the eye being an immune-privileged organ. Cell-based therapies using stem cells from the ciliary body, iris and sclera are still in animal experimental stages but show potential for replacing degenerated photoreceptors. Limbal, corneal and conjunctival stem cells are still limited for use only for surface reconstruction, although they might have potential beyond this. Iris pigment epithelial, ciliary body epithelial and choroidal epithelial stem cells in laboratory studies have shown some promise for retinal or neural tissue replacement. Trabecular meshwork, orbital and sclera stem cells have properties identical to cells of mesenchymal origin but their potential has yet to be experimentally determined and validated. Retinal and retinal pigment epithelium stem cells remain the most sought out stem cells for curing retinal degenerative disorders, although treatments using them have resulted in variable outcomes. The functional aspects of the therapeutic application of lenticular stem cells are not known and need further attention. Recently, embryonic stem cell-derived retinal pigment epithelium has been used for treating patients with Stargardts disease and age-related macular degeneration. Overall, the different stem cells residing in different components of the eye have shown some success in clinical and animal studies in the field of regenerative medicine. PMID:25158127

  14. Ocular stem cells: a status update!

    PubMed

    Dhamodaran, Kamesh; Subramani, Murali; Ponnalagu, Murugeswari; Shetty, Reshma; Das, Debashish

    2014-01-01

    Stem cells are unspecialized cells that have been a major focus of the field of regenerative medicine, opening new frontiers and regarded as the future of medicine. The ophthalmology branch of the medical sciences was the first to directly benefit from stem cells for regenerative treatment. The success stories of regenerative medicine in ophthalmology can be attributed to its accessibility, ease of follow-up and the eye being an immune-privileged organ. Cell-based therapies using stem cells from the ciliary body, iris and sclera are still in animal experimental stages but show potential for replacing degenerated photoreceptors. Limbal, corneal and conjunctival stem cells are still limited for use only for surface reconstruction, although they might have potential beyond this. Iris pigment epithelial, ciliary body epithelial and choroidal epithelial stem cells in laboratory studies have shown some promise for retinal or neural tissue replacement. Trabecular meshwork, orbital and sclera stem cells have properties identical to cells of mesenchymal origin but their potential has yet to be experimentally determined and validated. Retinal and retinal pigment epithelium stem cells remain the most sought out stem cells for curing retinal degenerative disorders, although treatments using them have resulted in variable outcomes. The functional aspects of the therapeutic application of lenticular stem cells are not known and need further attention. Recently, embryonic stem cell-derived retinal pigment epithelium has been used for treating patients with Stargardts disease and age-related macular degeneration. Overall, the different stem cells residing in different components of the eye have shown some success in clinical and animal studies in the field of regenerative medicine.

  15. Unusual presentation of ocular trauma in sickle cell trait

    PubMed Central

    Pandey, Nidhi

    2015-01-01

    Sickle cell trait is usually considered as a benign condition. However under certain adverse circumstances, it can give rise to vaso-occlusive features as in sickle cell disease. We present here two cases, both involving healthy young males, who developed retinal vaso-occlusive features following blunt ocular trauma. There was a rapid progression of the retinopathy with the development of proliferative changes in both patients and also vitreous hemorrhage in one patient, within 2 months of the trauma. The development of retinopathy was independent of raised intraocular pressure. Both patients were found to have sickle cell trait. PMID:26632133

  16. Ocular Adverse Events Associated with Antibody-Drug Conjugates in Human Clinical Trials.

    PubMed

    Eaton, Joshua Seth; Miller, Paul E; Mannis, Mark J; Murphy, Christopher J

    2015-12-01

    This article reviews ocular adverse events (AEs) reported in association with administration of antibody-drug conjugates (ADCs) in human clinical trials. References reporting ocular toxicity or AEs associated with ADCs were collected using online publication searches. Articles, abstracts, or citations were included if they cited ocular toxicities or vision-impairing AEs with a confirmed or suspected association with ADC administration. Twenty-two references were found citing ocular or vision-impairing AEs in association with ADC administration. All references reported use of ADCs in human clinical trials for treatment of various malignancies. The molecular target and cytotoxic agent varied depending on the ADC used. Ocular AEs affected a diversity of ocular tissues. The most commonly reported AEs involved the ocular surface and included blurred vision, dry eye, and corneal abnormalities (including microcystic corneal disease). Most ocular AEs were not severe (≤ grade 2) or dose limiting. Clinical outcomes were not consistently reported, but when specified, most AEs improved or resolved with cessation of treatment or with ameliorative therapy. A diverse range of ocular AEs are reported in association with administration of ADCs for the treatment of cancer. The toxicologic mechanism(s) and pathogenesis of such events are not well understood, but most are mild in severity and reversible. Drug development and medical professionals should be aware of the clinical features of these events to facilitate early recognition and intervention in the assessment of preclinical development programs and in human clinical trials.

  17. Development of gene and stem cell therapy for ocular neurodegeneration

    PubMed Central

    Zhang, Jing-Xue; Wang, Ning-Li; Lu, Qing-Jun

    2015-01-01

    Retinal degenerative diseases pose a serious threat to eye health, but there is currently no effective treatment available. Recent years have witnessed rapid development of several cutting-edge technologies, such as gene therapy, stem cell therapy, and tissue engineering. Due to the special features of ocular structure, some of these technologies have been translated into ophthalmological clinic practice with fruitful achievements, setting a good example for other fields. This paper reviews the development of the gene and stem cell therapies in ophthalmology. PMID:26086019

  18. Epidemic Keratoconjunctivitis-Causing Adenoviruses Induce MUC16 Ectodomain Release To Infect Ocular Surface Epithelial Cells

    PubMed Central

    Zhou, Xiaohong; Spurr-Michaud, Sandra; Rajaiya, Jaya; Chodosh, James; Gipson, Ilene K.

    2016-01-01

    ABSTRACT Human adenoviruses (HAdV), species D in particular (HAdV-D), are frequently associated with epidemic keratoconjunctivitis (EKC). Although the infection originates at the ocular surface epithelium, the mechanisms by which HAdV-Ds bypass the membrane-associated mucin (MAM)-rich glycocalyx of the ocular surface epithelium to trigger infection and inflammation remain unknown. Here, we report that an EKC-causing adenovirus (HAdV-D37), but not a non-EKC-causing one (HAdV-D19p), induces ectodomain release of MUC16—a MAM with barrier functions at the ocular surface—from cultured human corneal and conjunctival epithelial cells. HAdV-D37, but not HAdV-D19p, is also found to decrease the glycocalyx barrier function of corneal epithelial cells, as determined by rose bengal dye penetrance assays. Furthermore, results from quantitative PCR (qPCR) amplification of viral genomic DNA using primers specific to a conserved region of the E1B gene show that, in comparison to infection by HAdV-D19p, infection by HAdV-D37 is significantly increased in corneal epithelial cells. Collectively, these results point to a MUC16 ectodomain release-dependent mechanism utilized by the EKC-causing HAdV-D37 to initiate infection at the ocular surface. These findings are important in terms of understanding the pathogenesis of adenoviral keratoconjunctivitis. Similar MAM ectodomain release mechanisms may be prevalent across other mucosal epithelia in the body (e.g., the airway epithelium) that are prone to adenoviral infection. IMPORTANCE Human adenoviruses (HAdVs) are double-stranded DNA viruses that cause infections across all mucosal tissues in the body. At the ocular surface, HAdVs cause keratoconjunctivitis (E. Ford, K. E. Nelson, and D. Warren, Epidemiol Rev 9:244–261, 1987, and C. M. Robinson, D. Seto, M. S. Jones, D. W. Dyer, and J. Chodosh, Infect Genet Evol 11:1208–1217, 2011, doi:10.1016/j.meegid.2011.04.031)—a highly contagious infection that accounts for nearly 60% of

  19. Epidemic Keratoconjunctivitis-Causing Adenoviruses Induce MUC16 Ectodomain Release To Infect Ocular Surface Epithelial Cells.

    PubMed

    Menon, Balaraj B; Zhou, Xiaohong; Spurr-Michaud, Sandra; Rajaiya, Jaya; Chodosh, James; Gipson, Ilene K

    2016-01-01

    Human adenoviruses (HAdV), species D in particular (HAdV-D), are frequently associated with epidemic keratoconjunctivitis (EKC). Although the infection originates at the ocular surface epithelium, the mechanisms by which HAdV-Ds bypass the membrane-associated mucin (MAM)-rich glycocalyx of the ocular surface epithelium to trigger infection and inflammation remain unknown. Here, we report that an EKC-causing adenovirus (HAdV-D37), but not a non-EKC-causing one (HAdV-D19p), induces ectodomain release of MUC16-a MAM with barrier functions at the ocular surface-from cultured human corneal and conjunctival epithelial cells. HAdV-D37, but not HAdV-D19p, is also found to decrease the glycocalyx barrier function of corneal epithelial cells, as determined by rose bengal dye penetrance assays. Furthermore, results from quantitative PCR (qPCR) amplification of viral genomic DNA using primers specific to a conserved region of the E1B gene show that, in comparison to infection by HAdV-D19p, infection by HAdV-D37 is significantly increased in corneal epithelial cells. Collectively, these results point to a MUC16 ectodomain release-dependent mechanism utilized by the EKC-causing HAdV-D37 to initiate infection at the ocular surface. These findings are important in terms of understanding the pathogenesis of adenoviral keratoconjunctivitis. Similar MAM ectodomain release mechanisms may be prevalent across other mucosal epithelia in the body (e.g., the airway epithelium) that are prone to adenoviral infection. IMPORTANCE Human adenoviruses (HAdVs) are double-stranded DNA viruses that cause infections across all mucosal tissues in the body. At the ocular surface, HAdVs cause keratoconjunctivitis (E. Ford, K. E. Nelson, and D. Warren, Epidemiol Rev 9:244-261, 1987, and C. M. Robinson, D. Seto, M. S. Jones, D. W. Dyer, and J. Chodosh, Infect Genet Evol 11:1208-1217, 2011, doi:10.1016/j.meegid.2011.04.031)-a highly contagious infection that accounts for nearly 60% of conjunctivitis cases

  20. [Ocular complications of giant cell arteritis].

    PubMed

    Liozon, E; Ly, K-H; Robert, P-Y

    2013-07-01

    Permanent visual loss (PVL) is the most dreaded complication of giant cell arteritis (GCA). It results from anterior ischemic optic neuropathy or, less commonly, retinal artery occlusion. This complication still occurs in 14 to 20% of patients and is typically devastating and permanent, although it is highly preventable by an early diagnosis of giant cell arteritis and appropriate glucocorticoid treatment. Transient ischemic symptoms such as amaurosis fugax, episodes of blurred vision or diplopia may occur, either heralding visual loss or remaining isolated. In studies, the main predictors of PVL are jaw claudication, amaurosis fugax, lack of systemic "B" symptoms, a modestly increased ESR and a higher haemoglobin level. The evaluation of a GCA patient with PVL includes emergency fundoscopy completed by fluorescein angiography, immediate erythrocyte sedimentation rate, C-reactive protein, and complete blood count. Treatment is extremely urgent mainly because, if left untreated, GCA is associated with visual loss in the fellow eye within days in up to 50% of individuals. Treatment may begin with high-dose intravenous methylprednisolone, followed by oral prednisone administered at 1 mg/kg per day. Daily adjunctive aspirin orally may be added since it has been shown, in retrospective studies, to protect against stroke and visual loss. Although treatment duration of complicated GCA is not codified, an initial PVL deserves close monitoring of patient's systemic symptoms, ESR and CRP to avoid relapses due to a significant risk of late recurrence of visual loss during steroid tapering. PMID:23523078

  1. Genetic diversity of Dirofilaria spp. isolated from subcutaneous and ocular lesions of human patients in Ukraine.

    PubMed

    Rossi, Alice; Peix, Álvaro; Pavlikovskaya, Tamara; Sagach, Olga; Nikolaenko, Svetlana; Chizh, Nina; Kartashev, Vladimir; Simón, Fernando; Siles-Lucas, Mar

    2015-02-01

    This short communication describes the phylogenetic analysis of 48 Dirofilaria worms isolated from human patients in Ukraine. 102 cases were both of subcutaneous (47; 46.1%) and ocular (54; 52.9%) locations. Worms from 44 patients (15 subcutaneous and 29 ocular) were subjected to DNA extraction and amplification of a specific fragment of the 12S rRNA subunit, and sequences were used for phylogenetic analysis. Results showed that 13.8% of the ocular cases analyzed at molecular level were caused by Dirofilaria immitis. Very few cases of ocular human dirofilariosis due to D. immitis have been described in the literature to date, majority of them attributed to Dirofilaria repens. Our results show that ocular dirofilariosis cannot be excluded in areas of low endemicity for D. repens were D. immitis is also present. PMID:25447827

  2. Ocular input for human melatonin regulation: relevance to breast cancer

    NASA Technical Reports Server (NTRS)

    Glickman, Gena; Levin, Robert; Brainard, George C.

    2002-01-01

    The impact of breast cancer on women across the world has been extensive and severe. As prevalence of breast cancer is greatest in industrialized regions, exposure to light at night has been proposed as a potential risk factor. This theory is supported by the epidemiological observations of decreased breast cancer in blind women and increased breast cancer in women who do shift-work. In addition, human, animal and in vitro studies which have investigated the melatonin-cancer dynamic indicate an apparent relationship between light, melatonin and cancer, albeit complex. Recent developments in understanding melatonin regulation by light in humans are examined, with particular attention to factors that contribute to the sensitivity of the light-induced melatonin suppression response. Specifically, the role of spectral characteristics of light is addressed, and recent relevant action spectrum studies in humans and other mammalian species are discussed. Across five action spectra for circadian and other non-visual responses, a peak sensitivity between 446-484 nm was identified. Under highly controlled exposure circumstances, less than 1 lux of monochromatic light elicited a significant suppression of nocturnal melatonin. In view of the possible link between light exposure, melatonin suppression and cancer risk, it is important to continue to identify the basic related ocular physiology. Visual performance, rather than circadian function, has been the primary focus of architectural lighting systems. It is now necessary to reevaluate lighting strategies, with consideration of circadian influences, in an effort to maximize physiological homeostasis and health.

  3. Ocular surface stem cells and disease: current concepts and clinical applications.

    PubMed

    Ang, L P K; Tan, D T H

    2004-09-01

    Corneal and conjunctival epithelial stem cells are responsible for the homeostasis and regeneration of the ocular surface epithelium. Corneal epithelial stem cells reside in the basal region of the limbus, while the conjunctival forniceal region appears to be the site that is enriched in conjunctival stem cells. Ocular surface disease arising from limbal stem cell deficiency is characterised by persistent epithelial defects, corneal vascularisation, chronic inflammation, scarring and conjunctivalisation, resulting in visual loss. Limbal stem cell transplantation replaces the corneal stem cell population in these eyes with the hope of restoring vision. More recently, the use of bioengineered ocular surface tissue-equivalents has had promising results, and may represent the future for replacement and regeneration of ocular tissues in various ocular disorders. PMID:15531952

  4. Non-human primates exhibit disconjugate ocular counterroll to head roll tilts.

    PubMed

    Daddaoua, N; Dicke, P W; Thier, P

    2011-09-01

    To investigate the effect of head roll tilt on the binocular coordination of ocular counterroll in non-human primates, we measured binocular ocular counterroll in two rhesus monkeys fixating a straight ahead target, while adopting different head roll tilt positions. We used two infrared cameras to take snapshots of the left and the right eye in order to measure the resulting ocular counterroll responses. The horizontal and vertical components of the position of one of the two eyes where measured using an implanted 2D-search coil in one monkey and video-based eye tracking in the second one. We consistently observed disconjugate ocular counterroll responses to static head roll in both monkeys. Invariably, the eye positioned further away from ground level by roll tilting the head always exhibited larger ocular counterroll than the other eye. The pattern of disconjugacy of the ocular counterroll responses exhibited by rhesus monkey parallels the one described for humans. The correspondence between the two species suggests that monkeys may serve as useful models in studies of the neuronal underpinnings of tilt-induced ocular counterroll and the perceptual compensation of uncompensated retinal image tilt. PMID:21807017

  5. Potential Role of Induced Pluripotent Stem Cells (IPSCs) for Cell-Based Therapy of the Ocular Surface.

    PubMed

    Casaroli-Marano, Ricardo P; Nieto-Nicolau, Núria; Martínez-Conesa, Eva M; Edel, Michael; B Álvarez-Palomo, Ana

    2015-01-01

    The integrity and normal function of the corneal epithelium are crucial for maintaining the cornea's transparency and vision. The existence of a cell population with progenitor characteristics in the limbus maintains a dynamic of constant epithelial repair and renewal. Currently, cell-based therapies for bio replacement-cultured limbal epithelial transplantation (CLET) and cultured oral mucosal epithelial transplantation (COMET)-present very encouraging clinical results for treating limbal stem cell deficiency (LSCD) and restoring vision. Another emerging therapeutic approach consists of obtaining and implementing human progenitor cells of different origins in association with tissue engineering methods. The development of cell-based therapies using stem cells, such as human adult mesenchymal or induced pluripotent stem cells (IPSCs), represent a significant breakthrough in the treatment of certain eye diseases, offering a more rational, less invasive, and better physiological treatment option in regenerative medicine for the ocular surface. This review will focus on the main concepts of cell-based therapies for the ocular surface and the future use of IPSCs to treat LSCD. PMID:26239129

  6. Potential Role of Induced Pluripotent Stem Cells (IPSCs) for Cell-Based Therapy of the Ocular Surface.

    PubMed

    Casaroli-Marano, Ricardo P; Nieto-Nicolau, Núria; Martínez-Conesa, Eva M; Edel, Michael; B Álvarez-Palomo, Ana

    2015-01-01

    The integrity and normal function of the corneal epithelium are crucial for maintaining the cornea's transparency and vision. The existence of a cell population with progenitor characteristics in the limbus maintains a dynamic of constant epithelial repair and renewal. Currently, cell-based therapies for bio replacement-cultured limbal epithelial transplantation (CLET) and cultured oral mucosal epithelial transplantation (COMET)-present very encouraging clinical results for treating limbal stem cell deficiency (LSCD) and restoring vision. Another emerging therapeutic approach consists of obtaining and implementing human progenitor cells of different origins in association with tissue engineering methods. The development of cell-based therapies using stem cells, such as human adult mesenchymal or induced pluripotent stem cells (IPSCs), represent a significant breakthrough in the treatment of certain eye diseases, offering a more rational, less invasive, and better physiological treatment option in regenerative medicine for the ocular surface. This review will focus on the main concepts of cell-based therapies for the ocular surface and the future use of IPSCs to treat LSCD.

  7. Potential Role of Induced Pluripotent Stem Cells (IPSCs) for Cell-Based Therapy of the Ocular Surface

    PubMed Central

    Casaroli-Marano, Ricardo P.; Nieto-Nicolau, Núria; Martínez-Conesa, Eva M.; Edel, Michael; Álvarez-Palomo, Ana B.

    2015-01-01

    The integrity and normal function of the corneal epithelium are crucial for maintaining the cornea’s transparency and vision. The existence of a cell population with progenitor characteristics in the limbus maintains a dynamic of constant epithelial repair and renewal. Currently, cell-based therapies for bio replacement—cultured limbal epithelial transplantation (CLET) and cultured oral mucosal epithelial transplantation (COMET)—present very encouraging clinical results for treating limbal stem cell deficiency (LSCD) and restoring vision. Another emerging therapeutic approach consists of obtaining and implementing human progenitor cells of different origins in association with tissue engineering methods. The development of cell-based therapies using stem cells, such as human adult mesenchymal or induced pluripotent stem cells (IPSCs), represent a significant breakthrough in the treatment of certain eye diseases, offering a more rational, less invasive, and better physiological treatment option in regenerative medicine for the ocular surface. This review will focus on the main concepts of cell-based therapies for the ocular surface and the future use of IPSCs to treat LSCD. PMID:26239129

  8. Topographical Control of Ocular Cell Types for Tissue Engineering

    PubMed Central

    McHugh, Kevin J.; Saint-Geniez, Magali; Tao, Sarah L.

    2014-01-01

    Visual impairment affects over 285 million people worldwide and has a major impact on an individual’s quality of life. Tissue engineering has the potential to increase quality of life for many of these patients by preventing vision loss or restoring vision using cell-based therapies. However, these strategies will require an understanding of the microenvironmental factors that influence cell behavior. The eye is a well-organized organ whose structural complexity is essential for proper function. Interactions between ocular cells and their highly ordered extracellular matrix are necessary for maintaining key tissue properties including corneal transparency and retinal lamination. Therefore, it is not surprising that culturing these cells in vitro on traditional flat substrates result in irregular morphology. Instead, topographically patterned biomaterials better mimic native extracellular matrix and have been shown to elicit in vivo-like morphology and gene expression which is essential for tissue engineering. Herein we review multiple methods for producing well-controlled topography and discuss optimal biomaterial scaffold design for cells of the cornea, retina, and lens. PMID:23744715

  9. Topographical control of ocular cell types for tissue engineering.

    PubMed

    McHugh, Kevin J; Saint-Geniez, Magali; Tao, Sarah L

    2013-11-01

    Visual impairment affects over 285 million people worldwide and has a major impact on an individual's quality of life. Tissue engineering has the potential to increase the quality of life for many of these patients by preventing vision loss or restoring vision using cell-based therapies. However, these strategies will require an understanding of the microenvironmental factors that influence cell behavior. The eye is a well-organized organ whose structural complexity is essential for proper function. Interactions between ocular cells and their highly ordered extracellular matrix are necessary for maintaining key tissue properties including corneal transparency and retinal lamination. Therefore, it is not surprising that culturing these cells in vitro on traditional flat substrates result in irregular morphology. Instead, topographically patterned biomaterials better mimic native extracellular matrix and have been shown to elicit in vivo-like morphology and gene expression which is essential for tissue engineering. Herein we review multiple methods for producing well-controlled topography and discuss optimal biomaterial scaffold design for cells of the cornea, retina, and lens.

  10. Hyaluronan cable formation by ocular trabecular meshwork cells.

    PubMed

    Sun, Ying Ying; Keller, Kate E

    2015-10-01

    Hyaluronan (HA) in the ocular trabecular meshwork (TM) is a critical modulator of aqueous humor outflow. Individual HA strands in the pericellular matrix can coalesce to form cable-like structures, which have different functional properties. Here, we investigated HA structural configuration by TM cells in response to various stimuli known to stimulate extracellular matrix (ECM) remodeling. In addition, the effects of HA cable induction on aqueous outflow resistance was determined. Primary TM cell cultures grown on tissue culture-treated plastic were treated for 12-48 h with TNFα, IL-1α, or TGFβ2. TM cells grown on silicone membranes were subject to mechanical stretch, which induces synthesis and activation of ECM proteolytic enzymes. HA structural configuration was investigated by HA binding protein (HAbp) staining and confocal microscopy. HAbp-labeled cables were induced by TNFα, TGFβ2 and mechanical stretch, but not by IL-1α. HA synthase (HAS) gene expression was quantitated by quantitative RT-PCR and HA concentration was measured by ELISA assay. By quantitative RT-PCR, HAS-1, -2, and -3 genes were differentially up-regulated and showed temporal differences in response to each treatment. HA concentration was increased in the media by TNFα, TGFβ2 and IL-1α, but mechanical stretch decreased pericellular HA concentrations. Immunofluorescence and Western immunoblotting were used to investigate the distribution and protein levels of the HA-binding proteins, tumor necrosis factor-stimulated gene-6 (TSG-6) and inter-α-inhibitor (IαI). Western immunoblotting showed that TSG-6 and IαI were increased by TNFα, TGFβ2 and IL-1α, but mechanical stretch reduced their levels. The underlying substrate appears to affect the identity of IαI·TSG-6·HA complexes since different complexes were detected when TM cells were grown on a silicone substrate compared to a rigid plastic surface. Porcine anterior segments were perfused with 10 μg/ml polyinosinic

  11. Hyaluronan cable formation by ocular trabecular meshwork cells.

    PubMed

    Sun, Ying Ying; Keller, Kate E

    2015-10-01

    Hyaluronan (HA) in the ocular trabecular meshwork (TM) is a critical modulator of aqueous humor outflow. Individual HA strands in the pericellular matrix can coalesce to form cable-like structures, which have different functional properties. Here, we investigated HA structural configuration by TM cells in response to various stimuli known to stimulate extracellular matrix (ECM) remodeling. In addition, the effects of HA cable induction on aqueous outflow resistance was determined. Primary TM cell cultures grown on tissue culture-treated plastic were treated for 12-48 h with TNFα, IL-1α, or TGFβ2. TM cells grown on silicone membranes were subject to mechanical stretch, which induces synthesis and activation of ECM proteolytic enzymes. HA structural configuration was investigated by HA binding protein (HAbp) staining and confocal microscopy. HAbp-labeled cables were induced by TNFα, TGFβ2 and mechanical stretch, but not by IL-1α. HA synthase (HAS) gene expression was quantitated by quantitative RT-PCR and HA concentration was measured by ELISA assay. By quantitative RT-PCR, HAS-1, -2, and -3 genes were differentially up-regulated and showed temporal differences in response to each treatment. HA concentration was increased in the media by TNFα, TGFβ2 and IL-1α, but mechanical stretch decreased pericellular HA concentrations. Immunofluorescence and Western immunoblotting were used to investigate the distribution and protein levels of the HA-binding proteins, tumor necrosis factor-stimulated gene-6 (TSG-6) and inter-α-inhibitor (IαI). Western immunoblotting showed that TSG-6 and IαI were increased by TNFα, TGFβ2 and IL-1α, but mechanical stretch reduced their levels. The underlying substrate appears to affect the identity of IαI·TSG-6·HA complexes since different complexes were detected when TM cells were grown on a silicone substrate compared to a rigid plastic surface. Porcine anterior segments were perfused with 10 μg/ml polyinosinic

  12. Antimicrobial efficacy and ocular cell toxicity from silver nanoparticles

    PubMed Central

    Santoro, Colleen M.; Duchsherer, Nicole L.

    2009-01-01

    Silver in various forms has long been recognized for antimicrobial properties, both in biomedical devices and in eyes. However, soluble drugs used on the ocular surface are rapidly cleared through tear ducts and eventually ingested, resulting in decreased efficacy of the drug on its target tissue and potential concern for systemic side effects. Silver nanoparticles were studied as a source of anti-microbial silver for possible controlled-release contact lens controlled delivery formulations. Silver ion release over a period of several weeks from nanoparticle sources of various sizes and doses in vitro was evaluated in vitro against Pseudomonas aeruginosa strain PA01. Mammalian cell viability and cytokine expression in response to silver nanoparticle exposure is evaluated using corneal epithelial cells and eye-associated macrophages cultured in vitro in serum-free media. Minimal microcidal and cell toxic effects were observed for several silver nanoparticle suspensions and aqueous extraction times for bulk total silver concentrations commensurate with comparative silver ion (e.g., Ag+(aq)) toxicity. This indicates that (1) silver particles themselves are not microcidal under conditions tested, and (2) insufficient silver ion is generated from these particles at these loadings to produce observable biological effects in these in vitro assays. If dosing allows substantially increased silver particle loading in the lens, the bactericidal efficacy of silver nanoparticles in vitro is one possible approach to limiting bacterial colonization problems associated with extended-wear contact lenses. PMID:19865601

  13. Unilateral adaptation of the human angular vestibulo-ocular reflex.

    PubMed

    Migliaccio, Americo A; Schubert, Michael C

    2013-02-01

    A recent study showed that the angular vestibulo-ocular reflex (VOR) can be better adaptively increased using an incremental retinal image velocity error signal compared with a conventional constant large velocity-gain demand (×2). This finding has important implications for vestibular rehabilitation that seeks to improve the VOR response after injury. However, a large portion of vestibular patients have unilateral vestibular hypofunction, and training that raises their VOR response during rotations to both the ipsilesional and contralesional side is not usually ideal. We sought to determine if the vestibular response to one side could selectively be increased without affecting the contralateral response. We tested nine subjects with normal vestibular function. Using the scleral search coil and head impulse techniques, we measured the active and passive VOR gain (eye velocity / head velocity) before and after unilateral incremental VOR adaptation training, consisting of self-generated (active) head impulses, which lasted ≈ 15 min. The head impulses consisted of rapid, horizontal head rotations with peak-amplitude 15°, peak-velocity 150°/s and peak-acceleration 3,000°/s(2). The VOR gain towards the adapting side increased after training from 0.92 ± 0.18 to 1.11 ± 0.22 (+22.7 ± 20.2 %) during active head impulses and from 0.91 ± 0.15 to 1.01 ± 0.17 (+11.3 ± 7.5 %) during passive head impulses. During active impulses, the VOR gain towards the non-adapting side also increased by ≈ 8 %, though this increase was ≈ 70 % less than to the adapting side. A similar increase did not occur during passive impulses. This study shows that unilateral vestibular adaptation is possible in humans with a normal VOR; unilateral incremental VOR adaptation may have a role in vestibular rehabilitation. The increase in passive VOR gain after active head impulse adaptation suggests that the training effect is robust.

  14. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    SciTech Connect

    Zhang, Han; Sonoda, Koh-Hei; Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro

    2009-04-17

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8{sup +} T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8{sup +} T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  15. Stem Cell Therapy for Treatment of Ocular Disorders.

    PubMed

    Sivan, Padma Priya; Syed, Sakinah; Mok, Pooi-Ling; Higuchi, Akon; Murugan, Kadarkarai; Alarfaj, Abdullah A; Munusamy, Murugan A; Awang Hamat, Rukman; Umezawa, Akihiro; Kumar, Suresh

    2016-01-01

    Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented.

  16. Stem Cell Therapy for Treatment of Ocular Disorders.

    PubMed

    Sivan, Padma Priya; Syed, Sakinah; Mok, Pooi-Ling; Higuchi, Akon; Murugan, Kadarkarai; Alarfaj, Abdullah A; Munusamy, Murugan A; Awang Hamat, Rukman; Umezawa, Akihiro; Kumar, Suresh

    2016-01-01

    Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented. PMID:27293447

  17. Stem Cell Therapy for Treatment of Ocular Disorders

    PubMed Central

    Sivan, Padma Priya; Syed, Sakinah; Mok, Pooi-Ling; Higuchi, Akon; Murugan, Kadarkarai; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Awang Hamat, Rukman; Umezawa, Akihiro; Kumar, Suresh

    2016-01-01

    Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented. PMID:27293447

  18. Umbilical cord lining stem cells as a novel and promising source for ocular surface regeneration.

    PubMed

    Reza, Hasan Mahmud; Ng, Boon-Yee; Gimeno, Federico Luengo; Phan, Toan Thang; Ang, Leonard Pek-Kiang

    2011-11-01

    The stem cells involved in renewal of the corneal epithelium are located in the basal region of the limbus, a narrow transition zone surrounding the cornea. In many ocular surface disorders loss of these stem cells results in partial or complete vision loss. Conventional corneal transplant in these patients is associated with dismal results. Stem cell transplantation offers new hope to such patients. The umbilical cord is emerging as an important source of stem cells that may have potential clinical applications. There are advantages to the use of umbilical cord stem cells as these cells are less immunogenic, non-tumorigenic, highly proliferative and ethically acceptable. In this study, we have confirmed the expression of several putative limbal stem cell markers such as HES1, ABCG2, BMI1, CK15 as well as cell adhesion-associated molecules INTEGRIN-α6, -α9, -β1, COLLAGEN-IV and LAMININ in our recently characterized CLEC-muc population derived from human umbilical cord. Ex vivo expansion of these cells on a human amniotic membrane substrate formed a stratified cell sheet that similarly expresses some of these molecules as well as cornea-specific cytokeratins, CK3 and CK12. Transplantation of a bioengineered CLEC-muc sheet in limbal stem cell-deficient rabbit eyes resulted in regeneration of a smooth, clear corneal surface with phenotypic expression of the normal corneal-specific epithelial markers CK3, CK12 but not CK4 or CK1/10. Our results suggest that CLEC-muc is a novel stem cell that can be ex vivo expanded for corneal epithelial regeneration in the treatment of various eye diseases.

  19. Binocular Coordination of the Human Vestibulo-Ocular Reflex during Off-axis Pitch Rotation

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Reschke, M. F.; Kaufman, G. D.; Black, F. O.; Paloski, W. H.

    2006-01-01

    Head movements in the sagittal pitch plane typically involve off-axis rotation requiring both vertical and horizontal vergence ocular reflexes to compensate for angular and translational motion relative to visual targets of interest. The purpose of this study was to compare passive pitch VOR responses during rotation about an Earth-vertical axis (canal only cues) with off-axis rotation (canal and otolith cues). Methods. Eleven human subjects were oscillated sinusoidally at 0.13, 0.3 and 0.56 Hz while lying left-side down with the interaural axis either aligned with the axis of rotation or offset by 50 cm. In a second set of measurements, twelve subjects were also tested during sinusoidally varying centrifugation over the same frequency range. The modulation of vertical and horizontal vergence ocular responses was measured with a binocular videography system. Results. Off-axis pitch rotation enhanced the vertical VOR at lower frequencies and enhanced the vergence VOR at higher frequencies. During sinusoidally varying centrifugation, the opposite trend was observed for vergence, with both vertical and vergence vestibulo-ocular reflexes being suppressed at the highest frequency. Discussion. These differential effects of off-axis rotation over the 0.13 to 0.56 Hz range are consistent with the hypothesis that otolith-ocular reflexes are segregated in part on the basis of stimulus frequency. At the lower frequencies, tilt otolith-ocular responses compensate for declining canal input. At higher frequencies, translational otolith-ocular reflexes compensate for declining visual contributions to the kinematic demands required for fixating near targets.

  20. Ocular Hypertension

    MedlinePlus

    ... Español Eye Health / Eye Health A-Z Ocular Hypertension Sections What Is Ocular Hypertension? Ocular Hypertension Causes ... Hypertension Diagnosis Ocular Hypertension Treatment What Is Ocular Hypertension? Written by: Kierstan Boyd Reviewed by: J Kevin ...

  1. The human vestibulo-ocular reflex during linear locomotion

    NASA Technical Reports Server (NTRS)

    Moore, S. T.; Hirasaki, E.; Raphan, T.; Cohen, B.

    2001-01-01

    During locomotion, there is a translation and compensatory rotation of the head in both the vertical and horizontal planes. During moderate to fast walking (100 m/min), vertical head translation occurs at the frequency of stepping (2 Hz) and generates peak linear acceleration of 0.37 g. Lateral head translation occurs at the stride frequency (1 Hz) and generates peak linear acceleration of 0.1 g. Peak head pitch and yaw angular velocities are approximately 17 degrees/s. The frequency and magnitude of these head movements are within the operational range of both the linear and angular vestibulo-ocular reflex (IVOR and aVOR). Vertical eye movements undergo a phase reversal from near to far targets. When viewing a far (>1 m) target, vertical eye velocity is typical of an aVOR response; that is, it is compensatory for head pitch. At close viewing distances (<1 m), vertical eye velocity is in phase with head pitch and is compensatory for vertical head translation, suggesting that the IVOR predominantly generates the eye movement response. Horizontal head movements during locomotion occur at the stride frequency of 1 Hz, where the IVOR gain is low. Horizontal eye movements are compensatory for head yaw at all viewing distances and are likely generated by the aVOR.

  2. The ocular manifestations of syphilis in the human immunodeficiency virus type 1-infected host.

    PubMed

    McLeish, W M; Pulido, J S; Holland, S; Culbertson, W W; Winward, K

    1990-02-01

    Nine patients with active ocular or optic nerve involvement by syphilis who also had concurrent human immunodeficiency virus type-1 (HIV-1) infection are described. The ocular manifestations of syphilis led to the discovery of HIV-1 seropositivity in four of nine cases. Fifteen eyes were affected. Ocular manifestations were: iridocyclitis in three eyes, vitreitis in one eye, retinitis or neuroretinitis in five eyes, papillitis in two eyes, optic perineuritis in two eyes, and retrobulbar optic neuritis in two eyes. Three patients diagnosed with acquired immune deficiency syndrome (AIDS) had the worst initial visual acuities. Six of nine patients had evidence of concomitant central nervous syndrome (CNS) involvement with syphilis. Benzathine penicillin was administered intramuscularly to three patients. All three had relapses. Seven of nine patients treated intravenously with high-dose penicillin had dramatic responses to therapy with improvement in vision and serologies and no evidence of relapse. Regimens accepted for the treatment of neurosyphilis appear to be adequate for the treatment of ocular syphilis in HIV-1-infected patients though further long-term follow-up will be required. PMID:2326008

  3. Ocular Fluid As a Replacement for Serum in Cell Cryopreservation Media

    PubMed Central

    Venna, Naresh Kumar; Murthy, Ch Lakshmi N.; Idris, Mohammed M.; Goel, Sandeep

    2015-01-01

    Cryostorage is of immense interest in biomedical research, especially for stem cell-based therapies and fertility preservation. Several protocols have been developed for efficient cryopreservation of cells and tissues, and a combination of dimethyl sulfoxide (DMSO) and fetal bovine serum (FBS) is commonly used. However, there is a need for an alternative to FBS because of ethical reasons, high cost, and risk of contamination with blood-borne diseases. The objective of the present study was to examine the possibility of using buffalo (Bubalus bubalis) ocular fluid (BuOF) to replace FBS in cryomedia. Frozen–thawed cells, which were cryopreserved in a cryomedia with BuOF, were assessed for viability, early and late apoptosis, and proliferation. Three cell lines (CHO, HEK, and C18-4), mouse embryonic stem (mES) cells, and primary cells, such as mouse embryonic fibroblast (MEF) cells, human peripheral blood mononuclear cells (hPBMCs), and mouse bone marrow cells (mBMCs), were cryopreserved in cryomedia containing 10% DMSO (D10) with 20% FBS (D10S20) or D10 with 20% BuOF (D10O20). For all three cell lines and mES cells cryopreserved in either D10S20 or D10O20, thawed cells showed no difference in cell viability or cell recovery. Western blot analysis of frozen–thawed-cultured cells revealed that the expression of Annexin V and proliferating cell nuclear antigen (PCNA) proteins, and the ratio of BAX/BCL2 proteins were similar in all three cell lines, mES cells, and hPBMCs cryopreserved in D10S20 and D10O20. However, initial cell viability, cell recovery after culture, and PCNA expression were significantly lower in MEF cells, and the BAX/BCL2 protein ratio was elevated in mBMCs cryopreserved in D10O20. Biochemical and proteomic analysis of BuOF showed the presence of several components that may have roles in imparting the cryoprotective property of BuOF. These results encourage further research to develop an efficient serum-free cryomedia for several cell types using

  4. Ocular Fluid As a Replacement for Serum in Cell Cryopreservation Media.

    PubMed

    Varma, Vivek Phani; Devi, Lalitha; Venna, Naresh Kumar; Murthy, Ch Lakshmi N; Idris, Mohammed M; Goel, Sandeep

    2015-01-01

    Cryostorage is of immense interest in biomedical research, especially for stem cell-based therapies and fertility preservation. Several protocols have been developed for efficient cryopreservation of cells and tissues, and a combination of dimethyl sulfoxide (DMSO) and fetal bovine serum (FBS) is commonly used. However, there is a need for an alternative to FBS because of ethical reasons, high cost, and risk of contamination with blood-borne diseases. The objective of the present study was to examine the possibility of using buffalo (Bubalus bubalis) ocular fluid (BuOF) to replace FBS in cryomedia. Frozen-thawed cells, which were cryopreserved in a cryomedia with BuOF, were assessed for viability, early and late apoptosis, and proliferation. Three cell lines (CHO, HEK, and C18-4), mouse embryonic stem (mES) cells, and primary cells, such as mouse embryonic fibroblast (MEF) cells, human peripheral blood mononuclear cells (hPBMCs), and mouse bone marrow cells (mBMCs), were cryopreserved in cryomedia containing 10% DMSO (D10) with 20% FBS (D10S20) or D10 with 20% BuOF (D10O20). For all three cell lines and mES cells cryopreserved in either D10S20 or D10O20, thawed cells showed no difference in cell viability or cell recovery. Western blot analysis of frozen-thawed-cultured cells revealed that the expression of Annexin V and proliferating cell nuclear antigen (PCNA) proteins, and the ratio of BAX/BCL2 proteins were similar in all three cell lines, mES cells, and hPBMCs cryopreserved in D10S20 and D10O20. However, initial cell viability, cell recovery after culture, and PCNA expression were significantly lower in MEF cells, and the BAX/BCL2 protein ratio was elevated in mBMCs cryopreserved in D10O20. Biochemical and proteomic analysis of BuOF showed the presence of several components that may have roles in imparting the cryoprotective property of BuOF. These results encourage further research to develop an efficient serum-free cryomedia for several cell types using Bu

  5. Role of the Retinal Vascular Endothelial Cell in Ocular Disease

    PubMed Central

    Bharadwaj, Arpita S.; Appukuttan, Binoy; Wilmarth, Phillip A.; Pan, Yuzhen; Stempel, Andrew J.; Chipps, Timothy J.; Benedetti, Eric E.; Zamora, David O.; Choi, Dongseok; David, Larry L.; Smith, Justine R.

    2012-01-01

    Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell. PMID:22982179

  6. Role of the human lens gradient-index profile in the compensation of third-order ocular aberrations

    NASA Astrophysics Data System (ADS)

    Díaz, José A.; Fernández-Dorado, José; Sorroche, Francisco

    2012-07-01

    The open question regarding the compensation of the ocular aberrations between the cornea and the lens is currently being investigated. We report additional insights considering the role of the lens gradient-index (GRIN) profile in third-order ocular aberrations, since this profile changes through life. Thus, we have calculated the contribution of that profile to the ocular aberrations with aging by applying the Seidel third-order theory of tilted and decentered elements, and by using a schematic-eye model. The results show the GRIN profile is needed to account for the decoupling of the aberrations between the cornea and the lens because the geometrical changes of the ocular surfaces with aging are not enough. Therefore, the current developments of aging human-eye models, as well as the experimental studies, cannot neglect the changes of the lens GRIN structure through life when modelling mechanisms of the compensation of ocular aberrations.

  7. Age-related changes in human vestibulo-ocular reflexes: Sinusoidal rotation and caloric tests

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.; Schoenhoff, M. B.

    1989-01-01

    The dynamic response properties of horizontal vestibulo-ocular reflex (VOR) were characterized in 216 human subjects ranging in age from 7 to 81 years. The object of this cross-sectional study was to determine the effects of aging on VOR dynamics, and to identify the distributions of parameters which describe VOR responses to caloric and to sinusoidal rotational stimuli in a putatively normal population. Caloric test parameters showed no consistent trend with age. Rotation test parameters showed declining response amplitude and slightly less compensatory response phase with increasing age. The magnitudes of these changes were not large relative to the variability within the population. The age-related trends in VOR were not consistent with the anatomic changes in the periphery reported by others which showed an increasing rate of peripheral hair cell and nerve fiber loss in subjects over 55 years. The poor correlation between physiological and anatomical data suggest that adaptive mechanisms in the central nervous system are important in maintaining the VOR.

  8. Behavior of human horizontal vestibulo-ocular reflex in response to high-acceleration stimuli

    NASA Technical Reports Server (NTRS)

    Maas, E. F.; Huebner, W. P.; Seidman, S. H.; Leigh, R. J.

    1989-01-01

    The horizontal vestibulo-ocular reflex (VOR) during transient, high-acceleration (1900-7100 deg/sec-squared) head rotations was studied in four human subjects. Such stimuli perturbed the angle of gaze and caused illusory movement of a viewed target (oscillopsia). The disturbance of gaze could be attributed to the latency of the VOR (which ranged from 6-15 ms) and inadequate compensatory eye rotations (median VOR gain ranged from 0.61-0.83).

  9. Chlamydophila psittaci-negative ocular adnexal marginal zone lymphomas express self polyreactive B-cell receptors.

    PubMed

    Zhu, D; Bhatt, S; Lu, X; Guo, F; Veelken, H; Hsu, D K; Liu, F-T; Alvarez Cubela, S; Kunkalla, K; Vega, F; Chapman-Fredricks, J R; Lossos, I S

    2015-07-01

    The pathogenesis of Chlamydophila psittaci-negative ocular adnexal extranodal marginal zone lymphomas (OAEMZLs) is poorly understood. OAEMZLs are monoclonal tumors expressing a biased repertoire of mutated surface immunoglobulins. Antigenic activation of the B-cell receptor (BCR) may have a role in the pathogenesis of these lymphomas. We have analyzed the reactivity of recombinant OAEMZL immunoglobulins. OAEMZL antibodies reacted with self-human antigens, as demonstrated by enzyme-linked immunosorbent assays, HEp-2 immunofluorescence and human protein microarrays. All the analyzed recombinant antibodies (rAbs) exhibited polyreactivity by comprehensive protein array antibody reactivity and some rAbs also demonstrated rheumatoid factor activity. The identity of several reactive antigens was confirmed by microcapillary reverse-phase high-performance liquid chromatography nano-electrospray tandem mass spectrometry. The tested rAbs frequently reacted with shared intracellular and extracellular self-antigens (for example, galectin-3). Furthermore, these self-antigens induced BCR signaling in B cells expressing cognate surface immunoglobulins derived from OAEMZLs. These findings indicate that interactions between self-antigens and cognate OAEMZL tumor-derived BCRs are functional, inducing intracellular signaling. Overall, our findings suggest that self-antigen-induced BCR stimulation may be implicated in the pathogenesis of C. psittaci-negative OAEMZLs. PMID:25676418

  10. Ocular syphilis in patients with Human Immunodeficiency Virus infection.

    PubMed

    Mitchell, John P; Huang, Lynn L; Rosberger, Daniel F

    2015-06-01

    As Acquired Immunodeficiency Disease (AIDS) turns thirty-years old, much progress has been made. 56,000 new cases of the Human Immunodeficiency Virus (HIV) infection are expected in Americans this year. At least half or more will be in African Americans. Reports of the association between syphilis and HIV infection are well documented. We present a case of bilateral optic neuritis and panuveitis as the initial presentation in a previously undiagnosed patient with human immunodeficiency virus (HIV) and syphilis. PMID:27269502

  11. Ocular manifestation of HIV/AIDS and correlation with CD4+ cells count among adult HIV/AIDS patients in Jimma town, Ethiopia: a cross sectional study

    PubMed Central

    2013-01-01

    Background HIV/AIDS is one of twenty first century’s challenges to human being with protean manifestation affecting nearly all organs of our body. It is causing high morbidity and mortality especially in sub-Saharan Africa with numerous ocular complications and blindness. The purpose of this study was to determine the patterns of ocular manifestations of HIV/AIDS and their correlation with CD4+Tcells count. Methods A cross-sectional study was done on 348 HIV-positive patients presented to Anti-Retroviral Therapy clinics. Data were collected using face-to-face interview, clinical examination and laboratory investigation, and analyzed using SPSS version 13 software. Statistical association test was done and p<0.05 was considered significant. Other statistical tests like student t-test and logistic regression were also done. Results Of 348 patients, 175 were on antiretroviral therapy and 173 were not on therapy. The mean duration of therapy was 27 months. The overall prevalence of ocular manifestations was 25.3%. The commonest ocular manifestation was keratoconjunctivitis sicca (11.3%) followed by blepharitis (3.2%), molluscum contagiosum (2.6%), conjunctival squamous cell carcinoma (2.3%), conjunctival microvasculopathy (2.3%), cranial nerve palsies (2%), herpes zoster ophthalmicus (HZO) (1.2%), and HIV retinopathy (0.6%). HIV retinopathy and conjunctival microvasculopathy were common in patient with CD4+ count of <200 cells/μl while HZO and molluscum contagiosum were common in patients with CD4+ count of 200–499 cells/μl. Prevalence of ocular manifestation was higher among patients on HAART (32.6%) than those patients not on HAART (17.9%) (p<0.05). There was statistically significant association between ocular manifestation and sex, CD4+Tcells count, and age (p<0.05). CD4+ count, <200 cells/μl and age >35 years were independent risk factors for ocular manifestations. Conclusion The study showed that the prevalence of ocular manifestation of HIV/AIDS is

  12. Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring

    PubMed Central

    Ahadome, Sarah D.; Abraham, David J.; Rayapureddi, Suryanarayana; Saw, Valerie P.; Saban, Daniel R.; Calder, Virginia L.; Norman, Jill T.; Ponticos, Markella; Daniels, Julie T.; Dart, John K.

    2016-01-01

    Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy.

  13. Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring

    PubMed Central

    Ahadome, Sarah D.; Abraham, David J.; Rayapureddi, Suryanarayana; Saw, Valerie P.; Saban, Daniel R.; Calder, Virginia L.; Norman, Jill T.; Ponticos, Markella; Daniels, Julie T.; Dart, John K.

    2016-01-01

    Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy. PMID:27699226

  14. The role of nanotechnology in control of human diseases: perspectives in ocular surface diseases.

    PubMed

    Rai, Mahendra; Ingle, Avinash P; Gaikwad, Swapnil; Padovani, Felipe Hering; Alves, Monica

    2016-10-01

    Nanotechnology is the creation and use of materials and devices on the same scale as molecules and intracellular structures, typically less than 100 nm in size. It is an emerging science and has made its way into pharmaceuticals to significantly improve the delivery and efficacy of drugs in a number of therapeutic areas, due to development of various nanoparticle-based products. In recent years, there has been increasing evidence that nanotechnology can help to overcome many of the ocular diseases and hence researchers are keenly interested in this science. Nanomedicines offer promise as viable alternatives to conventional drops, gels or ointments to improve drug delivery to the eye. Because of their small size, they are well tolerated, thus preventing washout, increase bioavailability and also help in specific drug delivery. This review describes the application of nanotechnology in the control of human diseases with special emphasis on various eye and ocular surfaces diseases.

  15. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice.

    PubMed

    Wu, Xiaorong; Tuzun, Erdem; Saini, Shamsher S; Wang, Jun; Li, Jing; Aguilera-Aguirre, Leopoldo; Huda, Ruksana; Christadoss, Premkumar

    2015-12-01

    Extraocular muscles (EOM) are preferentially involved in myasthenia gravis (MG) and acetylcholine receptor (AChR) antibody positive MG patients may occasionally present with isolated ocular symptoms. Although experimental autoimmune myasthenia gravis (EAMG) induced by whole AChR immunization closely mimics clinical and immunopathological aspects of MG, EOM are usually not affected. We have previously developed an EAMG model, which imitates EOM symptoms of MG by immunization of human leukocyte antigen (HLA) transgenic mice with α or γ-subunits of human AChR (H-AChR). To investigate the significance of the ϵ-subunit in ocular MG, we immunized HLA-DR3 and HLA-DQ8 transgenic mice with recombinant H-AChR ϵ-subunit expressed in Escherichia coli. HLA-DR3 transgenic mice showed significantly higher clinical ocular and generalized MG severity scores and lower grip strength values than HLA-DQ8 mice. H-AChR ϵ-subunit-immunized HLA-DR3 transgenic mice had higher serum anti-AChR antibody (IgG, IgG1, IgG2b, IgG2c and IgM) levels, neuromuscular junction IgG and complement deposit percentages than ϵ-subunit-immunized HLA-DQ8 transgenic mice. Control mice immunized with E. coli extract or complete Freund adjuvant (CFA) did not show clinical and immunopathological features of ocular and generalized EAMG. Lymph node cells of ϵ-subunit-immunized HLA-DR3 mice showed significantly higher proliferative responses than those of ϵ-subunit-immunized HLA-DQ8 mice, crude E. coli extract-immunized and CFA-immunized transgenic mice. Our results indicate that the human AChR ϵ-subunit is capable of inducing myasthenic muscle weakness. Diversity of the autoimmune responses displayed by mice expressing different HLA class II molecules suggests that the interplay between HLA class II alleles and AChR subunits might have a profound impact on the clinical course of MG.

  16. Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology.

    PubMed

    Masters, Michael; Bruner, Emiliano; Queer, Sarah; Traynor, Sarah; Senjem, Jess

    2015-10-01

    Recent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints. In terms of medicine, such constraints can be associated with minor deformation of the eye, vision defects, and patterns of integration among these features, and in association with the frontal lobes, are important to consider in reconstructive surgery. Further study is therefore necessary to establish how these variables are related, and to what extent ocular size is associated with orbital and cerebral cortical volumes. Relationships among these anatomical components were investigated using magnetic resonance images from a large sample of 83 individuals, which also included each subject's body height, age, sex, and uncorrected visual acuity score. Occipital and frontal gyri volumes were calculated using two different cortical parcellation tools in order to provide a better understanding of how the eye and orbit vary in relation to visual cortical gyri, and frontal cortical gyri which are not directly related to visual processing. Results indicated that ocular and orbital volumes were weakly correlated, and that eye volume explains only a small proportion of the variance in orbital volume. Ocular and orbital volumes were also found to be equally and, in most cases, more highly correlated with five frontal lobe gyri than with occipital lobe gyri associated with V1, V2, and V3 of the visual cortex. Additionally, after accounting for age and sex variation, the relationship between ocular and total visual cortical volume was no longer statistically significant, but remained significantly related to total frontal lobe volume. The relationship between orbital and visual cortical volumes remained significant for a

  17. Mutation of SALL2 causes recessive ocular coloboma in humans and mice

    PubMed Central

    Kelberman, Daniel; Islam, Lily; Lakowski, Jörn; Bacchelli, Chiara; Chanudet, Estelle; Lescai, Francesco; Patel, Aara; Stupka, Elia; Buck, Anja; Wolf, Stephan; Beales, Philip L.; Jacques, Thomas S.; Bitner-Glindzicz, Maria; Liasis, Alki; Lehmann, Ordan J.; Kohlhase, Jürgen; Nischal, Ken K.; Sowden, Jane C.

    2014-01-01

    Ocular coloboma is a congenital defect resulting from failure of normal closure of the optic fissure during embryonic eye development. This birth defect causes childhood blindness worldwide, yet the genetic etiology is poorly understood. Here, we identified a novel homozygous mutation in the SALL2 gene in members of a consanguineous family affected with non-syndromic ocular coloboma variably affecting the iris and retina. This mutation, c.85G>T, introduces a premature termination codon (p.Glu29*) predicted to truncate the SALL2 protein so that it lacks three clusters of zinc-finger motifs that are essential for DNA-binding activity. This discovery identifies SALL2 as the third member of the Drosophila homeotic Spalt-like family of developmental transcription factor genes implicated in human disease. SALL2 is expressed in the developing human retina at the time of, and subsequent to, optic fissure closure. Analysis of Sall2-deficient mouse embryos revealed delayed apposition of the optic fissure margins and the persistence of an anterior retinal coloboma phenotype after birth. Sall2-deficient embryos displayed correct posterior closure toward the optic nerve head, and upon contact of the fissure margins, dissolution of the basal lamina occurred and PAX2, known to be critical for this process, was expressed normally. Anterior closure was disrupted with the fissure margins failing to meet, or in some cases misaligning leading to a retinal lesion. These observations demonstrate, for the first time, a role for SALL2 in eye morphogenesis and that loss of function of the gene causes ocular coloboma in humans and mice. PMID:24412933

  18. Ocular graft versus host disease in allogenic haematopoetic stem cell transplantation in a tertiary care centre in India

    PubMed Central

    Khan, Rehan; Nair, Sridevi; Seth, Tullika; Mishra, Pravas; Mahapatra, Manoranjan; Agarwal, Tushar; Tandon, Radhika; Vanathi, Murugesan

    2015-01-01

    Background & objectives: This study was aimed to report the occurrence of ocular graft versus host disease (oGVHD) in allogeneic haematopoietic stem cell transplantation (allo-HSCT) patients in a tertiary care hospital setting. Methods: A cross-sectional study of ocular surface of allo-HSCT patients was done. Slit lamp biomicroscopy, symptom score, tear meniscus height, fluorescein tear break-up time, Schirmer's test I, ocular surface staining, dry eye severity, ocular surface disease index score were done. Indications for allo-HSCT, human leukocyte antigen (HLA) matching, GVHD risk factor, systemic manifestation and treatment were also noted. Results: GVHD occurred in 44.4 per cent of 54 allo-HSCT patients (mean age 26.7 ± 12 yr) included in the study. GVHD risk factors identified included female gender, relapse, older age of donor, cytomagelo virus (CMV) reactivation, and multiparous female donors. oGVHD was noted in 31.5 per cent with mean time to occurrence being 17.8 ± 21.9 months after the allo-HSCT and was observed in 89.5 per cent of chronic GVHD cases. Acute GVHD (oral and dermatological) involvement showed a significant association with GVHD in our patients (P< 0.001, 0R 23.0, CI 6.4-82.1). Chronic GVHD was observed to be associated with the occurrence of oGVHD (dry eye) (P<0.001, OR = 24.0, CI 0.02 - 0.29). Of the 34 eyes with oGHVD, dry eye of level 3 severity was seen in 16, level 2 in six, level 1 in 12 eyes. Interpretation & conclusions: GVHD occurred in 44.4 per cent of the patients studied in the present study. Acute and chronic GVHD showed a strong association with oGVHD. Dry eye disease due to chronic oGVHD was observed in 17 (31.5%) of 54 allo-HSCT patient with chronic oGVHD occurring in 17 (89.4%) of chronic GVHD cases in allo-HSCT patients. Our study on oGVHD in post allo-HSCT patients in tertiary care centre points towards the fact that ocular morbidity due to dry eye disease as a result of oGVHD is a cause for concern in these patients

  19. Granulocytes in Ocular HSV-1 Infection: Opposing Roles of Mast Cells and Neutrophils

    PubMed Central

    Royer, Derek J.; Zheng, Min; Conrady, Christopher D.; Carr, Daniel J. J.

    2015-01-01

    Purpose. The contributions of mast cells (MCs) to immunologic defense against pathogens in the eye are unknown. We have characterized pericorneal MCs as tissue-resident innate sentinels and determined their impact on the immune response to herpes simplex virus type-1 (HSV-1), a common ocular pathogen. Methods. The impact of mast cells on the immune response to HSV-1 infection was investigated using MC-deficient KitW-sh mice. Virus titers, inflammatory cytokine production, eicosanoid profiles, cellular immune responses, and ocular pathology were evaluated and compared with C57BL/6J mice during an acute corneal HSV-1 infection. Results. Corneas of KitW-sh mice have higher viral titers, increased edema, and greater leukocyte infiltration following HSV-1 infection. Following infection, cytokine profiles were slightly elevated overall in KitW-sh mice. Eicosanoid profiles were remarkably different only when comparing uninfected corneas from both groups. Neutrophils within infected corneas expressed HSV-1 antigen, lytic genes, and served as a disease-causing vector when adoptively transferred into immunocompromised animals. Myeloid-derived suppressor cells did not infiltrate into the cornea or suppress the expansion, recruitment, or cytokine production by CD8+ T cells following acute HSV-1 infection. Conclusions. Collectively, these findings provide new insight into host defense in the cornea and the pathogenesis of HSV-1 infection by identifying previously unacknowledged MCs as protective innate sentinels for infection of the ocular surface and reinforcing that neutrophils are detrimental to corneal infection. PMID:26066745

  20. Control of Cross Talk between Angiogenesis and Inflammation by Mesenchymal Stem Cells for the Treatment of Ocular Surface Diseases

    PubMed Central

    Li, Fei; Zhao, Shao-zhen

    2016-01-01

    Angiogenesis is beneficial in the treatment of ischemic heart disease and peripheral artery disease. However, it facilitates inflammatory cell filtration and inflammation cascade that disrupt the immune and angiogenesis privilege of the avascular cornea, resulting in ocular surface diseases and even vision loss. Although great progress has been achieved, healing of severe ocular surface injury and immunosuppression of corneal transplantation are the most difficult and challenging step in the treatment of ocular surface disorders. Mesenchymal stem cells (MSCs), derived from various adult tissues, are able to differentiate into different cell types such as endothelial cells and fat cells. Although it is still under debate whether MSCs could give rise to functional corneal cells, recent results from different study groups showed that MSCs could improve corneal disease recovery through suppression of inflammation and modulation of immune cells. Thus, MSCs could become a promising tool for ocular surface disorders. In this review, we discussed how angiogenesis and inflammation are orchestrated in the pathogenesis of ocular surface disease. We overviewed and updated the knowledge of MSCs and then summarized the therapeutic potential of MSCs via control of angiogenesis, inflammation, and immune response in the treatment of ocular surface disease. PMID:27110252

  1. Control of Cross Talk between Angiogenesis and Inflammation by Mesenchymal Stem Cells for the Treatment of Ocular Surface Diseases.

    PubMed

    Li, Fei; Zhao, Shao-Zhen

    2016-01-01

    Angiogenesis is beneficial in the treatment of ischemic heart disease and peripheral artery disease. However, it facilitates inflammatory cell filtration and inflammation cascade that disrupt the immune and angiogenesis privilege of the avascular cornea, resulting in ocular surface diseases and even vision loss. Although great progress has been achieved, healing of severe ocular surface injury and immunosuppression of corneal transplantation are the most difficult and challenging step in the treatment of ocular surface disorders. Mesenchymal stem cells (MSCs), derived from various adult tissues, are able to differentiate into different cell types such as endothelial cells and fat cells. Although it is still under debate whether MSCs could give rise to functional corneal cells, recent results from different study groups showed that MSCs could improve corneal disease recovery through suppression of inflammation and modulation of immune cells. Thus, MSCs could become a promising tool for ocular surface disorders. In this review, we discussed how angiogenesis and inflammation are orchestrated in the pathogenesis of ocular surface disease. We overviewed and updated the knowledge of MSCs and then summarized the therapeutic potential of MSCs via control of angiogenesis, inflammation, and immune response in the treatment of ocular surface disease. PMID:27110252

  2. Dynamic properties of the human vestibulo-ocular reflex during head rotations in roll

    NASA Technical Reports Server (NTRS)

    Seidman, S. H.; Leigh, R. J.; Tomsak, R. L.; Grant, M. P.; Dell'Osso, L. F.

    1995-01-01

    We investigated the dynamic properties of the human vestibulo-ocular reflex (VOR) during roll head rotations in three human subjects using the magnetic search coil technique. In the first of two experiments, we quantify the behavior of the ocular motor plant in the torsional plane. The subject's eye was mechanically displaced into intorsion, extorsion or abduction, and the dynamic course of return of the eye to its resting position was measured. The mean predominant time constants of return were 210 msec from intorsion, 83 msec from extorsion, and 217 msec from abduction, although there was considerable variability of results from different trials and subjects. In the second experiment, we quantify the efficacy of velocity-to-position integration of the vestibular signal. Position-step stimuli were used to test the torsional or horizontal VOR, being applied with subjects heads erect or supine. After a torsional position-step, the eye drifted back to its resting position, but after a horizontal position-step the eye held its new horizontal position. To interpret these responses we used a simple model of the VOR with parameters of the ocular motor plant set to values determined during Exp 1. The time constant of the velocity-to-position neural integrator was smaller (typically 2 sec) in the torsional plane than in the horizontal plane (> 20 sec). No disconjugacy of torsional eye movements was observed. Thus, the dynamic properties of the VOR in roll differ significantly from those of the VOR in yaw, reflecting different visual demands placed on this reflex in these two planes.

  3. Pluripotent Stem Cells and Other Innovative Strategies for the Treatment of Ocular Surface Diseases.

    PubMed

    Erbani, Johanna; Aberdam, Daniel; Larghero, Jerome; Vanneaux, Valérie

    2016-04-01

    The cornea provides two thirds of the refractive power of the eye and protection against insults such as infection and injury. The outermost tissue of the cornea is renewed by stem cells located in the limbus. Depletion or destruction of these stem cells may lead to blinding limbal stem cell deficiency (LSCD) that concerns millions of patients around the world. Innovative strategies based on adult stem cell therapies have been developed in the recent years but they are still facing numerous unresolved issues, and the long term results can be deceiving. Today there is a clear need to improve these therapies, and/or to develop new approaches for the treatment of LSCD. Here, we review the current cell-based therapies used for the treatment of ocular diseases, and discuss the potential of pluripotent stem cells (embryonic and induced pluripotent stem cells) in corneal repair. As the secretion of paracrine factors is known to have a crucial role in maintaining stem cell homeostasis and in wound repair, we also consider the therapeutic potential of a promising novel pathway, the exosomes. Exosomes are nano-sized vesicles that have the ability to transfer RNAs and proteins to recipient cells, and several studies demonstrated their role in cell protection and wound healing. Exosomes could circumvent the hurdles of stem-cell based approaches, and they could become a strong candidate as an alternative therapy for ocular surface diseases. PMID:26779895

  4. MUC19 expression in human ocular surface and lacrimal gland and its alteration in Sjögren syndrome patients.

    PubMed

    Yu, D F; Chen, Y; Han, J M; Zhang, H; Chen, X P; Zou, W J; Liang, L Y; Xu, C C; Liu, Z G

    2008-02-01

    This study investigated the expression of MUC19, a newly discovered gel-forming mucin gene, in normal human lacrimal functional unit components and its alteration in Sjögren syndrome patients. Real-time PCR and immunohistochemistry were performed to determine the expression of MUC19 and MUC5AC in human cornea, conjunctiva, and lacrimal gland tissues. Conjunctival impression cytology specimens were collected from normal control subjects and Sjögren syndrome patients for Real-time PCR, PAS staining, and immunohistochemistry assays. In addition, conjunctiva biopsy specimens from both groups were examined for the expression differences of MUC19 and MUC5AC at both mRNA and protein level. The MUC19 mRNA was found to be present in cornea, conjunctiva and lacrimal gland tissues. The immunohistochemical staining of mucins showed that MUC19 was expressed in epithelial cells from corneal, conjunctival, and lacrimal gland tissues. In contrast, MUC5AC mRNA was only present in conjunctiva and lacrimal gland tissues, but not in cornea. Immunostaining demonstrates the co-staining of MUC19 and MUC5AC in conjunctival goblet cells. Consistent with the significant decrease of mucous secretion, both MUC19 and MUC5AC were decreased in conjunctiva of Sjögren syndrome patients compared to normal subjects. Considering the contribution of gel-forming mucins to the homeostasis of the ocular surface, the decreased expression of MUC19 and MUC5AC in Sjögren syndrome patients suggested that these mucins may be involved in the disruption of the ocular surface homeostasis in this disease. PMID:18184611

  5. MUC19 expression in human ocular surface and lacrimal gland and its alteration in Sjögren syndrome patients.

    PubMed

    Yu, D F; Chen, Y; Han, J M; Zhang, H; Chen, X P; Zou, W J; Liang, L Y; Xu, C C; Liu, Z G

    2008-02-01

    This study investigated the expression of MUC19, a newly discovered gel-forming mucin gene, in normal human lacrimal functional unit components and its alteration in Sjögren syndrome patients. Real-time PCR and immunohistochemistry were performed to determine the expression of MUC19 and MUC5AC in human cornea, conjunctiva, and lacrimal gland tissues. Conjunctival impression cytology specimens were collected from normal control subjects and Sjögren syndrome patients for Real-time PCR, PAS staining, and immunohistochemistry assays. In addition, conjunctiva biopsy specimens from both groups were examined for the expression differences of MUC19 and MUC5AC at both mRNA and protein level. The MUC19 mRNA was found to be present in cornea, conjunctiva and lacrimal gland tissues. The immunohistochemical staining of mucins showed that MUC19 was expressed in epithelial cells from corneal, conjunctival, and lacrimal gland tissues. In contrast, MUC5AC mRNA was only present in conjunctiva and lacrimal gland tissues, but not in cornea. Immunostaining demonstrates the co-staining of MUC19 and MUC5AC in conjunctival goblet cells. Consistent with the significant decrease of mucous secretion, both MUC19 and MUC5AC were decreased in conjunctiva of Sjögren syndrome patients compared to normal subjects. Considering the contribution of gel-forming mucins to the homeostasis of the ocular surface, the decreased expression of MUC19 and MUC5AC in Sjögren syndrome patients suggested that these mucins may be involved in the disruption of the ocular surface homeostasis in this disease.

  6. Optimization of culture conditions for an efficient xeno-feeder free limbal cell culture system towards ocular surface regeneration.

    PubMed

    Varghese, Viji Mary; Prasad, Tilak; Kumary, T V

    2010-10-01

    Ex vivo expansion of limbal stem cells from a small biopsy and its subsequent transplantation is the golden choice of treatment for limbal stem cell deficiency. Use of murine 3T3 feeder layer is a prerequisite for this ex vivo expansion. There is an ever-increasing demand for feeder free cultures to avoid xenotoxicity and transmission of xeno-diseases to human system. This study was aimed to establish an efficient xeno-feeder free limbal culture system towards ocular surface regeneration. To study the effect of initial dispase treatment and culture system used, migratory distance of cells from explants was analyzed from phase contrast images using "interactive measurements" of Qwin software (Leica). Expression of p63 in different culture systems was studied by immunofluorescent staining, followed by quantitative confocal microscopy (Carl Zeiss). Results showed dispase treatment was not necessary for establishing limbal explant culture. A combination of Iscove's modified Dulbecco's medium and Panserin 801 resulted in formation of autofeeder layer with maintenance of progenitor characteristics, thus mimicking natural tissue architecture. Further analysis of this culture system showed that cells could be cultured till confluency. Immunofluorescent staining of ABCG2 revealed presence of stem cell marker in the confluent cell layer. Scanning Electron Micrographs demonstrated homogenous population of tightly packed cells in this culture system. Replacement of bovine serum with autologous serum did not affect morphology or growth of cells in this culture system. This study will be a major step in the development of xeno-feeder free epithelial equivalents towards ocular surface reconstruction. PMID:20196106

  7. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery

    PubMed Central

    Vasconcelos, Aimee; Vega, Estefania; Pérez, Yolanda; Gómara, María J; García, María Luisa; Haro, Isabel

    2015-01-01

    In this work, a peptide for ocular delivery (POD) and human immunodeficiency virus transactivator were conjugated with biodegradable poly(lactic-co-glycolic acid) (PGLA)–polyethylene glycol (PEG)-nanoparticles (NPs) in an attempt to improve ocular drug bioavailability. The NPs were prepared by the solvent displacement method following two different pathways. One involved preparation of PLGA NPs followed by PEG and peptide conjugation (PLGA-NPs-PEG-peptide); the other involved self-assembly of PLGA-PEG and the PLGA-PEG-peptide copolymer followed by NP formulation. The conjugation of the PEG and the peptide was confirmed by a colorimetric test and proton nuclear magnetic resonance spectroscopy. Flurbiprofen was used as an example of an anti-inflammatory drug. The physicochemical properties of the resulting NPs (morphology, in vitro release, cell viability, and ocular tolerance) were studied. In vivo anti-inflammatory efficacy was assessed in rabbit eyes after topical instillation of sodium arachidonate. Of the formulations developed, the PLGA-PEG-POD NPs were the smaller particles and exhibited greater entrapment efficiency and more sustained release. The positive charge on the surface of these NPs, due to the conjugation with the positively charged peptide, facilitated penetration into the corneal epithelium, resulting in more effective prevention of ocular inflammation. The in vitro toxicity of the NPs developed was very low; no ocular irritation in vitro (hen’s egg test–chorioallantoic membrane assay) or in vivo (Draize test) was detected. Taken together, these data demonstrate that PLGA-PEG-POD NPs are promising vehicles for ocular drug delivery. PMID:25670897

  8. Optimised laser microdissection of the human ocular surface epithelial regions for microarray studies

    PubMed Central

    2013-01-01

    Background The most important challenge of performing insitu transcriptional profiling of the human ocular surface epithelial regions is obtaining samples in sufficient amounts, without contamination from adjacent tissue, as the region of interest is microscopic and closely apposed to other tissues regions. We have effectively collected ocular surface (OS) epithelial tissue samples from the Limbal Epithelial Crypt (LEC), limbus, cornea and conjunctiva of post-mortem cadaver eyes with laser microdissection (LMD) technique for gene expression studies with spotted oligonucleotide microarrays and Gene 1.0 ST arrays. Methods Human donor eyes (4 pairs for spotted oligonucleotide microarrays, 3 pairs for Gene 1.0 ST arrays) consented for research were included in this study with due ethical approval of the Nottingham Research Ethics Committee. Eye retrieval was performed within 36 hours of post-mortem period. The dissected corneoscleral buttons were immersed in OCT media and frozen in liquid nitrogen and stored at −80°C till further use. Microscopic tissue sections of interest were taken on PALM slides and stained with Toluidine Blue for laser microdissection with PALM microbeam systems. Optimisation of the laser microdissection technique was crucial for efficient and cost effective sample collection. Results The starting concentration of RNA as stipulated by the protocol of microarray platforms was taken as the cut-off concentration of RNA samples in our studies. The area of LMD tissue processed for spotted oligonucleotide microarray study ranged from 86,253 μm2 in LEC to 392,887 μm2 in LEC stroma. The RNA concentration of the LMD samples ranged from 22 to 92 pg/μl. The recommended starting concentration of the RNA samples used for Gene 1.0 ST arrays was 6 ng/5 μl. To achieve the desired RNA concentration the area of ocular surface epithelial tissue sample processed for the Gene 1.0 ST array experiments was approximately 100,0000 μm2 to 130,0000 μm2. RNA

  9. The human vertical translational vestibulo-ocular reflex. Normal and abnormal responses.

    PubMed

    Liao, Ke; Walker, Mark F; Joshi, Anand; Reschke, Millard; Strupp, Michael; Leigh, R John

    2009-05-01

    Geometric considerations indicate that the human translational vestibulo-ocular reflex (tVOR) should have substantially different properties than the angular vestibulo-ocular reflex (aVOR). Specifically, tVOR cannot simultaneously stabilize images of distant and near objects on the retina. Most studies make the tacit assumption that tVOR acts to stabilize foveal images even though, in humans, tVOR is reported to compensate for less than 60% of foveal image motion. We have determined that the compensation gain (eye rotational velocity/required eye rotational velocity to maintain foveal target fixation) of tVOR is held steady at approximately 0.6 during viewing of either near or distant targets during vertical (bob) translations in ambient illumination. We postulate that tVOR evolved not to stabilize the image of the target on the fovea, but rather to minimize retinal image motion between objects lying in different depth planes, in order to optimize motion parallax information. Such behavior is optimized when binocular visual cues of both near and distant targets are available in ambient light. Patients with progressive supranuclear palsy or cerebellar ataxia show impaired ability to increase tVOR responses appropriately when they view near targets. In cerebellar patients, impaired ability to adjust tVOR responses to viewing conditions occurs despite intact ability to converge at near. Loss of the ability to adjust tVOR according to viewing conditions appears to represent a distinct disorder of vestibular function.

  10. Expression of opsin genes early in ocular development of humans and mice.

    PubMed

    Tarttelin, Emma E; Bellingham, James; Bibb, Lindsay C; Foster, Russell G; Hankins, Mark W; Gregory-Evans, Kevin; Gregory-Evans, Cheryl Y; Wells, Dominic J; Lucas, Robert J

    2003-03-01

    We have compared the onsets of expression of the classical visual opsins with those of the non-rod, non-cone opsins in foetal and post-natal eye tissue from mice and humans. Mouse Rgr-opsin, peropsin, encephalopsin and melanopsin are all expressed in foetal development by E11.5, unlike the murine rod and cone opsins that exhibit post-natal expression, e.g. P1 for ultraviolet cone opsin and P5 for rod opsin. Human non-rod, non-cone opsins are also all expressed early, by 8.6 weeks post-conception. The implications of these observations are discussed with regard to the possible functions of these opsins at early stages of ocular development.

  11. [Regeneration of the ocular surface: stem cells and reconstructive techniques].

    PubMed

    Fernández, A; Moreno, J; Prósper, F; García, M; Echeveste, J

    2008-01-01

    The cornea is a transparent tissue microscopically constituted by 5 well differentiated layers. The corneal epithelium is essential for corneal transparency and is found in a state of constant renovation throughout life on the basis of the population of limbocorneal stem cells. The localisation of these limbocorneal stem cells seems to be in the basal layers of the limbocorneal epithelium, of vital importance for maintaining the micro-environment of these limbocorneal stem cells, which depend on a variety of intrinsic and extrinsic factors. Limbic insufficiency occurs when there is a partial or total loss of these limbocorneal stem cells. These clinical features lead to a corneal clouding with a resulting loss of vision. In these cases, corneal transplant only represents a temporary replacement of the corneal epithelium; it is necessary to carry out a prior treatment involving transplant of the autologous or allogeneic limbus, which enables regeneration of the population of damaged limbocorneal cells. To reduce the risk involved in the transplant of the limbus of the donor eye, techniques of cultivation of limbocorneal cells on the basis of small limbocorneal biopsies are proposed. PMID:18496580

  12. Immunofluorescence Tomography of Mouse Ocular Surface Epithelial Stem Cells and Their Niche Microenvironment

    PubMed Central

    Parfitt, Geraint J.; Kavianpour, Behdad; Wu, Karen L.; Xie, Yilu; Brown, Donald J.; Jester, James V.

    2015-01-01

    Purpose Currently, there are no definitive immunomarkers for epithelial stem cells (corneal and conjunctival) or their poorly understood niche microenvironment. The H2B-GFP/K5tTA mouse enables visualization of label-retaining cells (LRCs), which exhibit the functional marker of stem cell quiescence. We used immunofluorescence tomography to evaluate putative stem cell markers and LRCs of the mouse ocular surface. Methods H2B-GFP/K5tTA mice were pulsed for 56 days and then chased with doxycycline to label LRCs. Limbus and eyelid tissue was 3-dimensionally (3-D) reconstructed using immunofluorescence tomography to identify and characterize LRCs using the putative stem cell markers sox9, keratin 19, lrig1, blimp1, and abcb5. Results After 28 days of chase, LRCs were localized to the entire limbus epithelium and, infrequently, the anterior limbal stroma. Label-retaining cells comprised 3% of limbal epithelial cells after 56 days of chase. Conjunctival LRCs were localized to the fornix and comprised 4% of the total fornix epithelial cells. No stem cell immunomarker was specific for ocular surface LRCs; however, blimp1 enriched for limbal basal epithelial cells and 100% of green fluorescent protein-positive (GFP+) cells at the limbus and fornix were found to be lrig1-positive. Conclusions Label-retaining cells represent a larger population of the mouse limbus than previously thought. They decrease in number with increased doxycycline chase, suggesting that LRC populations with different cell cycle lengths exist at the limbus. We conclude that current immunomarkers are unable to colocalize with the functional marker of epithelial stem cell quiescence; however, blimp1 may enrich for limbal epithelial basal cells. PMID:26559480

  13. Ocular albinism type 1-induced melanoma cell migration is mediated through the RAS/RAF/MEK/ERK signaling pathway.

    PubMed

    Bai, Jun; Xie, Xin; Lei, Yun; An, Gaili; He, Li; Lv, Xiaopeng

    2014-07-01

    Malignant melanoma has the highest risk of mortality among all types of skin cancer due to its highly metastatic potential. The ocular albinism type 1 (OA1) protein is a pigment cell‑specific glycoprotein, which shares significant structural and functional features with G protein‑coupled receptors. However, the role of OA1 in melanoma has yet to be elucidated. The present study aimed to investigate whether OA1 is involved in melanoma cell migration. OA1 was found to stimulate cell migration in a dose‑dependent manner in cultured human melanoma cells. Furthermore, knockdown of OA1 using small interfering RNA was observed to significantly inhibit melanoma cell migration. In addition, the mechanism underlying OA1‑induced melanoma cell migration was investigated. Stimulation of the RAS/RAF/mitogen activated protein kinase kinase (MEK)/extracellular signal‑regulated kinase (ERK) pathway using growth factors enhanced OA1 expression and melanoma cell migration, whereas inhibition of this pathway using U0126 was observed to markedly decrease OA1 expression and the number of migrated cells. These findings indicate that OA1 is involved in melanoma cell migration and that OA1‑induced melanoma cell migration is mediated through the RAS/RAF/MEK/ERK signaling pathway. Therefore, OA1 may serve as a novel therapeutic target for melanoma. PMID:24736838

  14. Autophagy in the Eye: Implications for Ocular Cell Health

    PubMed Central

    Frost, Laura S.; Mitchell, Claire H.; Boesze-Battaglia, Kathleen

    2014-01-01

    Autophagy, a catabolic process by which a cell “eats” itself, turning over its own cellular constituents, plays a key role in cellular homeostasis. In an effort to maintain normal cellular function, autophagy is often up-regulated in response to environmental stresses and excessive organelle damage to facilitate aggregated protein removal. In the eye, virtually all cell types from those comprising the cornea in the front of the eye to the retinal pigment epithelium (RPE) providing a protective barrier for the retina at the back of the eye, rely on one or more aspects of autophagy to maintain structure and/or normal physiological function. In the lens autophagy plays a critical role in lens fiber cell maturation and the formation of the organelle free zone. Numerous studies delineating the role of Atg5, Vsp34 as well as FYCO1 in maintenance of lens transparency are discussed. Corneal endothelial dystrophies are also characterized as having elevated levels of autophagic proteins. Therefore, novel modulators of autophagy such as lithium and melatonin are proposed as new therapeutic strategies for this group of dystrophies. In addition, we summarize how corneal Herpes Simplex Virus (HSV-1) infection subverts the cornea’s response to infection by inhibiting the normal autophagic response. Using glaucoma models we analyze the relative contribution of autophagy to cell death and cell survival. The cytoprotective role of autophagy is further discussed in an analysis of photoreceptor cell heath and function. We focus our analysis on the current understanding of autophagy in photoreceptor and RPE health, specifically on the diverse role of autophagy in rods and cones as well as its protective role in light induced degeneration. Lastly, in the RPE we highlight hybrid phagocytosis-autophagy pathways. This comprehensive review allows us to speculate on how alterations in various stages of autophagy contribute to glaucoma and retinal degenerations. PMID:24810222

  15. [Ocular burns].

    PubMed

    Merle, H; Gérard, M; Schrage, N

    2008-09-01

    Ocular or thermal burns account for 7.7%-18% of ocular trauma. The majority of victims are young. The burns occur in the setting of accidents at work or in the home, or during a physical attack. Chemical burns by strong acids or bases are responsible for the most serious injuries. Associated with the destruction of limbal stem cells, they present as recurrent epithelial ulcerations, chronic stromal ulcers, deep stromal revascularization, conjunctival overlap, or even corneal perforation. The initial clinical exam is sometimes difficult to perform in the presence of burning symptoms. Nevertheless, it enables the physician to classify the injury, establish a prognosis, and most importantly, guide the therapeutic management. The Roper-Hall modification of the Hughes classification system is the most widely utilized, broken down into stages based on the size of the stromal opacity and the extent of possible limbal ischemia. This classification is now favorably supplemented by those proposed by Dua and Wagoner, which are based on the extent of the limbal stem cell deficiency. The prognosis of the more serious forms of ocular burns has markedly improved over the last decade because of a better understanding of the physiology of the corneal epithelium. Surgical techniques aimed at restoring the destroyed limbal stem cells have altered the prognosis of severe corneal burns. In order to decrease the incidence of burns, prevention, particularly in industry, is essential. PMID:18971859

  16. The Visual System of Zebrafish and its Use to Model Human Ocular Diseases

    PubMed Central

    Gestri, Gaia; Link, Brian A; Neuhauss, Stephan CF

    2011-01-01

    Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually-driven behaviors in the newly hatched larvae. The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases. Here, we review the anatomy, physiology and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases. PMID:21595048

  17. Age-related changes in human vestibulo-ocular and optokinetic reflexes: Pseudorandom rotation tests

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.; Schoenhoff, M. B.

    1989-01-01

    The dynamic response properties of horizontal vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) were characterized in 216 human subjects ranging in age from 7 to 81 years. The object of this cross-sectional study was to determine the effects of aging on VOR and OKR reflex dynamics, and to identify the distributions of parameters which describe VOR and OKR responses to pseudorandom stimuli in a putatively normal population. In general, VOR and OKR response parameters changed in a manner consistent with declining function with increasing age. For the VOR this was reflected in declining response amplitudes, although the magnitude of the decline was small relative to the variability of the data. For the OKR the lag time of the response, probably associated with the time required for visual information processing, increased linearly with age at a rate of about 1 ms per year.

  18. Olfactomedin-like 3 (OLFML3) gene expression in baboon and human ocular tissues: cornea, lens, uvea and retina

    PubMed Central

    Rodríguez-Sánchez, Iràm Pablo; Garza-Rodríguez, Maria Lourdes; Mohamed-Noriega, Karim; Voruganti, Venkata Saroja; Tejero, Maria Elizabeth; Delgado-Enciso, Ivan; Ibave, Diana Cristina Perez; Schlabritz-Loutsevitch, Natalia E.; Mohamed-Noriega, Jibran; Martinez-Fierro, Margarita L; Reséndez-Pérez, Diana; Cole, Shelley A; Cavazos-Adame, Humberto; Comuzzie, Anthony G.; Mohamed-Hamsho, Jesús; Barrera-Saldaña, Hugo Alberto

    2013-01-01

    Background Olfactomedin-like is a polyfunctional polymeric glycoprotein. This family has at least four members. One member of this family is OLFML3, which is preferentially expressed in placenta but is also detected in other adult tissues including the liver and heart. However, the orthologous rat gene is expressed in the iris, sclera, trabecular meshwork, retina, and optic nerve. Methods OLFML3 amplification was performed by RT-PCR from human and baboon ocular tissues. The products were cloned and sequenced. Results We report OFML3 expression in human and baboon eye. The full CDS has 1221 bp, from which a OFR of 406 amino acid was obtained. The baboon OLFML3 gene nucleotidic sequence has 98%, and amino acidic 99% similarity with humans. Conclusions OLFML3 expression in human and baboon ocular tissues and its high similarity make the baboon a powerful model to deduce the physiological and/or metabolic function of this protein in the eye. PMID:23398349

  19. Human ocular following initiated by competing image motions: evidence for a winner-take-all mechanism.

    PubMed

    Sheliga, B M; Kodaka, Y; FitzGibbon, E J; Miles, F A

    2006-06-01

    The initial ocular following responses (OFRs) elicited by 1/4-wavelength steps applied to the missing fundamental (mf) stimulus are in the backward direction and largely determined by the principal Fourier component, the 3rd harmonic [Sheliga, B. M., Chen, K. J., FitzGibbon, E. J., & Miles, F. A. (2005). Initial ocular following in humans: A response to first-order motion energy. Vision Research, 45, 3307-3321]. When the contrast of the 3rd harmonic was selectively reduced below that of the next most prominent harmonic-the 5th, which moves in the opposite (forward) direction-then the OFR reversed direction and the 3rd harmonic effectively lost all of its influence as the OFR was now largely determined by the 5th harmonic. Restricting the stimulus to just two sine waves (of equal efficacy when of equal contrast and presented singly) with the spatial frequencies of the 3rd and 5th harmonics of the mf stimulus indicated that the critical factor was the ratio of their two contrasts: when of similar contrast both were effective (vector sum/averaging), but when the contrast of one was <1/2 that of the other then the one with the lower contrast became ineffective (winner-take-all). This nonlinear dependence on the contrast ratio was attributed to mutual inhibition and was well described by a weighted-average model with just two free parameters. Further experiments with broadband and dual-grating stimuli indicated that nonlinear interactions occur not only in the neural processing of stimuli moving in opposite directions but also of stimuli that share the same direction and differ only in their spatial frequency and speed. Clearly, broad-band and dual-grating stimuli can uncover significant nonlinearities in visual information processing that are not evident with single sine-wave stimuli.

  20. Effective Melanin Depigmentation of Human and Murine Ocular Tissues: An Improved Method for Paraffin and Frozen Sections

    PubMed Central

    Manicam, Caroline; Pitz, Susanne; Brochhausen, Christoph; Grus, Franz H.; Pfeiffer, Norbert; Gericke, Adrian

    2014-01-01

    Purpose The removal of excessive melanin pigments that obscure ocular tissue morphology is important to address scientific questions and for differential diagnosis of ocular tumours based on histology. Thus, the goal of the present study was to establish an effective and fast melanin bleaching method for paraffin and frozen mouse and human ocular tissues. Methods Paraffin-embedded and frozen ocular specimens from mice and human donors were subjected to bleaching employing two methods. The first employed potassium permanganate (KMnO4) with oxalic acid, and the second 10% hydrogen peroxide (H2O2). To determine optimal bleaching conditions, depigmentation was carried out at various incubation times. The effect of diluents used for 10% H2O2 was assessed using phosphate-buffered saline (PBS), and deionized water. Three different slide types and two fixatives, which were ice-cold acetone with 80% methanol, and 4% paraformaldehyde (PFA) were used to determine the optimal conditions for better tissue adherence during bleaching. All tissues were stained in hematoxylin and eosin for histological evaluation. Results Optimal bleaching was achieved using warm 10% H2O2 diluted in PBS at 65°C for 120 minutes. Chromium-gelatin-coated slides prevented tissue detachment. Adherence of cryosections was also improved with post-fixation using 4% PFA and overnight air-drying at RT after cryosectioning. Tissue morphology was preserved under these conditions. Conversely, tissues bleached in KMnO4/oxalic acid demonstrated poor depigmentation with extensive tissue damage. Conclusions Warm dilute H2O2 at 65°C for 120 minutes rapidly and effectively bleached both cryo- and paraffin sections of murine and human ocular tissues. PMID:25025426

  1. Transplantation of ocular stem cells: the role of injury in incorporation and differentiation of grafted cells in the retina.

    PubMed

    Chacko, David M; Das, Ani V; Zhao, Xing; James, Jackson; Bhattacharya, Sumitra; Ahmad, Iqbal

    2003-04-01

    The incorporation of transplanted cells into the host retina is one of the prerequisites for successful cell replacement therapy to treat retinal degeneration. To test the hypothesis that injury promotes cell incorporation, stem cells/progenitors were isolated from the retina, ciliary epithelium or limbal epithelium and transplanted into the eyes of rats with retinal injury. Different stem cell/progenitor populations incorporated into traumatized or diseased retina but not into the normal retina. The proportion of cells incorporated into the inner retina was consistently higher than in the outer retina. The transplanted cells expressed markers specific to cells of the lamina into which they were incorporated suggesting that cues for specific differentiation are localized within the inner and outer retina. These findings demonstrate that injury-induced cues play a significant role in promoting the incorporation of ocular stem cells/progenitors regardless of their origin or their differentiation along specific retinal sublineage. PMID:12668063

  2. Single motor unit activity in human extraocular muscles during the vestibulo-ocular reflex.

    PubMed

    Weber, Konrad P; Rosengren, Sally M; Michels, Rike; Sturm, Veit; Straumann, Dominik; Landau, Klara

    2012-07-01

    Motor unit activity in human eye muscles during the vestibulo-ocular reflex (VOR) is not well understood, since the associated head and eye movements normally preclude single unit recordings. Therefore we recorded single motor unit activity following bursts of skull vibration and sound, two vestibular otolith stimuli that elicit only small head and eye movements. Inferior oblique (IO) and inferior rectus (IR) muscle activity was measured in healthy humans with concentric needle electrodes. Vibration elicited highly synchronous, short-latency bursts of motor unit activity in the IO (latency: 10.5 ms) and IR (14.5 ms) muscles. The activation patterns of the two muscles were similar, but reciprocal, with delayed activation of the IR muscle. Sound produced short-latency excitation of the IO muscle (13.3 ms) in the eye contralateral to the stimulus. Simultaneous needle and surface recordings identified the IO as the muscle of origin of the vestibular evoked myogenic potential (oVEMP) thus validating the physiological basis of this recently developed clinical test of otolith function. Single extraocular motor unit recordings provide a window into neural activity in humans that can normally only be examined using animal models and help identify the pathways of the translational VOR from otoliths to individual eye muscles.

  3. Conjunctival polyploid cells and donor-derived myofibroblasts in ocular GvHD.

    PubMed

    Hallberg, D; Stenberg, K; Hanson, C; Stenevi, U; Brune, M

    2016-05-01

    After allogeneic hematopoietic stem cell transplantation (allo-SCT), ocular GvHD is a common complication, typical symptoms being dry eye syndrome with features of fibrosis. In this study, we have identified and quantified two cell types-myofibroblasts (MFB) and polyploid (PP) cells-in the conjunctival surface of allo-SCT patients (pts) and have explored their kinetics and association with local and systemic GvHD. Results are compared with control groups of (a) pretransplant samples from allo-SCT patients, (b) recipients of autologous transplantation (auto-SCT) and (c) healthy controls. Imprint cytologies were obtained by pressing the conjunctival surface with a sterile, non-abrasive cellulose acetate filter (Millipore). After retraction, typically a monolayer of the outermost cells of the epithelium were retrieved. MFB were identified by immunofluorescent (IF) staining for alpha-smooth muscle protein. PP cells were detected by aberrant chromosome content analyzed via X/Y-FISH (X/Y fluorescence in situ hybridization). In female pts with a male donor (MF group), donor genotype were identified by sex chromosome detection using FISH methodology. IF and FISH methods were applied in situ on the same filter, and amounts of MFB and PP cells are expressed as the percentage of all cells on the filter. In all, 70 samples from 46 pts were obtained 1-122 months after allo-SCT. The total MFB density (MFB(TOT)) was higher in allo-SCT pts compared with healthy individuals and auto-SCT pts and increased by time after transplantation (P<0.001). In MF recipients, this increase proved to be due to a significant (P<0.001) and gradual elevation of donor-derived MFB (MFB(XY)), whereas recipient-derived MFB (MFB(XX)) did not vary over time. Clinical ocular GvHD correlated with MFB(XY)/MFB(TOT) ratio (P=0.034), whereas no association between MFB(TOT) or MFB(XY) systemic GvHD was observed. In the MF group (n=25), both MFB(XY) and MFB(XX) were detected on 28 of the 37 imprints (76

  4. Ocular Hypotensive Effects of the ATP-Sensitive Potassium Channel Opener Cromakalim in Human and Murine Experimental Model Systems

    PubMed Central

    Roy Chowdhury, Uttio; Bahler, Cindy K.; Holman, Bradley H.; Dosa, Peter I.; Fautsch, Michael P.

    2015-01-01

    Elevated intraocular pressure (IOP) is the most prevalent and only treatable risk factor for glaucoma, a leading cause of irreversible blindness worldwide. Unfortunately, all current therapeutics used to treat elevated IOP and glaucoma have significant and sometimes irreversible side effects necessitating the development of novel compounds. We evaluated the IOP lowering ability of the broad spectrum KATP channel opener cromakalim. Cultured human anterior segments when treated with 2 μM cromakalim showed a decrease in pressure (19.33 ± 2.78 mmHg at 0 hours to 13.22 ± 2.64 mmHg at 24 hours; p<0.001) when compared to vehicle treated controls (15.89 ± 5.33 mmHg at 0 h to 15.56 ± 4.88 mmHg at 24 hours; p = 0.89). In wild-type C57BL/6 mice, cromakalim reduced IOP by 18.75 ± 2.22% compared to vehicle treated contralateral eyes (17.01 ± 0.32 mmHg at 0 hours to 13.82 ± 0.37 mmHg at 24 hours; n = 10, p = 0.002). Cromakalim demonstrated an additive effect when used in conjunction with latanoprost free acid, a common ocular hypotensive drug prescribed to patients with elevated IOP. To examine KATP channel subunit specificity, Kir6.2(-/-) mice were treated with cromakalim, but unlike wild-type animals, no change in IOP was noted. Histologic analysis of treated and control eyes in cultured human anterior segments and in mice showed similar cell numbers and extracellular matrix integrity within the trabecular meshwork, with no disruptions in the inner and outer walls of Schlemm’s canal. Together, these studies suggest that cromakalim is a potent ocular hypotensive agent that lowers IOP via activation of Kir6.2 containing KATP channels, its effect is additive when used in combination with the commonly used glaucoma drug latanoprost, and is not toxic to cells and tissues of the aqueous humor outflow pathway, making it a candidate for future therapeutic development. PMID:26535899

  5. Muller glia, vision-guided ocular growth, retinal stem cells, and a little serendipity: the Cogan lecture.

    PubMed

    Fischer, Andy J

    2011-09-29

    Hypothesis-driven science is expected to result in a continuum of studies and findings along a discrete path. By comparison, serendipity can lead to new directions that branch into different paths. Herein, I describe a diverse series of findings that were motivated by hypotheses, but driven by serendipity. I summarize how investigations into vision-guided ocular growth in the chick eye led to the identification of glucagonergic amacrine cells as key regulators of ocular elongation. Studies designed to assess the impact of the ablation of different types of neurons on vision-guided ocular growth led to the finding of numerous proliferating cells within damaged retinas. These proliferating cells were Müller glia-derived retinal progenitors with a capacity to produce new neurons. Studies designed to investigate Müller glia-derived progenitors led to the identification of a domain of neural stem cells that form a circumferential marginal zone (CMZ) that lines the periphery of the retina. Accelerated ocular growth, caused by visual deprivation, stimulated the proliferation of CMZ progenitors. We formulated a hypothesis that growth-regulating glucagonergic cells may regulate both overall eye size (scleral growth) and the growth of the retina (proliferation of CMZ cells). Subsequent studies identified unusual types of glucagonergic neurons with terminals that ramify within the CMZ; these cells use visual cues to control equatorial ocular growth and the proliferation of CMZ cells. Finally, while studying the signaling pathways that stimulate CMZ and Müller glia-derived progenitors, serendipity led to the discovery of a novel type of glial cell that is scattered across the inner retinal layers.

  6. Artificial balance: restoration of the vestibulo-ocular reflex in humans with a prototype vestibular neuroprosthesis.

    PubMed

    Perez Fornos, Angelica; Guinand, Nils; van de Berg, Raymond; Stokroos, Robert; Micera, Silvestro; Kingma, Herman; Pelizzone, Marco; Guyot, Jean-Philippe

    2014-01-01

    The vestibular system plays a crucial role in the multisensory control of balance. When vestibular function is lost, essential tasks such as postural control, gaze stabilization, and spatial orientation are limited and the quality of life of patients is significantly impaired. Currently, there is no effective treatment for bilateral vestibular deficits. Research efforts both in animals and humans during the last decade set a solid background to the concept of using electrical stimulation to restore vestibular function. Still, the potential clinical benefit of a vestibular neuroprosthesis has to be demonstrated to pave the way for a translation into clinical trials. An important parameter for the assessment of vestibular function is the vestibulo-ocular reflex (VOR), the primary mechanism responsible for maintaining the perception of a stable visual environment while moving. Here we show that the VOR can be artificially restored in humans using motion-controlled, amplitude modulated electrical stimulation of the ampullary branches of the vestibular nerve. Three patients received a vestibular neuroprosthesis prototype, consisting of a modified cochlear implant providing vestibular electrodes. Significantly higher VOR responses were observed when the prototype was turned ON. Furthermore, VOR responses increased significantly as the intensity of the stimulation increased, reaching on average 79% of those measured in healthy volunteers in the same experimental conditions. These results constitute a fundamental milestone and allow us to envision for the first time clinically useful rehabilitation of patients with bilateral vestibular loss.

  7. A Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction

    PubMed Central

    Trosan, Peter; Cejka, Cestmir; Javorkova, Eliska; Zajicova, Alena; Hermankova, Barbora; Chudickova, Milada; Cejkova, Jitka

    2015-01-01

    Stem cell-based therapy has become an attractive and promising approach for the treatment of severe injuries or thus-far incurable diseases. However, the use of stem cells is often limited by a shortage of available tissue-specific stem cells; therefore, other sources of stem cells are being investigated and tested. In this respect, mesenchymal stromal/stem cells (MSCs) have proven to be a promising stem cell type. In the present study, we prepared MSCs from bone marrow (BM-MSCs) or adipose tissue (Ad-MSCs) as well as limbal epithelial stem cells (LSCs), and their growth, differentiation, and secretory properties were compared. The cells were grown on nanofiber scaffolds and transferred onto the alkali-injured eye in a rabbit model, and their therapeutic potential was characterized. We found that BM-MSCs and tissue-specific LSCs had similar therapeutic effects. Clinical characterization of the healing process, as well as the evaluation of corneal thickness, re-epithelialization, neovascularization, and the suppression of a local inflammatory reaction, were comparable in the BM-MSC- and LSC-treated eyes, but results were significantly better than in injured, untreated eyes or in eyes treated with a nanofiber scaffold alone or with a nanofiber scaffold seeded with Ad-MSCs. Taken together, the results show that BM-MSCs’ therapeutic effect on healing of injured corneal surface is comparable to that of tissue-specific LSCs. We suggest that BM-MSCs can be used for ocular surface regeneration in cases when autologous LSCs are absent or difficult to obtain. Significance Damage of ocular surface represents one of the most common causes of impaired vision or even blindness. Cell therapy, based on transplantation of stem cells, is an optimal treatment. However, if limbal stem cells (LSCs) are not available, other sources of stem cells are tested. Mesenchymal stem cells (MSCs) are a convenient type of cell for stem cell therapy. The therapeutic potential of LSCs and MSCs was

  8. Absence of acute ocular damage in humans after prolonged exposure to intense RF EMF.

    PubMed

    Adibzadeh, F; van Rhoon, G C; Verduijn, G M; Naus-Postema, N C; Paulides, M M

    2016-01-21

    The eye is considered to be a critical organ when determining safety standards for radio frequency (RF) radiation. Experimental data obtained using animals showed that RF heating of the eye, particularly over a specific threshold, can induce cataracts. During the treatment of cancer in the head and neck by hyperthermia, the eyes receive a considerable dose of RF radiation due to stray radiation from the prolonged (60 min) and intense exposure at 434 MHz of this region. In the current study, we verified the exposure guidelines for humans by determining the association between the electromagnetic and thermal dose in the eyes with the reported ocular effects. We performed a simulation study to retrospectively assess the specific absorption rate (SAR) and temperature increase in the eyes of 16 selected patients (encompassing a total of 74 treatment sessions) whose treatment involved high power delivery as well as a minimal distance between the tumor site and the eye. Our results show that the basic restrictions on the peak 10 g spatial-averaged SAR (10 W kg(-1)) and peak tissue temperature increase (1 °C) are exceeded by up to 10.4 and 4.6 times, on average, and by at least 6.2 and 1.8 times when considering the lower limit of the 95% confidence interval. Evaluation of the acute effects according to patients' feedback (all patients), the common toxicity criteria scores (all patients) and an ophthalmology investigation (one patient with the highest exposure) revealed no indication of any serious acute ocular effect, even though the eyes were exposed to high electromagnetic fields, leading to a high thermal dose. We also found that, although there is a strong correlation (R (2) =  0.88) between the predicted induced SAR and temperature in the eye, there are large uncertainties regarding the temperature-SAR relationship. Given this large uncertainty (129%) compared with the uncertainty of 3D temperature simulations (61%), we recommend using temperature simulations as a

  9. Absence of acute ocular damage in humans after prolonged exposure to intense RF EMF

    NASA Astrophysics Data System (ADS)

    Adibzadeh, F.; van Rhoon, G. C.; Verduijn, G. M.; Naus-Postema, N. C.; Paulides, M. M.

    2016-01-01

    The eye is considered to be a critical organ when determining safety standards for radio frequency (RF) radiation. Experimental data obtained using animals showed that RF heating of the eye, particularly over a specific threshold, can induce cataracts. During the treatment of cancer in the head and neck by hyperthermia, the eyes receive a considerable dose of RF radiation due to stray radiation from the prolonged (60 min) and intense exposure at 434 MHz of this region. In the current study, we verified the exposure guidelines for humans by determining the association between the electromagnetic and thermal dose in the eyes with the reported ocular effects. We performed a simulation study to retrospectively assess the specific absorption rate (SAR) and temperature increase in the eyes of 16 selected patients (encompassing a total of 74 treatment sessions) whose treatment involved high power delivery as well as a minimal distance between the tumor site and the eye. Our results show that the basic restrictions on the peak 10 g spatial-averaged SAR (10 W kg-1) and peak tissue temperature increase (1 °C) are exceeded by up to 10.4 and 4.6 times, on average, and by at least 6.2 and 1.8 times when considering the lower limit of the 95% confidence interval. Evaluation of the acute effects according to patients’ feedback (all patients), the common toxicity criteria scores (all patients) and an ophthalmology investigation (one patient with the highest exposure) revealed no indication of any serious acute ocular effect, even though the eyes were exposed to high electromagnetic fields, leading to a high thermal dose. We also found that, although there is a strong correlation (R 2  =  0.88) between the predicted induced SAR and temperature in the eye, there are large uncertainties regarding the temperature-SAR relationship. Given this large uncertainty (129%) compared with the uncertainty of 3D temperature simulations (61%), we recommend using temperature

  10. The human translational vestibulo-ocular reflex in response to complex motion.

    PubMed

    Walker, Mark; Liao, Ke

    2011-09-01

    We studied the translational vestibulo-ocular reflex (tVOR) in four healthy human subjects during complex, unpredictable sum-of-sines head motion (combination of 0.73, 1.33, 1.93, and 2.93 Hz), while subjects viewed a target 15 cm away. Ideal eye velocity was calculated from recorded head motion; actual eye velocity was measured with scleral coils. The gain and phase for each frequency component was determined by least-squares optimization. Gain averaged approximately 40% and did not change with frequency; phase lag increased with frequency to a maximum of 66°. Fitting actual to ideal eye velocity predicted a tVOR latency of 48 m/s for vertical and 38 m/s for horizontal translation. These findings provide further evidence that the normal tVOR is considerably undercompensatory, even at low frequencies if the stimulus is not predictable. The similarity of this behavior to that of pursuit suggests that these two eye movements may share some aspects of neural processing.

  11. Dual adaptation and adaptive generalization of the human vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Welch, R. B.; Bridgeman, B.; Williams, J. A.; Semmler, R.

    1998-01-01

    In two experiments, we examined the possibility that the human vestibulo-ocular reflex (VOR) is subject to dual adaptation (the ability to adapt to a sensory rearrangement more rapidly and/or more completely after repeated experience with it) and adaptive generalization (the ability to adapt more readily to a novel sensory rearrangement as a result of prior dual adaptation training). In Experiment 1, the subjects actively turned the head during alternating exposure to a visual-vestibular rearrangement (target/head gain = 0.5) and the normal situation (target/head gain = 0.0). These conditions produced both adaptation and dual adaptation of the VOR but no evidence of adaptive generalization when tested with a target/head gain of 1.0. Experiment 2, in which exposure to the 0.5 gain entailed externally controlled (i.e., passive) whole body rotation, resulted in VOR adaptation but no dual adaptation. As in Experiment 1, no evidence of adaptive generalization was found.

  12. Molecular Evidence and Functional Expression of a Novel Drug Efflux pump (ABCC2) in Human Corneal Epithelium and Rabbit Cornea and its role in Ocular drug efflux

    PubMed Central

    Karla, Pradeep K.; Pal, Dhananjay; Quinn, Tim; Mitra, Ashim K.

    2007-01-01

    Cornea is considered as a major barrier for ocular drug delivery. Low ocular bioavailability of drugs has been attributed primarily to low permeability across corneal epithelium thus leading to sub-therapeutic concentrations of drug in the eye and treatment failure. The role of drug efflux proteins, particularly the Pglycoprotein in ocular drug bioavailability has been reported. The objective of this research was to determine whether human corneal epithelium expresses multi drug resistance associated proteins contributing to drug efflux by employing both cultured corneal cells and freshly excised rabbit cornea. SV40 HCEC and rPCEC were selected for in-vitro testing. SV40-HCEC and freshly excised rabbit corneas were utilized for transport studies. [3H]-cyclosporine-A and [14C]-erythromycin which are known substrates for ABCC2 and MK-571, a specific inhibitor for MRP were applied in this study. RT-PCR indicated a unique and distinct band at ∼272 bp corresponding to ABCC2 in HCEC, SV40-HCEC, rabbit cornea, rPCEC and MDCKII-MRP2 cells. Also RT-PCR indicated a unique band ∼181 bp for HCEC and SV40-HCEC. Immunoprecipitation followed by Western Blot analysis revealed a specific band at ∼190-kDa in membrane fraction of SV40-HCEC, MDCKII-MRP2 and no band with isotype control. Uptake of [3H]-cyclosporine-A and [14C]-erythromycin in the presence of MK-571 was significantly enhanced than control in both SV40 HCEC and rPCEC. Similarly a significant elevation in (A→B) permeability of [3H]-cyclosporine-A and [14C]-erythromycin was observed in the presence of MK-571 in SV40-HCEC. A→B transport of [3H]-cyclosporine-A was elevated in the presence of MK-571 in freshly excised rabbit cornea indicating potential role of this efflux transporter and high clinical significance of this finding. PMID:17156953

  13. Clinical use of pseudorandom binary sequence white noise in assessment of the human vestibulo-ocular system.

    PubMed

    Wall, C; Black, F O; O'Leary, D P

    1978-01-01

    White noise rotational stimulation has been used to evaluate the human vestibulo-ocular response for 30 normal subjects over the frequency range from 0.02 to 1.6 Hz and is being extended to characterize response of patients having documented abnormalities. For clinical use, the white noise stimulus has the advantages of shortening the test time by presenting all stimulus frequencies simultaneously, and being well-tolerated by both normal subjects and patients alike. Cross spectral calculations which compare the computer reconstructed slow phase eye velocity response to the pseudorandom acceleration stimulus yield a set of linear and nonlinear estimates of the vestibulo-ocular response. Pilot data indicate that a classification of the disease state can be made using this set of estimates. This classification will be presented and discussed. PMID:367244

  14. Age alters ADPase positive dendritic (Langerhans) cell response to P. aeruginosa ocular challenge.

    PubMed

    Hazlett, L D; Moon, M M; Dawisha, S; Berk, R S

    1986-05-01

    The morphology, distribution and quantitation of dendritic (Langerhans) cells (LC) was determined by analysis of ADPase stained epithelial flat mounts from 6-8 week young adult (resistant) and 24 month old (susceptible) aged mice before and after experimental infection with P. aeruginosa topically applied to the scarified cornea. The contralateral eye (controls) was also scarified and phosphate buffered saline applied similarly. This study has examined the changes in ADPase positive cell populations of the conjunctival limbal epithelium and corneal epithelium of naturally resistant mice (Swiss-Webster and CD2F1) following corneal infection with Pseudomonas aeruginosa at two different ages, young adult (8 week old) and aged (24 month old). The young adult mice recover from their infection and restore corneal clarity while the aged mice have extensive ocular destruction and corneal scarring. Conjunctival limbal dendritic cell numbers in young adult mice were found to be significantly increased at day seven post infection and then returned to baseline levels. In contrast, conjunctival limbal dendritic cell numbers in aged mice were found to increase slowly and to peak at fourteen days after infection. Other differences between the two ages (young adult and aged) included an initial increase in dendritic cells five hours post infection in the young adult groups and an initial decrease at five hours in the aged groups of mice.

  15. Life under pressure: The role of ocular cribriform cells in preventing glaucoma.

    PubMed

    Paula, Jayter S; O'Brien, Colm; Stamer, W Daniel

    2016-10-01

    Primary open-angle glaucoma is a multifactorial blinding disease often impacting the two pressure-sensitive regions of the eye: the conventional outflow pathway and the optic nerve head (ONH). The connective tissues that span these two openings in the globe are the trabecular meshwork of the conventional outflow pathway and the lamina cribrosa of the ONH. Resident cribiform cells of these two regions are responsible for actively remodeling and maintaining their connective tissues. In glaucoma, aberrant maintenance of the juxtacanalicular tissues (JCT) of the conventional outflow pathway results in ocular hypertension and pathological remodeling of the lamina cribrosa results in ONH cupping, damaging retinal ganglion cell axons. Interestingly, cells cultured from the lamina cribrosa and the JCT of the trabecular meshwork have similarities regarding gene expression, protein production, plus cellular responses to growth factors and mechanical stimuli. This review compares and contrasts the current knowledge of these two cell types, whose health is critical for protecting the eye from glaucomatous changes. In response to pressure gradients across their respective cribiform tissues, the goal is to better understand and differentiate healthy from pathological behavior of these two cell types. PMID:27567558

  16. In Vivo Laser Scanning Confocal Microscopy of Human Meibomian Glands in Aging and Ocular Surface Diseases.

    PubMed

    Fasanella, Vincenzo; Agnifili, Luca; Mastropasqua, Rodolfo; Brescia, Lorenza; Di Staso, Federico; Ciancaglini, Marco; Mastropasqua, Leonardo

    2016-01-01

    Meibomian glands (MGs) play a crucial role in the ocular surface homeostasis by providing lipids to the superficial tear film. Their dysfunction destabilizes the tear film leading to a progressive loss of the ocular surface equilibrium and increasing the risk for dry eye. In fact, nowadays, the meibomian gland dysfunction is one of the leading causes of dry eye. Over the past decades, MGs have been mainly studied by using meibography, which, however, cannot image the glandular structure at a cellular level. The diffusion of the in vivo laser scanning confocal microscopy (LSCM) provided a new approach for the structural assessment of MGs permitting a major step in the noninvasive evaluation of these structures. LSCM is capable of showing MGs modifications during aging and in the most diffuse ocular surface diseases such as dry eye, allergy, and autoimmune conditions and in the drug-induced ocular surface disease. On the other hand, LSCM may help clinicians in monitoring the tissue response to therapy. In this review, we summarized the current knowledge about the role of in vivo LSCM in the assessment of MGs during aging and in the most diffuse ocular surface diseases.

  17. In Vivo Laser Scanning Confocal Microscopy of Human Meibomian Glands in Aging and Ocular Surface Diseases.

    PubMed

    Fasanella, Vincenzo; Agnifili, Luca; Mastropasqua, Rodolfo; Brescia, Lorenza; Di Staso, Federico; Ciancaglini, Marco; Mastropasqua, Leonardo

    2016-01-01

    Meibomian glands (MGs) play a crucial role in the ocular surface homeostasis by providing lipids to the superficial tear film. Their dysfunction destabilizes the tear film leading to a progressive loss of the ocular surface equilibrium and increasing the risk for dry eye. In fact, nowadays, the meibomian gland dysfunction is one of the leading causes of dry eye. Over the past decades, MGs have been mainly studied by using meibography, which, however, cannot image the glandular structure at a cellular level. The diffusion of the in vivo laser scanning confocal microscopy (LSCM) provided a new approach for the structural assessment of MGs permitting a major step in the noninvasive evaluation of these structures. LSCM is capable of showing MGs modifications during aging and in the most diffuse ocular surface diseases such as dry eye, allergy, and autoimmune conditions and in the drug-induced ocular surface disease. On the other hand, LSCM may help clinicians in monitoring the tissue response to therapy. In this review, we summarized the current knowledge about the role of in vivo LSCM in the assessment of MGs during aging and in the most diffuse ocular surface diseases. PMID:27047965

  18. In Vivo Laser Scanning Confocal Microscopy of Human Meibomian Glands in Aging and Ocular Surface Diseases

    PubMed Central

    Fasanella, Vincenzo; Mastropasqua, Rodolfo; Brescia, Lorenza; Di Staso, Federico; Ciancaglini, Marco; Mastropasqua, Leonardo

    2016-01-01

    Meibomian glands (MGs) play a crucial role in the ocular surface homeostasis by providing lipids to the superficial tear film. Their dysfunction destabilizes the tear film leading to a progressive loss of the ocular surface equilibrium and increasing the risk for dry eye. In fact, nowadays, the meibomian gland dysfunction is one of the leading causes of dry eye. Over the past decades, MGs have been mainly studied by using meibography, which, however, cannot image the glandular structure at a cellular level. The diffusion of the in vivo laser scanning confocal microscopy (LSCM) provided a new approach for the structural assessment of MGs permitting a major step in the noninvasive evaluation of these structures. LSCM is capable of showing MGs modifications during aging and in the most diffuse ocular surface diseases such as dry eye, allergy, and autoimmune conditions and in the drug-induced ocular surface disease. On the other hand, LSCM may help clinicians in monitoring the tissue response to therapy. In this review, we summarized the current knowledge about the role of in vivo LSCM in the assessment of MGs during aging and in the most diffuse ocular surface diseases. PMID:27047965

  19. Velocity storage in the human vertical rotational vestibulo-ocular reflex.

    PubMed

    Bertolini, G; Ramat, S

    2011-03-01

    Human horizontal rotational vestibulo-ocular reflex (rVOR) has been extensively investigated: the horizontal semicircular canals sense yaw rotations with high-pass filter dynamics and a time constant (TC) around 5 s, yet the rVOR response shows a longer TC due to a central processing stage, known as velocity storage mechanism (VSM). It is generally assumed that the vertical rVOR behaves similarly to the horizontal one; however, VSM processing of the human vertical rVOR is still to be proven. We investigated the vertical rVOR in eight healthy human subjects using three experimental paradigms: (1) per- and post-rotatory around an earth-vertical axis (ear down rotations, EDR), (2) post-rotatory around an earth-horizontal axis with different stopping positions (static otolith stimulation), (3) per-rotatory around an earth-horizontal axis (dynamic otolith stimulation). We found that the TC of vertical rVOR responses ranged 3-10 s, depending both on gravity and on the direction of rotation. The shortest TC were found in response to post-rotatory earth-horizontal stimulation averaging 3.6 s, while they were prolonged in EDR stimulation, i.e. when the head angular velocity vector is aligned with gravity, with a mean value of about 6.0 s. Overall, the longest TC were observed in per-rotatory earth-horizontal stimulation, averaging 7.8 s. The finding of longer TC in EDR than in post-rotatory earth-horizontal stimulation indicates a role for the VSM in the vertical rVOR, although its contribution appears to be weaker than on the horizontal rVOR and may be directionally asymmetric. The results from per-rotatory earth-horizontal stimulation, instead, imply a role for the otoliths in controlling the duration of the vertical rVOR response. We found no reorientation of the response toward earth horizontal, indicating a difference between human and monkey rVOR.

  20. Human short-latency ocular vergence responses produced by interocular velocity differences

    PubMed Central

    Sheliga, B. M.; Quaia, C.; FitzGibbon, E. J.; Cumming, B. G.

    2016-01-01

    We studied human short-latency vergence eye movements to a novel stimulus that produces interocular velocity differences without a changing disparity signal. Sinusoidal luminance gratings moved in opposite directions (left vs. right; up vs. down) in the two eyes. The grating seen by each eye underwent ¼-wavelength shifts with each image update. This arrangement eliminated changing disparity cues, since the phase difference between the eyes alternated between 0° and 180°. We nevertheless observed robust short-latency vergence responses (VRs), whose sign was consistent with the interocular velocity differences (IOVDs), indicating that the IOVD cue in isolation can evoke short-latency VRs. The IOVD cue was effective only when the images seen by the two eyes overlapped in space. We observed equally robust VRs for opposite horizontal motions (left in one eye, right in the other) and opposite vertical motions (up in one eye, down in the other). Whereas the former are naturally generated by objects moving in depth, the latter are not part of our normal experience. To our knowledge, this is the first demonstration of a behavioral consequence of vertical IOVD. This may reflect the fact that some neurons in area MT are sensitive to these motion signals (Czuba, Huk, Cormack, & Kohn, 2014). VRs were the strongest for spatial frequencies in the range of 0.35–1 c/°, much higher than the optimal spatial frequencies for evoking ocular-following responses observed during frontoparallel motion. This suggests that the two motion signals are detected by different neuronal populations. We also produced IOVD using moving uncorrelated one-dimensional white-noise stimuli. In this case the most effective stimuli have low speed, as predicted if the drive originates in neurons tuned to high spatial frequencies (Sheliga, Quaia, FitzGibbon, & Cumming, 2016). PMID:27548089

  1. The effect of retinal image error update rate on human vestibulo-ocular reflex gain adaptation.

    PubMed

    Fadaee, Shannon B; Migliaccio, Americo A

    2016-04-01

    The primary function of the angular vestibulo-ocular reflex (VOR) is to stabilise images on the retina during head movements. Retinal image movement is the likely feedback signal that drives VOR modification/adaptation for different viewing contexts. However, it is not clear whether a retinal image position or velocity error is used primarily as the feedback signal. Recent studies examining this signal are limited because they used near viewing to modify the VOR. However, it is not known whether near viewing drives VOR adaptation or is a pre-programmed contextual cue that modifies the VOR. Our study is based on analysis of the VOR evoked by horizontal head impulses during an established adaptation task. Fourteen human subjects underwent incremental unilateral VOR adaptation training and were tested using the scleral search coil technique over three separate sessions. The update rate of the laser target position (source of the retinal image error signal) used to drive VOR adaptation was different for each session [50 (once every 20 ms), 20 and 15/35 Hz]. Our results show unilateral VOR adaptation occurred at 50 and 20 Hz for both the active (23.0 ± 9.6 and 11.9 ± 9.1% increase on adapting side, respectively) and passive VOR (13.5 ± 14.9, 10.4 ± 12.2%). At 15 Hz, unilateral adaptation no longer occurred in the subject group for both the active and passive VOR, whereas individually, 4/9 subjects tested at 15 Hz had significant adaptation. Our findings suggest that 1-2 retinal image position error signals every 100 ms (i.e. target position update rate 15-20 Hz) are sufficient to drive VOR adaptation.

  2. The effect of retinal image error update rate on human vestibulo-ocular reflex gain adaptation.

    PubMed

    Fadaee, Shannon B; Migliaccio, Americo A

    2016-04-01

    The primary function of the angular vestibulo-ocular reflex (VOR) is to stabilise images on the retina during head movements. Retinal image movement is the likely feedback signal that drives VOR modification/adaptation for different viewing contexts. However, it is not clear whether a retinal image position or velocity error is used primarily as the feedback signal. Recent studies examining this signal are limited because they used near viewing to modify the VOR. However, it is not known whether near viewing drives VOR adaptation or is a pre-programmed contextual cue that modifies the VOR. Our study is based on analysis of the VOR evoked by horizontal head impulses during an established adaptation task. Fourteen human subjects underwent incremental unilateral VOR adaptation training and were tested using the scleral search coil technique over three separate sessions. The update rate of the laser target position (source of the retinal image error signal) used to drive VOR adaptation was different for each session [50 (once every 20 ms), 20 and 15/35 Hz]. Our results show unilateral VOR adaptation occurred at 50 and 20 Hz for both the active (23.0 ± 9.6 and 11.9 ± 9.1% increase on adapting side, respectively) and passive VOR (13.5 ± 14.9, 10.4 ± 12.2%). At 15 Hz, unilateral adaptation no longer occurred in the subject group for both the active and passive VOR, whereas individually, 4/9 subjects tested at 15 Hz had significant adaptation. Our findings suggest that 1-2 retinal image position error signals every 100 ms (i.e. target position update rate 15-20 Hz) are sufficient to drive VOR adaptation. PMID:26715411

  3. Effect of unilateral vestibular deafferentation on the initial human vestibulo-ocular reflex to surge translation

    PubMed Central

    Tian, Jun-Ru; Ishiyama, Akira; Demer, Joseph L.

    2007-01-01

    Transient whole-body surge (fore-aft) translation at 0.5 G peak acceleration was administered to six subjects with unilateral vestibular deafferentation (UVD), and eight age-matched controls. Subjects viewed eccentric targets to determine if linear vestibulo-ocular reflex (LVOR) asymmetry might lateralize otolith deficits. Eye rotation was measured using magnetic search coils. Immediately before surge, subjects viewed a luminous target 50 cm away, centered or displaced 10° horizontally or vertically. The target was extinguished during randomly directed surges. LVOR gain relative to ideal velocity in subjects with UVD for the contralesional horizontally eccentric target (0.59 ± 0.08, mean ± SEM) did not differ significantly from normal (0.50 ± 0.04), but gain for the ipsilesional eccentric target (0.35 ± 0.02) was significantly less than normal (0.48 ± 0.03, P < 0.05). Normal subjects had mean gain asymmetry for horizontally eccentric targets of 0.17 ± 0.03, but asymmetry in UVD was significantly increased to 0.35 ± 0.05 (P < 0.05). Four of six subjects with UVD had maximum gain asymmetry outside normal 95% confidence limits. Asymmetry did not correlate with UVD duration. Gain for 10° vertically eccentric targets averaged 0.38 ± 0.14 for subjects with UVD, insignificantly lower than the normal value of 0.75 ± 0.15 (P > 0.05). Surge LVOR latency was symmetrical in UVD, and did not differ significantly from normal. There was no significant difference in response between dark and visible target conditions until 200 ms after surge onset. Chronic human UVD, on average, significantly impairs the surge LVOR for horizontally eccentric targets placed ipsilesionally, but this asymmetry is small relative to interindividual variation. PMID:16900361

  4. Human short-latency ocular vergence responses produced by interocular velocity differences.

    PubMed

    Sheliga, B M; Quaia, C; FitzGibbon, E J; Cumming, B G

    2016-08-01

    We studied human short-latency vergence eye movements to a novel stimulus that produces interocular velocity differences without a changing disparity signal. Sinusoidal luminance gratings moved in opposite directions (left vs. right; up vs. down) in the two eyes. The grating seen by each eye underwent ¼-wavelength shifts with each image update. This arrangement eliminated changing disparity cues, since the phase difference between the eyes alternated between 0° and 180°. We nevertheless observed robust short-latency vergence responses (VRs), whose sign was consistent with the interocular velocity differences (IOVDs), indicating that the IOVD cue in isolation can evoke short-latency VRs. The IOVD cue was effective only when the images seen by the two eyes overlapped in space. We observed equally robust VRs for opposite horizontal motions (left in one eye, right in the other) and opposite vertical motions (up in one eye, down in the other). Whereas the former are naturally generated by objects moving in depth, the latter are not part of our normal experience. To our knowledge, this is the first demonstration of a behavioral consequence of vertical IOVD. This may reflect the fact that some neurons in area MT are sensitive to these motion signals (Czuba, Huk, Cormack, & Kohn, 2014). VRs were the strongest for spatial frequencies in the range of 0.35-1 c/°, much higher than the optimal spatial frequencies for evoking ocular-following responses observed during frontoparallel motion. This suggests that the two motion signals are detected by different neuronal populations. We also produced IOVD using moving uncorrelated one-dimensional white-noise stimuli. In this case the most effective stimuli have low speed, as predicted if the drive originates in neurons tuned to high spatial frequencies (Sheliga, Quaia, FitzGibbon, & Cumming, 2016). PMID:27548089

  5. Ocular motor responses to abrupt interaural head translation in normal humans

    NASA Technical Reports Server (NTRS)

    Ramat, Stefano; Zee, David S.; Shelhamer, M. J. (Principal Investigator)

    2003-01-01

    We characterized the interaural translational vestibulo-ocular reflex (tVOR) in 6 normal humans to brief (approximately 200 ms), high-acceleration (0.4-1.4g) stimuli, while they fixed targets at 15 or 30 cm. The latency was 19 +/- 5 ms at 15-cm and 20 +/- 12 ms at 30-cm viewing. The gain was quantified using the ratio of actual to ideal behavior. The median position gain (at time of peak head velocity) was 0.38 and 0.37, and the median velocity gain, 0.52 and 0.62, at 15- and 30-cm viewing, respectively. These results suggest the tVOR scales proportionally at these viewing distances. Likewise, at both viewing distances, peak eye velocity scaled linearly with peak head velocity and gain was independent of peak head acceleration. A saccade commonly occurred in the compensatory direction, with a greater latency (165 vs. 145 ms) and lesser amplitude (1.8 vs. 3.2 deg) at 30- than 15-cm viewing. Even with saccades, the overall gain at the end of head movement was still considerably undercompensatory (medians 0.68 and 0.77 at 15- and 30-cm viewing). Monocular viewing was also assessed at 15-cm viewing. In 4 of 6 subjects, gains were the same as during binocular viewing and scaled closely with vergence angle. In sum the low tVOR gain and scaling of the response with viewing distance and head velocity extend previous results to higher acceleration stimuli. tVOR latency (approximately 20 ms) was lower than previously reported. Saccades are an integral part of the tVOR, and also scale with viewing distance.

  6. Short-latency ocular following in humans is dependent on absolute (rather than relative) binocular disparity.

    PubMed

    Yang, D-S; Miles, F A

    2003-06-01

    A previous study showed that the initial ocular following responses elicited by sudden motion of a large random-dot pattern were only modestly attenuated when that whole pattern was shifted out of the plane of fixation by altering its horizontal binocular disparity, but the same disparity applied to a restricted region of the dots had a much more powerful effect [Vision Research 41 (2001) 3371]. Thus, if the dots were partitioned into horizontal bands, for example, and alternate bands were moved in opposite directions to the left or right then ocular following was very weak, but if the (conditioning) dots moving in one direction were all shifted out of the plane of fixation (by applying horizontal disparity to them) then strong ocular following was now seen in the direction of motion of the (test) dots in the plane of fixation, i.e., moving images became much less effective when they were given binocular disparity. We sought to determine if the greater impact of disparity with the partitioned images was because there were additional relative disparity cues. We used a similar partitioned display and found that the dependence of ocular following on the absolute disparity of the conditioning stimulus had a Gaussian form with an x-offset that was close to zero disparity and, importantly, this offset was almost unaffected by changing the absolute disparity of the test stimulus. We conclude from this that it is the absolute--rather than the relative--disparity that is important, and that ocular following has a strong preference for moving images whose absolute disparities are close to zero. This is consistent with the idea that ocular following selectively stabilizes the retinal images of objects in and around the plane of fixation and works in harmony with disparity vergence, which uses absolute disparity to bring objects of interest into the plane of fixation [Archives of Ophthalmology 55 (1956) 848].

  7. Non-human Immunodeficiency Virus-related Ocular Syphilis in a Korean Population: Clinical Manifestations and Treatment Outcomes

    PubMed Central

    Kim, Yonguk; Kwak, Hyung Woo

    2016-01-01

    Purpose To describe the clinical manifestations and treatment outcomes of ocular syphilis in patients without human immunodeficiency virus (HIV) infection. Methods A total of 45 eyes from 39 patients with ocular syphilis confirmed by serologic tests were reviewed retrospectively. The included cases were all non-HIV-infected patients presenting with intraocular inflammation from 2002 to 2014 at Kyung Hee University Hospital. Medical records of 45 eyes were analyzed and included best-corrected visual acuity and ophthalmologic examination findings of the anterior and posterior segments to determine the focus of inflammation. Optical coherence tomography and fluorescein angiography findings as well as both medical and surgical management were also analyzed. Results The mean patient age was 61.0 years (range, 37 to 89 years). Bilateral ocular involvement occurred in 6 patients (15.4%), and diagnoses at presentation were most frequently related to posterior uveitis (38%), followed by panuveitis (29%) and optic neuritis (11%). Isolated interstitial keratitis and intermediate uveitis were uncommon (4%, both). Twenty-eight eyes (62.2%) were treated with penicillin, and 11 eyes (24.4%) underwent surgical treatment. The mean baseline best corrected visual acuity was 0.79 ± 0.59 (mean ± standard deviation, logarithm of the minimum angle of resolution) and significantly improved to 0.60 ± 0.63 at the final follow-up after treatment (p = 0.019). Mean visual improvement was significantly greater in the penicillin-treated group (p = 0.001). Visual impairment at the final visit occurred in 11 eyes (24.4%). Among the visual impairment group, 10 eyes (90.1%) had posterior segment-involving uveitis. Conclusions Visual outcomes of treated, non-HIV-related ocular syphilis were favorable regardless of time to presentation. Posterior segment-involving uveitis at presentation was associated with poor visual outcome. PMID:27729756

  8. Ocular Reflex Phase During Off-Vertical Axis Rotation In Humans Is Modified By Head-On-Trunk Position

    NASA Technical Reports Server (NTRS)

    Wood, Scott; Clement, Gilles; Denise, Pierre; Reschke, Millard

    2005-01-01

    Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both horizontal and torsional eye velocity as a function of the varying linear acceleration along the lateral plane. The purpose of this study was to examine whether the modulation of these ocular reflexes would be modified by different head-on-trunk positions. Ten human subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias velocity of the eye movements across multiple cycles for each head-on-trunk position. Consistent with previous studies, the modulation of torsional eye movements was greater at 0.125 Hz while the modulation of horizontal eye movements was greater at 0.5 Hz. Neither amplitude nor bias velocities were significantly altered by head-on-trunk position. The phases of both torsional and horizontal ocular reflexes, on the other hand, shifted towards alignment with the head. These results are consistent with the modulation of torsional and horizontal ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural head axis.

  9. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    SciTech Connect

    Aslan, Mutay; Basaranlar, Goksun; Unal, Mustafa; Ciftcioglu, Akif; Derin, Narin; Mutus, Bulent

    2014-11-01

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.

  10. The dynamic contributions of the otolith organs to human ocular torsion

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Teiwes, W.; Clarke, A. H.; Scherer, H.; Young, L. R.

    1996-01-01

    We measured human ocular torsion (OT) monocularly (using video) and binocularly (using search coils) while sinusoidally accelerating (0.7 g) five human subjects along an earth-horizontal axis at five frequencies (0.35, 0.4, 0.5, 0.75, and 1.0 Hz). The compensatory nature of OT was investigated by changing the relative orientation of the dynamic (linear acceleration) and static (gravitational) cues. Four subject orientations were investigated: (1) Y-upright-acceleration along the interaural (y) axis while upright; (2) Y-supine-acceleration along the y-axis while supine; (3) Z-RED-acceleration along the dorsoventral (z) axis with right ear down; (4) Z-supine-acceleration along the z-axis while supine. Linear acceleration in the Y-upright, Y-supine and Z-RED orientations elicited conjugate OT. The smaller response in the Z-supine orientation appeared disconjugate. The amplitude of the response decreased and the phase lag increased with increasing frequency for each orientation. This frequency dependence does not match the frequency response of the regular or irregular afferent otolith neurons; therefore the response dynamics cannot be explained by simple peripheral mechanisms. The Y-upright responses were larger than the Y-supine responses (P < 0.05). This difference indicates that OT must be more complicated than a simple low-pass filtered response to interaural shear force, since the dynamic shear force along the interaural axis was identical in these two orientations. The Y-supine responses were, in turn, larger than the Z-RED responses (P < 0.01). Interestingly, the vector sum of the Y-supine responses plus Z-RED responses was not significantly different (P = 0.99) from the Y-upright responses. This suggests that, in this frequency range, the conjugate OT response during Y-upright stimulation might be composed of two components: (1) a response to shear force along the y-axis (as in Y-supine stimulation), and (2) a response to roll tilt of gravitoinertial force (as

  11. Human ocular torsion during parabolic flights: an analysis with scleral search coil

    NASA Technical Reports Server (NTRS)

    Cheung, B. S.; Money, K.; Howard, I.; Kirienko, N.; Johnson, W.; Lackner, J.; Dizio, P.; Evanoff, J.

    1992-01-01

    Rotation of the eyes about the visual axis is known as ocular torsion. A lateral inclination (a "roll") of the head induces ocular torsion in the opposite direction, a response known as ocular counterrolling. For six subjects, we recorded the static (head still) and dynamic (head in oscillatory roll motion) ocular torsion in normal 1 g condition and also during the microgravity and hypergravity periods of parabolic flight, using the electromagnetic scleral search coil technique. With the head still, the direction and magnitude of torsion that occurred in response to microgravity and hypergravity differed substantially from one individual to another, but there was a significant difference in torsional magnitude between the microgravity and hypergravity periods, for all static head positions including the upright position. Under normal 1 g conditions, counterrolling compensated for about 16% of (voluntary) static head roll, while dynamic counterroll was much larger, up to 36% of head roll at 0.55 Hz. With increasing frequency of head oscillation between 0.33 Hz and 0.55 Hz, the gain of counterrolling increased and there was no change in the phase relationship. The gain of dynamic counterroll (in response to voluntary head rolling) was not significantly less in hypogravity, suggesting that on the ground at these frequencies the contribution of gravity and gravity receptors to this reflex is redundant: this reflex is probably driven by the semicircular canals. In some subjects, the torsional displacement in microgravity is accompanied by micro-torsional oscillatory motion.

  12. A Novel Cell-Associated Protection Assay Demonstrates the Ability of Certain Antibiotics To Protect Ocular Surface Cell Lines from Subsequent Clinical Staphylococcus aureus Challenge▿†

    PubMed Central

    Wingard, J. B.; Romanowski, E. G.; Kowalski, R. P.; Mah, F. S.; Ling, Y.; Bilonick, R. A.; Shanks, R. M. Q.

    2011-01-01

    In vivo effectiveness of topical antibiotics may depend on their ability to associate with epithelial cells to provide continued protection, but this contribution is not measured by standard antibiotic susceptibility tests. We report a new in vitro method that measures the ability of test antibiotics azithromycin (AZM), erythromycin (ERY), tetracycline (TET), and bacitracin (BAC) to associate with mammalian cells and to protect these cells from destruction by bacteria. Mammalian cell lines were grown to confluence using antibiotic-free medium and then incubated in medium containing a single antibiotic (0 to 512 μg/ml). After incubation, the cells were challenged with Staphylococcus aureus ocular isolates, without antibiotics added to the culture medium. Epithelial cell layer integrity was assessed by gentian violet staining, and the minimum cell layer protective concentration (MCPC) of an antibiotic sufficient to protect the mammalian cells from S. aureus was determined. Staining was also quantified and analyzed. Bacterial viability was determined by culture turbidity and growth on agar plates. Preincubation of Chang and human corneal limbal epithelial cells with AZM, ERY, and TET at ≥64 μg/ml provided protection against AZM-susceptible S. aureus strains, with increasing protection at higher concentrations. TET toxicity was demonstrated at >64 μg/ml, whereas AZM displayed toxicity to one cell line at 512 μg/ml. BAC failed to show consistent protection at any dose, despite bacterial susceptibility to BAC as determined by traditional antibiotic susceptibility testing. A range of antibiotic effectiveness was displayed in this cell association assay, providing data that may be considered in addition to traditional testing when determining therapeutic dosing regimens. PMID:21628536

  13. Differential Expression of Stem Cell Markers in Ocular Surface Squamous Neoplasia.

    PubMed

    Mishra, Dilip Kumar; Veena, Uppala; Kaliki, Swathi; Kethiri, Abhinav Reddy; Sangwan, Virender S; Ali, Mohammed Hasnat; Naik, Milind N; Singh, Vivek

    2016-01-01

    Ocular Surface Squamous Neoplasm (OSSN) is the neoplasia arising from the conjunctiva, cornea and limbus. OSSN ranges from mild, moderate, severe dysplasia, carcinoma in situ (CIS) to squamous cell carcinoma (SCC). Recent findings on cancer stem cells theory indicate that population of stem-like cell as in neoplasia determines its heterogeneity and complexity leading to varying tumor development of metastatic behavior and recurrence. Cancer stem cell markers are not much explored in the cases of OSSN. In the present study, we aim to evaluate the expression of stem cells using stem cell markers mainly p63, ABCG2, c-KIT (CD117) and CD44 in OSSN tissue, which could have prognostic significance. The present study tries for the first time to explore expression of these stem markers in the cases of OSSN. These cases are subdivided into two groups. One group comprises of carcinoma in situ (n = 6) and the second group comprises of invasive carcinoma (n = 6). The mean age at presentation was 52 years; with 53 years for CIS group and 52 years for SCC group. From each group section from the paraffin block were taken for the IHC staining of p63, c-Kit, ABCG2 and CD44. Our experiments show high expression of P63 and CD44 in the cases of CIN and SCC. Both CIS and SCC displayed positive staining with p63, with more than 80% cells staining positive. However minimal expression of c-kit in both CIN and SCC. But surprisingly we got high expression of ABCG2 in cases of carcinoma in situ as compared to that of invasive squamous cell carcinoma. More than 50% of cells showed CD44 positivity in both CIS and SCC groups. Our results show for the first time that these four stem cells especially the limbal epithelium stem cells play a vital role in the genesis of OSSN but we need to explore more cases before establishing its clinical and biological significance. PMID:27584160

  14. Differential Expression of Stem Cell Markers in Ocular Surface Squamous Neoplasia

    PubMed Central

    Mishra, Dilip Kumar; Veena, Uppala; Kaliki, Swathi; Kethiri, Abhinav Reddy; Sangwan, Virender S.; Ali, Mohammed Hasnat; Naik, Milind N.; Singh, Vivek

    2016-01-01

    Ocular Surface Squamous Neoplasm (OSSN) is the neoplasia arising from the conjunctiva, cornea and limbus. OSSN ranges from mild, moderate, severe dysplasia, carcinoma in situ (CIS) to squamous cell carcinoma (SCC). Recent findings on cancer stem cells theory indicate that population of stem-like cell as in neoplasia determines its heterogeneity and complexity leading to varying tumor development of metastatic behavior and recurrence. Cancer stem cell markers are not much explored in the cases of OSSN. In the present study, we aim to evaluate the expression of stem cells using stem cell markers mainly p63, ABCG2, c-KIT (CD117) and CD44 in OSSN tissue, which could have prognostic significance. The present study tries for the first time to explore expression of these stem markers in the cases of OSSN. These cases are subdivided into two groups. One group comprises of carcinoma in situ (n = 6) and the second group comprises of invasive carcinoma (n = 6). The mean age at presentation was 52 years; with 53 years for CIS group and 52 years for SCC group. From each group section from the paraffin block were taken for the IHC staining of p63, c-Kit, ABCG2 and CD44. Our experiments show high expression of P63 and CD44 in the cases of CIN and SCC. Both CIS and SCC displayed positive staining with p63, with more than 80% cells staining positive. However minimal expression of c-kit in both CIN and SCC. But surprisingly we got high expression of ABCG2 in cases of carcinoma in situ as compared to that of invasive squamous cell carcinoma. More than 50% of cells showed CD44 positivity in both CIS and SCC groups. Our results show for the first time that these four stem cells especially the limbal epithelium stem cells play a vital role in the genesis of OSSN but we need to explore more cases before establishing its clinical and biological significance. PMID:27584160

  15. Glycobiology of ocular angiogenesis.

    PubMed

    Markowska, Anna I; Cao, Zhiyi; Panjwani, Noorjahan

    2014-12-01

    Ocular neovascularization can affect almost all the tissues of the eye: the cornea, the iris, the retina, and the choroid. Pathological neovascularization is the underlying cause of vision loss in common ocular conditions such as diabetic retinopathy, retinopathy of prematurity and age-related macular neovascularization. Glycosylation is the most common covalent posttranslational modification of proteins in mammalian cells. A growing body of evidence demonstrates that glycosylation influences the process of angiogenesis and impacts activation, proliferation, and migration of endothelial cells as well as the interaction of angiogenic endothelial cells with other cell types necessary to form blood vessels. Recent studies have provided evidence that members of the galectin class of β-galactoside-binding proteins modulate angiogenesis by novel carbohydrate-based recognition systems involving interactions between glycans of angiogenic cell surface receptors and galectins. This review discusses the significance of glycosylation and the role of galectins in the pathogenesis of ocular neovascularization. PMID:25108228

  16. Visual contribution to the high-frequency human angular vestibulo-ocular reflex.

    PubMed

    Chim, Daniel; Lasker, David M; Migliaccio, Americo A

    2013-09-01

    The vestibulo-ocular reflex (VOR) acts to maintain images stable on the retina by rotating the eyes in exactly the opposite direction, but with equal magnitude, to head velocity. When viewing a near target, this reflex has an increased response to compensate for the translation of the eyes relative to the target that acts to reduce retinal image slip. Previous studies have shown that retinal velocity error provides an important visual feedback signal to increase the low-frequency (<1 Hz) VOR response during near viewing. We sought to determine whether initial eye position and retinal image position error could provide enough information to substantially increase the high-frequency VOR gain (eye velocity/head velocity) during near viewing. Ten human subjects were tested using the scleral search coil technique during horizontal head impulses under different lighting conditions (constant dark, strobe light at 0.5, 1, 2, 4, 10, 15 Hz, constant light) while viewing near (9.5 ± 1.3 cm) and far (104 cm) targets. Our results showed that the VOR gain increased during near viewing compared to far viewing, even during constant dark. For the near target, there was an increase in VOR gain with increasing strobe frequency from 1.17 ± 0.17 in constant dark to 1.36 ± 0.27 in constant light, a 21 ± 9 % increase. For the far target, strobe frequency had no effect. Presentation order of strobe frequency (i.e. 0.5-15 vs. 15-0.5 Hz) did not affect the gain, but it did affect the vergence angle (angle between the two eye's lines of sight). The VOR gain and vergence angles were constant during each trial. Our findings show that a retinal position error signal helps increase the vergence angle and could be invoking vestibular adaptation mechanisms to increase the high-frequency VOR response during near viewing. This is in contrast to the low-frequency VOR that depends more on retinal velocity error and predictive adaptation mechanisms.

  17. Predictive mechanisms of head-eye coordination and vestibulo-ocular reflex suppression in humans.

    PubMed

    Barnes, G R; Grealy, M A

    1992-01-01

    Head and eye movements of human subjects have been recorded during head-free pursuit in the horizontal plane of a target executing sinusoidal motion at a frequency of 0.26 to 0.78 Hz and a peak velocity of +/- 96 degrees/s. The target was not presented continuously but was exposed for brief durations of 120 to 320 ms as it passed through the centre of the visual field at peak velocity. This technique allowed the timing of each response to be assessed in relation to the onset of target appearance. During the first 3 to 4 target presentations, there was a progressive buildup of both head velocity and the smooth component of gaze velocity, while, simultaneously, the responses became more phase-advanced with respect to target onset. In the steady state, similar temporal response trajectories were observed for head and gaze velocity, which were initiated approximately 500 ms prior to target onset, rose to a peak that increased with the duration of target exposure, and then decayed with a time constant of 0.5 to 1 s. Whenever the target failed to appear as expected, the gaze and head velocity trajectories continued to be made, indicating that predictive suppression of the vestibulo-ocular reflex (VOR) was taking place in darkness. In a further experiment, subjects attempted to suppress the VOR during whole body oscillation at 0.2 or 0.4 Hz on a turntable by fixating a head-fixed target that appeared for 10 to 160 ms at the time of peak head velocity. Again, VOR suppression was initiated prior to target appearance in the same manner as for natural head movements, and when the target suddenly disappeared but rotation continued, predictive VOR suppression was observed in darkness. The similarity of these predictive effects to those obtained previously for head-fixed pursuit provides further support for the hypothesis that both pursuit and visual suppression of the VOR are controlled primarily by identical visual feedback mechanisms. PMID:1342395

  18. EGCG prevents tryptophan oxidation of cataractous ocular lens human γ-crystallin in presence of H2O2.

    PubMed

    Chaudhury, Susmitnarayan; Ghosh, Ishita; Saha, Gautam; Dasgupta, Swagata

    2015-01-01

    Disruption of the short range order of proteins present in the ocular lens leads to cataract resulting in a loss of transparency. Human γ-crystallin (HGC), a water soluble protein present in the lens is known to aggregate with aging. A modified form of HGC (HGC(c)) was isolated from cataractous human ocular lens extract and the number of Trp residues that undergo oxidation was determined. The extent of oxidized Trp (N-formyl kynurenine) in HGC due to cataract formation was determined, primarily using fluorescence spectroscopy. The ability of (-)-epigallocatechin gallate (EGCG) to retain its antioxidant effect even in the presence of H2O2 was investigated. This was monitored by its ability to prevent the modification of intact Trp residues in HGC(c) isolated from cataractous human eye lens. Significant Trp fluorescence quenching occurs on interaction of the green tea component, EGCG with HGC(c) accompanied by a red shift. Docking studies were employed to substantiate the experimental results. As eye lens proteins are prone to oxidative stress it is essential that a clear understanding of the effects of the components generated in vivo vis-à-vis the antioxidant effects of natural polyphenols be obtained. PMID:25841365

  19. Translational otolith-ocular reflex during off-vertical axis rotation in humans.

    PubMed

    Clément, Gilles; Wood, Scott J

    2016-03-11

    Two characteristics of otolith-ocular responses - linear vestibulo-ocular reflex and vergence - were examined during constant velocity off-vertical axis rotation (OVAR) in the dark. Sixteen subjects were rotated about their longitudinal axis when tilted 30° relative to the direction of gravity. Rotational velocities were 36 and 288/s corresponding to frequencies of 0.1 and 0.8Hz, respectively. Subjects were asked to imagine stationary targets located at 0.5m, 1m, and 2m in the straight-ahead direction. Binocular eye movements were recorded in the dark using infrared videography. The modulation of horizontal slow phase velocity during OVAR was larger at 0.8Hz than at 0.1Hz, and the modulation at the high frequency was larger for the near target than for the mid and far targets. These characteristics confirm that the horizontal slow phase velocity during yaw OVAR represents a translational otolith-ocular reflex in response to acceleration along the inter-aural axis that is dependent on imagined fixation distance.

  20. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic mice against ocular herpes.

    PubMed

    Srivastava, Ruchi; Khan, Arif A; Spencer, Doran; Vahed, Hawa; Lopes, Patricia P; Thai, Nhi Thi Uyen; Wang, Christine; Pham, Thanh T; Huang, Jiawei; Scarfone, Vanessa M; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2015-03-01

    The HSV type 1 tegument virion phosphoprotein (VP) 11/12 (VP11/12) is a major Ag targeted by CD8(+) T cells from HSV-seropositive individuals. However, whether and which VP11/12 epitope-specific CD8(+) T cells play a role in the "natural" protection seen in seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we used multiple prediction computer-assisted algorithms to identify 10 potential HLA-A*02:01-restricted CD8(+) T cell epitopes from the 718-aa sequence of VP11/12. Three of 10 epitopes exhibited high-to-moderate binding affinity to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01-positive and HSV-1-seropositive ASYMP individuals, the most frequent, robust, and polyfunctional effector CD8(+) T cell responses, as assessed by a combination of tetramer frequency, granzyme B, granzyme K, perforin, CD107(a/b) cytotoxic degranulation, IFN-γ, and multiplex cytokines assays, were predominantly directed against three epitopes: VP11/1266-74, VP11/12220-228, and VP11/12702-710. Interestingly, ASYMP individuals had a significantly higher proportion of CD45RA(low)CCR7(low)CD44(high)CD62L(low)CD27(low)CD28(low)CD8(+) effector memory CD8(+) T cells (TEMs) specific to the three epitopes, compared with symptomatic individuals (with a history of numerous episodes of recurrent ocular herpetic disease). Moreover, immunization of HLA-A*02:01 transgenic mice with the three ASYMP CD8(+) TEM cell epitopes induced robust and polyfunctional epitope-specific CD8(+) TEM cells that were associated with a strong protective immunity against ocular herpes infection and disease. Our findings outline phenotypic and functional features of protective HSV-specific CD8(+) T cells that should guide the development of an effective T cell-based herpes vaccine. PMID:25617474

  1. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic mice against ocular herpes.

    PubMed

    Srivastava, Ruchi; Khan, Arif A; Spencer, Doran; Vahed, Hawa; Lopes, Patricia P; Thai, Nhi Thi Uyen; Wang, Christine; Pham, Thanh T; Huang, Jiawei; Scarfone, Vanessa M; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2015-03-01

    The HSV type 1 tegument virion phosphoprotein (VP) 11/12 (VP11/12) is a major Ag targeted by CD8(+) T cells from HSV-seropositive individuals. However, whether and which VP11/12 epitope-specific CD8(+) T cells play a role in the "natural" protection seen in seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we used multiple prediction computer-assisted algorithms to identify 10 potential HLA-A*02:01-restricted CD8(+) T cell epitopes from the 718-aa sequence of VP11/12. Three of 10 epitopes exhibited high-to-moderate binding affinity to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01-positive and HSV-1-seropositive ASYMP individuals, the most frequent, robust, and polyfunctional effector CD8(+) T cell responses, as assessed by a combination of tetramer frequency, granzyme B, granzyme K, perforin, CD107(a/b) cytotoxic degranulation, IFN-γ, and multiplex cytokines assays, were predominantly directed against three epitopes: VP11/1266-74, VP11/12220-228, and VP11/12702-710. Interestingly, ASYMP individuals had a significantly higher proportion of CD45RA(low)CCR7(low)CD44(high)CD62L(low)CD27(low)CD28(low)CD8(+) effector memory CD8(+) T cells (TEMs) specific to the three epitopes, compared with symptomatic individuals (with a history of numerous episodes of recurrent ocular herpetic disease). Moreover, immunization of HLA-A*02:01 transgenic mice with the three ASYMP CD8(+) TEM cell epitopes induced robust and polyfunctional epitope-specific CD8(+) TEM cells that were associated with a strong protective immunity against ocular herpes infection and disease. Our findings outline phenotypic and functional features of protective HSV-specific CD8(+) T cells that should guide the development of an effective T cell-based herpes vaccine.

  2. Ocular Sarcoidosis.

    PubMed

    Pasadhika, Sirichai; Rosenbaum, James T

    2015-12-01

    Sarcoidosis is one of the leading causes of inflammatory eye disease. Ocular sarcoidosis can involve any part of the eye and its adnexal tissues and may cause uveitis, episcleritis/scleritis, eyelid abnormalities, conjunctival granuloma, optic neuropathy, lacrimal gland enlargement, and orbital inflammation. Glaucoma and cataract can be complications from inflammation itself or adverse effects from therapy. Ophthalmic manifestations can be isolated or associated with other organ involvement. Patients with ocular sarcoidosis can present with a wide range of clinical presentations and severity. Multidisciplinary approaches are required to achieve the best treatment outcomes for both ocular and systemic manifestations.

  3. Ocular Syphilis: a Clinical Review.

    PubMed

    Woolston, Sophie L; Dhanireddy, Shireesha; Marrazzo, Jeanne

    2016-11-01

    While ocular syphilis is not a new phenomenon, recent increased rates of new diagnoses, especially in human immunodeficiency virus (HIV)-infected persons and men who have sex with men, have sparked a new interest in an old disease. This article will review the clinical presentation, diagnosis, and treatment of ocular syphilis, and provide guidance on management. PMID:27686678

  4. Hydrogels for ocular drug delivery and tissue engineering

    PubMed Central

    Fathi, Marzieh; Barar, Jaleh; Aghanejad, Ayuob; Omidi, Yadollah

    2015-01-01

    Hydrogels, as crosslinked polymeric three dimensional networks, possess unique structure and behavior in response to the internal and/or external stimuli. As a result, they offer great prospective applications in drug delivery, cell therapy and human tissue engineering. Here, we highlight the potential of hydrogels in prolonged intraocular drug delivery and ocular surface therapy using stem cells incorporated hydrogels. PMID:26929918

  5. Effect of adenosine and adenosine receptor antagonist on Müller cell potassium channel in Rat chronic ocular hypertension models.

    PubMed

    Yang, Zijian; Huang, Ping; Liu, Xiaohong; Huang, Shouyue; Deng, Lianfu; Jin, Zhe; Xu, Shuo; Shen, Xi; Luo, Xunda; Zhong, Yisheng

    2015-01-01

    Müller cells are principal glial cells in rat retina and have attracted much attention in glaucoma studies. However, it is not clear whether adenosine and adenosine receptor (AR) antagonists play any roles in the regulation of potassium channels in Müller cells and subsequently in the promotion of glutamine synthetase (GS) and L-Glutamate/L-Aspartate Transporter (GLAST) functions. We found that chronic ocular hypertension (COH) in rat down-regulated Müller cells Kir2.1, Kir4.1, TASK-1, GS and GLAST expressions and attenuated the peak of inward potassium current. Retinal ganglion cells (RGC) count was lower in the COH rats than that in the sham operation animals. Intravitreal injection of selective A2A AR antagonist SCH442416 up-regulated Müller cell Kir4.1, TASK-1, GS and GLAST expressions and enhanced inward potassium currents compared with those in the COH rats with vehicle control. Meanwhile, the RGC count was higher following intravitreal injection of SCH442416 in the COH rats than that after vehicle injection. The fact that PKA inhibitor H-89 blocked these SCH442416 effects suggested that the PKA signaling pathway was involved in the observed ocular responses following the intravitreal SCH442416 injection. PMID:26063641

  6. Peaks and troughs of three-dimensional vestibulo-ocular reflex in humans.

    PubMed

    Goumans, Janine; Houben, Mark M J; Dits, Joyce; van der Steen, Johannes

    2010-09-01

    The three-dimensional vestibulo-ocular reflex (3D VOR) ideally generates compensatory ocular rotations not only with a magnitude equal and opposite to the head rotation but also about an axis that is collinear with the head rotation axis. Vestibulo-ocular responses only partially fulfill this ideal behavior. Because animal studies have shown that vestibular stimulation about particular axes may lead to suboptimal compensatory responses, we investigated in healthy subjects the peaks and troughs in 3D VOR stabilization in terms of gain and alignment of the 3D vestibulo-ocular response. Six healthy upright sitting subjects underwent whole body small amplitude sinusoidal and constant acceleration transients delivered by a six-degree-of-freedom motion platform. Subjects were oscillated about the vertical axis and about axes in the horizontal plane varying between roll and pitch at increments of 22.5 degrees in azimuth. Transients were delivered in yaw, roll, and pitch and in the vertical canal planes. Eye movements were recorded in with 3D search coils. Eye coil signals were converted to rotation vectors, from which we calculated gain and misalignment. During horizontal axis stimulation, systematic deviations were found. In the light, misalignment of the 3D VOR had a maximum misalignment at about 45 degrees . These deviations in misalignment can be explained by vector summation of the eye rotation components with a low gain for torsion and high gain for vertical. In the dark and in response to transients, gain of all components had lower values. Misalignment in darkness and for transients had different peaks and troughs than in the light: its minimum was during pitch axis stimulation and its maximum during roll axis stimulation. We show that the relatively large misalignment for roll in darkness is due to a horizontal eye movement component that is only present in darkness. In combination with the relatively low torsion gain, this horizontal component has a relative

  7. Vestibulo-ocular, optokinetic and postural function in humans with rheumatoid arthritis.

    PubMed

    King, Jaimee; Young, Calvin; Highton, John; Smith, Paul F; Darlington, Cynthia L

    2002-08-01

    The present study investigated vestibulo-ocular reflex (VOR), optokinetic reflex (OKR) and postural function in patients with rheumatoid arthritis (RA). Compared with controls, no differences in gaze-holding, VOR gain or phase, OKR slow phase velocity (SPV) or quick phase amplitude, optokinetic afternystagmus SPV or duration, or latency to the illusion of circularvection, were found. RA patients did exhibit greater sway in the leftward direction (P<0.01), however, this was no greater in the conditions of the Clinical Test of Sensory Interaction and Balance that increase reliance upon vestibular information. We conclude that RA patients do not exhibit substantial deficits in visual-vestibular function.

  8. A comparison of the ocular hypotensive effect of 0.025% bromocriptine and 0.25% timolol eye drops in normal human volunteers.

    PubMed Central

    al-Sereiti, M R; Coakes, R L; O'Sullivan, D P; Turner, P

    1989-01-01

    1. The ocular hypotensive effect of 0.025% bromocriptine and 0.25% timolol eye drops was compared in nine healthy human volunteers, using non-contact tonometry. 2. Considering all post-dosing measurements compared with placebo and including the baseline values as continuous independent variables, using multiple linear regression analysis, both bromocriptine and timolol had a significant ocular hypotensive effect (P less than 0.0001) in the treated eye with a significant but lesser effect in the contralateral eye. 3. In the concentrations used, timolol was more efficacious than bromocriptine in lowering intraocular pressure (P less than 0.025). 4. Using other forms of vehicles for bromocriptine to improve efficacy and studying the ocular hypotensive effect of topical application of other dopamine-2-receptor agonists such as pergolide and lisuride was suggested. PMID:2590602

  9. Melatonin and Sleep-Wake Rhythms before and after Ocular Lens Replacement in Elderly Humans

    PubMed Central

    Giménez, Marina; Beersma, Domien; Daan, Serge; van der Pol, Bert; Kanis, Martijn; van Norren, Dick; Gordijn, Marijke

    2016-01-01

    Light of short wavelengths has been shown to play a key role in non-image forming responses. Due to aging, the ocular lens becomes more yellow reducing the transmission of short wavelengths in the elderly. In the present study, we make use of cataract surgery to investigate the effects of a relative increase of short wavelength transmission on melatonin- and sleep-wake rhythms (N = 14). We observed, on average, a delay of the sleep-wake and the nocturnal melatonin rhythms after cataract surgery. This delay is tentatively attributed to a relatively large increase of light transmittance in the evening hours more than an increase of the already relatively high light intensities found in the daytime. The later phase that we observed after cataract surgery (clear lens) as compared to the earlier phase observed before cataract (yellowish lens) is in agreement with the general later phase reported in the young (clear lens) population. PMID:26891336

  10. Pediatric genetic ocular tumors

    PubMed Central

    Rouhani, Behnaz; Ramasubramanian, Aparna

    2014-01-01

    Pediatric genetic ocular tumors include malignancies like retinoblastoma and phakomatosis like neurofibromatosis, tuberous sclerosis, von Hippel-Lindau syndrome, and nevoid basal cell carcinoma syndrome. It is important to screen for ocular tumors both for visual prognosis and also for systemic implications. The phakomatosis comprise of multitude of benign tumors that are aysmptomatic but their detection can aid in the diagnosis of the syndrome. Retinoblastoma is the most common malignant intraocular tumor in childhood and with current treatment modalities, the survival is more than 95%. It is transmitted as an autosomal dominant fashion and hence the offsprings of all patients with the germline retinoblastoma need to be screened from birth. This review discusses the various pediatric genetic ocular tumors discussing the clinical manifestation, diagnosis and treatment.

  11. Pediatric genetic ocular tumors.

    PubMed

    Rouhani, Behnaz; Ramasubramanian, Aparna

    2014-12-01

    Pediatric genetic ocular tumors include malignancies like retinoblastoma and phakomatosis like neurofibromatosis, tuberous sclerosis, von Hippel-Lindau syndrome, and nevoid basal cell carcinoma syndrome. It is important to screen for ocular tumors both for visual prognosis and also for systemic implications. The phakomatosis comprise of multitude of benign tumors that are aysmptomatic but their detection can aid in the diagnosis of the syndrome. Retinoblastoma is the most common malignant intraocular tumor in childhood and with current treatment modalities, the survival is more than 95%. It is transmitted as an autosomal dominant fashion and hence the offsprings of all patients with the germline retinoblastoma need to be screened from birth. This review discusses the various pediatric genetic ocular tumors discussing the clinical manifestation, diagnosis and treatment. PMID:27625882

  12. Ocular torticollis.

    PubMed

    Rubin, S E; Wagner, R S

    1986-01-01

    Torticollis can arise from nonocular (usually musculoskeletal) and ocular conditions. Abnormal head position for ocular reasons is usually assumed in order to maintain binocularity and/or to optimize visual acuity. A variety of conditions may be responsible. The sensory organ of position sense, the labyrinth, lies within the inner ear and it relates to eye movement in both a dynamic and static fashion. The Bielschowsky head tilt test is based on the functioning of the otolithic apparatus and is the primary test in evaluating abnormal head position. Treatment is usually surgical, with extent and location dependent upon on the underlying cause. While corrective surgery has usually been done on an elective basis for cosmetic purposes, there is evidence that uncorrected torticollis can cause musculoskeletal problems. This review describes the physiological bases for ocular torticollis and the diagnosis and treatment of its various underlying causes.

  13. Rabies: ocular pathology.

    PubMed Central

    Haltia, M; Tarkkanen, A; Kivelä, T

    1989-01-01

    Ocular pathology in the first European case of human bat-borne rabies is described. The patient was a 30-year-old bat scientist who seven weeks after bat bite developed neurological symptoms and died 23 days later. Rabies virus antigens were detected in brain smears. After extensive virological studies the virus turned out to be a rabies-related virus, closely resembling the Duvenhage virus isolated from bats in South Africa in 1980. By light microscopy focal chronic inflammatory infiltration of the ciliary body and of the choroid was found. PAS-positive exudate was seen in the subretinal and in the outer plexiform layers of the retina, and retinal veins showed endothelial damage and perivascular inflammation. Many of the retinal ganglion cells were destroyed. The presence of rabies-related viral antigen in the retinal ganglion cells was shown by positive cytoplasmic immunofluorescence, though electron microscopy failed to identify definite viral structures in the retina. By immunohistochemistry glial fibrillary acidic protein was observed in the Müller's cells, which are normally negative for this antigen but express it as a reactive change when the retina is damaged. Synaptophysin, a constituent of presynaptic vesicles of normal retinal neurons, was not detected in the retina. Images PMID:2920157

  14. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells.

    PubMed

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-01-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases. PMID:27246808

  15. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    NASA Astrophysics Data System (ADS)

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-06-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases.

  16. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    PubMed Central

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-01-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases. PMID:27246808

  17. Latrunculin B Reduces Intraocular Pressure in Human Ocular Hypertension and Primary Open-Angle Glaucoma

    PubMed Central

    Rasmussen, Carol A.; Kaufman, Paul L.; Ritch, Robert; Haque, Reza; Brazzell, R. Kim; Vittitow, Jason L.

    2014-01-01

    Purpose To evaluate the safety, tolerability, and intraocular pressure (IOP)-lowering effect of Latrunculin-B (Lat-B), a marine macrolide that disrupts the actin cytoskeleton, in patients with ocular hypertension (OHT) or early primary open-angle glaucoma (POAG). Methods In this Phase I, multicenter, double-masked, randomized, placebo-controlled, ascending-dose study, subjects with bilateral OHT or early POAG (>22 mm Hg) received one of four concentrations of INS115644 (Lat-B ophthalmic solutions, 0.005%, 0.01%, 0.02%, or 0.05%) in one eye over 3 days (5 single-dose instillations, separated by 12 hours). One eye was randomly assigned to active drug, the other to placebo. IOP was measured prior to treatment initiation (day 0) and on days 1 and 3. Results Baseline IOPs were 22.9 ± 2.4 mm Hg and 23.5 + 3.1 mm Hg in the 0.02% and 0.05% dose groups, respectively. At 4 hours post instillation of the first dose, 0.02% INS115644 reduced IOP from baseline (mean ± SE) by 3.8 ± 0.7 mm Hg (P = 0.002) and 0.05% by 3.9 ± 1.0 mm Hg (P = 0.004). A maximum IOP decrease of 24% was noted at 4 hours after the fifth instillation of 0.02%. Adjusting for diurnal baseline and IOP in the contralateral, placebo-treated eye, the maximal 12-hour hypotensive effect was 4.0 ± 0.5 mm Hg (adjusted mean ± SE), a 17% decrease, following the fifth instillation of 0.02% (day 3). Adverse events were few and consisted mainly of mild redness, irritation, and a transient, clinically insignificant increase (≤2.5%) in central corneal thickness. Conclusions In OHT or POAG patients, twice daily Lat-B significantly lowered IOP compared with contralateral, placebo-treated eyes, with few and mild ocular adverse events. Translational Relevance Lat-B may be a potential therapeutic agent for glaucoma. PMID:25237590

  18. Ocular Tropism of Respiratory Viruses

    PubMed Central

    Rota, Paul A.; Tumpey, Terrence M.

    2013-01-01

    SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620

  19. Protection of Retinal Ganglion Cells and Retinal Vasculature by Lycium Barbarum Polysaccharides in a Mouse Model of Acute Ocular Hypertension

    PubMed Central

    Mi, Xue-Song; Feng, Qian; Lo, Amy Cheuk Yin; Chang, Raymond Chuen-Chung; Lin, Bin; Chung, Sookja Kim; So, Kwok-Fai

    2012-01-01

    Acute ocular hypertension (AOH) is a condition found in acute glaucoma. The purpose of this study is to investigate the protective effect of Lycium barbarum polysaccharides (LBP) and its protective mechanisms in the AOH insult. LBP has been shown to exhibit neuroprotective effect in the chronic ocular hypertension (COH) experiments. AOH mouse model was induced in unilateral eye for one hour by introducing 90 mmHg ocular pressure. The animal was fed with LBP solution (1 mg/kg) or vehicle daily from 7 days before the AOH insult till sacrifice at either day 4 or day 7 post insult. The neuroprotective effects of LBP on retinal ganglion cells (RGCs) and blood-retinal-barrier (BRB) were evaluated. In control AOH retina, loss of RGCs, thinning of IRL thickness, increased IgG leakage, broken tight junctions, and decreased density of retinal blood vessels were observed. However, in LBP-treated AOH retina, there was less loss of RGCs with thinning of IRL thickness, IgG leakage, more continued structure of tight junctions associated with higher level of occludin protein and the recovery of the blood vessel density when compared with vehicle-treated AOH retina. Moreover, we found that LBP provides neuroprotection by down-regulating RAGE, ET-1, Aβ and AGE in the retina, as well as their related signaling pathways, which was related to inhibiting vascular damages and the neuronal degeneration in AOH insults. The present study suggests that LBP could prevent damage to RGCs from AOH-induced ischemic injury; furthermore, through its effects on blood vessel protection, LBP would also be a potential treatment for vascular-related retinopathy. PMID:23094016

  20. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye.

    PubMed

    Bauskar, Aditi; Mack, Wendy J; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A; Kolar, Grant R; Gleave, Martin E; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C; Wilson, Mark R; Fini, M Elizabeth; Jeong, Shinwu

    2015-01-01

    Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.

  1. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye

    PubMed Central

    Bauskar, Aditi; Mack, Wendy J.; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A.; Kolar, Grant R.; Gleave, Martin E.; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C.; Wilson, Mark R.; Fini, M. Elizabeth; Jeong, Shinwu

    2015-01-01

    Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye. PMID:26402857

  2. The vestibular implant: frequency-dependency of the electrically evoked vestibulo-ocular reflex in humans.

    PubMed

    van de Berg, Raymond; Guinand, Nils; Nguyen, T A Khoa; Ranieri, Maurizio; Cavuscens, Samuel; Guyot, Jean-Philippe; Stokroos, Robert; Kingma, Herman; Perez-Fornos, Angelica

    2014-01-01

    The vestibulo-ocular reflex (VOR) shows frequency-dependent behavior. This study investigated whether the characteristics of the electrically evoked VOR (eVOR) elicited by a vestibular implant, showed the same frequency-dependency. Twelve vestibular electrodes implanted in seven patients with bilateral vestibular hypofunction (BVH) were tested. Stimuli consisted of amplitude-modulated electrical stimulation with a sinusoidal profile at frequencies of 0.5, 1, and 2 Hz. The main characteristics of the eVOR were evaluated and compared to the "natural" VOR characteristics measured in a group of age-matched healthy volunteers who were subjected to horizontal whole body rotations with equivalent sinusoidal velocity profiles at the same frequencies. A strong and significant effect of frequency was observed in the total peak eye velocity of the eVOR. This effect was similar to that observed in the "natural" VOR. Other characteristics of the (e)VOR (angle, habituation-index, and asymmetry) showed no significant frequency-dependent effect. In conclusion, this study demonstrates that, at least at the specific (limited) frequency range tested, responses elicited by a vestibular implant closely mimic the frequency-dependency of the "normal" vestibular system.

  3. Effect of androgen deficiency on the human meibomian gland and ocular surface.

    PubMed

    Krenzer, K L; Dana, M R; Ullman, M D; Cermak, J M; Tolls, D B; Evans, J E; Sullivan, D A

    2000-12-01

    The purpose of this study was to determine whether the chronic use of antiandrogen medications leads to meibomian gland dysfunction, altered lipid profiles in meibomian gland secretions, decreased tear film stability, and evaporative dry eye. Subjects taking antiandrogen therapy for prostatic indications, as well as age-related controls, were asked to complete a questionnaire that assessed dry eye symptoms and then were given a complete anterior segment examination. Moreover, meibomian gland secretions were obtained from each eye and analyzed by high-performance liquid chromatography/mass spectrometry for the relative content of cholesterol, cholesterol esters, wax esters, diglycerides, triglycerides, and specific molecular species in the diglyceride fraction. Our results demonstrate that patients taking antiandrogen treatment, compared with age-related controls, had a: 1) significant increase in the frequency of appearance of tear film debris, an abnormal tear film meniscus, irregular posterior lid margins, conjunctival tarsal injection, and orifice metaplasia of the meibomian glands; 2) significant increase in the degree of ocular surface vital dye staining; 3) significant decrease in the tear film breakup time and quality of meibomian gland secretions; and 4) significant increase in the frequency of light sensitivity, painful eyes, and blurred vision. In addition, the use of antiandrogen pharmaceuticals was associated with significant changes in the relative amounts of lipids in meibomian gland secretions. Our findings indicate that chronic androgen deficiency is associated with meibomian gland dysfunction and dry eye.

  4. Local resolved spectroscopy at the human ocular fundus in vivo: technique and clinical examples

    NASA Astrophysics Data System (ADS)

    Hammer, Martin; Schweitzer, Dietrich; Scibor, Mateusz

    1996-01-01

    Ocular fundus reflectometry is known as a method for the determination of the optical density of pigments at the eye ground. This has been described for diagnostic investigations at single locations. The new technique of imaging spectroscopy enables the recording of one dimensional local distribution of spectra from the fundus which is illuminated confocal to the entrance slit of a spectrograph. A fundus reflectometer consisting of a Zeiss fundus camera, an imaging spectrograph, and an intensified CCD-camera are presented. The local resolved spectra gained by this apparatus are approximated by a mathematical model on the basis of the anatomy of the fundus as a structure of layers with different optical properties. Each spectrum is assumed to be described by a function of the absorption spectra of the pigments found in the retinal and choroidal tissue. Assuming the existence of parameters which are independent from the fundus location we have to approximate the measured local distribution of spectra by a system of coupled non-linear equations. By a least square fit the local distribution of the extinction of melanin, xantophyll and hemoglobin may be obtained as well as the extension of pathologic alterations at the fundus. The benefits of the method for clinical diagnostics are discussed at first measurements from physiological and pathological examples.

  5. EEG and ocular correlates of circadian melatonin phase and human performance decrements during sleep loss

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Khalsa, S. B.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.

    1999-01-01

    The aim of this study was to quantify the associations between slow eye movements (SEMs), eye blink rate, waking electroencephalogram (EEG) power density, neurobehavioral performance, and the circadian rhythm of plasma melatonin in a cohort of 10 healthy men during up to 32 h of sustained wakefulness. The time course of neurobehavioral performance was characterized by fairly stable levels throughout the first 16 h of wakefulness followed by deterioration during the phase of melatonin secretion. This deterioration was closely associated with an increase in SEMs. Frontal low-frequency EEG activity (1-7 Hz) exhibited a prominent increase with time awake and little circadian modulation. EEG alpha activity exhibited circadian modulation. The dynamics of SEMs and EEG activity were phase locked to changes in neurobehavioral performance and lagged the plasma melatonin rhythm. The data indicate that frontal areas of the brain are more susceptible to sleep loss than occipital areas. Frontal EEG activity and ocular parameters may be used to monitor and predict changes in neurobehavioral performance associated with sleep loss and circadian misalignment.

  6. The human torsional vestibulo-ocular reflex during rotation about an earth-vertical axis.

    PubMed

    Seidman, S H; Leigh, R J

    1989-12-18

    Using the magnetic search coil technique, we have measured the gain and time constant (Tvor) of the torsional vestibulo-ocular reflex (VOR) in 4 subjects who were rotated about an earth-vertical axis with their necks extended and faces supine. Following a 1-min period of rotation in darkness at 50 degrees/s, the post-rotational response to a velocity off-step had a group mean gain of 0.43 and Tvor of 3.7 s. Following a 1-min period of rotation in the light at 50 degrees/s, the post-rotational response in darkness had a group mean gain of 0.29 and Tvor of 4.1 s. Following rotation in darkness with the neck flexed and head prone, the post-rotational response, measured in two subjects, had a mean gain of 0.39 and Tvor of 5.7 s. Similar results were obtained with 100 degrees/s stimuli. In all subjects, the gain and Tvor of the torsional VOR were smaller than corresponding values for their horizontal VOR; these smaller values can be related to the different visual demands made of the torsional VOR.

  7. Anisotropy in spatial summation properties of human Ocular-Following Response (OFR)

    PubMed Central

    Sheliga, B. M.; Quaia, C.; FitzGibbon, E. J.; Cumming, B.G.

    2015-01-01

    Using sinusoidal gratings we show that an increase in stimulus size confined to the dimension orthogonal to the axis of motion leads to stronger Ocular Following Responses (OFRs) up to a certain optimal size. An increase beyond this optimum produces smaller responses, indicating suppressive interactions. In sharp contrast, when the stimulus growth occurs parallel to the axis of motion OFR magnitudes increase monotonically both for horizontal and vertical directions of motion. Similar results are obtained with 1D white noise patterns. However, the OFR spatial anisotropy is minimal with 2D white noise patterns, revealing a pivotal role of orientation-selective (i.e., cortical) mechanisms in mediating this phenomenon. The lack of anisotropy for 2D patterns suggests that directional signals alone are not sufficient to elicit this suppression. The OFR spatial anisotropy is potentiated if a stationary grating is presented for 600-1000 ms before its motion commences, further emphasizing the importance of static orientation signals. These results suggest that the strength of cortical spatial interactions is asymmetric—i.e., larger in the direction of the ends than the flanks of an orientation-selective receptive field—which corroborates the existing neurophysiological evidence. PMID:25743079

  8. Ocular Toxicity Testing of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.

    2010-01-01

    This slide presentation reviews the use of ocular testing to determine the toxicity of lunar dust. The OECD recommendations are reviewed. With these recommendations in mind the test methodology was to use EpiOcular, tissues derived from normal human epidermal keratinocytes, the cells of which have been differentiated on cell culture inserts to form a multi-layered structure, which closely parallels the corneal epithelium and to dose the tissue with 100 mg dust from various sources. The in-vitro study provides evidence that lunar dust is not severely corrosive or irritating, however, in vitro tests have limitations, and in vivo tests provides a more complete scenario, and information, it is recommended that in vivo tests be performed.

  9. Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Sun, Minjie; Ping, Qineng; Ying, Zhi; Liu, Wen

    2010-01-01

    The present work investigates the effect of liquid lipid incorporation on the physicochemical properties and ocular drug delivery enhancement of nanostructured lipid carriers (NLCs) and attempts to elucidate in vitro and in vivo the potential of NLCs for ocular drug delivery. The CyA-loaded or fluorescein-marked nanocarriers composed of Precifac ATO 5 and Miglyol 840 (as liquid lipid) were prepared by melting-emulsion technology, and the physicochemical properties of nanocarriers were determined. The uptake of nanocarriers by human corneal epithelia cell lines (SDHCEC) and rabbit cornea was examined. Ex vivo fluorescence imaging was used to investigate the ocular distribution of nanocarriers. The in vitro cytotoxicity and in vivo acute tolerance were evaluated. The higher drug loading capacity and improved in vitro sustained drug release behavior of lipid nanoparticles was found with the incorporation of liquid lipid in lipid nanoparticles. The uptake of nanocarriers by the SDHCEC was increased with the increase in liquid lipid loading. The ex vivo fluorescence imaging of the ocular tissues indicated that the liquid lipid incorporation could improve the ocular retention and penetration of ocular therapeutics. No alternation was macroscopically observed in vivo after ocular surface exposure to nanocarriers. These results indicated that NLC was a biocompatible and potential nanocarrier for ocular drug delivery enhancement.

  10. Establishing PAX6 as a Biomarker to Detect Early Loss of Ocular Phenotype in Human Patients With Sjögren's Syndrome

    PubMed Central

    McNamara, Nancy A.; Gallup, Marianne; Porco, Travis C.

    2014-01-01

    Purpose. Sjögren's syndrome (SS) is a common autoimmune disease that can cause aqueous-deficient dry eye and the aberrant differentiation of ocular mucosal epithelial cells toward a lineage that is pathologically keratinized and skin-like. PAX6 is the master regulator of corneal lineage commitment. Recently, we showed a functional role for PAX6 in preventing ocular surface damage induced by the proinflammatory cytokine, IL-1β, in a mouse model of SS. Here, we examine PAX6's potential as a clinical biomarker that predicts ocular surface disease in SS patients. Methods. Impression cytology specimens isolated from the bulbar conjunctiva of control (n = 43) and SS patients (n = 43) were used to evaluate the relative abundance of PAX6, IL-1β, and pathologic keratinization marker, small proline-rich protein (SPRR1B) by TaqMan qPCR. Transcript expression was examined relative to clinical data, including the ocular staining score (OSS), tear breakup time (TBUT), Schirmer tear test, serum autoantibody results, and the labial salivary gland focus score. Results. PAX6 expression was significantly reduced in SS patients (P = 0.010, Wilcoxon rank sum test), and highly correlated with OSS (Spearman ρ = 0.239, 95% CI 0.02–0.43; P = 0.027). The extent to which PAX6 predicted SPRR1B was largely dependent on IL-1β expression (R2 = 0.28, P < 0.01) and elevated IL-1β predicted reduced TBUT (R2 = 0.24, P = 0.035), low tear secretion (R2 = 0.30, P = 0.011), and focus score (R2 = 0.21, P = 0.002). Conclusions. Downregulation of PAX6 in SS patients was highly associated with ocular surface damage and largely dependent on the level of inflammation. Restoration of PAX6 may provide a clinical approach to manage dry eye in SS patients. PMID:25228544

  11. Influence of stimulus interval on the habituation of vestibulo-ocular reflex and sensation of rotation in humans.

    PubMed

    Clément, Gilles; Tilikete, Caroline; Courjon, Jean-Hubert

    2013-08-01

    Previous studies in cats revealed that vestibular habituation of the vestibulo-ocular reflex (VOR) only occurs when velocity steps are delivered during the secondary phase nystagmus, suggesting that the presence of anti-compensatory slow phases may trigger the habituation process. We verified this property in humans by comparing vestibular habituation of VOR and sensation of rotation when steps were delivered either immediately after the perception of self-rotation had stopped, which is shortly before the nystagmus reverses direction; or when steps were delivered 60s later, i.e. during the secondary phase. Vestibular habituation of the VOR occurred in both instances. However, the decrease in VOR peak slow phase velocity and time constant was larger when steps were delivered after nystagmus reversal compared to before nystagmus reversal. The duration of the perception of self-rotation habituated equally for both conditions. These results confirm that VOR habituation fully develops only when velocity steps are delivered after the primary phase nystagmus. This finding may be helpful for minimizing the impact of repetitive vestibular stimuli in protocols using crossover design for drug studies, testing recovery in vestibular patients, or training people for different gravitoinertial environments.

  12. Ocular-following responses to white noise stimuli in humans reveal a novel nonlinearity that results from temporal sampling

    PubMed Central

    Sheliga, Boris M.; Quaia, Christian; FitzGibbon, Edmond J.; Cumming, Bruce G.

    2016-01-01

    White noise stimuli are frequently used to study the visual processing of broadband images in the laboratory. A common goal is to describe how responses are derived from Fourier components in the image. We investigated this issue by recording the ocular-following responses (OFRs) to white noise stimuli in human subjects. For a given speed we compared OFRs to unfiltered white noise with those to noise filtered with band-pass filters and notch filters. Removing components with low spatial frequency (SF) reduced OFR magnitudes, and the SF associated with the greatest reduction matched the SF that produced the maximal response when presented alone. This reduction declined rapidly with SF, compatible with a winner-take-all operation. Removing higher SF components increased OFR magnitudes. For higher speeds this effect became larger and propagated toward lower SFs. All of these effects were quantitatively well described by a model that combined two factors: (a) an excitatory drive that reflected the OFRs to individual Fourier components and (b) a suppression by higher SF channels where the temporal sampling of the display led to flicker. This nonlinear interaction has an important practical implication: Even with high refresh rates (150 Hz), the temporal sampling introduced by visual displays has a significant impact on visual processing. For instance, we show that this distorts speed tuning curves, shifting the peak to lower speeds. Careful attention to spectral content, in the light of this nonlinearity, is necessary to minimize the resulting artifact when using white noise patterns undergoing apparent motion. PMID:26762277

  13. Ocular manifestation in myeloid/NK cell precursor acute leukemia: a case report. Diagnosed by flow cytometry and PCR from aqueous humor

    PubMed Central

    Akaike, Sayaka; Kamoi, Koju; Tezuka, Mari; Tomizawa, Daisuke; Yoshimura, Ryoichi; Takagi, Masatoshi; Ohno-Matsui, Kyoko

    2016-01-01

    Abstract Background: Myeloid/NK cell precursor acute leukemia (MNKL) is a rare type of leukemia, and ocular complications have not previously been reported. We now report a patient with MNKL who developed intraocular infiltrates during follow-up. Methods and Results: A 13-year-old boy diagnosed with MNKL developed left eye pain 3 months after starting treatment. Examination of the left eye revealed a visual acuity of counting fingers at 20 cm, ciliary hyperemia, small corneal keratic precipitates, hypopyon, grade 4 vitreous opacities, and an obscured fundus. The differential diagnosis was between an opportunistic infection associated with immunodeficiency and an intraocular leukemic cell infiltrate. Therefore, a sample of aqueous humor was aspirated. Multiplex PCR/broad-range PCR of the aqueous humor was below detection limits for viruses, bacteria, and fungi. Flow cytometry (FCM) detected NK-related CD56-positive cells, thus leading to a diagnosis of ocular infiltrates due to MNKL. With treatment of the ocular infiltrates by consolidation systemic chemotherapy including intrathecal methotrexate (MTX), there was clearing of the vitreous opacities; and optic disc swelling, retinal hemorrhages, exudates, and protuberant lesions were now seen. With the addition of local radiation therapy to the eye, there was a dramatic treatment response, with regression of the optic disc findings and retinal lesions, and an improved visual acuity of 1.5. Conclusion: We encountered the first case of MNKL in which ocular infiltrates developed during follow-up. Multiplex PCR and FCM of the aqueous humor were useful in rapidly distinguishing leukemic cell infiltrates from an opportunistic infection. This case highlights the usefulness of intrathecal MTX and local radiotherapy in treating ocular infiltrates in patients with MNKL. PMID:27661058

  14. Human otolith-ocular reflexes during off-vertical axis rotation: effect of frequency on tilt-translation ambiguity and motion sickness

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Paloski, W. H. (Principal Investigator)

    2002-01-01

    The purpose of this study was to examine how the modulation of tilt and translation otolith-ocular responses during constant velocity off-vertical axis rotation varies as a function of stimulus frequency. Eighteen human subjects were rotated in darkness about their longitudinal axis 30 degrees off-vertical at stimulus frequencies between 0.05 and 0.8 Hz. The modulation of torsion decreased while the modulation of horizontal slow phase velocity (SPV) increased with increasing frequency. It is inferred that the ambiguity of otolith afferent information is greatest in the frequency region where tilt (torsion) and translational (horizontal SPV) otolith-ocular responses crossover. It is postulated that the previously demonstrated peak in motion sickness susceptibility during linear accelerations around 0.3 Hz is the result of frequency segregation of ambiguous otolith information being inadequate to distinguish between tilt and translation.

  15. c-Jun N-terminal kinase 3 expression in the retina of ocular hypertension mice: a possible target to reduce ganglion cell apoptosis.

    PubMed

    He, Yue; Chen, Jie; Zhang, Shu-Guang; Yuan, Yuan-Sheng; Li, Yan; Lv, Hong-Bin; Gan, Jin-Hua

    2015-03-01

    Glaucoma, a type of optic neuropathy, is characterized by the loss of retinal ganglion cells. It remains controversial whether c-Jun N-terminal kinase (JNK) participates in the apoptosis of retinal ganglion cells in glaucoma. This study sought to explore a possible mechanism of action of JNK signaling pathway in glaucoma-induced retinal optic nerve damage. We established a mouse model of chronic ocular hypertension by reducing the aqueous humor followed by photocoagulation using the laser ignition method. Results showed significant pathological changes in the ocular tissues after the injury. Apoptosis of retinal ganglion cells increased with increased intraocular pressure, as did JNK3 mRNA expression in the retina. These data indicated that the increased expression of JNK3 mRNA was strongly associated with the increase in intraocular pressure in the retina, and correlated positively with the apoptosis of retinal ganglion cells. PMID:25878592

  16. c-Jun N-terminal kinase 3 expression in the retina of ocular hypertension mice: a possible target to reduce ganglion cell apoptosis

    PubMed Central

    He, Yue; Chen, Jie; Zhang, Shu-guang; Yuan, Yuan-sheng; Li, Yan; Lv, Hong-bin; Gan, Jin-hua

    2015-01-01

    Glaucoma, a type of optic neuropathy, is characterized by the loss of retinal ganglion cells. It remains controversial whether c-Jun N-terminal kinase (JNK) participates in the apoptosis of retinal ganglion cells in glaucoma. This study sought to explore a possible mechanism of action of JNK signaling pathway in glaucoma-induced retinal optic nerve damage. We established a mouse model of chronic ocular hypertension by reducing the aqueous humor followed by photocoagulation using the laser ignition method. Results showed significant pathological changes in the ocular tissues after the injury. Apoptosis of retinal ganglion cells increased with increased intraocular pressure, as did JNK3 mRNA expression in the retina. These data indicated that the increased expression of JNK3 mRNA was strongly associated with the increase in intraocular pressure in the retina, and correlated positively with the apoptosis of retinal ganglion cells. PMID:25878592

  17. [Experimental model of ocular ischemic diseases].

    PubMed

    Kiseleva, T N; Chudin, A V

    2014-01-01

    The review presents the most common methods of modeling of retinal ischemia in vitro (chemical ischemia with iodoacetic acid, incubation of the retinal pigment epithelium cells with oligomycin, deprivation of oxygen and glucose) and in vivo (a model with increased intraocular pressure, cerebral artery occlusion, chronic ligation of the carotid arteries, photocoagulation of the retinal vessels, occlusion of the central retinal artery, endothelin-1 administration). Modeling ischemic injury in rats is the most frequently used method in studies, because the blood supply of their eyes is similar to blood flow in the human eyes. Each method has its own advantages and disadvantages. Application of methods depends on the purpose of the experimental study. Currently model of ocular ischemic disease can be obtained easily by injecting vasoconstrictive drug endothelin-1. It is the most widely used method of high intraocular pressure induced ocular ischemic damage similar to glaucoma, occlusion of central retinal artery or ophthalmic artery in human. The development of experimental models of ocular ischemic diseases and detailed investigation of mechanisms of impairment of microcirculation are useful for improve the efficiency of diagnostic and treatment of ischemic diseases of retina and optic nerve. PMID:25971134

  18. Flexibility of vestibulo-ocular reflex adaptation to modified visual input in human.

    PubMed

    Watanabe, Shoji; Hattori, Kosuke; Koizuka, Izumi

    2003-02-01

    The vestibulo-ocular reflex (VOR) serves to keep images relatively stable on the retina. To maintain appropriate performance and minimize image slip throughout life, VOR is subjected to long-term adaptive regulation by visual input. It has been reported that adaptive changes in VOR gain (eye velocity/head velocity) are evoked either by fitting subjects with magnifying, miniaturizing, or reversing spectacles during normal behavior, or by moving a large visual field in or out of phase relative to the subject's head movement. The changes in VOR gain are frequency selective. Here, we examine the extent of VOR gain flexibility by causing VORs of similar direction to undergo different behavioral gain changes. Nine healthy adults participated in the study, ranging in age from 24 to 38 years (mean: 26 years) and with no history of neurotological symptoms. All subjects were clinically normal according to a screening battery that included combined neurologic and otologic physical examinations. Horizontal and vertical eye positions were recorded by bitemporal DC-coupled electro-oculography (EOG). The subject sat in a rotating chair. The axis of rotation of the body was always earth-vertical, with the interaural axis crossing the axis of rotation of the chair. The head was pointed 20 degrees downwards in all experiments and stabilized in this position using a chin rest. The chair was surrounded by a half-cylindrical optokinetic screen (78 cm in diameter) placed in front of the subject, onto which random dot patterns were projected. Goggles were used to ensure that the subject was in complete darkness during both pre- and postadaptation periods. The chair was rotated sinusoidally at maximum amplitude of 30 degrees or 60 degrees : for 30 degrees the stimulation was at 0.1, 0.2, 0.3, and 0.4 Hz; for 60 degrees it was at 0.1, 0.2, and 0.3 Hz. VOR adaptation was obtained by inducing a retinal slip velocity by short-term alteration of the visual input of the large field; this change

  19. [Flexibility in the adaptation of the vestibulo-ocular reflex to modified visual inputs in humans].

    PubMed

    Hattori, K; Watanabe, S; Nakamura, T; Kato, I

    2000-10-01

    The vestibulo-ocular reflex (VOR) serves to stabilize images on the retina. To maintain appropriate performance and minimize image slippage throughout life, the VOR is subject to long-term adaptive regulation in response to visual input. Adaptive changes in VOR gain (eye velocity/head velocity) can be evoked either by fitting subjects with magnifying, miniaturizing, or reversing spectacles during normal behavior or by moving a large visual field in or out of phase relative to the subject's head movement. These changes exhibit frequency-selectivity. Here, we examine the flexibility of VOR gains by causing VOR in similar directions to undergo different behavioral gain changes. Nine healthy adults, ranging in age from 24 to 38 (mean 28.5) with no history of neurotological symptoms participated in the study. All subjects demonstrated clinically normal functioning on a screening battery of tests that included combined neurologic and otologic physical examinations. Horizontal and vertical eye positions were recorded by bitemporal DC coupled electrooculography (EOG). The subject sat in a rotating chair. The axis of rotation of the body was always earth-vertical, the interaural axis crossing the axis of rotation of the chair. The head was positioned at 20 degrees down in all experiments and was stabilized in this position using a chin rest. The chair was 78 cm in diameter and was shielded by a half-cylindrical optokinetic screen positioned in front of the subjects. Random dot patterns were projected onto this screen. During per- and post-adaptation periods, goggles were fitted to ensure that the subject was in complete darkness and the chair was rotated sinusoidally. The amplitude of the rotating chair was 30 degrees and 60 degrees. Frequencies of rotation were 0.1 Hz, 0.2 Hz, 0.3 Hz and 0.4 Hz for amplitudes of 30 degrees and 0.1 Hz, 0.2 Hz, and 0.3 Hz for amplitudes of 60 degrees. To induce VOR adaptation, the retinal slippage velocity caused by the visual input of a

  20. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: Implications for glaucoma

    NASA Astrophysics Data System (ADS)

    Schori, Hadas; Kipnis, Jonathan; Yoles, Eti; Woldemussie, Elizabeth; Ruiz, Guadalupe; Wheeler, Larry A.; Schwartz, Michal

    2001-03-01

    Our group recently demonstrated that autoimmune T cells directed against central nervous system-associated myelin antigens protect neurons from secondary degeneration. We further showed that the synthetic peptide copolymer 1 (Cop-1), known to suppress experimental autoimmune encephalomyelitis, can be safely substituted for the natural myelin antigen in both passive and active immunization for neuroprotection of the injured optic nerve. Here we attempted to determine whether similar immunizations are protective from retinal ganglion cell loss resulting from a direct biochemical insult caused, for example, by glutamate (a major mediator of degeneration in acute and chronic optic nerve insults) and in a rat model of ocular hypertension. Passive immunization with T cells reactive to myelin basic protein or active immunization with myelin oligodendrocyte glycoprotein-derived peptide, although neuroprotective after optic nerve injury, was ineffective against glutamate toxicity in mice and rats. In contrast, the number of surviving retinal ganglion cells per square millimeter in glutamate-injected retinas was significantly larger in mice immunized 10 days previously with Cop-1 emulsified in complete Freund's adjuvant than in mice injected with PBS in the same adjuvant (2,133 ± 270 and 1,329 ± 121, respectively, mean ± SEM; P < 0.02). A similar pattern was observed when mice were immunized on the day of glutamate injection (1,777 ± 101 compared with 1,414 ± 36; P <0.05), but not when they were immunized 48h later. These findings suggest that protection from glutamate toxicity requires reinforcement of the immune system by antigens that are different from those associated with myelin. The use of Cop-1 apparently circumvents this antigen specificity barrier. In the rat ocular hypertension model, which simulates glaucoma, immunization with Cop-1 significantly reduced the retinal ganglion cell loss from 27.8%±6.8% to 4.3%±1.6%, without affecting the intraocular pressure

  1. Ocular dispersion

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Noojin, Gary D.; Thomas, Robert J.; Stolarski, David J.; Rockwell, Benjamin A.; Welch, Ashley J.

    1999-06-01

    Spectrally resolved white-light interferometry (SRWLI) was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. The accuracy of the technique was assessed by measurement of fused silica and water, the refractive indices of which have been measured at several different wavelengths. The dispersion of bovine and rabbit aqueous and vitreous humor was measured from 400 to 1100 nm. Also, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humor extracted from goat and rhesus monkey eyes. For the humors, the dispersion did not deviate significantly from water. In an additional experiment, the dispersion of aqueous and vitreous humor that had aged up to a month was compared to freshly harvested material. No difference was found between the fresh and aged media. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. Future refinement may allow measurement of the dispersion of cornea and lens across the entire visible and near-infrared wavelength band. The principles of white- light interferometry including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.

  2. Effect of cord blood serum on ex vivo human limbal epithelial cell culture.

    PubMed

    Chakraborty, Anindita; Dutta, Jayanta; Das, Sumantra; Datta, Himadri

    2012-12-01

    Limbal cell transplantation is an efficacious procedure for rehabilitation of visual acuity in patients with severe ocular surface disorders. Cultivation of limbal epithelial stem cell with fetal bovine serum for transplantation has been a promising treatment for reconstructing the ocular surface in severe limbal stem cell deficiency caused by Steven Johnson syndrome, chemical or thermal injury. This technique of "cell therapy" has been accepted worldwide but the cost of cultivating the cells for transplantation is high. The objective of this study was to investigate the effect of cord blood serum in place of fetal bovine serum on the growth of human limbal epithelial cell culture. Our group has experimented with human cord blood serum which was obtained free of cost from willing donors. The use of human cord blood serum in place of fetal bovine serum for ex vivo culture of limbal stem cell has helped us in reducing the cost of culture. Fresh human limbal tissues from donor cadavers were cultured on intact and denuded amniotic membrane. Cells were proliferated in vitro with cell culture media containing human cord blood serum. Reverse transcription-polymerase chain reaction and immunofluorescence cytochemistry of cultured human limbal epithelial stem cell was done for characterization of the cells.

  3. The influence of local antichlamydial antibody on the acquisition and persistence of human ocular chlamydial infection: IgG antibodies are not protective.

    PubMed Central

    Bailey, R. L.; Kajbaf, M.; Whittle, H. C.; Ward, M. E.; Mabey, D. C.

    1993-01-01

    In order to study the effect of antichlamydial antibodies in ocular secretions on resistance to ocular chlamydial infection and clearance of this infection, we have performed linked longitudinal studies in a Gambian village in which trachoma is endemic. We have measured IgG and IgA antibody levels to a local serotype B isolate of Chlamydia trachomatis by amplified enzyme immunoassay, and chlamydial antigen levels in conjunctival swabs using a commercially available immunoassay which detects chlamydial glycolipid. Having previously demonstrated that sharing a bedroom with a case of active trachoma is a risk factor for acquisition of the disease, we have analyzed the effect of IgG and IgA antibody on the acquisition and persistence of clinical trachoma after controlling for age, sex, exposure to infection and for the presence of chlamydial antigen using a Poisson regression model. We have found that the presence of antichlamydial IgG in ocular secretions of disease-free subjects is associated with an increased incidence of trachoma. IgA antibody shows an opposite trend, but this is not statistically significant. One possible explanation of these findings is that antichlamydial IgG antibodies enhance the infectivity of C. trachomatis for the human eye; this could have major implications for the development of a chlamydial vaccine. PMID:8405158

  4. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Zeitzer, J. M.; Czeisler, C. A.; Dijk, D. J.

    2000-01-01

    Light can elicit both circadian and acute physiological responses in humans. In a dose response protocol men and women were exposed to illuminances ranging from 3 to 9100 lux for 6.5 h during the early biological night after they had been exposed to <3 lux for several hours. Light exerted an acute alerting response as assessed by a reduction in the incidence of slow-eye movements, a reduction of EEG activity in the theta-alpha frequencies (power density in the 5-9 Hz range) as well as a reduction in self-reported sleepiness. This alerting response was positively correlated with the degree of melatonin suppression by light. In accordance with the dose response function for circadian resetting and melatonin suppression, the responses of all three indices of alertness to variations in illuminance were consistent with a logistic dose response curve. Half of the maximum alerting response to bright light of 9100 lux was obtained with room light of approximately 100 lux. This sensitivity to light indicates that variations in illuminance within the range of typical, ambient, room light (90-180 lux) can have a significant impact on subjective alertness and its electrophysiologic concomitants in humans during the early biological night.

  5. Dendritic cell-derived thrombospondin-1 is critical for the generation of the ocular surface Th17 response to desiccating stress

    PubMed Central

    Gandhi, Niral B.; Su, Zhitao; Zhang, Xiaobo; Volpe, Eugene A.; Pelegrino, Flavia S. A.; Rahman, Salman A.; Li, De-Quan; Pflugfelder, Stephen C.; de Paiva, Cintia S.

    2013-01-01

    TSP-1 is a physiologic activator of TGF-β, a critical induction factor for Th17-mediated immunity. The purpose of this study was to investigate the role of TSP-1 in the induction of the Th17 ocular surface response to DS. TSP-1KO and WT mice were subjected to DS5 and DS10), and parameters of ocular surface disease, including corneal barrier function, conjunctival CD4+ T cell infiltration, and GC density, were evaluated. TSP-1KO mice subjected to DS had less corneal barrier disruption, reduced loss of PAS+ GC, and decreased CD4+ T cell infiltration in the conjunctiva. In contrast to WT, TSP-1KO mice failed to up-regulate MMP-3 and MMP-9 mRNA transcripts in the cornea and IL-17A mRNA transcripts in the conjunctiva. RAG-1KO recipients of adoptively transferred CD4+ T cells isolated from TSP-1KO mice subjected to DS5 showed milder dry-eye phenotype and less conjunctival inflammation than recipients of CD4+ T cells from DS5 WT control. Reconstitution of TSP-1KO mice with WT DCs prior to DS reversed the resistance of the TSP-1KO to DS-induced immunopathology. In conclusion, DC-derived TSP-1 is critical for generating the Th17 ocular surface response to DS. PMID:23983225

  6. Context-specific adaptation of the gain of the vestibulo-ocular reflex in humans.

    PubMed

    Shelhamer, M; Robinson, D A; Tan, H S

    1992-01-01

    Previous experiments show that altered visual feedback can change VOR gain. Such changes also presumably occur when eyeglasses are donned and doffed, or when bifocals are worn. In these cases, a nonvisual cue accompanies the required gain adjustment (frames on/off for eyeglasses, looking up/down for bifocals). We set out to show that a subject can establish two VOR gains, and to determine if one of the associated nonvisual cues alone is sufficient to subsequently determine which gain to employ. Each of three subjects sat in a rotating chair inside an OKN drum during 2 hours of sinusoidal rotation at 0.2 Hz, 30 degrees/s peak. For 10 minutes the chair and drum counterrotated , driving VOR gain toward 1.7, while subjects looked up 20 degrees. Chair and drum were then coupled for 10 minutes, driving gain toward zero, during which subjects looked down 20 degrees. This sequence was repeated for 2 hours. Immediately thereafter, VOR gains were measured while subjects looked alternately up and down, using 20 degrees to 40 degrees step rotations. A fixation target, presented before and after each step, provided accurate gain determination by measuring the size of the re-fixation saccade. Results show a consistent reduced VOR gain looking downward (average 6%) and increased gain looking upward (average 6%) and increased gain looking upward (average 8%). We conclude that humans can adjust their VOR gain dependent on a situational context; we speculate that this context can take many forms. PMID:1342386

  7. Ocular sensitization of mice by live (but not irradiated) Chlamydia trachomatis serovar A

    SciTech Connect

    Colley, D.G.; Goodman, T.G.; Barsoum, I.S.

    1986-10-01

    Ocular exposure of mice to live elementary bodies of Chlamydia trachomatis serovar A results in immunological sensitization of the mice. This reactivity is manifested by the development of early (5 h) and delayed-type (24 h) dermal reactivity and serovar-specific antibody formation against either live or irradiated (100 kilorads) elementary bodies. Parallel ocular exposure of mice to irradiated elementary bodies does not result in this sensitization. The early and late dermal immune responses induced by ocular exposure to live organisms can be transferred to unexposed mice by serum and lymphoid cell transfers, respectively. It appears that successful murine ocular sensitization by human C. trachomatis serovar A elementary bodies is an ability manifested by live organisms and not by inactivated but antigenic organisms.

  8. Ocular Immune Privilege and Transplantation.

    PubMed

    Taylor, Andrew W

    2016-01-01

    Allografts are afforded a level of protection from rejection within immune-privileged tissues. Immune-privileged tissues involve mechanisms that suppress inflammation and promote immune tolerance. There are anatomical features, soluble factors, membrane-associated proteins, and alternative antigen-presenting cells (APC) that contribute to allograft survival in the immune-privileged tissue. This review presents the current understanding of how the mechanism of ocular immune privilege promotes tolerogenic activity by APC, and T cells in response to the placement of foreign antigen within the ocular microenvironment. Discussed will be the unique anatomical, cellular, and molecular mechanisms that lessen the chance for graft destroying immune responses within the eye. As more is understood about the molecular mechanisms of ocular immune privilege greater is the potential for using these molecular mechanisms in therapies to prevent allograft rejection.

  9. A neural network model for the development of simple and complex cell receptive fields within cortical maps of orientation and ocular dominance.

    PubMed

    Olson, S J; Grossberg, S

    1998-03-01

    Prenatal development of the primary visual cortex leads to simple cells with spatially distinct and oriented ON and OFF subregions. These simple cells are organized into spatial maps of orientation and ocular dominance that exhibit singularities, fractures, and linear zones. On a finer spatial scale, simple cells occur that are sensitive to similar orientations but opposite contrast polarities, and exhibit both even-symmetric and odd-symmetric receptive fields. Pooling of outputs from oppositely polarized simple cells leads to complex cells that respond to both contrast polarities. A neural network model is described which simulates how simple and complex cells self-organize starting from unsegregated and unoriented geniculocortical inputs during prenatal development. Neighboring simple cells that are sensitive to opposite contrast polarities develop from a combination of spatially short-range inhibition and high-gain recurrent habituative excitation between cells that obey membrane equations. Habituation, or depression, of synapses controls reset of cell activations both through enhanced ON responses and OFF antagonistic rebounds. Orientation and ocular dominance maps form when high-gain medium-range recurrent excitation and long-range inhibition interact with the short-range mechanisms. The resulting structure clarifies how simple and complex cells contribute to perceptual processes such as texture segregation and perceptual grouping.

  10. Ocular anatomy, ganglion cell distribution and retinal resolution of a killer whale (Orcinus orca).

    PubMed

    Mass, Alla M; Supin, Alexander Y; Abramov, Andrey V; Mukhametov, Lev M; Rozanova, Elena I

    2013-01-01

    Retinal topography, cell density and sizes of ganglion cells in the killer whale (Orcinus orca) were analyzed in retinal whole mounts stained with cresyl violet. A distinctive feature of the killer whale's retina is the large size of ganglion cells and low cell density compared to terrestrial mammals. The ganglion cell diameter ranged from 8 to 100 µm, with the majority of cells within a range of 20-40 µm. The topographic distribution of ganglion cells displayed two spots of high cell density located in the temporal and nasal quadrants, 20 mm from the optic disk. The high-density areas were connected by a horizontal belt-like area passing below the optic disk of the retina. Peak cell densities in these areas were evaluated. Mean peak cell densities were 334 and 288 cells/mm(2) in the temporal and nasal high-density areas, respectively. With a posterior nodal distance of 19.5 mm, these high-density data predict a retinal resolution of 9.6' (3.1 cycles/deg.) and 12.6' (2.4 cycles/deg.) in the temporal and nasal areas, respectively, in water. PMID:23018493

  11. Ocular anatomy, ganglion cell distribution and retinal resolution of a killer whale (Orcinus orca).

    PubMed

    Mass, Alla M; Supin, Alexander Y; Abramov, Andrey V; Mukhametov, Lev M; Rozanova, Elena I

    2013-01-01

    Retinal topography, cell density and sizes of ganglion cells in the killer whale (Orcinus orca) were analyzed in retinal whole mounts stained with cresyl violet. A distinctive feature of the killer whale's retina is the large size of ganglion cells and low cell density compared to terrestrial mammals. The ganglion cell diameter ranged from 8 to 100 µm, with the majority of cells within a range of 20-40 µm. The topographic distribution of ganglion cells displayed two spots of high cell density located in the temporal and nasal quadrants, 20 mm from the optic disk. The high-density areas were connected by a horizontal belt-like area passing below the optic disk of the retina. Peak cell densities in these areas were evaluated. Mean peak cell densities were 334 and 288 cells/mm(2) in the temporal and nasal high-density areas, respectively. With a posterior nodal distance of 19.5 mm, these high-density data predict a retinal resolution of 9.6' (3.1 cycles/deg.) and 12.6' (2.4 cycles/deg.) in the temporal and nasal areas, respectively, in water.

  12. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells

    SciTech Connect

    Roberts, Joan E. Wielgus, Albert R. Boyes, William K. Andley, Usha Chignell, Colin F.

    2008-04-01

    The water-soluble, hydroxylated fullerene [fullerol, nano-C{sub 60}(OH){sub 22-26}] has several clinical applications including use as a drug carrier to bypass the blood ocular barriers. We have assessed fullerol's potential ocular toxicity by measuring its cytotoxicity and phototoxicity induced by UVA and visible light in vitro with human lens epithelial cells (HLE B-3). Accumulation of nano-C{sub 60}(OH){sub 22-26} in the cells was confirmed spectrophotometrically at 405 nm and cell viability estimated using MTS and LDH assays. Fullerol was cytotoxic to HLE B-3 cells maintained in the dark at concentrations higher than 20 {mu}M. Exposure to either UVA or visible light in the presence of > 5 {mu}M fullerol-induced phototoxic damage. When cells were pretreated with non-toxic antioxidants: 20 {mu}M lutein, 1 mM N-acetyl cysteine, or 1 mM L-ascorbic acid prior to irradiation, only the singlet oxygen quencher-lutein significantly protected against fullerol photodamage. Apoptosis was observed in lens cells treated with fullerol whether or not the cells were irradiated, in the order UVA > visible light > dark. Dynamic light scattering (DLS) showed that in the presence of the endogenous lens protein {alpha}-crystallin, large aggregates of fullerol were reduced. In conclusion, fullerol is both cytotoxic and phototoxic to human lens epithelial cells. Although the acute toxicity of water-soluble nano-C{sub 60}(OH){sub 22-26} is low, these compounds are retained in the body for long periods, raising concern for their chronic toxic effect. Before fullerols are used to deliver drugs to the eye, they should be tested for photo- and cytotoxicity in vivo.

  13. Ocular hypotensive effects of medifoxamine.

    PubMed Central

    Saleh, S; Turner, P

    1992-01-01

    Medifoxamine is a novel monoamine re-uptake inhibiting antidepressive drug which preferentially inhibits dopamine reuptake. In human volunteer studies it has been found to reduce significantly intraocular pressure after single oral doses of 300-1000 mg, and to produce a small but statistically significant miosis. Its maximal ocular hypotensive action was less than that of oral timolol 20 mg. PMID:1389953

  14. Endothelial TWIST1 Promotes Pathological Ocular Angiogenesis

    PubMed Central

    Li, Jie; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Fu, Zhongjie; Evans, Lucy P.; Tian, Katherine T.; Juan, Aimee M.; Hurst, Christian G.; Mammoto, Akiko; Chen, Jing

    2014-01-01

    Purpose. Pathological neovessel formation impacts many blinding vascular eye diseases. Identification of molecular signatures distinguishing pathological neovascularization from normal quiescent vessels is critical for developing new interventions. Twist-related protein 1 (TWIST1) is a transcription factor important in tumor and pulmonary angiogenesis. This study investigated the potential role of TWIST1 in modulating pathological ocular angiogenesis in mice. Methods. Twist1 expression and localization were analyzed in a mouse model of oxygen-induced retinopathy (OIR). Pathological ocular angiogenesis in Tie2-driven conditional Twist1 knockout mice were evaluated in both OIR and laser-induced choroidal neovascularization models. In addition, the effects of TWIST1 on angiogenesis and endothelial cell function were analyzed in sprouting assays of aortic rings and choroidal explants isolated from Twist1 knockout mice, and in human retinal microvascular endothelial cells treated with TWIST1 small interfering RNA (siRNA). Results. TWIST1 is highly enriched in pathological neovessels in OIR retinas. Conditional Tie2-driven depletion of Twist1 significantly suppressed pathological neovessels in OIR without impacting developmental retinal angiogenesis. In a laser-induced choroidal neovascularization model, Twist1 deficiency also resulted in significantly smaller lesions with decreased vascular leakage. In addition, loss of Twist1 significantly decreased vascular sprouting in both aortic ring and choroid explants. Knockdown of TWIST1 in endothelial cells led to dampened expression of vascular endothelial growth factor receptor 2 (VEGFR2) and decreased endothelial cell proliferation. Conclusions. Our study suggests that TWIST1 is a novel regulator of pathologic ocular angiogenesis and may represent a new molecular target for developing potential therapeutic treatments to suppress pathological neovascularization in vascular eye diseases. PMID:25414194

  15. Purinergic Receptors in Ocular Inflammation

    PubMed Central

    Guzman-Aranguez, Ana; Gasull, Xavier; Diebold, Yolanda; Pintor, Jesús

    2014-01-01

    Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A), and P1,P5-diadenosine pentaphosphate (Ap5A) are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl)-5′-N-methylcarboxamidoadenosine (CF101) have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases) can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation. PMID:25132732

  16. Concise review: immunological properties of ocular surface and importance of limbal stem cells for transplantation.

    PubMed

    Shaharuddin, Bakiah; Ahmad, Sajjad; Meeson, Annette; Ali, Simi

    2013-08-01

    Cornea transplantation has been considered to be different from other solid organ transplantation because of the assumed immune-privileged state of the anterior chamber of the eye. Three major lines of thought regarding the molecular mechanisms of immune privilege in the eye are as follows: (a) anatomical, cellular, and molecular barriers in the eye; (b) anterior chamber-associated immune deviation; and (c) immunosuppressive microenvironment in the eye. However, cornea transplants suffer allograft rejection when breached by vascularization. In recent developments, cellular corneal transplantation from cultivated limbal epithelial cells has shown impressive advances as a future therapy. The limbal stem cell niche contains stem cells that promote proliferation and migration and have immunosuppressive mechanisms to protect them from immunological reactions. Limbal stem cells are also noted to display an enhanced expression of genes for the antiapoptotic proteins, a property that is imperative for the survival of transplanted tissues. Further investigation of the molecular mechanisms regulating the immune regulation of limbal stem cells is relevant in the clinical setting to promote the survival of whole corneal and limbal stem cell transplantation. PMID:23817133

  17. Dexamethasone induced ultrastructural changes in cultured human trabecular meshwork cells.

    PubMed

    Wilson, K; McCartney, M D; Miggans, S T; Clark, A F

    1993-09-01

    Glucocorticoid-induced ocular hypertension has been demonstrated in both animals and humans. It is possible that glucocorticoid-induced changes in trabecular meshwork (TM) cells are responsible for this hypertension. In order to elaborate further the effect of glucocorticoids on the trabecular meshwork, the ultrastructural consequences of dexamethasone (DEX) treatment were examined in three different human TM cell lines. Confluent TM cells were treated with 0.1 microM of DEX for 14 days, and then processed for light, epifluorescent microscopy or transmission electron microscopy (TEM). The effect of DEX treatment on TM cell and nuclear size was quantified using computer assisted morphometrics. Morphometric analysis showed a significant increase in both TM cell and nuclear size after 14 days of DEX treatment. Epifluorescent microscopy of rhodamine-phalloidin stained, control TM cells showed the normal arrangement of stress fibers. In contrast, DEX-treated TM cells showed unusual geodesic dome-like cross-linked actin networks. Control TM cells had the normal complement and arrangement of organelles as well as electron dense inclusions and large vacuoles. DEX-treated TM cells showed stacked arrangements of smooth and rough endoplasmic reticulum, proliferation of the Golgi apparatus, pleomorphic nuclei and increased amounts of extracellular matrix material. The DEX-induced alterations observed in the present study may be an indication of the processes that are occurring in the in vivo disease process. PMID:8261790

  18. Unique and Analogous Functions of Aquaporin 0 for Fiber Cell Architecture and Ocular Lens Transparency

    PubMed Central

    Kumari, S. Sindhu; Eswaramoorthy, Subramaniam; Mathias, Richard T.; Varadaraj, Kulandaiappan

    2011-01-01

    Aquaporin (AQP) 1 and AQP0 water channels are expressed in lens epithelial and fiber cells, respectively, facilitating fluid circulation for nourishing the avascular lens to maintain transparency. Even though AQP0 water permeability is 40-fold less than AQP1, AQP0 is selectively expressed in the fibers. Delimited AQP0 fiber expression is attributed to a unique structural role as an adhesion protein. To validate this notion, we determined if wild type (WT) lens ultrastructure and fiber cell adhesion are different in AQP0−/−, and TgAQP1+/+/AQP0−/− mice that transgenically express AQP1 (TgAQP1) in fiber cells without AQP0 (AQP0−/−). In WT, lenses were transparent with ‘Y’ sutures. Fibers contained opposite end curvature, lateral interdigitations and hexagonal shape, and were arranged as concentric growth shells. AQP0−/− lenses were cataractous, lacked ‘Y’ sutures, ordered packing and well-defined lateral interdigitations. TgAQP1+/+/AQP0−/− lenses showed improvement in transparency and lateral interdigitations in the outer cortex while inner cortex and nuclear fibers were severely disintegrated. Transmission electron micrographs exhibited tightly packed fiber cells in WT whereas AQP0−/− and TgAQP1+/+/AQP0−/− lenses had wide extracellular spaces. Fibers were easily separable by teasing in AQP0−/− and TgAQP1+/+/AQP0−/− lenses compared to WT. Our data suggest that the increased water permeability through AQP1 does not compensate for loss of AQP0 expression in TgAQP1+/+/AQP0−/− mice. Fiber cell AQP0 expression is required to maintain their organization, which is a requisite for lens transparency. AQP0 appears necessary for cell-to-cell adhesion and thereby to minimize light scattering since in the AQP0−/− and TgAQP1+/+/AQP0−/− lenses, fiber cell disorganization was evident. PMID:21511033

  19. Concise Review: Making Stem Cells Retinal: Methods for Deriving Retinal Pigment Epithelium and Implications for Patients With Ocular Disease.

    PubMed

    Leach, Lyndsay L; Clegg, Dennis O

    2015-08-01

    Stem cells provide a potentially unlimited source of cells for treating a plethora of human diseases. Regenerative therapies for retinal degenerative diseases are at the forefront of translation to the clinic, with stem cell-derived retinal pigment epithelium (RPE)-based treatments for age-related macular degeneration (AMD) already showing promise in human patients. Despite our expanding knowledge of stem cell biology, methods for deriving cells, including RPE have remained inefficient. Thus, there has been a push in recent years to develop more directed approaches to deriving cells for therapy. In this concise review, we summarize recent efforts that have been successful in improving RPE derivation efficiency by directing differentiation from human pluripotent stem cells using developmental cues important for normal RPE specification and maturation in vivo. In addition, potential obstacles for clinical translation are discussed. Finally, we review how derivation of RPE from human induced pluripotent stem cells (hiPSCs) provides in vitro models for studying mechanisms of retinal disease and discovering new avenues for treatment.

  20. Ocular diseases: immunological and molecular mechanisms

    PubMed Central

    Song, Jing; Huang, Yi-Fei; Zhang, Wen-Jing; Chen, Xiao-Fei; Guo, Yu-Mian

    2016-01-01

    Many factors, such as environmental, microbial and endogenous stress, antigen localization, can trigger the immunological events that affect the ending of the diverse spectrum of ocular disorders. Significant advances in understanding of immunological and molecular mechanisms have been researched to improve the diagnosis and therapy for patients with ocular inflammatory diseases. Some kinds of ocular diseases are inadequately responsive to current medications; therefore, immunotherapy may be a potential choice as an alternative or adjunctive treatment, even in the prophylactic setting. This article first provides an overview of the immunological and molecular mechanisms concerning several typical and common ocular diseases; second, the functions of immunological roles in some of systemic autoimmunity will be discussed; third, we will provide a summary of the mechanisms that dictate immune cell trafficking to ocular local microenvironment in response to inflammation. PMID:27275439

  1. Adult Ocular Toxocariasis Mimicking Ciliary Body Malignancy

    PubMed Central

    Mansour, Ahmad M.; Abiad, Bachir; Boulos, Fouad I.; Alameddine, Ramzi; Maalouf, Fadi C.; Bu Ghannam, Alaa; Hamam, Rola N.

    2014-01-01

    Purpose. To discuss an unusual presentation of ocular toxocariasis. Methods. Case report. Results. A 40-year-old woman presented with decreased vision in the left eye with a long history of recurrent red eye from uveitis. Eosinophilia and positive ELISA titers for Toxocara canis favored the diagnosis of ocular toxocariasis. Over 3 months, an anterior scleral mass had a rapid growth raising the possibility of medulloepithelioma, which rarely can mimic uveitic syndromes. Surgical plan changed from local excision to enucleation. Histopathology demonstrated a large homogeneous mass of chronic inflammatory cells with inflammation of the overlying thinned out sclera, medial rectus insertion, and limbal cornea. The triad of peripheral granuloma, eosinophilia, and positive blood serology established the diagnosis of ocular toxocariasis. Conclusions. Ocular toxocariasis can mimic ocular malignancy such as medulloepithelioma in adults and rarely presents as an anterior scleral mass. PMID:25371681

  2. Unique and analogous functions of aquaporin O for fiber cell architecture and ocular lens transparency

    SciTech Connect

    Kumari, S.S.; Eswaramoorthy, S.; Mathias, R. T.; Varadaraj, K.

    2011-09-01

    Aquaporin (AQP) 1 and AQP0 water channels are expressed in lens epithelial and fiber cells, respectively, facilitating fluid circulation for nourishing the avascular lens to maintain transparency. Even though AQP0 water permeability is 40-fold less than AQP1, AQP0 is selectively expressed in the fibers. Delimited AQP0 fiber expression is attributed to a unique structural role as an adhesion protein. To validate this notion, we determined if wild type (WT) lens ultrastructure and fibercell adhesion are different in AQP0{sup -/-}, and TgAQP1{sup +/+}/AQP0{sup -/-} mice that transgenically express AQP1 (TgAQP1) in fibercells without AQP0 (AQP0{sup -/-}). In WT, lenses were transparent with 'Y' sutures. Fibers contained opposite end curvature, lateral interdigitations, hexagonal shape, and were arranged as concentric growth shells. AQP0{sup -/-}lenses were cataractous, lacked 'Y' sutures, ordered packing and well-defined lateral interdigitations. TgAQP1{sup +/+}/AQP0{sup -/-} lenses showed improvement in transparency and lateral interdigitations in the outer cortex while inner cortex and nuclear fibers were severely disintegrated. Transmission electron micrographs exhibited tightly packed fibercells in WT whereas AQP0{sup -/-} and TgAQP1{sup +/+}/AQP0{sup -/-}lenses had wide extracellular spaces. Fibers were easily separable by teasing in AQP0{sup -/-} and TgAQP1{sup +/+}/AQP0{sup -/-}lenses compared to WT. Our data suggest that the increased water permeability through AQP1 does not compensate for loss of AQP0 expression in TgAQP1{sup +/+}/AQP0{sup -/-} mice. Fibercell AQP0 expression is required to maintain their organization, which is a requisite for lenstransparency. AQP0 appears necessary for cell-to-cell adhesion and thereby to minimize light scattering since in the AQP0{sup -/-} and TgAQP1{sup +/+}/AQP0{sup -/-} lenses, fiber cell disorganization was evident.

  3. The Cervico-Ocular Reflex of normal human subjects in response to transient and sinusoidal trunk rotations

    NASA Technical Reports Server (NTRS)

    Sawyer, Robert N., Jr.; Thurston, Stephen E.; Becker, Keith R.; Ackley, Charles V.; Seidman, Scott H.; Leigh, R. John

    1994-01-01

    We used the magnetic search coil technique to measure the horizontal cervico-ocular reflex (COR) of 8 subjects in response to transient or sinusoidal (0.1-1.0 Hz) trunk rotations while their heads were firmly immobilized. Although we were able to resolve eye rotations of less than 0.05 deg, the COR was hardly measurable (gain was always less than 0.07). This finding, made with the most precise measurement technique used to date, suggests that the COR makes a negligible contribution to the stability of gaze in normal subjects during natural activities.

  4. Testing ocular irritancy in vitro with the silicon microphysiometer.

    PubMed

    Bruner, L H; Miller, K R; Owicki, J C; Parce, J W; Muir, V C

    1991-01-01

    The silicon microphysiometer, an instrument based on the light-addressable potentiometric sensor, was evaluated as an in vitro alternative for assessing ocular irritancy potential. It indirectly and non-invasively measures cell metabolism by determining the rate of acid metabolite production from cells, in this case human epidermal keratinocytes, placed inside the microphysiometer chamber. The 17 materials used for the evaluation included bar soaps, a liquid hand soap, shampoos, dishwashing liquids, laundry detergents, a fabric softener and several single chemicals. All materials tested were in liquid form. The in vivo irritancy potential of the materials was obtained from historical data using the rabbit low-volume eye test. There was a positive correlation between the in vivo irritancy potential of the test materials and the concentration of test material that decreased the acidification rate of cells by 50% (MRD(50); r = 0.86, P < 0.0001). Preliminary studies suggest other endpoints obtainable from the system may also provide useful information for making ocular safety assessments. Because the method is non-invasive, it is possible to determine whether cells recover from a treatment with the test material. The metabolic rate of the cells also increases at sub-inhibitory concentrations of some of the test materials. Because of the good correlation between the in vivo and in vitro data, the ease with which test materials can be applied to the system, and the multiple endpoints available from the system, it holds great potential as a useful in vitro alternative for ocular safety testing.

  5. Carbon Nanotubes and Human Cells?

    ERIC Educational Resources Information Center

    King, G. Angela

    2005-01-01

    Single-walled carbon nanotubes that were chemically altered to be water soluble are shown to enter fibroblasts, T cells, and HL60 cells. Nanoparticles adversely affect immortalized HaCaT human keratinocyte cultures, indicating that they may enter cells.

  6. A review of olopatadine for the treatment of ocular allergy.

    PubMed

    Abelson, Mark B

    2004-09-01

    Ocular allergy affects > 20% of the general population and many therapeutic preparations are available to individuals experiencing the most common forms--seasonal and perennial allergic conjunctivitis. 0.1% Olopatadine topical ophthalmic solution is currently approved for the treatment of allergic signs and symptoms in patients > or = 3 years of age. Olopatadine is available in Europe as Opatanol) and in > 30 other countries as Patanol. It inhibits mast cell degranulation and antagonises histamine receptors to manage the itching, redness, chemosis, tearing and lid swelling of the ocular allergic reaction, and its mast cell stabilising ability has been demonstrated both in vitro (using human conjunctival mast cells) and in vivo (human clinical experience). This article reviews both the laboratory and clinical information available on olopatadine, prefaced by a discussion of the current understanding of the ocular allergic reaction and followed by the future implications for this compound. Both laboratory and clinical studies have established the efficacy, safety and comfort of olopatadine in several study design models and comparisons to other antiallergy medications. The application of olopatadine, specifically in the management of lid swelling, an allergic sign recalcitrant to therapy and nasal allergic symptoms has also been established. In the future, a new formulation containing 0.2% olopatadine exhibits a duration of action up to 24 h, supporting once-daily dosing.

  7. Cultured corneal epithelia for ocular surface disease.

    PubMed Central

    Schwab, I R

    1999-01-01

    PURPOSE: To evaluate the potential efficacy for autologous and allogeneic expanded corneal epithelial cell transplants derived from harvested limbal corneal epithelial stem cells cultured in vitro for the management of ocular surface disease. METHODS: Human Subjects. Of the 19 human subjects included, 18 (20 procedures) underwent in vitro cultured corneal epithelial cell transplants using various carriers for the epithelial cells to determine the most efficacious approach. Sixteen patients (18 procedures on 17 eyes) received autologous transplants, and 2 patients (1 procedure each) received allogeneic sibling grafts. The presumed corneal epithelial stem cells from 1 patient did not grow in vitro. The carriers for the expanded corneal epithelial cells included corneal stroma, type 1 collagen (Vitrogen), soft contact lenses, collagen shields, and amniotic membrane for the autologous grafts and only amniotic membrane for the allogeneic sibling grafts. Histologic confirmation was reviewed on selected donor grafts. Amniotic membrane as carrier. Further studies were made to determine whether amniotic membrane might be the best carrier for the expanding corneal epithelial cells. Seventeen different combinations of tryspinization, sonication, scraping, and washing were studied to find the simplest, most effective method for removing the amniotic epithelium while still preserving the histologic appearance of the basement membrane of the amnion. Presumed corneal epithelial stem cells were harvested and expanded in vitro and applied to the amniotic membrane to create a composite graft. Thus, the composite graft consisted of the amniotic membrane from which the original epithelium had been removed without significant histologic damage to the basement membrane, and the expanded corneal epithelial stem cells, which had been applied to and had successfully adhered to the denuded amniotic membrane. Animal model. Twelve rabbits had the ocular surface of 1 eye damaged in a standard

  8. Interferon Regulator Factor 8 (IRF8) Limits Ocular Pathology during HSV-1 Infection by Restraining the Activation and Expansion of CD8+ T Cells

    PubMed Central

    Yu, Cheng-Rong; He, Chang; Mahdi, Rashid M.; Chan, Chi-Chao; Wang, Hongsheng; Morse, Herbert C.; Egwuagu, Charles E.

    2016-01-01

    Interferon Regulatory Factor-8 (IRF8) is constitutively expressed in monocytes and B cell lineages and plays important roles in immunity to pathogens and cancer. Although IRF8 expression is induced in activated T cells, the functional relevance of IRF8 in T cell-mediated immunity is not well understood. In this study, we used mice with targeted deletion of Irf8 in T-cells (IRF8KO) to investigate the role of IRF8 in T cell-mediated responses during herpes simplex virus 1 (HSV-1) infection of the eye. In contrast to wild type mice, HSV-1-infected IRF8KO mice mounted a more robust anti-HSV-1 immune response, which included marked expansion of HSV-1-specific CD8+ T cells, increased infiltration of inflammatory cells into the cornea and trigeminal ganglia (TG) and enhanced elimination of virus within the trigeminal ganglion. However, the consequence of the enhanced immunological response was the development of ocular inflammation, limbitis, and neutrophilic infiltration into the cornea of HSV-1-infected IRF8KO mice. Surprisingly, we observed a marked increase in virus-specific memory precursor effector cells (MPEC) in IRF8KO mice, suggesting that IRF8 might play a role in regulating the differentiation of effector CD8+ T cells to the memory phenotype. Together, our data suggest that IRF8 might play a role in restraining excess lymphocyte proliferation. Thus, modulating IRF8 levels in T cells can be exploited therapeutically to prevent immune-mediated ocular pathology during autoimmune and infectious diseases of the eye. PMID:27171004

  9. Tropomyosin heterogeneity in human cells

    SciTech Connect

    Giometti, C.S.; Anderson, N.L.

    1984-11-25

    Tropomyosin preparations from human platelets, human peripheral blood leukocytes from normal individuals and from a patient with chronic lymphocytic leukemia, human lymphoblastoid cells (GM607), human epithelial cells, and human skin fibroblasts have all been found to contain more than one protein when analyzed by two-dimensional gel electrophoresis. Although the lymphoid cell preparations consistently contain two proteins of almost identical molecular weight (M/sub r/ = 30,000), the platelet, epithelial cell, and fibroblast preparations contain two or more major proteins with molecular weights between 31,000 and 36,000, in addition to a major protein at 30,000. All of these proteins have characteristics in common with tropomyosin including slightly acidic isoelectric point, stability to heat and organic solvents, association with the cytoskeleton, and reactivity with antibody against skeletal muscle tropomyosin. The nonmuscle tropomyosin-like proteins were compared with tropomyosins from human skeletal, cardiac, and smooth muscle by peptide mapping after partial proteolysis. The results showed one of the nonmuscle proteins to be identical to the major smooth muscle tropomyosin in human uterus (myometrium) and another to be similar but not identical to skeletal muscle ..cap alpha..-tropomyosin. The remainder of the proteins with tropomyosin characteristics was unique to nonmuscle cells. In all, nine distinct human proteins with characteristics of tropomyosin are described. Charge variants of two of these proteins have been described previously. 43 references, 7 figures, 2 tables.

  10. α-Aminoadipic acid protects against retinal disruption through attenuating Müller cell gliosis in a rat model of acute ocular hypertension

    PubMed Central

    Wang, Xiaolei; Su, Jier; Ding, Jingwen; Han, Song; Ma, Wei; Luo, Hong; Hughes, Guy; Meng, Zhaoyang; Yin, Yi; Wang, Yanling; Li, Junfa

    2016-01-01

    Objective Ocular hypertension is an important risk factor for glaucoma. The purpose of this study was to investigate the gliotoxic effects of α-aminoadipic acid (AAA) in a rat model of AOH and its underlying mechanisms. Materials and methods In the rat model of acute ocular hypertension (AOH), intraocular pressure was increased to 110 mmHg for 60 minutes. Animals were divided into four groups: sham operation (Ctrl), AOH, AOH + phosphate-buffered saline (PBS), and AOH + AAA. Cell apoptosis in the ganglion cell layer was detected with the terminal deoxynucleotidyl transferase-mediated uridine 5′-triphosphate-biotin nick end labeling (TUNEL) assay, and retinal ganglion cells (RGCs) immunostained with Thy-1 were counted. Müller cell activation was detected using immunostaining with glutamine synthetase and glial fibrillary acidic protein. Tumor necrosis factor-α (TNF-α) was examined using Western blot. Results In the rat model of AOH, cell apoptosis was induced in the ganglion cell layer and the number of RGCs was decreased. Müller cell gliosis in the retinas of rats was induced, and retinal protein levels of TNF-α were increased. Intravitreal treatment of AAA versus PBS control attenuated these retinal abnormalities to show protective effects in the rat model of AOH. Conclusion In the retinas of the rat model of AOH, AAA treatment attenuated retinal apoptosis in the ganglion cell layer and preserved the number of RGCs, likely through the attenuation of Müller cell gliosis and suppression of TNF-α induction. Our observations suggest that AAA might be a potential therapeutic target in glaucoma. PMID:27799744

  11. The Role of Infectious Agents in the Etiology of Ocular Adnexal Neoplasia

    PubMed Central

    Verma, Varun; Shen, Defen; Sieving, Pamela C.; Chan, Chi-Chao

    2008-01-01

    Given the fact that infectious agents contribute to around 18% of human cancers worldwide, it would seem prudent to explore their role in neoplasms of the ocular adnexa: primary malignancies of the conjunctiva, lacrimal glands, eyelids, and orbit. By elucidating the mechanisms by which infectious agents contribute to oncogenesis, the management, treatment, and prevention of these neoplasms may one day parallel what is already in place for cancers such as cervical cancer, hepatocellular carcinoma, gastric mucosa-associated lymphoid tissue lymphoma and gastric adenocarcinoma. Antibiotic treatment and vaccines against infectious agents may herald a future with a curtailed role for traditional therapies of surgery, radiation, and chemotherapy. Unlike other malignancies for which large epidemiological studies are available, analyzing ocular adnexal neoplasms is challenging as they are relatively rare. Additionally, putative infectious agents seemingly display an immense geographic variation that has led to much debate regarding the relative importance of one organism versus another. This review discusses the pathogenetic role of several microorganisms in different ocular adnexal malignancies, including human papilloma virus in conjunctival papilloma and squamous cell carcinoma, human immunodeficiency virus in conjunctival squamous carcinoma, Kaposi sarcoma-associated herpes virus or human herpes simplex virus-8 (KSHV/HHV-8) in conjunctival Kaposi sarcoma, Helicobacter pylori (H. pylori,), Chlamydia, and hepatitis C virus in ocular adnexal mucosa-associated lymphoid tissue lymphomas. Unlike cervical cancer where a single infectious agent, human papilloma virus, is found in greater than 99% of lesions, multiple organisms may play a role in the etiology of certain ocular adnexal neoplasms by acting through similar mechanisms of oncogenesis, including chronic antigenic stimulation and the action of infectious oncogenes. However, similar to other human malignancies

  12. Molecular mechanisms of keratinizing ocular surface disease.

    PubMed

    McNamara, Nancy A

    2010-04-01

    A devastating consequence of autoimmune-mediated, aqueous tear deficiency is pathological keratinization of the ocular surface. It is setoff by an aberrant immune response that promotes a program of altered mucosal epithelial cell differentiation. The management of keratinizing ocular surface disease is challenging. Topical therapies are largely inadequate for acute exacerbations, and progressive disease often requires systemic immunosuppression. A combination of translational and basic science research is necessary to understand the link between aberrant immunity and pathological keratinization. I review recent research and future directions aimed to develop targeted therapies that control or prevent ocular surface keratinization.

  13. Ultra-fast one micron spectral domain ultra-high sensitive optical micro-angiography for in vivo visualization of ocular circulation of human retina and choroid

    NASA Astrophysics Data System (ADS)

    An, Lin; Wang, Ruikang K.

    2011-03-01

    In this paper, an ultra high speed (92 kHz A-line rate) one micron spectral domain ultra high sensitive optical microangiography system was demonstrated and successfully applied on posterior part of human eye for in vivo visualizing blood perfusions of both retina and choroid. A 1 μm ASE module was utilized as the light source, which could provide much more penetration depth than conventional 800 nm system. Running at 200 frames per second, it would cost ~5 seconds for the system to finish acquiring one 3D data set, which covers ~3×3 mm2 on the retina. Applying the OMAG algorithm onto the slow axis (C-scan direction), our system can extract detailed capillary level ocular perfusion maps for different layers of both retina and choroid. The excellent agreement with the standard text book shows great potential in clinical application.

  14. Corneal Dendritic Cell Density Is Associated with Subbasal Nerve Plexus Features, Ocular Surface Disease Index, and Serum Vitamin D in Evaporative Dry Eye Disease

    PubMed Central

    Shetty, Rohit; Sethu, Swaminathan; Deshmukh, Rashmi; Deshpande, Kalyani; Ghosh, Arkasubhra; Agrawal, Aarti; Shroff, Rushad

    2016-01-01

    Dry eye disease (DED) has evolved into a major public health concern with ocular discomfort and pain being responsible for significant morbidity associated with DED. However, the etiopathological factors contributing to ocular pain associated with DED are not well understood. The current IVCM based study investigated the association between corneal dendritic cell density (DCD), corneal subbasal nerve plexus (SBNP) features, and serum vitamin D and symptoms of evaporative dry eye (EDE). The study included age and sex matched 52 EDE patients and 43 heathy controls. A significant increase in the OSDI scores (discomfort subscale) was observed between EDE (median, 20.8) and control (median, 4.2) cohorts (P < 0.001). Similarly, an increase in DCD was observed between EDE (median, 48.1 cells/mm2) patients and controls (median, 5.6 cells/mm2) (P < 0.001). A significant decrease in SBNP features (corneal nerve fiber length, fiber density, fiber width, total branch density, nerve branch density, and fiber area) was observed in EDE patients with OSDI score >23 (P < 0.05). A positive correlation was observed between DCD and OSDI discomfort subscale (r = 0.348; P < 0.0003) and SBNP features. An inverse correlation was observed between vitamin D and OSDI scores (r = −0.332; P = 0.0095) and DCD with dendritic processes (r = −0.322; P = 0.0122). The findings implicate DCD, SBNP features, and vitamin D with EDE symptoms. PMID:26904676

  15. Multiple subclasses of Purkinje cells in the primate floccular complex provide similar signals to guide learning in the vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Raymond, J. L.; Lisberger, S. G.

    1997-01-01

    The neural "learning rules" governing the induction of plasticity in the cerebellum were analyzed by recording the patterns of neural activity in awake, behaving animals during stimuli that induce a form of cerebellum-dependent learning. We recorded the simple- and complex-spike responses of a broad sample of Purkinje cells in the floccular complex during a number of stimulus conditions that induce motor learning in the vestibulo-ocular reflex (VOR). Each subclass of Purkinje cells carried essentially the same information about required changes in the gain of the VOR. The correlation of simple-spike activity in Purkinje cells with activity in vestibular pathways could guide learning during low-frequency but not high-frequency stimuli. Climbing fiber activity could guide learning during all stimuli tested but only if compared with the activity present approximately 100 msec earlier in either vestibular pathways or Purkinje cells.

  16. Primary cutaneous extranodal marginal zone B-cell lymphoma of the eyelid skin: Diagnostic clues and distinction from other ocular adnexal diseases.

    PubMed

    Stagner, Anna M; Jakobiec, Frederick A; Freitag, Suzanne K

    2016-01-01

    A 60-year-old man developed a rubbery thickening and erythema of his left lateral upper and lower eyelids and lateral canthus over several months. He was treated for an extended period of time for blepharitis and chalazia. Incisional biopsy eventually disclosed microscopically a hypercellular lymphoid population sparing the epidermis that surrounded adnexal structures and infiltrated between orbicularis muscle fibers. Immunohistochemically, the lesion was found to be composed of neoplastic, kappa-restricted B cells with an equal number of reactive T cells and small reactive follicles. The diagnosis was a primary cutaneous extranodal marginal zone B-cell lymphoma of the eyelid skin (EMZL). We review the distinguishing clinical, histopathologic, and immunohistochemical features of cutaneous EMZL and contrast those with EMZL of other ocular adnexal sites. Also offered is a differential diagnosis of cutaneous lymphomas of the eyelid skin, which are predominately T-cell lesions. PMID:26545575

  17. Ocular Screening System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Used to detect eye problems in children through analysis of retinal reflexes, the system incorporates image processing techniques. VISISCREEN's photorefractor is basically a 35 millimeter camera with a telephoto lens and an electronic flash. By making a color photograph, the system can test the human eye for refractive error and obstruction in the cornea or lens. Ocular alignment problems are detected by imaging both eyes simultaneously. Electronic flash sends light into the eyes and the light is reflected from the retina back to the camera lens. Photorefractor analyzes the retinal reflexes generated by the subject's response to the flash and produces an image of the subject's eyes in which the pupils are variously colored. The nature of a defect, where such exists, is identifiable by atrained observer's visual examination.

  18. Photorefractor ocular screening system

    NASA Technical Reports Server (NTRS)

    Richardson, John R. (Inventor); Kerr, Joseph H. (Inventor)

    1987-01-01

    A method and apparatus for detecting human eye defects, particularly detection of refractive error is presented. Eye reflex is recorded on color film when the eyes are exposed to a flash of light. The photographs are compared with predetermined standards to detect eye defects. The base structure of the ocular screening system is a folding interconnect structure, comprising hinged sections. Attached to one end of the structure is a head positioning station which comprises vertical support, a head positioning bracket having one end attached to the top of the support, and two head positioning lamps to verify precise head positioning. At the opposite end of the interconnect structure is a camera station with camera, electronic flash unit, and blinking fixation lamp, for photographing the eyes of persons being evaluated.

  19. Regulatory requirements in the good manufacturing practice production of an epithelial cell graft for ocular surface reconstruction.

    PubMed

    Sheth-Shah, Radhika; Vernon, Amanda J; Seetharaman, Shankar; Neale, Michael H; Daniels, Julie T

    2016-04-01

    In the past decade, stem cell therapy has been increasingly employed for the treatment of various diseases. Subsequently, there has been a great interest in the manufacture of stem cells under good manufacturing practice, which is required by law for their use in humans. The cells for sight Stem Cell Therapy Research Unit, based at UCL Institute of Ophthalmology, delivers somatic cell-based and tissue-engineered therapies to patients suffering from blinding eye diseases at Moorfields Eye Hospital (London, UK). The following article is based on our experience in the conception, design, construction, validation and manufacturing within a good manufacturing practice manufacturing facility based in the UK. As such the regulations can be extrapolated to the 28 members stated within the EU. However, the principles may have a broad relevance outside the EU.

  20. A Role for 3-O-Sulfated Heparan Sulfate in Promoting Human Cytomegalovirus Infection in Human Iris Cells

    PubMed Central

    Baldwin, John; Maus, Erika; Zanotti, Brian; Volin, Michael V.; Tandon, Ritesh; Shukla, Deepak

    2015-01-01

    Human cytomegalovirus (HCMV) has emerged as a clinically opportunistic pathogen that targets multiple types of ocular cells and tissues, including the iris region of the uveal tract during anterior uveitis. In this report, we used primary cultures of human iris stroma (HIS) cells derived from human eye donors to investigate HCMV entry. The following lines of evidence suggested the role of 3-O-sulfated heparan sulfate (3-OS HS) during HCMV-mediated entry and cell-to-cell fusion in HIS cells. First, 3-O-sulfotransferase-3 (3-OST-3) expression in HIS cells promoted HCMV internalization, while pretreatment of HIS cells with heparinase enzyme or with anti-3-OS HS (G2) peptide significantly reduced the HCMV-mediated formation of plaques/foci. Second, coculture of the HCMV-infected HIS cells with CHO-K1 cells expressing 3-OS HS significantly enhanced cell fusion. Finally, a similar trend of enhanced fusion was observed with cells expressing HCMV glycoproteins (gB, gO, and gH-gL) cocultured with 3-OS HS cells. Taken together, these results highlight the role of 3-OS HS during HCMV plaque formation and cell-to-cell fusion and identify a novel target for future therapeutic interventions. PMID:25717110

  1. Phenotypic and Functional Characterization of Herpes Simplex Virus Glycoprotein B Epitope-Specific Effector and Memory CD8+ T Cells from Symptomatic and Asymptomatic Individuals with Ocular Herpes

    PubMed Central

    Khan, Arif A.; Srivastava, Ruchi; Spencer, Doran; Garg, Sumit; Fremgen, Daniel; Vahed, Hawa; Lopes, Patricia P.; Pham, Thanh T.; Hewett, Charlie; Kuang, Jasmine; Ong, Nicolas; Huang, Lei; Scarfone, Vanessa M.; Nesburn, Anthony B.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8+ T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8+ T cells play a key role in the “natural” protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8+ T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8+ T cells (TEM cells) (CD45RAlow CCR7low CD44high CD62Llow). In contrast, SYMP patients had frequent less-differentiated central memory CD8+ T cells (TCM cells) (CD45RAlow CCR7high CD44low CD62Lhigh). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8+ T cells which responded mainly to gB342–350 and gB561–569 “ASYMP” epitopes, and simultaneously produced IFN-γ, CD107a/b, granzyme B, and perforin. In contrast, effector CD8+ T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17–25 and gB183–191 “SYMP” epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with “ASYMP” CD8+ TEM cell epitopes, but not with “SYMP” CD8+ TCM cell epitopes, induced a strong CD8+ T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8+ TEM cells in protection against herpes and should be considered in the development of an effective vaccine. IMPORTANCE A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8+ T cells (TEM

  2. Ocular effects of radiofrequency energy.

    PubMed

    Elder, J A

    2003-01-01

    Radiofrequency (RF) energy has been reported to cause a variety of ocular effects, primarily cataracts but also effects on the retina, cornea, and other ocular systems. Cataracts have been observed in experimental animals when one eye was exposed to a localized, very high RF field and the other eye was the unexposed control. The results show that 2450 MHz exposures for >or=30 min at power densities causing extremely high dose rates (>or=150 W/kg) and temperatures (>or=41 degrees C) in or near the lens caused cataracts in the rabbit eye. However, cataracts were not observed in the monkey eye exposed to similar exposure conditions, reflecting the different patterns of energy absorption (SAR, specific absorption rate) distribution, due to their different facial structure. Since the monkey head is similar in structure to the human head, the nonhuman primate study showed that the incident power density levels causing cataracts in rabbits and other laboratory animals cannot be directly extrapolated to primates, including human beings. It is reasonable to assume that an SAR that would induce temperatures >or=41 degrees C in or near the lens in the human eye would produce cataracts by the same mechanism (heating) that caused cataracts in the rabbit lens; however, such an exposure would greatly exceed the currently allowable limits for human exposure and would be expected to cause unacceptable effects in other parts of the eye and face. Other ocular effects including corneal lesions, retinal effects, and changes in vascular permeability, have been observed after localized exposure of the eye of laboratory animals to both continuous wave (CW) and pulsed wave (PW) exposures, but the inconsistencies in these results, the failure to independently confirm corneal lesions after CW exposure, the failure to independently confirm retinal effects after PW exposure, and the absence of functional changes in vision are reasons why these ocular effects are not useful in defining an

  3. The origin of ocular microtremor in man.

    PubMed

    Spauschus, A; Marsden, J; Halliday, D M; Rosenberg, J R; Brown, P

    1999-06-01

    A novel technique for the study of human eye movements was used to investigate the frequency components of ocular drift and microtremor in both eyes simultaneously. The tangential components of horizontal eye accelerations were recorded in seven healthy subjects using light-weight accelerometers mounted on scleral contact lenses during smooth pursuit movements, vestibulo-ocular reflexes and eccentric gaze with and without fixation. Spectral peaks were observed at low (up to 25 Hz) and high (60-90 Hz) frequencies. A multivariate analysis based on partial coherence analysis was used to correct for head movement. After correction, the signals were found to be coherent between the eyes over both low- and high-frequency ranges, irrespective of task, convergence or fixation. It is concluded that the frequency content of ocular drift and microtremor reflects the patterning of low-level drives to the extra-ocular muscle motor units. PMID:10422719

  4. Ocular torsion quantification with video images.

    PubMed

    Bos, J E; de Graaf, B

    1994-04-01

    The present paper describes a technique to quantify eye rotations about the visual axis (ocular torsion). Two digitized polar transformed images of the iris are displayed on a video monitor in order to facilitate a visual comparison and manual interaction. Emphasis is placed on error analysis and the method's simplicity when applied to static ocular torsion measurement. The implementation, applying averaging over ocular torsion determined in partitioned iris images, yields a theoretical resolution of 5' of arc. In a control experiment with an artificial eye, the accuracy showed to be better than 14' of arc. In practice, the measuring device was validated with the data from the literature by means of an experiment about ocular torsion in humans during tilt and hypergravity conditions (up to 3 g).

  5. [Ocular manifestations in patients with human immunodeficiency virus infection before and after the introduction of highly active antiretroviral therapy].

    PubMed

    Mesarić, Branko; Lisić, Miroslav; Kniewald, Tihana; Ugrinović, Nikola; Begovac, Josip

    2005-01-01

    The aim of this study was to determine and compare the incidence of various ophthalmlogic changes before anfd after the initiation of highly active antiretroviral therapy (HAART) in HIV-infected patients treated at the University Hospital for Infectious Diseases "Dr. Fran Mihaljević" in Zagreb. This retrospective longitudinal analysis included all adult patients with confirmed HIV-1 infection divided into two groups: period before HAART (1995-1997) and period after HAART (1998-2000). Only those patients who underwent at least two ophthalmologic examinations in any of the two or in both periods were considered eligible. In total, 85 patients were enrolled in the study, 50 during the 1995-1997 period and 47 in the period 1998-2000 (12 patients were monitored in both periods). The mortality rate was significantly lower in patients treated during the HAART era, with an average decrease in mortality rates of 59.3%. During the period of ophthalmologic monitoing from 1995 to 1997, only 9 (18%) patients received HAART, and 33 (70.2%) in the period 1998-2000. In total, 208 ophthalmic abnormalities were recorded, 132 (63.5%) in the first and 76 (36.5%) in the second period. Vascular changes were most frequently diagnosed (113/208 or 54.3% cases) of which cotton-wool exudates in 55 and microaneurysms in 54 cases. Cytomegalovirus (CMV) retinitis was most commonly diagnosed among infectious ocular complications (altogether 39 episodes). Changes in the anterior segment were observed in only 11/208 (5.3%) cases, while neuro-ophthalmic manifestations were sees in 39/208 patients (18.7%). The incidence of CMV-retinitis episodes in the first monitored period was 57.2 (95% CI, 38.5-86.6) per 100 years of follow-up and in the HAART era 7.6 (95% CI, 1.6-22.4; p<0.0001) per 100 years of follow-up. The visual acuity in patients from the HAART era was significantly more frequently preserved than in patients from the pre HAART era on follow-up examinations (p<0.001). Our study showed that

  6. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    PubMed Central

    Youn, Hyun-Yi; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated with UV radiations at various energy levels with and without filter protections. Cell viability after exposure was determined using the metabolic dye alamarBlue and by evaluating for changes in the nuclei, mitochondria, membrane permeability, and cell membranes of the cells using the fluorescent dyes Hoechst 33342, rhodamine 123, calcein AM, ethidium homodimer-1, and annexin V. High-resolution images of the cells were taken with a Zeiss 510 confocal laser scanning microscope. Results The alamarBlue assay results of UV-exposed cells without filters showed energy level-dependent decreases in cellular viability. However, UV treated cells with 400 nm LP filter protection showed the equivalent viability to untreated control cells at all energy levels. Also, UV irradiated cells with 320 nm LP filter showed lower cell viability than the unexposed control cells, yet higher viability than UV-exposed cells without filters in an energy level-dependent manner. The confocal microscopy results also showed that UV radiation can cause significant dose-dependent degradations of nuclei and mitochondria in ocular cells. The annexin V staining also showed an increased number of apoptotic cells after UV irradiation. Conclusions The findings suggest that UV-induced HCEC, HLEC, and ARPE-19 cell damage can be evaluated by bioassays that measure changes in the cell nuclei, mitochondria, cell membranes, and cell metabolism, and these assay methods provide a valuable in vitro model for evaluating the

  7. Human Ocular Counter-Rolling and Roll Tilt Perception during Off-Vertical Axis Rotation after Spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Denise, Pierre; Reschke, Millard; Wood, Scott J.

    2007-01-01

    Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45 /s in darkness at two angles of tilt (10 and 20 ). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weigthing of the internal representation of gravitational vertical as a result of adaptation to microgravity.

  8. Custom ocular prosthetics.

    PubMed

    Cain, J R

    1982-12-01

    The rehabilitation of a patient who has suffered the psychologic trauma of an ocular loss requires a prosthesis that will provide the optimum cosmetic and functional result. Refinement in the details of custom ocular construction has produced a superior restoration delivered more readily.

  9. Goblet cells of the normal human bulbar conjunctiva and their assessment by impression cytology sampling.

    PubMed

    Doughty, Michael J

    2012-07-01

    Goblet cells of the conjunctiva are the main source of mucus for the ocular surface. The objectives of this review are to consider the goblet cells as assessed by various histological, cytological and electron microscopy methods, and to assess the consistency of published reports (over more than 25 years) of goblet cell density (GCD) from impression cytology specimens from nominally healthy human subjects. Reported GCD values have been notably variable, with a range from 24 to 2226 cells/mm² for average values. Data analysis suggests that a high density of goblet cells should be expected for the healthy human conjunctiva, with a tendency toward higher values in samples taken from normally covered locations (inferior and superior bulbar conjunctiva) of the open eye (at 973 +/- 789 cells/ mm²) than in samples taken from exposed (interpalpebral) locations (at 427 +/- 376 cells/mm²). No obvious change in GCD was found with respect to age, perhaps because the variability of the data did not allow detection of any age-related decline in GCD. Analyses of published data from 33 other sources indicated a trend for GCD to be lower than normal across a spectrum of ocular surface diseases.

  10. Cytotoxicity assessment of porous silicon microparticles for ocular drug delivery.

    PubMed

    Korhonen, Eveliina; Rönkkö, Seppo; Hillebrand, Satu; Riikonen, Joakim; Xu, Wujun; Järvinen, Kristiina; Lehto, Vesa-Pekka; Kauppinen, Anu

    2016-03-01

    Porous silicon (PSi) is a promising material for the delivery and sustained release of therapeutic molecules in various tissues. Due to the constant rinsing of cornea by tear solution as well as the short half-life of intravitreal drugs, the eye is an attractive target for controlled drug delivery systems, such as PSi microparticles. Inherent barriers ensure that PSi particles are retained in the eye, releasing drugs at the desired speed until they slowly break down into harmless silicic acid. Here, we have examined the in vitro cytotoxicity of positively and negatively charged thermally oxidized (TOPSi) and thermally carbonized (TCPSi) porous silicon microparticles on human corneal epithelial (HCE) and retinal pigment epithelial (ARPE-19) cells. In addition to ocular assessment under an inverted microscope, cellular viability was evaluated using the CellTiter Blue™, CellTiter Fluor™, and lactate dehydrogenase (LDH) assays. CellTiter Fluor proved to be a suitable assay but due to non-specific and interfering responses, neither CellTiter Blue nor LDH assays should be used when evaluating PSi particles. Our results suggest that the toxicity of PSi particles is concentration-dependent, but at least at concentrations less than 200μg/ml, both positively and negatively charged PSi particles are well tolerated by human corneal and retinal epithelial cells and therefore applicable for delivering drug molecules into ocular tissues.

  11. Cytotoxicity assessment of porous silicon microparticles for ocular drug delivery.

    PubMed

    Korhonen, Eveliina; Rönkkö, Seppo; Hillebrand, Satu; Riikonen, Joakim; Xu, Wujun; Järvinen, Kristiina; Lehto, Vesa-Pekka; Kauppinen, Anu

    2016-03-01

    Porous silicon (PSi) is a promising material for the delivery and sustained release of therapeutic molecules in various tissues. Due to the constant rinsing of cornea by tear solution as well as the short half-life of intravitreal drugs, the eye is an attractive target for controlled drug delivery systems, such as PSi microparticles. Inherent barriers ensure that PSi particles are retained in the eye, releasing drugs at the desired speed until they slowly break down into harmless silicic acid. Here, we have examined the in vitro cytotoxicity of positively and negatively charged thermally oxidized (TOPSi) and thermally carbonized (TCPSi) porous silicon microparticles on human corneal epithelial (HCE) and retinal pigment epithelial (ARPE-19) cells. In addition to ocular assessment under an inverted microscope, cellular viability was evaluated using the CellTiter Blue™, CellTiter Fluor™, and lactate dehydrogenase (LDH) assays. CellTiter Fluor proved to be a suitable assay but due to non-specific and interfering responses, neither CellTiter Blue nor LDH assays should be used when evaluating PSi particles. Our results suggest that the toxicity of PSi particles is concentration-dependent, but at least at concentrations less than 200μg/ml, both positively and negatively charged PSi particles are well tolerated by human corneal and retinal epithelial cells and therefore applicable for delivering drug molecules into ocular tissues. PMID:26686646

  12. Perspectives on human stem cell research.

    PubMed

    Jung, Kyu Won

    2009-09-01

    Human stem cell research draws not only scientists' but the public's attention. Human stem cell research is considered to be able to identify the mechanism of human development and change the paradigm of medical practices. However, there are heated ethical and legal debates about human stem cell research. The core issue is that of human dignity and human life. Some prefer human adult stem cell research or iPS cell research, others hES cell research. We do not need to exclude any type of stem cell research because each has its own merits and issues, and they can facilitate the scientific revolution when working together.

  13. ETS-1 and ETS-2 are upregulated in a transgenic mouse model of pigmented ocular neoplasm

    PubMed Central

    De la Houssaye, G.; Vieira, V.; Masson, C.; Beermann, F.; Dufier, J.L.; Menasche, M.

    2008-01-01

    Purpose Choroidal melanoma is the most common primary malignant ocular tumor in human adults. Relevant mouse models of human uveal melanoma still remain to be developed. We have studied the transgenic mouse strain, Tyrp-1-TAg, to try to gain insight into possible molecular mechanisms common to pigmented ocular neoplasms occurring spontaneously in the eyes of these mice and human choroidal melanoma. The role of two members of the ETS (E26 avian leukemia oncogene) family of transcription factors, ETS-1 and ETS-2, has been investigated in many cancers but has not yet been studied in ocular tumors. Methods This is the first study describing the production and distribution of ETS-1 and ETS-2 mRNAs and proteins using in situ hybridization and immunohistochemistry in murine ocular tissue sections of normal control eyes and tumoral eyes from mice of the same age. Using semi-quantitative reverse-transcription polymerase chain reaction (RT–PCR) and western blots experiments, we compared changes in ETS-1 and ETS-2 expression, their protein levels, and the regulation of some of their target gene expressions at different stages of the ocular tumoral progression in the transgenic mouse model, Tyrp-1-TAg, with those in normal eyes from control mice of the same age. Results In normal control adult mouse eyes, ETS-1 was mostly present in the nuclei of all neuroretinal layers whereas ETS-2 was mostly localized in the cytosol of the cell bodies of these layers with a smaller amount present in the nuclei. Both were found in the retinal pigmentary epithelium (RPE). ETS-1 and ETS-2 mRNA and protein levels were much higher in the ocular tissues of Tyrp-1-TAg mice than in control ocular tissues from wild-type mice. This upregulation was correlated with tumor progression. We also demonstrated upregulation of ETS-1 and ETS-2 target expressions in Tyrp-1-TAg mice when comparing with the same target expressions in control mice. Conclusions Our findings suggest that ETS-1 and ETS-2 are

  14. Use of irradiated human amnion as a matrix for limbal stem cell culture.

    PubMed

    Landa-Solís, Carlos; Vázquez-Maya, Leticia; Martínez-Pardo, María Esther; Brena-Molina, Ana M; Ruvalcaba, Erika; Gómez, Ricardo; Ibarra, Clemente; Velasquillo, Cristina

    2013-03-01

    Several ocular diseases affect the corneal surface; the development of effective technologies for the treatment of corneal lesions has brought about an improvement in the quality of life of affected patients. The aim of this study is to culture and characterize limbal stem cells cultured on gamma ((60)Co) radiosterilized human amnion (RHA). Limbal stem cells were isolated from ten preserved samples of corneal transplant. The cells were cultured since primary culture until expanded cells on RHA and stained with monoclonal antibodies to establish their immunophenotype, after which cytokeratin 12 and Vimentin were positive by immunohistochemistry. The immunophenotype remained constant since primary culture until expanded cells in RHA. The RHA and cells construct were structurally integrated. Immunohistochemistry was cytokeratin 12, Vimentin positive, and cytokeratin 19 negative. In vitro limbal cells maintain a constant epithelial transition immunophenotype in culture up to primary culture until expanded cells on RHA.

  15. A RAB3GAP1 SINE Insertion in Alaskan Huskies with Polyneuropathy, Ocular Abnormalities, and Neuronal Vacuolation (POANV) Resembling Human Warburg Micro Syndrome 1 (WARBM1).

    PubMed

    Wiedmer, Michaela; Oevermann, Anna; Borer-Germann, Stephanie E; Gorgas, Daniela; Shelton, G Diane; Drögemüller, Michaela; Jagannathan, Vidhya; Henke, Diana; Leeb, Tosso

    2015-11-23

    We observed a hereditary phenotype in Alaskan Huskies that was characterized by polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV). The affected dogs developed a progressive severe ataxia, which led to euthanasia between 8 and 16 months of age. The pedigrees were consistent with a monogenic autosomal recessive inheritance. We localized the causative genetic defect to a 4 Mb interval on chromosome 19 by a combined linkage and homozygosity mapping approach. Whole genome sequencing of one affected dog, an obligate carrier, and an unrelated control revealed a 218-bp SINE insertion into exon 7 of the RAB3GAP1 gene. The SINE insertion was perfectly associated with the disease phenotype in a cohort of 43 Alaskan Huskies, and it was absent from 541 control dogs of diverse other breeds. The SINE insertion induced aberrant splicing and led to a transcript with a greatly altered exon 7. RAB3GAP1 loss-of-function variants in humans cause Warburg Micro Syndrome 1 (WARBM1), which is characterized by additional developmental defects compared to canine POANV, whereas Rab3gap1-deficient mice have a much milder phenotype than either humans or dogs. Thus, the RAB3GAP1 mutant Alaskan Huskies provide an interesting intermediate phenotype that may help to better understand the function of RAB3GAP1 in development. Furthermore, the identification of the presumed causative genetic variant will enable genetic testing to avoid the nonintentional breeding of affected dogs.

  16. A RAB3GAP1 SINE Insertion in Alaskan Huskies with Polyneuropathy, Ocular Abnormalities, and Neuronal Vacuolation (POANV) Resembling Human Warburg Micro Syndrome 1 (WARBM1).

    PubMed

    Wiedmer, Michaela; Oevermann, Anna; Borer-Germann, Stephanie E; Gorgas, Daniela; Shelton, G Diane; Drögemüller, Michaela; Jagannathan, Vidhya; Henke, Diana; Leeb, Tosso

    2016-02-01

    We observed a hereditary phenotype in Alaskan Huskies that was characterized by polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV). The affected dogs developed a progressive severe ataxia, which led to euthanasia between 8 and 16 months of age. The pedigrees were consistent with a monogenic autosomal recessive inheritance. We localized the causative genetic defect to a 4 Mb interval on chromosome 19 by a combined linkage and homozygosity mapping approach. Whole genome sequencing of one affected dog, an obligate carrier, and an unrelated control revealed a 218-bp SINE insertion into exon 7 of the RAB3GAP1 gene. The SINE insertion was perfectly associated with the disease phenotype in a cohort of 43 Alaskan Huskies, and it was absent from 541 control dogs of diverse other breeds. The SINE insertion induced aberrant splicing and led to a transcript with a greatly altered exon 7. RAB3GAP1 loss-of-function variants in humans cause Warburg Micro Syndrome 1 (WARBM1), which is characterized by additional developmental defects compared to canine POANV, whereas Rab3gap1-deficient mice have a much milder phenotype than either humans or dogs. Thus, the RAB3GAP1 mutant Alaskan Huskies provide an interesting intermediate phenotype that may help to better understand the function of RAB3GAP1 in development. Furthermore, the identification of the presumed causative genetic variant will enable genetic testing to avoid the nonintentional breeding of affected dogs. PMID:26596647

  17. A RAB3GAP1 SINE Insertion in Alaskan Huskies with Polyneuropathy, Ocular Abnormalities, and Neuronal Vacuolation (POANV) Resembling Human Warburg Micro Syndrome 1 (WARBM1)

    PubMed Central

    Wiedmer, Michaela; Oevermann, Anna; Borer-Germann, Stephanie E.; Gorgas, Daniela; Shelton, G. Diane; Drögemüller, Michaela; Jagannathan, Vidhya; Henke, Diana; Leeb, Tosso

    2015-01-01

    We observed a hereditary phenotype in Alaskan Huskies that was characterized by polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV). The affected dogs developed a progressive severe ataxia, which led to euthanasia between 8 and 16 months of age. The pedigrees were consistent with a monogenic autosomal recessive inheritance. We localized the causative genetic defect to a 4 Mb interval on chromosome 19 by a combined linkage and homozygosity mapping approach. Whole genome sequencing of one affected dog, an obligate carrier, and an unrelated control revealed a 218-bp SINE insertion into exon 7 of the RAB3GAP1 gene. The SINE insertion was perfectly associated with the disease phenotype in a cohort of 43 Alaskan Huskies, and it was absent from 541 control dogs of diverse other breeds. The SINE insertion induced aberrant splicing and led to a transcript with a greatly altered exon 7. RAB3GAP1 loss-of-function variants in humans cause Warburg Micro Syndrome 1 (WARBM1), which is characterized by additional developmental defects compared to canine POANV, whereas Rab3gap1-deficient mice have a much milder phenotype than either humans or dogs. Thus, the RAB3GAP1 mutant Alaskan Huskies provide an interesting intermediate phenotype that may help to better understand the function of RAB3GAP1 in development. Furthermore, the identification of the presumed causative genetic variant will enable genetic testing to avoid the nonintentional breeding of affected dogs. PMID:26596647

  18. Albinism: particular attention to the ocular motor system.

    PubMed

    Hertle, Richard W

    2013-01-01

    The purpose of this report is to summarize an understanding of the ocular motor system in patients with albinism. Other than the association of vertical eccentric gaze null positions and asymmetric, (a) periodic alternating nystagmus in a large percentage of patients, the ocular motor system in human albinism does not contain unique pathology, rather has "typical" types of infantile ocular oscillations and binocular disorders. Both the ocular motor and afferent visual system are affected to varying degrees in patients with albinism, thus, combined treatment of both systems will maximize visual function. PMID:24014991

  19. The human lung mast cell.

    PubMed Central

    Wasserman, S I

    1984-01-01

    Mast cells are present in human lung tissue, pulmonary epithelium, and free in the bronchial lumen. By virtue of their location and their possession of specific receptors for IgE and complement fragments, these cells are sentinel cells in host defense. The preformed granular mediators and newly generated lipid mediators liberated upon activation of mast cells by a variety of secretagogues supply potent vasoactive-spasmogenic mediators, chemotactic factors, active enzymes, and proteoglycans to the local environment. These factors acting together induce an immediate response manifest as edema, smooth muscle constriction, mucus production, and cough. Later these mediators and those provided from plasma and leukocytes generate a tissue infiltrate of inflammatory cells and more prolonged vasoactive-bronchospastic responses. Acute and prolonged responses may be homeostatic and provide for defense of the host, but if excessive in degree or duration may provide a chronic inflammatory substrate upon which such disorders as asthma and pulmonary fibrosis may ensue. PMID:6428878

  20. Mapping Molecular Differences and Extracellular Matrix Gene Expression in Segmental Outflow Pathways of the Human Ocular Trabecular Meshwork

    PubMed Central

    Vranka, Janice A.; Bradley, John M.; Yang, Yong-Feng; Keller, Kate E.; Acott, Ted S.

    2015-01-01

    Elevated intraocular pressure (IOP) is the primary risk factor for glaucoma, and lowering IOP remains the only effective treatment for glaucoma. The trabecular meshwork (TM) in the anterior chamber of the eye regulates IOP by generating resistance to aqueous humor outflow. Aqueous humor outflow is segmental, but molecular differences between high and low outflow regions of the TM are poorly understood. In this study, flow regions of the TM were characterized using fluorescent tracers and PCR arrays. Anterior segments from human donor eyes were perfused at physiological pressure in an ex vivo organ culture system. Fluorescently-labeled microspheres of various sizes were perfused into anterior segments to label flow regions. Actively perfused microspheres were segmentally distributed, whereas microspheres soaked passively into anterior segments uniformly labeled the TM and surrounding tissues with no apparent segmentation. Cell-tracker quantum dots (20 nm) were localized to the outer uveal and corneoscleral TM, whereas larger, modified microspheres (200 nm) localized throughout the TM layers and Schlemm’s canal. Distribution of fluorescent tracers demonstrated a variable labeling pattern on both a macro- and micro-scale. Quantitative PCR arrays allowed identification of a variety of extracellular matrix genes differentially expressed in high and low flow regions of the TM. Several collagen genes (COL16A1, COL4A2, COL6A1 and 2) and MMPs (1, 2, 3) were enriched in high, whereas COL15A1, and MMP16 were enriched in low flow regions. Matrix metalloproteinase activity was similar in high and low regions using a quantitative FRET peptide assay, whereas protein levels in tissues showed modest regional differences. These gene and protein differences across regions of the TM provide further evidence for a molecular basis of segmental flow routes within the aqueous outflow pathway. New insight into the molecular mechanisms of segmental aqueous outflow may aid in the design

  1. Human Adrenocortical Carcinoma Cell Lines

    PubMed Central

    Wang, Tao; Rainey, William E.

    2011-01-01

    Summary The human adrenal cortex secretes mineralocorticoids, glucocorticoids and adrenal androgens. These steroids are produced from unique cell types located within the three distinct zones of the adrenal cortex. Disruption of adrenal steroid production results in a variety of diseases that can lead to hypertension, metabolic syndrome, infertility and androgen excess. The adrenal cortex is also a common site for the development of adenomas, and rarely the site for the development of carcinomas. The adenomas can lead to diseases associated with adrenal steroid excess, while the carcinomas are particularly aggressive and have a poor prognosis. In vitro cell culture models provide an important tool to examine molecular and cellular mechanisms controlling both the normal and pathologic function of the adrenal cortex. Herein we discuss the human adrenocortical cell lines and their use as model systems for adrenal studies. PMID:21924324

  2. Protective Effects of Human iPS-Derived Retinal Pigmented Epithelial Cells in Comparison with Human Mesenchymal Stromal Cells and Human Neural Stem Cells on the Degenerating Retina in rd1 mice.

    PubMed

    Sun, Jianan; Mandai, Michiko; Kamao, Hiroyuki; Hashiguchi, Tomoyo; Shikamura, Masayuki; Kawamata, Shin; Sugita, Sunao; Takahashi, Masayo

    2015-05-01

    Retinitis pigmentosa (RP) is a group of visual impairments characterized by progressive rod photoreceptor cell loss due to a genetic background. Pigment epithelium-derived factor (PEDF) predominantly secreted by the retinal pigmented epithelium (RPE) has been reported to protect photoreceptors in retinal degeneration models, including rd1. In addition, clinical trials are currently underway outside Japan using human mesenchymal stromal cells and human neural stem cells to protect photoreceptors in RP and dry age-related macular degeneration, respectively. Thus, this study aimed to investigate the rescue effects of induced pluripotent stem (iPS)-RPE cells in comparison with those types of cells used in clinical trials on photoreceptor degeneration in rd1 mice. Cells were injected into the subretinal space of immune-suppressed 2-week-old rd1 mice. The results demonstrated that human iPS-RPE cells significantly attenuated photoreceptor degeneration on postoperative days (PODs) 14 and 21 and survived longer up to at least 12 weeks after operation than the other two types of graft cells with less immune responses and apoptosis. The mean PEDF concentration in the intraocular fluid in RPE-transplanted eyes was more than 1 µg/ml at PODs 14 and 21, and this may have contributed to the protective effect of RPE transplantation. Our findings suggest that iPS-RPE cells serve as a competent source to delay photoreceptor degeneration through stable survival in degenerating ocular environment and by releasing neuroprotective factors such as PEDF.

  3. Pathophysiology of ocular surface squamous neoplasia

    PubMed Central

    Gichuhi, Stephen; Ohnuma, Shin-ichi; Sagoo, Mandeep S.; Burton, Matthew J.

    2014-01-01

    The incidence of ocular surface squamous neoplasia (OSSN) is strongly associated with solar ultraviolet (UV) radiation, HIV and human papilloma virus (HPV). Africa has the highest incidence rates in the world. Most lesions occur at the limbus within the interpalpebral fissure particularly the nasal sector. The nasal limbus receives the highest intensity of sunlight. Limbal epithelial crypts are concentrated nasally and contain niches of limbal epithelial stem cells in the basal layer. It is possible that these are the progenitor cells in OSSN. OSSN arises in the basal epithelial cells spreading towards the surface which resembles the movement of corneo-limbal stem cell progeny before it later invades through the basement membrane below. UV radiation damages DNA producing pyrimidine dimers in the DNA chain. Specific CC → TT base pair dimer transformations of the p53 tumour-suppressor gene occur in OSSN allowing cells with damaged DNA past the G1-S cell cycle checkpoint. UV radiation also causes local and systemic photoimmunosuppression and reactivates latent viruses such as HPV. The E7 proteins of HPV promote proliferation of infected epithelial cells via the retinoblastoma gene while E6 proteins prevent the p53 tumour suppressor gene from effecting cell-cycle arrest of DNA-damaged and infected cells. Immunosuppression from UV radiation, HIV and vitamin A deficiency impairs tumour immune surveillance allowing survival of aberrant cells. Tumour growth and metastases are enhanced by; telomerase reactivation which increases the number of cell divisions a cell can undergo; vascular endothelial growth factor for angiogenesis and matrix metalloproteinases (MMPs) that destroy the intercellular matrix between cells. Despite these potential triggers, the disease is usually unilateral. It is unclear how HPV reaches the conjunctiva. PMID:25447808

  4. Conjunctival HLA-DR and CD8 expression detected by impression cytology in ocular graft versus host disease

    PubMed Central

    Issleib, Susanne; Böhringer, Daniel; Mittelviefhaus, Hans; Schwartzkopff, Johannes; Finke, Juergen; Reinhard, Thomas

    2013-01-01

    Purpose To assess the expression of human leucocyte antigen (HLA)-DR in epithelial cells and cluster of differentiation (CD8)-positive lymphocytes as possible markers of chronic ocular graft versus host disease (cGvHD) after hematological stem cell transplantation (HSCT). Methods Twenty-seven consecutive patients with dry-eye symptoms following HSCT (24 [89%] with peripheral blood stem cell transplantation and 3 [11%] with bone marrow transplants; 17 [63%] familiar allogenic grafts) and 19 age-matched controls were included. Conjunctival impression cytology specimens were stained for HLA-DR, cytokeratin 19, and CD8. Oxford grading scale, blinking frequency, Schirmer test, tear film break-up time (TBUT), and Ocular Surface Disease Index (OSDI) were also recorded. Wilcoxon nonparametric testing was used to compare controls and HSCT recipients and to assess HSCT recipient subgroups with and without clinical cGVHD. Results Eighteen patients showed clinical signs of ocular cGVHD. TBUT and Schirmer test scores were significantly lower in patients, while Oxford grades and OSDI were significantly higher than in controls. Epithelial HLA-DR expression was generally higher in HSCT recipients than in controls, but it did not correlate with ocular cGVHD status. CD8-positive lymphocytes were identified in five patients with ocular cGvHD and one control. Conclusions A strong HLA-DR expression as detected by impression cytology appears to indicate a general HSCT response and fails to predict ocular cGVHD. However, the detection of CD8-positive lymphocytes using impression cytology was frequently associated with ocular cGvHD. Our data warrant further evaluation of CD8 expression in impression cytology, along with comparison to conjunctival biopsies and brush cytology, as impression cytology may offer a less invasive strategy for assessing cGVHD status. PMID:23878500

  5. Ocular disease and driving.

    PubMed

    Wood, Joanne M; Black, Alex A

    2016-09-01

    As the driving population ages, the number of drivers with visual impairment resulting from ocular disease will increase given the age-related prevalence of ocular disease. The increase in visual impairment in the driving population has a number of implications for driving outcomes. This review summarises current research regarding the impact of common ocular diseases on driving ability and safety, with particular focus on cataract, glaucoma, age-related macular degeneration, hemianopia and diabetic retinopathy. The evidence considered includes self-reported driving outcomes, driving performance (on-road and simulator-based) and various motor vehicle crash indices. Collectively, this review demonstrates that driving ability and safety are negatively affected by ocular disease; however, further research is needed in this area. Older drivers with ocular disease need to be aware of the negative consequences of their ocular condition and in the case where treatment options are available, encouraged to seek these earlier for optimum driving safety and quality of life benefits. PMID:27156178

  6. Microscopes and ocular infections.

    PubMed

    Olcerst, R B

    1987-05-01

    Environmental microbial assays of industrial microscope eyepieces were conducted following reports of multiple intershift ocular infections. Pathogenic Staphylococcus aureus was identified among the microorganisms cultured. This paper suggests that direct contact with industrial microscope eyepieces provides a potentially significant route of transmission of both bacterial and viral ocular infections. An industrial hygiene ocular health questionnaire was distributed to a first and second shift manufacturing operation to assess the incidence of ocular infections. These data were compared to the questionnaire responses of 122 control manufacturing workers who did not use microscopes. Based on self-reporting by employees, those who used microscopes were found to have statistically significant incidence of sites and conjunctivitis that was 8.3 times that of the control group. Sterilization of eyepieces by ethylene oxide, formaldehyde and isopropyl alcohol were considered, but ultimately rejected. These biocides were found respectively to damage ocular lens coatings, contribute to volatile organic emissions, or be ineffective against spore-forming bacteria. This article presents a detailed evaluation of a commercially available ultraviolet sanitization unit (manufactured by the King Bactostat Corp., 7115 Armistad Street, El Paso, TX 79912). This ultraviolet disinfection process proved to be rapid and emission free; it also yielded eyepieces free of residual chemical biocides that have the potential for ocular irritation. Field tests involving 60 eyepieces demonstrated effective disinfection by a Chi-Square statistical comparison, at values greater than 95% confidence level, as compared to unirradiated eyepieces.

  7. Human stem cell ethics: beyond the embryo.

    PubMed

    Sugarman, Jeremy

    2008-06-01

    Human embryonic stem cell research has elicited powerful debates about the morality of destroying human embryos. However, there are important ethical issues related to stem cell research that are unrelated to embryo destruction. These include particular issues involving different types of cells used, the procurement of such cells, in vivo use of stem cells, intellectual property, and conflicts of interest.

  8. Embryonic Stem Cell Patents and Human Dignity

    PubMed Central

    Resnik, David B.

    2009-01-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells. PMID:17922198

  9. Culture of human endothelial cells.

    PubMed

    Gallicchio, M A

    2001-01-01

    Endothelial cells line the luminal surface of all blood vessels in the body. The endothelial surface in adult humans is composed of approximately l-6×l0(13) cells and covers an area of 1-7 m(2). Endothelium serves many functions, including fluid and solute exchange through cell contraction, provision of an antithrombogenic surface through tissue plasminogen activator (tPA) and prostacyclin release, synthesis of angiogenic factors such as adenosine, allowance of leukocyte trafficking through adhesion molecule synthesis, presentation of antigens to the immune system, maintenance of vascular tone through nitric oxide and endothelin synthesis, and metabolism of circulating molecules through the release of enzymes such as lipoprotein lipase. PMID:21340938

  10. Human glomerular epithelial cell proteoglycans

    SciTech Connect

    Thomas, G.J.; Jenner, L.; Mason, R.M.; Davies, M. )

    1990-04-01

    Proteoglycans synthesized by cultures of human glomerular epithelial cells have been isolated and characterized. Three types of heparan sulfate were detected. Heparan sulfate proteoglycan I (HSPG-I; Kav 6B 0.04) was found in the cell layer and medium and accounted for 12% of the total proteoglycans synthesized. HSPG-II (Kav 6B 0.25) accounted for 18% of the proteoglycans and was located in the medium and cell layer. A third population (9% of the proteoglycan population), heparan sulfate glycosaminoglycan (HS-GAG; Kav 6B 0.4-0.8), had properties consistent with single glycosaminoglycan chains or their fragments and was found only in the cell layer. HSPG-I and HSPG-II from the cell layer had hydrophobic properties; they were released from the cell layer by mild trypsin treatment. HS-GAG lacked these properties, consisted of low-molecular-mass heparan sulfate oligosaccharides, and were intracellular. HSPG-I and -II released to the medium lacked hydrophobic properties. The cells also produced three distinct types of chondroitin sulfates. The major species, chondroitin sulfate proteoglycan I (CSPG-I) eluted in the excluded volume of a Sepharose CL-6B column, accounted for 30% of the proteoglycans detected, and was found in both the cell layer and medium. Cell layer CSPG-I bound to octyl-Sepharose. It was released from the cell layer by mild trypsin treatment. CSPG-II (Kav 6B 0.1-0.23) accounted for 10% of the total 35S-labeled macromolecules and was found predominantly in the culture medium. A small amount of CS-GAG (Kav 6B 0.25-0.6) is present in the cell extract and like HS-GAG is intracellular. Pulse-chase experiments indicated that HSPG-I and -II and CSPG-I and -II are lost from the cell layer either by direct release into the medium or by internalization where they are metabolized to single glycosaminoglycan chains and subsequently to inorganic sulfate.

  11. Violating instructed human agency: An fMRI study on ocular tracking of biological and nonbiological motion stimuli.

    PubMed

    Gertz, Hanna; Hilger, Maximilian; Hegele, Mathias; Fiehler, Katja

    2016-09-01

    Previous studies have shown that beliefs about the human origin of a stimulus are capable of modulating the coupling of perception and action. Such beliefs can be based on top-down recognition of the identity of an actor or bottom-up observation of the behavior of the stimulus. Instructed human agency has been shown to lead to superior tracking performance of a moving dot as compared to instructed computer agency, especially when the dot followed a biological velocity profile and thus matched the predicted movement, whereas a violation of instructed human agency by a nonbiological dot motion impaired oculomotor tracking (Zwickel et al., 2012). This suggests that the instructed agency biases the selection of predictive models on the movement trajectory of the dot motion. The aim of the present fMRI study was to examine the neural correlates of top-down and bottom-up modulations of perception-action couplings by manipulating the instructed agency (human action vs. computer-generated action) and the observable behavior of the stimulus (biological vs. nonbiological velocity profile). To this end, participants performed an oculomotor tracking task in an MRI environment. Oculomotor tracking activated areas of the eye movement network. A right-hemisphere occipito-temporal cluster comprising the motion-sensitive area V5 showed a preference for the biological as compared to the nonbiological velocity profile. Importantly, a mismatch between instructed human agency and a nonbiological velocity profile primarily activated medial-frontal areas comprising the frontal pole, the paracingulate gyrus, and the anterior cingulate gyrus, as well as the cerebellum and the supplementary eye field as part of the eye movement network. This mismatch effect was specific to the instructed human agency and did not occur in conditions with a mismatch between instructed computer agency and a biological velocity profile. Our results support the hypothesis that humans activate a specific

  12. Raman Spectroscopy of Ocular Tissue

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  13. Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis.

    PubMed

    Bermudez, Maria A; Sendon-Lago, Juan; Seoane, Samuel; Eiro, Noemi; Gonzalez, Francisco; Saa, Jorge; Vizoso, Francisco; Perez-Fernandez, Roman

    2016-08-01

    The aim of the present study was to evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) in uveitis. To do that, uveitis was induced in rats after footpad injection of Escherichia coli lipopolysaccaride (LPS). Human retinal pigment epithelial (ARPE-19) cells after LPS challenge were used to test anti-inflammatory effect of CM-hUCESCs 'ìn vitro'. Real-time PCR was used to evaluate mRNA expression levels of the pro-inflammatory cytokines interkeukin-6, interkeukin-8, macrophage inflammatory protein-1 alpha, tumor necrosis factor alpha, and the anti-inflammatory interkeukin-10. Leucocytes from aqueous humor (AqH) were quantified in a Neubauer chamber, and eye histopathological analysis was done with hematoxylin-eosin staining. Additionally, using a human cytokine antibody array we evaluated CM-hUCESCs to determine mediating proteins. Results showed that administration of CM-hUCESCs significantly reduced LPS-induced pro-inflammatory cytokines both 'in vitro' and 'in vivo', and decreased leucocytes in AqH and ocular tissues. High levels of cytokines with anti-inflammatory effects were found in CM-hUCESCs, suggesting a possible role of these factors in reducing intraocular inflammation. In summary, treatment with CM-hUCESCs significantly reduces inflammation in uveitis. Our data indicate that CM-hUCESCs could be regarded as a potential therapeutic agent for patients suffering from ocular inflammation. PMID:27381329

  14. Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis.

    PubMed

    Bermudez, Maria A; Sendon-Lago, Juan; Seoane, Samuel; Eiro, Noemi; Gonzalez, Francisco; Saa, Jorge; Vizoso, Francisco; Perez-Fernandez, Roman

    2016-08-01

    The aim of the present study was to evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) in uveitis. To do that, uveitis was induced in rats after footpad injection of Escherichia coli lipopolysaccaride (LPS). Human retinal pigment epithelial (ARPE-19) cells after LPS challenge were used to test anti-inflammatory effect of CM-hUCESCs 'ìn vitro'. Real-time PCR was used to evaluate mRNA expression levels of the pro-inflammatory cytokines interkeukin-6, interkeukin-8, macrophage inflammatory protein-1 alpha, tumor necrosis factor alpha, and the anti-inflammatory interkeukin-10. Leucocytes from aqueous humor (AqH) were quantified in a Neubauer chamber, and eye histopathological analysis was done with hematoxylin-eosin staining. Additionally, using a human cytokine antibody array we evaluated CM-hUCESCs to determine mediating proteins. Results showed that administration of CM-hUCESCs significantly reduced LPS-induced pro-inflammatory cytokines both 'in vitro' and 'in vivo', and decreased leucocytes in AqH and ocular tissues. High levels of cytokines with anti-inflammatory effects were found in CM-hUCESCs, suggesting a possible role of these factors in reducing intraocular inflammation. In summary, treatment with CM-hUCESCs significantly reduces inflammation in uveitis. Our data indicate that CM-hUCESCs could be regarded as a potential therapeutic agent for patients suffering from ocular inflammation.

  15. Development of the EpiOcular(TM) eye irritation test for hazard identification and labelling of eye irritating chemicals in response to the requirements of the EU cosmetics directive and REACH legislation.

    PubMed

    Kaluzhny, Yulia; Kandárová, Helena; Hayden, Patrick; Kubilus, Joseph; d'Argembeau-Thornton, Laurence; Klausner, Mitchell

    2011-09-01

    The recently implemented 7th Amendment to the EU Cosmetics Directive and the EU REACH legislation have heightened the need for in vitro ocular test methods. To address this need, the EpiOcular(TM) eye irritation test (EpiOcular-EIT), which utilises the normal (non-transformed) human cell-based EpiOcular tissue model, has been developed. The EpiOcular-EIT prediction model is based on an initial training set of 39 liquid and 21 solid test substances and uses a single exposure period and a single cut-off in tissue viability, as determined by the MTT assay. A chemical is classified as an irritant (GHS Category 1 or 2), if the tissue viability is ≤ 60%, and as a non-irritant (GHS unclassified), if the viability is > 60%. EpiOcular-EIT results for the training set, along with results for an additional 52 substances, which included a range of alcohols, hydrocarbons, amines, esters, and ketones, discriminated between ocular irritants and non-irritants with 98.1% sensitivity, 72.9% specificity, and 84.8% accuracy. To ensure the long-term commercial viability of the assay, EpiOcular tissues produced by using three alternative cell culture inserts were evaluated in the EpiOcular-EIT with 94 chemicals. The assay results obtained with the initial insert and the three alternative inserts were very similar, as judged by correlation coefficients (r²) that ranged from 0.82 to 0.96. The EpiOcular-EIT was pre-validated in 2007/2008, and is currently involved in a formal, multi-laboratory validation study sponsored by the European Cosmetics Association (COLIPA) under the auspices of the European Centre for the Validation of Alternative Methods (ECVAM). The EpiOcular-EIT, together with EpiOcular's long history of reproducibility and proven utility for ultra-mildness testing, make EpiOcular a useful model for addressing current legislation related to animal use in the testing of potential ocular irritants.

  16. Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction.

    PubMed

    Mikhailova, Alexandra; Ilmarinen, Tanja; Ratnayake, Anjula; Petrovski, Goran; Uusitalo, Hannu; Skottman, Heli; Rafat, Mehrdad

    2016-05-01

    Corneal epithelium is renewed by limbal epithelial stem cells (LESCs), a type of tissue-specific stem cells located in the limbal palisades of Vogt at the corneo-scleral junction. Acute trauma or inflammatory disorders of the ocular surface can destroy these stem cells, leading to limbal stem cell deficiency (LSCD) - a painful and vision-threatening condition. Treating these disorders is often challenging and complex, especially in bilateral cases with extensive damage. Human pluripotent stem cells (hPSCs) provide new opportunities for corneal reconstruction using cell-based therapy. Here, we investigated the use of hPSC-derived LESC-like cells on bioengineered collagen matrices in serum-free conditions, aiming for clinical applications to reconstruct the corneal epithelium and partially replace the damaged stroma. Differentiation of hPSCs towards LESC-like cells was directed using small-molecule induction followed by maturation in corneal epithelium culture medium. After four to five weeks of culture, differentiated cells were seeded onto bioengineered matrices fabricated as transparent membranes of uniform thickness, using medical-grade porcine collagen type I and a hybrid cross-linking technology. The bioengineered matrices were fully transparent, with high water content and swelling capacity, and parallel lamellar microstructure. Cell proliferation of hPSC-LESCs was significantly higher on bioengineered matrices than on collagen-coated control wells after two weeks of culture, and LESC markers p63 and cytokeratin 15, along with proliferation marker Ki67 were expressed even after 30 days in culture. Overall, hPSC-LESCs retained their capacity to self-renew and proliferate, but were also able to terminally differentiate upon stimulation, as suggested by protein expression of cytokeratins 3 and 12. We propose the use of bioengineered collagen matrices as carriers for the clinically-relevant hPSC-derived LESC-like cells, as a novel tissue engineering approach for

  17. Wnt/β-Catenin Signaling Regulates Proliferation of Human Cornea Epithelial Stem/Progenitor Cells

    PubMed Central

    Nakatsu, Martin N.; Ding, Zhenhua; Ng, Madelena Y.; Truong, Thuy T.; Yu, Fei

    2011-01-01

    Purpose. To investigate the expression and role of the Wnt signaling pathway in human limbal stem cells (LSCs). Methods. Total RNA was isolated from the human limbus and central cornea. Limbal or cornea-specific transcripts were identified through quantitative real-time PCR. Protein expression of Wnt molecules was confirmed by immunohistochemistry on human ocular tissue. Activation of Wnt signaling using lithium chloride was achieved in vitro and its effects on LSC differentiation and proliferation were evaluated. Results. Expression of Wnt2, Wnt6, Wnt11, Wnt16b, and four Wnt inhibitors were specific to the limbal region, whereas Wnt3, Wnt7a, Wnt7b, and Wnt10a were upregulated in the central cornea. Nuclear localization of β-catenin was observed in a very small subset of basal epithelial cells only at the limbus. Activation of Wnt/β-catenin signaling increased the proliferation and colony-forming efficiency of primary human LSCs. The stem cell phenotype was maintained, as shown by higher expression levels of putative corneal epithelial stem cell markers, ATP-binding cassette family G2 and ΔNp63α, and low expression levels of mature cornea epithelial cell marker, cytokeratin 12. Conclusions. These findings demonstrate for the first time that Wnt signaling is present in the ocular surface epithelium and plays an important role in the regulation of LSC proliferation. Modulation of Wnt signaling could be of clinical application to increase the efficiency of ex vivo expansion of corneal epithelial stem/progenitor cells for transplantation. PMID:21357396

  18. [Ocular ischemic syndrome--a case report].

    PubMed

    Zemba, M; Avram, Corina Ioana; Ochinciuc, Uliana; Stamate, Alina Cristina; Camburu, Raluca Lăcrămioara

    2013-01-01

    Ocular ischemic syndrome, also known as hypoperfusion/ hypotensive retinopathy or as ischemic oculopathy is a rare ocular disease determined by chronic arterial hypoperfusion through central retinal artery, posterior and anterior ciliary arteries. It is bilateral in 20% of the cases. Most often it appears due to severe occlusion of the carotid arteries (ICA, MCA>ECA), described in 1963 by Kearns and Hollenhorst. Occasionally it can be determined by the obstruction of ophtalmic artery or some arterities (Takayasu, giant cell arteritis). The risk factors are: age between 50-80 years, males (M:F = 2:1), arterial hypertension, diabetes, coronary diseases (5% of the cases develop ocular ischemic syndrome), vascular stroke, hemodialysis. The case we present is of an 63 years old man known with primary arterial hypertension, hypercholesterolemia, diabetes type 2 non insulin dependent and diagnosticated with ischemic cerebral stroke and bilateral obstruction of internal carotid arteries in march 2010, who is presenting for visual impairment in both eyes. The imaging investigations show important carotid occlusion and at the ophthalmologic evaluation there are ocular hypertension and rubeosis iridis at the right eye, optic atrophy at both eyes (complete in the right eye and partial in the left eye), with superior altitudinal visual field defect in left eye. The following diagnosis was established: Chronic ocular ischemic syndrome in both eyes with Neovascular glaucoma at the right eye, Anterior ischemic optic neuropathy at the left eye and laser panphotocoagulation at the right eye was started. PMID:24386788

  19. [Ocular ischemic syndrome--a case report].

    PubMed

    Zemba, M; Avram, Corina Ioana; Ochinciuc, Uliana; Stamate, Alina Cristina; Camburu, Raluca Lăcrămioara

    2013-01-01

    Ocular ischemic syndrome, also known as hypoperfusion/ hypotensive retinopathy or as ischemic oculopathy is a rare ocular disease determined by chronic arterial hypoperfusion through central retinal artery, posterior and anterior ciliary arteries. It is bilateral in 20% of the cases. Most often it appears due to severe occlusion of the carotid arteries (ICA, MCA>ECA), described in 1963 by Kearns and Hollenhorst. Occasionally it can be determined by the obstruction of ophtalmic artery or some arterities (Takayasu, giant cell arteritis). The risk factors are: age between 50-80 years, males (M:F = 2:1), arterial hypertension, diabetes, coronary diseases (5% of the cases develop ocular ischemic syndrome), vascular stroke, hemodialysis. The case we present is of an 63 years old man known with primary arterial hypertension, hypercholesterolemia, diabetes type 2 non insulin dependent and diagnosticated with ischemic cerebral stroke and bilateral obstruction of internal carotid arteries in march 2010, who is presenting for visual impairment in both eyes. The imaging investigations show important carotid occlusion and at the ophthalmologic evaluation there are ocular hypertension and rubeosis iridis at the right eye, optic atrophy at both eyes (complete in the right eye and partial in the left eye), with superior altitudinal visual field defect in left eye. The following diagnosis was established: Chronic ocular ischemic syndrome in both eyes with Neovascular glaucoma at the right eye, Anterior ischemic optic neuropathy at the left eye and laser panphotocoagulation at the right eye was started.

  20. NGF Modulates trkANGFR/p75NTR in αSMA-Expressing Conjunctival Fibroblasts from Human Ocular Cicatricial Pemphigoid (OCP)

    PubMed Central

    Di Zazzo, Antonio; Sgrulletta, Roberto; Cortes, Magdalena; Normando, Eduardo Maria; Lambiase, Alessandro; Bonini, Stefano

    2015-01-01

    Objective In a previous study, we reported the upregulation of Nerve Growth Factor (NGF) and trkANGFR expression in Ocular Cicatricial Pemphigoid (OCP), an inflammatory and remodeling eye disease. Herein, we hypothesize a potential NGF-driven mechanism on fibroblasts (FBs) during OCP remodeling events. To verify, human derived OCP-FBs were isolated and characterized either at baseline or after NGF exposure. Materials and Methods Conjunctival biopsies were obtained from 7 patients having OCP and 6 control subjects (cataract surgery). Both conjunctivas and primary FB cultures were characterised for αSMA, NGF and trkANGFR/p75NTR expression. Subcultures were exposed to NGF and evaluated for αSMA, NGF, trkANGFR/p75NTR expression as well as TGFβ1/IL4 release. For analysis, early and advanced subgroups were defined according to clinical parameters. Results OCP-conjunctivas showed αSMA-expressing FBs and high NGF levels. Advanced OCP-FBs showed higher αSMA expression associated with higher p75NTR and lower trkANGFR expression, as compared to early counterparts. αSMA expression was in keeping with disease severity and correlated to p75NTR. NGF exposure did not affect trkANGFR levels in early OCP-FBs while decreased both αSMA/p75NTR expression and TGFβ1/IL4 release. These effects were not observed in advanced OCP-FBs. Conclusions Taken together, these data are suggestive for a NGF/p75NTR task in the potential modulation of OCP fibrosis and encourages further studies to fully understand the underlying mechanism occurring in fibrosis. NGF/p75NTR might be viewed as a potential therapeutic target. PMID:26569118

  1. Ocular dominance and disparity coding in cat visual cortex.

    PubMed

    LeVay, S; Voigt, T

    1988-01-01

    The orientation selectivity, ocular dominance, and binocular disparity tuning of 272 cells in areas 17 and 18 of barbiturate-anesthetized, paralyzed cats were studied with automated, quantitative techniques. Disparity was varied along the axis orthogonal to each cell's best orientation. Binocular correspondence was established by means of a reference electrode positioned at the boundary of lamina A and A1 in the area centralis representation of the lateral geniculate nucleus. Measures were derived that expressed each cell's disparity sensitivity and best disparity and the shape and slope of its tuning curve. Cells were found that corresponded to categories described by previous authors ("disparity-insensitive," "tuned excitatory," "near," and "far" cells), but many others had intermediate response patterns, or patterns that were difficult to categorize. Quantitative analysis suggested that the various types belong to a continuum. No relationship could be established between a cell's best orientation and its ocular dominance or any aspect of its disparity tuning. There was no relationship between a cell's ocular dominance and its sensitivity to disparity. Ocular dominance and best disparity were related. As reported by others, cells with best disparities close to zero (the fixation plane) tended to have balanced ocularity, while cells with best disparities in the near or far range had a broad distribution of ocular dominance. Among cells with receptive fields near the vertical meridian, those preferring far disparities tended to be dominated by the contralateral eye, and those preferring near disparities by the ipsilateral eye. It is suggested that this relationship follows from the geometry of near and far images and the pattern of decussation in the visual pathway. There was a significant grouping of cells with similar best disparities along tangential electrode tracks. We believe that this grouping is due to the columnar organization for ocular dominance and the

  2. Stem cell differentiation and human liver disease

    PubMed Central

    Zhou, Wen-Li; Medine, Claire N; Zhu, Liang; Hay, David C

    2012-01-01

    Human stem cells are scalable cell populations capable of cellular differentiation. This makes them a very attractive in vitro cellular resource and in theory provides unlimited amounts of primary cells. Such an approach has the potential to improve our understanding of human biology and treating disease. In the future it may be possible to deploy novel stem cell-based approaches to treat human liver diseases. In recent years, efficient hepatic differentiation from human stem cells has been achieved by several research groups including our own. In this review we provide an overview of the field and discuss the future potential and limitations of stem cell technology. PMID:22563188

  3. Neoplastic transformation of human cells

    NASA Technical Reports Server (NTRS)

    Goth-Goldstein, Regine

    1995-01-01

    The goal of this project was to gain a better understanding of the cellular mechanisms of cancer induction by ionizing radiation as a risk assessment for workers subjected to high LET irradiation such as that found in space. The following ions were used for irradiation: Iron, Argon, Neon, and Lanthanum. Two tests were performed: growth in low serum and growth in agar were used as indicators of cell transformation. The specific aims of this project were to: (1) compare the effectiveness of various ions on degree of transformation of a single dose of the same RBE; (2) determine if successive irradiations with the same ion (Ge 600 MeV/u) increases the degree of transformation; (3) test if clones with the greatest degree of transformation produce tumors in nude mice; and (4) construct a cell hybrid of a transformed and control (non-transformed) clone. The cells used for this work are human mammary epithelial cells with an extended lifespan and selected for growth in MEM + 10% serum.

  4. Using novel in vitro NociOcular assay based on TRPV1 channel activation for prediction of eye sting potential of baby shampoos.

    PubMed

    Forsby, Anna; Norman, Kimberly G; El Andaloussi-Lilja, Johanna; Lundqvist, Jessica; Walczak, Vincent; Curren, Rodger; Martin, Katharine; Tierney, Neena K

    2012-10-01

    The transient receptor potential vanilloid type 1 (TRPV1) channel is one of the most well-characterized pain-inducing receptors. The purpose of this study was to predict human eye stinging of 19 baby bath and shampoo formulations by studying TRPV1 activity, as measured by increase in intracellular free Ca(2+). The NociOcular test, a novel recombinant neuronal in vitro model with high expression of functional TRPV1 channels, was used to test formulations containing a variety of surfactants, preservatives, and fragrances. TRPV1-specific Ca(2+) influx was abolished when the TRPV1 channel antagonist capsazepine was applied to the cells prior to shampoo samples. The positive control, an adult shampoo that contains cocamide monoethanolamine (CMEA), a known stinging ingredient, was the most active sample tested in the NociOcular test. The negative control, a marketed baby shampoo, was negative in the NociOcular and human tests. Seven of the formulations induced stinging in the human test, and of those six were positive in the NociOcular test. Twelve formulations were classified as nonstinging in the human test, and of those ten were negative in the NociOcular test. There was no correlation between the clinical stinging results for the baby formulations and the data generated from other in vitro eye irritation assays (cytosensor microphysiometer, neutral red uptake, EpiOcular, transepithelial permeability). Our data support that the TRPV1 channel is a principal mediator of eye-stinging sensation induced by baby bath and shampoo formulations and that the NociOcular test may be a valuable in vitro tool to predict human eye-stinging sensation.

  5. Using neural nets to measure ocular refractive errors: a proposal

    NASA Astrophysics Data System (ADS)

    Netto, Antonio V.; Ferreira de Oliveira, Maria C.

    2002-12-01

    We propose the development of a functional system for diagnosing and measuring ocular refractive errors in the human eye (astigmatism, hypermetropia and myopia) by automatically analyzing images of the human ocular globe acquired with the Hartmann-Schack (HS) technique. HS images are to be input into a system capable of recognizing the presence of a refractive error and outputting a measure of such an error. The system should pre-process and image supplied by the acquisition technique and then use artificial neural networks combined with fuzzy logic to extract the necessary information and output an automated diagnosis of the refractive errors that may be present in the ocular globe under exam.

  6. New perspectives in ocular surface disorders. An integrated approach for diagnosis and management.

    PubMed

    Sangwan, V S; Tseng, S C

    2001-09-01

    The cornea, conjuctiva and the limbus comprise the tissues at the ocular surface. All of them are covered by stratified, squamous, non-keratinizing epithelium and a stable tear film. The ocular surface health is ensured by intimate relationship between ocular surface epithelia and the preocular team film. There are two types of ocular surface failure. The first one is characterized by squamous metaplasia and loss of goblet cells and mucin expression. This is consistent with unstable tear film which is the hallmark of various dry-eye disorders. The second type of ocular surface failure is characterized by the replacement of the normal corneal epithelium in a process called limbal stem cell deficiency. It is essential to establish accurate diagnosis for appropriate management of complex ocular surface disorders. There has been considerable advancement in the understanding of the pathophysiology of ocular surface disease. Management has improved with introduction of the limbal stem cell concept and use of amniotic membrane transplantation. PMID:15887723

  7. The EpiOcular Eye Irritation Test (EIT) for hazard identification and labelling of eye irritating chemicals: protocol optimisation for solid materials and the results after extended shipment.

    PubMed

    Kaluzhny, Yulia; Kandárová, Helena; Handa, Yuki; DeLuca, Jane; Truong, Thoa; Hunter, Amy; Kearney, Paul; d'Argembeau-Thornton, Laurence; Klausner, Mitchell

    2015-05-01

    The 7th Amendment to the EU Cosmetics Directive and the EU REACH Regulation have reinforced the need for in vitro ocular test methods. Validated in vitro ocular toxicity tests that can predict the human response to chemicals, cosmetics and other consumer products are required for the safety assessment of materials that intentionally, or inadvertently, come into contact with the eye. The EpiOcular Eye Irritation Test (EIT), which uses the normal human cell-based EpiOcular™ tissue model, was developed to address this need. The EpiOcular-EIT is able to discriminate, with high sensitivity and accuracy, between ocular irritant/corrosive materials and those that require no labelling. Although the original EpiOcular-EIT protocol was successfully pre-validated in an international, multicentre study sponsored by COLIPA (the predecessor to Cosmetics Europe), data from two larger studies (the EURL ECVAM-COLIPA validation study and an independent in-house validation at BASF SE) resulted in a sensitivity for the protocol for solids that was below the acceptance criteria set by the Validation Management Group (VMG) for eye irritation, and indicated the need for improvement of the assay's sensitivity for solids. By increasing the exposure time for solid materials from 90 minutes to 6 hours, the optimised EpiOcular-EIT protocol achieved 100% sensitivity, 68.4% specificity and 84.6% accuracy, thereby meeting all the acceptance criteria set by the VMG. In addition, to satisfy the needs of Japan and the Pacific region, the EpiOcular-EIT method was evaluated for its performance after extended shipment and storage of the tissues (4-5 days), and it was confirmed that the assay performs with similar levels of sensitivity, specificity and reproducibility in these circumstances. PMID:25995013

  8. The EpiOcular Eye Irritation Test (EIT) for hazard identification and labelling of eye irritating chemicals: protocol optimisation for solid materials and the results after extended shipment.

    PubMed

    Kaluzhny, Yulia; Kandárová, Helena; Handa, Yuki; DeLuca, Jane; Truong, Thoa; Hunter, Amy; Kearney, Paul; d'Argembeau-Thornton, Laurence; Klausner, Mitchell

    2015-05-01

    The 7th Amendment to the EU Cosmetics Directive and the EU REACH Regulation have reinforced the need for in vitro ocular test methods. Validated in vitro ocular toxicity tests that can predict the human response to chemicals, cosmetics and other consumer products are required for the safety assessment of materials that intentionally, or inadvertently, come into contact with the eye. The EpiOcular Eye Irritation Test (EIT), which uses the normal human cell-based EpiOcular™ tissue model, was developed to address this need. The EpiOcular-EIT is able to discriminate, with high sensitivity and accuracy, between ocular irritant/corrosive materials and those that require no labelling. Although the original EpiOcular-EIT protocol was successfully pre-validated in an international, multicentre study sponsored by COLIPA (the predecessor to Cosmetics Europe), data from two larger studies (the EURL ECVAM-COLIPA validation study and an independent in-house validation at BASF SE) resulted in a sensitivity for the protocol for solids that was below the acceptance criteria set by the Validation Management Group (VMG) for eye irritation, and indicated the need for improvement of the assay's sensitivity for solids. By increasing the exposure time for solid materials from 90 minutes to 6 hours, the optimised EpiOcular-EIT protocol achieved 100% sensitivity, 68.4% specificity and 84.6% accuracy, thereby meeting all the acceptance criteria set by the VMG. In addition, to satisfy the needs of Japan and the Pacific region, the EpiOcular-EIT method was evaluated for its performance after extended shipment and storage of the tissues (4-5 days), and it was confirmed that the assay performs with similar levels of sensitivity, specificity and reproducibility in these circumstances.

  9. Dynamic evaluation of human vestibulo-ocular function using white noise rotation stimulus and linear system parameter estimation techniques.

    PubMed

    Wall, C; Black, F O; O'Leary, D P

    1979-01-01

    White noise acceleration inputs were used to determine the human VOR transfer function both for normal subjects and for patients falling into two pilot categories: unilateral labyrinthectomy and reduced bilateral responses. The systematic patterns shown in the transfer function of the pilot abnormal categories as compared to the normal data suggests one method of classifying test results (table I). Frequency domain linear systems parameter fits were also made using the same data. The changes in these fit parameters, when pilot abnormal data is compared to normal data, suggests the use of the parameter fits themselves as a second classification scheme (fig. 1). The second scheme is not appropriate in cases where the response is unrelated to the stimulus. PMID:484347

  10. Ocular cytotoxicity evaluation of medical devices such as contact lens solutions and benefits of a rinse step in cleaning procedure.

    PubMed

    Dutot, Mélody; Vincent, Jacques; Martin-Brisac, Nicolas; Fabre, Isabelle; Grasmick, Christine; Rat, Patrice

    2013-01-01

    Contact lens care solutions are known to have toxic effects on the ocular surface. The ISO 10993-5 standard describes test methods to assess the cytotoxicity of medical devices, but it needs some improvements to discriminate contact lens care multipurpose solutions. First we evaluated the biological hazards associated with the use of ophthalmic solutions, running a collaborative study with the French medical agency to propose adapted tools to study contact lens care solutions' ocular cytotoxicity (human cell line, short incubation times, and no dilution of solutions to test). Then we took into account the potential risk of these ophthalmic solutions adsorbed on contact lenses and released on the ocular surface, highlighting the addition of a rinse step with unpreserved marine solution in the contact lens cleaning procedure to avoid side effects of contact lens care solutions.

  11. Delivery strategies for treatment of age-related ocular diseases: From a biological understanding to biomaterial solutions.

    PubMed

    Delplace, Vianney; Payne, Samantha; Shoichet, Molly

    2015-12-10

    Age-related ocular diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma, result in life-long functional deficits and enormous global health care costs. As the worldwide population ages, vision loss has become a major concern for both economic and human health reasons. Due to recent research into biomaterials and nanotechnology major advances have been gained in the field of ocular delivery. This review provides a summary and discussion of the most recent strategies employed for the delivery of both drugs and cells to the eye to treat a variety of age-related diseases. It emphasizes the current challenges and limitations to ocular delivery and how the use of innovative materials can overcome these issues and ultimately provide treatment for age-related degeneration and regeneration of lost tissues. This review also provides critical considerations and an outlook for future studies in the field of ophthalmic delivery.

  12. Bedside ocular ultrasound.

    PubMed

    Roque, Pedro J; Hatch, Nicholas; Barr, Laurel; Wu, Teresa S

    2014-04-01

    Many ocular emergencies are difficult to diagnose in the emergency setting with conventional physical examination tools. Additionally, persistent efforts to re-examine the eye may be deleterious to a patient's overall condition. Ultrasound is an important tool because it affords physicians a rapid, portable, accurate, and dynamic tool for evaluation of a variety of ocular and orbital diseases. The importance of understanding orbital anatomy, with attention to the firm attachment points of the various layers of the eye, cannot be understated. This article describes the relevant eye anatomy, delves into the ultrasound technique, and illustrates a variety of orbital pathologies detectable by bedside ultrasound.

  13. The Role of Antimicrobial Peptides at the Ocular Surface

    PubMed Central

    McDermott, Alison M.

    2009-01-01

    Antimicrobial peptides (AMPs) such as defensins and cathelicidins are small peptides with broad-spectrum activity against bacteria, fungi and viruses. In addition, several AMPs modulate mammalian cell behaviours including migration, proliferation and cytokine production. This review describes findings from recent studies showing the presence of various AMPs at the human ocular surface and discusses their mechanism of antimicrobial action and potential non-microbicidal roles. Corneal and conjunctival epithelial cells produce β-defensins and the cathelicidin LL-37, whereas neutrophils, infiltrating in response to a specific stimulus, supply additional LL-37 as well as α-defensins. In vitro studies suggest that LL-37 and human β-defensin-3 are the most likely to have significant independent antimicrobial activity, while other AMPs may act synergistically to help protect the ocular surface from invading pathogens. Current evidence also supports a role for some AMPs in modulating wound healing responses. Although yet to be brought to fruition, AMPs hold significant potential as therapeutic agents for the prophylaxis and treatment of infection, promotion of wound healing and immune modulation. PMID:19122467

  14. Ocular rosacea: a dermatologic perspective.

    PubMed

    Webster, Guy; Schaller, Martin

    2013-12-01

    As many as 50% of patients given the diagnosis of cutaneous rosacea also have ocular rosacea. Conservative figures indicate that approximately 10 million patients are affected by ocular rosacea in the United States alone. Despite this prevalence, ocular symptoms of rosacea are often improperly diagnosed, particularly when they occur in the absence of skin involvement.

  15. Experimental Models of Ocular Infection with Toxoplasma Gondii

    PubMed Central

    Dukaczewska, Agata; Tedesco, Roberto; Liesenfeld, Oliver

    2015-01-01

    Ocular toxoplasmosis is a vision-threatening disease and the major cause of posterior uveitis worldwide. In spite of the continuing global burden of ocular toxoplasmosis, many critical aspects of disease including the therapeutic approach to ocular toxoplasmosis are still under debate. To assist in addressing many aspects of the disease, numerous experimental models of ocular toxoplasmosis have been established. In this article, we present an overview on in vitro, ex vivo, and in vivo models of ocular toxoplasmosis available to date. Experimental studies on ocular toxoplasmosis have recently focused on mice. However, the majority of murine models established so far are based on intraperitoneal and intraocular infection with Toxoplasma gondii. We therefore also present results obtained in an in vivo model using peroral infection of C57BL/6 and NMRI mice that reflects the natural route of infection and mimics the disease course in humans. While advances have been made in ex vivo model systems or larger animals to investigate specific aspects of ocular toxoplasmosis, laboratory mice continue to be the experimental model of choice for the investigation of ocular toxoplasmosis. PMID:26716018

  16. Design and evaluation of moxifloxacin hydrochloride ocular inserts.

    PubMed

    Pawar, Pravin K; Katara, Rajesh; Majumdar, Dipak K

    2012-03-01

    The objective of the present investigation was to prepare and evaluate ocular inserts of moxifloxacin. An ocular insert was made from an aqueous dispersion of moxifloxacin, sodium alginate, polyvinyl alcohol, and dibutyl phthalate by the film casting method. The ocular insert (5.5 mm diameter) was cross-linked by CaCl2 and was coated with Eudragit S-100, RL-100, RS-100, E-100 or L-100. The in vitro drug drainage/permeation studies were carried out using an all-glass modified Franz diffusion cell. The drug concentration and mucoadhesion time of the ocular insert were found satisfactory. Cross-linking and coating with polymers extended the drainage from inserts. The cross-linked ocular insert coated with Eudragit RL-100 showed maximum drug permeation compared to other formulations.

  17. Dynamics of the human linear vestibulo-ocular reflex at medium frequency and modification by short-term training

    NASA Technical Reports Server (NTRS)

    Shelhamer, M.; Roberts, D. C.; Zee, D. S.

    2000-01-01

    We study here the effect of a short-term training paradigm on the gain and phase of the human translational VOR (the linear VOR: LVOR). Subjects were exposed to lateral sinusoidal translations on a sled, at 0.5 Hz, 0.3 g peak acceleration. With subjects tracking a remembered target at 1.2 m, the LVOR (slow-phase) under these conditions typically has a phase lead or lag, and a gain that falls short of compensatory. To induce short-term adaptation (training), we presented an earth-fixed visual scene at 1.2 m during sinusoidal translation (x 1 viewing) for 20 minutes, so as to drive the LVOR toward compensatory phase and gain. We examined both the slow-phase and the saccadic responses to these stimuli. Testing after training showed changes in slow-component gain and phase which were mostly but not always in the compensatory direction. These changes were more consistent in naive subjects than in subjects who had previous LVOR experience. Changes in gain were seen with step as well as sinusoidal test stimuli; gain changes were not correlated with vergence changes. There was a strong correlation between gain changes and phase changes across subjects. Fast phases (catch-up saccades) formed a large component of the LVOR under our testing conditions (approximately 30% of the changes in gain but not in phase due to training.

  18. Cell motion predicts human epidermal stemness

    PubMed Central

    Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki

    2015-01-01

    Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083

  19. Molecular mechanism of ocular surface damage: Application to an in vitro dry eye model on human corneal epithelium

    PubMed Central

    De Servi, Barbara; Marasco, Daniela; Del Prete, Salvatore

    2011-01-01

    Purpose The present study was concerned with the development of a new experimental model of dry eye using human reconstructed in vitro corneal epithelium (HCE). The model is based on the use of adapted culture conditions that induce relevant modifications at the cellular and molecular level thus mimicking dry eye. Methods The HCE model was maintained in a controlled environmental setting (relative humidity <40% and 40 °C temperature) for 24 h and up to 72 h to induce dry eye. The evolution of the dry eye condition was assessed by histology, immunohistochemistry staining, scanning electron microscopy, and gene expression by using TaqMan gene assay technology (mucin-4 [MUC4], matrix metallopeptidase-9 [MMP9], tumor necrosis factor-α [TNF-α], and defensin β-2 [DEFB2). The effects of different commercially available tear substitutes on the induced dry eye condition were tested. Results This in vitro dry eye HCE model, that was well established within 24 h, has the characteristic features of a dry eye epithelium and could be satisfactorily used for preliminary assessment of the protective activity of some artificial tears. The transcriptional study of selected biomarkers showed an increase in MUC4, MMP9, TNF-α, and hBD-2 (DEFB2) gene expression. Conclusions By using a dynamic approach, we were able to define a biomarker gene signature of dry eye-induced effects that could be predictive of corneal damage in vivo and to discriminate the efficacy among different commercial artificial tears. PMID:21245952

  20. In vitro generation of pancreatic endocrine cells from human adult fibroblast-like limbal stem cells.

    PubMed

    Criscimanna, Angela; Zito, Giovanni; Taddeo, Annalisa; Richiusa, Pierina; Pitrone, Maria; Morreale, Daniele; Lodato, Gaetano; Pizzolanti, Giuseppe; Citarrella, Roberto; Galluzzo, Aldo; Giordano, Carla

    2012-01-01

    Stem cells might provide unlimited supply of transplantable cells for β-cell replacement therapy in diabetes. The human limbus is a highly specialized region hosting a well-recognized population of epithelial stem cells, which sustain the continuous renewal of the cornea, and the recently identified stromal fibroblast-like stem cells (f-LSCs), with apparent broader plasticity. However, the lack of specific molecular markers for the identification of the multipotent limbal subpopulation has so far limited the investigation of their differentiation potential. In this study we show that the human limbus contains uncommitted cells that could be potentially harnessed for the treatment of diabetes. Fourteen limbal biopsies were obtained from patients undergoing surgery for ocular diseases not involving the conjunctiva or corneal surface. We identified a subpopulation of f-LSCs characterized by robust proliferative capacity, expressing several pluripotent stem cell markers and exhibiting self-renewal ability. We then demonstrated the potential of f-LSCs to differentiate in vitro into functional insulin-secreting cells by developing a four-step differentiation protocol that efficiently directed f-LSCs towards the pancreatic endocrine cell fate. The expression of specific endodermal, pancreatic, islet, and β-cell markers, as well as functional properties of f-LSC-derived insulin-producing cells, were evaluated during differentiation. With our stage-specific approach, up to 77% of f-LSCs eventually differentiated into cells expressing insulin (also assessed as C-peptide) and exhibited phenotypic features of mature β-cells, such as expression of critical transcription factors and presence of secretory granules. Although insulin content was about 160-fold lower than what observed in adult islets, differentiated cells processed ∼98% of their proinsulin content, similar to mature β-cells. Moreover, they responded in vitro in a regulated manner to multiple secretory stimuli

  1. Novel Water-Soluble Mucoadhesive Carbosilane Dendrimers for Ocular Administration.

    PubMed

    Bravo-Osuna, I; Vicario-de-la-Torre, M; Andrés-Guerrero, V; Sánchez-Nieves, J; Guzmán-Navarro, M; de la Mata, F J; Gómez, R; de Las Heras, B; Argüeso, P; Ponchel, G; Herrero-Vanrell, R; Molina-Martínez, I T

    2016-09-01

    The purpose of this research was to determine the potential use of water-soluble anionic and cationic carbosilane dendrimers (generations 1-3) as mucoadhesive polymers in eyedrop formulations. Cationic carbosilane dendrimers decorated with ammonium -NH3(+) groups were prepared by hydrosylilation of Boc-protected allylamine and followed by deprotection with HCl. Anionic carbosilane dendrimers with terminal carboxylate groups were also employed in this study. In vitro and in vivo tolerance studies were performed in human ocular epithelial cell lines and rabbit eyes respectively. The interaction of dendrimers with transmembrane ocular mucins was evaluated with a surface biosensor. As proof of concept, the hypotensive effect of a carbosilane dendrimer eyedrop formulation containing acetazolamide (ACZ), a poorly water-soluble drug with limited ocular penetration, was tested after instillation in normotensive rabbits. The methodology used to synthesize cationic dendrimers avoids the difficulty of obtaining neutral -NH2 dendrimers that require harsher reaction conditions and also present high aggregation tendency. Tolerance studies demonstrated that both prototypes of water-soluble anionic and cationic carbosilane dendrimers were well tolerated in a range of concentrations between 5 and 10 μM. Permanent interactions between cationic carbosilane dendrimers and ocular mucins were observed using biosensor assays, predominantly for the generation-three (G3) dendrimer. An eyedrop formulation containing G3 cationic carbosilane dendrimers (5 μM) and ACZ (0.07%) (289.4 mOsm; 5.6 pH; 41.7 mN/m) induced a rapid (onset time 1 h) and extended (up to 7 h) hypotensive effect, and led to a significant increment in the efficacy determined by AUC0(8h) and maximal intraocular pressure reduction. This work takes advantage of the high-affinity interaction between cationic carbosilane dendrimers and ocular transmembrane mucins, as well as the tensioactive behavior observed for these

  2. Ocular Screening System

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An ocular screening system designed for safe, convenient screening of large groups was developed at Marshall Space Flight Center, leading to the formation of Medical Sciences Corporation. The system identifies visual defects accurately and inexpensively, and includes a photorefractor telephoto lens and an electronic flash. Medical Sciences Corporation is using the device to test at schools, industrial plants, etc.

  3. Motor learning in common marmosets: vestibulo-ocular reflex adaptation and its sensitivity to inhibitors of Purkinje cell long-term depression.

    PubMed

    Anzai, Mari; Nagao, Soich

    2014-06-01

    Adaptation of the horizontal vestibulo-ocular reflex (HVOR) provides an experimental model for cerebellum-dependent motor learning. We developed an eye movement measuring system and a paradigm for induction of HVOR adaptation for the common marmoset. The HVOR gain in dark measured by 10° (peak-to-peak amplitude) and 0.11-0.5Hz turntable oscillation was around unity. The gain-up and gain-down HVOR adaptation was induced by 1h of sustained out-of-phase and in-phase 10°-0.33Hz combined turntable-screen oscillation in the light, respectively. To examine the role of long-term depression (LTD) of parallel fiber-Purkinje cell synapses, we intraperitonially applied T-588 or nimesulide, which block the induction of LTD in vitro or in vivo preparations, 1h before the test of HVOR adaptation. T-588 (3 and 5mg/kg body weight) did not affect nonadapted HVOR gains, and impaired both gain-up and gain-down HVOR adaptation. Nimesulide (3 and 6mg/kg) did not affect nonadapted HVOR gains, and impaired gain-up HVOR adaptation dose-dependently; however, it very little affected gain-down HVOR adaptation. These findings are consistent with the results of our study of nimesulide on the adaptation of horizontal optokinetic response in mice (Le et al., 2010), and support the view that LTD underlies HVOR adaptation.

  4. Satellite cells in human skeletal muscle plasticity.

    PubMed

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  5. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension.

    PubMed

    Trost, A; Motloch, K; Bruckner, D; Schroedl, F; Bogner, B; Kaser-Eichberger, A; Runge, C; Strohmaier, C; Klein, B; Aigner, L; Reitsamer, H A

    2015-07-01

    Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, and is the second leading cause of blindness worldwide. Elevated intraocular pressure is a well known risk factor for the development of glaucomatous optic neuropathy and pharmacological or surgical lowering of intraocular pressure represents a standard procedure in glaucoma treatment. However, the treatment options are limited and although lowering of intraocular pressure impedes disease progression, glaucoma cannot be cured by the currently available therapy concepts. In an acute short-term ocular hypertension model in rat, we characterize RGC loss, but also microglial cell activation and vascular alterations of the retina at certain time points. The combination of these three parameters might facilitate a better evaluation of the disease progression, and could further serve as a new model to test novel treatment strategies at certain time points. Acute ocular hypertension (OHT) was induced by the injection of magnetic microbeads into the rat anterior chamber angle (n = 22) with magnetic position control, leading to constant elevation of IOP. At certain time points post injection (4d, 7d, 10d, 14d and 21d), RGC loss, microglial activation, and microvascular pericyte (PC) coverage was analyzed using immunohistochemistry with corresponding specific markers (Brn3a, Iba1, NG2). Additionally, the tightness of the retinal vasculature was determined via injections of Texas Red labeled dextran (10 kDa) and subsequently analyzed for vascular leakage. For documentation, confocal laser-scanning microscopy was used, followed by cell counts, capillary length measurements and morphological and statistical analysis. The injection of magnetic microbeads led to a progressive loss of RGCs at the five time points investigated (20.07%, 29.52%, 41.80%, 61.40% and 76.57%). Microglial cells increased in number and displayed an activated morphology

  6. Progression of ocular sulfur mustard injury: development of a model system.

    PubMed

    Milhorn, Denise; Hamilton, Tracey; Nelson, Marian; McNutt, Patrick

    2010-04-01

    Exposure of tissues to sulfur mustard (SM) results in the formation of protein and nucleotide adducts that disrupt cellular metabolism and cause cell death. Subsequent pathologies involve a significant proinflammatory response, disrupted healing, and long-term defects in tissue architecture. Following ocular exposure, acute corneal sequelae include epithelial erosions, necrosis, and corneal inflammation. Longer term, a progressive injury becomes distributed throughout the anterior chamber, which ultimately causes a profound remodeling of corneal tissues. In many cases, debilitating and vision-threatening injuries reoccur months to years after the initial exposure. Preliminary data in humans suffering from chronic epithelial lesions suggest that thymosin beta4 (Tbeta4) may be a viable candidate to mitigate acute or long-term ocular SM injury. To evaluate therapeutic candidates, we have developed a rabbit ocular exposure model system. In this paper, we report molecular, histological, ultrastructural, and clinical consequences of rabbit ocular SM injury, which can be used to assess Tbeta4 efficacy, including timepoints at which Tbeta4 will be assessed for therapeutic utility.

  7. Evaluation of the in vitro ocular toxicity of the fortified antibiotic eye drops prepared at the Hospital Pharmacy Departments.

    PubMed

    Fernández-Ferreiro, Anxo; González-Barcia, Miguel; Gil-Martínez, María; Santiago Varela, María; Pardo, María; Blanco-Méndez, José; Piñeiro-Ces, Antonio; Lamas Díaz, María Jesús; Otero-Espinar, Francisco J

    2016-09-01

    The use of parenteral antibiotic eye drop formulations with non-marketed compositions or concentrations, commonly called fortified antibiotic eye drops, is a common practice in Ophthalmology in the hospital setting. The aim of this study was to evaluate the in vitro ocular toxicity of the main fortified antibiotic eye drops prepared in the Hospital Pharmacy Departments. We have conducted an in vitro experimental study in order to test the toxicity of gentamicin, amikacin, cefazolin, ceftazidime, vancomycin, colistimethate sodium and imipenem-cilastatin eye drops; their cytotoxicity and acute tissue irritation have been evaluated. Cell-based assays were performed on human stromal keratocytes, using a cell-based impedance biosensor system [xCELLigence Real-Time System Cell Analyzer (RTCA)], and the Hen's Egg Test for the ocular irritation tests. All the eye drops, except for vancomycin and imipenem, have shown a cytotoxic effect dependent on concentration and time; higher concentrations and longer exposure times will cause a steeper decline in the population of stromal keratocytes. Vancomycin showed a major initial cytotoxic effect, which was reverted over time; and imipenem appeared as a non-toxic compound for stromal cells. The eye drops with the highest irritating effect on the ocular surface were gentamicin and vancomycin. Those antibiotic eye drops prepared at the Hospital Pharmacy Departments included in this study were considered as compounds potentially cytotoxic for the ocular surface; this toxicity was dependent on the concentration used.

  8. Evaluation of the in vitro ocular toxicity of the fortified antibiotic eye drops prepared at the Hospital Pharmacy Departments.

    PubMed

    Fernández-Ferreiro, Anxo; González-Barcia, Miguel; Gil-Martínez, María; Santiago Varela, María; Pardo, María; Blanco-Méndez, José; Piñeiro-Ces, Antonio; Lamas Díaz, María Jesús; Otero-Espinar, Francisco J

    2016-01-01

    The use of parenteral antibiotic eye drop formulations with non-marketed compositions or concentrations, commonly called fortified antibiotic eye drops, is a common practice in Ophthalmology in the hospital setting. The aim of this study was to evaluate the in vitro ocular toxicity of the main fortified antibiotic eye drops prepared in the Hospital Pharmacy Departments. We have conducted an in vitro experimental study in order to test the toxicity of gentamicin, amikacin, cefazolin, ceftazidime, vancomycin, colistimethate sodium and imipenem-cilastatin eye drops; their cytotoxicity and acute tissue irritation have been evaluated. Cell-based assays were performed on human stromal keratocytes, using a cell-based impedance biosensor system [xCELLigence Real-Time System Cell Analyzer (RTCA)], and the Hen's Egg Test for the ocular irritation tests. All the eye drops, except for vancomycin and imipenem, have shown a cytotoxic effect dependent on concentration and time; higher concentrations and longer exposure times will cause a steeper decline in the population of stromal keratocytes. Vancomycin showed a major initial cytotoxic effect, which was reverted over time; and imipenem appeared as a non-toxic compound for stromal cells. The eye drops with the highest irritating effect on the ocular surface were gentamicin and vancomycin. Those antibiotic eye drops prepared at the Hospital Pharmacy Departments included in this study were considered as compounds potentially cytotoxic for the ocular surface; this toxicity was dependent on the concentration used. PMID:27570987

  9. Endothelial cells derived from human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  10. Topical, Aqueous, Clear Cyclosporine Formulation Design for Anterior and Posterior Ocular Delivery

    PubMed Central

    Cholkar, Kishore; Gilger, Brian C.; Mitra, Ashim K.

    2015-01-01

    Purpose: The main objective of this study was to optimize cyclosporine (CsA) nanomicellar solution and study in vivo ocular CsA tissue distribution with a topical drop. Methods: An optimized blend of hydrogenated castor oil-40 and octoxynol-40 was prepared to entrap CsA within nanomicelles. In vivo studies were conducted in New Zealand White albino rabbits with topical drop instillation. Results: Average size of CsA-loaded nanomicelles was approximately 22.4 nm. Ocular tissue CsA quantification with single and multiple dosing revealed that CsA levels followed as cornea → iris-ciliary body → aqueous humor → lens. Cyclosporine levels were also found to be in the following order: conjunctiva → sclera → retina/choroid → vitreous humor. High CsA level was detected in retina/choroid (53.7 ng/g tissue). Conclusions: Ocular tissue CsA distribution studies revealed high CsA concentrations in anterior ocular tissues. Moreover, it appears that nanomicelles are transported through a conjunctival–scleral pathway and deliver CsA to the retina/choroid. Results suggest polymeric blend to be a safe carrier for anterior and posterior ocular tissues. Translational Relevance: This study has significant translational relevance, disclosing results that suggest that aqueous nanomicellar approach can provide high corneal and conjunctival CsA concentrations. Aqueous nanomicelles can deliver high drug concentrations not only to anterior but also to back of the eye tissues, including retina. This article provides a platform for noninvasive back of the eye drug delivery with topical eye drops. Aqueous CsA nanomicelles have no perceptible toxicity such as cell membrane damage or cytotoxicity to corneal and retinal pigment epithelial cells. Clear aqueous nanomicellar solution can be translated to human conditions for keratoconjunctivitis sicca and other anti-inflammatory conditions. PMID:25964868

  11. Non-Hodgkin's lymphoma of the ocular adnexa.

    PubMed

    Sasai, K; Yamabe, H; Dodo, Y; Kashii, S; Nagata, Y; Hiraoka, M

    2001-01-01

    This study investigates the relationship between the clinical features of lymphoma in the ocular adnexal region and the revised European and American lymphoma (REAL) classification. Specimens from 41 patients with ocular adnexal lymphoproliferative disease were reassessed pathologically using the REAL classification. Thirty-two patients with primary non-Hodgkin's lymphomas (NHL) were included in the study, almost all of them having been treated with radiotherapy with or without chemotherapy. Seven of the 32 patients with NHL showed distant recurrence after treatment: 3 out of 26 with extranodal marginal zone B-cell lymphoma, and 4 with other types of NHL. Although the three patients with recurrent marginal zone B-cell lymphomas all survived, other patients with recurrent lymphomas died of disease. The REAL classification provides a good indication of tumor control probability and survival of patients with ocular adnexal NHL. Radiation therapy is an effective treatment modality for extranodal marginal zone B-cell lymphoma of the ocular adnexa.

  12. Development of a surface-modified contact lens for the transfer of cultured limbal epithelial cells to the cornea for ocular surface diseases.

    PubMed

    Deshpande, Pallavi; Notara, Maria; Bullett, Nial; Daniels, Julie T; Haddow, David B; MacNeil, Sheila

    2009-10-01

    Our aim was to develop an improved cell transfer system for delivering laboratory-cultured human limbal epithelial cells to the cornea, which would be low risk for the patient and convenient to use for the surgeon. We took a standard contact lens and developed a plasma polymer layer for coating this for attachment of cells to the lens and subsequent transfer of cells to the cornea. A range of plasma polymer surfaces were examined for initial cell attachment using three different combinations of human and rabbit epithelial and stromal cells, initially expanding cells both with and without bovine serum. The most promising surfaces, based on acrylic acid, were then coated onto contact lenses. Cell transfer from the lenses to the denuded surface of a 3D rabbit organ culture model was then used to make a second selection of substrates, which permitted reliable cell transfer. Primary rabbit and human corneal cells attached and proliferated well on acrylic acid-coated surfaces. Reliable transfer of primary epithelial cells from the coated contact lenses to a rabbit cornea was achieved by coating lenses with acrylic acid at 5 W/10 cm(3)/min and using cell densities of 1 x 10(5)/lens and above.

  13. Dendrimer based nanotherapeutics for ocular drug delivery

    NASA Astrophysics Data System (ADS)

    Kambhampati, Siva Pramodh

    PAMAM dendrimers are a class of well-defined, hyperbranched polymeric nanocarriers that are being investigated for ocular drug and gene delivery. Their favorable properties such as small size, multivalency and water solubility can provide significant opportunities for many biologically unstable drugs and allows potentially favorable ocular biodistribution. This work exploits hydroxyl terminated dendrimers (G4-OH) as drug/gene delivery vehicles that can target retinal microglia and pigment epithelium via systemic delivery with improved efficacy at much lower concentrations without any side effects. Two different drugs Triamcinolone acetonide (TA) and N-Acetyl Cysteine (NAC) conjugated to G4-OH dendrimers showed tailorable sustained release in physiological relevant solutions and were evaluated in-vitro and in-vivo. Dendrimer-TA conjugates enhanced the solubility of TA and were 100 fold more effective at lower concentrations than free TA in its anti-inflammatory activity in activated microglia and in suppressing VEGF production in hypoxic RPE cells. Dendrimers targeted activated microglia/macrophages and RPE and retained for a period of 21 days in I/R mice model. The relative retention of intravitreal and intravenous dendrimers was comparable, if a 30-fold intravenous dose is used; suggesting intravenous route targeting retinal diseases are possible with dendrimers. D-NAC when injected intravenously attenuated retinal and choroidal inflammation, significantly reduced (˜73%) CNV growth at early stage of AMD in rat model of CNV. A combination therapy of D-NAC + D-TA significantly suppressed microglial activation and promoted CNV regression in late stages of AMD without causing side-effects. G4-OH was modified with linker having minimal amine groups and incorporation of TA as a nuclear localization enhancer resulted in compact gene vectors with favorable safety profile and achieved high levels of transgene expression in hard to transfect human retinal pigment

  14. [Regulatory B cells in human autoimmune diseases].

    PubMed

    Miyagaki, Tomomitsu

    2015-01-01

    B cells have been generally considered to be positive regulators of immune responses because of their ability to produce antigen-specific antibodies and to activate T cells through antigen presentation. Impairment of B cell development and function may cause autoimmune diseases. Recently, specific B cell subsets that can negatively regulate immune responses have been described in mouse models of a wide variety of autoimmune diseases. The concept of those B cells, termed regulatory B cells, is now recognized as important in the murine immune system. Among several regulatory B cell subsets, IL-10-producing regulatory B cells are the most widely investigated. On the basis of discoveries from studies of such mice, human regulatory B cells that produce IL-10 in most cases are becoming an active area of research. There have been emerging data suggesting the importance of human regulatory B cells in various diseases. Revealing the immune regulation mechanisms of human regulatory B cells in human autoimmune diseases could lead to the development of novel B cell targeted therapies. This review highlights the current knowledge on regulatory B cells, mainly IL-10-producing regulatory B cells, in clinical research using human samples. PMID:26725860

  15. Phototoxicity and cytotoxicity of fullerol in human retinal pigment epithelial cells

    SciTech Connect

    Wielgus, Albert R.; Zhao, Baozhong; Chignell, Colin F.; Hu, Dan-Ning; Roberts, Joan E.

    2010-01-01

    The water-soluble nanoparticle hydroxylated fullerene [fullerol, nano-C{sub 60}(OH){sub 22-26}] has several clinical applications including use as a drug carrier to bypass the blood ocular barriers. We have previously found that fullerol is both cytotoxic and phototoxic to human lens epithelial cells (HLE B-3) and that the endogenous antioxidant lutein blocked some of this phototoxicity. In the present study we have found that fullerol induces cytotoxic and phototoxic damage to human retinal pigment epithelial cells. Accumulation of nano-C{sub 60}(OH){sub 22-26} in the cells was confirmed spectrophotometrically at 405 nm, and cell viability, cell metabolism and membrane permeability were estimated using trypan blue, MTS and LDH assays, respectively. Fullerol was cytotoxic toward hRPE cells maintained in the dark at concentrations higher than 10 muM. Exposure to an 8.5 J.cm{sup -2} dose of visible light in the presence of > 5 muM fullerol induced TBARS formation and early apoptosis, indicating phototoxic damage in the form of lipid peroxidation. Pretreatment with 10 and 20 muM lutein offered some protection against fullerol photodamage. Using time resolved photophysical techniques, we have now confirmed that fullerol produces singlet oxygen with a quantum yield of PHI = 0.05 in D{sub 2}O and with a range of 0.002-0.139 in various solvents. As our previous studies have shown that fullerol also produces superoxide in the presence of light, retinal phototoxic damage may occur through both type I (free radical) and type II (singlet oxygen) mechanisms. In conclusion, ocular exposure to fullerol, particularly in the presence of sunlight, may lead to retinal damage.

  16. Cationic Polyene Phospholipids as DNA Carriers for Ocular Gene Therapy

    PubMed Central

    Machado, Susana; Calado, Sofia; Bitoque, Diogo; Oliveira, Ana Vanessa; Øpstad, Christer L.; Zeeshan, Muhammad; Sliwka, Hans-Richard; Partali, Vassilia; Pungente, Michael D.; Silva, Gabriela A.

    2014-01-01

    Recent success in the treatment of congenital blindness demonstrates the potential of ocular gene therapy as a therapeutic approach. The eye is a good target due to its small size, minimal diffusion of therapeutic agent to the systemic circulation, and low immune and inflammatory responses. Currently, most approaches are based on viral vectors, but efforts continue towards the synthesis and evaluation of new nonviral carriers to improve nucleic acid delivery. Our objective is to evaluate the efficiency of novel cationic retinoic and carotenoic glycol phospholipids, designated C20-18, C20-20, and C30-20, to deliver DNA to human retinal pigmented epithelium (RPE) cells. Liposomes were produced by solvent evaporation of ethanolic mixtures of the polyene compounds and coformulated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol (Chol). Addition of DNA to the liposomes formed lipoplexes, which were characterized for binding, size, biocompatibility, and transgene efficiency. Lipoplex formulations of suitable size and biocompatibility were assayed for DNA delivery, both qualitatively and quantitatively, using RPE cells and a GFP-encoding plasmid. The retinoic lipoplex formulation with DOPE revealed a transfection efficiency comparable to the known lipid references 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]-cholesterol (DC-Chol) and 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EPC) and GeneJuice. The results demonstrate that cationic polyene phospholipids have potential as DNA carriers for ocular gene therapy. PMID:25147812

  17. Trophoblast lineage cells derived from human induced pluripotent stem cells

    SciTech Connect

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  18. Multimodal analysis of ocular inflammation using the endotoxin-induced uveitis mouse model

    PubMed Central

    Chu, Colin J.; Gardner, Peter J.; Copland, David A.; Liyanage, Sidath E.; Gonzalez-Cordero, Anai; kleine Holthaus, Sophia-Martha; Luhmann, Ulrich F. O.; Smith, Alexander J.; Ali, Robin R.; Dick, Andrew D.

    2016-01-01

    ABSTRACT Endotoxin-induced uveitis (EIU) in rodents is a model of acute Toll-like receptor 4 (TLR4)-mediated organ inflammation, and has been used to model human anterior uveitis, examine leukocyte trafficking and test novel anti-inflammatory therapeutics. Wider adoption has been limited by the requirement for manual, non-specific, cell-count scoring of histological sections from each eye as a measure of disease severity. Here, we describe a comprehensive and efficient technique that uses ocular dissection and multimodal tissue analysis. This allows matched disease scoring by multicolour flow cytometric analysis of the inflammatory infiltrate, protein analysis on ocular supernatants and qPCR on remnant tissues of the same eye. Dynamic changes in cell populations could be identified and mapped to chemokine and cytokine changes over the course of the model. To validate the technique, dose-responsive suppression of leukocyte infiltration by recombinant interleukin-10 was demonstrated, as well as selective suppression of the monocyte (CD11b+Ly6C+) infiltrate, in mice deficient for either Ccl2 or Ccr2. Optical coherence tomography (OCT) was used for the first time in this model to allow in vivo imaging of infiltrating vitreous cells, and correlated with CD11b+Ly6G+ counts to provide another unique measure of cell populations in the ocular tissue. Multimodal tissue analysis of EIU is proposed as a new standard to improve and broaden the application of this model. PMID:26794131

  19. Ocular Tolerability of Preservative-Free Tafluprost and Latanoprost: in vitro and in vivo Comparative Study

    PubMed Central

    Esaki, Yoshihiko; Shimazaki, Atsushi; Pellinen, Pertti

    2016-01-01

    Objective: Detrimental effects of the preserved prostaglandin analogs (PGAs) have been thoroughly documented in the published literature. The current work studied two preservative-free (PF) prostaglandin eye drops: PF tafluprost and PF latanoprost. The aim of the study was to compare these two PF formulations in vitro for viability of the human corneal epithelial (HCE-T) cells and in vivo for ocular tolerability of the rabbit eye. Method: Viability of the HCE-T cells was measured by the MTS assay. The SV40-immortalized HCE-T cells were exposed to 100 µL of the drug solutions (at their commercial concentrations) or the culture medium. Ocular irritation was evaluated after repeated instillation of the drug solutions in Japanese white rabbits (Kbl:JW). Results: A significant loss of HCE-T cell viability was observed in vitro immediately after the exposure to PF latanoprost formulation but not immediately after the exposure to PF tafluprost formulation. Congruently, PF latanoprost induced in vivo more irritation on the rabbit eye than PF tafluprost. Conclusion: Comparing these two PF formulations in vitro and in vivo, it is considered that ocular tolerability of PF tafluprost is better than PF latanoprost. Taking into account the composition of these two PF PGA formulations, the solubilizing agent macrogolglycerol hydroxystearate 40 (MGHS40) contained in PF latanoprost formulation is a plausible cause for the negative effects. PMID:27347250

  20. Multimodal analysis of ocular inflammation using the endotoxin-induced uveitis mouse model.

    PubMed

    Chu, Colin J; Gardner, Peter J; Copland, David A; Liyanage, Sidath E; Gonzalez-Cordero, Anai; Kleine Holthaus, Sophia-Martha; Luhmann, Ulrich F O; Smith, Alexander J; Ali, Robin R; Dick, Andrew D

    2016-04-01

    Endotoxin-induced uveitis (EIU) in rodents is a model of acute Toll-like receptor 4 (TLR4)-mediated organ inflammation, and has been used to model human anterior uveitis, examine leukocyte trafficking and test novel anti-inflammatory therapeutics. Wider adoption has been limited by the requirement for manual, non-specific, cell-count scoring of histological sections from each eye as a measure of disease severity. Here, we describe a comprehensive and efficient technique that uses ocular dissection and multimodal tissue analysis. This allows matched disease scoring by multicolour flow cytometric analysis of the inflammatory infiltrate, protein analysis on ocular supernatants and qPCR on remnant tissues of the same eye. Dynamic changes in cell populations could be identified and mapped to chemokine and cytokine changes over the course of the model. To validate the technique, dose-responsive suppression of leukocyte infiltration by recombinant interleukin-10 was demonstrated, as well as selective suppression of the monocyte (CD11b+Ly6C+) infiltrate, in mice deficient for eitherCcl2orCcr2 Optical coherence tomography (OCT) was used for the first time in this model to allowin vivoimaging of infiltrating vitreous cells, and correlated with CD11b+Ly6G+ counts to provide another unique measure of cell populations in the ocular tissue. Multimodal tissue analysis of EIU is proposed as a new standard to improve and broaden the application of this model. PMID:26794131

  1. Ocular Surface Cytotoxicity and Safety Evaluation of Tafluprost, a Recently Developed Anti-Glaucoma Prostaglandin Analog

    PubMed Central

    Niwano, Yoshimi; Iwasawa, Atsuo; Ayaki, Masahiko

    2014-01-01

    In vitro cytotoxicity of tafluprost, which is the most recently developed anti-glaucoma prostaglandin (PG) analog, in ocular surface cells is addressed in comparison with other PG analogs. Irrespective of cell lines and models, the cytotoxicity of anti-glaucoma PG eyedrops was primarily related to the concentration of benzalkonium chloride (BAK) contained in the eyedrops as a preservative. Accordingly, preservative-free tafluprost was apparently less cytotoxic than BAK-preserved PG analogs. Furthermore, our study for cytotoxicity assays on ocular cells, conducted by comprehensive investigations covering a variety of concentrations and treatment times, which is termed the cell viability score (CVS) system, demonstrated that 0.001% BAK-preserved tafluprost was not cytotoxic, and suggested that tafluprost may even reduce the cytotoxic effect of BAK. It has been reported that adverse reactions associated with tafluprost in healthy human volunteers and patients with glaucoma include conjunctival hyperemia, eyelid pigmentation, eyelash bristles, and deepening of upper eyelid sulcus. Nonetheless, most clinical studies have demonstrated that not only preservative-free tafluprost but also BAK-preserved tafluprost is well tolerated and safe in patients with glaucoma and ocular hypertension. PMID:24558301

  2. Generation of Humanized Mice for Analysis of Human Dendritic Cells.

    PubMed

    Saito, Yasuyuki; Ellegast, Jana M; Manz, Markus G

    2016-01-01

    Transplantation of human CD34(+) hematopoietic stem and progenitor cells into severe immunocompromised newborn mice allows the development of a human hemato-lymphoid system (HHLS) including dendritic cells (DCs) in vivo. Therefore, it can be a powerful tool to study human DC subsets, residing in different lymphoid and nonlymphoid organs. We have recently generated novel mouse strains called human cytokine knock-in mice in which human versions of several cytokines are knocked into Rag2(-/-)γC(-/-) strains. In addition, human SIRPα, which is a critical factor to prevent donor cell to be eliminated by host macrophages, is expressed as transgene. These mice efficiently support human myeloid cell development and, indeed, allow the analysis of three major subsets of human DC lineages, plasmacytoid DCs and CD1c(+) and CD141(+) classical DCs. Moreover, these strains also support cytokine-mobilized peripheral blood CD34(+) cell engraftment and subsequent DC development. Here we describe our standard methods to characterize DCs developed in human cytokine knock-in mice.

  3. Ocular delivery of macromolecules

    PubMed Central

    Kim, Yoo-Chun; Chiang, Bryce; Wu, Xianggen; Prausnitz, Mark R.

    2014-01-01

    Biopharmaceuticals are making increasing impact on medicine, including treatment of indications in the eye. Macromolecular drugs are typically given by physician-administered invasive delivery methods, because non--invasive ocular delivery methods, such as eye drops, and systemic delivery, have low bioavailability and/or poor ocular targeting. There is a need to improve delivery of biopharmaceuticals to enable less-invasive delivery routes, less-frequent dosing through controlled-release drug delivery and improved drug targeting within the eye to increase efficacy and reduce side effects. This review discusses the barriers to drug delivery via various ophthalmic routes of administration in the context of macromolecule delivery and discusses efforts to develop controlled-release systems for delivery of biopharmaceuticals to the eye. The growing number of macromolecular therapies in the eye needs improved drug delivery methods that increase drug efficacy, safety and patient compliance. PMID:24998941

  4. An ocular motility conundrum

    PubMed Central

    McElnea, Elizabeth Margaret; Stephenson, Kirk; Lanigan, Bernie; Flitcroft, Ian

    2014-01-01

    Two siblings, an 11-year-old boy and a 7-year-old girl presented with bilateral symmetrical ptosis and limited eye movements. Having already been reviewed on a number of occasions by a variety of specialists in multiple hospital settings a diagnosis of their ocular motility disorder had remained elusive. We describe their cases, outline the differential diagnosis and review the investigations performed which were influential in finally making a diagnosis. PMID:25349186

  5. [Clinical management of severe ocular surface disease].

    PubMed

    Stoiber, J; Grabner, G

    2005-07-01

    Severe ocular surface diseases, such as Stevens-Johnson syndrome, ocular cicatricial pemphigoid or severe ocular burns may result in a significant loss of corneal stem cells, eventually leading to vision impairment or even corneal blindness. In case of unilateral involvement, limbal autografting, by means of transplanting limbal stem cells from the healthy fellow eye, has proved to be an effective procedure for restoring the integrity of the ocular surface. Limbal allografts may be performed in patients with bilateral disease, however, systemic immunosuppression is mandatory in these cases, with a long-term outcome that is frequently reduced compared to limbal autografts due to acute or chronic graft rejection. In recent years, amniotic membrane transplantation has been successfully employed as an additional tool in ocular surface reconstruction. The AlphaCor synthetic cornea, which is made of flexible acrylic may be considered as an alternative in patients with repeated corneal graft failures. Both limbal transplantation and the AlphaCor have been shown to be effective in eyes with an adequate tear film, but are most likely to fail in severe dry eyes or in patients with cicatrising diseases. Such conditions are the domain of keratoprostheses (KPros) with rigid optics, which certainly can be considered as the 'last resort' to restore vision in patients with profound corneal blindness not amenable to conventional corneal and limbal grafting. The osteo-odonto-keratoprosthesis according to Strampelli and modified by Falcinelli makes use of a "biological" support consisting of a longitudinal section of one of the patient's teeth that is also supported by the surrounding alveolar bone tissue. Compared to other devices favourable long-term results have been reported. In patients lacking any usable teeth, implantation of a keratoprosthesis with haptics made of Dacron (Pintucci-KPro) or tibial bone (Temprano-KPro) might be considered.

  6. Ocular Filariasis in US Residents, Returning Travelers, and Expatriates.

    PubMed

    Diaz, James H

    2015-01-01

    Several factors acting in concert now place US residents, returning travelers, and expatriates at risks of contracting ocular filariasis including increasing seroprevalence rates of zoonotic filariasis, international travel bringing tourists to and expatriates from filariasis-endemic regions, and warming temperatures extending distribution ranges of arthropod vectors. To describe the epidemiology and outcomes of ocular filariasis and to recommend strategies for the diagnosis, management, and prevention of ocular filariasis, internet search engines were queried with the key words in order to examine case reports and series of ocular filariasis in the US and elsewhere. Descriptive epidemiological, morphological, and molecular evidence now support increasing cases of ocular filariasis in domestic and wild animals and humans, with most cases caused by filarial worms including Dirofilaria repens and other zoonotic Dirofilaria species and Onchocerca lupi and other zoonotic Onchocerca species. Clinicians should maintain early suspicion of ocular filariasis in US residents, returning travelers, and expatriates who complain of combinations of red eye, eye pain, foreign body sensation, reduced visual acuity, and migrating ocular worms, even without significant peripheral eosinophilia or microfilaremia. Microfilariae of Wuchereria bancrofti, Brugia malayi, and O. volvulus may traverse the eye, but can usually be treated medically. Mobile adult worms trapped in the subconjunctiva or anterior chamber should be removed by ophthalmologists to permit species identification, prevent posterior uveitis and iritis, and stop worm migration into the posterior chamber which could require lens removal and vitrectomy for worm extraction causing further eye damage. PMID:27159510

  7. Ocular Filariasis in US Residents, Returning Travelers, and Expatriates.

    PubMed

    Diaz, James H

    2015-01-01

    Several factors acting in concert now place US residents, returning travelers, and expatriates at risks of contracting ocular filariasis including increasing seroprevalence rates of zoonotic filariasis, international travel bringing tourists to and expatriates from filariasis-endemic regions, and warming temperatures extending distribution ranges of arthropod vectors. To describe the epidemiology and outcomes of ocular filariasis and to recommend strategies for the diagnosis, management, and prevention of ocular filariasis, internet search engines were queried with the key words in order to examine case reports and series of ocular filariasis in the US and elsewhere. Descriptive epidemiological, morphological, and molecular evidence now support increasing cases of ocular filariasis in domestic and wild animals and humans, with most cases caused by filarial worms including Dirofilaria repens and other zoonotic Dirofilaria species and Onchocerca lupi and other zoonotic Onchocerca species. Clinicians should maintain early suspicion of ocular filariasis in US residents, returning travelers, and expatriates who complain of combinations of red eye, eye pain, foreign body sensation, reduced visual acuity, and migrating ocular worms, even without significant peripheral eosinophilia or microfilaremia. Microfilariae of Wuchereria bancrofti, Brugia malayi, and O. volvulus may traverse the eye, but can usually be treated medically. Mobile adult worms trapped in the subconjunctiva or anterior chamber should be removed by ophthalmologists to permit species identification, prevent posterior uveitis and iritis, and stop worm migration into the posterior chamber which could require lens removal and vitrectomy for worm extraction causing further eye damage.

  8. Transcription, Translation, and Function of Lubricin, a Boundary Lubricant, at the Ocular Surface

    PubMed Central

    Schmidt, Tannin A.; Sullivan, David A.; Knop, Erich; Richards, Stephen M.; Knop, Nadja; Liu, Shaohui; Sahin, Afsun; Darabad, Raheleh Rahimi; Morrison, Sheila; Kam, Wendy R.; Sullivan, Benjamin D.

    2013-01-01

    Importance Lubricin may be an important barrier to the development of corneal and conjunctival epitheliopathies that may occur in dry eye disease and contact lens wear. Objective To test the hypotheses that lubricin (ie, proteoglycan 4 [PRG4]), a boundary lubricant, is produced by ocular surface epithelia and acts to protect the cornea and conjunctiva against significant shear forces generated during an eyelid blink and that lubricin deficiency increases shear stress on the ocular surface and promotes corneal damage. Design, Setting, and Participants Human, porcine, and mouse tissues and cells were processed for molecular biological, immunohistochemical, and tribological studies, and wild-type and PRG4 knockout mice were evaluated for corneal damage. Results Our findings demonstrate that lubricin is transcribed and translated by corneal and conjunctival epithelial cells. Lubricin messenger RNA is also present in lacrimal and meibomian glands, as well as in a number of other tissues. Absence of lubricin in PRG4 knockout mice is associated with a significant increase in corneal fluorescein staining. Our studies also show that lubricin functions as an effective friction-lowering boundary lubricant at the human cornea-eyelid interface. This effect is specific and cannot be duplicated by the use of hyaluronate or bovine serum albumin solutions. Conclusions and Relevance Our results show that lubricin is transcribed, translated, and expressed by ocular surface epithelia. Moreover, our findings demonstrate that lubricin presence significantly reduces friction between the cornea and conjunctiva and that lubricin deficiency may play a role in promoting corneal damage. PMID:23599181

  9. Anti-inflammatory effects of hinokitiol on human corneal epithelial cells: an in vitro study

    PubMed Central

    Ye, J; Xu, Y-F; Lou, L-X; Jin, K; Miao, Q; Ye, X; Xi, Y

    2015-01-01

    Purpose This study assessed the anti-inflammatory effect and mechanism of action of hinokitiol in human corneal epithelial (HCE) cells. Methods HCE cells were incubated with different concentrations of hinokitiol or dimethylsulfoxide (DMSO), which served as a vehicle control. Cell viability was evaluated using Cell Counting Kit-8 (CCK-8) assay. After polyriboinosinic:polyribocytidylic acid (poly(I:C)) stimulus, cells with or without hinokitiol were evaluated for the mRNA and protein levels of interleukin-8 (IL-8), interleukin-6 (IL-6), and interleukin-1β (IL-1β) using real-time PCR analysis and an enzyme-linked immunosorbent assay (ELISA), respectively. Nuclear and cytoplasmic levels of nuclear factor kappa B (NF-κB) p65 protein and an inhibitor of NF-κB α (IκBα) were evaluated using western blotting. Results There were no significant differences among the treatment concentrations of hinokitiol compared with cells incubated in medium only. Incubating with 100 μM hinokitiol significantly decreased the mRNA levels of IL-8 to 58.77±10.41% (P<0.01), IL-6 to 64.64±12.71% (P<0.01), and IL-1β to 54.19±8.10% (P<0.01) compared with cells stimulated with poly(I:C) alone. The protein levels of IL-8, IL-6, and IL-1β had similar trend. Further analysis revealed that hinokitiol maintained the levels of IκBα and significantly reduced NF-κB p65 subunit translocation to the nucleus which significantly inhibiting the activation of the NF-κB signal pathway. Conclusion Hinokitiol showed a significant protective effect against ocular surface inflammation through inhibiting the NF-κB pathway, which may indicate the possibility to relieve the ocular surface inflammation of dry eye syndrome (DES). PMID:25952949

  10. Pax6 downregulation mediates abnormal lineage commitment of the ocular surface epithelium in aqueous-deficient dry eye disease.

    PubMed

    Chen, Ying Ting; Chen, Feeling Y T; Vijmasi, Trinka; Stephens, Denise N; Gallup, Marianne; McNamara, Nancy A

    2013-01-01

    Keratinizing squamous metaplasia (SQM) of the ocular surface is a blinding consequence of systemic autoimmune disease and there is no cure. Ocular SQM is traditionally viewed as an adaptive tissue response during chronic keratoconjunctivitis sicca (KCS) that provokes pathological keratinization of the corneal epithelium and fibrosis of the corneal stroma. Recently, we established the autoimmune regulator-knockout (Aire KO) mouse as a model of autoimmune KCS and identified an essential role for autoreactive CD4+ T cells in SQM pathogenesis. In subsequent studies, we noted the down-regulation of paired box gene 6 (Pax6) in both human patients with chronic KCS associated with Sjögren's syndrome and Aire KO mice. Pax6 encodes a pleiotropic transcription factor guiding eye morphogenesis during development. While the postnatal function of Pax6 is largely unknown, we hypothesized that its role in maintaining ocular surface homeostasis was disrupted in the inflamed eye and that loss of Pax6 played a functional role in the initiation and progression of SQM. Adoptive transfer of autoreactive T cells from Aire KO mice to immunodeficient recipients confirmed CD4+ T cells as the principal downstream effectors promoting Pax6 downregulation in Aire KO mice. CD4+ T cells required local signaling via Interleukin-1 receptor (IL-1R1) to provoke Pax6 loss, which prompted a switch from corneal-specific cytokeratin, CK12, to epidermal-specific CK10. The functional role of Pax6 loss in SQM pathogenesis was indicated by the reversal of SQM and restoration of ocular surface homeostasis following forced expression of Pax6 in corneal epithelial cells using adenovirus. Thus, tissue-restricted restoration of Pax6 prevented aberrant epidermal-lineage commitment suggesting adjuvant Pax6 gene therapy may represent a novel therapeutic approach to prevent SQM in patients with chronic inflammatory diseases of the ocular surface.

  11. Pax6 downregulation mediates abnormal lineage commitment of the ocular surface epithelium in aqueous-deficient dry eye disease.

    PubMed

    Chen, Ying Ting; Chen, Feeling Y T; Vijmasi, Trinka; Stephens, Denise N; Gallup, Marianne; McNamara, Nancy A

    2013-01-01

    Keratinizing squamous metaplasia (SQM) of the ocular surface is a blinding consequence of systemic autoimmune disease and there is no cure. Ocular SQM is traditionally viewed as an adaptive tissue response during chronic keratoconjunctivitis sicca (KCS) that provokes pathological keratinization of the corneal epithelium and fibrosis of the corneal stroma. Recently, we established the autoimmune regulator-knockout (Aire KO) mouse as a model of autoimmune KCS and identified an essential role for autoreactive CD4+ T cells in SQM pathogenesis. In subsequent studies, we noted the down-regulation of paired box gene 6 (Pax6) in both human patients with chronic KCS associated with Sjögren's syndrome and Aire KO mice. Pax6 encodes a pleiotropic transcription factor guiding eye morphogenesis during development. While the postnatal function of Pax6 is largely unknown, we hypothesized that its role in maintaining ocular surface homeostasis was disrupted in the inflamed eye and that loss of Pax6 played a functional role in the initiation and progression of SQM. Adoptive transfer of autoreactive T cells from Aire KO mice to immunodeficient recipients confirmed CD4+ T cells as the principal downstream effectors promoting Pax6 downregulation in Aire KO mice. CD4+ T cells required local signaling via Interleukin-1 receptor (IL-1R1) to provoke Pax6 loss, which prompted a switch from corneal-specific cytokeratin, CK12, to epidermal-specific CK10. The functional role of Pax6 loss in SQM pathogenesis was indicated by the reversal of SQM and restoration of ocular surface homeostasis following forced expression of Pax6 in corneal epithelial cells using adenovirus. Thus, tissue-restricted restoration of Pax6 prevented aberrant epidermal-lineage commitment suggesting adjuvant Pax6 gene therapy may represent a novel therapeutic approach to prevent SQM in patients with chronic inflammatory diseases of the ocular surface. PMID:24143217

  12. Hepatic Differentiation from Human Ips Cells Using M15 Cells.

    PubMed

    Umeda, Kahoko; Shiraki, Nobuaki; Kume, Shoen

    2016-01-01

    Here, we describe a procedure of human iPS cells differentiation into the definitive endoderm, further into albumin-expressing and albumin-secreting hepatocyte, using M15, a mesonephros- derived cell line. Approximately 90 % of human iPS cells differentiated into SOX17-positive definitive endoderm then approximately 50 % of cells became albumin-positive cells, and secreted ALB protein. This M15 feeder system for endoderm and hepatic differentiation is a simple and efficient method, and useful for elucidating molecular mechanisms for hepatic fate decision, and could represent an attractive approach for a surrogate cell source for pharmaceutical studies.

  13. Dithiol-PEG-PDLLA micelles: preparation and evaluation as potential topical ocular delivery vehicle.

    PubMed

    Yang, Jian; Yan, Jing; Zhou, Zhihan; Amsden, Brian G

    2014-04-14

    Thiol-modified nanoparticles have potential applications in mucoadhesive drug delivery and have been examined in this regard for topical ocular delivery. In this paper we provide a simple method for the synthesis of a dithiol terminated amphiphilic diblock copolymer. Bidentate dithiol-poly(ethylene glycol)-poly(d,l-lactide) (SH2-PEG-PDLLA) was synthesized and micelles with dithiol-containing coronas were prepared from this block copolymer via the emulsion method. In vitro release studies indicated that the presence of the thiol groups at the surface did not affect the rate of release of dexamethasone, used as a representative ocular drug. The micelles also showed low cytotoxicity to human corneal epithelial cells (HCEC) and murine fibroblast cells (3T3 cells). A hydrophobic red fluorophore, Nile red, was loaded into the core of micelles and confocal microscopy was used to study HCEC uptake and retention of the micelles. The micelles were rapidly endocytosed by the HCEC, with intracellular micelle levels remaining unchanged with incubation times from 5 to 120 min. Interestingly, Nile red was eliminated significantly more slowly from HCECs treated with the thiolated micelles. These results suggest that these dithiolated micelles may be effective for topical ocular drug delivery. PMID:24611557

  14. Human skin cells support thymus-independent T cell development.

    PubMed

    Clark, Rachael A; Yamanaka, Kei-ichi; Bai, Mei; Dowgiert, Rebecca; Kupper, Thomas S

    2005-11-01

    Thymic tissue has previously been considered a requirement for the generation of a functional and diverse population of human T cells. We report that fibroblasts and keratinocytes from human skin arrayed on a synthetic 3-dimensional matrix support the development of functional human T cells from hematopoietic precursor cells in the absence of thymic tissue. Newly generated T cells contained T cell receptor excision circles, possessed a diverse T cell repertoire, and were functionally mature and tolerant to self MHC, indicating successful completion of positive and negative selection. Skin cell cultures expressed the AIRE, Foxn1, and Hoxa3 transcription factors and a panel of autoantigens. Skin and bone marrow biopsies can thus be used to generate de novo functional and diverse T cell populations for potential therapeutic use in immunosuppressed patients. PMID:16224538

  15. Human skin cells support thymus-independent T cell development

    PubMed Central

    Clark, Rachael A.; Yamanaka, Kei-ichi; Bai, Mei; Dowgiert, Rebecca; Kupper, Thomas S.

    2005-01-01

    Thymic tissue has previously been considered a requirement for the generation of a functional and diverse population of human T cells. We report that fibroblasts and keratinocytes from human skin arrayed on a synthetic 3-dimensional matrix support the development of functional human T cells from hematopoietic precursor cells in the absence of thymic tissue. Newly generated T cells contained T cell receptor excision circles, possessed a diverse T cell repertoire, and were functionally mature and tolerant to self MHC, indicating successful completion of positive and negative selection. Skin cell cultures expressed the AIRE, Foxn1, and Hoxa3 transcription factors and a panel of autoantigens. Skin and bone marrow biopsies can thus be used to generate de novo functional and diverse T cell populations for potential therapeutic use in immunosuppressed patients. PMID:16224538

  16. [Ocular surface investigations in dry eye].

    PubMed

    Labbé, A; Brignole-Baudouin, F; Baudouin, C

    2007-01-01

    Dry eye is a complex clinicopathological entity involving tear film, lacrimal glands, eyelids, and a wide spectrum of ocular surface cells, including epithelial, inflammatory, immune, and goblet cells. From the tightly regulated lacrimal film functions and structure, a large variety of investigations have been developed, including tear meniscus measurements, fluorophotometry, meibometry, interference pattern analysis, evaporation rate, tear osmolarity, and thermography. Dry eye conditions also interfere with the ocular surface, causing corneal irregularities that may be explored using the techniques of videokeratography and in vivo confocal microscopy, or optical impairment, as confirmed by aberrometry. At the level of ocular surface cells, impression cytology remains a standard for assessing cell alterations. It has greatly benefited from new confocal microscopy, molecular biology, and flow cytometry techniques. Biological assessment of tear proteins or other mediators is also useful. Major limits should be acknowledged, however, such as technical issues in tear film collection, especially in dry eyes, and the lack of standardization of most measurements. Tear osmolarity, electrophoresis, and dosage of normal tear proteins, such as lysozyme or lactoferrin, remain the most useful tests. Finally, some extraocular explorations such as accessory gland biopsy or serum antinuclear antibody dosage may be useful for assessing the diagnosis of Sjögren's syndrome.

  17. Expression cloning of human B cell immunoglobulins.

    PubMed

    Wardemann, Hedda; Kofer, Juliane

    2013-01-01

    The majority of lymphomas originate from B cells at the germinal center stage or beyond. Preferential selection of B cell clones by a limited set of antigens has been suggested to drive lymphoma development. However, little is known about the specificity of the antibodies expressed by lymphoma cells, and the role of antibody-specificity in lymphomagenesis remains elusive. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire on a single cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells, to the RT-PCR-based amplification of the expressed Igh, Igκ, and Igλ chain genes, and Ig gene expression vector cloning for the in vitro production of monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B cell lymphomas by single cell Ig gene sequencing and on the antibody reactivity of human lymphoma B cells.

  18. Human Cells Display Reduced Apoptotic Function Relative to Chimpanzee Cells

    PubMed Central

    McDonald, John F.

    2012-01-01

    Previously published gene expression analyses suggested that apoptotic function may be reduced in humans relative to chimpanzees and led to the hypothesis that this difference may contribute to the relatively larger size of the human brain and the increased propensity of humans to develop cancer. In this study, we sought to further test the hypothesis that humans maintain a reduced apoptotic function relative to chimpanzees by conducting a series of apoptotic function assays on human, chimpanzee and macaque primary fibroblastic cells. Human cells consistently displayed significantly reduced apoptotic function relative to the chimpanzee and macaque cells. These results are consistent with earlier findings indicating that apoptotic function is reduced in humans relative to chimpanzees. PMID:23029431

  19. In Vivo and Impression Cytology Study on the Effect of Compatible Solutes Eye Drops on the Ocular Surface Epithelial Cell Quality in Dry Eye Patients

    PubMed Central

    Lanzini, Manuela; Curcio, Claudia; Colabelli-Gisoldi, Rossella Annamaria; Mastropasqua, Alessandra; Calienno, Roberta; Agnifili, Luca; Nubile, Mario; Mastropasqua, Leonardo

    2015-01-01

    The aim of this study is to investigate in vivo and ex vivo ocular surface alterations induced by dry eye disease and modification after osmoprotective therapy. Forty-eight eyes of 24 patients suffering from dry eye have been recruited. All patients received Optive (compatible solutes) eye drops in one randomly selected eye and Hylogel (sodium hyaluronate 0,2%) in the other. Follow-up included a baseline visit and further examination 30-, 60-, and 90-day intervals (which comprises clinical evaluation, in vivo confocal microscopy—IVCM—of the ocular surface, and conjunctival impression cytology). No significant difference in Schirmer I Test, TBUT, and vital staining results was observed during the follow-up period in both groups. IVCM showed in all patients an improvement of ocular surface epithelial morphology and signs of inflammation (oedema and keratocyte activation). However, these modifications were more evident in patients treated with Optive therapy. A significant reduction of the expression of MMP9 and IL6 in Optive group was observed during the follow-up period in comparison to Hylogel treatment. Our results show that in dry eye disease therapy based on osmoprotective eye drops determines a reduction of inflammatory activation of ocular surface, with consequent improvement of the quality of corneal and conjunctival epithelium. PMID:26221061

  20. Ocular manifestation of lymphoma in newly diagnosed cats.

    PubMed

    Nerschbach, V; Eule, J C; Eberle, N; Höinghaus, R; Betz, D

    2016-03-01

    Ocular manifestations of lymphoma are described in humans and dogs but rarely in cats. In this prospective study, cats with newly diagnosed and treatment-naïve lymphoma were evaluated concerning clinical stage and ophthalmologic findings. Twenty-six cats were included. In 12 cats (48%), ocular changes were documented. Uveitis anterior and posterior were predominant findings, being present in 58% of affected individuals. Other findings included exophthalmos, corneal surface lesions and chemosis. Eight cats received chemotherapy, two of which had ocular involvement. In these two cats, a complete remission of an anterior and a partial remission of a posterior uveitis were documented. Due to the detection of ocular involvement, a stage migration from stage IV to V occurred in four patients. In the light of these findings, an opthalmological examination may be considered as an important part of staging in feline lymphoma as well as of follow-up examination in affected cats.

  1. Th17 cells in human disease

    PubMed Central

    Tesmer, Laura A.; Lundy, Steven K.; Sarkar, Sujata; Fox, David A.

    2012-01-01

    Summary Our understanding of the role of T cells in human disease is undergoing revision as a result of the discovery of T-helper 17 (Th17) cells, a unique CD4+ T-cell subset characterized by production of interleukin-17 (IL-17). IL-17 is a highly inflammatory cytokine with robust effects on stromal cells in many tissues. Recent data in humans and mice suggest that Th17 cells play an important role in the pathogenesis of a diverse group of immune-mediated diseases, including psoriasis, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and asthma. Initial reports also propose a role for Th17 cells in tumorigenesis and transplant rejection. Important differences, as well as many similarities, are emerging when the biology of Th17 cells in the mouse is compared with corresponding phenomena in humans. As our understanding of human Th17 biology grows, the mechanisms underlying many diseases are becoming more apparent, resulting in a new appreciation for both previously known and more recently discovered cytokines, chemokines, and feedback mechanisms. Given the strong association between excessive Th17 activity and human disease, new therapeutic approaches targeting Th17 cells are highly promising, but the potential safety of such treatments may be limited by the role of these cells in normal host defenses against infection. PMID:18613831

  2. Human genome project and sickle cell disease.

    PubMed

    Norman, Brenda J; Miller, Sheila D

    2011-01-01

    Sickle cell disease is one of the most common genetic blood disorders in the United States that affects 1 in every 375 African Americans. Sickle cell disease is an inherited condition caused by abnormal hemoglobin in the red blood cells. The Human Genome Project has provided valuable insight and extensive research advances in the understanding of the human genome and sickle cell disease. Significant progress in genetic knowledge has led to an increase in the ability for researchers to map and sequence genes for diagnosis, treatment, and prevention of sickle cell disease and other chronic illnesses. This article explores some of the recent knowledge and advances about sickle cell disease and the Human Genome Project.

  3. Vascular Potential of Human Pluripotent Stem Cells

    PubMed Central

    Iacobas, Ionela; Vats, Archana; Hirschi, Karen K.

    2010-01-01

    Cardiovascular disease is the number one cause of death and disability in the US. Understanding the biological activity of stem and progenitor cells, and their ability to contribute to the repair, regeneration and remodeling of the heart and blood vessels affected by pathologic processes is an essential part of the paradigm in enabling us to achieve a reduction in related deaths. Both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are promising sources of cells for clinical cardiovascular therapies. Additional in vitro studies are needed, however, to understand their relative phenotypes and molecular regulation toward cardiovascular cell fates. Further studies in translational animal models are also needed to gain insights into the potential and function of both human ES- and iPS-derived cardiovascular cells, and enable translation from experimental and pre-clinical studies to human trials. PMID:20453170

  4. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  5. Comparison of ex vivo cultivated human limbal epithelial stem cell viability and proliferation on different substrates.

    PubMed

    Chakraborty, Anindita; Dutta, Jayanta; Das, Sumantra; Datta, Himadri

    2013-12-01

    Ocular surface injury causes serious vision-related problems especially when limbal stem cells are affected. Treatment lies in the transplantation of viable donor cells. Various substrates are used for the cultivation of limbal epithelial stem cells. In the present study, viability and proliferation of ex vivo cultured limbal epithelial stem cells were examined on a variety of substrates like collagen type IV, direct plastic Petri plate, intact amniotic membrane and denuded amniotic membrane. Viability and proliferation of cells were examined by colorimetric assay and [(3)H]-thymidine incorporation study. Furthermore, matrix metalloproteinase is known to be a key regulator in stem cell migration and proliferation. This enzyme activity was studied by gelatinolytic zymography. It was found from this study that although human limbal epithelial stem cells could be cultivated on different substrates such as collagen type IV, direct plastic Petri plate, intact amniotic membrane and denuded amniotic membrane, maximum growth and proliferation was observed when cultured on intact amniotic membrane. The number of patients suffering from limbal epithelial stem cell deficiency is large compared to donor tissues available for transplantation. Hence, increased cell viability and proliferation is required to serve more patients.

  6. [Genetic ocular diseases].

    PubMed

    Hamel, Christian P

    2015-04-01

    Genetic ocular diseases are inherited Mendelian conditions (prevalence 1/1000) in which any tissue of the eye could be involved (cornea, lens, iridocomeal angle, vitrous, retina, choroid, sclera). More than 200 genes are responsible for inherited retinal dystrophies and even more genes remain to be identified. These genes belong to many metabolisms essential to the photoreceptor function. Gene therapy and retinal prosthesis are the two most promising therapeutic strategies currently in clinical trials which are expected to provide visual improvement in short term.

  7. Comparison of the Efficacy of Fluorometholone With and Without Benzalkonium Chloride in Ocular Surface Disease

    PubMed Central

    Kim, Yeoun-Hee; Jung, Jae-Chang; Jung, Soon-Young; Yu, Sung; Lee, Kyoo Won

    2015-01-01

    Purpose: The purpose of this study was to compare the cytotoxicity and antiinflammatory effect of preserved and unpreserved 0.1% fluorometholone (FML). Methods: Drug-induced morphological changes and cytotoxicity were examined in human corneal epithelial cells. Dry eye was induced in mice by treatment with 0.2% benzalkonium chloride (BAC) for the first 2 weeks, and then, the eyes (4 groups; Normal saline, BAC, preserved FML, and unpreserved FML) were treated thrice daily with each formulation for the next 2 weeks. Corneal tissues were embedded in paraffin and stained with hematoxylin and eosin for histopathological examination. Immunofluorescence staining was performed for tumor necrosis factor-α, interleukin-6, and human leukocyte antigen–DR. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay was performed to evaluate drug-induced cytotoxicity. Results: BAC and preserved FML caused cell shrinkage and detachment from the plate in a dose-dependent manner, and cell viability decreased significantly. However, cytotoxicity was reduced on treatment with unpreserved FML. Hematoxylin-eosin staining revealed surface desquamation, irregular surface, loss of cell borders, and stromal shrinkage in the group treated with BAC. On BAC exposure, tumor necrosis factor-α, interleukin-6, and human leukocyte antigen–DR were strongly detected, and cytotoxicity was markedly increased, as evidenced by a positive result in the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Ocular surface damage and inflammation were slightly reduced on treatment with preserved FML. In comparison, unpreserved FML did not induce morphological changes; moreover, decreased cell cytotoxicity and ocular surface inflammation were observed. Conclusions: The cytotoxicity of antiinflammatory eye drops evaluated in this study was induced by the preservative BAC. Accordingly, unpreserved FML is more effective than preserved eye drops in decreasing ocular inflammation. PMID

  8. Toxicity of diuron in human cancer cells.

    PubMed

    Huovinen, Marjo; Loikkanen, Jarkko; Naarala, Jonne; Vähäkangas, Kirsi

    2015-10-01

    Diuron is a substituted phenylurea used as a herbicide to control broadleaf and grass weeds and as a biocidal antifouling agent. Diuron is carcinogenic in rat urinary bladder and toxic to the reproductive system of oysters, sea urchins and lizards. The few studies carried out in human cells do not include the genotoxicity of diuron. We have investigated the toxicity of diuron in human breast adenocarcinoma (MCF-7) and human placental choriocarcinoma (BeWo) cells. The production of reactive oxygen species (ROS) was statistically significantly increased in both cell lines but only at the highest 200 μM concentration. Diuron clearly reduced the viability of BeWo, but not MCF-7 cells. The relative cell number was decreased in both cell lines indicative of inhibition of cell proliferation. In the Comet assay, diuron increased DNA fragmentation in MCF-7 but not in BeWo cells. The expressions of p53 protein, a marker for cell stress, and p21 protein, a transcriptional target of p53, were increased, but only in MCF-7 cells. In conclusion, our results suggest that diuron is cytotoxic and potentially genotoxic in a tissue-specific manner and that ROS play a role in its toxicity. Thus, exposure to diuron may exert harmful effects on fetal development and damage human health. PMID:26086120

  9. Glaucoma drainage implant surgery and ocular surface transplant graft preservation.

    PubMed

    Aref, Ahmad A; Sivaraman, Kavitha R; Djalilian, Ali R

    2015-05-01

    Glaucoma may develop or worsen after ocular surface transplantation and often requires surgical management for adequate intraocular pressure control. Traditional glaucoma filtering procedures in patients with prior ocular surface transplant may be problematic for several reasons, which include mechanical disruption of the pre-existing graft, epithelial and stem cell toxicity induced by antifibrotic agents, and increased risk of future corneal transplantation failure. We describe the implantation of a glaucoma drainage implant via a limbal-based conjunctival incision with tube placement in the ciliary sulcus in three eyes of two patients with prior ocular surface transplantation. At a follow-up interval of 3-7 months, all three eyes have excellent postoperative control of intraocular pressure, stable vision, and healthy ocular surface grafts.

  10. The Human Natural Killer Cell Immune Synapse

    NASA Astrophysics Data System (ADS)

    Davis, Daniel M.; Chiu, Isaac; Fassett, Marlys; Cohen, George B.; Mandelboim, Ofer; Strominger, Jack L.

    1999-12-01

    Inhibitory killer Ig-like receptors (KIR) at the surface of natural killer (NK) cells induced clustering of HLA-C at the contacting surface of target cells. In this manner, inhibitory immune synapses were formed as human NK cells surveyed target cells. At target/NK cell synapses, HLA-C/KIR distributed into rings around central patches of intercellular adhesion molecule-1/lymphocyte function-associated antigen-1, the opposite orientation to mature murine T cell-activating synapses. This organization of protein was stable for at least 20 min. Cells could support multiple synapses simultaneously, and clusters of HLA-C moved as NK cells crawled over target cells. Clustering required a divalent metal cation, explaining how metal chelators inhibit KIR function. Surprisingly, however, formation of inhibitory synapses was unaffected by ATP depletion and the cytoskeletal inhibitors, colchicine and cytochalsins B and D. Clearly, supramolecular organization within plasma membranes is critical for NK cell immunosurveillance.

  11. Ocular Surface as Barrier of Innate Immunity

    PubMed Central

    Bolaños-Jiménez, Rodrigo; Navas, Alejandro; López-Lizárraga, Erika Paulina; de Ribot, Francesc March; Peña, Alexandra; Graue-Hernández, Enrique O; Garfias, Yonathan

    2015-01-01

    Sight is one of the most important senses that human beings possess. The ocular system is a complex structure equipped with mechanisms that prevent or limit damage caused by physical, chemical, infectious and environmental factors. These mechanisms include a series of anatomical, cellular and humoral factors that have been a matter of study. The cornea is not only the most powerful and important lens of the optical system, but also, it has been involved in many other physiological and pathological processes apart from its refractive nature; the morphological and histological properties of the cornea have been thoroughly studied for the last fifty years; drawing attention in its molecular characteristics of immune response. This paper will review the anatomical and physiological aspects of the cornea, conjunctiva and lacrimal apparatus, as well as the innate immunity at the ocular surface. PMID:26161163

  12. [Ocular hypertension in herpes simplex keratouveitis].

    PubMed

    Burcea, M; Avram, Corina-Ioana; Stamate, Alina-Cristina; Malciolu, R; Oprea, S; Zemba, M

    2014-01-01

    The herpes simplex virus is one of the most common pathogens in humans, who are seropositive for the virus in 90% of the cases at the adult age. It determines reccurent infections in more than a third of the population and these infections depend on the immune response of the host. Ocular infections of newborns are due to the herpes simplex virus type 2, meanwhile type 1 is found predominantly at adults; almost all ocular structures can be affected. HSV-1 in the most frequent etiologic agent in infectious anterior uveitis (with the varicelo-zosterian virus) and it is responsible for 6-10% of all cases of anterior uveitis. More than half of the keratouveitides due to HSV will develop intraocular hypertension and open-angle secondary glaucoma, during reccurences and most of them will resolve after proper control of inflammation.

  13. HMGB1 in the pathogenesis of ultraviolet-induced ocular surface inflammation.

    PubMed

    Han, S J; Min, H J; Yoon, S C; Ko, E A; Park, S J; Yoon, J-H; Shin, J-S; Seo, K Y

    2015-01-01

    High-mobility group box 1 (HMGB1) functions as a transcription-enhancing nuclear protein as well as a crucial cytokine that regulates inflammation. This study demonstrated that secretion of HMGB1 due to ultraviolet (UV) radiation inducing ocular surface inflammation-mediated reactive oxygen species (ROS) production. After treating conjunctival epithelial cells with UV radiation, HMGB1 was translocated from the nucleus to the cytoplasm and then eventually to the extracellular space. HMGB1 played a crucial role in UV-induced conjunctival neutrophil infiltration, which subsided when mice were pretreated with the HMGB1 inhibitors soluble receptor for advanced glycation endproducts (sRAGEs) and HMGB1 A box protein. In case of using ROS quencher, there was decrease in UV-induced HMGB1 secretion in conjunctival epithelial cells and mice. Considering that UV-induced chronic inflammation causes ocular surface change as pterygium, we have confirmed high HMGB1 translocation and ROS expression in human pterygium. Our findings therefore revealed a previously unknown mechanism of UV-induced ocular inflammation related to ROS and HMGB1 suggesting a new medical therapeutic target. PMID:26313914

  14. HMGB1 in the pathogenesis of ultraviolet-induced ocular surface inflammation

    PubMed Central

    Han, S J; Min, H J; Yoon, S C; Ko, E A; Park, S J; Yoon, J-H; Shin, J-S; Seo, K Y

    2015-01-01

    High-mobility group box 1 (HMGB1) functions as a transcription-enhancing nuclear protein as well as a crucial cytokine that regulates inflammation. This study demonstrated that secretion of HMGB1 due to ultraviolet (UV) radiation inducing ocular surface inflammation-mediated reactive oxygen species (ROS) production. After treating conjunctival epithelial cells with UV radiation, HMGB1 was translocated from the nucleus to the cytoplasm and then eventually to the extracellular space. HMGB1 played a crucial role in UV-induced conjunctival neutrophil infiltration, which subsided when mice were pretreated with the HMGB1 inhibitors soluble receptor for advanced glycation endproducts (sRAGEs) and HMGB1 A box protein. In case of using ROS quencher, there was decrease in UV-induced HMGB1 secretion in conjunctival epithelial cells and mice. Considering that UV-induced chronic inflammation causes ocular surface change as pterygium, we have confirmed high HMGB1 translocation and ROS expression in human pterygium. Our findings therefore revealed a previously unknown mechanism of UV-induced ocular inflammation related to ROS and HMGB1 suggesting a new medical therapeutic target. PMID:26313914

  15. Global Metabonomic and Proteomic Analysis of Human Conjunctival Epithelial Cells (IOBA-NHC) in Response to Hyperosmotic Stress.

    PubMed

    Chen, Liyan; Li, Jing; Guo, Tiannan; Ghosh, Sujoy; Koh, Siew Kwan; Tian, Dechao; Zhang, Liang; Jia, Deyong; Beuerman, Roger W; Aebersold, Ruedi; Chan, Eric Chun Yong; Zhou, Lei

    2015-09-01

    "Dry eye" is a multifactorial inflammatory disease affecting the ocular surface. Tear hyperosmolarity in dry eye contributes to inflammation and cell damage. Recent research efforts on dry eye have been directed toward biomarker discovery for diagnosis, response to treatment, and disease mechanisms. This study employed a spontaneously immortalized normal human conjunctival cell line, IOBA-NHC, as a model to investigate hyperosmotic stress-induced changes of metabolites and proteins. Global and targeted metabonomic analyses as well as proteomic analysis were performed on IOBA-NHC cells incubated in serum-free media at 280 (control), 380, and 480 mOsm for 24 h. Twenty-one metabolites and seventy-six iTRAQ-identified proteins showed significant changes under at least one hyperosmotic stress treatment as compared with controls. SWATH-based proteomic analysis further confirmed the involvement of inflammatory pathways such as prostaglandin 2 synthesis in IOBA-NHC cells under hyperosmotic stress. This study is the first to identify glycerophosphocholine synthesis and O-linked β-N-acetylglucosamine glycosylation as key activated pathways in ocular surface cells under hyperosmotic stress. These findings extend the current knowledge in metabolite markers of dry eye and provide potential therapeutic targets for its treatment.

  16. Satellite cells in human skeletal muscle plasticity

    PubMed Central

    Snijders, Tim; Nederveen, Joshua P.; McKay, Bryon R.; Joanisse, Sophie; Verdijk, Lex B.; van Loon, Luc J. C.; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models. PMID:26557092

  17. Ocular Pathology: Role of Emerging Viruses in the Asia-Pacific Region-A Review.

    PubMed

    Ranjan, Ratnesh; Ranjan, Shikha

    2014-01-01

    The role of viral infections in ocular pathology varies greatly, involving all the components of the eye. Some viruses like herpes simplex, herpes zoster, adenovirus, enterovirus 70, influenza virus, human immunodeficiency virus, and cytomegalovirus are well-known for their role in ocular pathology. In recent years, emerging and resurging viral infections represent an important public health problem. The Asia-Pacific region has witnessed a number of pandemic and epidemic outbreaks caused by these viruses during the last 2 decades. The number of ocular complications being reported in patients of these viral infections has also increased significantly during this period. Ophthalmologists and physicians should be aware of ocular manifestations of newly emerging or resurging viral diseases. We conducted a review of the literature published during the last 20 years with the objectives of finding out outbreaks of emerging and reemerging viruses in the Asia-Pacific region and finding out any ocular involvement in these viral infections. An iterative search of the MEDLINE and the Google databases was made using the search terms emerging virus, ocular manifestations, ocular complications, Chikungunya, Dengue, Japanese encephalitis, West Nile fever, Kyasanur forest disease, Rift valley fever, Hantavirus, Henipavirus, Influenza virus, Enterovirus 71, and Asia-Pacific region, separately and with reported ocular involvement in combination. This review article discusses the epidemiology and the systemic and ocular manifestations of all emerging viral infections with reported ocular involvement in the Asia-Pacific region. PMID:26107917

  18. Ocular Pathology: Role of Emerging Viruses in the Asia-Pacific Region-A Review.

    PubMed

    Ranjan, Ratnesh; Ranjan, Shikha

    2014-01-01

    The role of viral infections in ocular pathology varies greatly, involving all the components of the eye. Some viruses like herpes simplex, herpes zoster, adenovirus, enterovirus 70, influenza virus, human immunodeficiency virus, and cytomegalovirus are well-known for their role in ocular pathology. In recent years, emerging and resurging viral infections represent an important public health problem. The Asia-Pacific region has witnessed a number of pandemic and epidemic outbreaks caused by these viruses during the last 2 decades. The number of ocular complications being reported in patients of these viral infections has also increased significantly during this period. Ophthalmologists and physicians should be aware of ocular manifestations of newly emerging or resurging viral diseases. We conducted a review of the literature published during the last 20 years with the objectives of finding out outbreaks of emerging and reemerging viruses in the Asia-Pacific region and finding out any ocular involvement in these viral infections. An iterative search of the MEDLINE and the Google databases was made using the search terms emerging virus, ocular manifestations, ocular complications, Chikungunya, Dengue, Japanese encephalitis, West Nile fever, Kyasanur forest disease, Rift valley fever, Hantavirus, Henipavirus, Influenza virus, Enterovirus 71, and Asia-Pacific region, separately and with reported ocular involvement in combination. This review article discusses the epidemiology and the systemic and ocular manifestations of all emerging viral infections with reported ocular involvement in the Asia-Pacific region.

  19. Human progenitor cells for bone engineering applications.

    PubMed

    de Peppo, G M; Thomsen, P; Karlsson, C; Strehl, R; Lindahl, A; Hyllner, J

    2013-06-01

    In this report, the authors review the human skeleton and the increasing burden of bone deficiencies, the limitations encountered with the current treatments and the opportunities provided by the emerging field of cell-based bone engineering. Special emphasis is placed on different sources of human progenitor cells, as well as their pros and cons in relation to their utilization for the large-scale construction of functional bone-engineered substitutes for clinical applications. It is concluded that, human pluripotent stem cells represent a valuable source for the derivation of progenitor cells, which combine the advantages of both embryonic and adult stem cells, and indeed display high potential for the construction of functional substitutes for bone replacement therapies.

  20. Ocular tuberculosis: current perspectives

    PubMed Central

    Shakarchi, Faiz I

    2015-01-01

    The World Health Organization currently estimates that nearly two billion people, or one-third of the world’s population, are infected by tuberculosis, and that roughly 10% of the infected people are symptomatic. Tuberculosis affects the lungs in 80% of patients, while in the remaining 20% the disease may affect other organs, including the eye. Uveitis can be seen concurrently with tuberculosis, but a direct association is difficult to prove. Ocular tuberculosis is usually not associated with clinical evidence of pulmonary tuberculosis, as up to 60% of extrapulmonary tuberculosis patients may not have pulmonary disease. The diagnosis of tuberculous uveitis is often problematic and in nearly all reported cases, the diagnosis was only presumptive. Tuberculous uveitis is a great mimicker of various uveitis entities and it can be considered in the differential diagnosis of any type of intraocular inflammation. It is still unknown if ocular manifestations result from a direct mycobacterium infection or hypersensitivity reaction and this is reflected on the management of tuberculous uveitis. Prevalence of tuberculosis as an etiology of uveitis may reach up to 10% in endemic areas. Tuberculous uveitis is a vision-threatening disease that inevitably leads to blindness if not properly diagnosed and treated. The aim of this review is to illustrate the various clinical features and management of presumed tuberculous uveitis. The current review focuses on the diagnostic criteria, significance of tuberculin skin test, and use of systemic corticosteroids in the management of tuberculous uveitis as recommended in recent publications. PMID:26648690

  1. Ocular injury in hurling

    PubMed Central

    Flynn, T; Fennessy, K; Horgan, N; Walsh, B; O'Connell, E; Cleary, P; Beatty, S; MacEwan, C

    2005-01-01

    Objectives: To describe the clinical characteristics of ocular injuries sustained in hurling in the south of Ireland and to investigate reasons for non-use of protective headgear and eye wear. Results: Hurling related eye injuries occurred most commonly in young men. Fifty two patients (17%) required hospital admission, with hyphaema accounting for 71% of admissions. Ten injuries required intraocular surgical intervention: retinal detachment repair (5); macular hole surgery (1); repair of partial thickness corneal laceration (1); repair of globe perforation (1); enucleation (1); trabeculectomy for post-traumatic glaucoma (1). Fourteen eyes (4.5%) had a final best corrected visual acuity (BCVA) of <6/12 and six (2%) had BCVA <3/60. In the survey, 63 players (48.5%) reported wearing no protective facemask while playing hurling. Impairment of vision was the most common reason cited for non-use. Conclusions: Hurling related injury is a significant, and preventable, cause of ocular morbidity in young men in Ireland. The routine use of appropriate protective headgear and faceguards would result in a dramatic reduction in the incidence and severity of these injuries, and should be mandatory. PMID:16046328

  2. Ocular drug delivery.

    PubMed

    Gaudana, Ripal; Ananthula, Hari Krishna; Parenky, Ashwin; Mitra, Ashim K

    2010-09-01

    Ocular drug delivery has been a major challenge to pharmacologists and drug delivery scientists due to its unique anatomy and physiology. Static barriers (different layers of cornea, sclera, and retina including blood aqueous and blood-retinal barriers), dynamic barriers (choroidal and conjunctival blood flow, lymphatic clearance, and tear dilution), and efflux pumps in conjunction pose a significant challenge for delivery of a drug alone or in a dosage form, especially to the posterior segment. Identification of influx transporters on various ocular tissues and designing a transporter-targeted delivery of a parent drug has gathered momentum in recent years. Parallelly, colloidal dosage forms such as nanoparticles, nanomicelles, liposomes, and microemulsions have been widely explored to overcome various static and dynamic barriers. Novel drug delivery strategies such as bioadhesive gels and fibrin sealant-based approaches were developed to sustain drug levels at the target site. Designing noninvasive sustained drug delivery systems and exploring the feasibility of topical application to deliver drugs to the posterior segment may drastically improve drug delivery in the years to come. Current developments in the field of ophthalmic drug delivery promise a significant improvement in overcoming the challenges posed by various anterior and posterior segment diseases. PMID:20437123

  3. Ocular drug delivery.

    PubMed

    Gaudana, Ripal; Ananthula, Hari Krishna; Parenky, Ashwin; Mitra, Ashim K

    2010-09-01

    Ocular drug delivery has been a major challenge to pharmacologists and drug delivery scientists due to its unique anatomy and physiology. Static barriers (different layers of cornea, sclera, and retina including blood aqueous and blood-retinal barriers), dynamic barriers (choroidal and conjunctival blood flow, lymphatic clearance, and tear dilution), and efflux pumps in conjunction pose a significant challenge for delivery of a drug alone or in a dosage form, especially to the posterior segment. Identification of influx transporters on various ocular tissues and designing a transporter-targeted delivery of a parent drug has gathered momentum in recent years. Parallelly, colloidal dosage forms such as nanoparticles, nanomicelles, liposomes, and microemulsions have been widely explored to overcome various static and dynamic barriers. Novel drug delivery strategies such as bioadhesive gels and fibrin sealant-based approaches were developed to sustain drug levels at the target site. Designing noninvasive sustained drug delivery systems and exploring the feasibility of topical application to deliver drugs to the posterior segment may drastically improve drug delivery in the years to come. Current developments in the field of ophthalmic drug delivery promise a significant improvement in overcoming the challenges posed by various anterior and posterior segment diseases.

  4. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    PubMed

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-01-01

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. PMID:26840224

  5. Human-Mouse Chimerism Validates Human Stem Cell Pluripotency.

    PubMed

    Mascetti, Victoria L; Pedersen, Roger A

    2016-01-01

    Pluripotent stem cells are defined by their capacity to differentiate into all three tissue layers that comprise the body. Chimera formation, generated by stem cell transplantation to the embryo, is a stringent assessment of stem cell pluripotency. However, the ability of human pluripotent stem cells (hPSCs) to form embryonic chimeras remains in question. Here we show using a stage-matching approach that human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) have the capacity to participate in normal mouse development when transplanted into gastrula-stage embryos, providing in vivo functional validation of hPSC pluripotency. hiPSCs and hESCs form interspecies chimeras with high efficiency, colonize the embryo in a manner predicted from classical developmental fate mapping, and differentiate into each of the three primary tissue layers. This faithful recapitulation of tissue-specific fate post-transplantation underscores the functional potential of hPSCs and provides evidence that human-mouse interspecies developmental competency can occur.

  6. Studies on Lipolysis in Human Adipose Cells *

    PubMed Central

    Galton, David J.; Bray, George A.

    1967-01-01

    Epinephrine stimulated lipolysis and the uptake of oxygen by subcutaneous adipose cells of man. When glucose-14C was present in the medium, its utilization was not increased by epinephrine, although lipolysis was accelerated. Insulin did not reduce the production of fatty acids that had been stimulated by epinephrine. The combination of human growth hormone and cortisol stimulated the production of fatty acids by isolated human adipose cells to a lesser extent than epinephrine. When human growth hormone or cortisol was used singly, or when bovine growth hormone was added in combination with cortisol, no effect on fatty acid production was observed. Furthermore, an acetone-dried preparation of human pituitary glands, which was shown to stimulate lipolysis in rat adipose cells, had no effect on fatty acid formation in human adipose cells. This suggested that the human pituitary gland contained no more potent lipolytic agents than growth hormone and was supported by the lack of response of human adipose cells to purified corticotropin. PMID:6021210

  7. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  8. Mitochondria in human pluripotent stem cell apoptosis.

    PubMed

    TeSlaa, Tara; Setoguchi, Kiyoko; Teitell, Michael A

    2016-04-01

    Human pluripotent stem cells (hPSCs) have great potential in regenerative medicine because they can differentiate into any cell type in the body. Genome integrity is vital for human development and for high fidelity passage of genetic information across generations through the germ line. To ensure genome stability, hPSCs maintain a lower rate of mutation than somatic cells and undergo rapid apoptosis in response to DNA damage and additional cell stresses. Furthermore, cellular metabolism and the cell cycle are also differentially regulated between cells in pluripotent and differentiated states and can aid in protecting hPSCs against DNA damage and damaged cell propagation. Despite these safeguards, clinical use of hPSC derivatives could be compromised by tumorigenic potential and possible malignant transformation from failed to differentiate cells. Since hPSCs and mature cells differentially respond to cell stress, it may be possible to specifically target undifferentiated cells for rapid apoptosis in mixed cell populations to enable safer use of hPSC-differentiated cells in patients.

  9. Mitochondria in human pluripotent stem cell apoptosis.

    PubMed

    TeSlaa, Tara; Setoguchi, Kiyoko; Teitell, Michael A

    2016-04-01

    Human pluripotent stem cells (hPSCs) have great potential in regenerative medicine because they can differentiate into any cell type in the body. Genome integrity is vital for human development and for high fidelity passage of genetic information across generations through the germ line. To ensure genome stability, hPSCs maintain a lower rate of mutation than somatic cells and undergo rapid apoptosis in response to DNA damage and additional cell stresses. Furthermore, cellular metabolism and the cell cycle are also differentially regulated between cells in pluripotent and differentiated states and can aid in protecting hPSCs against DNA damage and damaged cell propagation. Despite these safeguards, clinical use of hPSC derivatives could be compromised by tumorigenic potential and possible malignant transformation from failed to differentiate cells. Since hPSCs and mature cells differentially respond to cell stress, it may be possible to specifically target undifferentiated cells for rapid apoptosis in mixed cell populations to enable safer use of hPSC-differentiated cells in patients. PMID:26828436

  10. Paracrine effects of haematopoietic cells on human mesenchymal stem cells

    PubMed Central

    Zhou, Shuanhu

    2015-01-01

    Stem cell function decline during ageing can involve both cell intrinsic and extrinsic mechanisms. Bone and blood formation are intertwined in bone marrow, therefore haematopoietic cells and bone cells could be extrinsic factors for each other. In this study, we assessed the paracrine effects of extrinsic factors from haematopoietic cells on human mesenchymal stem cells (MSCs). Our data showed that haematopoietic cells stimulate proliferation, osteoblast differentiation and inhibit senescence of MSCs; TNF-α, PDGF-β, Wnt1, 4, 6, 7a and 10a, sFRP-3 and sFRP-5 are dominantly expressed in haematopoietic cells; the age-related increase of TNF-α in haematopoietic cells may perform as a negative factor in the interactions of haematopoietic cells on MSCs via TNF-α receptors and then activating NF-κB signaling or Wnt/β-catenin signaling to induce senescence and reduce osteoblast differentiation in MSCs. In conclusion, our data demonstrated that there are paracrine interactions of haematopoietic cells on human MSCs; immunosenescence may be one of the extrinsic mechanisms by which skeletal stem cell function decline during human skeletal ageing. PMID:26030407

  11. Human Stem Cells for Craniomaxillofacial Reconstruction

    PubMed Central

    Kirkpatrick, William Niall Alexander; Cameron, Malcolm Gregor

    2014-01-01

    Human stem cell research represents an exceptional opportunity for regenerative medicine and the surgical reconstruction of the craniomaxillofacial complex. The correct architecture and function of the vastly diverse tissues of this important anatomical region are critical for life supportive processes, the delivery of senses, social interaction, and aesthetics. Craniomaxillofacial tissue loss is commonly associated with inflammatory responses of the surrounding tissue, significant scarring, disfigurement, and psychological sequelae as an inevitable consequence. The in vitro production of fully functional cells for skin, muscle, cartilage, bone, and neurovascular tissue formation from human stem cells, may one day provide novel materials for the reconstructive surgeon operating on patients with both hard and soft tissue deficit due to cancer, congenital disease, or trauma. However, the clinical translation of human stem cell technology, including the application of human pluripotent stem cells (hPSCs) in novel regenerative therapies, faces several hurdles that must be solved to permit safe and effective use in patients. The basic biology of hPSCs remains to be fully elucidated and concerns of tumorigenicity need to be addressed, prior to the development of cell transplantation treatments. Furthermore, functional comparison of in vitro generated tissue to their in vivo counterparts will be necessary for confirmation of maturity and suitability for application in reconstructive surgery. Here, we provide an overview of human stem cells in disease modeling, drug screening, and therapeutics, while also discussing the application of regenerative medicine for craniomaxillofacial tissue deficit and surgical reconstruction. PMID:24564584

  12. Engineering human cells and tissues through pluripotent stem cells.

    PubMed

    Jones, Jeffrey R; Zhang, Su-Chun

    2016-08-01

    The utility of human pluripotent stem cells (hPSCs) depends on their ability to produce functional cells and tissues of the body. Two strategies have been developed: directed differentiation of enriched populations of cells that match a regional and functional profile and spontaneous generation of three-dimensional organoids that resemble tissues in the body. Genomic editing of hPSCs and their differentiated cells broadens the use of the hPSC paradigm in studying human cellular function and disease as well as developing therapeutics.

  13. Ocular tissue engineering: current and future directions.

    PubMed

    Karamichos, D

    2015-01-01

    Tissue engineering (TE) is a concept that was first emerged in the early 1990s to provide solutions to severe injured tissues and/or organs [1]. The dream was to be able to restore and replace the damaged tissue with an engineered version which would ultimately help overcome problems such as donor shortages, graft rejections, and inflammatory responses following transplantation. While an incredible amount of progress has been made, suggesting that TE concept is viable, we are still not able to overcome major obstacles. In TE, there are two main strategies that researchers have adopted: (1) cell-based, where cells are been manipulated to create their own environment before transplanted to the host, and (2) scaffold-based, where an extracellular matrix is created to mimic in vivo structures. TE approaches for ocular tissues are available and have indeed come a long way, over the last decades; however more clinically relevant ocular tissue substitutes are needed. Figure 1 highlights the importance of TE in ocular applications and indicates the avenues available based on each tissue.[...]. PMID:25695336

  14. HLA Engineering of Human Pluripotent Stem Cells

    PubMed Central

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-01-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I–negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8+ T cell responses were reduced in class I–negative cells that had undergone differentiation in embryoid bodies. These B2M−/− ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines. PMID:23629003

  15. First report of canine ocular thelaziosis in the Muntenia Region, Romania.

    PubMed

    Tudor, Poliana; Bădicu, Adina; Mateescu, Romaniţa; Tudor, Niculae; Mateescu, Cosmin; Ionaşcu, Iuliana

    2016-04-01

    Ocular thelaziosis by Thelazia callipaeda is a vector-borne disease that infects domestic and wild carnivores as well as humans. In this paper, we present two cases of ocular thelaziosis in dogs that had never traveled outside Romania. Both presented with moderate conjunctivitis and ocular discharge. In total, 41 adult nematodes were removed from the conjunctival sacs of both dogs; these were identified via morphology as T. callipaeda. To the best of our knowledge, this is the first report of canine ocular thelaziosis caused by T. callipaeda from the Muntenia Region of Romania. PMID:26898833

  16. Automated adherent human cell culture (mesenchymal stem cells).

    PubMed

    Thomas, Robert; Ratcliffe, Elizabeth

    2012-01-01

    Human cell culture processes developed at research laboratory scale need to be translated to large-scale production processes to achieve commercial application to a large market. To allow this transition of scale with consistent process performance and control of costs, it will be necessary to reduce manual processing and increase automation. There are a number of commercially available platforms that will reduce manual process intervention and improve process control for different culture formats. However, in many human cell-based applications, there is currently a need to remain close to the development format, usually adherent culture on cell culture plastic or matrix-coated wells or flasks due to deterioration of cell quality in other environments, such as suspension. This chapter presents an example method for adherent automated human stem cell culture using a specific automated flask handling platform, the CompacT SelecT.

  17. Long-term result of autologous cultivated oral mucosal epithelial transplantation for severe ocular surface disease.

    PubMed

    Prabhasawat, Pinnita; Ekpo, Pattama; Uiprasertkul, Mongkol; Chotikavanich, Suksri; Tesavibul, Nattaporn; Pornpanich, Kanograt; Luemsamran, Panitee

    2016-09-01

    The present study aimed to investigate the clinical outcomes of autologous cultivated oral mucosal epithelial transplantation (COMET) on human amniotic membrane (AM) for corneal limbal stem cell deficiency (LSCD). In this prospective, noncomparative case series, 20 eyes (18 patients) with bilateral severe ocular surface disease were chosen to undergo COMET on human AM. The primary outcome was clinical success, and the secondary outcomes were the best-corrected visual acuity difference, corneal opacification, symblepharon formation, and complications. The mean patient age was 48.2 ± 15.5 years. The mean follow-up time was 31.9 ± 12.1 months (range 8-50 months). All except one eye exhibited complete epithelialization within the first postoperative week. A successful clinical outcome, defined as a stable ocular surface without epithelial defects, a clear cornea without fibrovascular tissue invasion at the pupillary area, and no or mild ocular surface inflammation, was obtained in 15 of 20 eyes (75 %). The clinical success rate at 1 year was 79.3 %, and that at 4 years (end of follow-up) was 70.5 %. Fourteen of 20 (70 %) eyes exhibited improvement in visual acuity after COMET, and some required subsequent cataract surgery (2 eyes), penetrating keratoplasty (3 eyes), or keratoprosthesis implantation (1 eye). Preoperative symblepharon was eliminated in most eyes (8 of 13, 61.5 %) after COMET combined with eyelid reconstruction when needed. The only complication was corneal perforation (1 eye) induced by a severe eyelid abnormality; treatment with a tectonic corneal graft was successful. COMET can successfully restore ocular surface damage in most eyes with corneal LSCD. PMID:27507558

  18. Interaction of Staphylococci with Human B cells

    PubMed Central

    Nygaard, Tyler K.; Kobayashi, Scott D.; Freedman, Brett; Porter, Adeline R.; Voyich, Jovanka M.; Otto, Michael; Schneewind, Olaf; DeLeo, Frank R.

    2016-01-01

    Staphylococcus aureus is a leading cause of human infections worldwide. The pathogen produces numerous molecules that can interfere with recognition and binding by host innate immune cells, an initial step required for the ingestion and subsequent destruction of microbes by phagocytes. To better understand the interaction of this pathogen with human immune cells, we compared the association of S. aureus and S. epidermidis with leukocytes in human blood. We found that a significantly greater proportion of B cells associated with S. epidermidis relative to S. aureus. Complement components and complement receptors were important for the binding of B cells with S. epidermidis. Experiments using staphylococci inactivated by ultraviolet radiation and S. aureus isogenic deletion mutants indicated that S. aureus secretes molecules regulated by the SaeR/S two-component system that interfere with the ability of human B cells to bind this bacterium. We hypothesize that the relative inability of B cells to bind S. aureus contributes to the microbe’s success as a human pathogen. PMID:27711145

  19. Hydroxyl PAMAM dendrimer-based gene vectors for transgene delivery to human retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Mastorakos, Panagiotis; Kambhampati, Siva P.; Mishra, Manoj K.; Wu, Tony; Song, Eric; Hanes, Justin; Kannan, Rangaramanujam M.

    2015-02-01

    Ocular gene therapy holds promise for the treatment of numerous blinding disorders. Despite the significant progress in the field of viral and non-viral gene delivery to the eye, significant obstacles remain in the way of achieving high-level transgene expression without adverse effects. The retinal pigment epithelium (RPE) is involved in the pathogenesis of retinal diseases and is a key target for a number of gene-based therapeutics. In this study, we addressed the inherent drawbacks of non-viral gene vectors and combined different approaches to design an efficient and safe dendrimer-based gene-delivery platform for delivery to human RPE cells. We used hydroxyl-terminated polyamidoamine (PAMAM) dendrimers functionalized with various amounts of amine groups to achieve effective plasmid compaction. We further used triamcinolone acetonide (TA) as a nuclear localization enhancer for the dendrimer-gene complex and achieved significant improvement in cell uptake and transfection of hard-to-transfect human RPE cells. To improve colloidal stability, we further shielded the gene vector surface through incorporation of PEGylated dendrimer along with dendrimer-TA for DNA complexation. The resultant complexes showed improved stability while minimally affecting transgene delivery, thus improving the translational relevance of this platform.Ocular gene therapy holds promise for the treatment of numerous blinding disorders. Despite the significant progress in the field of viral and non-viral gene delivery to the eye, significant obstacles remain in the way of achieving high-level transgene expression without adverse effects. The retinal pigment epithelium (RPE) is involved in the pathogenesis of retinal diseases and is a key target for a number of gene-based therapeutics. In this study, we addressed the inherent drawbacks of non-viral gene vectors and combined different approaches to design an efficient and safe dendrimer-based gene-delivery platform for delivery to human RPE

  20. Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans.

    PubMed

    Itani, Hana A; McMaster, William G; Saleh, Mohamed A; Nazarewicz, Rafal R; Mikolajczyk, Tomasz P; Kaszuba, Anna M; Konior, Anna; Prejbisz, Aleksander; Januszewicz, Andrzej; Norlander, Allison E; Chen, Wei; Bonami, Rachel H; Marshall, Andrew F; Poffenberger, Greg; Weyand, Cornelia M; Madhur, Meena S; Moore, Daniel J; Harrison, David G; Guzik, Tomasz J

    2016-07-01

    Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45(+)) and T lymphocytes (CD3(+) and CD4(+)) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3(+)/CD45RO(+)) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4(+) T cells and both CD4(+) and CD8(+) T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II.

  1. Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans.

    PubMed

    Itani, Hana A; McMaster, William G; Saleh, Mohamed A; Nazarewicz, Rafal R; Mikolajczyk, Tomasz P; Kaszuba, Anna M; Konior, Anna; Prejbisz, Aleksander; Januszewicz, Andrzej; Norlander, Allison E; Chen, Wei; Bonami, Rachel H; Marshall, Andrew F; Poffenberger, Greg; Weyand, Cornelia M; Madhur, Meena S; Moore, Daniel J; Harrison, David G; Guzik, Tomasz J

    2016-07-01

    Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45(+)) and T lymphocytes (CD3(+) and CD4(+)) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3(+)/CD45RO(+)) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4(+) T cells and both CD4(+) and CD8(+) T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II. PMID:27217403

  2. Genomic Disruption of VEGF-A Expression in Human Retinal Pigment Epithelial Cells Using CRISPR-Cas9 Endonuclease

    PubMed Central

    Yiu, Glenn; Tieu, Eric; Nguyen, Anthony T.; Wong, Brittany; Smit-McBride, Zeljka

    2016-01-01

    Purpose To employ type II clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonuclease to suppress ocular angiogenesis by genomic disruption of VEGF-A in human RPE cells. Methods CRISPR sequences targeting exon 1 of human VEGF-A were computationally identified based on predicted Cas9 on- and off-target probabilities. Single guide RNA (gRNA) cassettes with these target sequences were cloned into lentiviral vectors encoding the Streptococcus pyogenes Cas9 endonuclease (SpCas9) gene. The lentiviral vectors were used to infect ARPE-19 cells, a human RPE cell line. Frequency of insertion or deletion (indel) mutations was assessed by T7 endonuclease 1 mismatch detection assay; mRNA levels were assessed with quantitative real-time PCR; and VEGF-A protein levels were determined by ELISA. In vitro angiogenesis was measured using an endothelial cell tube formation assay. Results Five gRNAs targeting VEGF-A were selected based on the highest predicted on-target probabilities, lowest off-target probabilities, or combined average of both scores. Lentiviral delivery of the top-scoring gRNAs with SpCas9 resulted in indel formation in the VEGF-A gene at frequencies up to 37.0% ± 4.0% with corresponding decreases in secreted VEGF-A protein up to 41.2% ± 7.4% (P < 0.001), and reduction of endothelial tube formation up to 39.4% ± 9.8% (P = 0.02). No significant indel formation in the top three putative off-target sites tested was detected. Conclusions The CRISPR-Cas9 endonuclease system may reduce VEGF-A secretion from human RPE cells and suppress angiogenesis, supporting the possibility of employing gene editing for antiangiogenesis therapy in ocular diseases. PMID:27768202

  3. Ocular complications of diabetes mellitus

    PubMed Central

    Sayin, Nihat; Kara, Necip; Pekel, Gökhan

    2015-01-01

    Diabetes mellitus (DM) is a important health problem that induces ernestful complications and it causes significant morbidity owing to specific microvascular complications such as, retinopathy, nephropathy and neuropathy, and macrovascular complications such as, ischaemic heart disease, and peripheral vasculopathy. It can affect children, young people and adults and is becoming more common. Ocular complications associated with DM are progressive and rapidly becoming the world’s most significant cause of morbidity and are preventable with early detection and timely treatment. This review provides an overview of five main ocular complications associated with DM, diabetic retinopathy and papillopathy, cataract, glaucoma, and ocular surface diseases. PMID:25685281

  4. Ocular neuromyotonia after radiation therapy

    SciTech Connect

    Lessell, S.; Lessell, I.M.; Rizzo, J.F. III

    1986-12-15

    Ocular neuromyotonia is a paroxysmal monocular deviation that results from spasm of eye muscles secondary to spontaneous discharges from third, fourth, or sixth nerve axons. We observed this rare disorder in four patients who had been treated with radiation for tumors in the region of the sella turcica and cavernous sinus. Based on these cases and four others identified in the literature it would appear that radiation predisposes to a cranial neuropathy in which ocular neuromyotonia may be the major manifestation. Radiation appears to be the most common cause of ocular neuromyotonia.

  5. Ocular leech infestation

    PubMed Central

    Lee, Yueh-Chang; Chiu, Cheng-Jen

    2015-01-01

    This case report describes a female toddler with manifestations of ocular leech infestation. A 2-year-old girl was brought to our outpatient clinic with a complaint of irritable crying after being taken to a stream in Hualien 1 day previous, where she played in the water. The parents noticed that she rubbed her right eye a lot. Upon examination, the girl had good fix and follow in either eye. Slit-lamp examination showed conjunctival injection with a moving dark black–brown foreign body partly attached in the lower conjunctiva. After applying topical anesthetics, the leech, measuring 1 cm in length, was extracted under a microscope. The patient began using topical antibiotic and corticosteroid agents. By 1 week after extraction, the patient had no obvious symptoms or signs, except for a limited subconjunctival hemorrhage, and no corneal/scleral involvement was observed. PMID:25784786

  6. Co-transplantation of human hematopoietic stem cells and human breast cancer cells in NSG mice

    PubMed Central

    Wege, Anja K; Schmidt, Marcus; Ueberham, Elke; Ponnath, Marvin; Ortmann, Olaf; Brockhoff, Gero; Lehmann, Jörg

    2014-01-01

    Humanized tumor mice (HTM) were generated by the co-transplantation of human hematopoietic stem cells and human breast cancer cells overexpressing HER2 into neonatal NOD-scid IL2Rγnull (NSG) mice. These mice are characterized by the development of a human immune system in combination with human breast cancer growth. Due to concurrent transplantation into newborn mice, transfer of MHC-mismatched tumor cells resulted in solid coexistence and immune cell activation (CD4+ T cells, natural killer cells, and myeloid cells), but without evidence for rejection. Histological staining of the spleen of HTM revealed co-localization of human antigen-presenting cells together with human T and B cells allowing MHC-dependent interaction, and thereby the generation of T cell-dependent antibody production. Here, we investigated the capability of these mice to generate human tumor-specific antibodies and correlated immunoglobulin titers with tumor outgrowth. We found detectable IgM and also IgG amounts in the serum of HTM, which apparently controlled tumor development when IgG serum concentrations were above 10 µg/ml. Western blot analyses revealed that the tumor-specific antibodies generated in HTM did not recognize HER2/neu antigens, but different, possibly relevant antigens for breast cancer therapy. In conclusion, HTM offer a novel approach to generate complete human monoclonal antibodies that do not require further genetic manipulation (e. g., humanization) for a potential application in humans. In addition, efficacy and safety of the generated antibodies can be tested in the same mouse model under human-like conditions. This might be of particular interest for cancer subtypes with no currently available antibody therapy. PMID:24870377

  7. Identification of cells initiating human melanomas

    PubMed Central

    Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.

    2012-01-01

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660

  8. The human intestinal B-cell response.

    PubMed

    Spencer, J; Sollid, L M

    2016-09-01

    The intestinal immune system is chronically challenged by a huge plethora of antigens derived from the lumen. B-cell responses in organized gut-associated lymphoid tissues and regional lymph nodes that are driven chronically by gut antigens generate the largest population of antibody-producing cells in the body: the gut lamina propria plasma cells. Although animal studies have provided insights into mechanisms that underpin this dynamic process, some very fundamental differences in this system appear to exist between species. Importantly, this prevents extrapolation from mice to humans to inform translational research questions. Therefore, in this review we will describe the structures and mechanisms involved in the propagation, dissemination, and regulation of this immense plasma cell population in man. Uniquely, we will seek our evidence exclusively from studies of human cells and tissues. PMID:27461177

  9. Refined flicker photometry technique to measure ocular lens density.

    PubMed

    Teikari, Petteri; Najjar, Raymond P; Knoblauch, Kenneth; Dumortier, Dominique; Cornut, Pierre-Loïc; Denis, Philippe; Cooper, Howard M; Gronfier, Claude

    2012-11-01

    Many physiological and pathological conditions are associated with a change in the crystalline lens transmittance. Estimates of lens opacification, however, generally rely on subjective rather than objective measures in clinical practice. The goal of our study was to develop an improved psychophysical heterochromatic flicker photometry technique combined with existing mathematical models to evaluate the spectral transmittance of the human ocular media noninvasively. Our results show that it is possible to accurately estimate ocular media density in vivo in humans. Potential applications of our approach include basic research and clinical settings on visual and nonimage-forming visual systems.

  10. Cell mechanics and human disease states

    NASA Astrophysics Data System (ADS)

    Suresh, Subra

    2006-03-01

    This presentation will provide summary of our very recent studies exploring the effects of biochemical factors, influenced by foreign organisms or in vivo processes, on intracellular structural reorganization, single-cell mechanical response and motility of a population of cells in the context of two human diseases: malaria induced by Plasmodium falciparum merozoites that invade red blood cells, and gastrointestinal cancer metastasis involving epithelial cells. In both cases, particular attention will be devoted to systematic changes induced in specific molecular species in response to controlled alterations in disease state. The role of critical proteins in influencing the mechanical response of human red bloods during the intra-erythrocytic development of P. falciparum merozoites has also been assessed quantitatively using specific protein knock-out experiments by recourse to gene inactivation methods. Single-cell mechanical response characterization entails such tools as optical tweezers and mechanical plate stretchers whereas cell motility assays and cell-population biorheology characterization involves microfluidic channels. The experimental studies are accompanied by three-dimensional computational simulations at the continuum and mesoscopic scales of cell deformation. An outcome of such combined experimental and computational biophysical studies is the realization of how chemical factors influence single-cell mechanical response, cytoadherence, the biorheology of a large population of cells through microchannels representative of in vivo conditions, and the onset and progression of disease states.

  11. Gammaherpesvirus Infection of Human Neuronal Cells

    PubMed Central

    Jha, Hem Chandra; Mehta, Devan; Lu, Jie; El-Naccache, Darine; Shukla, Sanket K.; Kovacsics, Colleen; Kolson, Dennis

    2015-01-01

    ABSTRACT Gammaherpesviruses human herpesvirus 4 (HHV4) and HHV8 are two prominent members of the herpesvirus family associated with a number of human cancers. HHV4, also known as Epstein-Barr virus (EBV), a ubiquitous gammaherpesvirus prevalent in 90 to 95% of the human population, is clinically associated with various neurological diseases such as primary central nervous system lymphoma, multiple sclerosis, Alzheimer’s disease, cerebellar ataxia, and encephalitis. However, the possibility that EBV and Kaposi’s sarcoma-associated herpesvirus (KSHV) can directly infect neurons has been largely overlooked. This study has, for the first time, characterized EBV infection in neural cell backgrounds by using the Sh-Sy5y neuroblastoma cell line, teratocarcinoma Ntera2 neurons, and primary human fetal neurons. Furthermore, we also demonstrated KSHV infection of neural Sh-Sy5y cells. These neuronal cells were infected with green fluorescent protein-expressing recombinant EBV or KSHV. Microscopy, genetic analysis, immunofluorescence, and Western blot analyses for specific viral antigens supported and validated the infection of these cells by EBV and KSHV and showed that the infection was efficient and productive. Progeny virus produced from infected neuronal cells efficiently infected fresh neuronal cells, as well as peripheral blood mononuclear cells. Furthermore, acyclovir was effective at inhibiting the production of virus from neuronal cells similar to lymphoblastoid cell lines; this suggests active lytic replication in infected neurons in vitro. These studies represent a potentially new in vitro model of EBV- and KSHV-associated neuronal disease development and pathogenesis. PMID:26628726

  12. Gene-environment interactions in ocular diseases.

    PubMed

    Sacca, S C; Bolognesi, C; Battistella, A; Bagnis, A; Izzotti, A

    2009-07-10

    Degenerative ocular diseases are widespread in the population and represent a major cause of reversible and irreversible blindness. Scientific evidences have been accumulating supporting the role of genotoxic damage and gene environment interactions in the pathogenesis of these diseases mainly including glaucoma, age-related macular degeneration, and cataract. Glaucoma, in its degenerative form, is characterized by the degeneration of the trabecular meshwork, the tissue of the anterior chamber of the eye devoted to aqueous-humour outflow. Such a degenerative process results in intra-ocular pressure increase and progressive damage of optic nerve head. Oxidative stress and DNA damage play an important role in inducing the degeneration of these well differentiated target tissues in which DNA damage results in a progressive cell loss. Macular degeneration is a common age-related disease affecting the central regions of the retina inducing progressive accumulation of oxidized lipoproteins and neovascularization. Environmental genotoxic risk factors include diet, light, and cigarette smoke paralleled by individual susceptibility as determined by adverse genetic assets. Cataract is a progressive opacity of the crystalline lens resulting from molecular damages induced by various risk factors including UV-containing light. This disease has been related to a failure in antioxidant defences. Experimental study provides evidence that cataract patients possess higher basal level of DNA damage, as evaluated by Comet test, in lymphocytes than controls. This finding is paralleled by the higher susceptibility to oxidative stress observed in the same patients. These novel experimental data further support the role of DNA damage as a main factor contributing to cataract onset. In conclusion, the examined degenerative ocular diseases recognise environmental risk factors often displaying genotoxic attitudes. Whenever these factors target individuals who are susceptible due their

  13. Capsaicin induces immunogenic cell death in human osteosarcoma cells

    PubMed Central

    Jin, Tao; Wu, Hongyan; Wang, Yanlin; Peng, Hao

    2016-01-01

    Immunogenic cell death (ICD) is characterized by the early surface exposure of calreticulin (CRT). As a specific signaling molecule, CRT on the surface of apoptotic tumor cells mediates the recognition and phagocytosis of tumor cells by antigen presenting cells. To date, only a small quantity of anti-cancer chemicals have been found to induce ICD, therefore it is clinically important to identify novel chemicals that may induce ICD. The purpose of the present study is to explore the function of capsaicin in inducing ICD. In the current study, MTT assays were used to examine the growth inhibiting effects of MG-63 cells when they were treated with capsaicin or cisplatin. Mitochondrial membrane potential and western blot analysis were used to investigate capsaicin- and cisplatin-induced apoptosis. In addition, the effects of capsaicin and cisplatin were evaluated for their abilities in inducing calreticulin membrane translocation and mediating ICD in human osteosarcoma cells (MG-63). The results demonstrated that capsaicin and cisplatin can induce the apoptosis of MG-63 cells. However, only capsaicin induced a rapid translocation of CRT from the intracellular space to the cell surface. Treatment with capsaicin increased phagocytosis of MG-63 cells by dendritic cells (DCs), and these MG-63-loaded DCs could efficiently stimulate the secretion of IFN-γ by lymphocytes. These results identify capsaicin as an anti-cancer agent capable of inducing ICD in human osteosarcoma cells in vitro. PMID:27446273

  14. S-antigen. Identification of human T-cell lymphocyte proliferation sites.

    PubMed

    Vrabec, T R; Reber, R N; Magargal, L E; Donoso, L A

    1990-10-01

    Immune responses to normal retinal proteins, including S-antigen, have been demonstrated in patients with a variety of retinal disorders, as well as in those who have received panretinal laser photocoagulation. T-cell lymphocytes (T cells) have been implicated in the pathogenesis of several ocular inflammatory diseases of possible autoimmune etiology. We used synthetic peptides that correspond to the amino acid sequence of S-antigen in lymphocyte proliferation assays to identify specific sites in the molecule recognized by human T cells. Ten patients with type II diabetes were studied before and after initial panretinal laser photocoagulation for proliferative diabetic retinopathy. T-cell responses, expressed as a stimulation index, to S-antigen and peptides were negative in all patients before treatment. Three weeks after panretinal laser photocoagulation, eight of 10 assays were positive (stimulation index greater than 2; P less than .01) when lymphocytes were stimulated with peptide BSA(273-292); six of nine were positive (P less than .01) with peptide BSA(303-332); and six of six were positive (P less than .001) with peptide BSA(343-362). Our study identifies several specific sites in S-antigen that elicit human immune responses. The implications of these findings with regard to the pathogenesis and treatment of autoimmune uveitis are discussed. PMID:2222280

  15. An impression cytology based study of ocular surface in an urban population.

    PubMed

    Mukhopadhyay, Somnath; Dutta, Jayanta; Mitra, Jayati; Prakash, Ratnesh; Datta, Himadri

    2013-04-01

    To assess the health of ocular surface in a defined urban population, conjunctival goblet cell density and degree of surface squamous metaplasia were utilized as study tools. Two thousand names of those aged between 20 and 79 years from the 2006 electoral register in ward number 63 of Kolkata Corporation area were initially selected. Normal healthy human volunteers without any history of ocular surface disorder were recruited and divided into five age-groups. Impression cytology samples were obtained from interpalpebral part of bulbar conjunctiva from all the participants fixated and stained by a single observer. A stratified, clustered, disproportionate, random sampling method was used. The software used in the statistical analysis was EPI Info. The tests applied were t test and ANOVA. A variation in the number of goblet cells according to gender (women having less cells) and age (20-30 years group having the highest number of cells) was found. Those working outdoors were found to have fewer goblet cells compared to those who stay indoors. The majority of the people had grade 1 cytological appearance in both males and females. There was no statistically significant difference in Nelson's grading with age. People using coal and kerosene to cook were found to have a smaller goblet cell density than those who cooked on LPG or those who did not cook at all. Besides age and sex, environmental factors like the method of cooking and occupational variables (like outdoor activity, prolonged period of computer use, etc.) modify the health of the ocular surface. The results of this study will help put these findings into perspective as public health problems. PMID:23135239

  16. An impression cytology based study of ocular surface in an urban population.

    PubMed

    Mukhopadhyay, Somnath; Dutta, Jayanta; Mitra, Jayati; Prakash, Ratnesh; Datta, Himadri

    2013-04-01

    To assess the health of ocular surface in a defined urban population, conjunctival goblet cell density and degree of surface squamous metaplasia were utilized as study tools. Two thousand names of those aged between 20 and 79 years from the 2006 electoral register in ward number 63 of Kolkata Corporation area were initially selected. Normal healthy human volunteers without any history of ocular surface disorder were recruited and divided into five age-groups. Impression cytology samples were obtained from interpalpebral part of bulbar conjunctiva from all the participants fixated and stained by a single observer. A stratified, clustered, disproportionate, random sampling method was used. The software used in the statistical analysis was EPI Info. The tests applied were t test and ANOVA. A variation in the number of goblet cells according to gender (women having less cells) and age (20-30 years group having the highest number of cells) was found. Those working outdoors were found to have fewer goblet cells compared to those who stay indoors. The majority of the people had grade 1 cytological appearance in both males and females. There was no statistically significant difference in Nelson's grading with age. People using coal and kerosene to cook were found to have a smaller goblet cell density than those who cooked on LPG or those who did not cook at all. Besides age and sex, environmental factors like the method of cooking and occupational variables (like outdoor activity, prolonged period of computer use, etc.) modify the health of the ocular surface. The results of this study will help put these findings into perspective as public health problems.

  17. Rheumatoid arthritis and ocular involvement.

    PubMed

    Shaw, Chittaranjan; Banik, Sujoy; Islam, Md Nazarul; Biswas, Mukul Chandra; Biswas, Gautam; Biswas, Sobhan

    2003-09-01

    To study the occurrence and incidence of different ocular manifestations in rheumatoid arthritis a random cross-sectional study was carried out among 54 patients with active rheumatoid arthritis. The patients were examined thoroughly to detect any ocular disease associated with rheumatoid arthritis. Complete ocular examination with special emphasis on anterior segment evaluation and tearfilm study was done. Two-thirds of the patients examined had some kind of visual problem at presentation. Three patients (5.55%) had marked dry eye with another 20 (37.03%) having borderline tear deficiency. Two cases ( 3.70% ) of episcleritis were also seen. No cases of scleritis or retinopathy were found. The most common ocular association with rheumatoid arthritis was secondary Sjogren's syndrome. Other conditions include episcleritis and marginal keratitis.

  18. Deciding on human embryonic stem cell research.

    PubMed

    Burgin, Eileen

    2009-03-01

    This paper examines the influences that congressional staff people viewed as important in shaping legislators' voting decisions on the human embryonic stem (ES) cell research bill in the 109th Congress, the first legislation vetoed by President George W. Bush. The analysis illuminates factors that impact congressional decision making on a salient issue with a strong moral component. Constituent concerns, ideology, and a desire to make good public policy all centrally affected members' choices; however, moral overtones permeated considerations relevant to the human ES cell research question. In addition, at least three influences that directly reflect or relate to members' moral claims - religious convictions, personal connections to potential beneficiaries of human ES cell research, and moral pressure from outside interests - were important also. The analysis draws on data gathered from interviews with congressional aides.

  19. 3 CFR - Guidelines for Human Stem Cell Research

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the...

  20. Induced pluripotency of human prostatic epithelial cells.

    PubMed

    Zhao, Hongjuan; Sun, Ning; Young, Sarah R; Nolley, Rosalie; Santos, Jennifer; Wu, Joseph C; Peehl, Donna M

    2013-01-01

    Induced pluripotent stem (iPS) cells are a valuable resource for discovery of epigenetic changes critical to cell type-specific differentiation. Although iPS cells have been generated from other terminally differentiated cells, the reprogramming of normal adult human basal prostatic epithelial (E-PZ) cells to a pluripotent state has not been reported. Here, we attempted to reprogram E-PZ cells by forced expression of Oct4, Sox2, c-Myc, and Klf4 using lentiviral vectors and obtained embryonic stem cell (ESC)-like colonies at a frequency of 0.01%. These E-PZ-iPS-like cells with normal karyotype gained expression of pluripotent genes typical of iPS cells (Tra-1-81, SSEA-3, Nanog, Sox2, and Oct4) and lost gene expression characteristic of basal prostatic epithelial cells (CK5, CK14, and p63). E-PZ-iPS-like cells demonstrated pluripotency by differentiating into ectodermal, mesodermal, and endodermal cells in vitro, although lack of teratoma formation in vivo and incomplete demethylation of pluripotency genes suggested only partial reprogramming. Importantly, E-PZ-iPS-like cells re-expressed basal epithelial cell markers (CD44, p63, MAO-A) in response to prostate-specific medium in spheroid culture. Androgen induced expression of androgen receptor (AR), and co-culture with rat urogenital sinus further induced expression of prostate-specific antigen (PSA), a hallmark of secretory cells, suggesting that E-PZ-iPS-like cells have the capacity to differentiate into prostatic basal and secretory epithelial cells. Finally, when injected into mice, E-PZ-iPS-like cells expressed basal epithelial cell markers including CD44 and p63. When co-injected with rat urogenital mesenchyme, E-PZ-iPS-like cells expressed AR and expression of p63 and CD44 was repressed. DNA methylation profiling identified epigenetic changes in key pathways and genes involved in prostatic differentiation as E-PZ-iPS-like cells converted to differentiated AR- and PSA-expressing cells. Our results suggest that

  1. Human adipose stem cells: current clinical applications.

    PubMed

    Gir, Phanette; Oni, Georgette; Brown, Spencer A; Mojallal, Ali; Rohrich, Rod J

    2012-06-01

    Adipose-derived stem cells are multipotent cells that can easily be extracted from adipose tissue, are capable of expansion in vitro, and have the capacity to differentiate into multiple cell lineages, which have the potential for use in regenerative medicine. However, several issues need to be studied to determine safe human use. For example, there are questions related to isolation and purification of adipose-derived stem cells, their effect on tumor growth, and the enforcement of U.S. Food and Drug Administration regulations. Numerous studies have been published, with the interest in the potential for regenerative medicine continually growing. Several clinical trials using human adipose stem cell therapy are currently being performed around the world, and there has been a rapid evolution and expansion of their number. The purpose of this article was to review the current published basic science evidence and ongoing clinical trials involving the use of adipose-derived stem cells in plastic surgery and in regenerative medicine in general. The results of the studies and clinical trials using adipose-derived stem cells reported in this review seem to be promising not only in plastic surgery but also in a wide variety of other specialties. Nevertheless, those reported showed disparity in the way adipose-derived stem cells were used. Further basic science experimental studies with standardized protocols and larger randomized trials need to be performed to ensure safety and efficacy of adipose-derived stem cells use in accordance with U.S. Food and Drug Administration guidelines.

  2. Antibacterial activity of human natural killer cells

    PubMed Central

    1989-01-01

    The in vitro effects of human NK cells on viability of Gram-negative and Gram-positive bacteria was investigated. PBLs depleted of glass- adherent cells showed a significant antibacterial activity that was increased as the concentration of NK cells became higher. Leu-11- enriched cells exhibited the most efficient bactericidal activity. Stimulation of NK cells with staphylococcal enterotoxin B for 16 h produced a significant increase in the antibacterial activity of all NK cells tested. The antibacterial activity of monocyte-depleted cells and Leu-11-enriched cells was also enhanced after culturing in vitro for 16- 24 h without exogenous cytokines. Dependence of the antibacterial activity on the presence of serum in the culture medium was not found. Ultrastructural studies revealed close contact between NK cell membranes and bacteria, no evidence of phagocytosis, and extracellular bacterial ghosts, after incubation at 37 degrees C. Supernatants from purified NK cells exhibited potent bactericidal activity with kinetics and target specificity similar to that of effector cells. These results document the potent antibacterial activity of purified NK cells and suggest an extracellular mechanism of killing. PMID:2642532

  3. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    PubMed

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  4. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    PubMed

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  5. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    PubMed Central

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  6. Drosophila as a Potential Model for Ocular Tumors.

    PubMed

    Bennett, Daimark; Lyulcheva, Ekaterina; Cobbe, Neville

    2015-04-01

    Drosophila has made many contributions to our understanding of cancer genes and mechanisms that have subsequently been validated in mammals. Despite anatomical differences between fly and human eyes, flies offer a tractable genetic model in which to dissect the functional importance of genetic lesions found to be affected in human ocular tumors. Here, we discuss different approaches for using Drosophila as a model for ocular cancer and how studies on ocular cancer genes in flies have begun to reveal potential strategies for therapeutic intervention. We also discuss recent developments in the use of Drosophila for drug discovery, which is coming to the fore as Drosophila models are becoming tailored to study tumor types found in the clinic. PMID:27172095

  7. Chemoproteomic profiling reveals that cathepsin D off-target activity drives ocular toxicity of β-secretase inhibitors

    PubMed Central

    Zuhl, Andrea M.; Nolan, Charles E.; Brodney, Michael A.; Niessen, Sherry; Atchison, Kevin; Houle, Christopher; Karanian, David A.; Ambroise, Claude; Brulet, Jeffrey W.; Beck, Elizabeth M.; Doran, Shawn D.; O'Neill, Brian T.; am Ende, Christopher W.; Chang, Cheng; Geoghegan, Kieran F.; West, Graham M.; Judkins, Joshua C.; Hou, Xinjun; Riddell, David R.; Johnson, Douglas S.

    2016-01-01

    Inhibition of β-secretase BACE1 is considered one of the most promising approaches for treating Alzheimer's disease. Several structurally distinct BACE1 inhibitors have been withdrawn from development after inducing ocular toxicity in animal models, but the target mediating this toxicity has not been identified. Here we use a clickable photoaffinity probe to identify cathepsin D (CatD) as a principal off-target of BACE1 inhibitors in human cells. We find that several BACE1 inhibitors blocked CatD activity in cells with much greater potency than that displayed in cell-free assays with purified protein. Through a series of exploratory toxicology studies, we show that quantifying CatD target engagement in cells with the probe is predictive of ocular toxicity in vivo. Taken together, our findings designate off-target inhibition of CatD as a principal driver of ocular toxicity for BACE1 inhibitors and more generally underscore the power of chemical proteomics for discerning mechanisms of drug action. PMID:27727204

  8. [Human pluripotent stem cell and neural differentiation].

    PubMed

    Wataya, Takafumi; Muguruma, Keiko; Sasai, Yoshiki

    2008-10-01

    Recovery of lost brain function is an important issue in medical studies because neurons of the central nervous system (CNS) have poor potential for regeneration. Since few CNS diseases can be treated completely by medicines, regenerative therapy by using stem cells should be studied as a new type of therapeutic intervention. The efficacy of cell replacement therapy in Parkinson's disease has been well investigated. Several studies on fetal tissue transplantation have revealed that quantity and purity of transplanted cells are necessary for recovery of symptoms. SFEB (Serum-free floating culture of embryoid body-like aggregates) method is capable of inducing multi-potential CNS progenitors that can be steered to differentiate into region-specific tissues. On the basis of the existing knowledge of embryology, we have succeeded in the generating of various types of neurons such as telencephalic, cerebeller (Purkinje and granule cells), retinal (photoreceptor cells) and hypothalamic neurons. Application of this culture method to human ES (hES) cells is necessary for clinical purpose: however, poor survival of hES cells in SFEB culture might limit the possibility of using these cells for future medical applications. We found that a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, markedly diminished the dissociation-induced apoptosis of hES cells and enabled the cells to form aggregates in SFEB culture. For both mouse and human ES cells, SFEB culture is a favorable method that can generate large amounts of region-specific neurons. However, stem cell-based therapy continues to face several obstacles. It is important that researchers in the basic sciences and clinical medicine should discuss these problems together to overcome both scientific and ethical issues related to stem cells.

  9. Ocular surface and external filtration surgery: mutual relationships.

    PubMed

    Baudouin, Christophe

    2012-01-01

    There is a large body of evidence from clinical and experimental studies that the long-term use of topical drugs may induce ocular surface changes, causing ocular discomfort, dry eye, conjunctival inflammation, subconjunctival fibrosis, corneal surface impairment, and, as a consequence of chronic ocular surface changes, the potential risk of failure for further glaucoma surgery. Subclinical inflammation has also been widely described in patients receiving antiglaucoma treatments for long periods of time, with inflammatory cell infiltration and fibroblast activation in the conjunctiva and subconjunctival space. The preservative, especially benzalkonium chloride, which has consistently demonstrated its toxic effects in laboratory, experimental, and clinical studies, could induce or enhance such inflammatory changes. As a quaternary ammonium, this compound causes tear film instability, loss of goblet cells, conjunctival squamous metaplasia and apoptosis, disruption of the corneal epithelium barrier, corneal nerve impairment, chronic inflammation and potential damage to deeper ocular tissues. Drug-induced adverse effects are therefore far from being restricted to only allergic reactions, but they are often very difficult to identify because they mostly occur in a delayed or poorly specific manner, and result from complex and multifactorial interactions between the drugs and the ocular surface. Postoperatively, the ocular surface also plays an important role, as the conjunctiva interacts with aqueous humor and subconjunctival fibrosis may block aqueous outflow and cause surgical failure. As preoperative inflammation underlies postoperative fibrosis and therefore surgical outcome, a better knowledge of ocular surface changes with appropriate evaluation and management should thus become a new paradigm in glaucoma care over the long term.

  10. Cell-in-cell structures are involved in the competition between cells in human tumors.

    PubMed

    Sun, Qiang; Huang, Hongyan; Overholtzer, Michael

    2015-01-01

    The engulfment of live cells may represent a mechanism of cell death. We reported that E-cadherin (epithelial cadherin) expression in human cancer cells favors the formation of cell-in-cell structures through the mechanism known as entosis, and that entosis contributes to a form of cellular competition in heterogeneous cancer cell populations. PMID:27308493

  11. Characterization of human pluripotent stem cells.

    PubMed

    Gokhale, Paul J; Andrews, Peter W

    2013-12-18

    Human pluripotent stem cells (PSCs), whether embryonic stem cells or induced PSCs, offer enormous opportunities for regenerative medicine and other biomedical applications once we have developed the ability to harness their capacity for extensive differentiation. Central to this is our ability to identify and characterize such PSCs, but this is fraught with potential difficulties that arise from a tension between functional definitions of pluripotency and the more convenient use of 'markers', a problem exacerbated by ethical issues, our lack of knowledge of early human embryonic development, and differences from the mouse paradigm.

  12. CLOSTRIDIUM SPORE ATTACHMENT TO HUMAN CELLS

    SciTech Connect

    PANESSA-WARREN,B.; TORTORA,G.; WARREN,J.

    1997-08-10

    This paper uses high resolution scanning electron microscopy (SEM) with a LaB6 gun and the newest commercial field emission guns, to obtain high magnification images of intact clostridial spores throughout the activation/germination/outgrowth process. By high resolution SEM, the clostridial exosporial membrane can be seen to produce numerous delicate projections (following activation), that extend from the exosporial surface to a nutritive substrate (agar), or cell surface when anaerobically incubated in the presence of human cells (embryonic fibroblasts and colon carcinoma cells). Magnifications of 20,000 to 200,000Xs at accelerating voltages low enough to minimize or eliminate specimen damage (1--5 kV) have permitted the entire surface of C.sporogenes and C.difficile endospores to be examined during all stages of germination. The relationships between the spore and the agar or human cell surface were also clearly visible.

  13. Clinical and laboratory characteristics of ocular syphilis, co-infection, and therapy response

    PubMed Central

    Sahin, Ozlem; Ziaei, Alireza

    2016-01-01

    Purpose To describe the clinical presentation of patients diagnosed with presumed latent ocular syphilis and congenital ocular syphilis at tertiary referral center in Turkey, and to compare the clinical findings with patients described in other studies, specifically focusing on demographics and co-infections. Methods This is a retrospective study reviewing the medical records of patients diagnosed with ocular inflammation between January 2012 and June 2014 at a tertiary referral center in Turkey. Ocular syphilis was diagnosed on the basis of non-treponemal and treponemal antibody tests, and cerebrospinal fluid analysis. All the patients diagnosed with ocular syphilis were tested for human immunodeficiency virus (HIV), Toxoplasma gondii, rubella, cytomegalovirus, and herpes. Results A total of 1,115 patients were evaluated between January 2012 and June 2014, and 12 patients (1.07%) were diagnosed with ocular syphilis based on the inclusion criteria. None of the patients were seropositive for HIV. Two patients were seropositive for T. gondii-specific IgG. Clinical presentations include non-necrotizing anterior scleritis, non-necrotizing sclerokeratitis, anterior uveitis, intermediate uveitis, posterior uveitis, panuveitis, and optic neuritis. All of the patients showed clinical improvement in the level of ocular inflammation with intravenous penicillin 24 million U/day for 10 days. Three patients received additional oral methotrexate as an adjunctive therapy. Two cases received low-dose trimethoprim–sulfamethoxazole. Conclusion Ocular syphilis is an uncommon cause of ocular inflammation in HIV-negative patients. Central retinochoroiditis is the most common ocular manifestation, and it is the most common cause of visual impairment. Ocular syphilis might present associated with co-infections such as T. gondii in developing countries. Oral methotrexate might be beneficial as an adjunctive therapy for ocular syphilis in resolving the residual intraocular inflammation

  14. Sialomucin complex at the rat ocular surface: a new model for ocular surface protection.

    PubMed Central

    Price-Schiavi, S A; Meller, D; Jing, X; Merritt, J; Carvajal, M E; Tseng, S C; Carraway, K L

    1998-01-01

    The ocular surface, which is among the most accessible and vulnerable tissues in mammals, is protected by a complex tear film composed of lipid, aqueous and mucin layers. In spite of its importance, the molecular nature of the mucin contribution remains uncertain. Since membrane mucins have been implicated in the protection of other epithelia, we have analysed rat corneal and conjunctival tissues for sialomucin complex (SMC), a membrane mucin found at the apical epithelial cell surfaces in the airway and uterus. Using Northern and Western blot analyses, SMC expression was found in both ocular tissues, being particularly abundant in the cornea. In contrast with the other known membrane mucin, MUC1, SMC was localized more heavily towards the apical surface of the epithelial cells. SMC in ocular surface epithelia was produced in both soluble and membrane forms, the latter being found predominantly in the most superficial cells and at apical surfaces. The soluble form was found loosely adsorbed to apical cell surfaces, particularly of the cornea, as indicated by a mild rinsing protocol. Finally, the tear fluid contained substantial amounts of SMC. From these results, we propose a new model for tear mucin components in which SMC is expressed at the apical ocular surface in both membrane-bound and adsorbed soluble forms to provide a direct protective barrier. SMC secreted into the tear fluid may also participate in maintaining the stability of the preocular tear film by acting with other secreted mucins to determine the physical properties and protective behaviour of the tear film. PMID:9761747

  15. Human somatic cell nuclear transfer and cloning.

    PubMed

    2012-10-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer (cloning)," last published in Fertil Steril 2000;74:873-6.

  16. Photomodification of human immunocompetent blood cells

    SciTech Connect

    Krylenkov, V.A.; Ogurtsov, R.P.; Osmanov, M.A.; Kholmogorov, V.E.

    1987-10-01

    In this paper, processes of photomodification of lymphoid cells in human blood, developing immediately after exposure to visible radiation and also in the late stages after irradiation, were investigated by methods of spontaneous and immune rosette formation and the blast transformation test, combined with treatment with the antioxidant alpha-tocopherol and the radioactive assessment of spontaneous and stimulated DNA synthesis by tritium-thymidine-labelled cells.

  17. Human Colon Cancer Cells Cultivated in Space

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  18. Biotinylation of histones in human cells. Effects of cell proliferation.

    PubMed

    Stanley, J S; Griffin, J B; Zempleni, J

    2001-10-01

    An enzymatic mechanism has been proposed by which biotinidase may catalyze biotinylation of histones. Here, human cells were found to covalently bind biotin to histones H1, H2A, H2B, H3, and H4. Cells respond to proliferation with increased biotinylation of histones; biotinylation increases early in the cell cycle and remains increased during the cycle. Notwithstanding the catalytic role of biotinidase in biotinylation of histones, mRNA encoding biotinidase and biotinidase activity did not parallel the increased biotinylation of histones in proliferating cells. Biotinylation of histones might be regulated by enzymes other than biotinidase or by the rate of histone debiotinylation.

  19. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    SciTech Connect

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  20. Genetic Manipulation of Human Embryonic Stem Cells.

    PubMed

    Eiges, Rachel

    2016-01-01

    One of the great advantages of embryonic stem (ES) cells over other cell types is their accessibility to genetic manipulation. They can easily undergo genetic modifications while remaining pluripotent, and can be selectively propagated, allowing the clonal expansion of genetically altered cells in culture. Since the first isolation of ES cells in mice, many effective techniques have been developed for gene delivery and manipulation of ES cells. These include transfection, electroporation, and infection protocols, as well as different approaches for inserting, deleting, or changing the expression of genes. These methods proved to be extremely useful in mouse ES cells, for monitoring and directing differentiation, discovering unknown genes, and studying their function, and are now being extensively implemented in human ES cells (HESCs). This chapter describes the different approaches and methodologies that have been applied for the genetic manipulation of HESCs and their applications. Detailed protocols for generating clones of genetically modified HESCs by transfection, electroporation, and infection will be described, with special emphasis on the important technical details that are required for this purpose. All protocols are equally effective in human-induced pluripotent stem (iPS) cells.

  1. The preservative polyquaternium-1 increases cytoxicity and NF-kappaB linked inflammation in human corneal epithelial cells

    PubMed Central

    Paimela, Tuomas; Ryhänen, Tuomas; Kauppinen, Anu; Marttila, Liisa; Salminen, Antero

    2012-01-01

    Purpose In numerous clinical and experimental studies, preservatives present in eye drops have had detrimental effects on ocular epithelial cells. The aim of this study was to compare the cytotoxic and inflammatory effects of the preservative polyquaternium-1 (PQ-1) containing Travatan (travoprost 0.004%) and Systane Ultra eye drops with benzalkonium chloride (BAK) alone or BAK-preserved Xalatan (0.005% latanoprost) eye drops in HCE-2 human corneal epithelial cell culture. Methods HCE-2 cells were exposed to the commercial eye drops Travatan, Systane Ultra, Xalatan, and the preservative BAK. Cell viability was determined using colorimetric MTT (3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and by release of lactate dehydrogenase (LDH). Induction of apoptosis was measured with a using a colorimetric caspase-3 assay kit. DNA binding of the nuclear factor kappa B (NF-κB) transcription factor, and productions of the proinflammatory cytokines, interleukins IL-6 and IL-8, were determined using an enzyme-linked immunosorbent assay (ELISA) method. Results Cell viability, as measured by the MTT assay, declined by up to 50% after exposure to Travatan or Systane Ultra solutions which contain 0.001% PQ-1. BAK at 0.02% rather than at 0.001% concentration evoked total cell death signs on HCE-2 cells. In addition, cell membrane permeability, as measured by LDH release, was elevated by sixfold with Travatan and by a maximum threefold with Systane Ultra. Interestingly, Travatan and Systane Ultra activated NF-κB and elevated the secretion of inflammation markers IL-6 by 3 to eightfold and IL-8 by 1.5 to 3.5 fold, respectively, as analyzed with ELISA. Conclusions Eye drops containing PQ-1 evoke cytotoxicity and enhance the NF-κB driven inflammation reaction in cultured HCE-2 cells. Our results indicate that these harmful effects of ocular solutions preserved with PQ-1 should be further evaluated in vitro and in vivo. PMID:22605930

  2. Opioids and differentiation in human cancer cells.

    PubMed

    Zagon, Ian S; McLaughlin, Patricia J

    2005-10-01

    This study was designed to examine the role of opioids on cell differentiation, with an emphasis on the mechanism of opioid growth factor (OGF, [Met5]-enkephalin)-dependent growth inhibition. Three human cancer cell lines (SK-N-SH neuroblastoma and SCC-1 and CAL-27 squamous cell carcinoma of the head and neck), along with OGF and the opioid antagonist naltrexone (NTX) at a dosage (10(-6) M) known to repress or increase, respectively, cell replication, were utilized. The effects on differentiation (neurite formation, process lengths, betaIII-tubulin, involucrin) were investigated in cells exposed to OGF or NTX for up to 6 days. In addition, the influence of a variety of other natural and synthetic opioids on differentiation was examined. OGF, NTX, naloxone, [D-Pen2,5]-enkephalin, dynorphin A1-8, beta-endorphin, endomorphin-1 and -2, [D-Ala2, MePhe4, Glycol5]-enkephalin (DAMGO), morphine, and U69,593 at concentrations of 10(-6) M did not alter cell differentiation of any cancer cell line. In NTX-treated SK-N-SH cells, cellular area was increased 23%, and nuclear area was decreased 17%, from control levels; no changes in cell or nuclear area were recorded in OGF-exposed cells. F-actin concentration was increased 40% from control values in SK-N-SH cells subjected to NTX, whereas alpha-tubulin was decreased 53% in OGF-treated cells. These results indicate that the inhibitory or stimulatory actions of OGF and NTX, respectively, on cell growth in tissue culture are not due to alterations in differentiation pathways. However, exposure to OGF and NTX modified some aspects of cell structure, but this was independent of differentiation. The absence of effects on cancer cell differentiation by a variety of other opioids supports the previously reported lack of growth effects of these compounds.

  3. Enriched retinal ganglion cells derived from human embryonic stem cells.

    PubMed

    Gill, Katherine P; Hung, Sandy S C; Sharov, Alexei; Lo, Camden Y; Needham, Karina; Lidgerwood, Grace E; Jackson, Stacey; Crombie, Duncan E; Nayagam, Bryony A; Cook, Anthony L; Hewitt, Alex W; Pébay, Alice; Wong, Raymond C B

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  4. Enriched retinal ganglion cells derived from human embryonic stem cells

    PubMed Central

    Gill, Katherine P.; Hung, Sandy S. C.; Sharov, Alexei; Lo, Camden Y.; Needham, Karina; Lidgerwood, Grace E.; Jackson, Stacey; Crombie, Duncan E.; Nayagam, Bryony A.; Cook, Anthony L.; Hewitt, Alex W.; Pébay, Alice; Wong, Raymond C. B.

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  5. The Cell Surface Proteome of Human Mesenchymal Stromal Cells

    PubMed Central

    Pursche, Theresia; Bornhäuser, Martin; Corbeil, Denis; Hoflack, Bernard

    2011-01-01

    Background Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers. Methodology/Principal Findings To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously. Conclusions/Significance Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention. PMID:21637820

  6. Ocular manifestations of graft-versus-host disease

    PubMed Central

    Nassar, Amr; Tabbara, Khalid F.; Aljurf, Mahmoud

    2013-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) has evolved over the past two decades to become the standard of care for hematologic and lymphoid malignancies. Major ocular complications after allogeneic HSCT have been increasing in number and severity. Graft-versus-host disease (GVHD) remains a major cause of ocular morbidity after allogeneic HSCT. The main objective of this review is to elucidate the ocular complications in patients developing GVHD following HSCT. Ocular complications secondary to GVHD are common and include dry eye syndrome, acquisition of ocular allergy from donors with allergic disorders. Eyelid changes may occur in GVHD leading to scleroderma-like changes. Patients may develop poliosis, madarosis, vitiligo, lagophthalmos, and entropion. The cornea may show filamentary keratitis, superficial punctate keratitis, corneal ulcers, and peripheral corneal melting which may lead to perforation in severe cases. Scleritis may also occur which can be anterior or posterior. Keratoconjunctivis sicca appears to be the most common presentation of GVHD. The lacrimal glands may be involved with mononuclear cell infiltration of both the major and accessory lacrimal glands and decrease in tear production. Severe dry eye syndrome in patients with GVHD may develop conjunctival scarring, keratinization, and cicatrization of the conjunctiva. Therapy of GVHD includes systemic immunosuppression and local therapy. Surgical treatment in refractory cases includes surgical intervention to improve the manifestation of GVHD of the eye. This may include tarsorrhapy, prose lenses, punctal occlusions and corneal transplantation. PMID:24227989

  7. An Unusual Ocular Emergency in Severe Dengue

    PubMed Central

    Nagaraj, Kalpana Badami; Jayadev, Chaitra; Yajmaan, Soumya; Prakash, Savitha

    2014-01-01

    Dengue, one of the most common mosquito-borne flavivirus diseases affecting humans, is spread by the Aedes aegypti mosquito. Most people infected with dengue virus are asymptomatic or only have mild symptoms such as an uncomplicated fever; few have more severe features, while in a small proportion it is life-threatening. Severe dengue is defined as that associated with severe bleeding, severe organ dysfunction, or severe plasma leakage. Ophthalmic manifestations can involve both the anterior and posterior segment. We report an ocular emergency of proptosis and globe rupture in a patient with severe dengue. PMID:25371643

  8. Centre for human development, stem cells & regeneration.

    PubMed

    Oreffo, Richard O C

    2014-01-01

    The Centre for Human Development, Stem Cells and Regeneration (CHDSCR) was founded in 2004 as a cross-disciplinary research and translational program within the Faculty of Medicine at the University of Southampton. The Centre undertakes fundamental research into early development and stem cells together with applied translational research for patient benefit. The Centre has vibrant and thriving multidisciplinary research programs that harness the translational strength of the Faculty together with an innovative Stem Cell PhD program, outstanding clinical infrastructure and enterprise to deliver on this vision.

  9. Isolation of Human Skin Dendritic Cell Subsets.

    PubMed

    Gunawan, Merry; Jardine, Laura; Haniffa, Muzlifah

    2016-01-01

    Dendritic cells (DCs) are specialized leukocytes with antigen-processing and antigen-presenting functions. DCs can be divided into distinct subsets by anatomical location, phenotype and function. In human, the two most accessible tissues to study leukocytes are peripheral blood and skin. DCs are rare in human peripheral blood (<1 % of mononuclear cells) and have a less mature phenotype than their tissue counterparts (MacDonald et al., Blood. 100:4512-4520, 2002; Haniffa et al., Immunity 37:60-73, 2012). In contrast, the skin covering an average total surface area of 1.8 m(2) has approximately tenfold more DCs than the average 5 L of total blood volume (Wang et al., J Invest Dermatol 134:965-974, 2014). DCs migrate spontaneously from skin explants cultured ex vivo, which provide an easy method of cell isolation (Larsen et al., J Exp Med 172:1483-1493, 1990; Lenz et al., J Clin Invest 92:2587-2596, 1993; Nestle et al., J Immunol 151:6535-6545, 1993). These factors led to the extensive use of skin DCs as the "prototype" migratory DCs in human studies. In this chapter, we detail the protocols to isolate DCs and resident macrophages from human skin. We also provide a multiparameter flow cytometry gating strategy to identify human skin DCs and to distinguish them from macrophages. PMID:27142012

  10. Silk film biomaterials for ocular surface repair

    NASA Astrophysics Data System (ADS)

    Lawrence, Brian David

    Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the

  11. Advances in Human B Cell Phenotypic Profiling

    PubMed Central

    Kaminski, Denise A.; Wei, Chungwen; Qian, Yu; Rosenberg, Alexander F.; Sanz, Ignacio

    2012-01-01

    To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation (“Big Biology”), necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort. PMID:23087687

  12. Human norovirus culture in B cells.

    PubMed

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinjé, Jan; Karst, Stephanie M

    2015-12-01

    Human noroviruses (HuNoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HuNoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HuNoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-Sydney HuNoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HuNoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. Analysis of infection or attachment samples, including RNA extraction and RT-qPCR, requires ∼6 h.

  13. Androgen receptor in human endothelial cells

    PubMed Central

    Torres-Estay, Verónica; Carreño, Daniela V; San Francisco, Ignacio F; Sotomayor, Paula; Godoy, Alejandro S; Smith, Gary J

    2015-01-01

    Androgen receptor (AR) is a ligand-inducible transcription factor, and a member of the steroid-thyroid-retinoid receptor superfamily, that mediates the biological effects of androgens in a wide range of physiological and pathological processes. AR expression was identified in vascular cells nearly 20 years ago, and recent research has shown that AR mediates a variety of actions of androgens in endothelial and vascular smooth muscle cells. In this mini-review, we review evidence indicating the importance of AR in human endothelial cell (HUVEC) homeostatic and pathogenic processes. Although a role for AR in the modulation of HUVEC biology is evident, the molecular mechanisms by which AR regulates HUVEC homeostasis and disease processes are not fully understood. Understanding these mechanisms could provide critical insights into the processes of pathogenesis of diseases ranging from cardiovascular disease to cancer that are major causes of human morbidity and mortality. PMID:25563353

  14. Harnessing Human Dendritic Cell Subsets for Medicine

    PubMed Central

    Ueno, Hideki; Schmitt, Nathalie; Klechevsky, Eynav; Pedroza-Gonzales, Alexander; Matsui, Toshimichi; Zurawski, Gerard; Oh, SangKon; Fay, Joseph; Pascual, Virginia; Banchereau, Jacques; Palucka, Karolina

    2010-01-01

    Summary Immunity results from a complex interplay between the antigen-nonspecific innate immune system and the antigen-specific adaptive immune system. The cells and molecules of the innate system employ non-clonal recognition receptors including lectins, Toll-like receptors, NOD-like receptors and helicases. B and T lymphocytes of the adaptive immune system employ clonal receptors recognizing antigens or their derived peptides in a highly specific manner. An essential link between innate and adaptive immunity is provided by dendritic cells (DCs). DCs can induce such contrasting states as immunity and tolerance. The recent years have brought a wealth of information on the biology of DCs revealing the complexity of this cell system. Indeed, DC plasticity and subsets are prominent determinants of the type and quality of elicited immune responses. Here we summarize our recent studies aimed at a better understanding of the DC system to unravel the pathophysiology of human diseases and design novel human vaccines. PMID:20193020

  15. Henipavirus Pathogenesis in Human Respiratory Epithelial Cells

    PubMed Central

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J. Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz

    2013-01-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection. PMID:23302882

  16. Endogenous formation of morphine in human cells.

    PubMed

    Poeaknapo, Chotima; Schmidt, Jürgen; Brandsch, Matthias; Dräger, Birgit; Zenk, Meinhart H

    2004-09-28

    Morphine is a plant (opium poppy)-derived alkaloid and one of the strongest known analgesic compounds. Studies from several laboratories have suggested that animal and human tissue or fluids contain trace amounts of morphine. Its origin in mammals has been believed to be of dietary origin. Here, we address the question of whether morphine is of endogenous origin or derived from exogenous sources. Benzylisoquinoline alkaloids present in human neuroblastoma cells (SH-SY5Y) and human pancreas carcinoma cells (DAN-G) were identified by GC/tandem MS (MS/MS) as norlaudanosoline (DAN-G), reticuline (DAN-G and SH-SY5Y), and morphine (10 nM, SH-SY5Y). The stereochemistry of reticuline was determined to be 1-(S). Growth of the SH-SY5Y cell line in the presence of (18)O(2) led to the [(18)O]-labeled morphine that had the molecular weight 4 mass units higher than if grown in (16)O(2), indicating the presence of two atoms of (18)O per molecule of morphine. Growth of DAN-G cells in an (18)O(2) atmosphere yielded norlaudanosoline and (S)-reticuline, both labeled at only two of the four oxygen atoms. This result clearly demonstrates that all three alkaloids are of biosynthetic origin and suggests that norlaudanosoline and (S)-reticuline are endogenous precursors of morphine. Feeding of [ring-(13)C(6)]-tyramine, [1-(13)C, N-(13)CH(3)]-(S)-reticuline and [N-CD(3)]-thebaine to the neuroblastoma cells led each to the position-specific labeling of morphine, as established by GC/MS/MS. Without doubt, human cells can produce the alkaloid morphine. The studies presented here serve as a platform for the exploration of the function of "endogenous morphine" in the neurosciences and immunosciences.

  17. Infrared thermography on ocular surface temperature: A review

    NASA Astrophysics Data System (ADS)

    Tan, Jen-Hong; Ng, E. Y. K.; Rajendra Acharya, U.; Chee, C.

    2009-07-01

    Body temperature is a good indicator of human health. Thermal imaging system (thermography) is a non-invasive imaging procedure used to record the thermal patterns using Infrared (IR) camera. It provides visual and qualitative documentation of temperature changes in the vascular tissues, and is beginning to play an important role in the field of ophthalmology. This paper deals with the working principle, use and advantages of IR thermography in the field of ophthalmology. Different algorithms to acquire the ocular surface temperature (OST), that can be used for the diagnosis of ocular diseases are discussed.

  18. Advanced drug delivery and targeting technologies for the ocular diseases

    PubMed Central

    Barar, Jaleh; Aghanejad, Ayuob; Fathi, Marziyeh; Omidi, Yadollah

    2016-01-01

    Introduction: Ocular targeted therapy has enormously been advanced by implementation of new methods of drug delivery and targeting using implantable drug delivery systems (DDSs) or devices (DDDs), stimuli-responsive advanced biomaterials, multimodal nanomedicines, cell therapy modalities and medical bioMEMs. These technologies tackle several ocular diseases such as inflammation-based diseases (e.g., scleritis, keratitis, uveitis, iritis, conjunctivitis, chorioretinitis, choroiditis, retinitis, retinochoroiditis), ocular hypertension and neuropathy, age-related macular degeneration and mucopolysaccharidosis (MPS) due to accumulation of glycosaminoglycans (GAGs). Such therapies appear to provide ultimate treatments, even though much more effective, yet biocompatible, noninvasive therapies are needed to control some disabling ocular diseases/disorders. Methods: In the current study, we have reviewed and discussed recent advancements on ocular targeted therapies. Results: On the ground that the pharmacokinetic and pharmacodynamic analyses of ophthalmic drugs need special techniques, most of ocular DDSs/devices developments have been designed to localized therapy within the eye. Application of advanced DDSs such as Subconjunctival insert/implants (e.g., latanoprost implant, Gamunex-C), episcleral implant (e.g., LX201), cationic emulsions (e.g., Cationorm™, Vekacia™, Cyclokat™), intac/punctal plug DDSs (latanoprost punctal plug delivery system, L-PPDS), and intravitreal implants (I-vitaion™, NT-501, NT- 503, MicroPump, Thethadur, IB-20089 Verisome™, Cortiject, DE-102, Retisert™, Iluvein™ and Ozurdex™) have significantly improved the treatment of ocular diseases. However, most of these DDSs/devices are applied invasively and even need surgical procedures. Of these, use of de novo technologies such as advanced stimuli-responsive nanomaterials, multimodal nanosystems (NSs)/nanoconjugates (NCs), biomacromolecualr scaffolds, and bioengineered cell therapies

  19. Ocular Dirofilariasis: A Case Series of 8 Patients

    PubMed Central

    Kalogeropoulos, Chris D.; Stefaniotou, Maria I.; Gorgoli, Konstantina E.; Papadopoulou, Chrissanthy V.; Pappa, Chrysavgi N.; Paschidis, Costas A.

    2014-01-01

    Purpose: Dirofilaria repens is an endemic parasite in Mediterranean countries that mostly affects animals. Rarely, however, it can infect humans. This case series presents patients with ocular infections due to D. repens. Materials and Methods: A chart review was performed of patients with ocular dirofilariasis after the year 2000, treated at a tertiary referral centre in Greece. Data were collected on the ocular, microbiological, or/and histopathological aspects and treatment. Results: Eight cases of unilateral ocular dirofilariasis were identified, of which 5 were subconjunctival (1 masquerading as nodular scleritis) and were removed through a conjunctival incision, 2 cases were intravitreal and were removed with vitrectomy, and 1 was intraorbital (adjacent to the roof of the orbit). The latter appeared as an encapsulated mass and subsequent histological examination revealed the presence of the parasite. Of the 8 cases recorded after the year 2000, 7 appeared within the last 6 years (4 cases within the last 3 years). The majority of cases involved residents of the Ionian Islands (7 of 8 cases). Conclusions: D. repens can affect various ocular and periocular tissues. A progressive increase in the incidence of dirofilariasis was observed, which is potentially associated with climate changes in warm and moist areas where this parasite is endemic. PMID:25371636

  20. Ocular surface adverse effects of ambient levels of air pollution.

    PubMed

    Torricelli, André Augusto Miranda; Novaes, Priscila; Matsuda, Monique; Alves, Milton Ruiz; Monteiro, Mário Luiz Ribeiro

    2011-01-01

    It is widely recognized today that outdoor air pollution can affect human health. Various chemical components that are present in ambient pollution may have an irritant effect on the mucous membranes of the body, particularly those of the respiratory tract. Much less attention has been focused on the adverse effect on the ocular surface, despite the fact that this structure is even more exposed to air pollution than the respiratory mucosa since only a very thin tear film separates the corneal and conjunctival epithelia from the air pollutants. So far, clinical data are the more widespread tools used by ophthalmologists for assessing possible aggression to the ocular surface; however, clinical findings alone appears not to correlate properly with the complaints presented by the patients pointing out the need for further clinical and laboratory studies on the subject. The purpose of this study is to review signs and symptoms associated with chronic long-term exposure to environmental air pollutants on the ocular structures currently defined as the ocular surface and to review clinical and laboratory tests used to investigate the adverse effects of air pollutants on such structures. We also review previous studies that investigated the adverse effects of air pollution on the ocular surface and discuss the need for further investigation on the subject.

  1. PEDIATRIC OCULAR TOXOCARIASIS IN JIANGSU PROVINCE, EASTERN CHINA.

    PubMed

    Zhang, Hai-Fang; Hua, Hai-Yong; Wang, Wei

    2015-01-01

    Ocular toxocariasis is caused by migration of a Toxocara larva through the posterior eye. We report the first case of pediatric ocular toxocariasis caused by T. canis in Jiangsu Province, eastern China. A 6-year-old girl presented to Suzhou Municipal Children's Hospital with a complaint of right eye redness, minimal white discharge, no photophobia, eye pain, visual impairment, fever or arthralgia. She was initially diagnosed as having conjunctivitis; however, a 2-month treatment with lomefloxacin 0.3% eye drops gave no improvements. The diagnosis was made based on medical history (contact with dogs), clinical features and detection of T. canis IgG antibodies with an enzyme-linked immunosorbent assay (ELISA). Anthelmintic therapy with albendazole in combination with prednisolone resulted in improvement of the ocular symptoms. Ocular toxocariasis is rarely reported in China. However, the rapid economic development in China, could mean an increase in pet dogs with the potential increased risk of contracting toxocariasis if no control measures are taken. Disposal of pet litter, deworming of infected pets, complete cooking of meats, thorough rinsing of fruits and vegetables, and good hand-washing may help prevent human infections. Ocular toxocariasis should be considered in the differential diagnosis of patients with conjunctivitis that does not resolve with treatment. PMID:26513899

  2. Structural and Mechanical Mechanisms of Ocular Tissues Probed by AFM

    NASA Astrophysics Data System (ADS)

    Ziebarth, Noël M.; Rico, Felix; Moy, Vincent T.

    In recent years, the atomic force microscope (AFM) has become an important tool in ophthalmic research. It has gained popularity largely because AFM is not restricted by the diffraction limits of light microscopy and can be applied to resolve images with molecular resolution. AFM is a minimally invasive technique and can be used to visualize molecular structures under near-physiological conditions. In addition, the AFM can be employed as a force apparatus to characterize the viscoelastic properties of biomaterials on the micron level and at the level of individual proteins. In this article, we summarize recent AFM studies of ocular tissues, while highlighting the great potential of AFM technology in ophthalmic research. Previous research demonstrates the versatility of the AFM as high resolution imaging technique and as a sensitive force apparatus for probing the mechanical properties of ocular tissues. The structural and mechanical properties of ocular tissues are of major importance to the understanding of the optomechanical functions of the human eye. In addition, AFM has played an important role in the development and characterization of ocular biomaterials, such as contact lenses and intraocular lenses. Studying ocular tissues using Atomic Force Microscopy has enabled several advances in ophthalmic research.

  3. Numerical analysis of specific absorption rate in the human head due to a 13.56 MHz RFID-based intra-ocular pressure measurement system.

    PubMed

    Hirtl, Rene; Schmid, Gernot

    2013-09-21

    A modern wireless intra-ocular pressure monitoring system, based on 13.56 MHz inductively coupled data transmission, was dosimetrically analyzed with respect to the specific absorption rate (SAR) induced inside the head and the eye due to the electromagnetic field exposure caused by the reader antenna of the transmission system. The analysis was based on numerical finite difference time domain computations using a high resolution anatomical eye model integrated in a modern commercially available anatomical model of a male head. Three different reader antenna configurations, a 7-turn elliptic (30 mm × 50 mm) antenna at 12 mm distance from the eye, a flexible circular antenna (60 mm diameter, 8 turns on 2 mm substrate) directly attached to the skin, and a circular 7-turn antenna (30 mm diameter at 12 mm distance to the eye) were analyzed, respectively. Possible influences of the eye-lid status (closed or opened) and the transponder antenna contained in a contact lens directly attached to the eye were taken into account. The results clearly demonstrated that for typical reader antenna currents required for proper data transmission, the SAR values remain far below the limits for localized exposure of the head, as defined by the International Commission for Non-Ionizing Radiation Protection. Particularly the induced SAR inside the eye was found to be substantially (orders of magnitudes for typical reader antenna currents in the order of 1 A turn) below values which have been reported to be critical with respect to thermally induced adverse health effects in eye tissues. PMID:24002053

  4. Numerical analysis of specific absorption rate in the human head due to a 13.56 MHz RFID-based intra-ocular pressure measurement system

    NASA Astrophysics Data System (ADS)

    Hirtl, Rene; Schmid, Gernot

    2013-09-01

    A modern wireless intra-ocular pressure monitoring system, based on 13.56 MHz inductively coupled data transmission, was dosimetrically analyzed with respect to the specific absorption rate (SAR) induced inside the head and the eye due to the electromagnetic field exposure caused by the reader antenna of the transmission system. The analysis was based on numerical finite difference time domain computations using a high resolution anatomical eye model integrated in a modern commercially available anatomical model of a male head. Three different reader antenna configurations, a 7-turn elliptic (30 mm × 50 mm) antenna at 12 mm distance from the eye, a flexible circular antenna (60 mm diameter, 8 turns on 2 mm substrate) directly attached to the skin, and a circular 7-turn antenna (30 mm diameter at 12 mm distance to the eye) were analyzed, respectively. Possible influences of the eye-lid status (closed or opened) and the transponder antenna contained in a contact lens directly attached to the eye were taken into account. The results clearly demonstrated that for typical reader antenna currents required for proper data transmission, the SAR values remain far below the limits for localized exposure of the head, as defined by the International Commission for Non-Ionizing Radiation Protection. Particularly the induced SAR inside the eye was found to be substantially (orders of magnitudes for typical reader antenna currents in the order of 1 A turn) below values which have been reported to be critical with respect to thermally induced adverse health effects in eye tissues.

  5. Primary Bioassay of Human Myeloma Stem Cells

    PubMed Central

    Hamburger, Anne; Salmon, Sydney E.

    1977-01-01

    The ability to clone primary tumors in soft agar has proven useful in the study of the kinetics and biological properties of tumor stem cells. We report the development of an in vitro assay which permits formation of colonies of human monoclonal plasma cells in soft agar. Colony growth has been observed from bone marrow aspirates from 75% of the 70 patients with multiple myeloma or related monoclonal disorders studied. Growth was induced with either 0.02 ml of human type O erythrocytes or 0.25 ml of medium conditioned by the adherent spleen cells of mineral oil-primed BALB/c mice. 5-500 colonies appeared after 2-3 wk in culture yielding a plating efficiency of 0.001-0.1%. The number of myeloma colonies was proportional to the number of cells plated between concentrations of 105-106 and back-extrapolated through zero, suggesting that colonies were clones derived from single myeloma stem cells. Morphological, histochemical, and functional criteria showed the colonies to consist of immature plasmablasts and mature plasma cells. 60-80% of cells picked from colonies contained intracytoplasmic monoclonal immunoglobulin. Colony growth was most easily achieved from the bone marrow cells of untreated patients or those in relapse. Only 50% of bone marrow samples from patients in remission were successfully cultured. Tritiated thymidine suicide studies provided evidence that for most myeloma patients, a very high proportion of myeloma colony-forming cells was actively in transit through the cell cycle. Velocity sedimentation at 1 g showed myeloma stem cells sedimented in a broad band with a peak at 13 mm/h. Antibody to granulocyte colony-stimulating factor did not reduce the number or size of the colonies. Increased numbers of myeloma colonies were seen when the marrow was depleted of colony-stimulating factor elaborating adherent cells before plating. This bioassay should prove useful in studying the in vitro biological behavior of certain bone marrow-derived (B)-cell

  6. Ocular injuries caused by fireworks.

    PubMed

    Levitz, L M; Miller, J K; Uwe, M; Drüsedau, H

    1999-10-01

    What are the consequences of suddenly legalizing fireworks sales in a largely rural society? Would the spectrum of ocular injuries caused by fireworks differ from those found in the Western world? This is the first study on ocular injuries caused by fireworks conducted in the Republic of South Africa. We analyzed the presenting features and prospectively followed up all patients who presented to the casualties served by our ophthalmic department over the New Year celebrations of 1996-1997. The sale of fireworks to the public had been deregulated the previous year. Ocular injuries caused by fireworks had not been reported before 1995. We found that ocular injuries caused by fireworks occurred mainly in young male patients. The injuries were usually unilateral and responded to treatment. This mirrors worldwide studies that show that it is children who are frequently harmed by fireworks injury. Two of our patients were blinded by their injuries. Our findings echo those found in Western countries where fireworks have not been restricted by law. We suggest that young boys, regardless of race, nationality, literacy, or social circumstances, are at risk for ocular injuries caused by fireworks. Countries planning to unban fireworks should aim their education program at this target group.

  7. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in...

  8. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in...

  9. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in...

  10. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in...

  11. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in...

  12. DNA repair responses in human skin cells

    SciTech Connect

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  13. Presumed ocular bartonellosis

    PubMed Central

    Kerkhoff, F; Ossewaarde, J; de Loos, W S; Rothova, A

    1999-01-01

    BACKGROUND—The spectrum of diseases caused by Bartonella henselae continues to expand and ocular involvement during this infection is being diagnosed with increasing frequency.
METHODS—The clinical features and visual prognosis for 13 patients with intraocular inflammatory disease and laboratory evidence of bartonellosis were investigated. There were nine patients with neuroretinitis and four with panuveitis with positive antibody titres against B henselae determined by an enzyme immunoassay (IgG exceding 1:900 and/or IgM exceeding 1:250).
RESULTS—Positive IgG levels were found for eight patients and positive IgM levels for five. Despite animal exposure of 10 patients, only two (IgG positive) cases had systemic symptoms consistent with the diagnosis of cat scratch disease. Pathological fluorescein leakage of the optic disc was observed in all affected eyes. At 6 months' follow up, 3/18 (17%) affected eyes had a visual acuity of less than 20/100, owing to optic disc atrophy and cystoid macular oedema. 12 patients (17 eyes) were treated with antibiotics; visual acuity improved two or more Snellen lines for 9/17 (53%) eyes.
CONCLUSIONS—The possibility of B henselae infection should be considered in patients with neuroretinitis and panuveitis (especially in cases with associated optic nerve involvement) even in the absence of systemic symptoms typical for cat scratch disease.

 Keywords: bartonellosis; Bartonella henselae; intraocular inflammatory disease; cat scratch disease PMID:10365031

  14. Biological impact of human embryonic stem cells.

    PubMed

    Martín, Miguel; Menéndez, Pablo

    2012-01-01

    Research on human embryonic stem cells (hESCs) and induced pluripotent (iPS) stem cells is currently a field of great potential in biomedicine. These cells represent a highly valuable tool for developmental biology studies, disease models, and drug screening and toxicity. The ultimate goal of hESCs and iPS cell research is the treatment of diseases or disorders for which there is currently no treatment or existing therapies are only partially effective. Despite the disproportionate short-term hopes generated, which are putting too much pressure on scientists, the international scientific community is making rapid progress in understanding hESCs and iPS cells. Nonetheless, great efforts have to be made to provide an answer to still quite basic questions concerning their biology. Moreover, translation to clinical applications in cell replacement therapy requires prior solution to ethical barriers. The recent development of iPS cells has provided a strong alternative to overcome ethical issues concerning hESCs. However, an in-depth characterization of their genetic and epigenetic features, as well as their differentiation potential still remains to be undertaken. This chapter will describe, precisely, what the critical issues are, where scientific and ethical barriers stand, and how we are to overcome them. Only then, we shall finally discover whether hESCs and iPS cells will allow building reproducible disease models, and whether they really are a safe tool, with great potential for regenerative medicine.

  15. Growth regulation of cultured human nevus cells.

    PubMed

    Mancianti, M L; Györfi, T; Shih, I M; Valyi-Nagy, I; Levengood, G; Menssen, H D; Halpern, A C; Elder, D E; Herlyn, M

    1993-03-01

    Cells isolated from congenital melanocytic nevi and cultured in vitro have growth characteristics that resemble their premalignant stage in situ. A serum-free, chemically defined medium has been developed that allows continuous growth of established nevus cultures for up to several months. Like primary melanoma cells, nevus cells in high-calcium-containing W489 medium require insulin for growth. In contrast to melanoma cells, nevus cells in serum-free medium require the presence of alpha-melanocyte-stimulating hormone, which enhanced intracellular levels of cyclic adenosine monophosphate. In contrast to the requirements of normal human melanocytes from newborn foreskin, congenital nevus cells grow with less dependency on basic fibroblast growth factor (bFGF). Nevus cultures contain bFGF-like activity, and they express bFGF mRNA. Nevic cells of compound nevi also express bFGF mRNA in situ but only in the junctional areas. These results indicate that bFGF plays an important growth regulatory role for nevus cells in vitro and in vivo. PMID:8440904

  16. The ocular surface: from physiology to the ocular allergic diseases.

    PubMed

    Galicia-Carreón, Jorge; Santacruz, Concepción; Hong, Enrique; Jiménez-Martínez, María C

    2013-01-01

    Allergic conjunctivitis (AC) is an inflammation of the conjunctiva secondary to an immune response to exogenous antigens, usually called allergens. In fact, AC is a syndrome that involves the entire ocular surface, including conjunctiva, lids, cornea, and tear film. The signs and symptoms of AC have a meaningful effect on comfort and patient health, and could be influenced by environment, genetics and immune regulation mechanisms, all of which work together in a complex immunological homeostasis. Dysregulation in such immune responses could turn into a variety of ocular allergic diseases (OAD). This review describes some of the current understanding of cellular and molecular pathways involved in different OAD.

  17. Genome editing in human stem cells.

    PubMed

    Byrne, Susan M; Mali, Prashant; Church, George M

    2014-01-01

    The use of custom-engineered sequence-specific nucleases (including CRISPR/Cas9, ZFN, and TALEN) allows genetic changes in human cells to be easily made with much greater efficiency and precision than before. Engineered double-stranded DNA breaks can efficiently disrupt genes, or, with the right donor vector, engineer point mutations and gene insertions. However, a number of design considerations should be taken into account to ensure maximum gene targeting efficiency and specificity. This is especially true when engineering human embryonic stem or induced pluripotent stem cells (iPSCs), which are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe a protocol for easily engineering genetic changes in human iPSCs, through which we typically achieve targeting efficiencies between 1% and 10% without any subsequent selection steps. Since this protocol only uses the simple transient transfection of plasmids and/or single-stranded oligonucleotides, most labs will easily be able to perform it. We also describe strategies for identifying, cloning, and genotyping successfully edited cells, and how to design the optimal sgRNA target sites and donor vectors. Finally, we discuss alternative methods for gene editing including viral delivery vectors, Cas9 nickases, and orthogonal Cas9 systems.

  18. Anterior eye development and ocular mesenchyme

    PubMed Central

    Cvekl, Aleš; Tamm, Ernst R.

    2007-01-01

    Summary During development of the anterior eye segment, cells that originate from the surface epithelium or the neuroepithelium need to interact with mesenchymal cells, which predominantly originate from the neural crest. Failures of proper interaction result in a complex of developmental disorders such Peters’ anomaly, Axenfeld-Rieger’s syndrome or aniridia. Here we review the role of transcription factors that have been identified to be involved in the coordination of anterior eye development. Among these factors is PAX6, which is active in both epithelial and mesenchymal cells during ocular development, albeit at different doses and times. We propose that PAX6 is a key element that synchronizes the complex interaction of cell types of different origin, which are all needed for proper morphogenesis of the anterior eye. We discuss several molecular mechanisms that might explain the effects of haploinsufficiency of PAX6 and other transcription factors, and the broad variation of the resulting phenotypes. PMID:15057935

  19. Mutations in MAB21L2 Result in Ocular Coloboma, Microcornea and Cataracts

    PubMed Central

    Deml, Brett; Kariminejad, Ariana; Borujerdi, Razieh H. R.; Muheisen, Sanaa; Reis, Linda M.; Semina, Elena V.

    2015-01-01

    Ocular coloboma results from abnormal embryonic development and is often associated with additional ocular and systemic features. Coloboma is a highly heterogeneous disorder with many cases remaining unexplained. Whole exome sequencing from two cousins affected with dominant coloboma with microcornea, cataracts, and skeletal dysplasia identified a novel heterozygous allele in MAB21L2, c.151 C>G, p.(Arg51Gly); the mutation was present in all five family members with the disease and appeared de novo in the first affected generation of the three-generational pedigree. MAB21L2 encodes a protein similar to C. elegans mab-21 cell fate-determining factor; the molecular function of MAB21L2 is largely unknown. To further evaluate the role of MAB21L2, zebrafish mutants carrying a p.(Gln48Serfs*5) frameshift truncation (mab21l2Q48Sfs*5) and a p.(Arg51_Phe52del) in-frame deletion (mab21l2R51_F52del) were developed with TALEN technology. Homozygous zebrafish embryos from both lines developed variable lens and coloboma phenotypes: mab21l2Q48Sfs*5 embryos demonstrated severe lens and retinal defects with complete lethality while mab21l2R51_F52del mutants displayed a milder lens phenotype and severe coloboma with a small number of fish surviving to adulthood. Protein studies showed decreased stability for the human p.(Arg51Gly) and zebrafish p.(Arg51_Phe52del) mutant proteins and predicted a complete loss-of-function for the zebrafish p.(Gln48Serfs*5) frameshift truncation. Additionally, in contrast to wild-type human MAB21L2 transcript, mutant p.(Arg51Gly) mRNA failed to efficiently rescue the ocular phenotype when injected into mab21l2Q48Sfs*5 embryos, suggesting this allele is functionally deficient. Histology, immunohistochemistry, and in situ hybridization experiments identified retinal invagination defects, an increase in cell death, abnormal proliferation patterns, and altered expression of several ocular markers in the mab21l2 mutants. These findings support the

  20. Clusterin in the eye: An old dog with new tricks at the ocular surface.

    PubMed

    Fini, M Elizabeth; Bauskar, Aditi; Jeong, Shinwu; Wilson, Mark R

    2016-06-01

    The multifunctional protein clusterin (CLU) was first described in 1983 as a secreted glycoprotein present in ram rete testis fluid that enhanced aggregation ('clustering') of a variety of cells in vitro. It was also independently discovered in a number of other systems. By the early 1990s, CLU was known under many names and its expression had been demonstrated throughout the body, including in the eye. Its homeostatic activities in proteostasis, cytoprotection, and anti-inflammation have been well documented, however its roles in health and disease are still not well understood. CLU is prominent at fluid-tissue interfaces, and in 1996 it was demonstrated to be the most highly expressed transcript in the human cornea, the protein product being localized to the apical layers of the mucosal epithelia of the cornea and conjunctiva. CLU protein is also present in human tears. Using a preclinical mouse model for desiccating stress that mimics human dry eye disease, the authors recently demonstrated that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration in the tears. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to LGALS3 (galectin-3), a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. CLU depletion from the ocular surface epithelia is seen in a variety of inflammatory conditions in humans and mice that lead to squamous metaplasia and a keratinized epithelium. This suggests that CLU might have a specific role in maintaining mucosal epithelial differentiation, an idea that can now be tested using the mouse model for desiccating stress. Most

  1. Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells.

    PubMed

    Chen, Yinyin; Huang, Kevin; Nakatsu, Martin N; Xue, Zhigang; Deng, Sophie X; Fan, Guoping

    2013-04-01

    The corneal endothelium is composed of a monolayer of corneal endothelial cells (CECs), which is essential for maintaining corneal transparency. To better characterize CECs in different developmental stages, we profiled mRNA transcriptomes in human fetal and adult corneal endothelium with the goal to identify novel molecular markers in these cells. By comparing CECs with 12 other tissue types, we identified 245 and 284 signature genes that are highly expressed in fetal and adult CECs, respectively. Functionally, these genes are enriched in pathways characteristic of CECs, including inorganic anion transmembrane transporter, extracellular matrix structural constituent and cyclin-dependent protein kinase inhibitor activity. Importantly, several of these genes are disease target genes in hereditary corneal dystrophies, consistent with their functional significance in CEC physiology. We also identified stage-specific markers associated with CEC development, such as specific members in the transforming growth factor beta and Wnt signaling pathways only expressed in fetal, but not in adult CECs. Lastly, by the immunohistochemistry of ocular tissues, we demonstrated the unique protein localization for Wnt5a, S100A4, S100A6 and IER3, the four novel markers for fetal and adult CECs. The identification of a new panel of stage-specific markers for CECs would be very useful for characterizing CECs derived from stem cells or ex vivo expansion for cell replacement therapy. PMID:23257286

  2. Brimonidine in the treatment of glaucoma and ocular hypertension

    PubMed Central

    Cantor, Louis B

    2006-01-01

    Treatment in glaucoma aims to lower intraocular pressure (IOP) to reduce the risk of progression and vision loss. The alpha2-adrenergic receptor agonist brimonidine effectively lowers IOP and is useful as monotherapy, adjunctive therapy, and replacement therapy in open-angle glaucoma and ocular hypertension. A fixed combination of brimonidine and timolol, available in some countries, reduces IOP as effectively as concomitant therapy with brimonidine and timolol and offers the convenience of 2 drugs in a single eyedrop. Brimonidine is safe and well tolerated. Its most common side-effects are conjunctival hyperemia, allergic conjunctivitis, and ocular pruritus. The newest formulation of brimonidine, brimonidine-Purite 0.1%, has a higher pH to improve the ocular bioavailability of brimonidine. This formulation contains the lowest effective concentration of brimonidine and is preserved with Purite® to enhance ocular tolerability. Brimonidine-Purite 0.1% is as effective in reducing IOP as the original brimonidine 0.2% solution preserved with benzalkonium chloride. Recent results from preclinical and clinical studies suggest that brimonidine may protect retinal ganglion cells and their projections from damage and death independently of its effects on IOP. The potential for neuroprotection with brimonidine is an added benefit of its use in glaucoma and ocular hypertension. PMID:18360646

  3. Excipients of preservative-free latanoprost induced inflammatory response and cytotoxicity in immortalized human HCE-2 corneal epithelial cells

    PubMed Central

    Smedowski, Adrian; Paterno, Jussi J.; Toropainen, Elisa; Sinha, Debasish; Wylegala, Edward; Kaarniranta, Kai

    2014-01-01

    Various preservative-free eye drop formulations for glaucoma treatment have been marketed intending to decrease ocular surface side effects and improve tolerability. However, preservative-free eye drops including different solubilizers to dissolve the antiglaucoma drugs may induce detrimental effects in the eye. In this study, we exposed human corneal epithelial cells (HCE-2) for 1, 6, 12, 24 and 48 hours to the first preservative-free (PF) tafluprost (Taflotan®), the recently-launched preservative-free (PF) latanoprost (Monoprost®), preservative benzalkonium chloride (BAK) and the excipient macrogolglycerol hydroxystearate 40 (MGHS40) using dilutions 0.1%, 0.3%, 1.0%, 3.0% and 10.0% of the original products. The cells also were exposed to undiluted PF tafluprost and PF latanoprost once a day for 9 days. Cellular morphology was examined by light microscopy and cell proliferation by Ki-67 fluorescent staining with cell viability being determined by erythrosine staining and the release of lactate dehydrogenase (LDH). Mitochondrial metabolic activity was evaluated with the colorimetric MTT assay. The secretion of interleukin 6 (IL-6) was measured with ELISA. HCE-2 cells displayed no significant morphological changes after PF tafluprost treatment, but PF latanoprost caused clear cell loss. Moreover, PF latanoprost, BAK and MGHS40 evoked cellular damage and inflammation with increasing concentrations and time. Furthermore, undiluted daily PF latanoprost application significantly increased LDH release and IL-6 secretion as compared to PF tafluprost. MGHS40 was observed to be associated with the toxicity of PF latanoprost. Excipients in ocular drops should receive more attention in the future, since they seem to trigger similar detrimental effects in cells as preservatives. PMID:25530926

  4. Liposomes as a potential ocular delivery system of distamycin A.

    PubMed

    Chetoni, Patrizia; Monti, Daniela; Tampucci, Silvia; Matteoli, Barbara; Ceccherini-Nelli, Luca; Subissi, Alessando; Burgalassi, Susi

    2015-08-15

    Liposomes containing Distamycin A (DA) may be clinically useful in the treatment of ocular HSV infections, especially in acyclovir-resistant HSV keratitis. This study evaluated the in vitro and in vivo performance of a topical controlled release liposomal formulation containing DA (DA-Lipo) aimed at reducing the toxicity of the encapsulated active agent and improving drug uptake by ocular tissues. The bioavailability of DA in the tear fluid and the DA uptake into the cornea were increased after instillation of DA-Lipo in rabbits, reaching the DA corneal concentration corresponding to IC50 values against HSV without any sign of transcorneal permeation of drug. DA-Lipo was definitely less cytotoxic then plain DA in rabbit corneal epithelial cells. These results provide new insights into the correlation between the in vitro data and the drug kinetics following ocular applications of liposomal vesicles. PMID:26183332

  5. Hypercholesterolemia-induced ocular disorder: Ameliorating role of phytotherapy.

    PubMed

    El-Sayyad, Hassan I H; Elmansi, Ahmed A; Bakr, Eman H M

    2015-01-01

    The ocular region is a complex structure that allows conscious light perception and vision. It is of ecto-mesodermal origin. Cholesterol and polyunsaturated fatty acids are involved in retinal cell function; however, hypercholesterolemia and diabetes impair its function. Retinal damage, neovascularization, and cataracts are the main complications of cholesterol overload. Dietary supplementation of selected plant products can lead to the scavenging of free reactive oxygen species, thereby protecting the ocular regions from the damage of hypercholesterolemia. This review illustrates the dramatic effects of increased cholesterol levels on the ocular regions. The effect of phytotherapy is discussed in relation to the different regions of the eye, including the retina, cornea, and lens. PMID:26429651

  6. Sports-related ocular trauma.

    PubMed

    Larrison, W I; Hersh, P S; Kunzweiler, T; Shingleton, B J

    1990-10-01

    A prospective evaluation of all patients presenting with a sports-related ocular injury during a 1-year (4-season) period was conducted. Of the 202 patients evaluated, 28 (13.8%) required hospitalization and 11 (5.6%) required intraocular surgery. Twenty-six patients (12.8%) sustained permanent ocular sequelae including seven (3.5%) who suffered visual loss. Basketball accounted for 28.7%, baseball/softball 19.8%, and racquetball 11.4% of all injuries. At the time of injury, 5.1% of patients had worn protective eye wear, whereas on follow-up only 31% had used eye protection. These results indicate that sports trauma remains a significant cause of ocular morbidity.

  7. Immortalization of primary human smooth muscle cells.

    PubMed Central

    Perez-Reyes, N; Halbert, C L; Smith, P P; Benditt, E P; McDougall, J K

    1992-01-01

    Primary human aortic and myometrial smooth muscle cells (SMCs) were immortalized using an amphotropic recombinant retroviral construct containing the E6 and E7 open reading frames (ORFs) of human papillomavirus type 16. The SMCs expressing the E6/E7 ORFs have considerably elevated growth rates when compared with nonimmortalized control cells and show no signs of senescence with long-term passage. The first SMC line derived in this study has been maintained in continuous tissue culture for greater than 1 year (greater than 180 population doublings). The immortalized SMCs have decreased cell size and decreased content of muscle-specific alpha-actin filaments as determined by indirect immunofluorescence. Southern blot analysis has demonstrated the stable integration of the E6/E7 ORFs in the retrovirally infected cells, and radioimmunoprecipitation has confirmed the continued expression of the E6 and E7 genes. Cytogenetic studies of the SMC lines have revealed essentially diploid populations except for the myometrial clonal line, which became aneuploid at late passage (greater than 125 doublings). These cell lines were not tumorigenic in nude mice. Images PMID:1311088

  8. [Lymphoma of Ocular and Periocular Tissues - Clinicopathological Correlations].

    PubMed

    Schmack, I; Grossniklaus, H E; Hartmann, S

    2016-07-01

    Lymphomas of the ocular adnexa and intraocular tissue include a wide range of lymphoproliferative neoplastic disorders. They are predominantly extranodal non-Hodgkin lymphomas (NHL). The World Health Organization (WHO) classification of lymphoid neoplasm and individual morphological, immunophenotypical, and molecular genetic features, indicate that they may be divided into B-cell (approximately 80 % of all NHL) and T-cell lymphomas (approximately 10-20 % of all NHL). The most common forms of ocular NHL are extranodal marginal zone lymphoma (EMZL) of the mucosa-associated lymphoid tissue (MALT-type), follicular lymphoma (FL), diffuse large B-cell lymphoma, and mantel cell lymphoma. The clinical signs and symptoms are usually very unspecific and depend on the location, size, and extent of the underlying lymphoma subtype. Typical low grade lymphomas have an indolent clinical course and often remain unrecognized for many years. On the other hand, high grade NHLs, such as DLBCL or MCL, are frequently aggressive, with rapid tumour growth and poor prognosis, despite early detection. Histopathology is still the gold standard in the diagnosis of ocular lymphomas. Basic understanding of the principal pathophysiological and clinical aspects of the development and progression of orbital and ocular lymphomas seems to be mandatory for optimal diagnosis and treatment and for improving survival and prognosis. Both residents in training and board certified ophthalmologists should be aware of these problems. PMID:27468099

  9. Osmotic water permeability of human red cells

    SciTech Connect

    Terwilliger, T.C.; Solomon, A.K.

    1981-05-01

    The osmotic water permeability of human red cells has been reexamined with a stopped-flow device and a new perturbation technique. Small osmotic gradients are used to minimize the systematic error caused by nonlinearities in the relationship between cell volume and light scattering. Corrections are then made for residual systematic error. Our results show that the hydraulic conductivity, Lp, is essentially independent of the direction of water flow and of osmolality in the range 184-365 mosM. the mean value of Lp obtained obtained was 1.8 +/- 0.1 (SEM) X 10-11 cm3 dyne -1 s-1.

  10. Stem Cell Models of Human Brain Development.

    PubMed

    Kelava, Iva; Lancaster, Madeline A

    2016-06-01

    Recent breakthroughs in pluripotent stem cell technologies have enabled a new class of in vitro systems for functional modeling of human brain development. These advances, in combination with improvements in neural differentiation methods, allow the generation of in vitro systems that reproduce many in vivo features of the brain with remarkable similarity. Here, we describe advances in the development of these methods, focusing on neural rosette and organoid approaches, and compare their relative capabilities and limitations. We also discuss current technical hurdles for recreating the cell-type complexity and spatial architecture of the brain in culture and offer potential solutions.

  11. Lymphoid Cell-Glioma Cell Interaction Enhances Cell Coat Production by Human Gliomas: Novel Suppressor Mechanism

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.; Macchi, Beatrice; Papazoglou, Savvas; Oldfield, Edward H.; Kornblith, Paul L.; Smith, Barry H.; Gately, Maurice K.

    1983-05-01

    Certain human glioma lines produce mucopolysaccharide coats that impair the generation of cytolytic lymphocytes in response to these lines in vitro. Coat production is substantially enhanced by the interaction of glioma cells with a macromolecular factor released by human peripheral blood mononuclear cells in culture. This interaction thus constitutes an unusual mechanism by which inflammatory cells may nonspecifically suppress the cellular immune response to at least one class of solid tumors in humans.

  12. High prevalence of side population in human cancer cell lines

    PubMed Central

    Boesch, Maximilian; Zeimet, Alain G.; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems. PMID:27226981

  13. Human Olfactory Mucosa Multipotent Mesenchymal Stromal Cells Promote Survival, Proliferation, and Differentiation of Human Hematopoietic Cells

    PubMed Central

    Diaz-Solano, Dylana; Wittig, Olga; Ayala-Grosso, Carlos; Pieruzzini, Rosalinda

    2012-01-01

    Multipotent mesenchymal stromal cells (MSCs) from the human olfactory mucosa (OM) are cells that have been proposed as a niche for neural progenitors. OM-MSCs share phenotypic and functional properties with bone marrow (BM) MSCs, which constitute fundamental components of the hematopoietic niche. In this work, we investigated whether human OM-MSCs may promote the survival, proliferation, and differentiation of human hematopoietic stem cells (HSCs). For this purpose, human bone marrow cells (BMCs) were co-cultured with OM-MSCs in the absence of exogenous cytokines. At different intervals, nonadherent cells (NACs) were harvested from BMC/OM-MSC co-cultures, and examined for the expression of blood cell markers by flow cytometry. OM-MSCs supported the survival (cell viability >90%) and proliferation of BMCs, after 54 days of co-culture. At 20 days of co-culture, flow cytometric and microscopic analyses showed a high percentage (73%) of cells expressing the pan-leukocyte marker CD45, and the presence of cells of myeloid origin, including polymorphonuclear leukocytes, monocytes, basophils, eosinophils, erythroid cells, and megakaryocytes. Likewise, T (CD3), B (CD19), and NK (CD56/CD16) cells were detected in the NAC fraction. Colony-forming unit–granulocyte/macrophage (CFU-GM) progenitors and CD34+ cells were found, at 43 days of co-culture. Reverse transcriptase–polymerase chain reaction (RT-PCR) studies showed that OM-MSCs constitutively express early and late-acting hematopoietic cytokines (i.e., stem cell factor [SCF] and granulocyte- macrophage colony-stimulating factor [GM-CSF]). These results constitute the first evidence that OM-MSCs may provide an in vitro microenvironment for HSCs. The capacity of OM-MSCs to support the survival and differentiation of HSCs may be related with the capacity of OM-MSCs to produce hematopoietic cytokines. PMID:22471939

  14. Human olfactory mucosa multipotent mesenchymal stromal cells promote survival, proliferation, and differentiation of human hematopoietic cells.

    PubMed

    Diaz-Solano, Dylana; Wittig, Olga; Ayala-Grosso, Carlos; Pieruzzini, Rosalinda; Cardier, Jose E

    2012-11-20

    Multipotent mesenchymal stromal cells (MSCs) from the human olfactory mucosa (OM) are cells that have been proposed as a niche for neural progenitors. OM-MSCs share phenotypic and functional properties with bone marrow (BM) MSCs, which constitute fundamental components of the hematopoietic niche. In this work, we investigated whether human OM-MSCs may promote the survival, proliferation, and differentiation of human hematopoietic stem cells (HSCs). For this purpose, human bone marrow cells (BMCs) were co-cultured with OM-MSCs in the absence of exogenous cytokines. At different intervals, nonadherent cells (NACs) were harvested from BMC/OM-MSC co-cultures, and examined for the expression of blood cell markers by flow cytometry. OM-MSCs supported the survival (cell viability >90%) and proliferation of BMCs, after 54 days of co-culture. At 20 days of co-culture, flow cytometric and microscopic analyses showed a high percentage (73%) of cells expressing the pan-leukocyte marker CD45, and the presence of cells of myeloid origin, including polymorphonuclear leukocytes, monocytes, basophils, eosinophils, erythroid cells, and megakaryocytes. Likewise, T (CD3), B (CD19), and NK (CD56/CD16) cells were detected in the NAC fraction. Colony-forming unit-granulocyte/macrophage (CFU-GM) progenitors and CD34(+) cells were found, at 43 days of co-culture. Reverse transcriptase-polymerase chain reaction (RT-PCR) studies showed that OM-MSCs constitutively express early and late-acting hematopoietic cytokines (i.e., stem cell factor [SCF] and granulocyte- macrophage colony-stimulating factor [GM-CSF]). These results constitute the first evidence that OM-MSCs may provide an in vitro microenvironment for HSCs. The capacity of OM-MSCs to support the survival and differentiation of HSCs may be related with the capacity of OM-MSCs to produce hematopoietic cytokines.

  15. Air bags and ocular injuries.

    PubMed Central

    Stein, J D; Jaeger, E A; Jeffers, J B

    1999-01-01

    PURPOSE: This investigation retrospectively examined ocular injuries associated with air bag deployment to gain a better appreciation of potential risk factors in motor vehicle accidents. National statistics regarding the efficacy of air bags were reviewed. METHODS: Review of the literature from 1991 to 1998 identified 44 articles describing 97 patients with air-bag-induced ocular injuries. Variables extracted from each case were age, sex, height, position in the car, eye wear, vehicle impact speed, visual acuity, and specific ocular injuries. RESULTS: Corneal abrasions occurred in 49% of occupants, hyphemas in 43%, vitreous or retinal hemorrhages in 25%, and retinal tears or detachments in 15%. The globe was ruptured in 10 patients. Patients involved in higher-speed accidents (over 30 mph) sustained a greater percentage of vitreous or retinal hemorrhages and traumatic cataracts, while those at slower speeds were more prone to retinal tears or detachments. In a subset of 14 patients with serious ocular injuries, the impact speed of 11 patients was recorded at 30 mph or less. Slower speed may be a risk factor for some ocular injuries. Occupant height was not a significant factor. National statistics confirm that air bags reduce fatalities in motor vehicle accidents. However, children sitting in the front seat without a seat belt and infants in passenger-side rear-facing car seats are at risk for fatal injury. CONCLUSION: Air bags combined with seat belts are an effective means of reducing injury and death in adults during motor vehicle accidents. However, this study has documented a wide variety of ocular injuries associated with air bag deployment. It is hoped that researchers can develop modifications that continue to save lives while minimizing additional harm. Images FIGURE 1 FIGURE 2A FIGURE 2B FIGURE 2C FIGURE 2D FIGURE 3A FIGURE 3B FIGURE 4 FIGURE 5 FIGURE 7 FIGURE 8 PMID:10703118

  16. Stiffness nanotomography of human epithelial cancer cells

    NASA Astrophysics Data System (ADS)

    Staunton, Jack R.; Doss, Bryant L.; Gilbert, C. Michael; Kasas, Sandor; Ros, Robert

    2012-02-01

    The mechanical stiffness of individual cells is important in both cancer initiation and metastasis. We present atomic force microscopy (AFM) based nanoindentation experiments on various human mammary and esophagus cell lines covering the spectrum from normal immortalized cells to highly metastatic ones. The combination of an AFM with a confocal fluorescence lifetime imaging microscope (FLIM) in conjunction with the ability to move the sample and objective independently allow for precise alignment of AFM probe and laser focus with an accuracy down to a few nanometers. This enables us to correlate the mechanical properties with the point of indentation in the FLIM image. We are using force-volume measurements as well as force indentation curves on distinct points on the cells to compare the elastic moduli of the nuclei, nucleoli, and the cytoplasm, and how they vary within and between individual cells and cell lines. Further, a detailed analysis of the force-indentation curves allows study of the cells' mechanical properties at different indentation depths and to generate 3D elasticity maps.

  17. Ocular insert for sustained delivery of gatifloxacin sesquihydrate: Preparation and evaluations

    PubMed Central

    Khurana, Gaurav; Arora, Sandeep; Pawar, Pravin K

    2012-01-01

    Background: Many polymeric systems have been used to fabricate ocular inserts for improve ocular bioavailability and retention to drug of which matrix systems have shown advantages of reduce dosing frequency and increased corneal residence time. The objective of the present investigation was to prepare and evaluate ocular inserts of gatifloxacin. Materials and Methods: Ocular insert was made from an aqueous dispersion of gatifloxacin, sodium alginate, polyvinyl alcohol, and glycerin by solvent casting method. Ocular insert (5.5 mm) was cross-linked by CaCl2 and was coated with Eudragit RL-100 or Eudragit RS-100. The ocular inserts were characterized for thickness; uniformity of weight, drug content uniformity, % moisture absorption or moisture loss, and surface pH. The in vitro diffusion studies were carried out by putting insert on Millipore membrane filter (0.8 μm) fixed between donor and receptor compartment of an all glass modified Franz diffusion cell. Results: The thickness and drug content of ocular insert were found in the range of 0.11 ± 0.003 to 0.24 ± 0.010 mm and 0.718 ± 0.002 to 0.867 ± 0.007 mg, respectively. The surface pH, % moisture absorption or moisture loss and weight variation values were obtained in satisfactory range. The cross-linked ocular insert coated with Eudragit RL-100 shows maximum drug permeation i.e. 89.53 % ± 0.43 at 11 h. The stability studies suggest that all ocular insert remained stable, showed lesser degradation rate and maximum shelf life. Conclusion: Ocular inserts of gatifloxacin were prepared successfully by using solvent casting method for sustained drug delivery. The cross-linked and Eudragit RL-100 coated ocular insert of gatifloxacin provides better in vitro drug release and sustained upto 11 h. PMID:23119235

  18. Programming and reprogramming a human heart cell.

    PubMed

    Sahara, Makoto; Santoro, Federica; Chien, Kenneth R

    2015-03-12

    The latest discoveries and advanced knowledge in the fields of stem cell biology and developmental cardiology hold great promise for cardiac regenerative medicine, enabling researchers to design novel therapeutic tools and approaches to regenerate cardiac muscle for diseased hearts. However, progress in this arena has been hampered by a lack of reproducible and convincing evidence, which at best has yielded modest outcomes and is still far from clinical practice. To address current controversies and move cardiac regenerative therapeutics forward, it is crucial to gain a deeper understanding of the key cellular and molecular programs involved in human cardiogenesis and cardiac regeneration. In this review, we consider the fundamental principles that govern the "programming" and "reprogramming" of a human heart cell and discuss updated therapeutic strategies to regenerate a damaged heart.

  19. Evaporation from the ocular surface.

    PubMed

    Mathers, William

    2004-03-01

    Evaporation from the ocular surface is dramatically reduced by the lipid layer which covers it. With this layer intact, evaporation represents a small loss of water for which the lacrimal gland easily compensates. When tear production is compromised evaporation becomes important, especially since evaporation in almost all ocular surface disease states and any surface perturbation, including contact lens wear, increases evaporation significantly. How the barrier function of the lipid layer accomplishes this reduction in evaporation is not understood and is probably quite complex as is the structure of the lipid layer. Improving this barrier function remains an important and elusive goal.

  20. [Adverse ocular effects of vaccinations].

    PubMed

    Ness, T; Hengel, H

    2016-07-01

    Vaccinations are very effective measures for prevention of infections but are also associated with a long list of possible side effects. Adverse ocular effects following vaccination have been rarely reported or considered to be related to vaccinations. Conjunctivitis is a frequent sequel of various vaccinations. Oculorespiratory syndrome and serum sickness syndrome are considered to be related to influenza vaccinations. The risk of reactivation or initiation of autoimmune diseases (e. g. uveitis) cannot be excluded but has not yet been proven. Overall the benefit of vaccination outweighs the possible but very low risk of ocular side effects.