Science.gov

Sample records for human osteosarcoma microcolonies

  1. Zebrafish as a model for human osteosarcoma.

    PubMed

    Mohseny, A B; Hogendoorn, P C W

    2014-01-01

    For various reasons involving biological comparativeness, expansive technological possibilities, accelerated experimental speed, and competitive costs, zebrafish has become a comprehensive model for cancer research. Hence, zebrafish embryos and full-grown fish have been instrumental for studies of leukemia, melanoma, pancreatic cancer, bone tumors, and other malignancies. Although because of its similarities to human osteogenesis zebrafish appears to be an appealing model to investigate osteosarcoma, only a few osteosarcoma specific studies have been accomplished yet. Here, we review interesting related and unrelated reports of which the findings might be extrapolated to osteosarcoma. More importantly, rational but yet unexplored applications of zebrafish are debated to expand the window of opportunities for future establishment of osteosarcoma models. Accordingly technological advances of zebrafish based cancer research, such as robotic high-throughput multicolor injection systems and advanced imaging methods are discussed. Furthermore, various use of zebrafish embryos for screening drug regimens by combinations of chemotherapy, novel drug deliverers, and immune system modulators are suggested. Concerning the etiology, the high degree of genetic similarity between zebrafish and human cancers indicates that affected regions are evolutionarily conserved. Therefore, zebrafish as a swift model system that allows for the investigation of multiple candidate gene-defects is presented.

  2. Prognostic implications of Kindlin proteins in human osteosarcoma

    PubMed Central

    Ning, Kai; Zhang, Haoshaqiang; Wang, Zhigang; Li, Kun

    2017-01-01

    The Kindlin protein family, comprising Kindlin-1, Kindlin-2 and Kindlin-3, play important roles in various human cancers. Here, to explore the clinical significance of Kindlins in human osteosarcomas, quantitative real-time PCR and Western blot analyses were performed to detect the expression of Kindlin-1, Kindlin-2 and Kindlin-3 mRNAs and proteins in 20 self-pairs of osteosarcoma and adjacent noncancerous tissues. Then, immunohistochemistry was performed to examine subcellular localizations and expression patterns of Kindlin proteins in 100 osteosarcoma and matched adjacent noncancerous tissues. Kindlin-1, Kindlin-2 and Kindlin-3 protein immunostainings were localized in the cytoplasm, nucleus and cytoplasm, respectively, of tumor cells in primary osteosarcoma tissues. Statistically, the expression levels of Kindlin-1 and Kindlin-2 mRNAs and proteins in osteosarcoma tissues were all significantly higher (both P<0.01), but those of Kindlin-3 mRNA and protein were both dramatically lower (both P<0.05), than in matched adjacent noncancerous tissues. In addition, the overexpressions of Kindlin-1 and Kindlin-2 proteins were both significantly associated with high tumor grade (both P=0.01), presence of metastasis (both P=0.006), recurrence (both P=0.006) and poor response to chemotherapy (both P=0.02). Moreover, Kindlin-1 and Kindlin-2 expressions were both identified as independent prognostic factors for overall (both P=0.01) and disease-free (P=0.02 and 0.01, respectively) survivals of osteosarcoma patients. However, no associations were observed between Kindlin-3 expression and various clinicopathologic features and patients’ prognosis. In conclusion, aberrant expression of Kindlin-1 and Kindlin-2 may function as reliable markers for progression and prognosis in osteosarcoma patients, especially for tumor recurrence. PMID:28223823

  3. Antitumor activity of dobutamine on human osteosarcoma cells

    PubMed Central

    YIN, JUN; DONG, QIRONG; ZHENG, MINQIAN; XU, XIAOZU; ZOU, GUOYOU; MA, GUOLIN; LI, KEFENG

    2016-01-01

    Dobutamine has been widely used for the treatment of heart failure and cardiogenic shock since the 1970s. Osteosarcoma is the most commonly observed malignant bone tumor in children. Currently, there are no effective drugs for the treatment of osteosarcoma. In the present study, the potential anticancer activity of dobutamine on human osteosarcoma cells was examined. Human osteosarcoma MG-63 cells were treated with dobutamine at various concentrations and for various incubation times. The inhibition of cell growth by dobutamine was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry was utilized to evaluate the effect of dobutamine on cell apoptosis and the cell cycle. Furthermore, the expression levels of caspase-3 and caspase-9 were assessed by western blot analysis. The influence of dobutamine on cancer cell migration and invasion was additionally evaluated using wound-healing assay and the Boyden Chamber migration method. Dobutamine significantly inhibited the growth of MG-63 cells at a concentration of 10 µM or higher when incubated for 12 h or longer (P=0.023). Dobutamine augmented cell apoptosis and arrested the cell cycle in the G2/M phase. Western blot analysis revealed that dobutamine induces expression of caspase-3 and caspase-9. In addition, the invasiveness and migration of MG-63 cells was inhibited by dobutamine in a concentration-dependent manner. The results of the present study may lead to novel applications for dobutamine in the treatment of osteosarcoma. PMID:27284371

  4. Investigation of osteosarcoma genomics and its impact on targeted therapy: an international collaboration to conquer human osteosarcoma

    PubMed Central

    Yang, Ji-Long

    2014-01-01

    Osteosarcoma is a genetically unstable malignancy that most frequently occurs in children and young adults. The lack of progress in managing this devastating disease in the clinic has prompted international researchers to collaborate to profile key genomic alterations that define osteosarcoma. A team of researchers and clinicians from China, Finland, and the United States investigated human osteosarcoma by integrating transcriptome sequencing (RNA-seq), high-density genome-wide array comparative genomic hybridization (aCGH), fluorescence in situ hybridization (FISH), reverse transcription-polymerase chain reaction (RT-PCR), Sanger sequencing, cell culture, and molecular biological approaches. Systematic analysis of genetic/genomic alterations and further functional studies have led to several important findings, including novel rearrangement hotspots, osteosarcoma-specific LRP1-SNRNP25 and KCNMB4-CCND3 fusion genes, VEGF and Wnt signaling pathway alterations, deletion of the WWOX gene, and amplification of the APEX1 and RUNX2 genes. Importantly, these genetic events associate significantly with pathogenesis, prognosis, progression, and therapeutic activity in osteosarcoma, suggesting their potential impact on improved managements of human osteosarcoma. This international initiative provides opportunities for developing new treatment modalities to conquer osteosarcoma. PMID:25418192

  5. Ferulic acid promoting apoptosis in human osteosarcoma cell lines

    PubMed Central

    Zhang, Xu-dong; Wu, Qiang; Yang, Shu-hua

    2017-01-01

    Objective: To explore the promoting apoptosis and antitumor activities of ferulic acid (FA) in human osteosarcoma and its potential mechanism. Methods: The SaOS-2 and MG63 osteosarcoma cell lines were opted to experiment and these cells were, respectively, cultured with various concentrations of FA (0 μM, 10 μM, 20 μM, 40 μM) for 72 hours at 37°C. The viabilities of the FA treated cells were monitored by MTT. Apoptosis cells were evaluated using annexin V/PI by flow cytometry. Apoptosis proteins caspase-3, procaspase-3, Bcl-2 and Bax were detected by western blot. Expressions of apoptotic genes Bcl-2 and Bax were quantified by qPCR. Results: The cell viabilities were critically declined in the concentration-dependent manner in FA groups (P < 0.01). The apoptosis cells were increased proportionately with the concentration of FA (P < 0.05). The procaspase-3 protein contents, and Bcl-2 mRNA and protein contents were significantly decreased while caspase-3 protein contents, and Bax mRNA and protein contents were concomitantly increased in the concentration-dependent manner in FA groups (P < 0.05). The response to FA by the SaOS-2 osteosarcoma cell was similar with the MG63 osteosarcoma cell (P > 0.05). Conclusion: Ferulic acid could significantly descend osteosarcoma cell viability through the promoting apoptosis pathway in which FA activates both caspase-3 and Bax and inactivates Bcl-2. PMID:28367185

  6. AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway.

    PubMed

    Morishita, Masayuki; Kawamoto, Teruya; Hara, Hitomi; Onishi, Yasuo; Ueha, Takeshi; Minoda, Masaya; Katayama, Etsuko; Takemori, Toshiyuki; Fukase, Naomasa; Kurosaka, Masahiro; Kuroda, Ryosuke; Akisue, Toshihiro

    2017-01-01

    The AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) modulates cellular energy metabolism, and promotes mitochondrial proliferation and apoptosis. Previous studies have shown that AICAR has anticancer effects in various cancers, however the roles of AMPK and/or the effects of AICAR on osteosarcoma have not been reported. In the present study, we evaluated the effects of AICAR on tumor growth and mitochondrial apoptosis in human osteosarcoma both in vitro and in vivo. For in vitro experiments, two human osteosarcoma cell lines, MG63 and KHOS, were treated with AICAR, and the effects of AICAR on cell growth and mitochondrial apoptosis were assessed by WST assays, TUNEL staining, and immunoblot analyses. In vivo, human osteosarcoma-bearing mice were treated with AICAR, and the mitochondrial proliferation and apoptotic activity in treated tumors were assessed. In vitro experiments revealed that AICAR activated AMPK, inhibited cell growth, and induced mitochondrial apoptosis in both osteosarcoma cell lines. In vivo, AICAR significantly reduced osteosarcoma growth without apparent body weight loss and AICAR increased both mitochondrial proliferation and apoptotic activity in treated tumor tissues. AICAR showed anticancer effects in osteosarcoma cells through an AMPK-dependent peroxisome proliferator‑activated receptor-γ coactivator-1α (PGC-1α)/mitochondrial transcription factor A (TFAM)/mitochondrial pathway. The findings in this study strongly suggest that AICAR could be considered as a potent therapeutic agent for the treatment of human osteosarcoma.

  7. AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway

    PubMed Central

    Morishita, Masayuki; Kawamoto, Teruya; Hara, Hitomi; Onishi, Yasuo; Ueha, Takeshi; Minoda, Masaya; Katayama, Etsuko; Takemori, Toshiyuki; Fukase, Naomasa; Kurosaka, Masahiro; Kuroda, Ryosuke; Akisue, Toshihiro

    2017-01-01

    The AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) modulates cellular energy metabolism, and promotes mitochondrial proliferation and apoptosis. Previous studies have shown that AICAR has anticancer effects in various cancers, however the roles of AMPK and/or the effects of AICAR on osteosarcoma have not been reported. In the present study, we evaluated the effects of AICAR on tumor growth and mitochondrial apoptosis in human osteosarcoma both in vitro and in vivo. For in vitro experiments, two human osteosarcoma cell lines, MG63 and KHOS, were treated with AICAR, and the effects of AICAR on cell growth and mitochondrial apoptosis were assessed by WST assays, TUNEL staining, and immunoblot analyses. In vivo, human osteosarcoma-bearing mice were treated with AICAR, and the mitochondrial proliferation and apoptotic activity in treated tumors were assessed. In vitro experiments revealed that AICAR activated AMPK, inhibited cell growth, and induced mitochondrial apoptosis in both osteosarcoma cell lines. In vivo, AICAR significantly reduced osteosarcoma growth without apparent body weight loss and AICAR increased both mitochondrial proliferation and apoptotic activity in treated tumor tissues. AICAR showed anticancer effects in osteosarcoma cells through an AMPK-dependent peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)/mitochondrial transcription factor A (TFAM)/mitochondrial pathway. The findings in this study strongly suggest that AICAR could be considered as a potent therapeutic agent for the treatment of human osteosarcoma. PMID:27878239

  8. Smoothened as a new therapeutic target for human osteosarcoma

    PubMed Central

    2010-01-01

    Background The Hedgehog signaling pathway functions as an organizer in embryonic development. Recent studies have demonstrated constitutive activation of Hedgehog pathway in various types of malignancies. However, it remains unclear how Hedgehog pathway is involved in the pathogenesis of osteosarcoma. To explore the involvement of aberrant Hedgehog pathway in the pathogenesis of osteosarcoma, we investigated the expression and activation of Hedgehog pathway in osteosarcoma and examined the effect of SMOOTHENED (SMO) inhibition. Results To evaluate the expression of genes of Hedgehog pathway, we performed real-time PCR and immunohistochemistry using osteosarcoma cell lines and osteosarcoma biopsy specimens. To evaluate the effect of SMO inhibition, we did cell viability, colony formation, cell cycle in vitro and xenograft model in vivo. Real-time PCR revealed that osteosarcoma cell lines over-expressed Sonic hedgehog, Indian hedgehog, PTCH1, SMO, and GLI. Real-time PCR revealed over-expression of SMO, PTCH1, and GLI2 in osteosarcoma biopsy specimens. These findings showed that Hedgehog pathway is activated in osteosarcomas. Inhibition of SMO by cyclopamine, a specific inhibitor of SMO, slowed the growth of osteosarcoma in vitro. Cell cycle analysis revealed that cyclopamine promoted G1 arrest. Cyclopamine reduced the expression of accelerators of the cell cycle including cyclin D1, cyclin E1, SKP2, and pRb. On the other hand, p21cip1 wprotein was up-regulated by cyclopamine treatment. In addition, knockdown of SMO by SMO shRNA prevents osteosarcoma growth in vitro and in vivo. Conclusions These findings suggest that inactivation of SMO may be a useful approach to the treatment of patients with osteosarcoma. PMID:20067614

  9. SIRT1 promotes metastasis of human osteosarcoma cells

    PubMed Central

    Zhang, Ning; Xie, Tao; Xian, Miao; Wang, Yi-Jie; Li, Heng-Yuan

    2016-01-01

    Pulmonary metastasis is the leading cause of mortality in patients with osteosarcoma; however, the underlying mechanism remains unclear. The NAD+-dependent deacetylase, sirtuin 1 (SIRT1), has been reported to play a key role in carcinogenesis through deacetylation of important regulatory proteins. Here, we report that SIRT1 promotes osteosarcoma metastasis by regulating the expression of metastatic-associated genes. The SIRT1 protein was significantly upregulated in most primary osteosarcoma tumours, compared with normal tissues, and the SIRT1 expression level may be coupled with metastatic risk in patients with osteosarcoma. Moreover, the results of cell migration and wound-healing assays further suggested that higher expression of SIRT1 promoted invasive activity of osteosarcoma cells. Importantly, downregulating SIRT1 with shRNA inhibited the migration ability of osteosarcoma cells in vitro and suppressed tumour lung metastasis in mice. Finally, a gene expression analysis showed that knockdown of SIRT1 profoundly activated translation of its downstream pathway, particularly at migration and invasion. In summary, high levels of SIRT1 may be a biomarker for a high metastatic rate in osteosarcoma patients; inhibiting SIRT1 could be a potent therapeutic intervention for these patients. PMID:27793039

  10. SIRT1 promotes metastasis of human osteosarcoma cells.

    PubMed

    Zhang, Ning; Xie, Tao; Xian, Miao; Wang, Yi-Jie; Li, Heng-Yuan; Ying, Mei-Dan; Ye, Zhao-Ming

    2016-11-29

    Pulmonary metastasis is the leading cause of mortality in patients with osteosarcoma; however, the underlying mechanism remains unclear. The NAD+-dependent deacetylase, sirtuin 1 (SIRT1), has been reported to play a key role in carcinogenesis through deacetylation of important regulatory proteins. Here, we report that SIRT1 promotes osteosarcoma metastasis by regulating the expression of metastatic-associated genes. The SIRT1 protein was significantly upregulated in most primary osteosarcoma tumours, compared with normal tissues, and the SIRT1 expression level may be coupled with metastatic risk in patients with osteosarcoma. Moreover, the results of cell migration and wound-healing assays further suggested that higher expression of SIRT1 promoted invasive activity of osteosarcoma cells. Importantly, downregulating SIRT1 with shRNA inhibited the migration ability of osteosarcoma cells in vitro and suppressed tumour lung metastasis in mice. Finally, a gene expression analysis showed that knockdown of SIRT1 profoundly activated translation of its downstream pathway, particularly at migration and invasion. In summary, high levels of SIRT1 may be a biomarker for a high metastatic rate in osteosarcoma patients; inhibiting SIRT1 could be a potent therapeutic intervention for these patients.

  11. Establishment of Cancer Stem Cell Cultures from Human Conventional Osteosarcoma

    PubMed Central

    Palmini, Gaia; Zonefrati, Roberto; Mavilia, Carmelo; Aldinucci, Alessandra; Luzi, Ettore; Marini, Francesca; Franchi, Alessandro; Capanna, Rodolfo; Tanini, Annalisa; Brandi, Maria Luisa

    2016-01-01

    The current improvements in therapy against osteosarcoma (OS) have prolonged the lives of cancer patients, but the survival rate of five years remains poor when metastasis has occurred. The Cancer Stem Cell (CSC) theory holds that there is a subset of tumor cells within the tumor that have stem-like characteristics, including the capacity to maintain the tumor and to resist multidrug chemotherapy. Therefore, a better understanding of OS biology and pathogenesis is needed in order to advance the development of targeted therapies to eradicate this particular subset and to reduce morbidity and mortality among patients. Isolating CSCs, establishing cell cultures of CSCs, and studying their biology are important steps to improving our understanding of OS biology and pathogenesis. The establishment of human-derived OS-CSCs from biopsies of OS has been made possible using several methods, including the capacity to create 3-dimensional stem cell cultures under nonadherent conditions. Under these conditions, CSCs are able to create spherical floating colonies formed by daughter stem cells; these colonies are termed "cellular spheres". Here, we describe a method to establish CSC cultures from primary cell cultures of conventional OS obtained from OS biopsies. We clearly describe the several passages required to isolate and characterize CSCs. PMID:27768062

  12. Establishment and characterization of a new highly metastatic human osteosarcoma cell line derived from Saos2

    PubMed Central

    Du, Lin; Fan, Qiming; Tu, Bing; Yan, Wei; Tang, Tingting

    2014-01-01

    Osteosarcoma is the most common primary malignancy of bone in adolescents and young adults. There is a shortage of tumorigenic and highly metastatic human osteosarcoma cell lines that can be used for metastasis study. Here we establish and characterize a highly metastatic human osteosarcoma cell line that is derived from Saos2 cell line based on bioluminescence. The occasional pulmonary metastatic cells developed from Saos2 were isolated, harvested, characterized and named Saos2-l. The parental Saos2 and Saos2-l cells were further characterized both in vitro and in vivo. Results showed that Saos2-l cells demonstrated increased cell adhesion, migration and invasion compared to the parental Saos2 cells. Conversely, Saos2-l cells grew at a slightly slower rate than that of the parental cells. When injected into nude mice, Saos2-l cells had a greater increase in developing pulmonary metastases compared to the parental Saos2 cells. Further transcriptional profiling analysis revealed that some gene expression were up-regulated or down-regulated in the highly metastatic Saos2-l cells, indicating possible influencing factors of metastasis. Thus, we have established and characterized a highly metastatic human osteosarcoma cell line that should serve as a valuable tool for future investigations on the pathogenesis, metastasis and potential treatments of human osteosarcoma. PMID:25031706

  13. The flavonoid luteolin enhances doxorubicin-induced autophagy in human osteosarcoma U2OS cells

    PubMed Central

    Zhang, Baoliang; Yu, Xin; Xia, Hong

    2015-01-01

    Luteolin (LUT), a flavone, which is universally present as constituent of medicinal plants as well as some vegetables and spices, has been demonstrated display specific anti-carcinogenic effects. However, the mechanisms by which LUT inhibits human osteosarcoma growth remain unknown. The effects of LUT on cell growth in human osteosarcoma U2OS cells were measured by MTT assay and flowcytometry. The effects of LUT on morphological markers of autophagy in U2OS were analyzed by fluorescence microscopy and electron microscopy. Autophagic markers, beclin1 and LC3 were detected by western blotting. Here, we found that LUT induced autophagy in U2OS and acted as an enhancer to sensitize doxorubicin (DOX)-mediated autophagy signaling. The combined treatment of LUT and DOX greatly decreases the growth of U2OS, showing synergistic cytotoxicity. Our results indicate that LUT in combination with DOX maybe a novel strategy for the treatment of human osteosarcoma. PMID:26629003

  14. Insulin regulates GLUT1-mediated glucose transport in MG-63 human osteosarcoma cells.

    PubMed

    Cifuentes, Manuel; García, Maria A; Arrabal, Pilar M; Martínez, Fernando; Yañez, María J; Jara, Nery; Weil, Bernardo; Domínguez, Dolores; Medina, Rodolfo A; Nualart, Francisco

    2011-06-01

    Osteosarcoma is the most common type of malignant bone cancer, accounting for 35% of primary bone malignancies. Because cancer cells utilize glucose as their primary energy substrate, the expression and regulation of glucose transporters (GLUT) may be important in tumor development and progression. GLUT expression has not been studied previously in human osteosarcoma cell lines. Furthermore, although insulin and insulin-like growth factor (IGF-I) play an important role in cell proliferation and tumor progression, the role of these hormones on GLUT expression and glucose uptake, and their possible relation to osteosarcoma, have also not been studied. We determined the effect of insulin and IGF-I on GLUT expression and glucose transport in three well-characterized human osteosarcoma cell lines (MG-63, SaOs-2, and U2-Os) using immunocytochemical, RT-PCR and functional kinetic analyses. Furthermore we also studied GLUT isoform expression in osteosarcoma primary tumors and metastases by in situ hybridization and immunohistochemical analyses. RT-PCR and immunostaining show that GLUT1 is the main isoform expressed in the cell lines and tissues studied, respectively. Immunocytochemical analysis shows that although insulin does not affect levels of GLUT1 expression it does induce a translocation of the transporter to the plasma membrane. This translocation is associated with increased transport of glucose into the cell. GLUT1 is the main glucose transporter expressed in osteosarcoma, furthermore, this transporter is regulated by insulin in human MG-63 cells. One possible mechanism through which insulin is involved in cancer progression is by increasing the amount of glucose available to the cancer cell.

  15. Nobiletin inhibits human osteosarcoma cells metastasis by blocking ERK and JNK-mediated MMPs expression

    PubMed Central

    Cheng, Hsin-Lin; Hsieh, Ming-Ju; Yang, Jia-Sin; Lin, Chiao-Wen; Lue, Ko-Haung; Lu, Ko-Hsiu; Yang, Shun-Fa

    2016-01-01

    Nobiletin, a polymethoxyflavone, has a few pharmacological activities, including anti-inflammation and anti-cancer effects. However, its effect on human osteosarcoma progression remains uninvestigated. Therefore, we examined the effectiveness of nobiletin against cellular metastasis of human osteosarcoma and the underlying mechanisms. Nobiletin, up to 100 μM without cytotoxicity, significantly decreased motility, migration and invasion as well as enzymatic activities, protein levels and mRNA expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in U2OS and HOS cells. In addition to inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), the inhibitory effect of nobiletin on the DNA-binding activity of the transcription factor nuclear factor-kappa B (NF-κB), cAMP response element-binding protein (CREB), and specificity protein 1 (SP-1) in U2OS and HOS cells. Co-treatment with ERK and JNK inhibitors and nobiletin further reduced U2OS cells migration and invasion. These results indicated that nobiletin inhibits human osteosarcoma U2OS and HOS cells motility, migration and invasion by down-regulating MMP-2 and MMP-9 expressions via ERK and JNK pathways and through the inactivation of downstream NF-κB, CREB, and SP-1. Nobiletin has the potential to serve as an anti-metastatic agent for treating osteosarcoma. PMID:27144433

  16. MicroRNA-497 inhibits cell proliferation, migration, and invasion by targeting AMOT in human osteosarcoma cells

    PubMed Central

    Ruan, Wen-Dong; Wang, Pei; Feng, Shiqing; Xue, Yuan; Zhang, Bin

    2016-01-01

    MicroRNAs (miRNAs) have a role in the development and progression of human malignancy. The expression of miR-497 is decreased in malignant tumors, which suggests a role for miR-497 as a tumor suppressor. Angiomotin is encoded by the AMOT gene, which is a target for miR-497. Angiomotin has a role in angiogenesis, cell proliferation, and invasion in human malignancies, including osteosarcoma. However, the role of miR-497 in human osteosarcoma is unknown. This preliminary study included human osteosarcoma tissues and normal tissues from 20 patients, the osteosarcoma cell lines, MG-63, SAOS-2, U-2 OS, and the human osteoblast cell line hFOB (OB3). Western blots for angiomotin and quantitative real-time polymerase chain reaction for the expression of miR-497 and AMOT were performed. Knockdown studies were performed using RNA interference and transfection studies used miR-497 mimics. Quantitative cell migration assays were performed, and cell apoptosis was studied by flow cytometry. Osteosarcoma cells and cell lines showed reduced expression of miR-497 and increased expression of angiomotin. Transfection of osteosarcoma cells with miR-497 mimics suppressed the expression of angiomotin. Results from a dual-luciferase reporter system supported AMOT as a direct target gene of miR-497. Knockdown of AMOT using RNA interference resulted in inhibition of osteosarcoma cell proliferation, migration, and invasion. These preliminary studies support a role for miR-497 as a suppressor of AMOT gene expression in human osteosarcoma cells, resulting in suppression of tumor cell proliferation and invasion. Further studies are recommended to investigate the role of miR-497 in osteosarcoma and other malignant mesenchymal tumors. PMID:26855583

  17. MiR-451 suppresses proliferation, migration and promotes apoptosis of the human osteosarcoma by targeting macrophage migration inhibitory factor.

    PubMed

    Liu, Wei; Liu, Sheng-Yao; He, Yong-Bin; Huang, Rui-Liang; Deng, Song-Yun; Ni, Guo-Xin; Yu, Bin

    2017-03-01

    Previous studies have shown that MiR-451 plays an important role in human osteosarcoma carcinogenesis, but the underlying mechanism by which MiR-451 affects the osteosarcoma has not been fully understood. This study intends to uncover the mechanism by which MiR-451 functions as a tumor suppressor. The expression of MiR-451 in osteosarcoma tissues and osteosarcoma cell lines was monitored by real-time PCR. The proliferation ability was examined by MTT and cell cycle assay. The migration and apoptosis of cells were monitored by migration assay and flow cytometry, respectively. Moreover, the angiogenesis of HUVEC cells transfected with MiR-451 mimics was examined by tube formation assay. The effect of MiR-451 on MIF was determined by luciferase assays and Western blot assay. The results showed that MiR-451 expression level was significantly reduced in the osteosarcoma compared with normal bone tissues. Overexpression of MiR-451 significantly attenuated the proliferation and migration, and induced the apoptosis of osteosarcoma cells. Furthermore, the angiogenesis of HUVEC cells transfected with MiR-451 mimics was assayed and the decreased angiogenic ability was detected compared to the controls. Finally, we demonstrated that MiR-451 overexpression inhibited the malignant behavior of osteosarcoma by downregulating MIF. These findings suggest that MiR-451 may act as a tumor suppressor in osteosarcoma. MiR-451 inhibited cell proliferation, migration and angiogenesis and promoted apoptosis of human osteosarcoma cells, at least partially, by inhibiting the expression of MIF. MiR-451/MIF may be a novel therapeutic target in treatment of osteosarcoma.

  18. Establishment and Characterization of a Human Small Cell Osteosarcoma Cancer Stem Cell Line: A New Possible In Vitro Model for Discovering Small Cell Osteosarcoma Biology

    PubMed Central

    Zonefrati, Roberto; Mavilia, Carmelo; Franchi, Alessandro; Capanna, Rodolfo

    2016-01-01

    Osteosarcoma (OSA) is the most common primary malignant bone tumor, usually arising in the long bones of children and young adults. There are different subtypes of OSA, among which we find the conventional OS (also called medullary or central osteosarcoma) which has a high grade of malignancy and an incidence of 80%. There are different subtypes of high grade OS like chondroblastic, fibroblastic, osteoblastic, telangiectatic, and the small cell osteosarcoma (SCO). In this study, for the first time, we have isolated, established, and characterized a cell line of cancer stem cells (CSCs) from a human SCO. First of all, we have established a primary finite cell line of SCO, from which we have isolated the CSCs by the sphere formation assay. We have proved their in vitro mesenchymal and embryonic stem phenotype. Additionally, we have showed their neoplastic phenotype, since the original tumor bulk is a high grade osteosarcoma. This research demonstrates the existence of CSCs also in human primary SCO and highlights the establishment of this particular stabilized cancer stem cell line. This will represent a first step into the study of the biology of these cells to discover new molecular targets molecules for new incisive therapeutic strategies against this highly aggressive OSA. PMID:27651797

  19. The Cancer-Related Transcription Factor Runx2 Modulates Cell Proliferation in Human Osteosarcoma Cell Lines

    PubMed Central

    Lucero, Claudia M.J.; Vega, Oscar A.; Osorio, Mariana M.; Tapia, Julio C.; Antonelli, Marcelo; Stein, Gary S.; Van Wijnen, Andre J.; Galindo, Mario A.

    2013-01-01

    Runx2 regulates osteogenic differentiation and bone formation, but also suppresses pre-osteoblast proliferation by affecting cell cycle progression in the G1 phase. The growth suppressive potential of Runx2 is normally inactivated in part by protein destabilization, which permits cell cycle progression beyond the G1/S phase transition, and Runx2 is again up-regulated after mitosis. Runx2 expression also correlates with metastasis and poor chemotherapy response in osteosarcoma. Here we show that six human osteosarcoma cell lines (SaOS, MG63, U2OS, HOS, G292, and 143B) have different growth rates, which is consistent with differences in the lengths of the cell cycle. Runx2 protein levels are cell cycle-regulated with respect to the G1/S phase transition in U2OS, HOS, G292, and 143B cells. In contrast, Runx2 protein levels are constitutively expressed during the cell cycle in SaOS and MG63 cells. Forced expression of Runx2 suppresses growth in all cell lines indicating that accumulation of Runx2 in excess of its pre-established levels in a given cell type triggers one or more anti-proliferative pathways in osteosarcoma cells. Thus, regulatory mechanisms controlling Runx2 expression in osteosarcoma cells must balance Runx2 protein levels to promote its putative oncogenic functions, while avoiding suppression of bone tumor growth. PMID:22949168

  20. Imprinting defects at human 14q32 locus alters gene expression and is associated with the pathobiology of osteosarcoma

    PubMed Central

    Shu, Jingmin; Li, Lihua; Sarver, Anne E.; Pope, Emily A.; Varshney, Jyotika; Thayanithy, Venugopal; Spector, Logan; Largaespada, David A.; Steer, Clifford J.; Subramanian, Subbaya

    2016-01-01

    Osteosarcoma is the most common primary bone malignancy affecting children and adolescents. Although several genetic predisposing conditions have been associated with osteosarcoma, our understanding of its pathobiology is rather limited. Here we show that, first, an imprinting defect at human 14q32-locus is highly prevalent (87%) and specifically associated with osteosarcoma patients < 30 years of age. Second, the average demethylation at differentially methylated regions (DMRs) in the 14q32-locus varied significantly compared to genome-wide demethylation. Third, the 14q32-locus was enriched in both H3K4-me3 and H3K27-me3 histone modifications that affected expression of all imprinted genes and miRNAs in this region. Fourth, imprinting defects at 14q32 - DMRs are present in triad DNA samples from affected children and their biological parents. Finally, imprinting defects at 14q32-DMRs were also observed at higher frequencies in an Rb1/Trp53 mutation-induced osteosarcoma mouse model. Further analysis of normal and tumor tissues from a Sleeping Beauty mouse model of spontaneous osteosarcoma supported the notion that these imprinting defects may be a key factor in osteosarcoma pathobiology. In conclusion, we demonstrate that imprinting defects at the 14q32 locus significantly alter gene expression, may contribute to the pathogenesis of osteosarcoma, and could be predictive of survival outcomes. PMID:26802029

  1. miR-24 represses metastasis of human osteosarcoma cells by targeting Ack1 via AKT/MMPs pathway.

    PubMed

    Liu, Zhendong; Liu, Zhitao; Zhang, Yuanjun; Li, Yan; Liu, Bo; Zhang, Kexiang

    2017-02-08

    The expression levels of the protein tyrosine kinase Ack1 has been reported to be dysregulated in various cancers and involve in oncogenesis and progression. However, the expression and role of Ack1 in osteosarcoma remains unknown. In this study, we found that Ack1 were evidently upregulated in human osteosarcoma tissues and cell lines. In addition, the clinical data showed that high expression level of Ack1 is closely associated with clinical stage and positive distant metastasis, and negatively correlated with overall survival. Then, bioinformatics prediction and luciferase reporter assay indicated Ack1 as a direct target of miR-24, and Ack1 could be downregulated by miR-24 at both the mRNA and protein expression levels. Moreover, Ack1 expression levels were inversely correlated with that of miR-24 in osteosarcoma tissues. Furthermore, functional assay showed that miR-24 significantly suppressed osteosarcoma progression partially mediated by inhibiting Ack1 expression. Finally, western bolt assay revealed that miR-24 regulate AKT/MMPs pathway via Ack1 in osteosarcoma cells. In conclusion, our study demonstrated the suppression of miR-24 on osteosarcoma metastasis by targeting Ack1 via AKT/MMPs pathways, providing a novel strategy for the diagnosis and treatment of osteosarcoma patients.

  2. Antibacterial Activity of Elephant Garlic and Its Effect against U2OS Human Osteosarcoma Cells

    PubMed Central

    Huang, Zehao; Ren, Jianwu

    2013-01-01

    Objective(s): The present study was designed to investigate the antibacterial function and pharmacological effect of elephant garlic (Allium ampeloprasum var. ampeloprasum) on U2OS human osteosarcoma cells. Materials and Methods: Seven kinds of bacteria were reconstituted, inoculated and tested in this research to evaluate elephant garlic antibacterial activity. By the means of FACS analysis, cell proliferation assay, confocal laser scanning microscopy and Transwell migration assays, the effect of elephant garlic against U2OS human osteosarcoma cells was unveiled. Rerults: The antimicrobial activity of elephant garlic was stronger than ampicillin when used against Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, Staphylococcus actinomycetes, and gray actinomycetes. Even at a very low concentration (12.5%), elephant garlic still had an antibacterial effect on common bacteria E. coli and S. aureus. The G0/G1 ratio of elephant garlic treated group cells increased while S phase decreased. Elephant garlic extract inhibited the growth of human osteosarcoma cells, U2OS, through preventing the transition from G1 phase to S phase. It reduced osteosarcoma cell, U2OS, invasion ability and significantly increased the proportion of apoptosis. It significantly affected the cytoskeleton generation. Conclusion: Elephant garlic exhibits antibacterial property and has an inhibitory effect on osteosarcoma cells (U2OS) proliferation and cell activity, suggesting the mechanism of its anticancer effects on U2OS human osteosarcoma cells. PMID:24379966

  3. Proton pump inhibitor chemosensitization in human osteosarcoma: from the bench to the patients’ bed

    PubMed Central

    2013-01-01

    Background Major goals in translational oncology are to reduce systemic toxicity of current anticancer strategies and improve effectiveness. An extremely efficient cancer cell mechanism to avoid and/or reduce the effects of highly cytotoxic drugs is the establishment of an acidic microenvironment, an hallmark of all malignant tumors. The H + −rich milieu that anticancer drugs meet once they get inside the tumor leads to their protonation and neutralization, therefore hindering their access into tumor cells. We have previously shown that proton pump inhibitors (PPI) may efficiently counterattack this tumor advantage leading to a consistent chemosensitization of tumors. In this study, we investigated the effects of PPI in chemosensitizing osteosarcoma. Method MG-63 and Saos-2 cell lines were used as human osteosarcoma models. Cell proliferation after pretreatment with PPI and subsequent treatment with cisplatin was evaluated by using erythrosin B dye vital staining. Tumour growth was evaluated in xenograft treated with cisplatin after PPI pretreatment. Subsequently, a multi-centre historically controlled trial, was performed to evaluate the activity of a pre-treatment administration of PPIs as chemosensitizers during neoadjuvant chemotherapy based on methotrexate, cisplatin, and adriamycin. Results Preclinical experiments showed that PPI sensitize both human osteosarcoma cell lines and xenografts to cisplatin. A clinical study subsequently showed that pretreatment with PPI drug esomeprazole leads to an increase in the local effect of chemotherapy, as expressed by percentage of tumor necrosis. This was particularly evident in chondroblastic osteosarcoma, an histological subtype that normally shows a poor histological response. Notably, no significant increase in toxicity was recorded in PPI treated patients. Conclusion This study provides the first evidence that PPI may be beneficially added to standard regimens in combination to conventional chemotherapy. PMID

  4. The Current and Future Therapies for Human Osteosarcoma

    PubMed Central

    Lamplot, Joseph D.; Denduluri, Sahitya; Qin, Jiaqiang; Li, Ruidong; Liu, Xing; Zhang, Hongyu; Chen, Xiang; Wang, Ning; Pratt, Abdullah; Shui, Wei; Luo, Xiaoji; Nan, Guoxin; Deng, Zhong-Liang; Luo, Jinyong; Haydon, Rex C; He, Tong-Chuan; Luu, Hue H.

    2015-01-01

    Osteosarcoma (OS) is the most common non-hematologic malignant tumor of bone in adults and children. As sarcomas are more common in adolescents and young adults than most other forms of cancer, there are a significant number of years of life lost secondary to these malignancies. OS is associated with a poor prognosis secondary to a high grade at presentation, resistance to chemotherapy and a propensity to metastasize to the lungs. Current OS management involves both chemotherapy and surgery. The incorporation of cytotoxic chemotherapy into therapeutic regimens escalated cure rates from <20% to current levels of 65-75%. Furthermore, limb-salvage surgery is now offered to the majority of OS patients. Despite advances in chemotherapy and surgical techniques over the past three decades, there has been stagnation in patient survival outcome improvement, especially in patients with metastatic OS. Thus, there is a critical need to identify novel and directed therapy for OS. Several Phase I trials for sarcoma therapies currently ongoing or recently completed have shown objective responses in OS. Novel drug delivery mechanisms are currently under phase II and III clinical trials. Furthermore, there is an abundance of preclinical research which holds great promise in the development of future OS-directed therapeutics. Our continuously improving knowledge of the molecular and cell-signaling pathways involved in OS will translate into more effective therapies for OS and ultimately improved patient survival. The present review will provide an overview of current therapies, ongoing clinical trials and therapeutic targets under investigation for OS. PMID:26834515

  5. Molecular Mechanisms of Luteolin Induced Growth Inhibition and Apoptosis of Human Osteosarcoma Cells

    PubMed Central

    Wang, Yonghong; Kong, Daliang; Wang, Xinwei; Dong, Xiaoxiong; Tao, Yingying; Gong, Haiyang

    2015-01-01

    Luteolin is a flavone in medicinal plants as well as some vegetables and spices. It is a natural anti-oxidant with less pro-oxidant potential but apparently with a better safety profile. The purpose of this study was to investigate the molecular mechanism of luteolin-mediated apoptosis of MG-63 human osteosarcoma cells. MTT assay kit was employed to evaluate the effects of luteolin on MG-63 cells proliferation. Then, we performed Annexin V-FITC/PI to analyze the apoptotic rate of the cells. Furthermore, the inhibitory effects of luteolin on the expressions of BCL-2, BAX, Caspase-3 and Survivin were detected by Western blotting. As expected, luteolin (0.5, 2.5, 12.5 µg/mL) inhibited the growth of MG-63 cells by inhibiting cell proliferation and inducing cell apoptosis. Western blotting demonstrated that luteolin (0.5, 2.5, 12.5 µg/mL) inhibited the expressions of BCL-2, Caspase-3 and Survivin, and promoted the expression of BAX in MG-63 cells with a concentration dependent way. Luteolin can inhibit osteosarcoma cell proliferation and induce apoptosis effectively in a dose dependent manner through down-regulating the expression of BCL-2, Caspase-3 and Survivin proteins levels and up-regulating the expression of BAX protein level. These findings indicated that luteolin may be used as a novel herbal medicine for the treatment of osteosarcoma. PMID:25901161

  6. Sanguinarine induces apoptosis of human osteosarcoma cells through the extrinsic and intrinsic pathways

    SciTech Connect

    Park, Hyunjin; Bergeron, Eric; Senta, Helena; Guillemette, Kim; Beauvais, Sabrina; Blouin, Richard; Sirois, Joel; Faucheux, Nathalie

    2010-08-27

    Research highlights: {yields} We show for the first time the effect of sanguinarine (SA) on MG63 and SaOS-2 cells. {yields} SA altered osteosarcoma cell viability in a concentration and time dependent manner. {yields} SA induced osteosarcoma cell apoptosis and increased caspase-8 and -9 activities. {yields} SA decreased dose dependently the Bcl-2 protein level only in MG63 cells. {yields} SaOS-2 which are osteoblast-derived, seemed more resistant to SA than MG63. -- Abstract: The quaternary benzo[c]phenanthridine alkaloid sanguinarine inhibits the proliferation of cancerous cells from different origins, including lung, breast, pancreatic and colon, but nothing is known of its effects on osteosarcoma, a primary malignant bone tumour. We have found that sanguinarine alters the morphology and reduces the viability of MG-63 and SaOS-2 human osteosarcoma cell lines in concentration- and time-dependent manner. Incubation with 1 {mu}mol/L sanguinarine for 4 and 24 h killed more efficiently MG-63 cells than SaOS-2 cells, while incubation with 5 {mu}mol/L sanguinarine killed almost 100% of both cell populations within 24 h. This treatment also changed the mitochondrial membrane potential in both MG-63 and SaOS-2 cells within 1 h, caused chromatin condensation and the formation of apoptotic bodies. It activated multicaspases, and increased the activities of caspase-8 and caspase-9 in both MG-63 and SaOS-2 cells. These data highlight sanguinarine as a novel potential agent for bone cancer therapy.

  7. Butyl benzyl phthalate suppresses the ATP-induced cell proliferation in human osteosarcoma HOS cells

    SciTech Connect

    Liu, P.-S.; Chen, C.-Y.

    2010-05-01

    Butyl benzyl phthalate (BBP), an endocrine disruptor present in the environment, exerts its genomic effects via intracellular steroid receptors and elicits non-genomic effects by interfering with membrane ion-channel receptors. We previously found that BBP blocks the calcium signaling coupled with P2X receptors in PC12 cells (Liu and Chen, 2006). Osteoblast P2X receptors were recently reported to play a role in cell proliferation and bone remodeling. In this present study, the effects of BBP on ATP-induced responses were investigated in human osteosarcoma HOS cells. These receptors mRNA had been detected, named P2X4, P2X7, P2Y2, P2Y4, P2Y5, P2Y9, and P2Y11, in human osteosarcoma HOS cells by RT-PCR. The enhancement of cell proliferation and the decrease of cytoviability had both been shown to be coupled to stimulation via different concentrations of ATP. BBP suppressed the ATP-induced calcium influx (mainly coupled with P2X) and cell proliferation but not the ATP-induced intracellular calcium release (mainly coupled with P2Y) and cytotoxicity in human osteosarcoma HOS cells. Suramin, a common P2 receptor's antagonist, blocked the ATP-induced calcium signaling, cell proliferation, and cytotoxicity. We suggest that P2X is mainly responsible for cell proliferation, and P2Y might be partially responsible for the observed cytotoxicity. BBP suppressed the calcium signaling coupled with P2X, suppressing cell proliferation. Since the importance of P2X receptors during bone metastasis has recently become apparent, the possible toxic risk of environmental BBP during bone remodeling is a public problem of concern.

  8. Berberine induces apoptosis and DNA damage in MG-63 human osteosarcoma cells

    PubMed Central

    ZHU, YU; MA, NAN; LI, HUI-XIANG; TIAN, LIN; BA, YU-FENG; HAO, BIN

    2014-01-01

    Berberine, an isoquinoline alkaloid extracted from the dry root of Coptidis Rhizoma, has been found to exhibit marked anticancer effects on a panel of established cancer cells. Among the human osteosarcoma lines treated, MG-63 cells were found to be the most sensitive. The present study investigated the potential genotoxic effect of berberine on MG-63 human osteosarcoma cells. The effect of berberine on cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cell apoptosis was analyzed by flow cytometry and a DNA ladder assay. γH2AX focus formation was used to detect DNA damage in MG-63 cells. Berberine induced a significant increase in apoptosis in MG-63 cells in a concentration- and time-dependent manner, as determined by DNA fragmentation analysis and flow cytometry. Furthermore, berberine induced significant concentration- and time-dependent increases in DNA damage compared with that in the negative control. In conclusion, these observations indicated that berberine induced apoptosis and DNA damage in MG-63 cells. PMID:25050485

  9. Berberine induces apoptosis and DNA damage in MG‑63 human osteosarcoma cells.

    PubMed

    Zhu, Yu; Ma, Nan; Li, Hui-Xiang; Tian, Lin; Ba, Yu-Feng; Hao, Bin

    2014-10-01

    Berberine, an isoquinoline alkaloid extracted from the dry root of Coptidis Rhizoma, has been found to exhibit marked anticancer effects on a panel of established cancer cells. Among the human osteosarcoma lines treated, MG‑63 cells were found to be the most sensitive. The present study investigated the potential genotoxic effect of berberine on MG‑63 human osteosarcoma cells. The effect of berberine on cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5‑diphenyltetrazolium bromide assay and cell apoptosis was analyzed by flow cytometry and a DNA ladder assay. γH2AX focus formation was used to detect DNA damage in MG-63 cells. Berberine induced a significant increase in apoptosis in MG-63 cells in a concentration- and time-dependent manner, as determined by DNA fragmentation analysis and flow cytometry. Furthermore, berberine induced significant concentration- and time-dependent increases in DNA damage compared with that in the negative control. In conclusion, these observations indicated that berberine induced apoptosis and DNA damage in MG‑63 cells.

  10. Inhibition of focal adhesion kinase induces apoptosis in human osteosarcoma SAOS-2 cells.

    PubMed

    Wang, Jialiang; Zu, Jianing; Xu, Gongping; Zhao, Wei; Jinglong, Yan

    2014-02-01

    Focal adhesion kinase (FAK), a non-receptor tyrosine kinase protein, acts as an early modulator of integrin signaling cascade, regulating basic cellular functions. In transformed cells, unopposed FAK signaling has been considered to promote tumor growth, progression, and metastasis. The aim of this study was to assess the role of focal adhesion kinase in human osteosarcoma SAOS-2 cells. SAOS-2 cells were transfected with PGPU6/GFP/shNC, and PGPU6/GFP/FAK-334 (shRNA-334), respectively. Expression of FAK was detected by real-time PCR and western blots. MTT assay was used to examine changes in cell proliferation. Cell apoptosis was analyzed by flow cytometry. The expression of caspase-3,-7,-9 was measured by Western blots. The expression of FAK in SAOS-2 cells significantly decreased in shRNA-334 group contrast to the control group (P < 0.01). Cells proliferation was inhibited by shRNA-334 and shRNA-334 + cisplatin, and the effects were clearly enhanced when cells treated with the anticancer agents. The level of cell apoptosis in shRNA-334 and shRNA-334 + cisplatin group was higher than in the control group (P < 0.01). The current data support evidence that down-regulation of FAK could induce SAOS-2 apoptosis through the caspase-dependent cell death pathway. Inhibition of the kinases may be important for therapies designed to enhance the apoptosis in osteosarcoma.

  11. A proteomic study on a human osteosarcoma cell line Saos-2 treated with diallyl trisulfide.

    PubMed

    Zhang, Yong Kui; Zhang, Xu Hua; Li, Jian Min; Sun, De Sheng; Yang, Qiang; Diao, Dong Mei

    2009-09-01

    Garlic is generally used as a therapeutic reagent against various diseases, and numerous studies have indicated that garlic and its derivatives can reduce the risk of various types of human cancer. Diallyl trisulfide (DATS), a major member of garlic derivatives, could inhibit the cell proliferation by triggering either cell cycle arrest or apoptosis in a variety of cancer cell lines as shown in many studies. However, whether DATS has the same effect on human osteosarcoma cells remains unknown. In this study, we have attempted to analyze the effects of DATS on cell proliferation, cell cycle, induction of apoptosis, global protein expression pattern in a human osteosarcoma cell line Saos-2 cells, and the potential molecular mechanisms of the action of DATS. Saos-2 cells, a human osteosarcoma cell line, were treated with or without 25, 50, and 100 micromol/l DATS for various time intervals. The cell proliferation, cell cycle progression, and apoptosis were examined in this study. Then, after treatment with or without 50 micromol/l DATS for 48 h, protein add pattern in Saos-2 cells were systematically studied using two-dimensional electrophoresis and mass spectrometry. DATS could inhibit the proliferation of Saos-2 cells in a dose-dependent and time-dependent manner. Moreover, the percentage of apoptotic cell and cell arrest in G0/G1 phase was also dose-dependent and time-dependent upon DATS treatment. A total of 27 unique proteins in Saos-2 cells, including 18 downregulated proteins and nine upregulated proteins, were detected with significant changes in their expression levels corresponding to DATS administration. Interestingly, almost half of these proteins (13 of 27) are related to either the cell cycle or apoptosis. DATS has the ability to suppress cell proliferation of Saos-2 cells by blocking cell cycle progression and inducing apoptosis in a dose and time-dependent manner. The proteomic results presented, therefore, provide additional support to the hypothesis

  12. Thinking about microcolonies as phage targets

    PubMed Central

    Abedon, Stephen T.

    2012-01-01

    Phage targets for adsorption can include: (1) individual bacteria; (2) bacterial cellular arrangements such as streptococci; (3) microcolonies consisting of bacterial clones as can make up bacterial lawns and biofilms; and (4) bacterial biofilms themselves. While much effort has gone into considering category 1, and some into category 4, substantially less has been put into the question of how bacterial association into clonal arrangements or microcolonies might affect phage-bacterial interactions. Recently I have been exploring just this issue—within a single-authored monograph published in 2011 and a theoretical article published in 2012 as part of a special issue of the journal, Viruses. For this commentary, I have been invited to summarize my thinking on how bacterial association into either cellular arrangements or microcolonies might affect their susceptibility to phages along with related issues of bacterial resistance to phages and phage propagation in the context of both plaques and biofilms. PMID:23275871

  13. Effect of sertraline on [Ca2+](i) and viability of human MG63 osteosarcoma cells.

    PubMed

    Lin, Ko-Long; Chi, Chao-Chuan; Lu, Ti; Tseng, Li-Ling; Wang, Jue-Long; Lu, Yi-Chau; Jan, Chung-Ren

    2013-04-01

    The antidepressant, sertraline, has been shown to have diverse in vitro effects. This study examined whether sertraline altered [Ca(2+)](i) in MG63 human osteosarcoma cells by using fura-2 as a Ca(2+)-sensitive fluorescent dye. At 50-200 µM, sertraline induced a [Ca(2+)](i) rise in a concentration-dependent manner. Ca(2+) response was decreased by removing extracellular Ca(2+), suggesting that Ca(2+) entry and release contributed to the [Ca(2+)](i) signal. Sertraline-induced Ca(2+) entry was inhibited by nifedipine, La(3+), Gd(3+), and SK&F96365. When extracellular Ca(2+) was removed, pretreatment with the endoplasmic reticulum (ER) Ca(2+) pump inhibitor, thapsigargin, or 2,5-di-tert-butylhydroquinone (BHQ) abolished the sertraline-evoked [Ca(2+)](i) rise. Incubation with sertraline also abolished the thapsigargin or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C (PLC) with U73122 abolished the sertraline-induced [Ca(2+)](i) rise. At 20-30 µM, overnight treatment with sertraline killed cells in a concentration-dependent manner. The cytotoxic effect of sertraline was not reversed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Annexin V/propidium iodide staining data demonstrate that sertraline (30 µM) evoked apoptosis. Sertraline (20 and 30 µM) also increased levels of reactive oxygen species. Together, in human osteosarcoma cells, sertraline evoked a [Ca(2+)](i) rise by inducing PLC-dependent Ca(2+) release from the ER and Ca(2+) entry by L-type Ca(2+) channels and store-operated Ca(2+) channels. Sertraline induced cell death that may involve apoptosis by mitochondrial pathways.

  14. Differential regulation and expression of hyaluronan synthases in human articular chondrocytes, synovial cells and osteosarcoma cells.

    PubMed Central

    Recklies, A D; White, C; Melching, L; Roughley, P J

    2001-01-01

    Recently three isoforms of hyaluronan synthase (HAS), the enzyme responsible for hyaluronate/hyaluronan (HA) biosynthesis, have been cloned, allowing us to study their expression pattern. Our objective was to determine which of the HAS isoenzymes were expressed in human articular chondrocytes, synovial fibroblasts and osteosarcoma cells, whether their expression could be modulated by growth factors (insulin-like growth factor-1, basic fibroblast growth factor and transforming growth factor (TGF-beta1) and cytokines [interleukin 1beta1 (IL-1beta)], and whether changes in the rate of HA synthesis by the cells correlated with changes in mRNA levels for one or more of the HAS isoforms. All three HAS isoforms were found to be expressed in the cultured cells analysed in this study, although the relative proportions varied for each cell type. HAS2 mRNA was usually predominant in chondrocytes, whereas synovial cells contained increased amounts of HAS1. HAS3 was always the least abundant message. The rapidly growing osteosarcoma cells contained almost exclusively HAS2 message. HAS usage in uncultured cartilage and synovial tissues was similar to that in the cultured cells, with HAS2 message being the predominant species in cartilage and HAS1 usually being the predominant species in synovium. HA synthesis was stimulated by the growth factors, but the extent of the response was cell-type specific. Synovial cells responded particularly well to IL-1beta, and showed a unique synergistic response when IL-1beta was used in combination with TGF-beta1. This response was much reduced in articular chondrocytes and absent in the osteosarcoma cells. Analysis of changes in HAS message levels indicated that there was often no correlation with the changes in HA secretion following exposure to growth factors. Although HAS-1 mRNA was increased in synovial cells after exposure to TGF-beta1/IL-1beta, the magnitude of the change was far less than the effect on HA synthesis. Our data thus

  15. Basic fibroblast growth factor autocrine loop controls human osteosarcoma phenotyping and differentiation.

    PubMed Central

    Bodo, Maria; Lilli, Cinzia; Bellucci, Catia; Carinci, Paolo; Calvitti, Mario; Pezzetti, Furio; Stabellini, Giordano; Bellocchio, Silvia; Balducci, Chiara; Carinci, Francesco; Baroni, Tiziano

    2002-01-01

    BACKGROUND: We focused on the phenotype of non-mineralizing MG 63 and mineralizing TE 85 human osteosarcoma cells and investigated the role of bFGF in modulating their differentiative responses. Basic FGF expression and bFGF effects on osteocalcin, runt-related transcription factor-2 (RUNX2), matrix molecular production and bFGF receptors, were evaluated. MATERIALS AND METHODS: Osteocalcin and RUNX2 gene expression were studied by RT-PCR analysis. We evaluated cell proliferation by DNA content and performed differentiation studies on glycosaminoglican (GAG), collagen and proteoglican (PG) synthesis by using radiolabelled precursors and Northern blotting. BFGF receptors were quantified by bFGF receptor binding assay. RESULTS: Osteocalcin is expressed in MG63 and TE65. RUNX2 RNA is differentially spliced in the two cell lines. BFGF elicits the effects of differentially splicing RUNX2. Proliferation, GAG synthesis, bFGF and proteoglycan mRNA expression, high and low affinity bFGF receptors, were more marked in MG 63 and differently affected by bFGF. Procollagen expression and alkaline phosphatase activity were significantly reduced. BFGF increased TE 85 cell proliferation and reduced TE 85 procollagen and osteocalcin production. CONCLUSIONS: The different splice variants in RUNX2 gene in the two cell lines might be related to their different phenotypes. The less differentiated stage of MG63 could also be related to bFGF over-production and more bFGF receptors. The consequent increase in bFGF-bFGF receptor binding could explain the bFGF differentiative effects on MG 63. We suggest an autocrine role of bFGF endogenous release in controlling the different osteosarcoma phenotypes. PMID:12393937

  16. Polydatin promotes apoptosis through upregulation the ratio of Bax/Bcl-2 and inhibits proliferation by attenuating the β-catenin signaling in human osteosarcoma cells

    PubMed Central

    Xu, Ge; Kuang, Ge; Jiang, Wengao; Jiang, Rong; Jiang, Dianming

    2016-01-01

    Osteosarcoma is the most prevalent primary malignant bone tumor mainly endangering young adults. In this study, we explore whether polydatin (PD), a glycoside form of resveratrol, is effective for osteosarcoma. Our results showed that PD dose-dependently inhibited proliferation and promoted apoptosis in 143B and MG63 osteosarcoma cells, examined by MTT assay and Annexin V-FITC apoptosis detection. Further, we found PD increased expression of Bax and attenuated expression of Bcl-2, and consequently augmented caspase-3 activity. Moreover, PD also dose-dependently inhibited β-catenin signaling pathway as indicated by decreased β-catenin expression and activity, while overexpression of β-catenin by adenoviruses system could abrogate the anti-tumor effect of PD. Our finding indicated that PD could inhibit the proliferation by inhibiting the β-catenin signaling and induce apoptosis via upregulation the ratio of Bax/Bcl-2 in human osteosarcoma cells. PMID:27158379

  17. Galangin suppresses human osteosarcoma cells: An exploration of its underlying mechanism.

    PubMed

    Yang, Zhifan; Li, Xiucheng; Han, Weiqi; Lu, Xuanyuan; Jin, Songtao; Yang, Wanlei; Li, Jianlei; He, Wei; Qian, Yu

    2017-01-01

    Osteosarcoma is the most common malignant bone tumor that frequently affects adolescents. Osteosarcoma cells tend to proliferate and invade other tissues such as those of the lungs. Currently, neoadjuvant chemotherapy is the primary strategy to prevent tumor progression. However, its adverse effects result in poor long-term outcomes. Previous research has shown that galangin exhibits antitumor properties on several types of cancer cells; however its effect on osteosarcoma cells is yet unknown. The aims of this study were to evaluate the effects of galangin on the proliferation, apoptosis, migration, and invasion of osteosarcoma cells and to explore the underlying mechanisms. We found that the proliferation of MG63 and U20S osteosarcoma cells decreased significantly, while the apoptosis of MG63 cells accelerated significantly after exposure to galangin. In addition, the migration and invasion of MG63 cells were significantly inhibited by galangin. Moreover, phosphoinositide 3-kinase (PI3K) and Aktp-Thr308 expression levels were found to be significantly lower in galangin-treated MG63 cells than in the control cells, and the protein expression levels of their downstream regulators cyclin D1 and matrix metalloproteinase 2/9 were also downregulated in galangin-treated groups, while those of p27Kip1, caspase-3, and caspase-8 were upregulated. These findings suggest that galangin suppresses osteosarcoma cells by inhibiting their proliferation and invasion and accelerating their apoptosis, and the mechanism may be associated with the inhibition of PI3K and its downstream signaling pathway.

  18. Targeting CDKs with Roscovitine Increases Sensitivity to DNA Damaging Drugs of Human Osteosarcoma Cells

    PubMed Central

    Hattinger, Claudia Maria; Fanelli, Marilù; Versteeg, Rogier; Koster, Jan; Picci, Piero

    2016-01-01

    Cyclin-dependent kinase 2 (CDK2) has been reported to be essential for cell proliferation in several human tumours and it has been suggested as an appropriate target to be considered in order to enhance the efficacy of treatment regimens based on the use of DNA damaging drugs. We evaluated the clinical impact of CDK2 overexpression on a series of 21 high-grade osteosarcoma (OS) samples profiled by using cDNA microarrays. We also assessed the in vitro efficacy of the CDKs inhibitor roscovitine in a panel of drug-sensitive and drug-resistant human OS cell lines. OS tumour samples showed an inherent overexpression of CDK2, and high expression levels at diagnosis of this kinase appeared to negatively impact on clinical outcome. CDK2 expression also proved to be relevant for in vitro OS cells growth. These findings indicated CDK2 as a promising candidate therapeutic marker for OS and therefore we assessed the efficacy of the CDKs-inhibitor roscovitine in both drug-sensitive and -resistant OS cell lines. All cell lines resulted to be responsive to roscovitine, which was also able to increase the activity of cisplatin and doxorubicin, the two most active DNA damaging drugs used in OS chemotherapy. Our results indicated that combined treatment with conventional OS chemotherapeutic drugs and roscovitine may represent a new candidate intervention approach, which may be considered to enhance tumour cell sensitivity to DNA damaging drugs. PMID:27898692

  19. SPAG9 controls the cell motility, invasion and angiogenesis of human osteosarcoma cells

    PubMed Central

    YANG, XIAORONG; ZHOU, WENLAI; LIU, SHIQING

    2016-01-01

    Sperm-associated antigen 9 (SPAG9) is an oncoprotein involved in the progression of various human malignancies; however, its role in osteosarcoma (OS) remains poorly evaluated. The present study used Matrigel™ cell migration and invasion assays, tube formation assay, Cell Counting kit-8, quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay to investigate the role of SPAG9 in OS cell motility, invasion and angiogenesis. The results of the present study demonstrated that SPAG9 expression was upregulated in OS tissues, as compared with adjacent normal tissues, and knockdown of SPAG9 in an OS cell line inhibited cell motility and invasion via inactivation of metalloproteinase (MMP)-2 and MMP-9. Furthermore, the present study demonstrated that silencing of SPAG9 in OS cells inhibited tube formation, the proliferation of human umbilical vascular endothelial cells, and suppressed vascular endothelial growth factor (VEGF) expression and secretion, contributing to a reduction in angiogenesis. The results of the present study indicated that SPAG9 may be an important regulator in OS and may be involved in metastasis. Therefore SPAG9 may be a promising target for the treatment of metastatic OS. PMID:26893659

  20. Mechanosensitivity of human osteosarcoma cells and phospholipase C {beta}2 expression

    SciTech Connect

    Hoberg, M. . E-mail: Maik.Hoberg@med.uni-tuebingen.de; Gratz, H.-H.; Noll, M.; Jones, D.B.

    2005-07-22

    Bone adapts to mechanical load by osteosynthesis, suggesting that osteoblasts might respond to mechanical stimuli. We therefore investigated cell proliferation and phospholipase C (PLC) expression in osteoblasts. One Hertz uniaxial stretching at 4000 {mu}strains significantly increased the proliferation rates of human osteoblast-like osteosarcoma cell line MG-63 and primary human osteoblasts. However, U-2/OS, SaOS-2, OST, and MNNG/HOS cells showed no significant changes in proliferation rate. We investigated the expression pattern of different isoforms of PLC in these cell lines. We were able to detect PLC {beta}1, {beta}3, {gamma}1, {gamma}2, and {delta}1 in all cells, but PLC {beta}2 was only detectable in the mechanosensitive cells. We therefore investigated the possible role of PLC {beta}2 in mechanotransduction. Inducible antisense expression for 24 h inhibited the translation of PLC {beta}1 in U-2/OS cells by 35% and PLC {beta}2 in MG-63 by 29%. Fluid shear flow experiments with MG-63 lacking PLC {beta}2 revealed a significantly higher level of cells losing attachment to coverslips and a significantly lower number of cells increasing intracellular free calcium.

  1. Spinal Osteosarcoma

    PubMed Central

    Katonis, P.; Datsis, G.; Karantanas, A.; Kampouroglou, A.; Lianoudakis, S.; Licoudis, S.; Papoutsopoulou, E.; Alpantaki, K.

    2013-01-01

    Although osteosarcoma represents the second most common primary bone tumor, spinal involvement is rare, accounting for 3%–5% of all osteosarcomas. The most frequent symptom of osteosarcoma is pain, which appears in almost all patients, whereas more than 70% exhibit neurologic deficit. At a molecular level, it is a tumor of great genetic complexity and several genetic disorders have been associated with its appearance. Early diagnosis and careful surgical staging are the most important factors in accomplishing sufficient management. Even though overall prognosis remains poor, en-block tumor removal combined with adjuvant radiotherapy and chemotherapy is currently the treatment of choice. This paper outlines histopathological classification, epidemiology, diagnostic procedures, and current concepts of management of spinal osteosarcoma. PMID:24179411

  2. Effects of SOST Gene Silencing on Proliferation, Apoptosis, Invasion, and Migration of Human Osteosarcoma Cells Through the Wnt/β-Catenin Signaling Pathway.

    PubMed

    Zou, Jian; Zhang, Wei; Li, Xiao-Lin

    2017-02-28

    Our study explored the effects of SOST gene silencing on the proliferation, apoptosis, invasion, and migration of human osteosarcoma cells through Wnt/β-catenin signaling pathway. Fresh tissues were obtained from 108 patients with osteosarcoma and 46 patients with osteochondroma. Human osteosarcoma cells (MG-63, U2-OS, HOS, and Saos-2) and normal osteoblast (hFoB1.19) were selected and cultured. Osteosarcoma cells were grouped randomly into the blank group, the scrambled control group, and the SOST-siRNA group. Cell proliferation was determined by MTT assay. Cell cycle and apoptosis were tested by flow cytometry. Transwell and scratch test were performed to determine cell invasion and migration. The qRT-PCR and Western blotting were used to detect mRNA and protein expression level of sclerostin, Wnt1, β-catenin, C-Myc, Cyclin D1, and MMP-7. The activity of caspase-3 was assessed by immunocytochemistry. Alkaline phosphatase (ALP) activity was measured using P-nitrophenylphosphate as a substrate. Low SOST mRNA and sclerostin protein expression levels were observed in osteosarcoma tissues and cells. Compared with the blank and scrambled control groups, sclerostin expression, apoptotic cells, ALP activity, and caspase-3 activity were down-regulated, while the proliferation, invasion, and migration abilities of osteosarcoma cells were evidently enhanced in the SOST-siRNA group. After SOST gene silencing, the mRNA and protein expression levels of Wnt1, β-catenin, C-Myc, Cyclin D1, and MMP-7 in osteosarcoma cells and β-catenin protein expression levels in the nucleus and cytoplasm were significantly elevated. SOST gene silencing promotes the proliferation, invasion, and migration, and inhibits apoptosis of osteosarcoma cells by activating Wnt/β-catenin signaling pathway.

  3. Overexpression of c-fos increases recombination frequency in human osteosarcoma cells.

    PubMed

    van den Berg, S; Rahmsdorf, H J; Herrlich, P; Kaina, B

    1993-05-01

    We have shown previously that overexpression of c-Ha-ras, v-mos or c-fos increases the spontaneous level of chromosomal aberrations and gene mutations in NIH 3T3 cells, and that reduction of the Fos protein level inhibits aberration induction by c-Ha-ras and v-mos and also by irradiation with ultraviolet light (van den Berg et al., Mol. Carcinogenesis, 4, 460-466). In order to examine whether fos is also involved in DNA recombination, thymidine kinase (tk) deficient human osteosarcoma cells containing two versions of the herpes simplex virus tk gene inactivated by base insertion were either transiently or stably transfected with various fos expression plasmids. The frequency of tk+ revertants was significantly enhanced both upon transient transfection with RSV-promoter-fos gene constructs and by stimulation of Fos synthesis in stably transfected cells harbouring an inducible metallothionein promoter-fos construct. No such increases were observed in cells transfected with plasmids containing a truncated version of c-fos. The data indicate that c-fos is involved in generating various types of genetic changes including homologous recombination; a role of c-fos in genetic instability may contribute to its action in tumor promotion and progression.

  4. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.

    PubMed

    Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J

    2013-06-10

    Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.

  5. MLN4924 suppresses neddylation and induces cell cycle arrest, senescence, and apoptosis in human osteosarcoma.

    PubMed

    Zhang, Yi; Shi, Cheng-Cheng; Zhang, Hua-Peng; Li, Gong-Quan; Li, Shan-Shan

    2016-07-19

    Neddylation is a post-translational protein modification process associated with carcinogenesis and cancer development. MLN4924, a pharmaceutical neddylation inhibitor, induces potent anti-cancer effects in multiple types of cancers. In this study, we investigated the effects of MLN4924 on human osteosarcoma (OS). Levels of both NEDD8 activating enzyme E1 (NAE1) and ubiquitin-conjugating enzyme E2M (Ube2M), two critical components of the neddylation pathway, were much higher in OS tissues and cells than in normal osseous tissues and cells. MLN4924 treatment led to DNA damage, reduced cell viability, senescence and apoptosis in OS cells. Moreover, MLN4924 inhibited OS xenograft tumor growth in mice. Mechanistically, MLN4924 blocked the neddylation of cullins and induced accumulation of several tumor-suppressive substrates of Cullin-RING E3 ubiquitin ligases (CRLs), including CDT1, Wee1, p21, p27, Noxa, and p16. These results suggest clinical studies investigating the utility of MLN4924 for the treatment of OS are warranted.

  6. Proflavin suppresses the growth of human osteosarcoma MG63 cells through apoptosis and autophagy

    PubMed Central

    ZHANG, MAO-SHU; NIU, FU-WEN; LI, KUN

    2015-01-01

    Proflavin is one of the novel acridine derivatives that possess various pharmacological effects. Although numerous studies have been performed to investigate proflavin, its effects have not been investigated on the human osteosarcoma MG63 cell line. The core aim of the present study was to test the effects of proflavin on the viability of MG63 cells and the induction of apoptosis and autophagy in MG63 cells. The induction of apoptosis was examined by measuring the changes in the expression of the B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein mRNA and proteins. Apoptotic cell death was identified by the proteolytic cleavage of poly (adenosine diphosphate-ribose) polymerase and caspase-3 and caspase-9. In addition, the autophagic effects of proflavin were examined by the quantitation of the mRNA expression of autophagy protein 5 and Beclin 1, in addition to the identification of the accumulation of microtubule-associated protein 1 light chain 3-II. The present results revealed that proflavin inhibited the proliferation of MG63 cells in a dose-dependent manner. Proflavin-induced cell death was attributed to apoptosis and autophagy. Overall, the present results indicated that the antiseptic agent proflavin exerts anticancer potential through the synergistic activity of apoptosis and autophagy. PMID:26171052

  7. Antisense inhibition of hyaluronan synthase-2 in human osteosarcoma cells inhibits hyaluronan retention and tumorigenicity

    SciTech Connect

    Nishida, Yoshihiro . E-mail: ynishida@med.nagoya-u.ac.jp; Knudson, Warren; Knudson, Cheryl B.; Ishiguro, Naoki

    2005-07-01

    Osteosarcoma is a common malignant bone tumor associated with childhood and adolescence. The results of numerous studies have suggested that hyaluronan plays an important role in regulating the aggressive behavior of various types of cancer cells. However, no studies have addressed hyaluronan with respect to osteosarcomas. In this investigation, the mRNA expression copy number of three mammalian hyaluronan synthases (HAS) was determined using competitive RT-PCR in the osteoblastic osteosarcoma cell line, MG-63. MG-63 are highly malignant osteosarcoma cells with an abundant hyaluronan-rich matrix. The results demonstrated that HAS-2 is the predominant HAS in MG-63. Accumulation of intracellular hyaluronan increased in association with the proliferative phase of these cells. The selective inhibition of HAS-2 mRNA in MG-63 cells by antisense phosphorothioate oligonucleotides resulted in reduced hyaluronan accumulation by these cells. As expected, the reduction in hyaluronan disrupted the assembly of cell-associated matrices. However, of most interest, coincident with the reduction in hyaluronan, there was a substantial decrease in cell proliferation, a decrease in cell motility and a decrease in cell invasiveness. These data suggest that hyaluronan synthesized by HAS-2 in MG-63 plays a crucial role in osteosarcoma cell proliferation, motility, and invasion.

  8. Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes cell proliferation and migration by upregulating angiomotin gene expression in human osteosarcoma cells.

    PubMed

    Ruan, Wendong; Wang, Pei; Feng, Shiqing; Xue, Yuan; Li, Yulin

    2016-03-01

    The long non-coding RNA (lncRNA) small nucleolar RNA host gene 12 (SNHG12) has a role in cell proliferation and migration. Angiomotin, encoded by the AMOT gene, is a protein that regulates the migration and organization of endothelial cells. SNHG12 and AMOT have been shown to play a role in a variety of human cancers but have yet to be studied in detail in human osteosarcoma. Tissue samples from primary osteosarcoma (n = 20) and adjacent normal tissues (n = 20), the osteosarcoma cell lines, SAOS-2, MG-63, U-2 OS, and the human osteoblast cell line hFOB (OB3) were studied using Western blot for angiomotin, and quantitative real-time polymerase chain reaction for the expression of SNHG12 and AMOT. The expression of SNHG12 was knocked down using RNA interference. Cell migration assays were performed. Cell apoptosis was studied using flow cytometry. SNHG12 and AMOT messenger RNA (mRNA) expression was upregulated in osteosarcoma tissues and cell lines when compared with normal tissues and cells. Upregulation of AMOT mRNA was associated with upregulation of SNHG12. Knockdown of SNHG12 reduced the expression of angiomotin in osteosarcoma cells and suppressed cell proliferation and migration but did not affect cell apoptosis. This preliminary study has shown that the lncRNA SNHG12 promotes cell proliferation and migration by upregulating AMOT gene expression in osteosarcoma cells in vivo and in vitro. Further studies are recommended to investigate the role of SNHG12 and AMOT expression in tumor cell proliferation and migration and angiogenesis in osteosarcoma and a range of malignant mesenchymal tumors.

  9. Correlation of WWOX, RUNX2 and VEGFA protein expression in human osteosarcoma

    PubMed Central

    2013-01-01

    Background To investigate associations between WW domain-containing oxidoreductase (WWOX), runt-related transcription factor 2 (RUNX2) and vascular endothelial growth factor alpha (VEGFA) in human osteosarcoma (OS). Methods Copy number aberrations of WWOX, RUNX2and VEGFA genes were detected by microarray comparative genomic hybridization (aCGH) in 10 fresh OS tissue samples. VEGFA gene alterations were also investigated and validated by fluorescence in situ hybridization (FISH) in 54 formalin-fixed and paraffin-embedded (FFPE) OS samples. Protein expression of WWOX, RUNX2 and VEGFA were examined in 54 FFPE OS samples by immunohistochemistry (IHC). Results Analysis of previously published OS aCGH data (GSE9654) and aCGH data from this study (GSE19180) identified significant deletion of WWOX in 30% (6/20) of OS samples, whilst significant increase in both RUNX2 and VEGFA gene copy numbers were detected in 55% (11/20) and 60% (12/20) of OS samples, respectively. FISH demonstrated increased VEGFA gene copy number in 65.9% (31/47) of evaluable samples, in either focal or large fragment forms. Compared with positive expression of WWOX in 38.9% of the OS samples, positive expression of RUNX2 and VEGFA protein was found in 48.1 and 75.9% of samples. Although there was no significant association between gene copy number aberration and protein expression for WWOX and RUNX2, significant positive correlation between increased VEGFA gene copy number and VEGFA protein expression was observed. Although there was no significant reverse association between WWOX and RUNX2 expression, a significantly positive relationship was observed between RUNX2 and VEGFA protein expression. Conclusions Our data show increased RUNX2 and VEGFA gene copy numbers and elevation of their respective proteins in human OS. Positive correlation of RUNX2 and VEGFA suggests that both increased VEGFA gene copy number and RUNX2 overexpression facilitate increased expression of VEGFA. PMID:24330824

  10. Resveratrol inhibits canonical Wnt signaling in human MG-63 osteosarcoma cells

    PubMed Central

    ZOU, YONGGEN; YANG, JIEXIANG; JIANG, DIANMING

    2015-01-01

    In the last 30 years, the 5-year-survival rate of patients with osteosarcoma has not improved as a result of the low prevalence and large tumor heterogeneity. Therefore, the development of novel drugs for the treatment of osteosarcoma is urgently required. The present study aimed to identify potential novel drugs for the treatment of osteosarcoma, thus used β-catenin as a target and performed high content screening. In a total of 14 botanical extracts assessed, resveratrol markedly downregulated the expression of β-catenin and significantly inhibited MG-63 cell proliferation. CCK-8 assay was used to confirm the anti-osteosarcoma effect of resveratrol and flow cytometry and western blotting were performed to analyze the underlying mechanisms of the proapoptotic effects of resveratrol. β-catenin is a vital member of the canonical Wnt signaling pathway and, therefore, the target genes of this pathway were further analyzed. The results of this analysis demonstrated that resveratrol suppressed the MG-63 cells by inhibiting the canonical Wnt signaling pathway. PMID:26398440

  11. Anticancer effect of thalidomide in vitro on human osteosarcoma cells.

    PubMed

    Zhu, Jianwei; Yang, Ya; Liu, Sihong; Xu, Huihua; Wu, Yong; Zhang, Guiqiang; Wang, Yuxuan; Wang, Yan; Liu, Yamin; Guo, Qifeng

    2016-12-01

    Osteosarcoma is a high‑grade malignant tumor frequently found in children and adolescents. Thalidomide has been reported for treatment of various malignancies. Thalidomide was added to osteosarcoma cells and studied by cytotoxicity assay, evaluating apoptosis, cell cycle arrest, mitochondrial membrane potential (ΔΨm), and reactive oxygen species (ROS) levels and the expression of Bcl‑2, Bax, caspase‑3 and NF‑κB. The results showed that thalidomide could inhibit the proliferation of MG‑63 and U2OS cells in a concentration‑ and time‑dependent manner. Morphological changes of apoptosis were also observed. Thalidomide increased the apoptosis rate of MG‑63 cells and induced cell cycle arrest by increasing the number of cells in the G0/G1 phase and decreasing the percentage of S phase in MG‑63 cells. Further investigation showed that a disruption of ΔΨm and upregulation of ROS were induced by thalidomide in high concentration. By western blot analysis, thalidomide resulted in the decreasing expression of Bcl‑2 and NF‑κB, and the increasing expression of Bcl‑2/Bax and caspase‑3. Here, we provide evidence that thalidomide could cause apoptosis in osteosarcoma cells. Taken together, these results indicate that thalidomide could be an antitumor drug in the therapy of osteosarcoma.

  12. Proteomic Analysis of Exosomes and Exosome-Free Conditioned Media From Human Osteosarcoma Cell Lines Reveals Secretion of Proteins Related to Tumor Progression.

    PubMed

    Jerez, Sofía; Araya, Héctor; Thaler, Roman; Charlesworth, M Cristine; López-Solís, Remigio; Kalergis, Alexis M; Céspedes, Pablo F; Dudakovic, Amel; Stein, Gary S; van Wijnen, Andre J; Galindo, Mario

    2017-02-01

    Osteosarcomas are the most prevalent bone tumors in pediatric patients, but can also occur later in life. Bone tumors have the potential to metastasize to lung and occasionally other vital organs. To understand how osteosarcoma cells interact with their micro-environment to support bone tumor progression and metastasis, we analyzed secreted proteins and exosomes from three human osteosarcoma cell lines. Exosome isolation was validated by transmission electron microscopy (TEM) and immuno-blotting for characteristic biomarkers (CD63, CD9, and CD81). Exosomal and soluble proteins (less than 100 kDa) were identified by mass spectrometry analysis using nanoLC-MS/MS and classified by functional gene ontology clustering. We identified a secretome set of >3,000 proteins for both fractions, and detected proteins that are either common or unique among the three osteosarcoma cell lines. Protein ontology comparison of proteomes from exosomes and exosome-free fractions revealed differences in the enrichment of functional categories associated with different biological processes, including those related to tumor progression (i.e., angiogenesis, cell adhesion, and cell migration). The secretome characteristics of osteosarcoma cells are consistent with the pathological properties of tumor cells with metastatic potential. J. Cell. Biochem. 118: 351-360, 2017. © 2016 Wiley Periodicals, Inc.

  13. Gadolinium chloride elicits apoptosis in human osteosarcoma U-2 OS cells through extrinsic signaling, intrinsic pathway and endoplasmic reticulum stress.

    PubMed

    Tsai, Yuh-Feng; Huang, Ching-Wen; Chiang, Jo-Hua; Tsai, Fuu-Jen; Hsu, Yuan-Man; Lu, Chi-Cheng; Hsiao, Chen-Yu; Yang, Jai-Sing

    2016-12-01

    Gadolinium (Gd) compounds are important as magnetic resonance imaging (MRI) contrast agents, and are potential anticancer agents. However, no report has shown the effect of gadolinium chloride (GdCl3) on osteosarcoma in vitro. The present study investigated the apoptotic mechanism of GdCl3 on human osteosarcoma U-2 OS cells. Our results indicated that GdCl3 significantly reduced cell viability of U-2 OS cells in a concentration-dependent manner. GdCl3 led to apoptotic cell shrinkage and DNA fragmentation in U-2 OS cells as revealed by morphologic changes and TUNEL staining. Colorimetric assay analyses also showed that activities of caspase-3, caspase-8, caspase-9 and caspase-4 occurred in GdCl3-treated U-2 OS cells. Pretreatment of cells with pan-caspase inhibitor (Z-VAD-FMK) and specific inhibitors of caspase-3/-8/-9 significantly reduced cell death caused by GdCl3. The increase of cytoplasmic Ca2+ level, ROS production and the decrease of mitochondria membrane potential (ΔΨm) were observed by flow cytometric analysis in U-2 OS cells after GdCl3 exposure. Western blot analyses demonstrated that the levels of Fas, FasL, cytochrome c, Apaf-1, GADD153 and GRP78 were upregulated in GdCl3-treated U-2 OS cells. In conclusion, death receptor, mitochondria-dependent and endoplasmic reticulum (ER) stress pathways contribute to GdCl3-induced apoptosis in U-2 OS cells. GdCl3 might have potential to be used in treatment of osteosarcoma patients.

  14. LSAMP, a novel candidate tumor suppressor gene in human osteosarcomas, identified by array comparative genomic hybridization.

    PubMed

    Kresse, Stine H; Ohnstad, Hege O; Paulsen, Erik B; Bjerkehagen, Bodil; Szuhai, Karoly; Serra, Massimo; Schaefer, Karl-Ludwig; Myklebost, Ola; Meza-Zepeda, Leonardo A

    2009-08-01

    Osteosarcomas are the most common primary malignant tumor of bone, and almost all conventional osteosarcomas are high-grade tumors with complex karyotypes. We have examined DNA copy number changes in 36 osteosarcoma tumors and 20 cell lines using microarray-based comparative genomic hybridization. The most frequent minimal recurrent regions of gain identified in the tumor samples were in 1q21.2-q21.3 (78% of the samples), 1q21.3-q22 (78%), and 8q22.1 (72%). Minimal recurrent regions in 10q22.1-q22.2 (81%), 6q16.1 (67%), 13q14.2 (67%), and 13q21.1 (67%) were most frequently lost. A small region in 3q13.31 (2.1 Mb) containing the gene limbic system-associated membrane protein (LSAMP) was frequently deleted (56%). LSAMP has previously been reported to be a candidate tumor suppressor gene in other cancer types. The deletion was validated using fluorescence in situ hybridization, and the expression level and promoter methylation status of LSAMP were investigated using quantitative real-time reverse transcription PCR and methylation-specific PCR, respectively. LSAMP showed low expression compared to two normal bone samples in 6/15 tumors and 5/9 cell lines with deletion of 3q13.31, and also in 5/14 tumors and 3/11 cell lines with normal copy number or gain. Partial or full methylation of the investigated CpG island was identified in 3/30 tumors and 7/20 cell lines. Statistical analyses revealed that loss of 11p15.4-p15.3 and low expression of LSAMP (both P = 0.011) were significantly associated with poor survival. Our results show that LSAMP is a novel candidate tumor suppressor gene in osteosarcomas.

  15. Tumstatin induces apoptosis and stimulates phosphorylation of p65NF-κB in human osteoblastic osteosarcoma Saos-2 cells.

    PubMed

    Wang, Yang; Yin, Ruo-Feng; Teng, Jia-Song

    2016-06-01

    The present study was aimed to investigate the effect of tumstatin on inhibition of proliferation and induction of apoptosis in Saos-2 human osteosarcoma cells and to understand the mechanism involved. Inhibition of cell proliferation was analyzed by MTT assay and induction of apoptosis through nuclear fragmentation assay. Viability of Saos-2 cells was reduced to 19% on treatment with 25 µM concentration of tumstatin after 48 h. Presence of characteristic apoptotic nuclei, rounded cell shape and shrunken size were caused by tumstatin treatment at 25 µM concentration. The level of mRNA corresponding to PTEN, FasR and FasL was increased significantly in tumstatin treated Saos-2 cells compared to untreated control. Investigation of the mechanism revealed NF-κB activation by phosphorylation on serine 536. The activated NF-κB was translocated into the nucleus from the cytoplasm on treatment with tumstatin. Degradation of the IκBα by tumstatin was found to be much slower compared to that induced by treatment with TNF-α. Thus, tumstatin inhibits proliferation and induces apoptosis in Saos-2 cells through activation of NF-κB and its translocation to the nucleus. Therefore, tumstatin can play an important role in the treatment of osteosarcoma.

  16. Stimulators of Mineralization Limit the Invasive Phenotype of Human Osteosarcoma Cells by a Mechanism Involving Impaired Invadopodia Formation

    PubMed Central

    Cmoch, Anna; Podszywalow-Bartnicka, Paulina; Palczewska, Malgorzata; Piwocka, Katarzyna; Groves, Patrick; Pikula, Slawomir

    2014-01-01

    Background Osteosarcoma (OS) is a highly aggressive bone cancer affecting children and young adults. Growing evidence connects the invasive potential of OS cells with their ability to form invadopodia (structures specialized in extracellular matrix proteolysis). Results In this study, we tested the hypothesis that commonly used in vitro stimulators of mineralization limit the invadopodia formation in OS cells. Here we examined the invasive potential of human osteoblast-like cells (Saos-2) and osteolytic-like (143B) OS cells treated with the stimulators of mineralization (ascorbic acid and B-glycerophosphate) and observed a significant difference in response of the tested cells to the treatment. In contrast to 143B cells, osteoblast-like cells developed a mineralization phenotype that was accompanied by a decreased proliferation rate, prolongation of the cell cycle progression and apoptosis. On the other hand, stimulators of mineralization limited osteolytic-like OS cell invasiveness into collagen matrix. We are the first to evidence the ability of 143B cells to degrade extracellular matrix to be driven by invadopodia. Herein, we show that this ability of osteolytic-like cells in vitro is limited by stimulators of mineralization. Conclusions Our study demonstrates that mineralization competency determines the invasive potential of cancer cells. A better understanding of the molecular mechanisms by which stimulators of mineralization regulate and execute invadopodia formation would reveal novel clinical targets for treating osteosarcoma. PMID:25314307

  17. TIM-3 expression in human osteosarcoma: Correlation with the expression of epithelial-mesenchymal transition-specific biomarkers

    PubMed Central

    SHANG, YONGJUN; LI, ZHANYONG; LI, HONG; XIA, HAIBO; LIN, ZHENHUA

    2013-01-01

    Signals from the T cell Ig- and mucin-domain-containing molecules (TIMs) have been demonstrated to be actively involved in regulating the progression of carcinomas. However, the expression and distribution of these molecules in osteosarcoma, the most common primary bone malignancy with poor prognosis, have not been investigated. In this study, the expression of TIMs was examined in nine invasive human osteosarcomas using immunohistochemistry, and the phenotypes were detected by dual immunofluorescence staining. Using immunohistochemistry, it was observed that only TIM-3, rather than TIM-1 or TIM-4, was expressed in these tumor specimens, where it was localized in the cytoplasm and plasma membrane of tumor cells. Dual immunofluorescence staining revealed that the expression of TIM-3 was observed in all cell types investigated, including CD68+ macrophages, CD31+ endothelial cells, CK-18+ epithelial cells and PCNA+ tumor cells. Notably, in sarcoma cells, TIM-3 was co-expressed with certain biomarkers of epithelial-mesenchymal transition (EMT), including vimentin, Slug, Snail and Smad. These combined results suggest that TIM-3 triggers tumor cells to acquire features of aggressive EMT and may be involved in the pathogenesis of this malignancy. PMID:24137353

  18. Wnt/β-catenin Signaling Activates Expression of the Bone-related Transcription Factor RUNX2 in Select Human Osteosarcoma Cell Types.

    PubMed

    Vega, Oscar A; Lucero, Claudia M J; Araya, Hector F; Jerez, Sofia; Tapia, Julio C; Antonelli, Marcelo; Salazar-Onfray, Flavio; Las Heras, Facundo; Thaler, Roman; Riester, Scott M; Stein, Gary S; van Wijnen, Andre J; Galindo, Mario A

    2017-03-28

    Osteosarcoma is the most common malignant bone tumor in children and adolescents. Metastasis and poor responsiveness to chemotherapy in osteosarcoma correlates with over-expression of the runt-related transcription factor RUNX2, which normally plays a key role in osteogenic lineage commitment, osteoblast differentiation and bone formation. Furthermore, WNT/β-catenin signaling is over-activated in osteosarcoma and promotes tumor progression. Importantly, the WNT/β-catenin pathway normally activates RUNX2 gene expression during osteogenic lineage commitment. Therefore, we examined whether the WNT/β-catenin pathway controls the tumor-related elevation of RUNX2 expression in osteosarcoma. We analyzed protein levels and nuclear localization of β-catenin and RUNX2 in a panel of human osteosarcoma cell lines (SAOS, MG63, U2OS, HOS, G292 and 143B). In all six cell lines, β-catenin and RUNX2 are expressed to different degrees and localized in the nucleus and/or cytoplasm. SAOS cells have the highest levels of RUNX2 protein that is localized in the nucleus, while MG63 cells have the lowest RUNX2 levels which is mostly localized in the cytoplasm. Levels of β-catenin and RUNX2 protein are enhanced in HOS, G292 and 143B cells after treatment with the GSK3β inhibitor SB216763. Furthermore, small interfering RNA (siRNA)-mediated depletion of β-catenin inhibits RUNX2 expression in G292 cells. Thus, WNT/β-catenin activation is required for RUNX2 expression in at least some osteosarcoma cell types, where RUNX2 is known to promote expression of metastasis related genes. This article is protected by copyright. All rights reserved.

  19. Induction of G2/M phase cell cycle arrest and apoptosis by ginsenoside Rf in human osteosarcoma MG‑63 cells through the mitochondrial pathway.

    PubMed

    Shangguan, Wen-Ji; Li, He; Zhang, Yue-Hui

    2014-01-01

    Ginsenosides, extracted from the traditional Chinese herb ginseng, are a series of novel natural anticancer products known for their favorable safety and efficacy profiles. The present study aimed to investigate the cytotoxicity of ginsenoside Rf to human osteosarcoma cells and to explore the anticancer molecular mechanisms of ginsenoside Rf. Five human osteosarcoma cell lines (MG-63, OS732, U-2OS, HOS and SAOS-2) were employed to investigate the cytotoxicity of ginsenoside Rf by MTT and colony forming assays. After treatment with ginsenoside Rf, MG-63 cells which were the most sensitive to ginsenoside Rf, were subjected to flow cytometry to detect cell cycle distribution and apoptosis, and nuclear morphological changes were visualized by Hoechst 33258 staining. Caspase-3, -8 and -9 activities were also evaluated. The expression of cell cycle markers including cyclin B1 and Cdk1 was detected by RT-PCR and western blotting. The expression of apoptotic genes Bcl-2 and Bax and the release of cytochrome c were also examined by western blotting. Change in the mitochondrial membrane potential was observed by JC-1 staining in situ. Our results demonstrated that the cytotoxicity of ginsenoside Rf to these human osteosarcoma cell lines was dose-dependent, and the MG-63 cells were the most sensitive to exposure to ginsenoside Rf. Additionally, ginsenoside Rf induced G2/M phase cell cycle arrest and apoptosis in MG-63 cells. Furthermore, we observed upregulation of Bax and downregulation of Bcl-2, Cdk1 and cyclin B1, the activation of caspase-3 and -9 and the release of cytochrome c in MG-63 cells following treatment with ginsenoside Rf. Our findings demonstrated that ginsenoside Rf induces G2/M phase cell cycle arrest and apoptosis in human osteosarcoma MG-63 cells through the mitochondrial pathway, suggesting that ginsenoside Rf, as an effective natural product, may have a therapeutic effect on human osteosarcoma.

  20. A porcine model of osteosarcoma

    PubMed Central

    Saalfrank, A; Janssen, K-P; Ravon, M; Flisikowski, K; Eser, S; Steiger, K; Flisikowska, T; Müller-Fliedner, P; Schulze, É; Brönner, C; Gnann, A; Kappe, E; Böhm, B; Schade, B; Certa, U; Saur, D; Esposito, I; Kind, A; Schnieke, A

    2016-01-01

    We previously produced pigs with a latent oncogenic TP53 mutation. Humans with TP53 germline mutations are predisposed to a wide spectrum of early-onset cancers, predominantly breast, brain, adrenal gland cancer, soft tissue sarcomas and osteosarcomas. Loss of p53 function has been observed in >50% of human cancers. Here we demonstrate that porcine mesenchymal stem cells (MSCs) convert to a transformed phenotype after activation of latent oncogenic TP53R167H and KRASG12D, and overexpression of MYC promotes tumorigenesis. The process mimics key molecular aspects of human sarcomagenesis. Transformed porcine MSCs exhibit genomic instability, with complex karyotypes, and develop into sarcomas on transplantation into immune-deficient mice. In pigs, heterozygous knockout of TP53 was sufficient for spontaneous osteosarcoma development in older animals, whereas homozygous TP53 knockout resulted in multiple large osteosarcomas in 7–8-month-old animals. This is the first report that engineered mutation of an endogenous tumour-suppressor gene leads to invasive cancer in pigs. Unlike in Trp53 mutant mice, osteosarcoma developed in the long bones and skull, closely recapitulating the human disease. These animals thus promise a model for juvenile osteosarcoma, a relatively uncommon but devastating disease. PMID:26974205

  1. The disintegrin echistatin in combination with doxorubicin targets high-metastatic human osteosarcoma overexpressing αvβ3 integrin in chick embryo and nude mouse models

    PubMed Central

    Tome, Yasunori; Kimura, Hiroaki; Sugimoto, Naotoshi; Tsuchiya, Hiroyuki; Kanaya, Fuminori; Bouvet, Michael; Hoffman, Robert M.

    2016-01-01

    Echistatin, a cyclic RGD peptide, which is an antagonist of αvβ3 integrin (disintegrin), inhibited human osteosarcoma in the chick chorioallontoic membrane (CAM) model and tumor growth and pulmonary metastases in a nude mouse orthotopic model. A high-metastatic variant of human osteosarcoma, 143B-LM4, overexpressing αvβ3 integrin was used. Tumor angiogenesis by high-metastatic variant 143B-LM4 cells in the CAM was significantly inhibited by echistatin (P<0.05) as was overall growth. A doxorubicin (DOX)-echistatin combination inhibited orthotopic tumor growth compared to untreated control (P<0.01) or DOX alone (P<0.05) in nude mice. Tumor-bearing mice treated with the DOX-echistatin combination survived longer than those treated with DOX alone or control PBS (P<0.01 and P<0.01, respectively). Echistatin also inhibited experimental lung metastasis of 143B-LM4 cells in nude mice. These results suggest that DOX in combination with a disintegrin has potential to treat osteosarcoma and that αvβ3 integrin may be a target for osteosarcoma. PMID:27894082

  2. Antiproliferation potential of withaferin A on human osteosarcoma cells via the inhibition of G2/M checkpoint proteins

    PubMed Central

    LV, TING-ZHUO; WANG, GUANG-SHUN

    2015-01-01

    Withaferin A (WA) is a well-known steroidal lactone of the medicinally important plant, Withania somnifera. This secondary metabolite has been noted for its anticancer effects against a number of human cancer cell lines. However, there are a limited number of studies investigating the growth inhibitory potential of WA against human osteosarcoma cells and the underlying molecular mechanisms. Thus, in the present study, the antiproliferative activities of WA, along with the underlying mechanisms of action, were investigated using flow cytometry for cell cycle distribution and western blot analysis for the assessment of various checkpoint proteins. In addition, the antiproliferative activity was evaluated using a sulforhodamine B assay, where MG-63 and U2OS human osteosarcoma cell lines were treated with different concentrations of WA. Furthermore, the mRNA expression levels of the checkpoint proteins in the WA-treated MG-63 and U2OS cells were examined. The results obtained corresponded with the western blot analysis results. Furthermore, WA was shown to significantly inhibit the proliferation of the two types of treated cell lines (MG-63 and U2OS). Flow cytometric analysis revealed that WA induced cell cycle arrest at the G2/M phase, which was associated with the inhibition of cyclin B1, cyclin A, Cdk2 and p-Cdc2 (Tyr15) expression and an increase in the levels of p-Chk1 (Ser345) and p-Chk2 (Thr68). In conclusion, the present study found that the antiproliferative potential of WA was associated with the induction of cell cycle arrest at the G2/M phase, which was a result of the attenuation of the expression levels of G2/M checkpoint proteins. PMID:26170956

  3. Celastrol negatively regulates cell invasion and migration ability of human osteosarcoma via downregulation of the PI3K/Akt/NF-κB signaling pathway in vitro

    PubMed Central

    Yu, Xiaolong; Wang, Qiang; Zhou, Xin; Fu, Changlin; Cheng, Ming; Guo, Runsheng; Liu, Hucheng; Zhang, Bin; Dai, Min

    2016-01-01

    Osteosarcoma (OS) is a primary malignant tumor of the bone, with a tendency to metastasize early. Despite the advances in treatment options, more than 30% of patients develop distant metastases, and the prognosis of these patients with metastases is extremely poor. Celastrol has been demonstrated to manifest multiple pharmacological activities, including induction of apoptosis in numerous types of cancer cell lines. Our previous studies have also suggested that Celastrol is capable of inducing apoptosis of human osteosarcoma cells via the mitochondrial-dependent pathway. The purpose of this study was to investigate the effects of Celastrol on the migration and invasion of human osteosarcoma U-2OS cells in vitro. Cell migration and invasion were investigated using wound healing and Boyden chamber Transwell assays. We observed that Celastrol suppressed cell invasion and migration in human osteosarcoma U-2OS cells. Furthermore, protein expression levels of phosphorylated phosphatidylinositol 3-kinase (PI3K), Akt, inhibitor of κB kinase α/β, inhibitor of κB α, nuclear factor-κB (NF-κB subunit p65) and matrix metalloproteinase (MMP)-2 and −9 were measured by western blot analysis. We observed that the PI3K/Akt/NF-κB signaling pathway was inhibited following Celastrol treatment. In addition, the expression levels of MMP-2 and −9 proteins were also reduced significantly following Celastrol treatment. Therefore, we confirmed that Celastrol suppressed osteosarcoma U-2OS cell metastasis via downregulation of the PI3K/Akt/NF-κB signaling pathway in vitro. PMID:27900015

  4. Copper(II) complexes with saccharinate and glutamate as antitumor agents. Cyto- and genotoxicity in human osteosarcoma cells.

    PubMed

    Cadavid-Vargas, J F; León, I E; Etcheverry, S B; Santi, E; Torre, M H; Di Virgilio, A L

    2016-05-13

    We report herein the antitumor actions of three copper(II) complexes on MG-63 human osteosarcoma cells. The three complexes: Cu-sac, Cu-gln and Cu-sac-gln (sac= saccharinate, gln= glutamine) caused a decline in cell viability. The half-maximal inhibitory concentration in MG-63 cells for Cu-sac-gln is 170 µM, showing the strongest antiproliferative effect. Moreover, only Cu-sac-gln caused a decrease of the mitochondrial activity from 100 μM. Our results indicate that the copper(II) complexes studied here produce DNA damage and suggest that the rise of reactive oxygen species (ROS) is the central mechanism action. Genotoxicity studied by the Cytokinesis-block micronucleus (MN) assay and the Single cell gel electrophoresis (comet assay) could be observed in MG-63 cells treated with Cu-sac-gln from 100 and 50 μM, respectively. Cu-sac and Cu-gln also induced DNA damage; however their effect was definitively weaker. The generation of reactive oxygen species increased from 50 μM of Cu-sac-gln and Cu-sac and only from 250 μM of Cu-gln, as well as a reduction of the GSH/GSSG ratio from 50 μM. When cells were treated with several concentrations of the complexes in addition to a combination of 50 μM of vitamin C plus 50 μM of vitamin E, a total recovery in cell survival was obtained for Cu-gln in the whole range of tested concentrations while only a partial viability recovery was obtained from 250 μM of Cu-sac and Cu-sac-gln. Overall, our results point to a differential cyto- and genotoxicity of the three copper(II) complexes and demonstrate that the complexation with both ligands confers the most potent antitumor action in human osteosarcoma cells.

  5. Signal transduction and downregulation of C-MET in HGF stimulated low and highly metastatic human osteosarcoma cells

    SciTech Connect

    Husmann, Knut; Ducommun, Pascal; Sabile, Adam A.; Pedersen, Else-Marie; Born, Walter; Fuchs, Bruno

    2015-09-04

    The poor outcome of osteosarcoma (OS), particularly in patients with metastatic disease and a five-year survival rate of only 20%, asks for more effective therapeutic strategies targeting malignancy-promoting mechanisms. Dysregulation of C-MET, its ligand hepatocyte growth factor (HGF) and the fusion oncogene product TPR-MET, first identified in human MNNG-HOS OS cells, have been described as cancer-causing factors in human cancers. Here, the expression of these molecules at the mRNA and the protein level and of HGF-stimulated signaling and downregulation of C-MET was compared in the parental low metastatic HOS and MG63 cell lines and the respective highly metastatic MNNG-HOS and 143B and the MG63-M6 and MG63-M8 sublines. Interestingly, expression of TPR-MET was only observed in MNNG-HOS cells. HGF stimulated the phosphorylation of Akt and Erk1/2 in all cell lines investigated, but phospho-Stat3 remained at basal levels. Downregulation of HGF-stimulated Akt and Erk1/2 phosphorylation was much faster in the HGF expressing MG63-M8 cells than in HOS cells. Degradation of HGF-activated C-MET occurred predominantly through the proteasomal and to a lesser extent the lysosomal pathway in the cell lines investigated. Thus, HGF-stimulated Akt and Erk1/2 signaling as well as proteasomal degradation of HGF activated C-MET are potential therapeutic targets in OS. - Highlights: • Expression of TPR-MET was only observed in MNNG-HOS cells. • HGF stimulated the phosphorylation of Akt and Erk1/2 but not of Stat3 in osteosarcoma cell lines. • Degradation of HGF-activated C-MET occurred predominantly through the proteasomal pathway.

  6. Proteomic identification of 14-3-3ϵ as a linker protein between pERK1/2 inhibition and BIM upregulation in human osteosarcoma cells.

    PubMed

    Kim, Kyung Ok; Hsu, Anny C; Lee, Heon Goo; Patel, Neel; Chandhanayingyong, Chandhanarat; Hickernell, Thomas; Lee, Francis Young-In

    2014-06-01

    Despite advancements in multimodality chemotherapy, conventional cytotoxic treatments still remain ineffective for a subset of patients with aggressive metastatic or multifocal osteosarcoma. It has been shown that pERK1/2 inhibition enhances chemosensitivity to doxorubicin and promotes osteosarcoma cell death in vivo and in vitro. One of the pro-apoptotic mechanisms is upregulation of Bim by pERK1/2 inhibitors. To this end, we examined proteomic changes of 143B human osteosarcoma cells with and without treatment of PD98059, pERK1/2 inhibitor. Specifically, we identified 14-3-3ϵ protein as a potential mediator of Bim expression in response to inhibition of pERK1/2. We hypothesized that 14-3-3ϵ mediates upregulation of Bim expression after pERK1/2 inhibition. We examined the expression of Bim after silencing 14-3-3ϵ using siRNA. The 14-3-3ϵ gene silencing resulted in downregulation of Bim expression after PD98059 treatment. These data indicate that 14-3-3ϵ is required for Bim expression and that it has an anti-cancer effect under pERK1/2 inhibition in 143B cells. By playing an essential role upstream of Bim, 14-3-3ϵ may potentially be a coadjuvant factor synergizing the effect of pERK1/2 inhibitors in addition to conventional cytotoxic agents for more effective osteosarcoma treatments.

  7. A novel synthetic derivative of the natural product berbamine inhibits cell viability and induces apoptosis of human osteosarcoma cells, associated with activation of JNK/AP-1 signaling.

    PubMed

    Yang, Fan; Nam, Sangkil; Zhao, Robin; Tian, Yan; Liu, Lucy; Horne, David A; Jove, Richard

    2013-11-01

    Osteosarcoma is the most common primary bone tumor in children and adolescents. There is a critical need to find more potent drugs for patients with metastatic or recurrent disease. Berbamine (BBM) is a natural compound derived from the Berberis amurensis plants. BBM and its derivatives have been shown to have antitumor effects in several cancers. Here, we report that a novel synthetic berbamine derivative, BBMD3, inhibits cell viability and induces apoptosis of G292, KHOS, and MG-63 human osteosarcoma cells. Induction of apoptosis in these tumor cells depends on activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase (PARP). Since pan-caspase inhibitor (Z-VAD-FMK) and caspase-9 inhibitor (Z-LEHD-FMK) could block the cleavage of PARP, the apoptosis induced by BBMD3 is through intrinsic signaling pathway. BBMD3 increased phosphorylation of c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK), resulting in increase of phosphorylated c-Jun and total c-Fos, the major components of transcriptional factor AP-1. JNK inhibitor could partially suppress antitumor effect of BBMD3 on osteosarcoma cells. BBMD3 increased the production of reactive oxygen species (ROS) and ROS scavenger, N-acetylcysteine (NAC), could block the phosphorylation of JNK and c-Jun induced by BBMD3. BBMD3 increased the expression of the pro-apototic gene Bad, associated with apoptosis induction. Finally, BBMD3 also decreased the expression of cyclin D1 and D2, the positive cell cycle regulators, which is correlated with growth inhibition in osteosarcoma cells. Collectively, these findings indicate that BBMD3 is a potentially promising drug for the treatment of human osteosarcoma.

  8. Significant immunohistochemical expression of human chorionic gonadotropin in high-grade osteosarcoma is rare, but may be associated with clinically elevated serum levels.

    PubMed

    Lee, Anna F; Pawel, Bruce R; Sullivan, Lisa M

    2014-01-01

    Survival rates have plateaued at 70% for osteosarcoma. Proteins ectopically produced by malignant tumors may provide insight into new therapeutic targets. Osteosarcomas secreting human chorionic gonadotropin (hCG) have been suggested to have a worse prognosis. We examined the frequency of expression of β-subunit of hCG (β-hCG) in pretreatment osteosarcoma biopsies, and asked if it was associated with various clinical prognostic parameters, and the development of metastases. We subjected 51 pretreatment biopsies of high-grade osteosarcoma, from 51 patients, to β-hCG immunohistochemistry. In 19 of these patients, postchemotherapy metastatic biopsies also were examined for β-hCG expression. Clinical information (patient age, sex, survival status, and serum hCG in females only), and tumor characteristics (site, size, and presence of metastases) were recorded. The β-hCG positive and negative biopsies were separated and compared. Of 49 interpretable pretreatment biopsies, 28 (57%) showed positive cytoplasmic β-hCG expression: 27 with sparse positivity (1% of tumor cells) and 1 with frequent positivity (10% of tumor cells). The patient with frequent β-hCG positivity in her pretreatment biopsy had elevated serum hCG (88.2 mIU/mL) at diagnosis, decreasing to undetectable following chemotherapy and definitive resection. There was no difference in clinical parameters or rate of metastasis between β-hCG positive versus negative groups. Expression of β-hCG may be seen in high-grade osteosarcoma, but frequent β-hCG immunohistochemical expression by tumor cells, associated with clinically elevated serum β-hCG, is rare. Recognition that some nongerm cell tumors may produce β-hCG can prevent confusion with malignancies containing neoplastic syncytiotrophoblast cells, including germ cell and trophoblastic tumors.

  9. Plumbagin induces apoptosis via the p53 pathway and generation of reactive oxygen species in human osteosarcoma cells.

    PubMed

    Tian, Linqiang; Yin, Delong; Ren, Ye; Gong, Chen; Chen, Anmin; Guo, Feng-Jin

    2012-01-01

    Osteosarcoma, which is the most common primary bone tumor, occurs most frequently in adolescents. A number of studies have indicated that plumbagin (PL) (5-hydroxy-2-methyl-1, 4-naphthoquinone), a compound found in the plants of the Plumbaginaceae and Droseraceae families, possesses anticancer activity. However, its anticancer effects and mechanisms against osteosarcoma have not been explored. To determine the anticancer effect of PL on osteosarcoma cell lines MG-63 and U2OS, cell viability, apoptosis, cell cycle distribution, caspase-3 and caspase-9 activity and intracellular reactive oxygen species (ROS) generation were measured, and Western blot analyses were performed. PL significantly inhibited the growth of osteosarcoma cells, particularly U2OS cells. PL up-regulated the expression of p53 in U2OS cells and p21 in the two osteosarcoma cell lines causing cell cycle arrest by decreasing the expression of murine double minute 2 (MDM2)/cyclin B1 and cyclin D1. Furthermore, PL altered the ratio of Bax/Bcl-2, and may have triggered the mitochondrial apoptotic pathway, resulting in caspase-3 and caspase-9 activation. We also found that PL induced the generation of ROS in osteosarcoma cell lines. To conclude, PL exerted anticancer activity on osteosarcoma cells by inducing pro-apoptotic signaling and modulating the intracellular ROS that causes induction of apoptosis. These effects may relate to the p53 status.

  10. X609, a novel manassantin A derivative, exhibits antitumor activity in MG-63 human osteosarcoma cells in vitro and in vivo.

    PubMed

    Li, Ji; Zhao, Kongbo; Wang, Fu; Cai, Jinfang; Li, Zongyu; Zou, Lin

    2015-08-01

    Manassantin A has been well-established as an inhibitor of HIF-1. In the present study, a new manasantin A derivative, X609, with decreased stereochemical complexity, rendering it amenable to a simplified synthesis scheme, was synthesized and was found to increase HIF-1 inhibitory activity. X609 exhibited antiproliferative activity in a broad spectrum of tumor cell lines, via HIF-1-dependent mechanisms. X609 may induce apoptosis in MG-63 cells through activation of the mitochondrial pathway. Oral administration of X609 significantly inhibited the growth of human osteosarcomas implanted into nude mice. In light of the results of the present study, it may be possible to develop X609 for use as a novel antitumor agent, which targets human osteosarcoma.

  11. Childhood Cancer: Osteosarcoma

    MedlinePlus

    ... developing other cancers. Chances for a Cure Survival rates of 60% to 80% are possible for osteosarcoma that hasn't spread beyond the tumor, depending on the success of chemotherapy. Osteosarcoma that has spread cannot always be treated ...

  12. Dendropanoxide induces autophagy through ERK1/2 activation in MG-63 human osteosarcoma cells and autophagy inhibition enhances dendropanoxide-induced apoptosis.

    PubMed

    Lee, Ji-Won; Kim, Kyoung-Sook; An, Hyun-Kyu; Kim, Cheorl-Ho; Moon, Hyung-In; Lee, Young-Choon

    2013-01-01

    Anticancer effects of dendropanoxide (DP) newly isolated from leaves and stem of Dendropanax morbifera Leveille were firstly investigated in this study. DP inhibited cell proliferation and induced apoptosis in dose- and time-dependent manner in MG-63 human osteosarcoma cells, which was dependent on the release of cytochrome c to the cytosol and the activation of caspases. Moreover, the DP-treated cells exhibited autophagy, as characterized by the punctuate patterns of microtubule-associated protein 1 light chain 3 (LC3) by confocal microscopy and the appearance of autophagic vacuoles by MDC staining. The expression levels of ATG7, Beclin-1 and LC3-II were also increased by DP treatment. Inhibition of autophagy by 3-methyladenine (3-MA) and wortmannin (Wort) significantly enhanced DP-induced apoptosis. DP treatment also caused a time-dependent increase in protein levels of extracellular signal-regulated kinase 1 and 2 (ERK1/2), and inhibition of ERK1/2 phosphorylation with U0126 resulted in a decreased DP-induced autophagy that was accompanied by an increased apoptosis and a decreased cell viability. These results indicate a cytoprotective function of autophagy against DP-induced apoptosis and suggest that the combination of DP treatment with autophagy inhibition may be a promising strategy for human osteosarcoma control. Taken together, this study demonstrated for the first time that DP could induce autophagy through ERK1/2 activation in human osteosarcoma cells and autophagy inhibition enhanced DP-induced apoptosis.

  13. Analysis of Selenium Levels in Osteosarcoma Patients and the Effects of Se-Methylselenocysteine on Osteosarcoma Cells In Vitro.

    PubMed

    Huang, Gang; Yong, Bi-cheng; Xu, Ming-hong; Li, Jing-chun; Guo, Hai-hua; Shen, Jing-nan

    2015-01-01

    The form of selenium appears to be important for preventing cancer in humans. Here, we evaluated selenium levels in the serum and bone tissue samples from osteosarcoma patients using atomic absorption spectrometry. The in vitro effects of Se-methylselenocysteine (Se-MSC) on growth, cell cycle status, and apoptosis of osteosarcoma cells were assessed using the WST-1 assay, Hoechst 33342/propidium iodide staining, and flow cytometry, respectively. In osteosarcoma cases, the mean serum selenium levels in osteosarcoma tissue and normal bone were 0.08 mg/kg and 0.03 mg/kg, respectively (P < 0.05). Serum selenium levels in osteosarcoma and non-osteosarcoma cases were 0.09 mg/L and 0.08 mg/L, respectively (P > 0.05). Se-MSC-treated MG63 cells showed altered cellular morphology, decreased viability in a time- and dose-dependent manner, and an increase in the sub-G1 cell population. Se-MSC also downregulated Bcl-2 expression and upregulated Bax. Se-MSC inhibited the proliferation of the drug-resistant osteosarcoma cell line Saos-2/MTX300 and enhanced the inhibitory effect of pirarubicin on MG63 cells. Our data demonstrate that selenium levels are significantly higher in osteosarcoma tissue than normal bone tissue in osteosarcoma patients. The results also support the anticancer effects of Se-MSC in osteosarcoma. Further development of Se-MSC as an ancillary chemotherapy agent in osteosarcoma is warranted.

  14. Vanadium and cancer treatment: antitumoral mechanisms of three oxidovanadium(IV) complexes on a human osteosarcoma cell line.

    PubMed

    León, I E; Butenko, N; Di Virgilio, A L; Muglia, C I; Baran, E J; Cavaco, I; Etcheverry, S B

    2014-05-01

    We report herein the antitumor actions of three oxidovanadium(IV) complexes on MG-63 human osteosarcoma cell line. The three complexes: VO(oda), VO(oda)bipy and VO(oda)phen (oda=oxodiacetate), caused a concentration dependent inhibition of cell viability. The antiproliferative action of VO(oda)phen could be observed in the whole range of concentrations (at 2.5 μM), while VO(oda)bipy and VO(oda) showed a decrease of cell viability only at higher concentrations (at 50 and 75 μM, respectively) (p<0.01). Moreover, VO(oda)phen caused a decrease of lysosomal and mitochondrial activities at 2.5 μM, while VO(oda) and VO(oda)bipy affected neutral red uptake and mitochondrial metabolism at 50 μM (p<0.01). On the other hand, no DNA damage studied by the Comet assay could be observed in MG-63 cells treated with VO(oda) at 2.5-10 μM. Nevertheless, VO(oda)phen and VO(oda)bipy induced DNA damage at 2.5 and 10 μM, respectively (p<0.01). The generation of reactive oxygen species increased at 10 μM of VO(oda)phen and only at 100 μM of VO(oda) and VO(oda)bipy (p<0.01). Besides, VO(oda)phen and VO(oda)bipy triggered apoptosis as determined by externalization of the phosphatidylserine. The determination of DNA cleavage by agarose gel electrophoresis showed that the ability of VO(oda)(bipy) is similar to that of VO(oda), while VO(oda)(phen) showed the highest nuclease activity in this series. Overall, our results showed a good relationship between the bioactivity of the complexes and their structures since VO(oda)phen presented the most potent antitumor action in human osteosarcoma cells followed by VO(oda)bipy and then by VO(oda) according to the number of intercalating heterocyclic moieties.

  15. Vitamin D fails to prevent serum starvation- or staurosporine-induced apoptosis in human and rat osteosarcoma-derived cell lines

    SciTech Connect

    Witasp, Erika; Gustafsson, Ann-Catrin; Cotgreave, Ian; Lind, Monica . E-mail: monica.lind@imm.ki.se; Fadeel, Bengt . E-mail: bengt.fadeel@imm.ki.se

    2005-05-13

    Previous studies have suggested that 1,25(OH){sub 2}D{sub 3}, the active form of vitamin D{sub 3}, may increase the survival of bone-forming osteoblasts through an inhibition of apoptosis. On the other hand, vitamin D{sub 3} has also been shown to trigger apoptosis in human cancer cells, including osteosarcoma-derived cell lines. In the present study, we show that 1,25(OH){sub 2}D{sub 3} induces a time- and dose-dependent loss of cell viability in the rat osteosarcoma cell line, UMR-106, and the human osteosarcoma cell line, TE-85. We were unable, however, to detect nuclear condensation, phosphatidylserine externalization, or other typical signs of apoptosis in this model. Moreover, 1,25(OH){sub 2}D{sub 3} failed to protect against apoptosis induced by serum starvation or incubation with the protein kinase inhibitor, staurosporine. These in vitro findings are thus at variance with several previous reports in the literature and suggest that induction of or protection against apoptosis of bone-derived cells may not be a primary function of vitamin D{sub 3}.

  16. A genome landscape of SRSF3-regulated splicing events and gene expression in human osteosarcoma U2OS cells

    PubMed Central

    Ajiro, Masahiko; Jia, Rong; Yang, Yanqin; Zhu, Jun; Zheng, Zhi-Ming

    2016-01-01

    Alternative RNA splicing is an essential process to yield proteomic diversity in eukaryotic cells, and aberrant splicing is often associated with numerous human diseases and cancers. We recently described serine/arginine-rich splicing factor 3 (SRSF3 or SRp20) being a proto-oncogene. However, the SRSF3-regulated splicing events responsible for its oncogenic activities remain largely unknown. By global profiling of the SRSF3-regulated splicing events in human osteosarcoma U2OS cells, we found that SRSF3 regulates the expression of 60 genes including ERRFI1, ANXA1 and TGFB2, and 182 splicing events in 164 genes, including EP300, PUS3, CLINT1, PKP4, KIF23, CHK1, SMC2, CKLF, MAP4, MBNL1, MELK, DDX5, PABPC1, MAP4K4, Sp1 and SRSF1, which are primarily associated with cell proliferation or cell cycle. Two SRSF3-binding motifs, CCAGC(G)C and A(G)CAGCA, are enriched to the alternative exons. An SRSF3-binding site in the EP300 exon 14 is essential for exon 14 inclusion. We found that the expression of SRSF1 and SRSF3 are mutually dependent and coexpressed in normal and tumor tissues/cells. SRSF3 also significantly regulates the expression of at least 20 miRNAs, including a subset of oncogenic or tumor suppressive miRNAs. These data indicate that SRSF3 affects a global change of gene expression to maintain cell homeostasis. PMID:26704980

  17. Signal transduction and downregulation of C-MET in HGF stimulated low and highly metastatic human osteosarcoma cells.

    PubMed

    Husmann, Knut; Ducommun, Pascal; Sabile, Adam A; Pedersen, Else-Marie; Born, Walter; Fuchs, Bruno

    2015-09-04

    The poor outcome of osteosarcoma (OS), particularly in patients with metastatic disease and a five-year survival rate of only 20%, asks for more effective therapeutic strategies targeting malignancy-promoting mechanisms. Dysregulation of C-MET, its ligand hepatocyte growth factor (HGF) and the fusion oncogene product TPR-MET, first identified in human MNNG-HOS OS cells, have been described as cancer-causing factors in human cancers. Here, the expression of these molecules at the mRNA and the protein level and of HGF-stimulated signaling and downregulation of C-MET was compared in the parental low metastatic HOS and MG63 cell lines and the respective highly metastatic MNNG-HOS and 143B and the MG63-M6 and MG63-M8 sublines. Interestingly, expression of TPR-MET was only observed in MNNG-HOS cells. HGF stimulated the phosphorylation of Akt and Erk1/2 in all cell lines investigated, but phospho-Stat3 remained at basal levels. Downregulation of HGF-stimulated Akt and Erk1/2 phosphorylation was much faster in the HGF expressing MG63-M8 cells than in HOS cells. Degradation of HGF-activated C-MET occurred predominantly through the proteasomal and to a lesser extent the lysosomal pathway in the cell lines investigated. Thus, HGF-stimulated Akt and Erk1/2 signaling as well as proteasomal degradation of HGF activated C-MET are potential therapeutic targets in OS.

  18. Long non-coding RNA TUG1 contributes to tumorigenesis of human osteosarcoma by sponging miR-9-5p and regulating POU2F1 expression.

    PubMed

    Xie, Chu-Hai; Cao, Yan-Ming; Huang, Yan; Shi, Qun-Wei; Guo, Jian-Hong; Fan, Zi-Wen; Li, Ju-Gen; Chen, Bin-Wei; Wu, Bo-Yi

    2016-11-01

    Recent studies have shown that long non-coding RNAs (lncRNAs) have critical roles in tumorigenesis, including osteosarcoma. The lncRNA taurine-upregulated gene 1 (TUG1) was reported to be involved in the progression of osteosarcoma. Here, we investigated the role of TUG1 in osteosarcoma cells and the underlying mechanism. TUG1 expression was measured in osteosarcoma cell lines and human normal osteoblast cells by quantitative real-time PCR (qRT-PCR). The effects of TUG1 on osteosarcoma cells were studied by RNA interference in vitro and in vivo. The mechanism of competing endogenous RNA (ceRNA) was determined using bioinformatic analysis and luciferase assays. Our data showed that TUG1 knockdown inhibited cell proliferation and colony formation, and induced G0/G1 cell cycle arrest and apoptosis in vitro, and suppressed tumor growth in vivo. Besides, we found that TUG1 acted as an endogenous sponge to directly bind to miR-9-5p and downregulated miR-9-5p expression. Moreover, TUG1 overturned the effect of miR-9-5p on the proliferation, colony formation, cell cycle arrest, and apoptosis in osteosarcoma cells, which involved the derepression of POU class 2 homeobox 1 (POU2F1) expression. In conclusion, our study elucidated a novel TUG1/miR-9-5p/POU2F1 pathway, in which TUG1 acted as a ceRNA by sponging miR-9-5p, leading to downregulation of POU2F1 and facilitating the tumorigenesis of osteosarcoma. These findings may contribute to the lncRNA-targeted therapy for human osteosarcoma.

  19. High Expression of XRCC6 Promotes Human Osteosarcoma Cell Proliferation through the β-Catenin/Wnt Signaling Pathway and Is Associated with Poor Prognosis

    PubMed Central

    Zhu, Bin; Cheng, Dongdong; Li, Shijie; Zhou, Shumin; Yang, Qingcheng

    2016-01-01

    Increasing evidences show that XRCC6 (X-ray repair complementing defective repair in Chinese hamster cells 6) was upregulated and involved in tumor growth in several tumor types. However, the correlation of XRCC6 and human osteosarcoma (OS) is still unknown. This study was conducted with the aim to reveal the expression and biological function of XRCC6 in OS and elucidate the potential mechanism. The mRNA expression level of XRCC6 was measured in osteosarcoma cells and OS samples by quantitative transcription-PCR (qRT-PCR). The expression of XRCC6 protein was measured using Western blot and immunohistochemical staining in osteosarcoma cell lines and patient samples. Cell Counting Kit 8 (CCK8), colony-forming and cell cycle assays were used to test cell survival capacity. We found that XRCC6 was overexpressed in OS cells and OS samples compared with the adjacent non-tumorous samples. High expression of XRCC6 was correlated with clinical stage and tumor size in OS. Reduced expression of XRCC6 inhibits OS cell proliferation through G2/M phase arrest. Most importantly, further experiments demonstrated that XRCC6 might regulate OS growth through the β-catenin/Wnt signaling pathway. In conclusion, these findings indicate that XRCC6 exerts tumor-promoting effects for OS through β-catenin/Wnt signaling pathway. XRCC6 may serve as a novel therapeutic target for OS patients. PMID:27455247

  20. Inactivation of human osteosarcoma cells in vitro by {sup 211}At-TP-3 monoclonal antibody: Comparison with astatine-211 and external-beam X rays

    SciTech Connect

    Larsen, R.H. |; Bruland, O.S.; Hoff, P.; Alstad, J.; Lindmo, T.; Rofstad, E.K.

    1994-08-01

    The potential usefulness of {alpha}-particle radioimmunotherapy in the treatment of osteosarcoma was studied in vitro by using the monoclonal antibody TP-3 and cells of three human osteosarcoma cell lines (OHS, SAOS and KPDX) differing in antigen expression. Cell survival curves were established after treatment with (a) {sup 211}At-TP-3 of different specific activities, (b) {sup 211}At-labeled bovine serum albumin (BSA), (c) free {sup 211}At and (d) external-beam X rays. The three osteosarcoma cell lines showed similar survival curves, whether treated with external-beam X rays, {sup 211}At-BSA or free {sup 211}At. The D{sub o}`s were lower for free {sup 211}At than for {sup 211}At-BSA. The survival curves for {sup 211}At-TP-3 treatment, on the other hand, differed significantly among the cell lines, suggesting that sensitivity to {sup 211}At-TP-3 treatment was governed by cellular properties other than sensitivity to external-beam X rays. The cellular property most important for sensitivity to {sup 211}At-TP-3 treatment was the antigen expression. Cell inactivation after {sup 211}At-TP-3 treatment increased substantially with increasing specific activity of the {sup 211}At-TP-3. At high specific activities, the cytotoxic effect of {sup 211}At-TP-3 was significantly higher than that of {sup 211}At-BSA. In conclusion, {sup 211}At-TP-3 has the potential to give clinically favorable therapeutic ratios in the treatment of osteosarcoma. 39 refs., 5 figs., 2 tabs.

  1. Millimeter wave treatment induces apoptosis via activation of the mitochondrial-dependent pathway in human osteosarcoma cells.

    PubMed

    Wu, Guangwen; Chen, Xuzheng; Peng, Jun; Cai, Qiaoyan; Ye, Jinxia; Xu, Huifeng; Zheng, Chunsong; Li, Xihai; Ye, Hongzhi; Liu, Xianxiang

    2012-05-01

    Millimeter wave (MW) is an electromagnetic wave with a wavelength between 1 and 10 mm and a frequency of 30-300 GHz that causes multiple biological effects and has been used as a major component in physiotherapies for the clinical treatment of various types of diseases including cancers. However, the precise molecular mechanism of the anticancer activity of millimeter wave remains to be elucidated. In the present study, we investigated the cellular effects of the MW in the U-2OS human osteosarcoma cell line. Our results showed that MW induced cell morphological changes and reduced cell viability in a dose- and time-dependent manner suggesting that MW inhibited the growth of U-2OS cells as demonstrated. Hoechst 33258 staining and Annexin V/propidium iodide double staining exhibited the typical nuclear features of apoptosis and increased the proportion of apoptotic Annexin V-positive cells in a dose-dependent manner, respectively. In addition, MW treatment caused loss of plasma membrane asymmetry, release of cytochrome c, collapse of mitochondrial membrane potential, activation of caspase-9 and -3, and increase of the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2. Taken together, the results indicate that the U-2OS cell growth inhibitory activity of MW was due to mitochondrial-mediated apoptosis, which may partly explain the anticancer activity of millimeter wave treatment.

  2. Ladder-like amplification of the type I interferon gene cluster in the human osteosarcoma cell line MG63.

    PubMed

    Marella, Narasimharao V; Zeitz, Michael J; Malyavantham, Kishore S; Pliss, Artem; Matsui, Sei-ichi; Goetze, Sandra; Bode, Juergen; Raska, Ivan; Berezney, Ronald

    2008-01-01

    The organization of the type I interferon (IFN) gene cluster (9p21.3) was studied in a human osteosarcoma cell line (MG63). Array comparative genomic hybridization (aCGH) showed an amplification of approximately 6-fold which ended at both ends of the gene cluster with a deletion that extended throughout the 9p21.3 band. Spectral karyotyping (SKY) combined with fluorescence in-situ hybridization (FISH) identified an arrangement of the gene cluster in a ladder-like array of 5-7 'bands' spanning a single chromosome termed the 'IFN chromosome'. Chromosome painting revealed that the IFN chromosome is derived from components of chromosomes 4, 8 and 9. Labelling with centromeric probes demonstrated a ladder-like amplification of centromeric 4 and 9 sequences that co-localized with each other and a similar banding pattern of chromosome 4, as well as alternating with the IFN gene clusters. In contrast, centromere 8 was not detected on the IFN chromosome. One of the amplified centromeric 9 bands was identified as the functional centromere based on its location at the chromosome constriction and immunolocalization of the CENP-C protein. A model is presented for the generation of the IFN chromosome that involves breakage-fusion-bridge events.

  3. Biological characteristics of the MG-63 human osteosarcoma cells on composite tantalum carbide/amorphous carbon films.

    PubMed

    Chang, Yin-Yu; Huang, Heng-Li; Chen, Ya-Chi; Hsu, Jui-Ting; Shieh, Tzong-Ming; Tsai, Ming-Tzu

    2014-01-01

    Tantalum (Ta) is a promising metal for biomedical implants or implant coating for orthopedic and dental applications because of its excellent corrosion resistance, fracture toughness, and biocompatibility. This study synthesizes biocompatible tantalum carbide (TaC) and TaC/amorphous carbon (a-C) coatings with different carbon contents by using a twin-gun magnetron sputtering system to improve their biological properties and explore potential surgical implant or device applications. The carbon content in the deposited coatings was regulated by controlling the magnetron power ratio of the pure graphite and Ta cathodes. The deposited TaC and TaC/a-C coatings exhibited better cell viability of human osteosarcoma cell line MG-63 than the uncoated Ti and Ta-coated samples. Inverted optical and confocal imaging was used to demonstrate the cell adhesion, distribution, and proliferation of each sample at different time points during the whole culture period. The results show that the TaC/a-C coating, which contained two metastable phases (TaC and a-C), was more biocompatible with MG-63 cells compared to the pure Ta coating. This suggests that the TaC/a-C coatings exhibit a better biocompatible performance for MG-63 cells, and they may improve implant osseointegration in clinics.

  4. [CCR7 silence by siRNA inhibits proliferation, invasion and promotes apoptosis of human MG63 osteosarcoma cells].

    PubMed

    Zhang, Richun; Zhang, Hongtao; E, Zhen; Ma, Qiong; Yan, Shiju; Zhang, Enwei; Ma, Bao'an

    2016-12-01

    Objective To investigate the effect of siRNA-mediated chemokine receptor 7 (CCR7) silence on the proliferation, migration, invasion and apoptosis of human MG-63 osteosarcoma cells. Methods The study designed and synthesized siRNA targeting CCR7 (CCR7-siRNA). After MG63 cells were transfected with CCR7-siRNA, the expression of CCR7 was identified by Western blotting; cell apoptosis was detected by annexinV-FITC/PI double staining combined with flow cemetery; cell proliferation was tested by MTT assay; and cell migration and invasion abilities were examined by Transwell(TM) migration/invasion assays. Results CCR7 expression in MG63 cells was significantly inhibited after transfected with CCR7-siRNA. At the same time, cell proliferation, migration and invasion abilities were distinctly suppressed, and cell apoptosis rate increased. Conclusion Down-regulating CCR7 expression in MG63 cells could apparently inhibit cell proliferation, migration and invasion abilities of MG63 cells, and also induce cell apoptosis.

  5. Genes Regulated in Metastatic Osteosarcoma: Evaluation by Microarray Analysis in Four Human and Two Mouse Cell Line Systems

    PubMed Central

    Muff, Roman; Ram Kumar, Ram Mohan; Botter, Sander M.; Born, Walter; Fuchs, Bruno

    2012-01-01

    Osteosarcoma (OS) is a rare bone neoplasm that affects mainly adolescents. It is associated with poor prognosis in case of metastases formation. The search for metastasis predicting markers is therefore imperative to optimize treatment strategies for patients at risk and important for the search of new drugs for the treatment of this devastating disease. Here, we have analyzed by microarray the differential gene expression in four human and two mouse OS cell line systems consisting of parental cell lines with low metastatic potential and derivatives thereof with increased metastatic potential. Using two osteoblastic cell line systems, the most common OS phenotype, we have identified forty-eight common genes that are differentially expressed in metastatic cell lines compared to parental cells. The identified subset of metastasis relevant genes in osteoblastic OS overlapped only minimally with differentially expressed genes in the other four preosteoblast or nonosteoblastic cell line systems. The results imply an OS phenotype specific expression pattern of metastasis regulating proteins and form a basis for further investigation of gene expression profiles in patients' samples combined with survival analysis with the aim to optimize treatment strategies to develop new drugs and to consequently improve the survival of patients with the most common form of osteoblastic OS. PMID:23213280

  6. Generation of Osteosarcomas From a Combination of Rb Silencing and c-Myc Overexpression in Human Mesenchymal Stem Cells.

    PubMed

    Wang, Jir-You; Wu, Po-Quei; Chen, Paul Chih-Hsueh; Lee, Chia-Wen; Chen, Wei-Ming; Hung, Shih-Chieh

    2016-09-07

    : Osteosarcoma (OS) was a malignant tumor occurring with unknown etiology that made prevention and early diagnosis difficult. Mesenchymal stem cells (MSCs), which were found in bone marrow, were claimed to be a possible origin of OS but with little direct evidence. We aimed to characterize OS cells transformed from human MSCs (hMSCs) and identify their association with human primary OS cells and patient survival. Genetic modification with p53 or retinoblastoma (Rb) knockdown and c-Myc or Ras overexpression was applied for hMSC transformation. Transformed cells were assayed for proliferation, differentiation, tumorigenecity, and gene expression profile. Only the combination of Rb knockdown and c-Myc overexpression successfully transformed hMSCs derived from four individual donors, with increasing cell proliferation, decreasing cell senescence rate, and increasing ability to form colonies and spheres in serum-free medium. These transformed cells lost the expression of certain surface markers, increased in osteogenic potential, and decreased in adipogenic potential. After injection in immunodeficient mice, these cells formed OS-like tumors, as evidenced by radiographic analyses and immunohistochemistry of various OS markers. Microarray with cluster analysis revealed that these transformed cells have gene profiles more similar to patient-derived primary OS cells than their normal MSC counterparts. Most importantly, comparison of OS patient tumor samples revealed that a combination of Rb loss and c-Myc overexpression correlated with a decrease in patient survival. This study successfully transformed human MSCs to OS-like cells by Rb knockdown and c-Myc overexpression that may be a useful platform for further investigation of preventive and target therapy for human OS.

  7. Generation of Osteosarcomas from a Combination of Rb Silencing and c-Myc Overexpression in Human Mesenchymal Stem Cells.

    PubMed

    Wang, Jir-You; Wu, Po-Kuei; Chen, Paul Chih-Hsueh; Lee, Chia-Wen; Chen, Wei-Ming; Hung, Shih-Chieh

    2017-02-01

    Osteosarcoma (OS) was a malignant tumor occurring with unknown etiology that made prevention and early diagnosis difficult. Mesenchymal stem cells (MSCs), which were found in bone marrow, were claimed to be a possible origin of OS but with little direct evidence. We aimed to characterize OS cells transformed from human MSCs (hMSCs) and identify their association with human primary OS cells and patient survival. Genetic modification with p53 or retinoblastoma (Rb) knockdown and c-Myc or Ras overexpression was applied for hMSC transformation. Transformed cells were assayed for proliferation, differentiation, tumorigenecity, and gene expression profile. Only the combination of Rb knockdown and c-Myc overexpression successfully transformed hMSCs derived from four individual donors, with increasing cell proliferation, decreasing cell senescence rate, and increasing ability to form colonies and spheres in serum-free medium. These transformed cells lost the expression of certain surface markers, increased in osteogenic potential, and decreased in adipogenic potential. After injection in immunodeficient mice, these cells formed OS-like tumors, as evidenced by radiographic analyses and immunohistochemistry of various OS markers. Microarray with cluster analysis revealed that these transformed cells have gene profiles more similar to patient-derived primary OS cells than their normal MSC counterparts. Most importantly, comparison of OS patient tumor samples revealed that a combination of Rb loss and c-Myc overexpression correlated with a decrease in patient survival. This study successfully transformed human MSCs to OS-like cells by Rb knockdown and c-Myc overexpression that may be a useful platform for further investigation of preventive and target therapy for human OS. Stem Cells Translational Medicine 2017;6:512-526.

  8. Adriamycin resistance-associated prohibitin gene inhibits proliferation of human osteosarcoma MG63 cells by interacting with oncogenes and tumor suppressor genes.

    PubMed

    Du, Min-Dong; He, Kai-Yi; Qin, Gang; Chen, Jin; Li, Jin-Yi

    2016-09-01

    The resistance of cancer cells to chemotherapeutic agents is a major obstacle for successful chemotherapy, and the mechanism of chemoresistance remains unclear. The present study developed an adriamycin-resistant human osteosarcoma MG-63 sub-line (MG-63/ADR), and identified differentially expressed proteins that may be associated with adriamycin resistance. Two dimensional gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis and a protein identification assay were performed. Western blot analysis was used to examine the prohibitin (PHB) levels in the MG-63/ADR cells. Quantitative polymerase chain reaction was utilized to detect adriamycin resistant-associated genes. Laser-scanning confocal microscope was employed to examine the colocalization of PHB with v-myc avian myelocytomatosis viral oncogene homolog (c-myc), FBJ murine osteosarcoma viral oncogene homolog (c-fos), tumor protein p53 and retinoblastoma 1 (Rb). In addition, the full length of the open reading frame of human PHB was subcloned into a lentiviral vector pLVX-puro. The proliferative rate of MG-63 cells was also investigated. The overall protein expression in MG-63/ADR cells was clearly suppressed. Three notable protein regions, representing high mobility group box 1, Ras homolog gene family, member A, and PHB, were identified to be significantly altered in MG-63/ADR cells when compared with its parental cells. Therefore, PHB modulated the chemoresistance of MG-63/ADR cells by interacting with multiple oncogenes or tumor suppressor genes (c-myc, c-fos, p53 and Rb). In addition, overexpression of PHB decreases the proliferative rate of MG-63 cells. In conclusion, PHB is an adriamycin resistance-associated gene, which may inhibit the proliferation of human osteosarcoma MG-63 cells by interacting with the oncogenes or tumor suppressor genes, c-myc, c-fos, p53 and Rb.

  9. Aloe-emodin-mediated photodynamic therapy induces autophagy and apoptosis in human osteosarcoma cell line MG‑63 through the ROS/JNK signaling pathway.

    PubMed

    Tu, Pinghua; Huang, Qiu; Ou, Yunsheng; Du, Xing; Li, Kaiting; Tao, Yong; Yin, Hang

    2016-06-01

    The present study was carried out to investigate the effect and mechanisms of aloe‑emodin (AE)-mediated photodynamic therapy (AE-PDT) on the human osteosarcoma cell line MG-63. After treatment with AE-PDT, the human osteosarcoma cell line MG-63 was tested for levels of viability, autophagy, reactive oxygen species (ROS) and apoptosis and changes in cell morphology with the Cell Counting Kit-8 (CCK‑8), monodansylcadaverine (MDC) and Hoechst staining and transmission electron microscopy. The expression of proteins including LC-3, cleaved caspase-3, Beclin-1, Bcl-2, p-JNK, t-JNK and β-actin was examined with western blotting. AE-PDT significantly inhibited the viability of the MG-63 cells in an AE-concentration- and PDT energy density-dependent manner. Autophagy and apoptosis of MG-63 cells was substantially promoted in the AE-PDT group compared to the control group, the AE alone group and the light emitting diode (LED) alone group. Inhibition of autophagy by 3-methyladenine (3-MA) (5 mM) and chloroquine (CQ) (15 µM) significantly promoted the apoptosis rate and improved the sensitivity of the MG-63 cells to AE-PDT. AE-PDT was found to induce the expression of ROS and p-JNK. ROS scavenger, N-acetyl-L-cysteine (NAC, 5 mM), was able to hinder the autophagy, apoptosis and phosphorylation of JNK, and JNK inhibitor (SP600125, 10 µM) significantly inhibited the autophagy and apoptosis, and attenuated the sensitivity of MG63 cells to AE-PDT. In conclusion, AE-PDT induced the autophagy and apoptosis of human osteosarcoma cell line MG-63 through the activation of the ROS-JNK signaling pathway. Autophagy may play a protective role during the early stage following treatment of AE-PDT.

  10. Effects of the overexpression of IFITM5 and IFITM5 c.-14C>T mutation on human osteosarcoma cells.

    PubMed

    Liu, Bao-Yan; Lu, Yan-Qin; Han, Feng; Wang, Yong; Mo, Xin-Kai; Han, Jin-Xiang

    2017-01-01

    The present study aimed to investigate the effects of overexpression of interferon-induced transmembrane protein 5 (IFITM5) and IFITM5 c.-14C>T mutation on osteogenic differentiation, and the proliferation, migration and invasion of SaOS2 cells. SaOS2 cells were transfected with plasmids containing wild type IFITM5 (W) or IFITM5 containing the c.-14C>T mutation (MU). The mRNA and protein expression levels of IFITM5 in SaOS2 cells were respectively detected by reverse transcription quantitative polymerase chain reaction and western blotting. The proliferative, migratory and invasive ability of SaOS2 cells was also examined. In addition, the expression levels of osteogenic differentiation markers alkaline phosphatase (ALP), osteocalcin (OCN) and runt-related transcription factor 2 (Runx2) were detected. Mineralized nodules were detected by Alizarin Red S staining and were quantified by measuring absorbance. The mRNA and protein expression levels of IFITM5 were high in cells transfected with IFITM5 and IFITM5 c.-14C>T mutation, and were higher in cells transfected with IFITM5 c.-14C>T mutation. There was no difference in proliferation between the control group (C) and the W and MU groups. However, overexpression of IFITM5 and IFITM5 c.-14C>T mutation increased apoptotic rate, decreased invasive capacity, increased the expression of ALP, OCN and Runx2, and increased the number of mineralized nodules following osteogenic induction. In addition, compared with C and W groups, cells transfected with IFITM5 c.-14C>T mutation exhibited decreased migratory ability. In conclusion, overexpression of IFITM5 and IFITM5 c.-14C>T mutation promotes tumor cell apoptosis, inhibits tumor invasion and promotes osteogenic differentiation. These findings may provide a theoretical basis for the development of a novel treatment method that targets IFITM5, and provides a platform for the potential treatment of human osteosarcoma.

  11. The influence of elementary silver versus titanium on osteoblasts behaviour in vitro using human osteosarcoma cell lines.

    PubMed

    Hardes, Jendrik; Streitburger, Arne; Ahrens, Helmut; Nusselt, Thomas; Gebert, Carsten; Winkelmann, Winfried; Battmann, Achim; Gosheger, Georg

    2007-01-01

    Purpose. The antimicrobial effect of a silver-coated tumor endoprosthesis has been proven in clinical and experimental trials. However, in the literature there are no reports concerning the effect of elementary silver on osteoblast behaviour. Therefore, the prosthetic stem was not silver-coated because of concerns regarding a possible inhibition of the osseointegration. The aim of the present study was to investigate the effect of 5-25 mg of elementary silver in comparison to Ti-6Al-4V on human osteosarcoma cell lines (HOS-58, SAOS). Methods. Cell viability was determined by measuring the MTT proliferation rate. Cell function was studied by measuring alkaline phosphatase (AP) activity and osteocalcine production. Results. In the HOS-58 cells, the AP activity was statistically significant (P < 0.05) higher at a supplement of 5-10 mg of silver than of Ti-6 Al-4V at the same doses. For both cell lines, a supplement above 10 mg of silver resulted in a reduced AP activity in comparision to the Ti-6 Al-4V group, but a statistically significant difference (P < 0.05) was observed at a dose of 25 mg for the SAOS cells only. At doses of 20-25 mg in the HOS-58 cells and 10-25 mg in the SAOS cells, the reduction of the proliferation rate by silver was statistically significant (P < 0.05) compared to the Ti-6 Al-4V supplement. Discussion. In conclusion, elementary silver exhibits no cytotoxicity at low concentrations. In contrast, it seems to be superior to Ti-6 Al-4V concerning the stimulation of osteogenic maturation at these concentrations, whereas at higher doses it causes the known cytotoxic properties.

  12. The Influence of Elementary Silver Versus Titanium on Osteoblasts Behaviour In Vitro Using Human Osteosarcoma Cell Lines

    PubMed Central

    Hardes, Jendrik; Streitburger, Arne; Ahrens, Helmut; Nusselt, Thomas; Gebert, Carsten; Winkelmann, Winfried; Battmann, Achim; Gosheger, Georg

    2007-01-01

    Purpose. The antimicrobial effect of a silver-coated tumor endoprosthesis has been proven in clinical and experimental trials. However, in the literature there are no reports concerning the effect of elementary silver on osteoblast behaviour. Therefore, the prosthetic stem was not silver-coated because of concerns regarding a possible inhibition of the osseointegration. The aim of the present study was to investigate the effect of 5–25 mg of elementary silver in comparison to Ti-6Al-4V on human osteosarcoma cell lines (HOS-58, SAOS). Methods. Cell viability was determined by measuring the MTT proliferation rate. Cell function was studied by measuring alkaline phosphatase (AP) activity and osteocalcine production. Results. In the HOS-58 cells, the AP activity was statistically significant (P < 0.05) higher at a supplement of 5–10 mg of silver than of Ti-6 Al-4V at the same doses. For both cell lines, a supplement above 10 mg of silver resulted in a reduced AP activity in comparision to the Ti-6 Al-4V group, but a statistically significant difference (P < 0.05) was observed at a dose of 25 mg for the SAOS cells only. At doses of 20–25 mg in the HOS-58 cells and 10–25 mg in the SAOS cells, the reduction of the proliferation rate by silver was statistically significant (P < 0.05) compared to the Ti-6 Al-4V supplement. Discussion. In conclusion, elementary silver exhibits no cytotoxicity at low concentrations. In contrast, it seems to be superior to Ti-6 Al-4V concerning the stimulation of osteogenic maturation at these concentrations, whereas at higher doses it causes the known cytotoxic properties. PMID:17680031

  13. Expression of 11β-hydroxysteroid dehydrogenase enzymes in human osteosarcoma: potential role in pathogenesis and as targets for treatments.

    PubMed

    Patel, Pushpa; Hardy, Rowan; Sumathi, Vaiyapuri; Bartle, Gillian; Kindblom, Lars-Gunnar; Grimer, Robert; Bujalska, Iwona; Stewart, Paul M; Rabbitt, Elizabeth; Gittoes, Neil J L; Cooper, Mark S

    2012-08-01

    Osteosarcoma (OS) is a primary malignant tumour of bone occurring predominantly in children and young adults. Despite chemotherapy, relapse is common and mortality remains high. Non-transformed osteoblasts are highly sensitive to glucocorticoids, which reduce proliferation and induce apoptosis. Previously, we observed that OS cells, but not normal osteoblasts, express 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). This enzyme inactivates cortisol (active) to cortisone (inactive) and expression of 11β-HSD2 renders OS cells resistant to glucocorticoids. By contrast, the related enzyme 11β-HSD1 converts cortisone to cortisol and reduces OS cell proliferation in vitro. Some synthetic glucocorticoids (e.g. dehydrodexamethasone (DHD), inactive counterpart of dexamethasone (DEX)) have been reported to be activated by 11β-HSD2. We therefore investigated expression and enzymatic activity of 11β-HSD isozymes in human OS tissue, determined whether 11β-HSD expression has prognostic value in the response to therapy, and evaluated the potential use of synthetic glucocorticoids to selectively target OS cells. OS samples expressed both 11β-HSD1 and 11β-HSD2. 11β-HSD1 expression in pretreatment biopsy specimens positively correlated with primary tumour size. Expression and activity of 11β-HSD1 in post-treatment biopsies were unrelated to the degree of tumour necrosis following chemotherapy. However, high 11β-HSD2 expression in post-treatment biopsies correlated with a poor response to therapy. OS cells that expressed 11β-HSD2 inactivated endogenous glucocorticoids; but these cells were also able to generate DEX from DHD. These results suggest that OS treatment response is related to 11β-HSD2 enzyme expression. Furthermore, OS cells expressing this enzyme could be targeted by treatment with synthetic glucocorticoids that are selectively reactivated by the enzyme.

  14. Human osteosarcoma cells resistant to detachment by an Arg-Gly-Asp- containing peptide overproduce the fibronectin receptor

    PubMed Central

    1987-01-01

    MG-63 human osteosarcoma cells were selected for attachment and growth in the presence of increasing concentrations of a synthetic peptide containing the cell attachment-promoting Arg-Gly-Asp sequence derived from the cell-binding region of fibronectin. Cells capable of attachment and growth in 5-mM concentrations of a peptide having the sequence Gly-Arg-Gly-Asp-Ser-Pro overproduce the cell surface receptor for fibronectin. In contrast, these cells show no differences in the numbers of vitronectin receptor they express as compared with the parental MG-63 cells. In agreement with the resistance of the selected cells to detachment by the peptide, 25-fold more Arg-Gly-Asp-containing peptide is required to prevent the attachment of these cells to fibronectin-coated surfaces than is needed to inhibit the attachment of MG-63 cells to the same substrate. However, similar concentrations of this peptide inhibit attachment of both cell lines to vitronectin- coated surfaces. The increase in fibronectin receptor is due to an increase in the levels of mRNA encoding the fibronectin receptor. Because of the nature of the selection process, we reasoned that this increase might be due to amplification of the fibronectin receptor gene, but no increase in gene copy number was detected by Southern blot analysis. The peptide-resistant cells display a very different morphology from that of the MG-63 cells, one that has a greater resemblance to that of osteocytes. The resistant cells also grow much more slowly than the MG-63 cells. The increased fibronectin receptor and altered morphology and growth properties were stable for at least 3 mo in the absence of peptide. The enhanced expression of the fibronectin receptor on the resistant cells indicates that cells are capable of altering the amount of fibronectin receptor on their surface in response to environmental factors and that this may in turn affect the phenotypic properties of the cell. PMID:2443508

  15. Beta-human chorionic gonadotropin producing osteosarcoma of the sacrum in a 26-year-old woman: a case report and review of the literature.

    PubMed

    Glass, Ryan; Asirvatham, Jaya Ruth; Kahn, Leonard; Aziz, Mohamed

    2015-01-01

    Ectopic secretion of beta-human chorionic gonadotropin is considered a poor prognostic marker in epithelial tumors. However, very few cases have been reported in sarcomas. We present the case of a 26-year-old female who presented with a metastatic osteosarcoma. She underwent usual testing prior to starting treatment and was found to have elevated levels of beta-human chorionic gonadotropin. As the patient was not pregnant, another source of beta-human chorionic gonadotropin secretion had to be considered. The tumor cells demonstrated positive staining for beta-human chorionic gonadotropin by immunohistochemistry, and serum levels of beta-human chorionic gonadotropin were used to monitor tumor progression and response to chemotherapy. We review the literature and discuss a potential role of beta-human chorionic gonadotropin in the treatment of such patients.

  16. Investigating Microbial (Micro)colony Heterogeneity by Vibrational Spectroscopy

    PubMed Central

    Choo-Smith, L.-P.; Maquelin, K.; van Vreeswijk, T.; Bruining, H. A.; Puppels, G. J.; Thi, N. A. Ngo; Kirschner, C.; Naumann, D.; Ami, D.; Villa, A. M.; Orsini, F.; Doglia, S. M.; Lamfarraj, H.; Sockalingum, G. D.; Manfait, M.; Allouch, P.; Endtz, H. P.

    2001-01-01

    Fourier transform infrared and Raman microspectroscopy are currently being developed as new methods for the rapid identification of clinically relevant microorganisms. These methods involve measuring spectra from microcolonies which have been cultured for as little as 6 h, followed by the nonsubjective identification of microorganisms through the use of multivariate statistical analyses. To examine the biological heterogeneity of microorganism growth which is reflected in the spectra, measurements were acquired from various positions within (micro)colonies cultured for 6, 12, and 24 h. The studies reveal that there is little spectral variance in 6-h microcolonies. In contrast, the 12- and 24-h cultures exhibited a significant amount of heterogeneity. Hierarchical cluster analysis of the spectra from the various positions and depths reveals the presence of different layers in the colonies. Further analysis indicates that spectra acquired from the surface of the colonies exhibit higher levels of glycogen than do the deeper layers of the colony. Additionally, the spectra from the deeper layers present with higher RNA levels than the surface layers. Therefore, the 6-h colonies with their limited heterogeneity are more suitable for inclusion in a spectral database to be used for classification purposes. These results also demonstrate that vibrational spectroscopic techniques can be useful tools for studying the nature of colony development and biofilm formation. PMID:11282591

  17. Green tea polyphenols-induced apoptosis in human osteosarcoma SAOS-2 cells involves a caspase-dependent mechanism with downregulation of nuclear factor-kappaB.

    PubMed

    Hafeez, Bilal Bin; Ahmed, Salahuddin; Wang, Naizhen; Gupta, Sanjay; Zhang, Ailin; Haqqi, Tariq M

    2006-10-01

    Development of chemotherapy resistance and evasion from apoptosis in osteosarcoma, a primary malignant bone tumor, is often correlated with constitutive nuclear factor-kappaB (NF-kappaB) activation. Here, we investigated the ability of a polyphenolic fraction of green tea (GTP) that has been shown to have antitumor effects on various malignant cell lines to inhibit growth and induce apoptosis in human osteosarcoma SAOS-2 cells. Treatment of SAOS-2 cells with GTP (20-60 microg/ml) resulted in reduced cell proliferation and induction of apoptosis, which correlated with decreased nuclear DNA binding of NF-kappaB/p65 and lowering of NF-kappaB/p65 and p50 levels in the cytoplasm and nucleus. GTP treatment of cells reduced IkappaB-alpha phosphorylation but had no effect on its protein expression. Furthermore, GTP treatment resulted in the inhibition of IKK-alpha and IKK-beta, the upstream kinases that phosphorylate IkappaB-alpha. The increase in apoptosis in SAOS-2 cells was accompanied with decrease in the protein expression of Bcl-2 and concomitant increase in the levels of Bax. GTP treatment of SAOS-2 cells also resulted in significant activation of caspases as was evident by increased levels of cleaved caspase-3 and caspase-8 in these cells. Treatment of SAOS-2 cells with a specific caspase-3 inhibitor Ac-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO) and general caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (OMe)-fluoromethyl ketone (Z-VAD-FMK) rescued SAOS-2 cells from GTP-induced apoptosis. Taken together, these results indicate that GTP is a candidate therapeutic for osteosarcoma that mediates its antiproliferative and apoptotic effects via activation of caspases and inhibition of NF-kappaB.

  18. Green tea polyphenols-induced apoptosis in human osteosarcoma SAOS-2 cells involves a caspase-dependent mechanism with downregulation of nuclear factor-{kappa}B

    SciTech Connect

    Bin Hafeez, Bilal; Ahmed, Salahuddin; Wang, Naizhen; Gupta, Sanjay; Zhang Ailin; Haqqi, Tariq M. . E-mail: txh5@case.edu

    2006-10-01

    Development of chemotherapy resistance and evasion from apoptosis in osteosarcoma, a primary malignant bone tumor, is often correlated with constitutive nuclear factor-{kappa}B (NF-{kappa}B) activation. Here, we investigated the ability of a polyphenolic fraction of green tea (GTP) that has been shown to have antitumor effects on various malignant cell lines to inhibit growth and induce apoptosis in human osteosarcoma SAOS-2 cells. Treatment of SAOS-2 cells with GTP (20-60 {mu}g/ml) resulted in reduced cell proliferation and induction of apoptosis, which correlated with decreased nuclear DNA binding of NF-{kappa}B/p65 and lowering of NF-{kappa}B/p65 and p50 levels in the cytoplasm and nucleus. GTP treatment of cells reduced I{kappa}B-{alpha} phosphorylation but had no effect on its protein expression. Furthermore, GTP treatment resulted in the inhibition of IKK-{alpha} and IKK-{beta}, the upstream kinases that phosphorylate I{kappa}B-{alpha}. The increase in apoptosis in SAOS-2 cells was accompanied with decrease in the protein expression of Bcl-2 and concomitant increase in the levels of Bax. GTP treatment of SAOS-2 cells also resulted in significant activation of caspases as was evident by increased levels of cleaved caspase-3 and caspase-8 in these cells. Treatment of SAOS-2 cells with a specific caspase-3 inhibitor Ac-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO) and general caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (OMe)-fluoromethyl ketone (Z-VAD-FMK) rescued SAOS-2 cells from GTP-induced apoptosis. Taken together, these results indicate that GTP is a candidate therapeutic for osteosarcoma that mediates its antiproliferative and apoptotic effects via activation of caspases and inhibition of NF-{kappa}B.

  19. RECQ DNA helicases and osteosarcoma.

    PubMed

    Lu, Linchao; Jin, Weidong; Liu, Hao; Wang, Lisa L

    2014-01-01

    The RECQ family of DNA helicases is a conserved group of enzymes that are important for maintaining genomic integrity. In humans, there are five RECQ helicase genes, and mutations in three of them-BLM, WRN, and RECQL4-are associated with the genetic disorders Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome (RTS), respectively. Importantly all three diseases are cancer predisposition syndromes. Patients with RTS are highly and uniquely susceptible to developing osteosarcoma; thus, RTS provides a good model to study the pathogenesis of osteosarcoma. The "tumor suppressor" role of RECQL4 and the other RECQ helicases is an area of active investigation. This chapter reviews what is currently known about the cellular functions of RECQL4 and how these may relate to tumorigenesis, as well as ongoing efforts to understand RECQL4's functions in vivo using animal models. Understanding the RECQ pathways may provide insight into avenues for novel cancer therapies in the future.

  20. Effects of the overexpression of IFITM5 and IFITM5 c.-14C>T mutation on human osteosarcoma cells

    PubMed Central

    Liu, Bao-Yan; Lu, Yan-Qin; Han, Feng; Wang, Yong; Mo, Xin-Kai; Han, Jin-Xiang

    2017-01-01

    The present study aimed to investigate the effects of overexpression of interferon-induced transmembrane protein 5 (IFITM5) and IFITM5 c.-14C>T mutation on osteogenic differentiation, and the proliferation, migration and invasion of SaOS2 cells. SaOS2 cells were transfected with plasmids containing wild type IFITM5 (W) or IFITM5 containing the c.-14C>T mutation (MU). The mRNA and protein expression levels of IFITM5 in SaOS2 cells were respectively detected by reverse transcription quantitative polymerase chain reaction and western blotting. The proliferative, migratory and invasive ability of SaOS2 cells was also examined. In addition, the expression levels of osteogenic differentiation markers alkaline phosphatase (ALP), osteocalcin (OCN) and runt-related transcription factor 2 (Runx2) were detected. Mineralized nodules were detected by Alizarin Red S staining and were quantified by measuring absorbance. The mRNA and protein expression levels of IFITM5 were high in cells transfected with IFITM5 and IFITM5 c.-14C>T mutation, and were higher in cells transfected with IFITM5 c.-14C>T mutation. There was no difference in proliferation between the control group (C) and the W and MU groups. However, overexpression of IFITM5 and IFITM5 c.-14C>T mutation increased apoptotic rate, decreased invasive capacity, increased the expression of ALP, OCN and Runx2, and increased the number of mineralized nodules following osteogenic induction. In addition, compared with C and W groups, cells transfected with IFITM5 c.-14C>T mutation exhibited decreased migratory ability. In conclusion, overexpression of IFITM5 and IFITM5 c.-14C>T mutation promotes tumor cell apoptosis, inhibits tumor invasion and promotes osteogenic differentiation. These findings may provide a theoretical basis for the development of a novel treatment method that targets IFITM5, and provides a platform for the potential treatment of human osteosarcoma. PMID:28123530

  1. Determinants of times of appearance of radium-induced osteosarcomas in humans: age at appearance and dose

    SciTech Connect

    Stebbings, J.H.; Lucas, H.F.

    1983-01-01

    Determinants of time-until-tumor for osteosarcoma in US radium cases have been reevaluated. Classically, a minimum induction period (latency period) of about five years has been recognized, but not an expression period. Lack of long induction periods at igh doses has been ascribed to scarcity of subjects at risk. Recent experiments have suggested that induction periods are directly lengthened as doses decrease. Reanalyses of time-until-tumor data for 57 measured female osteosarcoma cases exposed to /sup 226/Ra and /or /sup 228/Ra support new interpretations: time-until-tumor for osteosarcomas is best described by age at tumor appearance, not by induction period; age at diagnosis increases as estimated initial radium intake decreases; and, there exists an expression period which can be truncated at the low end by the minimum induction period (or by age at exposure). The downturn in sarcoma incidence at very high doses is describable as the truncation of the expression period on its early side by the minimum induction period. These results depend strongly on the assumption of homogeneity of time-until-tumor processes in diial workers and in iatrogenic radium exposure cases.

  2. The expression of P-glycoprotein is causally related to a less aggressive phenotype in human osteosarcoma cells.

    PubMed

    Scotlandi, K; Manara, M C; Serra, M; Benini, S; Maurici, D; Caputo, A; De Giovanni, C; Lollini, P L; Nanni, P; Picci, P; Campanacci, M; Baldini, N

    1999-01-21

    The relationship between P-glycoprotein expression and malignancy is controversial. We have recently found that, in osteosarcoma, multidrug resistance (MDR) is associated with a less aggressive behavior, both in vitro and in clinical settings. In this study, we evaluated whether P-glycoprotein overexpression has a cause-effect relationship with the reduced metastatic potential of MDR cells, or rather reflects a more complex phenotype. MDR1 gene-transfected osteosarcoma cell clones, showing different levels of P-glycoprotein expression, were analysed for their in vitro characteristics and their tumorigenic and metastatic ability in athymic mice. Apart from the different levels of P-glycoprotein, no significant change in the expression of surface antigens or in the differentiative features were observed in the MDR1 gene transfectants compared to the parental cell lines or control clones, obtained by transfection with neo gene alone. In contrast to controls, however, MDR1 transfectants showed a significantly lower ability to grow in semi-solid medium and were completely unable to grow and give lung metastases in athymic mice. These findings indicate that P-glycoprotein overexpression is causally associated with a low malignant potential of osteosarcoma cells, and open new insights on the role and functions of P-glycoprotein activity.

  3. Cell cycle arrest and apoptosis induced by aspidin PB through the p53/p21 and mitochondria-dependent pathways in human osteosarcoma cells.

    PubMed

    Wan, Daqian; Jiang, Chaoyin; Hua, Xin; Wang, Ting; Chai, Yimin

    2015-10-01

    Aspidin PB is a natural product extracted from Dryopteris fragrans (L.) Schott, which has been characterized for its various biological activities. We reported that aspidin PB induced cell cycle arrest and apoptosis through the p53/p21 and mitochondria-dependent pathways in human osteosarcoma cells. Aspidin PB inhibited the proliferation of Saos-2, U2OS, and HOS cells in a dose-dependent and time-dependent manner. Aspidin PB induced changes in the cell cycle regulators (cyclin A, pRb, CDK2, p53, and p21), which caused cell cycle arrest in the S phase. We also explored the role of siRNA targeted to p53; it led to a dose-dependent attenuation of aspidin PB-induced apoptosis signaling. Moreover, after treatment with aspidin PB, the p21-silenced cells decreased significantly at the S phase. Aspidin PB increased the percentage of cells with mitochondrial membrane potential disruption. Western blot analysis showed that aspidin PB inhibited Bcl-2 expression and induced Bax expression to disintegrate the outer mitochondrial membrane and caused cytochrome C release. Mitochondrial cytochrome C release was associated with the activation of caspase-9 and caspase-3 cascades. Furthermore, the double-stranded DNA breaks and reactive oxygen species signaling were both involved in aspidin PB-induced DNA damage. In addition, aspidin PB inhibited tumor growth significantly in U2OS xenografts. Above all, we conclude that aspidin PB represents a valuable natural source and may potentially be applicable in osteosarcoma therapy.

  4. Nuclear localized protein-1 (Nulp1) increases cell death of human osteosarcoma cells and binds the X-linked inhibitor of apoptosis protein

    SciTech Connect

    Steen, Hakan; Lindholm, Dan

    2008-02-08

    Nuclear localized protein-1 (Nulp1) is a recently identified gene expressed in mouse and human tissues particularly during embryonic development. Nulp1 belongs to the family of basic helix-loop-helix (bHLH) proteins that are important in development. The precise function of Nulp1 in cells is however not known. We observed that overexpression of Nulp1 induces a large increase in cell death of human osteosarcoma Saos2 cells with DNA fragmentation. In mouse N2A neuroblastoma cells Nulp1 affected cell proliferation and sensitized cells towards death induced by staurosporine. Staining using a novel antibody localized Nulp1 mainly to the cell nucleus and to some extent to the cytoplasm. Nulp1 binds the X-linked inhibitor of apoptosis protein (XIAP) and this interaction was increased during cell death. These results indicate that Nulp1 plays a role in cell death control and may influence tumor growth.

  5. Human mesenchymal stem cells promote growth of osteosarcoma: involvement of interleukin-6 in the interaction between human mesenchymal stem cells and Saos-2.

    PubMed

    Bian, Zhen-Yu; Fan, Qi-Ming; Li, Gang; Xu, Wen-Ting; Tang, Ting-Ting

    2010-12-01

    Our previous study showed that exogenous human mesenchymal stem cells (hMSCs) targeted established osteosarcoma and promoted its growth and pulmonary metastasis in vivo. As a follow-up, the present study aimed to investigate how hMSCs would interact with Saos-2 through autocrine/paracrine communication. The results showed that co-injection of hMSCs with Saos-2 into the proximal tibia of nude mice could promote tumor growth and progression. In vitro, the proliferation of Saos-2 and hMSCs was promoted by each other's conditioned medium, in which interleukin-6 (IL-6) played an important role. Osteogenic differentiation of hMSCs could be inhibited by conditioned medium of Saos-2, in which IL-6 was also involved. Furthermore, decreased IL-6 secretion by hMSCs during its osteogenesis and increased IL-6 secretion in response to conditioned medium of Saos-2 were observed. Based on these data, we suggest that there was a positive feedback loop of IL-6 in the interaction between hMSCs and Saos-2.

  6. PSMC2 is up-regulated in osteosarcoma and regulates osteosarcoma cell proliferation, apoptosis and migration

    PubMed Central

    Song, Mingzhi; Wang, Yong

    2017-01-01

    Proteasome 26S subunit ATPase 2 (PSMC2) is a recently identified gene potentially associated with certain human carcinogenesis. However, the expressional correlation and functional importance of PSMC2 in osteosarcoma is still unclear. Current study was focused on elucidating the significance of PSMC2 on malignant behaviors in osteosarcoma including proliferation, apoptosis, colony formation, migration as well as invasion. The high protein levels of PSMC2 in osteosarcoma samples were identified by tissue microarrays analysis. Besides, its expression in the levels of mRNA and protein was also detected in four different osteosarcoma cell lines by real-time PCR and western blotting separately. Silencing PSMC2 by RNA interference in osteosarcoma cell lines (SaoS-2 and MG-63) would significantly suppress cell proliferation, enhance apoptosis, accelerate G2/M phase and/or S phase arrest, and decrease single cell colony formation. Similarly, pharmaceutical inhibition of proteasome with MG132 would mimic the PSMC2 depletion induced defects in cell cycle arrest, apoptosis and colonies formation. Silencing of PSMC2 was able to inhibit osteosarcoma cell motility, invasion as well as tumorigenicity in nude mice. Moreover, the gene microarray indicated knockdown of PSMC2 notably changed a number of genes, especially some cancer related genes including ITGA6, FN1, CCND1, CCNE2 and TGFβR2, and whose expression changes were further confirmed by western blotting. Our data suggested that PSMC2 may work as an oncogene for osteosarcoma and that inhibition of PSMC2 may be a therapeutic strategy for osteosarcoma treatment. PMID:27888613

  7. 3D-printed guiding templates for improved osteosarcoma resection

    PubMed Central

    Ma, Limin; Zhou, Ye; Zhu, Ye; Lin, Zefeng; Wang, Yingjun; Zhang, Yu; Xia, Hong; Mao, Chuanbin

    2016-01-01

    Osteosarcoma resection is challenging due to the variable location of tumors and their proximity with surrounding tissues. It also carries a high risk of postoperative complications. To overcome the challenge in precise osteosarcoma resection, computer-aided design (CAD) was used to design patient-specific guiding templates for osteosarcoma resection on the basis of the computer tomography (CT) scan and magnetic resonance imaging (MRI) of the osteosarcoma of human patients. Then 3D printing technique was used to fabricate the guiding templates. The guiding templates were used to guide the osteosarcoma surgery, leading to more precise resection of the tumorous bone and the implantation of the bone implants, less blood loss, shorter operation time and reduced radiation exposure during the operation. Follow-up studies show that the patients recovered well to reach a mean Musculoskeletal Tumor Society score of 27.125. PMID:26997197

  8. Expression and prognostic relevance of PRAME in primary osteosarcoma.

    PubMed

    Tan, Pingxian; Zou, Changye; Yong, Bicheng; Han, Ju; Zhang, Longjuan; Su, Qiao; Yin, Junqiang; Wang, Jin; Huang, Gang; Peng, Tingsheng; Shen, Jingnian

    2012-03-23

    The preferentially expressed antigen of melanoma (PRAME), a cancer-testis antigen with unknown function, is expressed in many human malignancies and is considered an attractive potential target for tumor immunotherapy. However, studies of its expression and function in osteosarcoma have rarely been reported. In this study, we found that PRAME is expressed in five osteosarcoma cell lines and in more than 70% of osteosarcoma patient specimens. In addition, an immunohistochemical analysis showed that high PRAME expression was associated with poor prognosis and lung metastasis. Furthermore, PRAME siRNA knockdown significantly suppressed the proliferation, colony formation, and G1 cell cycle arrest in U-2OS cells. Our results suggest that PRAME plays an important role in cell proliferation and disease progression in osteosarcoma. However, the detail mechanisms of PRAME function in osteosarcoma require further investigation.

  9. 3D-printed guiding templates for improved osteosarcoma resection.

    PubMed

    Ma, Limin; Zhou, Ye; Zhu, Ye; Lin, Zefeng; Wang, Yingjun; Zhang, Yu; Xia, Hong; Mao, Chuanbin

    2016-03-21

    Osteosarcoma resection is challenging due to the variable location of tumors and their proximity with surrounding tissues. It also carries a high risk of postoperative complications. To overcome the challenge in precise osteosarcoma resection, computer-aided design (CAD) was used to design patient-specific guiding templates for osteosarcoma resection on the basis of the computer tomography (CT) scan and magnetic resonance imaging (MRI) of the osteosarcoma of human patients. Then 3D printing technique was used to fabricate the guiding templates. The guiding templates were used to guide the osteosarcoma surgery, leading to more precise resection of the tumorous bone and the implantation of the bone implants, less blood loss, shorter operation time and reduced radiation exposure during the operation. Follow-up studies show that the patients recovered well to reach a mean Musculoskeletal Tumor Society score of 27.125.

  10. 3D-printed guiding templates for improved osteosarcoma resection

    NASA Astrophysics Data System (ADS)

    Ma, Limin; Zhou, Ye; Zhu, Ye; Lin, Zefeng; Wang, Yingjun; Zhang, Yu; Xia, Hong; Mao, Chuanbin

    2016-03-01

    Osteosarcoma resection is challenging due to the variable location of tumors and their proximity with surrounding tissues. It also carries a high risk of postoperative complications. To overcome the challenge in precise osteosarcoma resection, computer-aided design (CAD) was used to design patient-specific guiding templates for osteosarcoma resection on the basis of the computer tomography (CT) scan and magnetic resonance imaging (MRI) of the osteosarcoma of human patients. Then 3D printing technique was used to fabricate the guiding templates. The guiding templates were used to guide the osteosarcoma surgery, leading to more precise resection of the tumorous bone and the implantation of the bone implants, less blood loss, shorter operation time and reduced radiation exposure during the operation. Follow-up studies show that the patients recovered well to reach a mean Musculoskeletal Tumor Society score of 27.125.

  11. Expression and prognostic relevance of PRAME in primary osteosarcoma

    SciTech Connect

    Tan, Pingxian; Zou, Changye; Yong, Bicheng; Han, Ju; Zhang, Longjuan; Su, Qiao; Yin, Junqiang; Wang, Jin; Huang, Gang; Peng, Tingsheng; Shen, Jingnian

    2012-03-23

    Graphical abstract: High PRAME expression was associated with osteosarcoma patients' poor prognosis and lung metastasis. Highlights: Black-Right-Pointing-Pointer We analyzed and verified the role of PRAME in primary osteosarcoma. Black-Right-Pointing-Pointer High PRAME expression in osteosarcoma correlated to poor prognosis and lung metastasis. Black-Right-Pointing-Pointer PRAME siRNA knockdown significantly suppressed the proliferation, colony formation, and G1 cell cycle arrest in U-2OS cells. -- Abstract: The preferentially expressed antigen of melanoma (PRAME), a cancer-testis antigen with unknown function, is expressed in many human malignancies and is considered an attractive potential target for tumor immunotherapy. However, studies of its expression and function in osteosarcoma have rarely been reported. In this study, we found that PRAME is expressed in five osteosarcoma cell lines and in more than 70% of osteosarcoma patient specimens. In addition, an immunohistochemical analysis showed that high PRAME expression was associated with poor prognosis and lung metastasis. Furthermore, PRAME siRNA knockdown significantly suppressed the proliferation, colony formation, and G1 cell cycle arrest in U-2OS cells. Our results suggest that PRAME plays an important role in cell proliferation and disease progression in osteosarcoma. However, the detail mechanisms of PRAME function in osteosarcoma require further investigation.

  12. Preclinical validation of Aurora kinases-targeting drugs in osteosarcoma

    PubMed Central

    Tavanti, E; Sero, V; Vella, S; Fanelli, M; Michelacci, F; Landuzzi, L; Magagnoli, G; Versteeg, R; Picci, P; Hattinger, C M; Serra, M

    2013-01-01

    Background: Aurora kinases are key regulators of cell cycle and represent new promising therapeutic targets in several human tumours. Methods: Biological relevance of Aurora kinase-A and -B was assessed on osteosarcoma clinical samples and by silencing these genes with specific siRNA in three human osteosarcoma cell lines. In vitro efficacy of two Aurora kinases-targeting drugs (VX-680 and ZM447439) was evaluated on a panel of four drug-sensitive and six drug-resistant human osteosarcoma cell lines. Results: Human osteosarcoma cell lines proved to be highly sensitive to both drugs. A decreased drug sensitivity was observed in doxorubicin-resistant cell lines, most probably related to ABCB1/MDR1 overexpression. Both drugs variably induced hyperploidy and apoptosis in the majority of cell lines. VX-680 also reduced in vitro cell motility and soft-agar cloning efficiency. Drug association experiments showed that VX-680 positively interacts with all conventional drugs used in osteosarcoma chemotherapy, overcoming the cross-resistance observed in the single-drug treatments. Conclusion: Aurora kinase-A and -B represent new candidate therapeutic targets for osteosarcoma. In vitro analysis of the Aurora kinases inhibitors VX-680 and ZM447439 indicated in VX-680 a new promising drug of potential clinical usefulness in association with conventional osteosarcoma chemotherapeutic agents. PMID:24129234

  13. High lung-metastatic variant of human osteosarcoma cells, selected by passage of lung metastasis in nude mice, is associated with increased expression of α(v)β(3) integrin.

    PubMed

    Tome, Yasunori; Kimura, Hiroaki; Maehara, Hiroki; Sugimoto, Naotoshi; Bouvet, Michael; Tsuchiya, Hiroyuki; Kanaya, Fuminori; Hoffman, Robert M

    2013-09-01

    Altered expression of αvβ3 integrin is associated with tumor progression and metastasis in several types of cancer, including metastatic osteosarcoma. In this study, we demonstrate that in vivo passaging of lung metastasis in nude mice can generate an aggressive variant of human osteosarcoma cells. Experimental metastases were established by injecting 143B human osteosarcoma cells, expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm, in the tail vein of nude mice. Lung metastases were harvested under fluorescence microscopy from nude mice to establish cell lines which were then injected via the tail vein of additional nude mice. This procedure was repeated for four passages in order to isolate highly metastatic variant sublines. When the parental and metastatic variants were transplanted orthotopically into the tibia of nude mice, the 143B-LM4 variant had the highest metastatic rate, approximately 18-fold higher than the parent (p<0.01). αvβ3 integrin expression was increased approximately 5.6-fold in 143B-LM4 compared to parental cells (p<0.05). Thus, serial passage of lung metastases created a highly metastatic variant of human osteosarcoma cells which had increased expression of αvβ3 integrin, suggesting that αvβ3 integrin plays an essential role in osteosarcoma metastasis. With this highly metastatic variant overexpressing αvβ3 integrin, it will now be possible to further investigate the mechanism by which αvβ3 integrin facilitates metastasis.

  14. RASSF4 Overexpression Inhibits the Proliferation, Invasion, EMT, and Wnt Signaling Pathway in Osteosarcoma Cells.

    PubMed

    Zhang, Minglei; Wang, Dapeng; Zhu, Tongtong; Yin, Ruofeng

    2017-01-02

    RASSF4, a member of the RASSF family, is broadly expressed in normal tissues but often inactivated in human cancers. Despite various studies on RASSF4, its role in osteosarcoma remains unclear. Therefore, in this study, we investigated the effects of RASSF4 expression on osteosarcoma cells and explored the underlying mechanism. The results of our study showed that RASSF4 was lowly expressed in osteosarcoma tissues and cells. RASSF4 overexpression significantly inhibited proliferation, migration, and invasion as well as the EMT process in osteosarcoma cells. Meanwhile, we found that RASSF4 overexpression markedly decreased the protein expression of β-catenin, cyclin D1, and c-Myc in osteosarcoma cells. In conclusion, our findings showed that RASSF4 overexpression inhibits proliferation, invasion, EMT, and Wnt signaling pathway in osteosarcoma cells. Thus, RASSF4 may be considered a novel target for osteosarcoma treatment.

  15. Bufalin Induces Apoptosis of Human Osteosarcoma U-2 OS Cells through Endoplasmic Reticulum Stress, Caspase- and Mitochondria-Dependent Signaling Pathways.

    PubMed

    Lee, Ching-Hsiao; Shih, Yung-Luen; Lee, Mei-Hui; Au, Man-Kuan; Chen, Yung-Liang; Lu, Hsu-Feng; Chung, Jing-Gung

    2017-03-10

    Bone cancer is one of the cancer-related diseases, and there are increased numbers of patients with bone cancer worldwide. Therefore the efficacy of treatment of bone cancer is considered extremely vital. Bufalin has been showed to have biological activities including anticancer activities in vitro and in vivo. However, the exact associated mechanisms for bufalin induced apoptosis in human bone cancer cells are still unclear. In the present study, we investigated the effect of bufalin on the cytotoxic effects in U-2 OS human osteosarcoma cells. For examining apoptotic cell deaths, we used flow cytometry assay, Annexin V/PI double staining, and TUNNEL assay. Reactive oxygen species (ROS), Ca(2+), mitochondrial membrane potential (ΔΨm), and caspase-8, -9 and -3 activities were measured by flow cytometry assay. Furthermore, western blotting and a confocal laser microscopy examination were used for measuring the alterations of apoptotic associated protein expression and translocation, respectively. The results indicated that bufalin induced cell morphological changes, decreased the viable cell number, induced apoptotic cell death, and increased the apoptotic cell number, and affected apoptotic associated protein expression in U-2 OS cells. Bufalin increased apoptotic proteins such as Bak, and decreased anti-apoptotic proteins such as Bcl-2 and Bcl-x in U-2 OS cells. Furthermore, bufalin increased the protein levels of cytochrome c (Cyto c), AIF (Apoptosis inducing factor) and Endo G (Endonuclease G) in cytoplasm that were also confirmed by confocal microscopy examination. Based on those findings, bufalin induced apoptotic cell death in U-2 OS cells may be via endoplasmic reticulum (ER) stress, caspase-, and mitochondria-dependent pathways; thus, we may suggest that bufalin could be used as an anti-cancer agent for the treatment of osteosarcoma in the future, and further in vivo studies are needed.

  16. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells.

    PubMed

    Chen, Hui-Jye; Lin, Chung-Ming; Lee, Chao-Ying; Shih, Nai-Chen; Peng, Shu-Fen; Tsuzuki, Minoru; Amagaya, Sakae; Huang, Wen-Wen; Yang, Jai-Sing

    2013-08-01

    Kaempferol is a natural flavonoid that possesses anti-proliferative and apoptosis-inducing activities in several cancer cell lines. In the present study, we investigated the anti-metastatic activity of kaempferol and its molecular mechanism(s) of action in human osteosarcoma cells. Kaempferol displayed inhibitory effects on the invasion and adhesion of U-2 osteosarcoma (OS) cells in a concentration-dependent manner by Matrigel Transwell assay and cell adhesion assay. Kaempferol also inhibited the migration of U-2 OS cells in a concentration-dependent manner at different treatment time points by wound-healing assay. Additional experiments showed that kaempferol treatment reduced the enzymatic activities and protein levels of matrix metalloproteinase (MMP)-2, MMP-9 and urokinase plasminogen activator (uPA) by gelatin and casein-plasminogen zymography assays and western blot analyses. Kaempferol also downregulated the mRNA levels of MMP-2 and MMP-9 by quantitative PCR analyses. Furthermore, kaempferol was able to reduce the protein phosphorylation of ERK, p38 and JNK by western blotting. By electrophoretic mobility-shift assay (EMSA), we demonstrated that kaempferol decreased the DNA binding activity of AP-1, an action likely to result in the reduced expression of MMP-2, MMP-9 and uPA. Collectively, our data showed that kaempferol attenuated the MAPK signaling pathways including ERK, JNK and p38 and resulted in the decreased DNA binding ability of AP-1, and hence, the downregulation in the expression and enzymatic activities of MMP-2, MMP-9 and uPA, contributing to the inhibition of metastasis of U-2 OS cells. Our results suggest a potential role of kaempferol in the therapy of tumor metastasis of OS.

  17. Expression of matrix metalloproteinases-2, -8, -13, -26, and tissue inhibitors of metalloproteinase-1 in human osteosarcoma.

    PubMed

    Korpi, Jarkko T; Hagström, Jaana; Lehtonen, Niko; Parkkinen, Jyrki; Sorsa, Timo; Salo, Tuula; Laitinen, Minna

    2011-03-01

    Osteosarcoma (OS) is among most common malignant tumour of bone. Matrix metalloproteinases (MMPs) are predominantly associated with poor prognosis of several cancers, although some of them, like MMP-8, seem to have a protective role in some cancers. We analyzed the distribution patterns of MMP-2, -8, -13, -26, and tissue inhibitor of matrix metalloproteinase (TIMP)-1 in 25 OS patients. MMP-2, -8, -13, -26 and TIMP-1 were mostly detected in sarcoma cells. Response to chemotherapy affected the amount of MMP-2, -8, and -13 in resection sections when compared to biopsies: patients with excellent or good response had less positivity to MMP-2 in chemotherapy samples than those with moderate or poor response. We conclude that MMP-2, -8, -13, -26, and TIMP-1 are expressed in OS tissue, and all, except protective MMP-8, were also found in metastases indicating that MMPs and TIMP-1 can participate in the OS progression.

  18. The plant alkaloid voacamine induces apoptosis-independent autophagic cell death on both sensitive and multidrug resistant human osteosarcoma cells.

    PubMed

    Meschini, Stefania; Condello, Maria; Calcabrini, Annarica; Marra, Manuela; Formisano, Giuseppe; Lista, Pasquale; De Milito, Angelo; Federici, Elena; Arancia, Giuseppe

    2008-11-01

    In our previous studies, the bisindolic alkaloid voacamine (VOA), isolated from the plant Peschiera fuchsiaefolia, proved to exert a chemosensitizing effect on cultured multidrug resistant (MDR) osteosarcoma cells exposed to doxorubicin (DOX). In particular, VOA was capable of inhibiting P-glycoprotein action in a competitive way, thus explaining the enhancement of the cytotoxic effect induced by DOX on MDR cells. Afterwards, preliminary observations suggested that such an enhancement did not involve the apoptotic process but was due instead to the induction of autophagic cell death. The results of the present investigation demonstrate that the plant alkaloid VOA is an autophagy inducer able to exert apoptosis-independent cytotoxic effect on both wild-type and MDR tumor cells. In fact, under treatment condition causing about 50 percent of cell death, no evidence of apoptosis could be revealed by microscopical observations, Annexin V-FITC labeling and analysis of PARP cleavage, whereas the same cells underwent apoptosis when treated with apoptosis inducers, such as doxorubicin and staurosporine. Conversely, VOA-induced autophagy was clearly evidentiated by electron microscopy observations, monodansylcadaverine staining, LC3 expression, and conversion. These results were confirmed by the analysis of the modulating effects of the pretreatment with autophagy inhibitors prior to VOA administration. In addition, transfection of osteosarcoma cells with siRNA against ATG genes reduced VOA cytotoxicity. In conclusion, considering the very debated dual role of autophagy in cancer cells (protective or lethal, pro- or anti- apoptotic) our findings seem to demonstrate, at least in vitro, that a natural product able to induce autophagy can be effective against drug resistant tumors, either used alone or in association with conventional chemotherapeutics.

  19. HHLA2, a member of the B7 family, is expressed in human osteosarcoma and is associated with metastases and worse survival

    PubMed Central

    Koirala, Pratistha; Roth, Michael E.; Gill, Jonathan; Chinai, Jordan M.; Ewart, Michelle R.; Piperdi, Sajida; Geller, David S.; Hoang, Bang H.; Fatakhova, Yekaterina V.; Ghorpade, Maya; Zang, Xingxing; Gorlick, Richard

    2016-01-01

    Over the past four decades there have been minimal improvements in outcomes for patients with osteosarcoma. New targets and novel therapies are needed to improve outcomes for these patients. We sought to evaluate the prevalence and clinical significance of the newest immune checkpoint, HHLA2, in osteosarcoma. HHLA2 protein expression was evaluated in primary tumor specimens and metastatic disease using an osteosarcoma tumor microarray (TMA) (n = 62). The association of HHLA2 with the presence of tumor infiltrating lymphocytes (TILs) and five-year-event-free-survival were examined. HHLA2 was expressed in 68% of osteosarcoma tumors. HHLA2 was expressed in almost all metastatic disease specimens and was more prevalent than in primary specimens without known metastases (93% vs 53%, p = 0.02). TILs were present in 75% of all osteosarcoma specimens. Patients whose tumors were ≥25% or ≥50% HHLA2 positive had significantly worse five-year event-free-survival (33% vs 64%, p = 0.03 and 14% vs 59%, p = 0.02). Overall, we have shown that HHLA2 is expressed in the majority of osteosarcoma tumors and its expression is associated with metastatic disease and poorer survival. Along with previously reported findings that HHLA2 is a T cell co-inhibitor, these results suggest that HHLA2 may be a novel immunosuppressive mechanism within the osteosarcoma tumor microenvironment. PMID:27531281

  20. Childhood Cancer: Osteosarcoma

    MedlinePlus

    ... Lessons? Visit KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding Your 1- to 3-Month-Old Feeding Your 4- to 7-Month-Old Feeding Your 8- to 12-Month-Old Feeding Your 1- to 2-Year-Old ... > For Parents > Osteosarcoma A A A What's in this article? ...

  1. Osteosarcoma of the larynx

    PubMed Central

    Każmierczak, Wojciech; Szylberg, Łukasz; Marszałek, Andrzej

    2015-01-01

    Malignant neoplasms of the larynx are divided into epithelial and non-epithelial. Non-epithelial neoplasms include, among others, mesenchymal chondrosarcomas and osteosarcomas. Few cases of laryngeal osteosarcomas described in the literature were usually treated by surgery without the need to use adjuvant radio- or chemotherapy. Few authors propose the initial application of radiotherapy or high-dose chemotherapy. Our study presents a very rare case of a woman treated due to laryngeal osteosarcoma. We have also presented diagnostic difficulties preceding a decision to perform radical surgery. The patient had been eligible for radical surgical treatment, even though there were no features of malignancy in a histopathological examination of the biopsy material. Complete laryngectomy was carried out without the surgery of the cervical lymphatic system. Laryngeal osteosarcoma was diagnosed based on the postoperative histopathological examination using vimentin and Ki67. The patient remains under the care of the Otolaryngology and Laryngological Oncology Department and Oncology Centre in Bydgoszcz. There were no reports on local recurrence or distant metastases during regular check-ups. PMID:26557767

  2. Targeting programmed cell death ligand 1 in osteosarcoma: an auto-commentary on therapeutic potential.

    PubMed

    Shen, Jacson K; Cote, Gregory M; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    Programmed cell death ligand 1 (PDL1) expression was recently shown to correlate with tumor-infiltrating lymphocytes (TILs) in a subset of osteosarcoma patients. Among clinical factors evaluated across human osteosarcoma samples, a pulmonary origin of metastases correlated with high PDL1 expression and prominent TILs. Considering that multiple agents targeting PD-1/PDL1 are under development, targeting this immune checkpoint may be a novel immunotherapeutic route for osteosarcoma in future clinical trials.

  3. Organization of the amplified type I interferon gene cluster and associated chromosome regions in the interphase nucleus of human osteosarcoma cells.

    PubMed

    Zeitz, Michael J; Marella, Narasimharao V; Malyavantham, Kishore S; Goetze, Sandra; Bode, Juergen; Raska, Ivan; Berezney, Ronald

    2009-01-01

    The organization of the amplified type I interferon (IFN) gene cluster and surrounding chromosomal regions was studied in the interphase cell nucleus of the human osteosarcoma cell line MG63. Rather than being arranged in a linear ladder-like array as in mitotic chromosomes, a cluster of approximately 15 foci was detected that was preferentially associated along the periphery of both the cell nucleus and a chromosome territory containing components of chromosomes 4, 8, and 9. Interspersed within the IFN gene foci were corresponding foci derived from amplified centromere 4 and 9 sequences. Other copies of chromosomes 4 and 8 were frequently detected in pairs or higher-order arrays lacking discrete borders between the chromosomes. In contrast, while chromosomes 4 and 8 in normal WI38 human fibroblast and osteoblast cells were occasionally found to associate closely, discrete boundaries were always detected between the two. DNA replication timing of the IFN gene cluster in early- to mid-S phase of WI38 cells was conserved in the amplified IFN gene cluster of MG63. Quantitative RT-PCR demonstrated a approximately 3-fold increase in IFN beta transcripts in MG63 compared with WI38 and RNA/DNA FISH experiments revealed 1-5 foci of IFN beta transcripts per cell with only approximately 5% of the cells showing foci within the highly amplified IFN gene cluster.

  4. Preliminary screening of differentially expressed genes involved in methyl-CpG-binding protein 2 gene-mediated proliferation in human osteosarcoma cells.

    PubMed

    Meng, Gang; Li, Yi; Lv, YangFan; Dai, Huanzi; Zhang, Xi; Guo, Qiao-Nan

    2015-04-01

    Methyl-CpG-binding protein 2 (MeCP2) is essential in human brain development and has been linked to several cancer types and neuro-developmental disorders. This study aims to screen the MeCP2 related differentially expressed genes and discover the therapeutic targets for osteosarcoma. CCK8 assay was used to detect the proliferation and SaOS2 and U2OS cells. Apoptosis of cells was detected by flow cytometry analysis that monitored Annexin V-APC/7-DD binding and 7-ADD uptake simultaneously. Denaturing formaldehyde agarose gel electrophoresis was employed to examine the quality of total RNA 18S and 28S units. Gene chip technique was utilized to discover the differentially expressed genes correlated with MeCP2 gene. Differential gene screening criteria were used to screen the changed genes. The gene up-regulation or down-regulation more than 1.5 times was regarded as significant differential expression genes. The CCK8 results indicated that the cell proliferation of MeCP2 silencing cells (LV-MeCP2-RNAi) was significantly decreased compared to non-silenced cells (LV-MeCP2-RNAi-CN) (P < 0.05). MeCP2 silencing could also induce significant apoptosis compared to non-silenced cells (P < 0.05); 107 expression changed genes were screened from a total of 49,395 transcripts. Among the total 107 transcripts, 34 transcripts were up-regulated and 73 transcripts were down-regulated. There were five significant differentially expressed genes, including IGFBP4, HOXC8, LMO4, MDK, and CTGF, which correlated with the MeCP2 gene. The methylation frequency of CpG in IGFBP4 gene could achieve 55%. In conclusion, the differentially expressed IGFBP4, HOXC8, LMO4, MDK, and CTGF genes may be involved in MeCP2 gene-mediated proliferation and apoptosis in osteosarcoma cells.

  5. Slit-Robo GTPase-Activating Protein 2 as a metastasis suppressor in osteosarcoma

    PubMed Central

    Marko, Tracy A.; Shamsan, Ghaidan A.; Edwards, Elizabeth N.; Hazelton, Paige E.; Rathe, Susan K.; Cornax, Ingrid; Overn, Paula R.; Varshney, Jyotika; Diessner, Brandon J.; Moriarity, Branden S.; O’Sullivan, M. Gerard; Odde, David J.; Largaespada, David A.

    2016-01-01

    Osteosarcoma is the most common primary bone tumor, with metastatic disease responsible for most treatment failure and patient death. A forward genetic screen utilizing Sleeping Beauty mutagenesis in mice previously identified potential genetic drivers of osteosarcoma metastasis, including Slit-Robo GTPase-Activating Protein 2 (Srgap2). This study evaluates the potential role of SRGAP2 in metastases-associated properties of osteosarcoma cell lines through Srgap2 knockout via the CRISPR/Cas9 nuclease system and conditional overexpression in the murine osteosarcoma cell lines K12 and K7M2. Proliferation, migration, and anchorage independent growth were evaluated. RNA sequencing and immunohistochemistry of human osteosarcoma tissue samples were used to further evaluate the potential role of the Slit-Robo pathway in osteosarcoma. The effects of Srgap2 expression modulation in the murine OS cell lines support the hypothesis that SRGAP2 may have a role as a suppressor of metastases in osteosarcoma. Additionally, SRGAP2 and other genes in the Slit-Robo pathway have altered transcript levels in a subset of mouse and human osteosarcoma, and SRGAP2 protein expression is reduced or absent in a subset of primary tumor samples. SRGAP2 and other axon guidance proteins likely play a role in osteosarcoma metastasis, with loss of SRGAP2 potentially contributing to a more aggressive phenotype. PMID:27966608

  6. Slit-Robo GTPase-Activating Protein 2 as a metastasis suppressor in osteosarcoma.

    PubMed

    Marko, Tracy A; Shamsan, Ghaidan A; Edwards, Elizabeth N; Hazelton, Paige E; Rathe, Susan K; Cornax, Ingrid; Overn, Paula R; Varshney, Jyotika; Diessner, Brandon J; Moriarity, Branden S; O'Sullivan, M Gerard; Odde, David J; Largaespada, David A

    2016-12-14

    Osteosarcoma is the most common primary bone tumor, with metastatic disease responsible for most treatment failure and patient death. A forward genetic screen utilizing Sleeping Beauty mutagenesis in mice previously identified potential genetic drivers of osteosarcoma metastasis, including Slit-Robo GTPase-Activating Protein 2 (Srgap2). This study evaluates the potential role of SRGAP2 in metastases-associated properties of osteosarcoma cell lines through Srgap2 knockout via the CRISPR/Cas9 nuclease system and conditional overexpression in the murine osteosarcoma cell lines K12 and K7M2. Proliferation, migration, and anchorage independent growth were evaluated. RNA sequencing and immunohistochemistry of human osteosarcoma tissue samples were used to further evaluate the potential role of the Slit-Robo pathway in osteosarcoma. The effects of Srgap2 expression modulation in the murine OS cell lines support the hypothesis that SRGAP2 may have a role as a suppressor of metastases in osteosarcoma. Additionally, SRGAP2 and other genes in the Slit-Robo pathway have altered transcript levels in a subset of mouse and human osteosarcoma, and SRGAP2 protein expression is reduced or absent in a subset of primary tumor samples. SRGAP2 and other axon guidance proteins likely play a role in osteosarcoma metastasis, with loss of SRGAP2 potentially contributing to a more aggressive phenotype.

  7. Upregulation of NRF2 through autophagy/ERK 1/2 ameliorates ionizing radiation induced cell death of human osteosarcoma U-2 OS.

    PubMed

    Chen, Ni; Zhang, Rui; Konishi, Teruaki; Wang, Jun

    2017-01-01

    The antioxidative response mediated by transcription factor NRF2 is thought to be a pivotal cellular defense system against various extrinsic stresses. It has been reported that activation of the NRF2 pathway confers cells with resistance to ionizing radiation-induced damage. However, the underlying mechanism remains largely unknown. In the current research, it was found that α-particle radiation has the ability to stimulate NRF2 expression in human osteosarcoma U-2 OS cells. Knockdown of cellular NRF2 level by shRNA-mediated gene silencing decreased the survival rate, increased the micronucleus formation rate and apoptosis rate in irradiated cells. Consistently, knockdown of NRF2 resulted in decreased expression of p65 and Bcl-2, and increased expression of p53 and Bax. Besides, it was observed that increased expression of NRF2 was partially dependent on radiation induced phosphorylation of ERK 1/2. Further results showed that radiation promoted autophagy flux which leads to the enhanced phosphorylation of ERK 1/2, as evidenced by the resultls that knockdown of ATG5 (Autophagy protein 5) gene by shRNA suppressed both radiation induced ERK 1/2 phosphorylation and NRF2 upregulation. Based on these results, it is proposed that attenuation of NRF2 antioxidative pathway can sensitize U-2 OS cells to radiation, where NRF2 antioxidative response is regulated by autophagy mediated activation of ERK 1/2 kinases.

  8. Quantitative analyses of the effect of silk fibroin/nano-hydroxyapatite composites on osteogenic differentiation of MG-63 human osteosarcoma cells.

    PubMed

    Lin, Linxue; Hao, Runsong; Xiong, Wei; Zhong, Jian

    2015-05-01

    Silk fibroin (SF)/nano-hydroxyapatite (n-HA) composites are potential biomaterials for bone defect repair. Up to now, the biological evaluation studies of SF/n-HA composites have primarily concentrated on their biocompatibility at cell level such as cell viability and proliferation and tissue level such as material absorption and new bone formation. In this work, SF/n-HA composites were fabricated using a simplified coprecipitation methods and were deposited onto Ti alloy substrates. Then the cell adhesion ability of SF/n-HA composites was observed by SEM and cell proliferation ability of SF/n-HA composites was determined by MTT assay. The ALP activity, BGP contents, and Col I contents of MG-63 human osteosarcoma cells on SF/n-HA composites were quantitatively analyzed. HA nanocrystals were used as controls. These experiments showed that SF/n-HA composites had better cell adhesion and osteogenic differentiation abilities than n-HA materials. This work provides quantitative data to analyze the effect of SF/n-HA composites on cell osteogenic differentiation.

  9. Baicalin inhibits human osteosarcoma cells invasion, metastasis, and anoikis resistance by suppressing the transforming growth factor-β1-induced epithelial-to-mesenchymal transition.

    PubMed

    Wang, Yanmao; Wang, Huimin; Zhou, Runhua; Zhong, Wanrun; Lu, Shengdi; Ma, Zhongliang; Chai, Yimin

    2017-04-04

    The epithelial-mesenchymal transition (EMT) plays an important role in inducing cancer metastasis. Baicalin, a flavone derivative isolated from Scutellaria spp., shows a series of pharmacological and physiological activities. However, the possible role of baicalin in the EMT is unclear. In this study, we attempted to investigate the potential use of baicalin as an inhibitor of transforming growth factor-β1 (TGF-β1)-induced EMT in U2OS cells. We found that TGF-β1 induced the EMT to promote U2OS cells migration, invasion, and anoikis resistance. Western blotting showed that baicalin inhibited U2OS cells' invasion and migration, increased the expression of the epithelial phenotype marker E-cadherin, repressed the expression of the mesenchymal phenotype marker vimentin, as well as decreased the level of EMT-inducing transcription factors Snail1 and Slug during the initiation of TGF-β1-induced EMT. Baicalin also inhibited the TGF-β1-induced increase in cell migration, invasion, and anoikis resistance in TGF-β1-induced U2OS cells. In addition, the TGF-β1-mediated phosphorylated levels of Smad2/3 were inhibited by baicalin pretreatment. Above all, we conclude that baicalin suppresses human osteosarcoma cells' migration, invasion, and anoikis resistance in vitro through suppression of TGF-β1-induced EMT.

  10. Proteome analysis of responses to ascochlorin in a human osteosarcoma cell line by 2-D gel electrophoresis and MALDI-TOF MS.

    PubMed

    Kang, Jeong Han; Park, Kwan-Kyu; Lee, In-Seon; Magae, Junji; Ando, Kunio; Kim, Cheorl-Ho; Chang, Young-Chae

    2006-10-01

    Ascochlorin is a prenyl-phenol compound that was isolated from the fungus Ascochyta viciae. Ascochlorin reduces serum cholesterol and triglyceride levels, suppresses hypertension and tumor development, and ameliorates type I and II diabetes. Here, to better understand the mechanisms by which ascochlorin regulates physiological or pathological events and induces responses in the pharmacological treatment of cancer, we performed differential analysis of the proteome of the human osteosarcoma cells U2OS in response to ascochlorin. In addition, we established the first two-dimensional map of the U2OS proteome. The U2OS cell proteomes with and without treatment with ascochlorin were compared using two-dimensional electrophoresis, matrix-assisted laser desorption/ionization mass spectrometry and bioinformatics. The largest differences in expression were observed for the epidermal growth factor receptor (4-fold decrease), ribulose-5-phosphate-epimerase (13-fold decrease), ATP-dependent RNA helicase (8-fold decrease), and kelch-like ECH-associated protein 1 (6-fold decrease). The abundance of heterogeneous nuclear ribonucleoprotein L and minichromosome maintenance protein 7 increased 12- and 8.2-fold, respectively. In addition, Erk 2 was increased 3-fold in U2OS cells treated with ascochlorin. The expression of some selected proteins was confirmed by western blotting, zymography and RT-PCR analysis.

  11. Paroxetine-induced apoptosis in human osteosarcoma cells: Activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca{sup 2+}]{sub i} elevation

    SciTech Connect

    Chou, C.-T.; He Shiping; Jan, C.-R. . E-mail: crjan@isca.vghks.gov.tw

    2007-02-01

    Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are generally used for treatment of various mood and anxiety disorders. There has been much research showing the anti-tumor and cytotoxic activities of some antidepressants; but the detailed mechanisms were unclear. In cultured human osteosarcoma cells (MG63), paroxetine reduced cell viability in a concentration- and time-dependent manner. Paroxetine caused apoptosis as assessed by propidium iodide-stained cells and increased caspase-3 activation. Although immunoblotting data revealed that paroxetine could activate the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH{sub 2}-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38 MAPK inhibitor) partially prevented cells from apoptosis. Paroxetine also induced [Ca{sup 2+}]{sub i} increases which involved the mobilization of intracellular Ca{sup 2+} stored in the endoplasmic reticulum and Ca{sup 2+} influx from extracellular medium. However, pretreatment with BAPTA/AM, a Ca{sup 2+} chelator, to prevent paroxetine-induced [Ca{sup 2+}]{sub i} increases did not protect cells from death. The results suggest that in MG63 cells, paroxetine caused Ca{sup 2+}-independent apoptosis via inducing p38 MAPK-associated caspase-3 activation.

  12. Biocompatibility of core@shell particles: cytotoxicity and genotoxicity in human osteosarcoma cells of colloidal silica spheres coated with crystalline or amorphous zirconia.

    PubMed

    Di Virgilio, A L; Arnal, P M; Maisuls, I

    2014-08-01

    The cytotoxicity and genotoxicity of novel colloidal silica spheres coated with crystalline or amorphous zirconia (SiO2@ZrO2(cryst) or SiO2@ZrO2(am)) have been studied in a human osteosarcoma cell line (MG-63), after 24 h exposure. SiO2@ZrO2(cryst) and SiO2@ZrO2(am) had mean diameters of 782±19 and 891±34 nm, respectively. SiO2@ZrO2(cryst) exposure reduced cell viability, with an increase in reactive oxygen species (ROS) and a decrease of the GSH/GSSG ratio. The comet and micronucleus (MN) assays detected DNA damage at 5 and 25 μg/mL, respectively. SiO2@ZrO2(am) induced genotoxic action only at 10 and 50 μg/mL (comet and MN assays), along with a decrease of the GSH/GSSG ratio at 50 μg/mL. Both particles were found inside the cells, forming vesicles; however, none of them entered the nucleus. Our findings show that crystallization of the shell of the amorphous ZrO2 increases both cytotoxicity and genotoxicity.

  13. Diagnostic imaging of osteosarcoma

    SciTech Connect

    Seeger, L.L.; Gold, R.H.; Chandnani, V.P. )

    1991-09-01

    The diagnosis, treatment planning, and follow-up evaluation of osteosarcoma rely heavily on a variety of imaging techniques. Plain roentgenography, radionuclide bone scanning, computed tomography, and magnetic resonance imaging play important roles in defining local tumor extent, detecting metastatic disease, and monitoring for recurrent tumor. Invasive studies such as angiography are now rarely necessary. In the future, newer imaging modalities, including positron emission tomography, can be expected to become important tools for evaluation of these tumors. 23 references.

  14. CSE1L interaction with MSH6 promotes osteosarcoma progression and predicts poor patient survival

    PubMed Central

    Cheng, Dong-dong; Lin, He-chun; Li, Shi-jie; Yao, Ming; Yang, Qing-cheng; Fan, Cun-yi

    2017-01-01

    To discover tumor-associated proteins in osteosarcoma, a quantitative proteomic analysis was performed to identify proteins that were differentially expressed between osteosarcoma and human osteoblastic cells. Through clinical screening and a functional evaluation, chromosome segregation 1-like (CSE1L) protein was found to be related to the growth of osteosarcoma cells. To date, little is known about the function and underlying mechanism of CSE1L in osteosarcoma. In the present study, we show that knockdown of CSE1L inhibits osteosarcoma growth in vitro and in vivo. By co-immunoprecipitation and RNA-seq analysis, CSE1L was found to interact with mutS homolog 6 (MSH6) and function as a positive regulator of MSH6 protein in osteosarcoma cells. A rescue study showed that decreased growth of osteosarcoma cells by CSE1L knockdown was reversed by MSH6 overexpression, indicating that the activity of CSE1L was an MSH6-dependent function. In addition, depletion of MSH6 hindered cellular proliferation in vitro and in vivo. Notably, CSE1L expression was correlated with MSH6 expression in tumor samples and was associated with poor prognosis in patients with osteosarcoma. Taken together, our results demonstrate that the CSE1L-MSH6 axis has an important role in osteosarcoma progression. PMID:28387323

  15. Sclerostin expression is induced by BMPs in human Saos-2 osteosarcoma cells but not via direct effects on the sclerostin gene promoter or ECR5 element.

    PubMed

    Yu, Longchuan; van der Valk, Marissa; Cao, Jin; Han, Chun-Ya E; Juan, Todd; Bass, Michael B; Deshpande, Chetan; Damore, Michael A; Stanton, Richard; Babij, Philip

    2011-12-01

    Sclerostin is a secreted inhibitor of Wnt signaling and plays an essential role in the regulation of bone mass. The expression of sclerostin is largely restricted to osteocytes although its mode of transcriptional regulation is not well understood. We observed regulated expression of sclerostin mRNA and protein that was directly correlated with the mineralization response in cultured human Saos-2 osteosarcoma cells and rat primary calvarial cells. Sclerostin mRNA and protein levels were increased following treatment of cells with BMP2, BMP4 and BMP7. Analysis of deletion mutants from the -7.4 kb upstream region of the human sclerostin promoter did not reveal any specific regions that were responsive to BMPs, Wnt3a, PTH, TGFβ1 or Activin A in Saos-2 cells. The downstream ECR5 element did not show enhancer activity in Saos-2 cells and also was not affected when Saos-2 cells were treated with BMPs or PTH. Genome-wide microarray analysis of Saos-2 cells treated with BMP2 showed significant changes in expression of several transcription factors with putative consensus DNA binding sites in the region of the sclerostin promoter. However, whereas most factors tested showed either a range of inhibitory activity (DLX family, MSX2, HEY1, SMAD6/7) or lack of activity on the sclerostin promoter including SMAD9, only MEF2B showed a positive effect on both the promoter and ECR5 element. These results suggest that the dramatic induction of sclerostin gene expression by BMPs in Saos-2 cells occurs indirectly and is associated with late stage differentiation of osteoblasts and the mineralization process.

  16. Similarities in the endocrine-disrupting potencies of indoor dust and flame retardants by using human osteosarcoma (U2OS) cell-based reporter gene assays.

    PubMed

    Suzuki, Go; Tue, Nguyen Minh; Malarvannan, Govindan; Sudaryanto, Agus; Takahashi, Shin; Tanabe, Shinsuke; Sakai, Shin-ichi; Brouwer, Abraham; Uramaru, Naoto; Kitamura, Shigeyuki; Takigami, Hidetaka

    2013-03-19

    Indoor dust is a sink for many kinds of pollutants, including flame retardants (FRs), plasticizers, and their contaminants and degradation products. These pollutants can be migrated to indoor dust from household items such as televisions and computers. To reveal high-priority end points of and contaminant candidates in indoor dust, using CALUX reporter gene assays based on human osteosarcoma (U2OS) cell lines, we evaluated and characterized the endocrine-disrupting potencies of crude extracts of indoor dust collected from Japan (n = 8), the United States (n = 21), Vietnam (n = 10), the Philippines (n = 17), and Indonesia (n = 10) and for 23 selected FRs. The CALUX reporter gene assays used were specific for compounds interacting with the human androgen receptor (AR), estrogen receptor α (ERα), progesterone receptor (PR), glucocorticoid receptor (GR), and peroxisome proliferator-activated receptor γ2 (PPARγ2). Indoor dust extracts were agonistic to ERα, GR, and PPARγ2 and antagonistic against AR, PR, GR, and PPARγ2. In comparison, a majority of FRs was agonistic to ERα and PPARγ2 only, and some FRs demonstrated receptor-specific antagonism against all tested nuclear receptors. Hierarchical clustering clearly indicated that agonism of ERα and antagonism of AR and PR were common, frequently detected end points for indoor dust and tested FRs. Given our previous results regarding the concentrations of FRs in indoor dust and in light of our current results, candidate contributors to these effects include not only internationally controlled brominated FRs but also alternatives such as some phosphorus-containing FRs. In the context of indoor pollution, high-frequency effects of FRs such as agonism of ERα and antagonism of AR and PR are candidate high-priority end points for further investigation.

  17. Oncolytic virotherapy for osteosarcoma using midkine promoter-regulated adenoviruses.

    PubMed

    Takagi-Kimura, M; Yamano, T; Tagawa, M; Kubo, S

    2014-03-01

    Oncolytic virotherapy using adenoviruses has potential therapeutic benefits for a variety of cancers. We recently developed MOA5, a tumor-specific midkine promoter-regulated oncolytic vector based on human adenovirus serotype 5 (Ad5). We modified the binding tropism of MOA5 by replacing the cell-binding domain of the Ad5 fiber knob with that from another adenovirus serotype 35 (Ad35); the resulting vector was designated MOA35. Here we evaluated the therapeutic efficacies of MOA5 and MOA35 for human osteosarcoma. Midkine mRNA expression and its promoter activity was significantly high in five human osteosarcoma cell lines, but was restricted in normal cells. Very low levels of adenovirus cellular receptor coxsackievirus/adenovirus receptor (CAR) (Ad5 receptor) expression were observed in MNNG-HOS and MG-63 cells, whereas high levels of CAR expression were seen in the other osteosarcoma cell lines. By contrast, CD46 (Ad35 receptor) was highly expressed in all osteosarcoma cell lines. Infectivity and in vitro cytocidal effect of MOA35 was significantly enhanced in MNNG-HOS and MG-63 cells compared with MOA5, although the cytocidal effects of MOA5 were sometimes higher in high CAR-expressing cell lines. In MG-63 xenograft models, MOA35 significantly enhanced antitumor effects compared with MOA5. Our findings indicate that MOA5 and MOA35 allow tailored virotherapy and facilitate more effective treatments for osteosarcoma.

  18. [Complex diagnostics of osteosarcomas].

    PubMed

    Muradov, Kh K; Sadykhova, G G

    2014-01-01

    It was analyzed the examination results of 156 patients with osteosarcoma. The data show that definition of histogenetic source, diagnostics and prognosis of treatment results are possible and expedient in case of analysis of signs reflecting tumor cells specificity. These signs may be determined by using of clinical parameters, X-ray imaging and light microscopy in case of moderately and highly differentiated sarcomas. Ample opportunities of flow citometry and immunohistochemistry allow to perform histogenetic identification, differential diagnostics and prognosis for low-grade sarcomas.

  19. Characteristics of minerals in vesicles produced by human osteoblasts hFOB 1.19 and osteosarcoma Saos-2 cells stimulated for mineralization.

    PubMed

    Strzelecka-Kiliszek, Agnieszka; Bozycki, Lukasz; Mebarek, Saida; Buchet, Rene; Pikula, Slawomir

    2017-03-29

    Bone cells control initial steps of mineralization by producing extracellular matrix (ECM) proteins and releasing vesicles that trigger apatite nucleation. Using transmission electron microscopy with energy dispersive X-ray microanalysis (TEM-EDX) we compared the quality of minerals in vesicles produced by two distinct human cell lines: fetal osteoblastic hFOB 1.19 and osteosarcoma Saos-2. Both cell lines, subjected to osteogenic medium with ascorbic acid (AA) and β-glycerophosphate (β-GP), undergo the entire osteoblastic differentiation program from proliferation to mineralization, produce the ECM and spontaneously release vesicles. We observed that Saos-2 cells mineralized better than hFOB 1.19, as probed by Alizarin Red-S (AR-S) staining, tissue nonspecific alkaline phosphatase (TNAP) activity and by analyzing the composition of minerals in vesicles. Vesicles released from Saos-2 cells contained and were surrounded by more minerals than vesicles released from hFOB 1.19. In addition, there were more F and Cl substituted apatites in vesicles from hFOB 1.19 than in those from Saos-2 cells as determined by ion ratios. Saos-2 and h-FOB 1.19 cells revealed distinct mineralization profiles, indicating that the process of mineralization may proceed differently in various types of cells. Our findings suggest that TNAP activity is correlated with the relative proportions of mineral-filled vesicles and mineral-surrounded vesicles. The origin of vesicles and their properties predetermine the onset of mineralization at the cellular level.

  20. Dihydroptychantol A, a macrocyclic bisbibenzyl derivative, induces autophagy and following apoptosis associated with p53 pathway in human osteosarcoma U2OS cells

    SciTech Connect

    Li Xia; Wu, William K.K.; Sun Bin; Cui Min; Liu Shanshan; Gao Jian; Lou Hongxiang

    2011-03-01

    Dihydroptychantol A (DHA), a novel macrocyclic bisbibenzyl compound extracted from liverwort Asterella angusta, has antifungal and multi-drug resistance reversal properties. Here, the chemically synthesized DHA was employed to test its anti-cancer activities in human osteosarcoma U2OS cells. Our results demonstrated that DHA induced autophagy followed by apoptotic cell death accompanied with G{sub 2}/M-phase cell cycle arrest in U2OS cells. DHA-induced autophagy was morphologically characterized by the formation of double membrane-bound autophagic vacuoles recognizable at the ultrastructural level. DHA also increased the levels of LC3-II, a marker of autophagy. Surprisingly, DHA-mediated apoptotic cell death was potentiated by the autophagy inhibitor 3-methyladenine, suggesting that autophagy may play a protective role that impedes the eventual cell death. Furthermore, p53 was shown to be involved in DHA-meditated autophagy and apoptosis. In this connection, DHA increased nuclear expression of p53, induced p53 phosphorylation, and upregulated p53 target gene p21{sup Waf1/Cip1}. In contrast, cytoplasmic p53 was reduced by DHA, which contributed to the stimulation of autophagy. In relation to the cell cycle, DHA decreased the expression of cyclin B{sub 1}, a cyclin required for progression through the G{sub 2}/M phase. Taken together, DHA induces G{sub 2}/M-phase cell cycle arrest and apoptosis in U2OS cells. DHA-induced apoptosis was preceded by the induction of protective autophagy. DHA-mediated autophagy and apoptosis are associated with the cytoplasmic and nuclear functions of p53.

  1. Identification and gene expression profiling of tumor-initiating cells isolated from human osteosarcoma cell lines in an orthotopic mouse model

    PubMed Central

    Rainusso, Nino; Man, Tsz-Kwong; Lau, Ching C; Hicks, John; Shen, Jianhe J; Yu, Alexander; Wang, Lisa L

    2011-01-01

    In the cancer stem cell model a cell hierarchy has been suggested as an explanation for intratumoral heterogeneity and tumor formation is thought to be driven by this tumor cell subpopulation. The identification of cancer stem cells in osteosarcoma (OS) and the biological processes dysregulated in this cell subpopulation, also known as tumor-initiating cells (TICs), may provide new therapeutic targets. The goal of this study, therefore, was to identify and characterize the gene expression profiles of TICs isolated from human OS cell lines. We analyzed the self-renewal capacity of OS cell lines and primary OS tumors based upon their ability to form sphere-like structures (sarcospheres) under serum-starving conditions. TICs were identify from OS cell lines using the long-term label retention dye PKH26. OS TICs and the bulk of tumor cells were isolated and used to assess their ability to initiate tumors in NOD/SCID mice. Gene expression profiles of OS TICs were obtained from fresh orthotopic tumor samples. We observed that increased sarcosphere efficiency correlated with an enhanced tumorigenic potential in OS. PKH26Hi cells were shown to constitute OS TICs based upon their capacity to form more sarcospheres, as well as to generate both primary bone tumors and lung metastases efficiently in NOD/SCID mice. Genomic profiling of OS TICs revealed that both bone development and cell migration processes were dysregulated in this tumor cell subpopulation. PKH26 labeling represents a valuable tool to identify OS TICs and gene expression analysis of this tumor cell compartment may identify potential therapeutic targets. PMID:21617384

  2. Selaginella tamariscina (Beauv.) possesses antimetastatic effects on human osteosarcoma cells by decreasing MMP-2 and MMP-9 secretions via p38 and Akt signaling pathways.

    PubMed

    Yang, Jia-Sin; Lin, Chiao-Wen; Hsieh, Yih-Shou; Cheng, Hsin-Lin; Lue, Ko-Huang; Yang, Shun-Fa; Lu, Ko-Hsiu

    2013-09-01

    Selaginella tamariscina is a traditional medicinal plant for treatment of some advanced cancers in the Orient. However, the effect of S. tamariscina on metastasis of osteosarcoma and the underlying mechanism remain unclear. We tested the hypothesis that S. tamariscina suppresses cellular motility, invasion and migration and also investigated its signaling pathways. This study demonstrates that S. tamariscina, at a range of concentrations (from 0 to 50 μg/mL), concentration-dependently inhibited the migration/invasion capacities of three osteosarcoma cell lines without cytotoxic effects. Zymographic and western blot analyses revealed that S. tamariscina inhibited the matrix metalloproteinase (MMP)-2 and MMP-9 enzyme activity, as well as protein expression. Western blot analysis also showed that S. tamariscina inhibits phosphorylation of p38 and Akt. Furthermore, SB203580 (p38 inhibitor) and LY294002 (PI3K inhibitor) showed the similar effects as S. tamariscina in U2OS cells. In conclusion, S. tamariscina possesses an antimetastatic activity in osteosarcoma cells by down-regulating MMP-2 and MMP-9 secretions and increasing TIMP-1 and TIMP-2 expressions through p38 and Akt-dependent pathways. S. tamariscina may be a powerful candidate to develop a preventive agent for osteosarcoma metastasis.

  3. Transcription factor Oct4 promotes osteosarcoma by regulating lncRNA AK055347

    PubMed Central

    Fan, Hongwu; Liu, Guangyao; Zhao, Changfu; Li, Xuefeng; Yang, Xiaoyu

    2017-01-01

    Osteosarcoma is the most common primary bone tumor in children and adolescents, typically presenting with a poor prognosis. Octamer-binding transcription factor 4 (Oct4) protein, encoded by the POU class 5 homeobox 1 gene, is important in maintaining self-renewal of pluripotent stem cells, and is closely associated with cancer. However, its role in osteosarcoma remains to be elucidated. The present study observed Oct4 was markedly increased in osteosarcoma cell lines and in human osteosarcoma tissue samples. Following Oct4 downregulation by small interfering RNA (siRNA) in osteosarcoma F5M2 cells, the cells exhibited significant decreases in proliferation and invasion ability, and an increase in cell apoptosis. Notably, downregulation of Oct4 decreased the expression of AK055347, a newly identified long noncoding RNA (lncRNA) in human tissues. The downregulation of AK055347 by siRNA resulted in a significant suppressive effect on proliferative and invasive ability, and promotion of cell apoptosis in osteosarcoma cells. Thus, the current study suggests Oct4 exerts a promoting effect in osteosarcoma, and identifies a novel lncRNA in osteosarcoma progression. PMID:28123573

  4. Rapid detection and identification of beer-spoilage lactic acid bacteria by microcolony method.

    PubMed

    Asano, Shizuka; Iijima, Kazumaru; Suzuki, Koji; Motoyama, Yasuo; Ogata, Tomoo; Kitagawa, Yasushi

    2009-08-01

    We evaluated a microcolony method for the detection and identification of beer-spoilage lactic acid bacteria (LAB). In this approach, bacterial cells were trapped on a polycarbonate membrane filter and cultured on ABD medium, a medium that allows highly specific detection of beer-spoilage LAB strains. After short-time incubation, viable cells forming microcolonies were stained with carboxyfluorescein diacetate (CFDA) and counted with muFinder Inspection System. In our study, we first investigated the growth behavior of various beer-spoilage LAB by traditional culture method, and Lactobacillus lindneri and several L. paracollinoides strains were selected as slow growers on ABD medium. Then the detection speeds were evaluated by microcolony method, using these slowly growing strains. As a result, all of the slowly growing beer-spoilage LAB strains were detected within 3 days of incubation. The specificity of this method was found to be exceptionally high and even discriminated intra-species differences in beer-spoilage ability of LAB strains upon detection. These results indicate that our microcolony approach allows rapid and specific detection of beer-spoilage LAB strains with inexpensive CFDA staining. For further confirmation of species status of detected strains, subsequent treatment with species-specific fluorescence in situ hybridization (FISH) probes was shown as effective for identifying the CFDA-detected microcolonies to the species level. In addition, no false-positive results arising from noise signals were recognized for CFDA staining and FISH methods. Taken together, the developed microcolony method was demonstrated as a rapid and highly specific countermeasure against beer-spoilage LAB, and compared favorably with the conventional culture methods.

  5. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions.

    PubMed

    Lussier, Danielle M; O'Neill, Lauren; Nieves, Lizbeth M; McAfee, Megan S; Holechek, Susan A; Collins, Andrea W; Dickman, Paul; Jacobsen, Jeffrey; Hingorani, Pooja; Blattman, Joseph N

    2015-04-01

    Osteosarcoma is the most common bone cancer in children and adolescents. Although 70% of patients with localized disease are cured with chemotherapy and surgical resection, patients with metastatic osteosarcoma are typically refractory to treatment. Numerous lines of evidence suggest that cytotoxic T lymphocytes (CTLs) limit the development of metastatic osteosarcoma. We have investigated the role of PD-1, an inhibitory TNFR family protein expressed on CTLs, in limiting the efficacy of immune-mediated control of metastatic osteosarcoma. We show that human metastatic, but not primary, osteosarcoma tumors express a ligand for PD-1 (PD-L1) and that tumor-infiltrating CTLs express PD-1, suggesting this pathway may limit CTLs control of metastatic osteosarcoma in patients. PD-L1 is also expressed on the K7M2 osteosarcoma tumor cell line that establishes metastases in mice, and PD-1 is expressed on tumor-infiltrating CTLs during disease progression. Blockade of PD-1/PD-L1 interactions dramatically improves the function of osteosarcoma-reactive CTLs in vitro and in vivo, and results in decreased tumor burden and increased survival in the K7M2 mouse model of metastatic osteosarcoma. Our results suggest that blockade of PD-1/PD-L1 interactions in patients with metastatic osteosarcoma should be pursued as a therapeutic strategy.

  6. Sirolimus induces apoptosis and reverses multidrug resistance in human osteosarcoma cells in vitro via increasing microRNA-34b expression

    PubMed Central

    Zhou, Yan; Zhao, Rui-hua; Tseng, Kuo-Fu; Li, Kun-peng; Lu, Zhi-gang; Liu, Yuan; Han, Kun; Gan, Zhi-hua; Lin, Shu-chen; Hu, Hai-yan; Min, Da-liu

    2016-01-01

    Aim: Multi-drug resistance poses a critical bottleneck in chemotherapy. Given the up-regulation of mTOR pathway in many chemoresistant cancers, we examined whether sirolimus (rapamycin), a first generation mTOR inhibitor, might induce human osteosarcoma (OS) cell apoptosis and increase the sensitivity of OS cells to anticancer drugs in vitro. Methods: Human OS cell line MG63/ADM was treated with sirolimus alone or in combination with doxorubicin (ADM), gemcitabine (GEM) or methotrexate (MTX). Cell proliferation and apoptosis were detected using CCK-8 assay and flow cytometry, respectively. MiRNAs in the cells were analyzed with miRNA microarray. The targets of miR-34b were determined based on TargetScan analysis and luciferase reporter assays. The expression of relevant mRNA and proteins was measured using qRT-PCR and Western blotting. MiR-34, PAK1 and ABCB1 levels in 40 tissue samples of OS patients were analyzed using qRT-PCR and in situ hybridization assays. Results: Sirolimus (1–100 nmol/L) dose-dependently suppressed the cell proliferation (IC50=23.97 nmol/L) and induced apoptosis. Sirolimus (10 nmol/L) significantly sensitized the cells to anticancer drugs, leading to decreased IC50 values of ADM, GEM and MTX (from 25.48, 621.41 and 21.72 μmol/L to 4.93, 73.92 and 6.77 μmol/L, respectively). Treatment of with sirolimus increased miR-34b levels by a factor of 7.5 in the cells. Upregulation of miR-34b also induced apoptosis and increased the sensitivity of the cells to the anticancer drugs, whereas transfection with miR-34b-AMO, an inhibitor of miR-34b, reversed the anti-proliferation effect of sirolimus. Two key regulators of cell cycle, apoptosis and multiple drug resistance, PAK1 and ABCB1, were demonstrated to be the direct targets of miR-34b. In 40 tissue samples of OS patients, significantly higher miR-34 ISH score and lower PAK5 and ABCB1 scores were detected in the chemo-sensitive group. Conclusion: Sirolimus increases the sensitivity of human OS

  7. Simultaneous spatiotemporal mapping of in situ pH and bacterial activity within an intact 3D microcolony structure

    NASA Astrophysics Data System (ADS)

    Hwang, Geelsu; Liu, Yuan; Kim, Dongyeop; Sun, Victor; Aviles-Reyes, Alejandro; Kajfasz, Jessica K.; Lemos, Jose A.; Koo, Hyun

    2016-09-01

    Biofilms are comprised of bacterial-clusters (microcolonies) enmeshed in an extracellular matrix. Streptococcus mutans can produce exopolysaccharides (EPS)-matrix and assemble microcolonies with acidic microenvironments that can cause tooth-decay despite the surrounding neutral-pH found in oral cavity. How the matrix influences the pH and bacterial activity locally remains unclear. Here, we simultaneously analyzed in situ pH and gene expression within intact biofilms and measured the impact of damage to the surrounding EPS-matrix. The spatiotemporal changes of these properties were characterized at a single-microcolony level following incubation in neutral-pH buffer. The middle and bottom-regions as well as inner-section within the microcolony 3D structure were resistant to neutralization (vs. upper and peripheral-region), forming an acidic core. Concomitantly, we used a green fluorescent protein (GFP) reporter to monitor expression of the pH-responsive atpB (PatpB::gfp) by S. mutans within microcolonies. The atpB expression was induced in the acidic core, but sharply decreased at peripheral/upper microcolony regions, congruent with local pH microenvironment. Enzymatic digestion of the surrounding matrix resulted in nearly complete neutralization of microcolony interior and down-regulation of atpB. Altogether, our data reveal that biofilm matrix facilitates formation of an acidic core within microcolonies which in turn activates S. mutans acid-stress response, mediating both the local environment and bacterial activity in situ.

  8. Simultaneous spatiotemporal mapping of in situ pH and bacterial activity within an intact 3D microcolony structure

    PubMed Central

    Hwang, Geelsu; Liu, Yuan; Kim, Dongyeop; Sun, Victor; Aviles-Reyes, Alejandro; Kajfasz, Jessica K.; Lemos, Jose A.; Koo, Hyun

    2016-01-01

    Biofilms are comprised of bacterial-clusters (microcolonies) enmeshed in an extracellular matrix. Streptococcus mutans can produce exopolysaccharides (EPS)-matrix and assemble microcolonies with acidic microenvironments that can cause tooth-decay despite the surrounding neutral-pH found in oral cavity. How the matrix influences the pH and bacterial activity locally remains unclear. Here, we simultaneously analyzed in situ pH and gene expression within intact biofilms and measured the impact of damage to the surrounding EPS-matrix. The spatiotemporal changes of these properties were characterized at a single-microcolony level following incubation in neutral-pH buffer. The middle and bottom-regions as well as inner-section within the microcolony 3D structure were resistant to neutralization (vs. upper and peripheral-region), forming an acidic core. Concomitantly, we used a green fluorescent protein (GFP) reporter to monitor expression of the pH-responsive atpB (PatpB::gfp) by S. mutans within microcolonies. The atpB expression was induced in the acidic core, but sharply decreased at peripheral/upper microcolony regions, congruent with local pH microenvironment. Enzymatic digestion of the surrounding matrix resulted in nearly complete neutralization of microcolony interior and down-regulation of atpB. Altogether, our data reveal that biofilm matrix facilitates formation of an acidic core within microcolonies which in turn activates S. mutans acid-stress response, mediating both the local environment and bacterial activity in situ. PMID:27604325

  9. Expression and prognostic relevance of centromere protein A in primary osteosarcoma.

    PubMed

    Gu, Xiao-Min; Fu, Jie; Feng, Xiao-Jun; Huang, Xue; Wang, Shou-Mei; Chen, Xin-Feng; Zhu, Ming-Hua; Zhang, Shu-Hui

    2014-04-01

    Centromere protein A (CENP-A) is one of the fundamental components of the human active kinetochore and plays important roles in cell-cycle regulation, cell survival, and genetic stability. The aim of the present study was to explore the expression and prognostic significance of CENP-A in osteosarcoma. The results of real-time quantitative PCR and Western blotting analysis revealed an enhanced expression of CENP-A in osteosarcomas relative to adjacent non-tumorous bone tissues at both mRNA and protein levels. Immunohistochemically, 72 of the 123 osteosarcoma specimens (58.5%) had high expression of CENP-A. CENP-A overexpression was significantly correlated with tumor size (P=0.002), poor response to neoadjuvant chemotherapy (P=0.016), local recurrence/lung metastasis (P=0.001), high Ki-67 index (P=0.004), and P53 positivity (P=0.005). Median overall and recurrence-free survival time was significantly shorter in patients with high-CENP-A osteosarcomas than in those with low-CENP-A osteosarcomas. Multivariate analysis identified CENP-A as an independent poor prognostic factor for osteosarcoma. In conclusion, our results demonstrate that elevated CENP-A expression is significantly associated with osteosarcoma progression and has an independent prognostic value in predicting overall and recurrence-free survival for patients with osteosarcoma.

  10. IR/IGF1R signaling as potential target for treatment of high-grade osteosarcoma

    PubMed Central

    2013-01-01

    Background High-grade osteosarcoma is an aggressive tumor most often developing in the long bones of adolescents, with a second peak in the 5th decade of life. Better knowledge on cellular signaling in this tumor may identify new possibilities for targeted treatment. Methods We performed gene set analysis on previously published genome-wide gene expression data of osteosarcoma cell lines (n=19) and pretreatment biopsies (n=84). We characterized overexpression of the insulin-like growth factor receptor (IGF1R) signaling pathways in human osteosarcoma as compared with osteoblasts and with the hypothesized progenitor cells of osteosarcoma – mesenchymal stem cells. This pathway plays a key role in the growth and development of bone. Since most profound differences in mRNA expression were found at and upstream of the receptor of this pathway, we set out to inhibit IR/IGF1R using OSI-906, a dual inhibitor for IR/IGF1R, on four osteosarcoma cell lines. Inhibitory effects of this drug were measured by Western blotting and cell proliferation assays. Results OSI-906 had a strong inhibitory effect on proliferation of 3 of 4 osteosarcoma cell lines, with IC50s below 100 nM at 72 hrs of treatment. Phosphorylation of IRS-1, a direct downstream target of IGF1R signaling, was inhibited in the responsive osteosarcoma cell lines. Conclusions This study provides an in vitro rationale for using IR/IGF1R inhibitors in preclinical studies of osteosarcoma. PMID:23688189

  11. Osteoblastic and fibroblastic multicentric osteosarcoma

    PubMed Central

    Cabello, Raúl Romero; Sánchez, Carlos J.; Padilla, Marco A. Duran; De la Garza Navarro, José M.; Feregrino, Raul Romero; Vázquez, Avissai Alcántara; González, Mercedes Hernández; Feregrino, Rodrigo Romero

    2011-01-01

    Bone sarcomas are uncommon tumours, of which osteosarcoma is the least rare, as well as the third most common malignant tumour in childhood, appearing usually between the 10 and 20 years of age. The case the authors present in this work is of a patient suffering from a long-standing condition encompassing skin and soft tissue lesions. After multiple medical treatments, the patient was diagnosed with squamous osteosarcoma, which required aggressive surgical management and chemotherapy. PMID:22674697

  12. IL-1 binds to high affinity receptors on human osteosarcoma cells and potentiates prostaglandin E2 stimulation of cAMP production

    SciTech Connect

    Rodan, S.B.; Wesolowski, G.; Chin, J.; Limjuco, G.A.; Schmidt, J.A.; Rodan, G.A. )

    1990-08-15

    IL-1 is a potent bone resorbing agent. Its mechanism of action is unknown, but the presence of osteoblasts was shown to be necessary for IL-1 stimulation of bone resorption by isolated osteoclasts. This study examines the presence of IL-1R and IL-1 effects in osteoblastic cells from a clonal human osteosarcoma cell line, Saos-2/B-10. We found that the binding affinity and the number of binding sites increases substantially during the postconfluent stage. Scatchard and curve-fitting analysis revealed one class of high affinity binding sites, with Kd/Ki's of 40 +/- 17 pM (mean +/- SD) for IL-1 alpha (n = 5) and 9 +/- 7 pM for IL-1 beta (n = 5) and 2916 +/- 2438 (n = 6) receptors/cell. Incubation of the cells with 125I-IL-1 alpha (100 pM) at 4 degrees C, followed by incubation at 37 degrees C up to 4 h, revealed internalization of receptor-bound IL-1 alpha. Chemical cross-linking studies showed that the IL-1R in Saos-2/B-10 cells had a molecular mass of approximately 80 kDa. To assess the biologic effect of IL-1 in Saos-2/B-10 cells, we determined PGE2 content and adenylate cyclase activity. Although IL-1 had no effect on PGE2 synthesis, both IL-1 alpha and IL-1 beta enhanced PGE2 stimulation of adenylate cyclase two- to four-fold in a dose-dependent manner. The half-maximal effect for IL-1 alpha was seen at 8 to 10 pM and for IL-1 beta at 0.6 to 1.8 pM. IL-1 did not enhance basal adenylate cyclase or stimulation by parathyroid hormone, isoproterenol, or forskolin. IL-1 enhancement of PGE2-stimulated adenylate cyclase was detected between 1 to 2 h, was maximal at 4 to 5 h, was not prevented by cycloheximide treatment, and was seen in membranes from IL-1 pretreated cells. These data show effects of IL-1 on a human osteoblast-like cell line that are mediated by high affinity receptors. These IL-1 effects could contribute to the biologic action of IL-1 on bone.

  13. Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms.

    PubMed

    Dominiak, Dominik Marek; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2011-03-01

    A new approach for quantification of extracellular DNA (eDNA) in mixed biofilms at microscale resolution was developed and combined with other staining techniques to assess the origin, abundance and role of eDNA in activated sludge biofilms. Most eDNA was found in close proximity to living cells in microcolonies, suggesting that most of it originated from an active secretion or alternatively, by lysis of a sub-population of cells. When the staining was combined with fluorescence in situ hybridization for identification of the microorganisms, it was found that the eDNA content varied among the different probe-defined species. The highest amount of eDNA was found in and around the microcolonies of denitrifiers belonging to the genera Curvibacter and Thauera, the ammonium-oxidizing Nitrosomonas and the nitrite-oxidizing Nitrospira. Other floc-formers also produced eDNA, although in lower amounts. The total eDNA content in activated sludge varied from 4 to 52 mg per gram volatile suspended solids in different wastewater treatment plants. Very high local concentrations within some microcolonies were found with up to approximately 300 mg of eDNA per g of organic matter. DNase digestion of activated sludge led to general floc disintegration and disruption of the microcolonies with high eDNA content, implying that eDNA was an important structural component in activated sludge biofilms.

  14. Real-time bacterial microcolony counting using on-chip microscopy

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hee; Lee, Jung Eun

    2016-02-01

    Observing microbial colonies is the standard method for determining the microbe titer and investigating the behaviors of microbes. Here, we report an automated, real-time bacterial microcolony-counting system implemented on a wide field-of-view (FOV), on-chip microscopy platform, termed ePetri. Using sub-pixel sweeping microscopy (SPSM) with a super-resolution algorithm, this system offers the ability to dynamically track individual bacterial microcolonies over a wide FOV of 5.7 mm × 4.3 mm without requiring a moving stage or lens. As a demonstration, we obtained high-resolution time-series images of S. epidermidis at 20-min intervals. We implemented an image-processing algorithm to analyze the spatiotemporal distribution of microcolonies, the development of which could be observed from a single bacterial cell. Test bacterial colonies with a minimum diameter of 20 μm could be enumerated within 6 h. We showed that our approach not only provides results that are comparable to conventional colony-counting assays but also can be used to monitor the dynamics of colony formation and growth. This microcolony-counting system using on-chip microscopy represents a new platform that substantially reduces the detection time for bacterial colony counting. It uses chip-scale image acquisition and is a simple and compact solution for the automation of colony-counting assays and microbe behavior analysis with applications in antibacterial drug discovery.

  15. Real-time bacterial microcolony counting using on-chip microscopy

    PubMed Central

    Jung, Jae Hee; Lee, Jung Eun

    2016-01-01

    Observing microbial colonies is the standard method for determining the microbe titer and investigating the behaviors of microbes. Here, we report an automated, real-time bacterial microcolony-counting system implemented on a wide field-of-view (FOV), on-chip microscopy platform, termed ePetri. Using sub-pixel sweeping microscopy (SPSM) with a super-resolution algorithm, this system offers the ability to dynamically track individual bacterial microcolonies over a wide FOV of 5.7 mm × 4.3 mm without requiring a moving stage or lens. As a demonstration, we obtained high-resolution time-series images of S. epidermidis at 20-min intervals. We implemented an image-processing algorithm to analyze the spatiotemporal distribution of microcolonies, the development of which could be observed from a single bacterial cell. Test bacterial colonies with a minimum diameter of 20 μm could be enumerated within 6 h. We showed that our approach not only provides results that are comparable to conventional colony-counting assays but also can be used to monitor the dynamics of colony formation and growth. This microcolony-counting system using on-chip microscopy represents a new platform that substantially reduces the detection time for bacterial colony counting. It uses chip-scale image acquisition and is a simple and compact solution for the automation of colony-counting assays and microbe behavior analysis with applications in antibacterial drug discovery. PMID:26902822

  16. Rapidly Developing Yeast Microcolonies Differentiate in a Similar Way to Aging Giant Colonies

    PubMed Central

    Váchová, Libuše; Hatáková, Ladislava; Čáp, Michal; Pokorná, Michaela; Palková, Zdena

    2013-01-01

    During their development and aging on solid substrates, yeast giant colonies produce ammonia, which acts as a quorum sensing molecule. Ammonia production is connected with alkalization of the surrounding medium and with extensive reprogramming of cell metabolism. In addition, ammonia signaling is important for both horizontal (colony centre versus colony margin) and vertical (upper versus lower cell layers) colony differentiations. The centre of an aging differentiated giant colony is thus composed of two major cell subpopulations, the subpopulation of long-living, metabolically active and stress-resistant cells that form the upper layers of the colony and the subpopulation of stress-sensitive starving cells in the colony interior. Here, we show that microcolonies originating from one cell pass through similar developmental phases as giant colonies. Microcolony differentiation is linked to ammonia signaling, and cells similar to the upper and lower cells of aged giant colonies are formed even in relatively young microcolonies. A comparison of the properties of these cells revealed a number of features that are similar in microcolonies and giant colonies as well as a few that are only typical of chronologically aged giant colonies. These findings show that colony age per se is not crucial for colony differentiation. PMID:23970946

  17. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites

    PubMed Central

    Kim, Dongyeop; Sengupta, Arjun; Niepa, Tagbo H. R.; Lee, Byung-Hoo; Weljie, Aalim; Freitas-Blanco, Veronica S.; Murata, Ramiro M.; Stebe, Kathleen J.; Lee, Daeyeon; Koo, Hyun

    2017-01-01

    Candida albicans is frequently detected with heavy infection of Streptococcus mutans in plaque-biofilms from children affected with early-childhood caries, a prevalent and costly oral disease. The presence of C. albicans enhances S. mutans growth within biofilms, yet the chemical interactions associated with bacterial accumulation remain unclear. Thus, this study was conducted to investigate how microbial products from this cross-kingdom association modulate S. mutans build-up in biofilms. Our data revealed that bacterial-fungal derived conditioned medium (BF-CM) significantly increased the growth of S. mutans and altered biofilm 3D-architecture in a dose-dependent manner, resulting in enlarged and densely packed bacterial cell-clusters (microcolonies). Intriguingly, BF-CM induced S. mutans gtfBC expression (responsible for Gtf exoenzymes production), enhancing Gtf activity essential for microcolony development. Using a recently developed nanoculture system, the data demonstrated simultaneous microcolony growth and gtfB activation in situ by BF-CM. Further metabolites/chromatographic analyses of BF-CM revealed elevated amounts of formate and the presence of Candida-derived farnesol, which is commonly known to exhibit antibacterial activity. Unexpectedly, at the levels detected (25–50 μM), farnesol enhanced S. mutans-biofilm cell growth, microcolony development, and Gtf activity akin to BF-CM bioactivity. Altogether, the data provide new insights on how extracellular microbial products from cross-kingdom interactions stimulate the accumulation of a bacterial pathogen within biofilms. PMID:28134351

  18. Alopecurone B reverses doxorubicin-resistant human osteosarcoma cell line by inhibiting P-glycoprotein and NF-kappa B signaling.

    PubMed

    Xia, Yuan-Zheng; Ni, Kai; Guo, Chao; Zhang, Chao; Geng, Ya-Di; Wang, Zhen-Dong; Yang, Lei; Kong, Ling-Yi

    2015-03-15

    Doxorubicin (DOX) was first used in osteosarcoma in the early 1970s as a first-line antineoplastic drug. However, the occurrence of drug resistance in chemotherapeutic treatment has greatly restricted its use. When resistance to DOX treatment occurs, osteosarcoma may become not only resistant to the drug originally administered but also to a wide variety of structurally and mechanistically unrelated drugs. Thus, there is an urgent need to find ways of reversing DOX chemotherapy resistance in osteosarcoma. Plant-derived agents have great potential in preventing the onset of the carcinogenic process and enhancing the efficacy of conventional antitumor drugs. Alopecurone B (ALOB), a flavonoid, is isolated from Traditional Chinese Medicine Sophora alopecuroides L., and is reported to have potent inhibitory effect on multidrug resistance associated protein 1. In this study, a DOX-resistant osteosarcoma cell line (MG-63/DOX) was established by increasing the concentration gradient of DOX in a stepwise manner. MTT assay, flow cytometry analysis, dual-luciferase reporter gene assay, quantitative real-time polymerase chain reaction and Western blot analysis were applied to investigate the reversing effect of ALOB and its underlying mechanisms. The results indicated that ALOB mediated the resistance of MG-63/DOX cells to DOX by inhibiting P-glycoprotein function, transcription and expression. Besides, ALOB also enhanced the sensitivity of MG-63/DOX cells to other conventional chemotherapeutic drugs. Cell viability assay confirmed the reversing activity of ALOB. Furthermore, ALOB increased DOX-induced apoptosis at nontoxic concentration. In addition, ALOB showed inhibitory effect on NF-κB transcription in a DOX-independent manner. Furthermore, NF-κB signaling was suppressed by ALOB in an IKK-dependent manner. These studies not only demonstrate that ALOB is a potential agent for reversal of drug resistant cancers, but also testify that ALOB reverses multidrug resistance by

  19. Hydrogen peroxide overload increases adriamycin-induced apoptosis of SaOS(2)FM, a manganese superoxide dismutase-overexpressing human osteosarcoma cell line.

    PubMed

    Wang, Yadi; Kuroda, Masahiro; Gao, Xian-Shu; Asaumi, Jun-Ichi; Shibuya, Kohichi; Kawasaki, Shoji; Akaki, Shiro; St Clair, Daret; Hiraki, Yoshio; Kanazawa, Susumu

    2005-05-01

    We previously developed a new microscopic observation system that enables time-lapse quantitative analysis of apoptosis and necrosis. With this system we quantitatively analyzed adriamycin (ADR)-induced cell death using manganese superoxide dismutase (MnSOD)- and wild-type p53-gene transfectants on SaOS(2), a p53-deficient human osteosarcoma cell line. A highly MnSOD-overexpressing cell line, SaOS(2)FM(H), acquired ADR-tolerance compared to the parent cell line SaOS(2). The ADR-tolerance of SaOS(2)FM(H) diminished by L-buthionine-[S,R]-sulfoximine (BSO), which did not change ADR-sensitivity of SaOS(2), to the similar ADR-sensitivity of SaOS(2). A wild-type p53-expressing cell line, SaOS(2)wtp53, significantly increased in ADR-sensitivity compared to SaOS(2). This ADR-sensitivity of SaOS(2)wtp53 was enhanced by BSO. When isosorbide 5-mononitrate was combined with BSO, isosorbide 5-mononitrate increased ADR sensitivity of a moderately MnSOD-overexpressing cell line, SaOS(2)FM(L), decreased that of SaOS(2) FM(H), and did not change those of SaOS(2) and SaOS(2)wtp53 compared to BSO alone. Time-lapse microscopic observations during ADR treatment for 24 h indicated that the most cells of each cell line underwent apoptosis, and a few cells (less than 11%) died by necrosis. When cells were treated with iso-concentration of ADR, apoptosis of SaOS(2)FM(H) was less than that of SaOS(2). BSO, which did not change ADR-sensitivity of SaOS(2), increased appearance rate of ADR-induced apoptosis, but not necrosis of MnSOD-overexpressing cell lines. When iso-survival dose of ADR, which reduced surviving fraction to 0.01, was given for each cell line, no difference was observed in appearance of either apoptosis or necrosis between SaOS(2) and MnSOD-overexpressing cell lines. On the other hands, appearance of both apoptosis and the following secondary necrosis of SaOS(2) wtp53 was significantly accelerated compared to those of SaOS(2). These findings indicate that hydrogen peroxide

  20. Programmed cell death ligand 1 expression in osteosarcoma.

    PubMed

    Shen, Jacson K; Cote, Gregory M; Choy, Edwin; Yang, Pei; Harmon, David; Schwab, Joseph; Nielsen, G Petur; Chebib, Ivan; Ferrone, Soldano; Wang, Xinhui; Wang, Yangyang; Mankin, Henry; Hornicek, Francis J; Duan, Zhenfeng

    2014-07-01

    Programmed cell death ligand 1 (PDL1, also known as B7H1) is a cell-surface protein that suppresses the cytotoxic CD8(+) T-cell-mediated immune response. PDL1 expression and its clinical relevance in sarcomas are not well understood. Therefore, we sought to measure RNA expression levels for PDL1 in 38 clinically annotated osteosarcoma tumor samples and aimed to determine if PDL1 expression correlates with clinical features and tumor-infiltrating lymphocytes (TIL). Quantitative real-time RT-PCR for PDL1 was optimized in 18 cell lines, of which 5 were osteosarcoma derived. qRT-PCR results were validated via flow cytometry and immunohistochemistry (IHC) in select cell lines. Total RNA was isolated from 38 human osteosarcoma samples for qRT-PCR analysis. Clinical data were sorted, and significance was determined by the Student t test. TILs were examined in patient samples by tissue microarray hematoxylin-eosin staining. We confirmed the constitutive PDL1 mRNA expression in cell lines by qRT-PCR, flow cytometry, and IHC. Across human osteosarcoma samples, PDL1 mRNA gene expression ranged over 4 log (>5,000-fold difference). Relative expression levels were evaluated against clinical factors such as age/gender, metastasis, recurrence, chemotherapy, percentage of necrosis, and survival; no significant associations were identified. The presence of TILs was associated with high PDL1 expression (R(2) = 0.37; P = 0.01). In summary, we developed an RNA-based assay to determine PDL1 expression levels, and we show, for the first time, that high levels of PDL1 are expressed in a subset of osteosarcoma, and PDL1 expression is positively correlated with TILs. Multiple agents targeting PD1/PDL1 are in clinical development, and this may be a novel immunotherapeutic strategy for osteosarcoma clinical trials.

  1. Postirradiation parosteal osteosarcoma. A case report

    SciTech Connect

    Masuda, S.; Murakawa, Y.

    1984-04-01

    A 16-year-old Japanese boy received a high dose of radiation for treatment of eosinophilic granuloma in the femur at the age of two years. He presented with a parosteal osteosarcoma 14 years later. Although a number of cases of postirradiation osteosarcoma have been reported, reports of parosteal osteosarcoma following radiation therapy are rare.

  2. Effects of aurothiomalate treatment on canine osteosarcoma in a murine xenograft model.

    PubMed

    Scharf, Valery F; Farese, James P; Siemann, Dietmar W; Abbott, Jeffrey R; Kiupel, Matti; Salute, Marc E; Milner, Rowan J

    2014-03-01

    Osteosarcoma is a highly fatal cancer, with most patients ultimately succumbing to metastatic disease. The purpose of this study was to evaluate the effects of the antirheumatoid drug aurothiomalate on canine and human osteosarcoma cells and on canine osteosarcoma growth and metastasis in a mouse xenograft model. We hypothesized that aurothiomalate would decrease osteosarcoma cell survival, tumor cellular proliferation, tumor growth, and metastasis. After performing clonogenic assays, aurothiomalate or a placebo was administered to 54 mice inoculated with canine osteosarcoma. Survival, tumor growth, embolization, metastasis, histopathology, cell proliferation marker Ki67, and apoptosis marker caspase-3 were compared between groups. Statistical analysis was carried out using the Kaplan-Meier method with the log-rank test and one-way analysis of variance with the Tukey's test or Dunn's method. Aurothiomalate caused dose-dependent inhibition of osteosarcoma cell survival (P<0.001) and decreased tumor growth (P<0.001). Pulmonary macrometastasis and Ki67 labeling were reduced with low-dose aurothiomalate (P=0.033 and 0.005, respectively), and tumor emboli and pulmonary micrometastases were decreased with high-dose aurothiomalate (P=0.010 and 0.011, respectively). There was no difference in survival, tumor development, ulceration, mitotic indices, tumor necrosis, nonpulmonary metastases, and caspase-3 labeling. Aurothiomalate treatment inhibited osteosarcoma cell survival and reduced tumor cell proliferation, growth, embolization, and pulmonary metastasis. Given aurothiomalate's established utility in canine and human medicine, our results suggest that this compound may hold promise as an adjunctive therapy for osteosarcoma. Further translational research is warranted to better characterize the dose response of canine and human osteosarcoma to aurothiomalate.

  3. Evaluation of CD146 as Target for Radioimmunotherapy against Osteosarcoma

    PubMed Central

    Bønsdorff, Tina B.; Abbas, Nasir; Bruland, Øyvind S.; Jonasdottir, Thora J.; Mælandsmo, Gunhild M.; Larsen, Roy H.

    2016-01-01

    Background Osteosarcoma is a rare form of cancer but with a substantial need for new active drugs. There is a particular need for targeted therapies to combat metastatic disease. One possible approach is to use an antibody drug conjugate or an antibody radionuclide conjugate to target the osteosarcoma metastases and circulating tumor cells. Herein we have evaluated a radiolabeled monoclonal antibody targeting CD146 both in vitro and in vivo. Methods and Results A murine monoclonal anti-CD146 IgG1 isotype antibody, named OI-3, was developed along with recombinant chimeric versions with human IgG1 or human IgG3 Fc sequences. Using flow cytometry, selective binding of OI-3 to human osteosarcoma cell lines OHS, KPDX and Saos-2 was confirmed. The results confirm a higher expression level of CD146 on human osteosarcoma cells than HER2 and EGFR; antigens targeted by commercially available therapeutic antibodies. The biodistribution of 125I-labeled OI-3 antibody variants was compared with 125I-labeled chimeric anti-EGFR antibody cetuximab in nude mice with subcutaneous OHS osteosarcoma xenografts. OI-3 was able to target CD146 expressing tumors in vivo and showed improved tumor to tissue targeting ratios compared with cetuximab. Subsequently, the three OI-3 variants were conjugated with p-SCN-Bn-DOTA and labeled with a more therapeutically relevant radionuclide, 177Lu, and their biodistributions were studied in the nude mouse model. The 177Lu-labeled OI-3 variants were stable and had therapeutically relevant biodistribution profiles. Dosimetry estimates showed higher absorbed radiation dose to tumor than all other tissues after administration of the chimeric IgG1 OI-3 variant. Conclusion Our results indicate that CD146 can be targeted in vivo by the radiolabeled OI-3 antibodies. PMID:27776176

  4. TP53 Mutations and Survival in Osteosarcoma Patients: A Meta-Analysis of Published Data

    PubMed Central

    Chen, Zhe; Guo, Jiayi; Zhang, Kun; Guo, Yanxing

    2016-01-01

    Several research groups have examined the association between TP53 mutations and prognosis in human osteosarcoma. However, the results were controversial. The purpose of this study was to evaluate the prognostic value of TP53 mutations in osteosarcoma patients. A meta-analysis was conducted with all eligible studies which quantitatively evaluated the relationship between TP53 mutations and clinical outcome of osteosarcoma patients. Eight studies with a total of 210 patients with osteosarcoma were included in this meta-analysis. The risk ratio (RR) with a 95% confidence interval (95% CI) was calculated to assess the effect of TP53 mutations on 2-year overall survival. The quantitative synthesis of 8 published studies showed that TP53 mutations were associated with 2-year overall survival in osteosarcoma patients. These data suggested that TP53 mutations had an unfavorable impact on 2-year overall survival when compared to the counterparts with wild type (WT) TP53 (RR: 1.79; 95% CI: 1.12 to 2.84; P = 0.01; I2 = 0%). There was no between-study heterogeneity. TP53 mutations are an effective prognostic marker for survival of patients with osteosarcoma. However, further large-scale prospective trials should be performed to clarify the prognostic value of TP53 mutations on 3- or 5-year survival in osteosarcoma patients. PMID:27239089

  5. TP53 Mutations and Survival in Osteosarcoma Patients: A Meta-Analysis of Published Data.

    PubMed

    Chen, Zhe; Guo, Jiayi; Zhang, Kun; Guo, Yanxing

    2016-01-01

    Several research groups have examined the association between TP53 mutations and prognosis in human osteosarcoma. However, the results were controversial. The purpose of this study was to evaluate the prognostic value of TP53 mutations in osteosarcoma patients. A meta-analysis was conducted with all eligible studies which quantitatively evaluated the relationship between TP53 mutations and clinical outcome of osteosarcoma patients. Eight studies with a total of 210 patients with osteosarcoma were included in this meta-analysis. The risk ratio (RR) with a 95% confidence interval (95% CI) was calculated to assess the effect of TP53 mutations on 2-year overall survival. The quantitative synthesis of 8 published studies showed that TP53 mutations were associated with 2-year overall survival in osteosarcoma patients. These data suggested that TP53 mutations had an unfavorable impact on 2-year overall survival when compared to the counterparts with wild type (WT) TP53 (RR: 1.79; 95% CI: 1.12 to 2.84; P = 0.01; I (2) = 0%). There was no between-study heterogeneity. TP53 mutations are an effective prognostic marker for survival of patients with osteosarcoma. However, further large-scale prospective trials should be performed to clarify the prognostic value of TP53 mutations on 3- or 5-year survival in osteosarcoma patients.

  6. Osteosarcoma in Baboons (Papio spp).

    PubMed

    Mezzles, Marguerite J; Dick, Edward J; Owston, Michael A; Bauer, Cassondra

    2015-04-01

    Bone neoplasms in baboons (Papio spp) are rare, with only one confirmed case of osteosarcoma previously described in the literature. Over a 12-y period, 6 baboons at a national primate research center presented with naturally occurring osteosarcoma; 3 lesions affected the appendicular skeleton, and the remaining 3 were in the head (skull and mandible). The 6 cases presented were identified in members of a large outdoor-housed breeding colony. The subjects were not genetically related or exposed to the same research conditions. Diagnoses were made based on the presentation and radiographic findings, with histologic confirmation.

  7. On tests of equal effect per fraction in microcolony assays of survival after fractionated irradiations.

    PubMed

    Taylor, J M

    1985-01-01

    H. D. Thames, Jr. and H. R. Withers [Br. J. Radiol. 53, 1071-1077 (1980)] propose a test of an equal effect per fraction in microcolony assays after fractionated radiation, in which the total effect is measured by counting microcolonies derived from surviving cells in a tissue. The factors considered to influence the cytocidal effect per fraction are incomplete repair, repopulation, and synchrony. The statistics used in the method are criticized and conditions are given under which the test should not be used. An alternative method of testing for an equal effect per fraction is proposed. The pros and cons of each test are discussed and compared using some mouse jejunal crypt cell survival data.

  8. Viability of 3h grown bacterial micro-colonies after direct Raman identification.

    PubMed

    Mathey, R; Dupoy, M; Espagnon, I; Leroux, D; Mallard, F; Novelli-Rousseau, A

    2015-02-01

    Clinical diagnostics in routine microbiology still mostly relies on bacterial growth, a time-consuming process that prevents test results to be used directly as key decision-making elements for therapeutic decisions. There is some evidence that Raman micro-spectroscopy provides clinically relevant information from a limited amount of bacterial cells, thus holding the promise of reduced growth times and accelerated result delivery. Indeed, bacterial identification at the species level directly from micro-colonies at an early time of growth (6h) directly on their growth medium has been demonstrated. However, such analysis is suspected to be partly destructive and could prevent the further growth of the colony needed for other tests, e.g. antibiotic susceptibility testing (AST). In the present study, we evaluated the effect of the powerful laser excitation used for Raman identification on micro-colonies probed after very short growth times. We show here, using envelope integrity markers (Syto 9 and Propidium Iodide) directly on ultra-small micro-colonies of a few tens of Escherichia coli and Staphylococcus epidermidis cells (3h growth time), that only the cells that are directly impacted by the laser lose their membrane integrity. Growth kinetics experiments show that the non-probed surrounding cells are sometimes also affected but that the micro-colonies keep their ability to grow, resulting in normal aspect and size of colonies after 15h of growth. Thus, Raman spectroscopy could be used for very early (<3h) identification of grown micro-organisms without impairing further antibiotics susceptibility characterization steps.

  9. Efficacy of glycogen synthase kinase-3β targeting against osteosarcoma via activation of β-catenin

    PubMed Central

    Yamamoto, Norio; Nishida, Hideji; Hayashi, Katsuhiro; Kimura, Hiroaki; Takeuchi, Akihiko; Miwa, Shinji; Igarashi, Kentaro; Kato, Takashi; Aoki, Yu; Higuchi, Takashi; Hirose, Mayumi; Hoffman, Robert M; Minamoto, Toshinari; Tsuchiya, Hiroyuki

    2016-01-01

    Development of innovative more effective therapy is required for refractory osteosarcoma patients. We previously established that glycogen synthase kinase-3β (GSK- 3β) is a therapeutic target in various cancer types. In the present study, we explored the therapeutic efficacy of GSK-3β inhibition against osteosarcoma and the underlying molecular mechanisms in an orthotopic mouse model. Expression and phosphorylation of GSK-3β in osteosarcoma and normal osteoblast cell lines was examined, together with efficacy of GSK-3β inhibition on cell survival, proliferation and apoptosis and on the growth of orthotopically-transplanted human osteosarcoma in nude mice. We also investigated changes in expression, phosphorylation and co-transcriptional activity of β-catenin in osteosarcoma cells following GSK-3β inhibition. Expression of the active form of GSK- 3β (tyrosine 216-phosphorylated) was higher in osteosarcoma than osteoblast cells. Inhibition of GSK-3β activity by pharmacological inhibitors or of its expression by RNA interference suppressed proliferation of osteosarcoma cells and induced apoptosis. Treatment with GSK-3β-specific inhibitors attenuated the growth of orthotopic osteosaroma in mice. Inhibition of GSK-3β reduced phosphorylation at GSK- 3β-phospho-acceptor sites in β-catenin and increased β-catenin expression, nuclear localization and co-transcriptional activity. These results suggest the efficacy of GSK-3β inhibitors is associated with activation of β-catenin, a putative tumor suppressor in bone and soft tissue sarcoma and an important component of osteogenesis. Our study thereby demonstrates a critical role for GSK-3β in sustaining survival and proliferation of osteosarcoma cells, and identifies this kinase as a potential therapeutic target against osteosarcoma. PMID:27780915

  10. A novel denitrifying methanotroph of the NC10 phylum and its microcolony.

    PubMed

    He, Zhanfei; Cai, Chaoyang; Wang, Jiaqi; Xu, Xinhua; Zheng, Ping; Jetten, Mike S M; Hu, Baolan

    2016-09-01

    The NC10 phylum is a candidate phylum of prokaryotes and is considered important in biogeochemical cycles and evolutionary history. NC10 members are as-yet-uncultured and are difficult to enrich, and our knowledge regarding this phylum is largely limited to the first species 'Candidatus Methylomirabilis oxyfera' (M. oxyfera). Here, we enriched NC10 members from paddy soil and obtained a novel species of the NC10 phylum that mediates the anaerobic oxidation of methane (AOM) coupled to nitrite reduction. By comparing the new 16S rRNA gene sequences with those already in the database, this new species was found to be widely distributed in various habitats in China. Therefore, we tentatively named it 'Candidatus Methylomirabilis sinica' (M. sinica). Cells of M. sinica are roughly coccus-shaped (0.7-1.2 μm), distinct from M. oxyfera (rod-shaped; 0.25-0.5 × 0.8-1.1 μm). Notably, microscopic inspections revealed that M. sinica grew in honeycomb-shaped microcolonies, which was the first discovery of microcolony of the NC10 phylum. This finding opens the possibility to isolate NC10 members using microcolony-dependent isolation strategies.

  11. A novel denitrifying methanotroph of the NC10 phylum and its microcolony

    PubMed Central

    He, Zhanfei; Cai, Chaoyang; Wang, Jiaqi; Xu, Xinhua; Zheng, Ping; Jetten, Mike S. M.; Hu, Baolan

    2016-01-01

    The NC10 phylum is a candidate phylum of prokaryotes and is considered important in biogeochemical cycles and evolutionary history. NC10 members are as-yet-uncultured and are difficult to enrich, and our knowledge regarding this phylum is largely limited to the first species ‘Candidatus Methylomirabilis oxyfera’ (M. oxyfera). Here, we enriched NC10 members from paddy soil and obtained a novel species of the NC10 phylum that mediates the anaerobic oxidation of methane (AOM) coupled to nitrite reduction. By comparing the new 16S rRNA gene sequences with those already in the database, this new species was found to be widely distributed in various habitats in China. Therefore, we tentatively named it ‘Candidatus Methylomirabilis sinica’ (M. sinica). Cells of M. sinica are roughly coccus-shaped (0.7–1.2 μm), distinct from M. oxyfera (rod-shaped; 0.25–0.5 × 0.8–1.1 μm). Notably, microscopic inspections revealed that M. sinica grew in honeycomb-shaped microcolonies, which was the first discovery of microcolony of the NC10 phylum. This finding opens the possibility to isolate NC10 members using microcolony-dependent isolation strategies. PMID:27582299

  12. A novel denitrifying methanotroph of the NC10 phylum and its microcolony

    NASA Astrophysics Data System (ADS)

    He, Zhanfei; Cai, Chaoyang; Wang, Jiaqi; Xu, Xinhua; Zheng, Ping; Jetten, Mike S. M.; Hu, Baolan

    2016-09-01

    The NC10 phylum is a candidate phylum of prokaryotes and is considered important in biogeochemical cycles and evolutionary history. NC10 members are as-yet-uncultured and are difficult to enrich, and our knowledge regarding this phylum is largely limited to the first species ‘Candidatus Methylomirabilis oxyfera’ (M. oxyfera). Here, we enriched NC10 members from paddy soil and obtained a novel species of the NC10 phylum that mediates the anaerobic oxidation of methane (AOM) coupled to nitrite reduction. By comparing the new 16S rRNA gene sequences with those already in the database, this new species was found to be widely distributed in various habitats in China. Therefore, we tentatively named it ‘Candidatus Methylomirabilis sinica’ (M. sinica). Cells of M. sinica are roughly coccus-shaped (0.7–1.2 μm), distinct from M. oxyfera (rod-shaped; 0.25–0.5 × 0.8–1.1 μm). Notably, microscopic inspections revealed that M. sinica grew in honeycomb-shaped microcolonies, which was the first discovery of microcolony of the NC10 phylum. This finding opens the possibility to isolate NC10 members using microcolony-dependent isolation strategies.

  13. VIBRIO CHOLERAE EL TOR TCPA CRYSTAL STRUCTURE AND MECHANISM FOR PILUS-MEDIATED MICROCOLONY FORMATION

    PubMed Central

    Lim, Mindy S.; Ng, Dixon; Zong, Stuart; Arvai, Andrew S.; Taylor, Ronald K.; Tainer, John A.; Craig, Lisa

    2010-01-01

    Type IV pili (T4P) are critical to virulence for Vibrio cholerae and other bacterial pathogens. Among their diverse functions, T4P mediate microcolony formation, which protects the bacteria from host defenses and concentrates secreted toxins. The T4P of the two V. cholerae disease biotypes, classical and El Tor, share 81% identity in their TcpA subunits, yet these filaments differ in their interaction patterns as assessed by electron microscopy. To understand the molecular basis for pilus-mediated microcolony formation, we solved a 1.5 Å resolution crystal structure of N-terminally-truncated El Tor TcpA and compared it to that of classical TcpA. Residues that differ between the two pilins are located on surface-exposed regions of the TcpA subunits. By iteratively changing these non-conserved amino acids in classical TcpA to their respective residues in El Tor TcpA, we identified residues that profoundly affect pilus:pilus interaction patterns and bacterial aggregation. These residues lie on either the protruding D-region of the TcpA subunit or in a cavity between pilin subunits in the pilus filament. Our results support a model whereby pili interact via intercalation of surface protrusions on one filament into depressions between subunits on adjacent filaments as a means to hold V. cholerae cells together in microcolonies. PMID:20545841

  14. Bacterial haptotaxis: Effect of auto-attraction and bacterial motility on microcolony formation

    NASA Astrophysics Data System (ADS)

    Beckerman, Bernard; Zhao, Kun; Wong, Gerard C. L.; Luijten, Erik

    Recent work has demonstrated that surface-adhered Pseudomonas aeruginosa tend to self-organize into microcolonies using a positive-feedback mechanism mediated by the exopolysaccharide Psl, which the bacteria secrete as they traverse the surface. We elucidate this colony-nucleation process and explore how it is influenced by the deposition rate of Psl and by bacterial motility. A detailed analysis of the data presented in our earlier study, in combination with additional simulations, provides further insight into the exploratory strategy of P. aeruginosa. Specifically, the isogenic bacterial population is found to exhibit polyphenic motility. As a result, the bacterial population splits into two distinct subpopulations when depositing Psl, those that become trapped in their self-deposited Psl and those that move sufficiently quickly to escape their Psl beds and explore the surface. We perform computer simulations in which we adjust the relative prevalence of these subpopulations by varying the Psl deposition rate and find that there is a trade-off between surface exploration, microcolony diversity and microcolony fortification.

  15. PLA2G16 promotes osteosarcoma metastasis and drug resistance via the MAPK pathway.

    PubMed

    Li, Lin; Liang, Shoulei; Wasylishen, Amanda R; Zhang, Yanqin; Yang, Xueli; Zhou, Bingzheng; Shan, Luling; Han, Xiuxin; Mu, Tianyang; Wang, Guowen; Xiong, Shunbin

    2016-04-05

    The prognosis of metastatic osteosarcoma is dismal and a better understanding of the mechanisms underlying disease progression is essential to improve treatment options and patient outcomes. We previously demonstrated Pla2g16 overexpression in mouse osteosarcoma contributes to metastasis phenotypes and increased expression of PLA2G16 is associated with metastasis and poor prognosis in human tumors. To further examine the mechanisms through which PLA2G16 contributes to human osteosarcoma metastasis and explore the potential of PLA2G16 as a therapeutic target in osteosarcoma, we generated a panel of human osteosarcoma cell lines expressing different levels of PLA2G16. The functional analyses of these cell lines demonstrated high levels of PLA2G16 expression increased osteosarcoma cell migration, invasion, clonogenic survival, and anchorage-independent colony formation. Importantly, this activity was dependent on the phospholipase activity of PLA2G16. Additionally, PLA2G16 overexpression decreased the sensitivity of cells to a panel of chemotherapeutic agents. Analysis of downstream pathways revealed the pro-metastasis functions of PLA2G16 were mediated through the MAPK pathway, as knockdown of PLA2G16 decreased ERK1/2 phosphorylation and pharmacological inhibition of MEK significantly repressed PLA2G16 mediated cell migration and clonogenic survival. Furthermore, PLA2G16 overexpression promoted xenograft tumor growth in vivo, and these tumors exhibit increased ERK1/2 phosphorylation. Lastly, the expression of PLA2G16 is strongly correlated with the increased ERK1/2 phosphorylation in human osteosarcoma samples, and the combined lesions are associated with reduced overall and metastasis-free survival. Collectively, these results demonstrate increased PLA2G16 expression activates the MAPK pathway to enhance osteosarcoma metastasis and may be a novel therapeutic target for these cancers.

  16. The role of CTLA-4 and PD-1 in anti-tumor immune response and their potential efficacy against osteosarcoma.

    PubMed

    Wang, Sheng-Dong; Li, Heng-Yuan; Li, Bing-Hao; Xie, Tao; Zhu, Ting; Sun, Ling-Ling; Ren, Hai-Yong; Ye, Zhao-Ming

    2016-09-01

    Immunotherapy is proved to be a promising therapeutic strategy against human malignancies. Evasion of immune surveillance is considered to be a major factor of malignant progression. Inhibitory receptors, especially CTLA-4 and PD-1, are found to play critical roles in the mediation of anti-tumor immune efficacy. Thus, antibodies targeting these immune checkpoints have emerged as the attractive treatment approaches to those patients with cancer. Osteosarcoma is highly malignant and current treatment remains a challenge, especially for those patients with metastasis. Despite some achievements, the effect of immunotherapy against osteosarcoma is still unsatisfactory. The present review attempts to show the role and mechanism of CTLA-4 and PD-1 in immune response and summarize the recent findings related to the effect of inhibitory receptor antibodies on the immune response against tumors, especially osteosarcoma, and the correlation between PD-1 or/and CTLA-4 expression and outcome of osteosarcoma patients. We further discuss the utilization of the combination therapy against osteosarcoma.

  17. Role of the WWOX tumor suppressor gene in bone homeostasis and the pathogenesis of osteosarcoma

    PubMed Central

    Del Mare, Sara; Kurek, Kyle C; Stein, Gary S; Lian, Jane B; Aqeilan, Rami I

    2011-01-01

    Osteosarcoma is the most common primary bone malignancy in children with unknown etiology and often with poor clinical outcome. In recent years, a critical role has emerged for the WW domain-containing oxidoreductase (WWOX) in osteosarcoma and bone biology. WWOX is a tumor suppressor that is deleted or attenuated in most human tumors. Wwox-deficient mice develop osteosarcoma and a bone metabolic disease characterized by hypocalcemia and osteopenia. Studies of human osteosarcomas have revealed that the WWOX gene is deleted in 30% of cases and WWOX protein is absent or reduced in ∼60% of tumors. Further, WWOX levels are attenuated in the majority of osteosarcoma cells, in which ectopic expression is associated with reduced proliferation, migration, invasion and tumorigenicity. At the molecular level, WWOX associates with RUNX2 and suppresses its transcriptional activity in osteoblasts and in cancer cells. This review provides new insights on the current knowledge of the spectrum of WWOX activities and future directions for the role of WWOX in bone biology and osteosarcoma. PMID:21731849

  18. Role of the WWOX tumor suppressor gene in bone homeostasis and the pathogenesis of osteosarcoma.

    PubMed

    Del Mare, Sara; Kurek, Kyle C; Stein, Gary S; Lian, Jane B; Aqeilan, Rami I

    2011-01-01

    Osteosarcoma is the most common primary bone malignancy in children with unknown etiology and often with poor clinical outcome. In recent years, a critical role has emerged for the WW domain-containing oxidoreductase (WWOX) in osteosarcoma and bone biology. WWOX is a tumor suppressor that is deleted or attenuated in most human tumors. Wwox-deficient mice develop osteosarcoma and a bone metabolic disease characterized by hypocalcemia and osteopenia. Studies of human osteosarcomas have revealed that the WWOX gene is deleted in 30% of cases and WWOX protein is absent or reduced in ∼60% of tumors. Further, WWOX levels are attenuated in the majority of osteosarcoma cells, in which ectopic expression is associated with reduced proliferation, migration, invasion and tumorigenicity. At the molecular level, WWOX associates with RUNX2 and suppresses its transcriptional activity in osteoblasts and in cancer cells. This review provides new insights on the current knowledge of the spectrum of WWOX activities and future directions for the role of WWOX in bone biology and osteosarcoma.

  19. CTGF promotes osteosarcoma angiogenesis by regulating miR-543/angiopoietin 2 signaling.

    PubMed

    Wang, Li-Hong; Tsai, Hsiao-Chi; Cheng, Yu-Che; Lin, Chih-Yang; Huang, Yuan-Li; Tsai, Chun-Hao; Xu, Guo-Hong; Wang, Shih-Wei; Fong, Yi-Chin; Tang, Chih-Hsin

    2017-04-10

    Osteosarcoma is the most common primary solid tumor of bone. It has a high metastatic potential and occurs predominantly in adolescents and young adults. Angiopoietin 2 (Angpt2) is a key regulator in tumor angiogenesis, facilitating tumor growth and metastasis. Connective tissue growth factor (CTGF, also known as CCN2), is a cysteine-rich protein that has been reported to promote metastasis of osteosarcoma. However, the effect of CTGF on Angpt2 regulation and angiogenesis in human osteosarcoma remains largely unknown. We found that overexpression of CTGF in osteosarcoma cells increased Angpt2 production and induced angiogenesis, in vitro and in vivo. Our findings demonstrate that CTGF-enhanced Angpt2 expression and angiogenesis is mediated by the phospholipase C (PLC)/protein kinase C (PKCδ) signaling pathway. Moreover, endogenous microRNA-543 (miR-543) expression was negatively regulated by CTGF via the PLC/PKCδ pathway. We also provide evidence showing clinical significance between CTGF, Angpt2, and miR-543 as well as tumor staging in human osteosarcoma tissue. CTGF may serve as a therapeutic target in the process of osteosarcoma metastasis and angiogenesis.

  20. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis

    PubMed Central

    Moriarity, Branden S; Otto, George M; Rahrmann, Eric P; Rathe, Susan K; Wolf, Natalie K; Weg, Madison T; Manlove, Luke A; LaRue, Rebecca S; Temiz, Nuri A; Molyneux, Sam D; Choi, Kwangmin; Holly, Kevin J; Sarver, Aaron L; Scott, Milcah C; Forster, Colleen L; Modiano, Jaime F; Khanna, Chand; Hewitt, Stephen M; Khokha, Rama; Yang, Yi; Gorlick, Richard; Dyer, Michael A; Largaespada, David A

    2016-01-01

    Osteosarcomas are sarcomas of the bone, derived from osteoblasts or their precursors, with a high propensity to metastasize. Osteosarcoma is associated with massive genomic instability, making it problematic to identify driver genes using human tumors or prototypical mouse models, many of which involve loss of Trp53 function. To identify the genes driving osteosarcoma development and metastasis, we performed a Sleeping Beauty (SB) transposon-based forward genetic screen in mice with and without somatic loss of Trp53. Common insertion site (CIS) analysis of 119 primary tumors and 134 metastatic nodules identified 232 sites associated with osteosarcoma development and 43 sites associated with metastasis, respectively. Analysis of CIS-associated genes identified numerous known and new osteosarcoma-associated genes enriched in the ErbB, PI3K-AKT-mTOR and MAPK signaling pathways. Lastly, we identified several oncogenes involved in axon guidance, including Sema4d and Sema6d, which we functionally validated as oncogenes in human osteosarcoma. PMID:25961939

  1. Down-regulation of microRNA152 is associated with the diagnosis and prognosis of patients with osteosarcoma

    PubMed Central

    Wang, Nai-Guo; Wang, Da-Chuan; Tan, Bing-Yi; Wang, Feng; Yuan, Ze-Nong

    2015-01-01

    Potential values of microRNA152 (miR-152) as a serum diagnostic and prognostic biomarker have not been determined in human osteosarcoma. By detecting the expression of miR-152 among 80 osteosarcoma patients, 20 periostitis patients and 20 healthy individuals using qRT-PCR, we aimed to explore the clinical significance of miR-152 in osteosarcoma patients. The expression of miR-152 was significantly decreased in patients with osteosarcoma compared to patients with periostitis (P<0.01) and healthy controls (P<0.01). The relationship between clinicopathologic characteristics and miR-152 was analyzed by chi-square test. The outcome indicated that miR-152 might be linked with the development of osteosarcoma. Moreover, the receiver operating characteristic (ROC) curve was performed to estimate the diagnostic value of miR-152. The result demonstrated that miR-152 might be a promising diagnostic marker of osteosarcoma with an AUC of 0.956, combing with 92.5% specificity and 96.2% sensitivity. The relationship between miR-152 and overall survival of osteosarcoma patients was analyzed by Kaplan-Meier curve and log rank test. As a result, the survival time of patients with low miR-152 expression was significantly shorter than those with high miR-152 expression (P<0.001). Then Cox regression analysis was used to estimate the prognostic value of miR-152 in osteosarcoma. The outcomes showed that low miR-152 expression (P=0.004) might be a potential independent prognostic marker for osteosarcoma patients. These findings suggested that down-regulation of miR-152 could be considered as a predictor for diagnosis and prognosis of osteosarcoma patients. PMID:26464682

  2. WWOX and p53 Dysregulation Synergize to Drive the Development of Osteosarcoma.

    PubMed

    Del Mare, Sara; Husanie, Hussam; Iancu, Ortal; Abu-Odeh, Mohammad; Evangelou, Konstantinos; Lovat, Francesca; Volinia, Stefano; Gordon, Jonathan; Amir, Gail; Stein, Janet; Stein, Gary S; Croce, Carlo M; Gorgoulis, Vassilis; Lian, Jane B; Aqeilan, Rami I

    2016-10-15

    Osteosarcoma is a highly metastatic form of bone cancer in adolescents and young adults that is resistant to existing treatments. Development of an effective therapy has been hindered by very limited understanding of the mechanisms of osteosarcomagenesis. Here, we used genetically engineered mice to investigate the effects of deleting the tumor suppressor Wwox selectively in either osteoblast progenitors or mature osteoblasts. Mice with conditional deletion of Wwox in preosteoblasts (Wwox(Δosx1)) displayed a severe inhibition of osteogenesis accompanied by p53 upregulation, effects that were not observed in mice lacking Wwox in mature osteoblasts. Deletion of p53 in Wwox(Δosx1) mice rescued the osteogenic defect. In addition, the Wwox;p53(Δosx1) double knockout mice developed poorly differentiated osteosarcomas that resemble human osteosarcoma in histology, location, metastatic behavior, and gene expression. Strikingly, the development of osteosarcomas in these mice was greatly accelerated compared with mice lacking p53 only. In contrast, combined WWOX and p53 inactivation in mature osteoblasts did not accelerate osteosarcomagenesis compared with p53 inactivation alone. These findings provide evidence that a WWOX-p53 network regulates normal bone formation and that disruption of this network in osteoprogenitors results in accelerated osteosarcoma. The Wwox;p53(Δosx1) double knockout establishes a new osteosarcoma model with significant advancement over existing models. Cancer Res; 76(20); 6107-17. ©2016 AACR.

  3. Determination of the apoptotic index in osteosarcoma tissue and its relationship with patients prognosis

    PubMed Central

    2013-01-01

    Background Nowadays it remains a controversial issue whether a correlation exists between the apoptosis rate of tumor tissue and the prognosis of the patients. We aimed to explore the prognostic significance of apoptosis index of human osteosarcoma tissue. Methods The technique of terminal DNA breakpoints in situ 3 - hydroxy end labeling (TUNEL) was used to detect and analysis apoptosis index in 56 osteosarcoma specimens. The relationships between apoptosis index of tumor tissue and long term survival of patients as well as pathologic classification, tumor clinical stages, tumor size and level of serum alkaline phosphatase were analyzed. Results Our studies showed the cases with high apoptosis index had significantly longer survival time. Apoptosis index in osteosarcoma tissue was correlated with tumor size and level of serum alkaline phosphatase but not with pathologic classifications and clinical stages of tumor. Conclusion Our results demonstrated that apoptosis index of osteosarcoma tissue combined with serum alkaline phosphatase could used as valid indicators to predicate the malignant level and prognosis of osteosarcoma cases, which would contribute to enhance efficacy of clinical treatments for osteosarcoma. PMID:23734671

  4. Computational modeling and experimental characterization of bacterial microcolonies for rapid detection using light scattering

    NASA Astrophysics Data System (ADS)

    Bai, Nan

    A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have

  5. Crosstalk between Beclin-1-dependent autophagy and caspase-dependent apoptosis induced by tanshinone IIA in human osteosarcoma MG-63 cells

    PubMed Central

    Ma, Kun; Zhang, Chuan; Huang, Man-Yu; Guo, Yan-Xing; Hu, Guo-Qiang

    2016-01-01

    The aim of the present study was to ascertain whether or not autophagy is induced by tanshinone IIA (TanIIA), and to explore the crosstalk between autophagy and apoptosis in regards to the antitumor effects of TanIIA on MG-63 cells and the potential mechanism. MG-63 cells were cultured in vitro with various concentrations of TanIIA (0, 2.5, 5, 10 and 20 mg/l) for 0, 24, 48 and 72 h, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay was used to evaluate the inhibition of the proliferation of osteosarcoma MG-63 cells by TanIIA or in the presence/absence of chloroquine (CQ). Autophagic vacuoles and characteristic autophagosomes were observed by transmission electron microscopy (TEM). TanIIA-induced autophagy in MG-63 cells was confirmed by GFP-LC3 punctate fluorescence. The expression levels of apoptosis-related proteins caspase-3, caspase-8, caspase-9 and cleaved-PARP and autophagy-related proteins LC3II/LC3I and Beclin-1 were detected by western blotting. FITC-Annexin V/propidium iodide (PI) staining, flow cytometry and Hoechst 33258 staining were used to analyze the apoptotic rate. Fluorescence intensity of reactive oxygen species (ROS) was examined under a fluorescence microscope using an analysis software system. Cell proliferation was obviously inhibited by TanIIA in a dose- and time-dependent manner. Generation of autophagy was triggered by TanIIA (0–20 mg/l) treatment, and in a Beclin-1-dependent manner. Compared with the control group, the apoptosis ratio following treatment with 2.5 mg/l TanIIA failed to achieve statistical significance. Expression of caspase-3, -8 and -9, and cleaved-PARP in the other groups was gradually enhanced in dose-dependent manner. Our analysis also suggested that the influence of autophagy on TanIIA cytotoxicity had a phase effect; with low-dose drugs and shorter treatment periods, autophagy functioned as a damage repair mechanism. In conrast, when the cells were treated with higher doses of Tan

  6. Osteosarcoma in a woma python (Aspidites ramsayi).

    PubMed

    Cowan, M L; Monks, D J; Raidal, S R

    2011-12-01

    Osteosarcoma of the axial skeleton in an 18-month-old woma python (Aspidites ramsayi) is described. A subcutaneous mass overlying the costal arches enlarged progressively over a period of 5 months and, in that time, became ulcerated and more invasive of surrounding tissues. A punch biopsy of the lesion under general anaesthesia provided tissue for histopathology and diagnosis of low-grade osteosarcoma.

  7. MiR-193a-3p and miR-193a-5p suppress the metastasis of human osteosarcoma cells by down-regulating Rab27B and SRR, respectively.

    PubMed

    Pu, Youguang; Zhao, Fangfang; Cai, Wenjing; Meng, Xianghui; Li, Yinpeng; Cai, Shanbao

    2016-04-01

    MicroRNAs have been identified as key players in the development and progression of osteosarcoma, which is the most common primary malignancy of bone. Sequencing-based miR-omic and quantitative real-time PCR analyses suggested that the expression of miR-193a-3p and miR-193a-5p was decreased by DNA methylation at their promoter region in a highly metastatic osteosarcoma cell line (MG63.2) relative to their expression in the less metastatic MG63 cell line. Further wound-healing and invasion assays demonstrated that both miR-193a-3p and miR-193a-5p suppressed osteosarcoma cell migration and invasion. Moreover, introducing miR-193a-3p and miR-193a-5p mimics into MG63.2 cells or antagomiRs into MG63 cells confirmed their critical roles in osteosarcoma metastasis. Additionally, bioinformatics prediction along with biochemical assay results clearly suggested that the secretory small GTPase Rab27B and serine racemase (SRR) were direct targets of miR-193a-3p and miR-193a-5p, respectively. These two targets are indeed involved in the miR-193a-3p- and miR-193a-5p-induced suppression of osteosarcoma cell migration and invasion. MiR-193a-3p and miR-193a-5p play important roles in osteosarcoma metastasis through down-regulation of the Rab27B and SRR genes and therefore may serve as useful biomarkers for the diagnosis of osteosarcoma and as potential candidates for the treatment of metastatic osteosarcoma.

  8. Proteomic Technologies for the Study of Osteosarcoma

    PubMed Central

    Byrum, Stephanie D.; Washam, Charity L.; Montgomery, Corey O.; Tackett, Alan J.; Suva, Larry J.

    2012-01-01

    Osteosarcoma is the most common primary bone cancer of children and is established during stages of rapid bone growth. The disease is a consequence of immature osteoblast differentiation, which gives way to a rapidly synthesized incompletely mineralized and disorganized bone matrix. The mechanism of osteosarcoma tumorogenesis is poorly understood, and few proteomic studies have been used to interrogate the disease thus far. Accordingly, these studies have identified proteins that have been known to be associated with other malignancies, rather than being osteosarcoma specific. In this paper, we focus on the growing list of available state-of-the-art proteomic technologies and their specific application to the discovery of novel osteosarcoma diagnostic and therapeutic targets. The current signaling markers/pathways associated with primary and metastatic osteosarcoma that have been identified by early-stage proteomic technologies thus far are also described. PMID:22550414

  9. Deciphering signaling networks in osteosarcoma pathobiology

    PubMed Central

    Adamopoulos, Christos; Gargalionis, Antonios N; Basdra, Efthimia K

    2016-01-01

    Osteosarcoma is the most frequent type of primary bone tumors among children and adolescents. During the past years, little progress has been made regarding prognosis of osteosarcoma patients, especially for those with metastatic disease. Genomic instability and gene alterations are common, but current data do not reveal a consistent and repeatable pattern of osteosarcoma development, thus paralleling the tumor's high heterogeneity. Critical signal transduction pathways have been implicated in osteosarcoma pathobiology and are being evaluated as therapeutic targets, including receptor activator for nuclear factor-κB (RANK), Wnt, Notch, phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin, and mechanotransduction pathways. Herein, we recapitulate and discuss recent advances in the context of molecular mechanisms and signaling networks that contribute to osteosarcoma progression and metastasis, towards patient-tailored and novel-targeted treatments. PMID:27190271

  10. Canine osteosarcoma cells exhibit resistance to aurora kinase inhibitors.

    PubMed

    Cannon, C M; Pozniak, J; Scott, M C; Ito, D; Gorden, B H; Graef, A J; Modiano, J F

    2015-03-01

    We evaluated the effect of Aurora kinase inhibitors AZD1152 and VX680 on canine osteosarcoma cells. Cytotoxicity was seen in all four cell lines; however, half-maximal inhibitory concentrations were significantly higher than in human leukaemia and canine lymphoma cells. AZD1152 reduced Aurora kinase B phosphorylation, indicating resistance was not because of failure of target recognition. Efflux mediated by ABCB1 and ABCG2 transporters is one known mechanism of resistance against these drugs and verapamil enhanced AZD1152-induced apoptosis; however, these transporters were only expressed by a small percentage of cells in each line and the effects of verapamil were modest, suggesting other mechanisms contribute to resistance. Our results indicate that canine osteosarcoma cells are resistant to Aurora kinase inhibitors and suggest that these compounds are unlikely to be useful as single agents for this disease. Further investigation of these resistance mechanisms and the potential utility of Aurora kinase inhibitors in multi-agent protocols is warranted.

  11. Spontaneous telangiectatic osteosarcoma in a rhesus macaque (Macaca mulatta).

    PubMed

    Goldschmidt, B; Calado, M I Z; Resende, F C; Caldas, R M; Pinto, L W; Lopes, C A A; França, F G O; Meireles, B S; Souza, I V

    2017-04-01

    Osteosarcoma (OS) is the most common type of bone cancer, especially in young. Telangiectatic osteosarcoma (TO) is a rare variant of OS, and hence, its occurrence, presentation, and prognosis are poorly understood. A 4-year-old female rhesus monkey presenting lameness and swelling was examined for a mass on the right humerus. Radiography revealed fracture and disorganized structure of bone tissue. Histopathological examination revealed malignant neoplasm composed of anaplastic osteoblasts, which invaded the bone marrow and surrounded blood-filled cysts in the epiphysis and diaphysis forming septa. Cytogenetic analysis showed aneuploid cells, supernumerary AgNORs, and a marker fragment. The neoplasm was diagnosed as TO. To our knowledge, the occurrence of TO and its cytogenetic analysis were reported for the first time in non-human primates.

  12. Spatial vulnerability: bacterial arrangements, microcolonies, and biofilms as responses to low rather than high phage densities.

    PubMed

    Abedon, Stephen T

    2012-05-01

    The ability of bacteria to survive and propagate can be dramatically reduced upon exposure to lytic bacteriophages. Study of this impact, from a bacterium's perspective, tends to focus on phage-bacterial interactions that are governed by mass action, such as can be observed within continuous flow or similarly planktonic ecosystems. Alternatively, bacterial molecular properties can be examined, such as specific phage‑resistance adaptations. In this study I address instead how limitations on bacterial movement, resulting in the formation of cellular arrangements, microcolonies, or biofilms, could increase the vulnerability of bacteria to phages. Principally: (1) Physically associated clonal groupings of bacteria can represent larger targets for phage adsorption than individual bacteria; and (2), due to a combination of proximity and similar phage susceptibility, individual bacteria should be especially vulnerable to phages infecting within the same clonal, bacterial grouping. Consistent with particle transport theory-the physics of movement within fluids-these considerations are suggestive that formation into arrangements, microcolonies, or biofilms could be either less profitable to bacteria when phage predation pressure is high or require more effective phage-resistance mechanisms than seen among bacteria not living within clonal clusters. I consider these ideas of bacterial 'spatial vulnerability' in part within a phage therapy context.

  13. Histone Deacetylase Inhibitor Trichostatin a Promotes the Apoptosis of Osteosarcoma Cells through p53 Signaling Pathway Activation

    PubMed Central

    Deng, Zhantao; Liu, Xiaozhou; Jin, Jiewen; Xu, Haidong; Gao, Qian; Wang, Yong; Zhao, Jianning

    2016-01-01

    Purpose: The purpose of this study was to investigate the profile of histone deacetylase (HDAC) activity and expression in osteosarcoma cells and tissues from osteosarcoma patients and to examine the mechanism by which a histone deacetylase (HDAC) inhibitor, Trichostatin A (TSA), promotes the apoptosis of osteosarcoma cells. Methods: HDAC activity and histone acetyltransferase (HAT) activity were determined in nuclear extracts of MG63 cells, hFOB 1.19 cells and tissues from 6 patients with primary osteosarcoma. The protein expression of Class I HDACs (1, 2, 3 and 8) and the activation of the p53 signaling pathway were examined by Western blot. Cell growth and apoptosis were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2H-tetrazolium bromide (MTT) assay and flow cytometry, respectively. Results: Nuclear HDAC activity and class I HDAC expression were significantly higher in MG63 cells than in hFOB 1.19 cells, and a similar trend was observed in the human osteosarcoma tissues compared with the paired adjacent non-cancerous tissues. TSA significantly inhibited the growth of MG63 cells and promoted apoptosis in a dose-dependent manner through p53 signaling pathway activation. Conclusion: Class I HDACs play a central role in the pathogenesis of osteosarcoma, and HDAC inhibitors may thus have promise as new therapeutic agents against osteosarcoma. PMID:27877082

  14. MicroRNA-199a-5p promotes tumour growth by dual-targeting PIAS3 and p27 in human osteosarcoma

    PubMed Central

    Wang, Chen; Ba, Ximing; Guo, Yu; Sun, Defang; Jiang, Haoyang; Li, Wentao; Huang, Zhen; Zhou, Guangxin; Wu, Sujia; Zhang, Junfeng; Chen, Jiangning

    2017-01-01

    Osteosarcoma (OS) is the most common primary bone malignancy and remains a leading cause of cancer-related deaths in adolescents. Emerging evidence indicates that microRNAs (miRNAs) are correlated with clinical and biological characteristics of OS. However, the involvement of miR-199a-5p in OS development remains unclear. In this study, we examined the function of miR-199a-5p in vitro and in vivo. The results showed that miR-199a-5p was significantly up-regulated in OS patient tissues and cells. The inhibition of miR-199a-5p led to a significant decrease in cell proliferation and tumour growth. We further demonstrated that miR-199a-5p could directly bind to the 3′UTRs of the mRNA of both PIAS3 and p27 and mediate a decrease in the protein levels of PIAS3 and p27, thereby stimulating STAT3 activation and cell cycle progression in OS cells. Rescue experiments of PIAS3 and p27 further revealed that PIAS3 and p27 were functional targets of miR-199a-5p. Moreover, enhancing the expressions of both PIAS3 and p27 using miR-199a-5p-targeted inhibitors in an OS xenograft model was shown to be a promising approach for OS clinical therapy. Our findings indicate that the pathway of miR-199a-5p targeting both PIAS3 and p27 is a possible mechanism that contributes to tumour growth in OS. PMID:28120918

  15. Ezrin and moesin expression in canine and feline osteosarcoma.

    PubMed

    Hlavaty, Juraj; Wolfesberger, Birgitt; Hauck, Marlene; Obermayer-Pietsch, Barbara; Fuchs-Baumgartinger, Andrea; Miller, Ingrid; Walter, Ingrid

    2016-11-30

    Biological features of canine osteosarcomas (OS) differ markedly from those found in feline and resemble more human osteosarcomas, in particular for their high rate of metastasis and poor prognosis. Ezrin, radixin and moesin are members of the ERM protein family and link the actin cytoskeleton with the cell membrane. Ezrin and moesin have been shown to be of prognostic significance in tumor progression due to their role in the metastatic process. The objective of this study was to analyze ezrin and moesin protein expression in a series of dog (n = 16) and cat (n = 8) osteosarcoma samples using immunohistochemistry and western blot techniques. We found that cat OS have a higher moesin expression compared to dog OS, however, the active phosphorylated forms of moesin and ezrin Tyr353 were more abundant in the dog samples. A statistically significant difference was found for the low and high immunohistochemical scores of ezrin and pan-phospho-ERM proteins between cat and dog. Although phospho-ezrin Thr567 was higher in feline OS, the membranous localization in dog OS samples indicates the presence of the biologically active form. Therefore, the observed differences in phosphorylated forms of ezrin and moesin status should be further studied to demonstrate if they are relevant for different biological behavior between dog and cat OS.

  16. Morphologic characterization of osteosarcoma growth on the chick chorioallantoic membrane

    PubMed Central

    2010-01-01

    Background The chick chorio-allantoic membrane (CAM) assay is a commonly used method for studying angiogenic or anti-angiogenic activities in vivo. The ease of access allows direct monitoring of tumour growth by biomicroscopy and the possibility to screen many samples in an inexpensive way. The CAM model provides a powerful tool to study effects of molecules, which interfere with physiological angiogenesis, or experimental tumours derived from cancer cell lines. We therefore screened eight osteosarcoma cell lines for their ability to form vascularized tumours on the CAM. Findings We implanted 3-5 million cells of human osteosarcoma lines (HOS, MG63, MNNG-HOS, OST, SAOS, SJSA1, U2OS, ZK58) on the CAM at day 10 of embryonic development. Tumour growth was monitored by in vivo biomicroscopy at different time points and tumours were fixed in paraformaldehyde seven days after cell grafting. The tissue was observed, photographed and selected cases were further analyzed using standard histology. From the eight cell lines the MNNG-HOS, U2OS and SAOS were able to form solid tumours when grafted on the CAM. The MNNG-HOS tumours showed the most reliable and consistent growth and were able to penetrate the chorionic epithelium, grow in the CAM stroma and induce a strong angiogenic response. Conclusions Our results show that the CAM assay is a useful tool for studying osteosarcoma growth. The model provides an excellent alternative to current rodent models and could serve as a preclinical screening assay for anticancer molecules. It might increase the speed and efficacy of the development of new drugs for the treatment of osteosarcoma. PMID:20202196

  17. MMP13, Birc2 (cIAP1) and Birc3 (cIAP2), Amplified on Chromosome 9, Collaborate with p53 Deficiency in Mouse Osteosarcoma Progression

    PubMed Central

    Ma, Ou; Cai, Wei-Wen; Zender, Lars; Dayaram, Tajhal; Shen, Jianhe; Herron, Alan J.; Lowe, Scott W.; Man, Tsz-Kwong; Lau, Ching C.; Donehower, Lawrence A.

    2009-01-01

    Osteosarcoma is the primary malignant cancer of bone and particularly affects adolescents and young adults, causing debilitation, and sometimes death. As a model for human osteosarcoma we have been studying p53+/− mice, which develop osteosarcoma at high frequency. To discover genes that cooperate with p53 deficiency in osteosarcoma formation we have integrated array comparative genomic hybridization, microarray expression analyses in mouse and human osteosarcomas, and functional assays. In this study we found seven frequent regions of copy number gain and loss in the mouse p53+/− osteosarcomas, but have focused on a recurrent amplification event on mouse chromosome 9A1. This amplicon is syntenic with a similar chromosome 11q22 amplicon identified in a number of human tumor types. Three genes on this amplicon, the matrix metalloproteinase gene MMP13, and the anti-apoptotic genes Birc2 (cIAP1), and Birc3 (cIAP2) show elevated expression in mouse and human osteosarcomas. We developed a functional assay using clonal osteosarcoma cell lines transduced with lentiviral shRNA vectors to show that downregulation of MMP13, Birc2, or Birc3 resulted in reduced tumor growth when transplanted into immunodeficient recipient mice. These experiments revealed that high MMP13 expression enhances osteosarcoma cell survival and that Birc2 and Birc3 also enhance cell survival, but only in osteosarcoma cells with the chromosome 9A1 amplicon. We conclude that the anti-apoptotic genes Birc2 and Birc3 are potential oncogenic drivers in the chromosome 9A1 amplicon. PMID:19276372

  18. Metformin displays in vitro and in vivo antitumor effect against osteosarcoma

    PubMed Central

    Ko, Yunmi; Choi, Aery; Lee, Minyoung

    2016-01-01

    Purpose Patients with unresectable, relapsed, or refractory osteosarcoma need a novel therapeutic agent. Metformin is a biguanide derivative used in the treatment of type II diabetes, and is recently gaining attention in cancer research. Methods We evaluated the effect of metformin against human osteosarcoma. Four osteosarcoma cell lines (KHOS/NP, HOS, MG-63, U-2 OS) were treated with metformin and cell proliferation was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle progression and apoptosis were evaluated using flow cytometric analysis, and migration and wound healing assay were performed. Fourteen female Balb/c-nude mice received KHOS/NP cell grafts in their thigh, and were allowed access to metformin containing water (2 mg/mL) ad libitum. Tumor volume was measured every 3–4 days for a period of 4 weeks. Results Metformin had a significant antiproliferative effect on human osteosarcoma cells. In particular, metformin inhibited the proliferation and migration of KHOS/NP cells by activation of AMP-activated protein kinase and consequent inhibition of the mammalian target of rapamycin pathway. It also inhibited the proliferation of cisplatin-resistant KHOS/NP clone cells. Analysis of KHOS/NP xenograft Balb/c-nude models indicated that metformin displayed potent in vivo antitumor effects. Conclusion Further studies are necessary to explore metformin's therapeutic potential and the possibilities for its use as an adjuvant agent for osteosarcoma. PMID:27721842

  19. The combined effects of a monotonous diet and exposure to thiamethoxam on the performance of bumblebee micro-colonies.

    PubMed

    Dance, C; Botías, C; Goulson, D

    2017-05-01

    There is a pressing need to better understand the factors contributing to declines of wild pollinators such as bumblebees. Many different contributors have been postulated including: loss of flower-rich habitats and nesting sites; monotonous diets; impacts of invasive pathogens; exposure to pesticides such as neonicotinoids. Past research has tended to investigate the impacts of these stressors in isolation, despite the increasing recognition that bees are simultaneously exposed to a combination of stressors, with potentially additive or synergistic effects. No studies to date have investigated the combined effects of a monotonous diet and exposure to pesticides. Using queenless micro-colonies of Bombus terrestris audax, we examined this interaction by providing bees with monofloral or polyfloral pollen that was either contaminated with field-realistic levels of thiamethoxam, a commonly used neonicotinoid, or not contaminated. Both treatments were found to have a significant effect on various parameters relating to micro-colony performance. Specifically, both pesticide-treated micro-colonies and those fed monofloral pollen grew more slowly than those given polyfloral pollen or pollen without pesticides. The two factors appeared to act additively. Micro-colonies given monofloral pollens also exhibited lower reproductive efforts and produced smaller drones. Although further research is needed to examine whether similar effects are found in whole colonies, these findings increase our understanding of the likely effects of multiple stressors associated with agricultural intensification on bee declines.

  20. 4-Methoxydalbergione suppresses growth and induces apoptosis in human osteosarcoma cells in vitro and in vivo xenograft model through down-regulation of the JAK2/STAT3 pathway

    PubMed Central

    Quang, Tran-Hong; Oh, Hyuncheol; Lee, Dong-Sung; Auh, Q-Schick; Kim, Eun-Cheol

    2016-01-01

    Although the heartwood of Dalbergia odorifera T. Chen (Leguminosae) is an important source of traditional Korean and Chinese medicines, the effects of novel compound methoxydalbergione (4-MD) isolated from Dalbergia odorifera was not reported. Herein, we investigated the effects of the 4-MD in vitro and in vivo against osteosarcoma cells and its molecular mechanisms. 4-MD inhibited the proliferation of osteosarcoma cells and induced apoptosis as evidenced by Annexin V + and TUNEL + cells. This apoptosis was accompanied by upregulation of apoptotic proteins (procaspase-3 and PARP), but downregulation of anti-apoptotic proteins (Bcl-2, Bcl-xL, and Survivin). 4-MD inhibited phosphorylation of JAK2 and STAT3 with the inactivation of mitogen-activated protein kinases (MAPKs) and CREB, and the upregulation of PTEN in osteosarcoma cells. Importantly, 4-MD reduced colony formation in soft agar and inhibited tumor growth in mice xenograft model in association with the reduced expression of PCNA, Ki67, p-STAT3, and Survivin. Taken together, the present study for the first time demonstrates that 4-MD exerts in vitro and in vivo anti-proliferative effects against osteosarcoma cells through the inhibition of the JAK2/STAT3 pathway, and suggest the potential for therapeutic application of 4-MD in the treatment of osteosarcoma. PMID:26755649

  1. Thin layer microcolony culture associated with PCR for early identification of Mycobacterium bovis

    PubMed Central

    do Rosário, Tatiana Reis; Dib, Cristina Corsi; Roxo, Eliana; Pinheiro, Sônia Regina; Vasconcellos, Silvio Arruda; Benites, Nilson Roberti

    2014-01-01

    The initial growth of mycobacteria from 49 samples of cattle and buffalo organs collected in commercial slaughterhouses was compared between modified Middlebrook 7H11 thin layer microcolony culture and Stonebrink medium used in the isolation of Mycobacterium bovis. Aliquots were decontaminated by Petroff’s method, processed and cultured in both media. The identity of the acid-fast bacilli stained by Ziehl-Neelsen was confirmed by PCR. Optical microscopy showed that results of the early observation of Mycobacterium bovis colonies in thin layer culture were similar to those obtained in macroscopic observation of the colonies in Stonebrink medium. However, early observation of the colonies enabled early confirmation by PCR, given the shorter time to the visualization of colonies when thin layer culture was used (between the 12nd and 25th day of culture). PMID:24948936

  2. Thin layer microcolony culture associated with PCR for early identification of Mycobacterium bovis.

    PubMed

    do Rosário, Tatiana Reis; Dib, Cristina Corsi; Roxo, Eliana; Pinheiro, Sônia Regina; Vasconcellos, Silvio Arruda; Benites, Nilson Roberti

    2014-01-01

    The initial growth of mycobacteria from 49 samples of cattle and buffalo organs collected in commercial slaughterhouses was compared between modified Middlebrook 7H11 thin layer microcolony culture and Stonebrink medium used in the isolation of Mycobacterium bovis. Aliquots were decontaminated by Petroff's method, processed and cultured in both media. The identity of the acid-fast bacilli stained by Ziehl-Neelsen was confirmed by PCR. Optical microscopy showed that results of the early observation of Mycobacterium bovis colonies in thin layer culture were similar to those obtained in macroscopic observation of the colonies in Stonebrink medium. However, early observation of the colonies enabled early confirmation by PCR, given the shorter time to the visualization of colonies when thin layer culture was used (between the 12(nd) and 25(th) day of culture).

  3. miR-125b suppresses the proliferation and migration of osteosarcoma cells through down-regulation of STAT3

    SciTech Connect

    Liu, Li-hong; Li, Hui; Li, Jin-ping; Zhong, Hui; Zhang, Han-chon; Chen, Jia; Xiao, Tao

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. Black-Right-Pointing-Pointer Ectopic restoration of miR-125b suppresses cell proliferation and migration in vitro. Black-Right-Pointing-Pointer STAT3 is the direct and functional downstream target of miR-125b. Black-Right-Pointing-Pointer STAT3 can bind to the promoter region of miR-125b and serves as a transactivator. -- Abstract: There is accumulating evidence that microRNAs are involved in multiple processes in development and tumor progression. Abnormally expressed miR-125b was found to play a fundamental role in several types of cancer; however, whether miR-125b participates in regulating the initiation and progress of osteosarcoma still remains unclear. Here we demonstrate that miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. The ectopic restoration of miR-125b expression in human osteosarcoma cells suppresses proliferation and migration in vitro and inhibits tumor formation in vivo. We further identified signal transducer and activator of transcription 3 (STAT3) as the direct and functional downstream target of miR-125b. Interestingly, we discovered that the expression of miR-125b is regulated by STAT3 at the level of transcription. STAT3 binds to the promoter region of miR-125b in vitro and serves as a transactivator. Taken together, our findings point to an important role in the molecular etiology of osteosarcoma and suggest that miR-125b is a potential target in the treatment of osteosarcoma.

  4. Psl trails guide exploration and microcolony formation in early P. aeruginosa biofilms

    PubMed Central

    Beckerman, Bernard; Jin, Fan; Gibiansky, Maxsim L.; Harrison, Joe J.; Luijten, Erik; Parsek, Matthew R.; Wong, Gerard C. L.

    2014-01-01

    Bacterial biofilms are surface-associated, multicellular, morphologically complex microbial communities1-7. Biofilm-forming bacteria such as the opportunistic pathogen7-10 Pseudomonas aeruginosa are phenotypically distinct from their free-swimming, planktonic counterparts. Much work has focused on factors impacting surface adhesion and it is known that P. aeruginosa secretes the Psl exopolysaccharide, which promotes surface attachment by acting as a ‘molecular glue’11-15. However, how individual surface-attached bacteria self-organize into microcolonies, the first step in communal biofilm organization, is not well understood. Here, we identify a new role for Psl in early biofilm development using a massively parallel cell-tracking algorithm to extract the motility history of every cell on a newly colonized surface via a search-engine based approach16. By combining these techniques with fluorescent Psl staining and computer simulations, we show that P. aeruginosa deposits a trail of Psl as it moves on a surface, which influences the surface motility of subsequent cells that encounter these trails and thus generate positive feedback. Both experiments and simulations indicate that the web of secreted Psl controls the distribution of surface visit frequencies, which can be approximated by a power law. This Zipf's Law17 indicates that the bacterial community self-organizes in a manner analogous to a capitalist economic system18, a ‘rich-get-richer’ mechanism of Psl accumulation that results in a small number of ‘elite’ cells extremely enriched in communally produced Psl. Using engineered strains with inducible Psl production, we show that local Psl levels determine post-division cell fates and that high local Psl levels ultimately allow ‘elite’ cells to serve as the founding population for initial microcolony development. PMID:23657259

  5. Inhibition of c-Met activation sensitizes osteosarcoma cells to cisplatin via suppression of the PI3K-Akt signaling.

    PubMed

    Wang, Kelai; Zhuang, Yan; Liu, Chunlan; Li, Yang

    2012-10-01

    Osteosarcoma is a common malignant bone tumor. Cisplatin (CDDP) achieves a high response rate in osteosarcoma. However, osteosarcoma usually exhibits cisplatin resistance. Many members of receptor tyrosine kinases (RTKs)(1) have been demonstrated to be overexpressed and constitutively activated in various tumors including osteosarcoma, resulting in malignant progression and insensitivity to chemotherapy. Hepatocyte growth factor receptor (HGFR/c-Met) also appears overexpressed and activated in osteosarcoma cells. Nevertheless, which role of c-Met activation in cisplatin efficacy against osteosarcoma cells remains still elusive. This study found that inhibition of c-Met activity by PHA-665752 or blockade of the interaction of autocrined HGF with c-Met with neutralizing anti-HGF antibody promoted cisplatin efficacy in osteosarcoma cells, while addition of recombinant human HGF (rh-HGF) counteracts cisplatin cytotoxicity. Specifically, we demonstrated that inhibition of c-Met activity led to suppression of the PI3K-Akt pathway, thus enhancing cisplatin chemosensitivity. Our study clearly suggests that inhibition of c-Met activity can effectively sensitize osteosarcoma cells to cisplatin via suppression of the PI3K-Akt signaling.

  6. Advances in the management of osteosarcoma

    PubMed Central

    Bielack, Stefan S.; Hecker-Nolting, Stefanie; Blattmann, Claudia; Kager, Leo

    2016-01-01

    Osteosarcoma, a bone cancer most commonly seen in adolescents and young adults, is usually a high-grade malignancy characterized by a very high risk for the development of pulmonary metastases. High-grade osteosarcomas are usually treated by preoperative and postoperative chemotherapy and surgery, with a very limited number of active agents available. Rarer lower-grade variants such as parosteal and periosteal osteosarcoma or low-grade central osteosarcoma are treated by surgery only. Imaging to search for possible metastases focuses on the lung. Computed tomography is the most sensitive method but cannot reliably distinguish small metastases from benign lesions. Advances of local imaging and surgical reconstruction now allow the use of limb-salvage in an ever-increasing proportion of patients. While still troubled by complications, non-invasive endoprosthesis-lengthening mechanisms have led to an increased uptake of limb-salvage, even for young, skeletally immature patients. Radiotherapy is employed when osteosarcomas cannot be removed with clear margins, but very high doses are required, and both proton and carbon-ion radiotherapy are under investigation. Unfortunately, the past 30 years have witnessed few, if any, survival improvements. Novel agents have not led to universally accepted changes of treatment standards. In patients with operable high-grade osteosarcomas, the extent of histological response to preoperative chemotherapy is a significant predictive factor for both local and systemic control. Attempts to improve prognosis by adapting postoperative treatment to response, recently tested in a randomized, prospective setting by the European and American Osteosarcoma Study Group, have not been proven to be beneficial. Many agree that only increased knowledge about osteosarcoma biology will lead to novel, effective treatment approaches and will be able to move the field forward. PMID:27990273

  7. Activating GNAS mutations in parosteal osteosarcoma.

    PubMed

    Carter, Jodi M; Inwards, Carrie Y; Jin, Long; Evers, Barbara; Wenger, Doris E; Oliveira, Andre M; Fritchie, Karen J

    2014-03-01

    Parosteal osteosarcoma is a surface-based osteosarcoma that often exhibits deceptively bland cytologic features, hindering diagnosis in small biopsies or when correlative radiologic imaging is not readily available. A number of benign and malignant fibro-osseous lesions, including fibrous dysplasia (FD) and low-grade central osteosarcoma, fall within the morphologic differential diagnosis of parosteal osteosarcoma. Somatic mutations in GNAS, encoding the α-subunit of the heterotrimeric G protein complex (Gsα), occur in FD and McCune-Albright syndrome but have not been reported in parosteal osteosarcoma. We evaluated GNAS mutational status in parosteal osteosarcoma and several of its histologic mimics to determine its utility in differentiating these entities. Eleven of 14 (79%) FD cases had GNAS mutations within codon 201 (5 R201C and 6 R201H mutations). GNAS mutations were not detected in any cases of adamantinoma or osteofibrous dysplasia. Direct sequencing of 9 parosteal osteosarcomas, including 3 of low grade and 6 with dedifferentiation, revealed activating GNAS mutations in 5 cases (55%), distributed as 4 R201C-mutated tumors and 1 tumor with an R201H mutation. GNAS codon 227 mutations were not detected in any of the cases. There was no association between GNAS mutational status and patient demographics, histologic dedifferentiation, or clinical outcome. To our knowledge, we report the first series of parosteal osteosarcomas harboring activating GNAS mutations. Our data suggest that GNAS mutational status may have limited utility as an ancillary technique in differentiating benign and malignant fibro-osseous lesions of the bone.

  8. TRIM14 regulates cell proliferation and invasion in osteosarcoma via promotion of the AKT signaling pathway

    PubMed Central

    Xu, Guoxing; Guo, Yongfei; Xu, Dabo; Wang, Yi; Shen, Yafeng; Wang, Feifei; Lv, Yuanyuan; Song, Fanglong; Jiang, Dawei; Zhang, Yinquan; Lou, Yi; Meng, Yake; Yang, Yongji; Kang, Yifan

    2017-01-01

    Recent studies have shown that some members of the tripartite motif-containing protein (TRIM) family serve as important regulators of tumorigenesis. However, the biological role of TRIM14 in osteosarcoma remains to be established. In this study, we showed that TRIM14 is upregulated in human osteosarcoma specimens and cell lines, and correlated with osteosarcoma progression and shorter patient survival times. Functional studies demonstrated that overexpression of TRIM14 enhances osteosarcoma cell proliferation, clone formation, cell cycle procession, migration and invasion in vitro and promotes tumor growth in vivo, and conversely, its silencing has the opposite effects. Furthermore, TRIM14 overexpression induced activation of the AKT pathway. Inhibition of AKT expression reversed the TRIM14-mediated promotory effects on cell growth and mobility, in addition to TRIM14-induced epithelial-to-mesenchymal transition (EMT) and cyclin D1 upregulation. Our findings collectively suggest that TRIM14 functions as an oncogene by upregulating the AKT signaling pathway in osteosarcoma cells, supporting its potential utility as a therapeutic target for this disease. PMID:28205534

  9. Blocking Signaling at the Level of GLI Regulates Downstream Gene Expression and Inhibits Proliferation of Canine Osteosarcoma Cells

    PubMed Central

    Shahi, Mehdi Hayat; Holt, Roseline; Rebhun, Robert B.

    2014-01-01

    The Hedgehog-GLI signaling pathway is active in a variety of human malignancies and is known to contribute to the growth and survival of human osteosarcoma cells. In this study, we examined the expression and regulation of GLI transcription factors in multiple canine osteosarcoma cell lines and analyzed the effects of inhibiting GLI with GANT61, a GLI-specific inhibitor. Compared with normal canine osteoblasts, real-time PCR showed that GLI1 and GLI2 were highly expressed in two out of three cell lines and correlated with downstream target gene expression of PTCH1and PAX6. Treatment of canine osteosarcoma cells with GANT61 resulted in decreased expression of GLI1, GLI2, PTCH1, and PAX6. Furthermore, GANT61 inhibited proliferation and colony formation in all three canine osteosarcoma cell lines. The finding that GLI signaling activity is present and active in canine osteosarcoma cells suggests that spontaneously arising osteosarcoma in dogs might serve as a good model for future preclinical testing of GLI inhibitors. PMID:24810746

  10. von Willebrand factor expression in osteosarcoma metastasis.

    PubMed

    Eppert, Kolja; Wunder, Jay S; Aneliunas, Vicky; Kandel, Rita; Andrulis, Irene L

    2005-03-01

    A number of genes are implicated in the initiation and progression of osteosarcoma; however, cytogenetic and comparative genomic hybridization studies indicate the involvement of additional unidentified genes. An examination of gene expression profiles in 22 high-grade osteosarcoma tumor specimens from 15 patients (including paired primary and metastatic samples from five patients) indicated that von Willebrand factor (vWF) mRNA expression may increase during tumor progression. vWF, a large glycoprotein previously considered to be expressed exclusively by endothelial cells and megakaryocytes, is involved in platelet aggregation and adhesion to the subendothelial matrix, processes critical to hematogenous tumor cell metastasis to the lung. Analysis of paired primary and metastatic osteosarcoma tumor samples from 10 patients revealed an increase in vWF gene expression in metastases (P=0.005). Immunohistochemistry showed that, in addition to the endothelial cells, vWF protein was also detected in osteosarcoma cells in vivo in 13 of 29 tumor specimens as well as in SAOS2, an osteosarcoma cell line. The tumor cell staining correlated positively with high vWF expression in the sample (P=0.006). Although vascular endothelial cells contribute to the vWF mRNA detected in the tumor samples, there was neither any correlation between vascular density (VD) and vWF mRNA expression nor between VD and clinical outcome. These findings suggest that vWF expression is deregulated in osteosarcoma tumors, potentially contributing to metastasis.

  11. In vivo photoacoustic imaging of osteosarcoma on animal model

    NASA Astrophysics Data System (ADS)

    Yu, Menglei; Ye, Fei; Hu, Jun

    2011-01-01

    Osteosarcoma is the commonest primary malignant tumor of bone, and the second highest cause of cancer-related death in the paediatric age group. Although there are several methods for osteosarcoma detection, e.g. X-ray, CT, MRI and bone scan, they are not satisfied methods because they can hardly detect osteosarcoma in early stage. Photoacoustic imaging (PAI) is an emerging hybrid imaging modality that is noninvasive, nonionizing, with high sensitivity, satisfactory imaging depth and good temporal and spatial resolution. In order to explore this new method to detect osteosarcoma, we established SD rat models with osteosarcoma and utilized PAI to reconstruct the osteosarcoma image in vivo. This is the first time detecting osteosarcoma in vivo using PAI, and the results suggested that PAI has potential clinical application for detecting osteosarcoma in the early stage.

  12. Ameloblastin induces tumor suppressive phenotype and enhances chemosensitivity to doxorubicin via Src-Stat3 inactivation in osteosarcoma

    PubMed Central

    Ando, Toshinori; Kudo, Yasusei; Iizuka, Shinji; Tsunematsu, Takaaki; Umehara, Hanako; Shrestha, Madhu; Matsuo, Toshihiro; Kubo, Tadahiko; Shimose, Shouji; Arihiro, Koji; Ogawa, Ikuko; Ochi, Mitsuo; Takata, Takashi

    2017-01-01

    Ameloblastin (AMBN), the most abundant non-amelogenin enamel matrix protein, plays a role in ameloblast differentiation. Previously, we found that AMBN promoted osteogenic differentiation via the interaction between CD63 and integrin β1, leading to the inactivation of Src; however, how AMBN affects the malignant behavior of osteosarcoma is still unclear. Osteosarcoma affects the bone and is associated with poor prognosis because of the high rate of pulmonary metastases and drug resistance. Here we demonstrated that stable overexpression of AMBN induced apoptosis and suppressed colony formation and cell migration via the inactivation of Src-Stat3 pathway in human osteosarcoma cells. Moreover, AMBN induced chemosensitivity to doxorubicin. Thus, AMBN induced a tumor suppressive phenotype and chemosensitivity to doxorubicin via the AMBN-Src-Stat3 axis in osteosarcoma. Indeed, immunohistochemical expression of AMBN was significantly correlated with better outcome of osteosarcoma patients. Our findings suggest that AMBN can be a new prognostic marker and therapeutic target for osteosarcoma combined with conventional doxorubicin treatment. PMID:28054649

  13. miR-203 Acts as a Tumor Suppressor Gene in Osteosarcoma by Regulating RAB22A

    PubMed Central

    Yang, Dawei; Liu, Guangpeng; Wang, Kunzheng

    2015-01-01

    microRNAs (miRNAs), small noncoding RNAs of 19–25 nt, play an important roles in the pathological processes of tumorigenesis. The object of this study was to study the expression and function of miR-203 and to found its target gene in osteosarcoma. In our study, we found the expression level of miR-203 was significantly downregulated in osteosarcoma cell lines and tissues. In addition, overexpression of miR-203 inhibited the osteosarcoma cell proliferation and migration and inhibited Mesenchymal-to-Epithelial reversion Transition (MErT). Moreover, we identified RAB22A as a direct target of miR-203 and RAB22A overexpression blocks the roles of miR-203 in osteosarcoma cell. Furthermore, we demonstrated that RAB22A expression was upregulated in human osteosarcoma cell lines and tissues. Take together, our results demonstrated that miR-203 act as a tumor suppressor miRNA through regulating RAB22A expression and suggested its involvement in osteosarcoma progression and carcinogenesis. PMID:26382657

  14. Osteosarcoma

    MedlinePlus

    ... Date 11/26/2014 Updated by: Yi-Bin Chen, MD, Leukemia/Bone Marrow Transplant Program, Massachusetts General ... the Health on the Net Foundation (www.hon.ch). The information provided herein should not be used ...

  15. Fungal microcolonies on indoor surfaces — an explanation for the base-level fungal spore counts in indoor air

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Heinonen-Tanski, H.; Kalliokoski, P.; Jantunen, M. J.

    In the subarctic winter, fungal spores are found in indoor air even when outdoor spore levels are very low. The results of this study support an explanation that some indoor airborne fungal spores are derived from unnoticeable fungal microcolonies, which may develop on temporarily wet surfaces. Laboratory experiments on Penicillium verrucosum indicated that the fungus germinated on new wallpaper very quickly (about half an hour) under moist conditions. Hyphal growth and sporulation of the fungus on moist wallpaper occured within one day of incubation. In gravity-settling tape samples from occasionally wet surfaces in a suburban home, large spore aggregates, hyphal fragments with some spores and spores in the germination stage were found, indicating fungal growth. These experiments showed that fungal microcolonies can develop within a week on occasionally wet indoor surfaces.

  16. Periosteal osteosarcoma: a review of clinical evidence.

    PubMed

    Liu, Xin-Wei; Zi, Ying; Xiang, Liang-Bi; Han, Tian-Yu

    2015-01-01

    Periosteal osteosarcoma (PO) is a rare primary malignant bone tumor and a variant of osteosarcoma. It is a surface lesion without evidence of medullary involvement. The radiologic appearance of periosteal osteosarcoma is a broad-based surface soft-tissue mass that causes extrinsic erosion of thickened underlying diaphyseal cortex and perpendicular periosteal reaction extending into the soft-tissue component. The tumour presents as non-homogeneous masses of speculated osteoid matrix progressively denser from the periphery to their cortical base. The average age is around 28 and the most common location is the proximal third of the femur; with all the lesions diaphyseal in location. The treatment usually indicated is amputation, but in selected cases, radical segmental resection is appropriate. Long-term disease-free survival is possible after resection of the local recurrence. Limb-salvage therapy seems to offer survival equivalent to amputation, and there does not seem to be a substantial risk of late recurrence, dedifferentiation, or disease progression. The current review also highlights on various rare occurrences of periosteal osteosarcoma including the one of calcaneum, fifth metatarsal, mandible cranium, jaws, clavicle, maxilla, sphenoid bone with extensive periosteal extension, metacarpal in a paediatric age group and bilateral metachronous periosteal osteosarcoma. Recent findings relating to genetic factors governing the pathogenesis of PO is also presented.

  17. Osteosarcoma: evaluation of information on the internet.

    PubMed

    Liu, Yanning; Liu, Miao

    2006-10-01

    The information about osteosarcoma on the existing websites was examined. The purpose of this study was to evaluate the quality of Internet information available to patients on the topic of osteosarcoma. The secondary purpose was to rank the identified websites with respect to the caliber of relevant information provided by the websites sponsors' identity. A great many of people in the world "surf" the World Wide Web, searching for medical information. The information on the Internet varies dramatically in terms of content and quality for lack of uniformed standard with respect to the medical publications on the Internet. Five search engines searched the search terms "osteosarcoma." The first 25 links displayed by each engine were evaluated for a theoretical total of 125 websites. According to the information context, sponsor identity we evaluated each website. An information quality score of 0 to 26 was generated for each site. A score of 20 or greater was thought to be "high-quality" information website. Eighty-nine unique websites were identified, among which only 8 (9%) scored 20 or more on the information quality score; 32 scored 10 or less. The overall mean information quality score was 11.5. The websites with highest mean scores were academic organization and affiliated hospitals of university. The quality of Internet information on osteosarcoma is variable. Less than 10% of relevant websites were of high information value. The rank list of high quality websites from our information quality score should provide useful information of osteosarcoma.

  18. Osteosarcoma Phenotype Is Inhibited by 3,4-Methylenedioxy-β-nitrostyrene.

    PubMed

    Messerschmitt, Patrick J; Rettew, Ashley N; Schroeder, Nicholas O; Brookover, Robert E; Jakatdar, Avanti P; Getty, Patrick J; Greenfield, Edward M

    2012-01-01

    β-nitrostyrene compounds, such as 3,4-methylenedioxy-β-nitrostyrene (MNS), inhibit growth and induce apoptosis in tumor cells, but no reports have investigated their role in osteosarcoma. In this study, human osteosarcoma cell families with cell lines of varying tumorigenic and metastatic potential were utilized. Scrape motility assays, colony formation assays, and colony survival assays were performed with osteosarcoma cell lines, both in the presence and absence of MNS. Effects of MNS on human osteoblasts and airway epithelial cells were assessed in monolayer cultures. MNS decreased metastatic cell line motility by 72-76% and colony formation by 95-100%. MNS consistently disrupted preformed colonies in a time-dependent and dose-dependent manner. MNS had similar effects on human osteoblasts but little effect on airway epithelial cells. An inactive analog of MNS had no detectable effects, demonstrating specificity. MNS decreases motility and colony formation of osteosarcoma cells and disrupts preformed cell colonies, while producing little effect on pulmonary epithelial cells.

  19. Pseudomonas aeruginosa Microcolonies in Coronary Thrombi from Patients with ST-Segment Elevation Myocardial Infarction.

    PubMed

    Hansen, Gorm Mørk; Belstrøm, Daniel; Nilsson, Martin; Helqvist, Steffen; Nielsen, Claus Henrik; Holmstrup, Palle; Tolker-Nielsen, Tim; Givskov, Michael; Hansen, Peter Riis

    2016-01-01

    Chronic infection is associated with an increased risk of atherothrombotic disease and direct bacterial infection of arteries has been suggested to contribute to the development of unstable atherosclerotic plaques. In this study, we examined coronary thrombi obtained in vivo from patients with ST-segment elevation myocardial infarction (STEMI) for the presence of bacterial DNA and bacteria. Aspirated coronary thrombi from 22 patients with STEMI were collected during primary percutaneous coronary intervention and arterial blood control samples were drawn from radial or femoral artery sheaths. Analyses were performed using 16S polymerase chain reaction and with next-generation sequencing to determine bacterial taxonomic classification. In selected thrombi with the highest relative abundance of Pseudomonas aeruginosa DNA, peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) with universal and species specific probes was performed to visualize bacteria within thrombi. From the taxonomic analysis we identified a total of 55 different bacterial species. DNA from Pseudomonas aeruginosa represented the only species that was significantly associated with either thrombi or blood and was >30 times more abundant in thrombi than in arterial blood (p<0.0001). Whole and intact bacteria present as biofilm microcolonies were detected in selected thrombi using universal and P. aeruginosa-specific PNA-FISH probes. P. aeruginosa and vascular biofilm infection in culprit lesions may play a role in STEMI, but causal relationships remain to be determined.

  20. Colony fingerprint for discrimination of microbial species based on lensless imaging of microcolonies.

    PubMed

    Maeda, Yoshiaki; Dobashi, Hironori; Sugiyama, Yui; Saeki, Tatsuya; Lim, Tae-Kyu; Harada, Manabu; Matsunaga, Tadashi; Yoshino, Tomoko; Tanaka, Tsuyoshi

    2017-01-01

    Detection and identification of microbial species are crucial in a wide range of industries, including production of beverages, foods, cosmetics, and pharmaceuticals. Traditionally, colony formation and its morphological analysis (e.g., size, shape, and color) with a naked eye have been employed for this purpose. However, such a conventional method is time consuming, labor intensive, and not very reproducible. To overcome these problems, we propose a novel method that detects microcolonies (diameter 10-500 μm) using a lensless imaging system. When comparing colony images of five microorganisms from different genera (Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans), the images showed obvious different features. Being closely related species, St. aureus and St. epidermidis resembled each other, but the imaging analysis could extract substantial information (colony fingerprints) including the morphological and physiological features, and linear discriminant analysis of the colony fingerprints distinguished these two species with 100% of accuracy. Because this system may offer many advantages such as high-throughput testing, lower costs, more compact equipment, and ease of automation, it holds promise for microbial detection and identification in various academic and industrial areas.

  1. Colony fingerprint for discrimination of microbial species based on lensless imaging of microcolonies

    PubMed Central

    Maeda, Yoshiaki; Dobashi, Hironori; Sugiyama, Yui; Saeki, Tatsuya; Lim, Tae-kyu; Harada, Manabu; Matsunaga, Tadashi; Yoshino, Tomoko

    2017-01-01

    Detection and identification of microbial species are crucial in a wide range of industries, including production of beverages, foods, cosmetics, and pharmaceuticals. Traditionally, colony formation and its morphological analysis (e.g., size, shape, and color) with a naked eye have been employed for this purpose. However, such a conventional method is time consuming, labor intensive, and not very reproducible. To overcome these problems, we propose a novel method that detects microcolonies (diameter 10–500 μm) using a lensless imaging system. When comparing colony images of five microorganisms from different genera (Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans), the images showed obvious different features. Being closely related species, St. aureus and St. epidermidis resembled each other, but the imaging analysis could extract substantial information (colony fingerprints) including the morphological and physiological features, and linear discriminant analysis of the colony fingerprints distinguished these two species with 100% of accuracy. Because this system may offer many advantages such as high-throughput testing, lower costs, more compact equipment, and ease of automation, it holds promise for microbial detection and identification in various academic and industrial areas. PMID:28369067

  2. Pseudomonas aeruginosa Microcolonies in Coronary Thrombi from Patients with ST-Segment Elevation Myocardial Infarction

    PubMed Central

    Hansen, Gorm Mørk; Belstrøm, Daniel; Nilsson, Martin; Helqvist, Steffen; Nielsen, Claus Henrik; Holmstrup, Palle; Tolker-Nielsen, Tim; Givskov, Michael; Hansen, Peter Riis

    2016-01-01

    Chronic infection is associated with an increased risk of atherothrombotic disease and direct bacterial infection of arteries has been suggested to contribute to the development of unstable atherosclerotic plaques. In this study, we examined coronary thrombi obtained in vivo from patients with ST-segment elevation myocardial infarction (STEMI) for the presence of bacterial DNA and bacteria. Aspirated coronary thrombi from 22 patients with STEMI were collected during primary percutaneous coronary intervention and arterial blood control samples were drawn from radial or femoral artery sheaths. Analyses were performed using 16S polymerase chain reaction and with next-generation sequencing to determine bacterial taxonomic classification. In selected thrombi with the highest relative abundance of Pseudomonas aeruginosa DNA, peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) with universal and species specific probes was performed to visualize bacteria within thrombi. From the taxonomic analysis we identified a total of 55 different bacterial species. DNA from Pseudomonas aeruginosa represented the only species that was significantly associated with either thrombi or blood and was >30 times more abundant in thrombi than in arterial blood (p<0.0001). Whole and intact bacteria present as biofilm microcolonies were detected in selected thrombi using universal and P. aeruginosa-specific PNA-FISH probes. P. aeruginosa and vascular biofilm infection in culprit lesions may play a role in STEMI, but causal relationships remain to be determined. PMID:28030624

  3. Circulating Natural IgM Antibodies Against Angiogenin in the Peripheral Blood Sera of Patients with Osteosarcoma as Candidate Biomarkers and Reporters of Tumorigenesis

    PubMed Central

    Savitskaya, Yulia A.; Rico, Genaro; Linares, Luis; González, Roberto; Téllez, René; Estrada, Eréndira; Marín, Norma; Martínez, Elisa; Alfaro, Alfonso; Ibarra, Clemente

    2010-01-01

    Background: Tumor immunology research has led to the identification of a number of tumor-associated self antigens, suggesting that most tumors trigger an immunogenic response, as is the case in osteosarcoma, where the detection of natural serum IgM antibodies might achieve the diagnosis of osteosarcoma. Natural IgM antibodies to tumor-associated proteins may expand the number of available tumor biomarkers for osteosarcoma and may be used together in a serum profile to enhance test sensitivity and specificity. Natural IgM antibodies can be consistently detected in the peripheral blood sera months to years before the tumor is diagnosed clinically. The study of the level of a potential biomarker many months (or years) prior to diagnosis is fundamentally important. Integrated circulating and imaging markers in clinical practice treating osteosarcoma have potential applications for controlling tumor angiogenesis. Objectives: To study the expression of natural IgM antibodies to the tumor antigens of angiogenesis in the peripheral blood sera of osteosarcoma patients and healthy individuals, and to develop serum-based predictive biomarkers. Methods: Peripheral venous blood samples were collected from 117 osteosarcoma patients and 117 patients with other tumors. All diagnosis was histologically confirmed. Staging of patients was performed according to the Enneking Surgical Staging System. The control group consisted of 117 age- and sex- matched healthy individuals. In this study, novel immunoconjugates were designed, synthesized and then used to develop a rapid, specific and sensitive enzyme-linked immunosorbent assay (ELISA) method to detect angiogenin (ANG)–IgM directly in the peripheral blood sera of humans. Results: Serum ANG–IgM levels are significantly higher in osteosarcoma patients than in healthy individuals (P < 0.005). Serum ANG–IgM levels varied widely, but were highly dependent on the concentration of IgM (r = 0.85; P < 0.0005). We found ANG–IgM in the

  4. Fibroblast growth factor receptor 1 promotes MG63 cell proliferation and is associated with increased expression of cyclin-dependent kinase 1 in osteosarcoma

    PubMed Central

    ZHOU, WEI; ZHU, YUE; CHEN, SONG; XU, RUIJUN; WANG, KUNZHENG

    2016-01-01

    Osteosarcoma is the most common type of malignant bone tumor in adolescents and young adults. However, current understanding of osteosarcomagenesis remains limited. In the present study, the role of fibroblast growth factor receptor 1 (FGFR1) in human osteosarcoma cell proliferation was investigated, and the possible pathways that contribute to FGFR1-mediated osteosarcoma cell proliferation were examined using microarray analysis. The expression of FGFR1 in osteosarcoma tissues was assessed by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. The results demonstrated that FGFR1 was markedly increased in osteosarcoma tissues, and that the overexpression of FGFR1 in MG63 cells significantly promoted cell proliferation, as observed using the cell viability assay. In addition, FGFR1-mediated cell proliferation was closely associated with cell cycle re-distribution, as determined by microarray analysis. Western blotting identified that the expression of cyclin-dependent kinase 1 (CDK1) was correspondingly increased in response to the overexpression of FGFR1. These results indicated that FGFR1 contributes to cell proliferation in osteosarcoma MG63 cells, and FGFR1 mediated cell proliferation may be attributed to the regulation of the cell cycle regulator, CDK1. These findings provide evidence to support the potential use of molecule target therapy against FGFR1 as a promising strategy in osteosarcoma treatment and prevention. PMID:26648125

  5. EFEMP1 promotes the migration and invasion of osteosarcoma via MMP-2 with induction by AEG-1 via NF-κB signaling pathway

    PubMed Central

    Ke, Zun-Fu; Luo, Can-Jiao; Lin, Zhong-Wei; Wang, Fen; Zhang, Yuan-Qi; Wang, Lian-Tang

    2015-01-01

    The role of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) in osteosarcoma remains unknown. Then applying EFEMP1 siRNA, plasmids transfection and adding purified EFEMP1 protein in human osteosarcoma cell lines, and using immunohistochemistry on 113 osteosarcoma tissues, demonstrated that EFEMP1 was a poor prognostic indicator of osteosarcoma; EFEMP1 was specifically upregulated in osteosarcoma and associated with invasion and metastasis in vitro and in vivo. At the same time, we found a direct regulatory effect of EFEMP1 on MMP-2. Moreover, we firstly found the marked induction of EFEMP1 by oncogenic AEG-1. And EFEMP1 expression was inhibited by the selective inhibitor of NF-κB (PDTC) in osteosarcoma cells. Then we thought that NF-κB pathways might be one of the effective ways which EFEMP1 was induced by AEG-1. Thus, we suggested that EFEMP1 played a part as the mediator between AEG-1 and MMP-2. And NF-κB signaling pathway played an important role in this process. In summary, EFEMP1 was associated with invasion, metastasis and poor prognosis of osteosarcoma patients. EFEMP1 might indirectly enhance the expression of MMP-2, providing a potential explanation for the role of AEG-1 in metastasis. NF-κB pathways might be one of the effective ways which EFEMP1 was induced by AEG-1. PMID:25987128

  6. Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers.

    PubMed

    Gota, Vikram S; Maru, Girish B; Soni, Tejal G; Gandhi, Tejal R; Kochar, Nitin; Agarwal, Manish G

    2010-02-24

    Curcumin is the lipid-soluble antioxidant compound obtained from the rhizome of Curcuma longa Linn, also known as turmeric. Curcumin targets multiple chemotherapeutic and inflammatory pathways and has demonstrated safety and tolerability in humans, supporting its potential as a therapeutic agent; however, the clinical literature lacks conclusive evidence supporting its use as a therapeutic agent due to its low bioavailability in humans. The purpose of this study was to quantify plasma levels of free curcumin after dosing of a solid lipid curcumin particle (SLCP) formulation versus unformulated curcumin in healthy volunteers and to determine its tolerability and dose-plasma concentration relationship in late-stage osteosarcoma patients. Doses of 2, 3, and 4 g of SLCP were evaluated in 11 patients with osteosarcoma. Plasma curcumin levels were measured using a validated high-performance liquid chromatography method. The limit of detection of the assay was 1 ng/mL of curcumin. In healthy subjects, the mean peak concentration of curcumin achieved from dosing 650 mg of SLCP was 22.43 ng/mL, whereas plasma curcumin from dosing an equal quantity of unformulated 95% curcuminoids extract was not detected. In both healthy individuals and osteosarcoma patients, high interindividual variability in pharmacokinetics and nonlinear dose dependency was observed, suggesting potentially complex absorption kinetics. Overall, good tolerability was noted in both healthy and osteosarcoma groups.

  7. MicroRNA-410 regulates autophagy-related gene ATG16L1 expression and enhances chemosensitivity via autophagy inhibition in osteosarcoma

    PubMed Central

    Chen, Ren; Li, Xiaohai; He, Bin; Hu, Wei

    2017-01-01

    Osteosarcoma, which is the most common type of primary bone tumor in adolescents, is characterized by complex genetic alterations and frequent resistance to conventional treatments. MicroRNAs (miRs) have emerged as fundamental regulators in gene expression through their ability to silence gene expression at post-transcriptional and translational levels. The present study investigated the role of miR-410 in the progression of osteosarcoma. The results demonstrated that the expression of miR-410 was markedly downregulated in human osteosarcoma tissues, and U2OS and MG-63 osteosarcoma cell lines. Clinicopathological significance suggested that miR-410 may be a potential biomarker for chemotherapy-resistant osteosarcoma. Furthermore, overexpression of miR-410 exhibited a limited effect on cell viability in U2OS and MG-63 cells. Target prediction algorithms (TargetScan and miRanda) indicated that autophagy related 16-like 1 (ATG16L1) was a potential target gene of miR-410. A luciferase reporter assay demonstrated that miR-410 directly decreased ATG16L1 expression by targeting its 3′-untranslated region. In addition, the results revealed that miR-410 was able to markedly inhibit autophagy. Accordingly, autophagy was activated as a protective mechanism when osteosarcoma cells were exposed to three common anticancer drugs, including rapamycin, doxorubicin and cisplatin. Furthermore, the autophagy inhibitor 3-methyladenine and miR-410 expression were able to improve the therapeutic response of the cells to chemotherapy drugs (rapamycin, doxorubicin and cisplatin), thus indicating that miR-410 enhanced chemosensitivity through autophagy inhibition in osteosarcoma cells. In conclusion, studies regarding the function of miR-410 on autophagy provided insight into the biological function of miR-410 in osteosarcoma and may offer a promising approach for the treatment of osteosarcoma. PMID:28138700

  8. Using canine osteosarcoma as a model to assess efficacy of novel therapies: can old dogs teach us new tricks?

    PubMed

    Rodriguez, Carlos O

    2014-01-01

    Since its domestication more than 10,000 years ago, the dog has been the animal that most intimately shares our work and homelife. Interestingly, the dog also shares many of our diseases including cancer such as osteosarcoma. Like the human, osteosarcoma is the most common bone malignancy of the dog and death from pulmonary metastasis is the most common outcome. The incidence of this spontaneous bone neoplasm occurs ten times more frequently that it does so in children with about 8,000-10,000 cases estimated to occur in dogs in the USA. Because there is no "standard of care" in veterinary medicine, the dog can also serve us by being a model for this disease in children. Although the most common therapy for the dog with osteosarcoma is amputation followed by chemotherapy, not all owners choose this route. Consequently, novel therapeutic interventions can be attempted in the dog with or without chemotherapy that could not be done in humans with osteosarcoma due to ethical concerns. This chapter will focus on the novel therapies in the dog that have been reported or are in veterinary clinical trials at the author's institution. It is hoped that collaboration between veterinary oncologists and pediatric oncologists will lead to the development of novel therapies for (micro- or macro-) metastatic osteosarcoma that improve survival and might ultimately lead to a cure in both species.

  9. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells

    SciTech Connect

    Komm, B.S.; Terpening, C.M.; Benz, D.J.; Graeme, K.A.; Gallegos, A.; Korc, M.; Greene, G.L.; O'Malley, B.W.; Haussler, M.R.

    1988-07-01

    High specific activity estradiol labeled with iodine-125 was used to detect approximately 200 saturable, high-affinity (dissociation constant approximately equal to 1.0 nM) nuclear binding sites in rat (ROS 17/2.8) and human (HOS TE85) clonal osteoblast-like osteosarcoma cells. Of the steroids tested, only testosterone exhibited significant cross-reactivity with estrogen binding. RNA blot analysis with a complementary DNA probe to the human estrogen receptor revealed putative receptor transcripts of 6 to 6.2 kilobases in both rat and human osteosarcoma cells. Type I procollagen and transforming growth factor-beta messenger RNA levels were enhanced in cultured human osteoblast-like cells treated with 1 nM estradiol. Thus, estrogen can act directly on osteoblasts by a receptor-mediated mechanism and thereby modulate the extracellular matrix and other proteins involved in the maintenance of skeletal mineralization and remodeling.

  10. Identification of Dormancy-Associated MicroRNAs for the Design of Osteosarcoma-Targeted Dendritic Polyglycerol Nanopolyplexes.

    PubMed

    Tiram, Galia; Segal, Ehud; Krivitsky, Adva; Shreberk-Hassidim, Rony; Ferber, Shiran; Ofek, Paula; Udagawa, Taturo; Edry, Liat; Shomron, Noam; Roniger, Maayan; Kerem, Batsheva; Shaked, Yuval; Aviel-Ronen, Sarit; Barshack, Iris; Calderón, Marcelo; Haag, Rainer; Satchi-Fainaro, Ronit

    2016-02-23

    The presence of dormant, microscopic cancerous lesions poses a major obstacle for the treatment of metastatic and recurrent cancers. While it is well-established that microRNAs play a major role in tumorigenesis, their involvement in tumor dormancy has yet to be fully elucidated. We established and comprehensively characterized pairs of dormant and fast-growing human osteosarcoma models. Using these pairs of mouse tumor models, we identified three novel regulators of osteosarcoma dormancy: miR-34a, miR-93, and miR-200c. This report shows that loss of these microRNAs occurs during the switch from dormant avascular into fast-growing angiogenic phenotype. We validated their downregulation in patients' tumor samples compared to normal bone, making them attractive candidates for osteosarcoma therapy. Successful delivery of miRNAs is a challenge; hence, we synthesized an aminated polyglycerol dendritic nanocarrier, dPG-NH2, and designed dPG-NH2-microRNA polyplexes to target cancer. Reconstitution of these microRNAs using dPG-NH2 polyplexes into Saos-2 and MG-63 cells, which generate fast-growing osteosarcomas, reduced the levels of their target genes, MET proto-oncogene, hypoxia-inducible factor 1α, and moesin, critical to cancer angiogenesis and cancer cells' migration. We further demonstrate that these microRNAs attenuate the angiogenic capabilities of fast-growing osteosarcomas in vitro and in vivo. Treatment with each of these microRNAs using dPG-NH2 significantly prolonged the dormancy period of fast-growing osteosarcomas in vivo. Taken together, these findings suggest that nanocarrier-mediated delivery of microRNAs involved in osteosarcoma tumor-host interactions can induce a dormant-like state.

  11. Localized Co-delivery of Doxorubicin, Cisplatin, and Methotrexate by Thermosensitive Hydrogels for Enhanced Osteosarcoma Treatment.

    PubMed

    Ma, Hecheng; He, Chaoliang; Cheng, Yilong; Yang, Zhiming; Zang, Junting; Liu, Jianguo; Chen, Xuesi

    2015-12-16

    Localized cancer treatments with combination drugs have recently emerged as crucial approaches for effective inhibition of tumor growth and reoccurrence. In this study, we present a new strategy for the osteosarcoma treatment by localized co-delivery of multiple drugs, including doxorubicin (DOX), cisplatin (CDDP) and methotraxate (MTX), using thermosensitive PLGA-PEG-PLGA hydrogels. The release profiles of the drugs from the hydrogels were investigated in vitro. It was found that the multidrug coloaded hydrogels exhibited synergistic effects on cytotoxicity against osteosarcoma Saos-2 and MG-63 cells in vitro. After a single peritumoral injection of the drug-loaded hydrogels into nude mice bearing human osteosarcoma Saos-2 xenografts, the hydrogels coloaded with DOX, CDDP, and MTX displayed the highest tumor suppression efficacy in vivo for up to 16 days, as well as led to enhanced tumor apoptosis and increased regulation of the expressions of apoptosis-related genes. Moreover, the monitoring on the mice body change and the ex vivo histological analysis of the key organs indicated that the localized treatments caused less systemic toxicity and no obvious damage to the normal organs. Therefore, the approach of localized co-delivery of DOX, CDDP, and MTX by the thermosensitive hydrogels may be a promising approach for enhanced osteosarcoma treatment.

  12. LncRNA TUG1 is upregulated and promotes cell proliferation in osteosarcoma

    PubMed Central

    Xiao-Po, Liu; Xiao-Li, Li; Guo-Long, Cao; Pei, Zhang; Fa-Ming, Tian

    2016-01-01

    Abstract Objective: To examine the expression and function of long non-coding RNA taurine up-regulated 1 (TUG1) in human osteosarcoma cells. Methods: Real-time quantitive PCR was used to detect the transcription level of TUG1 in a series of osteosarcoma cell lines. Knockdown of TUG1 in U2OS cells was carried out by transient transfection of siRNAs. MTT assay was performed to access the cell growth rates. Afterwards, RNA and protein of these cells were extracted to analyze the transfection efficient as well as the expression of other molecules. Results: Compared to the normal cell line, TUG1 exhibited a significant upregulation in osteosarcoma cells. Phenotyping analysis showed the growth-promotion activity of TUG1, since knockdown of TUG1 resulted in declined proliferation. We also found that AKT phosphorylation was impaired after TUG1 was inhibited, suggesting that the AKT pathway was involved in the regulation of TUG1 in U2OS cells. Conclusion: Our data provided evidence that TUG1 was upregulated and acted as a possible oncogene via positively regulating cell proliferation in osteosarcoma cells.

  13. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma.

    PubMed

    Hsu, C F; Lin, S Y; Peir, J J; Liao, J W; Lin, Y C; Chou, F I

    2011-12-01

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 μg (10)B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg (10)B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  14. Spontaneous extraskeletal osteosarcoma in the duodenum of a Crlj:CD1 (ICR) mouse

    PubMed Central

    Ando, Ryo; Ikezaki, Shinichiro; Yamaguchi, Yuko; Tamura, Kazutoshi; Hoshiya, Toru

    2016-01-01

    Extraskeletal osteosarcoma is a very rare tumor in humans and animals. This paper describes a case of extraskeletal osteosarcoma observed in the duodenum of a male ICR mouse. Grossly, a solid mass pushing up the tunica serosa was observed in the duodenal wall. Histologically, the tumor was located in the lamina propria mucosae and tela mucosa. Neoplastic cells densely proliferated in these areas, and replaced of the normal tissue components. A small amount of osteoid and a small clump of bone tissue were observed in the area of neoplastic cell proliferation, especially in the lamina propria mucosae. Neoplastic cells consisted of atypical polygonal cells and pleomorphic spindle-shaped cells, and the former were predominant. Mitotic figures were occasionally observed. Neither invasion of vessels in the duodenum nor metastasis to distant organs was observed. There were no skeletal tumors in the body. Immunohistochemically, the neoplastic cells were positive for anti-osteocalcin, osteonectin, vimentin, and S-100 protein. Judging from these results, the present tumor was diagnosed as extraskeletal osteosarcoma. This is the first report of spontaneous extraskeletal osteosarcoma arising from the duodenum of a mouse. PMID:27821914

  15. Identification of Haloferax volcanii Pilin N-Glycans with Diverse Roles in Pilus Biosynthesis, Adhesion, and Microcolony Formation.

    PubMed

    Esquivel, Rianne N; Schulze, Stefan; Xu, Rachel; Hippler, Michael; Pohlschroder, Mechthild

    2016-05-13

    N-Glycosylation is a post-translational modification common to all three domains of life. In many archaea, the oligosacharyltransferase (AglB)-dependent N-glycosylation of flagellins is required for flagella assembly. However, whether N-glycosylation is required for the assembly and/or function of the structurally related archaeal type IV pili is unknown. Here, we show that of six Haloferax volcanii adhesion pilins, PilA1 and PilA2, the most abundant pilins in pili of wild-type and ΔaglB strains, are modified under planktonic conditions in an AglB-dependent manner by the same pentasaccharide detected on H. volcanii flagellins. However, unlike wild-type cells, which have surfaces decorated with discrete pili and form a dispersed layer of cells on a plastic surface, ΔaglB cells have thick pili bundles and form microcolonies. Moreover, expressing PilA1, PilA2, or PilA6 in ΔpilA[1-6]ΔaglB stimulates microcolony formation compared with their expression in ΔpilA[1-6]. Conversely, expressing PilA3 or PilA4 in ΔpilA[1-6] cells results in strong surface adhesion, but not microcolony formation, and neither pilin stimulates surface adhesion in ΔpilA[1-6]ΔaglB cells. Although PilA4 assembles into pili in the ΔpilA[1-6]ΔaglB cells, these pili are, unlike wild-type pili, curled, perhaps rendering them non-functional. To our knowledge, this is the first demonstration of a differential effect of glycosylation on pilus assembly and function of paralogous pilins. The growth of wild-type cells in low salt media, a condition that decreases AglB glycosylation, also stimulates microcolony formation and inhibits motility, supporting our hypothesis that N-glycosylation plays an important role in regulating the transition between planktonic to sessile cell states as a response to stress.

  16. Osteosarcoma cell proliferation and survival requires mGluR5 receptor activity and is blocked by Riluzole

    PubMed Central

    Gulzar, Hira; Yelskaya, Zarina; Ait Taouit, Lyes; Houssou, Murielle; Jaikaran, Trisha; Schvarts, Yuriy; Kozlitina, Kristina; Basu-Roy, Upal; Mansukhani, Alka; Mahajan, Shahana S.

    2017-01-01

    Osteosarcomas are malignant tumors of bone, most commonly seen in children and adolescents. Despite advances in modern medicine, the poor survival rate of metastatic osteosarcoma has not improved in two decades. In the present study we have investigated the effect of Riluzole on a human and mouse metastatic osteosarcoma cells. We show that LM7 cells secrete glutamate in the media and that mGluR5 receptors are required for the proliferation of LM7 cells. Riluzole, which is known to inhibit glutamate release, inhibits proliferation, induces apoptosis and prevents migration of LM7 cells. This is also seen with Fenobam, a specific blocker of mGluR5. We also show that Riluzole alters the phosphorylation status of AKT/P70 S6 kinase, ERK1/2 and JNK1/2. Thus Riluzole is an effective drug to inhibit proliferation and survival of osteosarcoma cells and has therapeutic potential for the treatment of osteosarcoma exhibiting autocrine glutamate signaling. PMID:28231291

  17. Integrating mechanisms of response and resistance against the tubulin binding agent Eribulin in preclinical models of osteosarcoma

    PubMed Central

    Sampson, Valerie B.; Vetter, Nancy S.; Zhang, Wendong; Patil, Pratima U.; Mason, Robert W.; George, Erika; Gorlick, Richard; Kolb, Edward A.

    2016-01-01

    Osteosarcoma is the most frequently occurring bone cancer in children and adolescents. Unfortunately, treatment failures are common. Eribulin is a synthetic microtubule inhibitor that has demonstrated activity in preclinical osteosarcoma models. The effects of eribulin were evaluated in two human osteosarcoma cell lines as well as in eribulin-sensitive and -resistant osteosarcoma xenograft tumors of the Pediatric Preclinical Testing Program (PPTP) by characterizing cell viability, microtubule destabilization, mitotic arrest and mechanism of cell death. Eribulin demonstrated cytotoxic activity in vitro, through promotion of microtubule dynamic instability, arrest of cells in the G2/M phase, mitotic catastrophe and cell death. The microtubule-destabilizing protein stathmin-1 (STMN1) was coimmunoprecipitated with the cyclin-dependent kinase inhibitor p27 indicating that these cytoplasmic complexes can protect cells from the microtubule destabilizing effect of eribulin. Increased tumoral expression of P-glycoprotein (P-gp) and TUBB3 were also associated with lower drug sensitivity. In summary, eribulin successfully blocked cells in G2/M phase but interfered with mitochondria activity to inhibit proteins involved in apoptosis. Understanding the complex and inter-related mechanisms involved in the overall drug response to eribulin may help in the design of therapeutic strategies that enhance drug activity and improve benefits of eribulin in pediatric patients with osteosarcoma. PMID:27863409

  18. MicroRNA-21 Inhibits the Apoptosis of Osteosarcoma Cell Line SAOS-2 Via Targeting Caspase-8.

    PubMed

    Xu, Bin; Xia, Hehuan; Cao, Junming; Wang, Zhihong; Yang, Yipeng; Lin, Yongsheng

    2017-01-20

    Currently, multiple microRNAs (miRNAs) have been found play vital roles in the pathogenesis of osteosarcoma. This studywas aimed to investigate the role of miR-21 in osteosarcoma. The level of miR-21 in 20 pairs of osteosarcoma and correspondingly adjacent tissues were monitored by qPCR. Human osteosarcoma cells line SAOS-2 was transfected with either miR-21 mimic or miR-21 inhibitor, and then cell viability, survival and apoptosis were respectively measured by MTT, colony formation assay, and flow cytometry. A target of miR-21 was predicted by microRNA.org database and verified in vitro by using luciferase reporter, qPCR and Western blot analyses. Finally, cells were co-transfected with siRNA against caspase-8 and miR-21 inhibitor, and the apoptotic cells rate was determined again. Results showed that, the mRNA level of miR-21 was highly expressed in osteosarcoma tissues compared with in adjacent tissues. Overexpression of miR-21 improved cell viability and survival, but suppressed apoptosis. Caspase-8 was a direct target of miR-21, and it was negatively regulated by miR-21. Moreover, miR-21 suppression attenuated caspase-8 silencing-induced the decrease of apoptosis. In conclusion, overexpression of miR-21 suppressed SAOS-2 cells apoptosis via directly targeting caspase-8.

  19. Integrating mechanisms of response and resistance against the tubulin binding agent Eribulin in preclinical models of osteosarcoma.

    PubMed

    Sampson, Valerie B; Vetter, Nancy S; Zhang, Wendong; Patil, Pratima U; Mason, Robert W; George, Erika; Gorlick, Richard; Kolb, Edward A

    2016-12-27

    Osteosarcoma is the most frequently occurring bone cancer in children and adolescents. Unfortunately, treatment failures are common. Eribulin is a synthetic microtubule inhibitor that has demonstrated activity in preclinical osteosarcoma models. The effects of eribulin were evaluated in two human osteosarcoma cell lines as well as in eribulin-sensitive and -resistant osteosarcoma xenograft tumors of the Pediatric Preclinical Testing Program (PPTP) by characterizing cell viability, microtubule destabilization, mitotic arrest and mechanism of cell death. Eribulin demonstrated cytotoxic activity in vitro, through promotion of microtubule dynamic instability, arrest of cells in the G2/M phase, mitotic catastrophe and cell death. The microtubule-destabilizing protein stathmin-1 (STMN1) was coimmunoprecipitated with the cyclin-dependent kinase inhibitor p27 indicating that these cytoplasmic complexes can protect cells from the microtubule destabilizing effect of eribulin. Increased tumoral expression of P-glycoprotein (P-gp) and TUBB3 were also associated with lower drug sensitivity. In summary, eribulin successfully blocked cells in G2/M phase but interfered with mitochondria activity to inhibit proteins involved in apoptosis. Understanding the complex and inter-related mechanisms involved in the overall drug response to eribulin may help in the design of therapeutic strategies that enhance drug activity and improve benefits of eribulin in pediatric patients with osteosarcoma.

  20. Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo

    PubMed Central

    Arai, E; Nishida, Y; Wasa, J; Urakawa, H; Zhuo, L; Kimata, K; Kozawa, E; Futamura, N; Ishiguro, N

    2011-01-01

    Background: Hyaluronan (HA) plays crucial roles in the tumourigenicity of many types of malignant tumours. 4-Methylumbelliferone (MU) is an inhibitor of HA synthesis. Several studies have shown its inhibitory effects on malignant tumours; however, none have focused on its effects on osteosarcoma. Methods: We investigated the effects of MU on HA accumulation and tumourigenicity of highly metastatic murine osteosarcoma cells (LM8) that have HA-rich cell-associated matrix, and human osteosarcoma cell lines (MG-63 and HOS). Results: In vitro, MU inhibited HA retention, thereby reducing the formation of functional cell-associated matrices, and also inhibited cell proliferation, migration, and invasion. Akt phosphorylation was suppressed by MU (1.0 m). In vivo, although MU showed only a mild inhibitory effect on the growth of the primary tumour, it markedly inhibited (75% reduction) the development of lung metastasis. Hyaluronan retention in the periphery of the primary tumour was markedly suppressed by MU. Conclusion: These findings suggested that MU suppressed HA retention and cell-associated matrix formation in osteosarcoma cells, resulting in a reduction of tumourigenicity, including lung metastasis. 4-Methylumbelliferone is a promising therapeutic agent targeting both primary tumours and distant metastasis of osteosarcoma, possibly via suppression of HA retention. PMID:22045192

  1. MicroRNA signatures associate with pathogenesis and progression of osteosarcoma

    PubMed Central

    Jones, Kevin B.; Salah, Zaidoun; Sara, Del Mare; Galasso, Marco; Gaudio, Eugenio; Nuovo, Gerard J.; Lovat, Francesca; LeBlanc, Kimberly; Palatini, Jeff; Randall, R. Lor; Volinia, Stefano; Stein, Gary S.; Croce, Carlo M.; Lian, Jane B.; Aqeilan, Rami I.

    2012-01-01

    Osteosarcoma remains a leading cause of cancer death in adolescents. Treatment paradigms and survival rates have not improved in two decades. Driving the lack of therapeutic inroads, the molecular etiology of osteosarcoma remains elusive. MicroRNAs (miRNAs) have demonstrated far-reaching effects on the cellular biology of development and cancer. Their role in osteosarcomagenesis remains largely unexplored. Here we identify for the first time an miRNA signature reflecting the pathogenesis of osteosarcoma from surgically procured samples from human patients. The signature includes high expression of miR-181a, miR-181b, and miR-181c as well as reduced expression of miR-16, miR-29b, and miR-142-5p. We also demonstrate that miR-181b and miR-29b exhibit restricted expression to distinct cell populations in the tumor tissue. Further, higher expression of miR-27a and miR-181c* in pre-treatment biopsy samples characterized patients who developed clinical metastatic disease. In addition, higher expression of miR-451 and miR-15b in pre-treatment samples correlated with subsequent positive response to chemotherapy. In vitro and in vivo functional validation in osteosarcoma cell lines confirmed the tumor suppressive role of miR-16 and the pro-metastatic role of miR-27a. Furthermore, predicted target genes for miR-16 and miR-27a were confirmed as down-regulated by real-time PCR. Affymetrix array profiling of cDNAs from the osteosarcoma specimens and controls were interrogated according to predicted targets of miR-16, miR142-5p, miR-29b, miR-181a/b, and miR-27a. This analysis revealed positive and negative correlations highlighting pathways of known importance to osteosarcoma, as well as novel genes. Thus, our findings establish a miRNA signature associated with pathogenesis of osteosarcoma as well as critical pre-treatment biomarkers of metastasis and responsiveness to therapy. PMID:22350417

  2. miRNA signatures associate with pathogenesis and progression of osteosarcoma.

    PubMed

    Jones, Kevin B; Salah, Zaidoun; Del Mare, Sara; Galasso, Marco; Gaudio, Eugenio; Nuovo, Gerard J; Lovat, Francesca; LeBlanc, Kimberly; Palatini, Jeff; Randall, R Lor; Volinia, Stefano; Stein, Gary S; Croce, Carlo M; Lian, Jane B; Aqeilan, Rami I

    2012-04-01

    Osteosarcoma remains a leading cause of cancer death in adolescents. Treatment paradigms and survival rates have not improved in two decades. Driving the lack of therapeutic inroads, the molecular etiology of osteosarcoma remains elusive. MicroRNAs (miRNAs) have demonstrated far-reaching effects on the cellular biology of development and cancer. Their role in osteosarcomagenesis remains largely unexplored. Here we identify for the first time an miRNA signature reflecting the pathogenesis of osteosarcoma from surgically procured samples from human patients. The signature includes high expression of miR-181a,miR-181b, and miR-181c as well as reduced expression of miR-16, miR-29b, and miR-142-5p. We also demonstrate that miR-181b and miR-29b exhibit restricted expression to distinct cell populations in the tumor tissue. Further, higher expression of miR-27a and miR-181c* in pre-treatment biopsy samples characterized patients who developed clinical metastatic disease. In addition, higher expression of miR-451 and miR-15b in pre-treatment samples correlated with subsequent positive response to chemotherapy. In vitro and in vivo functional validation in osteosarcoma cell lines confirmed the tumor suppressive role of miR-16 and the pro-metastatic role of miR-27a. Furthermore, predicted target genes for miR-16 and miR-27a were confirmed as down-regulated by real-time PCR. Affymetrix array profiling of cDNAs from the osteosarcoma specimens and controls were interrogated according to predicted targets of miR-16, miR142-5p, miR-29b, miR-181a/b, and miR-27a. This analysis revealed positive and negative correlations highlighting pathways of known importance to osteosarcoma, as well as novel genes. Thus, our findings establish a miRNA signature associated with pathogenesis of osteosarcoma as well as critical pre-treatment biomarkers of metastasis and responsiveness to therapy.

  3. MicroRNA-101 inhibits proliferation, migration and invasion in osteosarcoma cells by targeting ROCK1

    PubMed Central

    Jiang, Rui; Zhang, Chao; Liu, Guangyao; Gu, Rui; Wu, Han

    2017-01-01

    Osteosarcoma is a rare malignant bone tumor in adolescents, with high degree of malignancy, and highly incidence of recurrence and metastasis. Our study aimed to explore the role of miR-101 in osteosarcoma cells by targeting ROCK1. In the present study, reverse transcription-quantitative polymerase chain reaction data revealed that miR-101 was down-regulated in the tissue samples of 20 patients with osteosarcoma compared with their matched adjacent non-tumor tissues (P < 0.01). Furthermore, miR-101 was significantly down-regulated in three common OS cell lines, MG63, U2OS, and OS732 compared with the human osteoblast cell line, hFOB1.19 (P < 0.01). MiR-101 was shown to target the ROCK1 3’-UTR in dual-luciferase reporter assays in MG63 cells. Overexpression of miR-101 significantly suppressed the protein expression levels of ROCK1, while knockdown of miR-101 significantly enhanced the formers’ expression levels in MG63 cells (P < 0.05). Overexpression of miR-101 inhibited cell viability, migration, and invasion while promoted apoptosis. Independent inhibition of ROCK1 and knockdown of miR-101 expression levels significantly promoted MG63 cell proliferation, migration and invasion while inhibited apoptosis (P < 0.01). Moreover, knockdown of ROCK1 reversed the promotion effect of miR-101 knockdown on proliferation, migration, and invasion while promoted apoptosis of MG63 cells, suggesting that miR-101 acts as a tumor suppressor in osteosarcoma cells via targeting ROCK1. Furthermore, overexpression of miR-101 inhibited tumor growth and motion by inactivating PI3K/AKT and JAK/STAT signaling pathways via downregulation of ROCK1. To conclude, miR-101/ROCK1 may be a potential therapeutic target for osteosarcoma therapy. PMID:28123850

  4. Coexistence of HER2, Ki67, and p53 in Osteosarcoma: A Strong Prognostic Factor

    PubMed Central

    Mardanpour, Keykhosro; Rahbar, Mahtab; Mardanpour, Sourena

    2016-01-01

    Background: Many laboratories are currently evaluating the usefulness of the determination of human epidermal growth factor receptor 2 (HER2), p53, and Ki67 proliferation indices using immunohistochemical techniques in cancer. Although the available studies suggest that these factors might indeed be helpful in making treatment decisions in osteosarcoma patients, their clinical usefulness is still controversial. Aims: We proposed to introduce the value of the coexistence of HER2 overexpression, p53 protein accumulation, and Ki67 in osteosarcoma, which could be a prognostic factor in osteosarcoma. Material and Methods: Expression of HER2, p53, and Ki67 was examined by immunohistochemistry in samples of resected bone tumor tissue from 56 patients with osteosarcoma, obtained between 2009 and 2014 (median follow-up period of 48 months), and their significance for prognosis was analyzed. Results: Of the 56 osteogenic sarcoma tissue samples, 80, 89, and 96.5% were positive for HER2 overexpression, p53 protein accumulation, and Ki67 expression, respectively. Overexpression of HER2 and accumulation of p53 protein significantly correlated with reduced disease-free (P < 0.01) and overall survival (P < 0.003). HER2 and Ki67 co-overexpression significantly correlated with decreased disease-free (P < 0.03) and overall survival (P < 0.02). HER2, accumulation of p53 protein, and Ki67 co-overexpression significantly correlated with reduced disease-free (P < 0.01) and overall survival (P < 0.005) as did patients with larger tumor size, high grade of tumor, positive lymph node, and metastasis status within the specified period of follow up. Conclusions: We found evidence that coexistence of HER2 and Ki67 overexpression and p53 protein accumulation predict the development of lymph node involvement and metastases in patients with high-grade osteosarcoma and were significantly associated with reduced survival. PMID:27298815

  5. Towards a Drug Development Path that Targets Metastatic Progression in Osteosarcoma

    PubMed Central

    Khanna, Chand; Fan, Timothy M.; Gorlick, Richard; Helman, Lee J; Kleinerman, Eugenie S.; Adamson, Peter C.; Houghton, Peter J.; Tap, William D.; Welch, Danny R.; Steeg, Patricia S.; Merlino, Glenn; Sorensen, Poul HB; Kirsch, David G.; Janeway, Katherine A.; Weigel, Brenda; Randall, R. Lor; Meltzer, Paul; Withrow, Stephen J; Paoloni, Melissa; Kaplan, Rosandra N.; Teicher, Beverly A.; Seibel, Nita L.; Üren, Aykut; Patel, Shreyaskumar R.; Trent, Jeffrey; Savage, Sharon A.; Mirabello, Lisa; Reinke, Denise; Barkauskas, Donald A.; Krailo, Mark; Smith, Malcolm A.; Bernstein, Mark

    2014-01-01

    Despite successful primary tumor treatment, the development of pulmonary metastasis continues to be the most common cause of mortality in osteosarcoma patients. A conventional drug development path requiring drugs to induce regression of established lesions has not led to improvements for osteosarcoma patients in over 30 years. Based on our growing understanding of metastasis biology, it is now reasonable and essential that we focus on developing therapeutics that target metastatic progression. To advance this agenda a meeting of key opinion leaders and experts in the metastasis and osteosarcoma communities was convened in Bethesda Maryland. The goal of this meeting was to provide a “Perspective” that would establish a preclinical translational path that could support the early evaluation of potential therapeutic agents that uniquely target the metastatic phenotype. Although focused on osteosarcoma the need for this perspective is shared among many cancer types. The consensus achieved from the meeting included the following: That the biology of metastatic progression is associated with metastasis-specific targets/processes that may not influence grossly detectable lesions; targeting of metastasis-specific processes is feasible; rigorous preclinical data is needed to support translation of metastasis-specific agents into human trials where regression of measurable disease is not an expected outcome; preclinical data should include an understanding of mechanism of action, validation of pharmacodynamic markers of effective exposure and response, the use of several murine models of effectiveness, and where feasible the inclusion of the dog with naturally occurring osteosarcoma to define the activity of new drugs in the micro-metastatic disease setting. PMID:24803583

  6. Mesenchymal stem cells increase proliferation but do not change quiescent state of osteosarcoma cells: Potential implications according to the tumor resection status

    PubMed Central

    Avril, Pierre; Le Nail, Louis-Romée; Brennan, Meadhbh Á.; Rosset, Philippe; De Pinieux, Gonzague; Layrolle, Pierre; Heymann, Dominique; Perrot, Pierre; Trichet, Valérie

    2015-01-01

    Conventional therapy of primary bone tumors includes surgical excision with wide resection, which leads to physical and aesthetic defects. For reconstruction of bone and joints, allografts can be supplemented with mesenchymal stem cells (MSCs). Similarly, adipose tissue transfer (ATT) is supplemented with adipose-derived stem cells (ADSCs) to improve the efficient grafting in the correction of soft tissue defects. MSC-like cells may also be used in tumor-targeted cell therapy. However, MSC may have adverse effects on sarcoma development. In the present study, human ADSCs, MSCs and pre-osteoclasts were co-injected with human MNNG-HOS osteosarcoma cells in immunodeficient mice. ADSCs and MSCs, but not the osteoclast precursors, accelerated the local proliferation of MNNG-HOS osteosarcoma cells. However, the osteolysis and the metastasis process were not exacerbated by ADSCs, MSCs, or pre-osteoclasts. In vitro proliferation of MNNG-HOS and Saos-2 osteosarcoma cells was increased up to 2-fold in the presence of ADSC-conditioned medium. In contrast, ADSC-conditioned medium did not change the dormant, quiescent state of osteosarcoma cells cultured in oncospheres. Due to the enhancing effect of ADSCs/MSCs on in vivo/in vitro proliferation of osteosarcoma cells, MSCs may not be good candidates for osteosarcoma-targeted cell therapy. Although conditioned medium of ADSCs accelerated the cell cycle of proliferating osteosarcoma cells, it did not change the quiescent state of dormant osteosarcoma cells, indicating that ADSC-secreted factors may not be involved in the risk of local recurrence. PMID:26998421

  7. Salinomycin inhibits osteosarcoma by targeting its tumor stem cells.

    PubMed

    Tang, Qing-Lian; Zhao, Zhi-Qiang; Li, Jin-Chun; Liang, Yi; Yin, Jun-Qiang; Zou, Chang-Ye; Xie, Xian-Biao; Zeng, Yi-Xin; Shen, Jing-Nan; Kang, Tiebang; Wang, Jin

    2011-12-01

    Osteosarcoma is the most common primary bone tumor in children and adolescents and is typically associated with a poor prognosis. Tumor stem cells (TSCs) are presumed to drive tumor initiation and tumor relapse or metastasis. Hence, the poor prognosis of osteosarcoma likely results from a failure to target the osteosarcoma stem cells. Here, we have utilized three different methods to enrich TSCs in osteosarcoma and further evaluated whether salinomycin could selectively target TSCs in osteosarcoma. Our results indicated that sarcosphere selection, chemotherapy selection and stem cell marker OCT4 or SOX2 over-expression are all effective in the enrichment of TSCs from osteosarcoma cell lines. Further investigation found that salinomycin inhibited osteosarcoma by selectively targeting its stem cells both in vitro and in vivo without severe side effects, and the Wnt/β-catenin signaling pathway may be involved in this inhibition of salinomycin. Taken together, we have identified that salinomycin is an effective inhibitor of osteosarcoma stem cells, supporting the use of salinomycin for elimination of osteosarcoma stem cells and implying a need for further clinical evaluation.

  8. LDOC1 regulates Wnt5a expression and osteosarcoma cell metastasis and is correlated with the survival of osteosarcoma patients.

    PubMed

    Yong, Bi-Cheng; Lu, Jin-Chang; Xie, Xian-Biao; Su, Qiao; Tan, Ping-Xian; Tang, Qing-Lian; Wang, Jing; Huang, Gang; Han, Ju; Xu, Hong-Wen; Shen, Jing-Nan

    2017-02-01

    Osteosarcomas are common bone malignancies in children and adolescents. LDOC1 (leucine zipper, down-regulated in cancer 1), a tumor suppressor, is down-regulated in many cancers. In this study, we investigated the role of LDOC1 in tumor metastasis and its prognostic significance in osteosarcomas. We established osteosarcoma cells stably expressing LDOC1, driven by an HIV-based lentiviral system. We investigated the impact of LDOC1 on migration and invasion abilities in these cells using a transwell assay. LDOC1-associated changes in expression of metastasis-promoting genes were analyzed with a quantitative real-time polymerase chain reaction primer array. A xenograft tumor model (n = 7 mice/group) was used to assess the effect of LDOC1 on osteosarcoma metastasis in vivo. The overall survival and disease-free survival of osteosarcoma patients (n = 74) were analyzed retrospectively based on immunohistochemical analysis of LDOC1 levels in tumors and Kaplan-Meier analysis. LDOC1-expressing osteosarcoma cells displayed decreased migration and invasion in vitro. The quantitative real-time polymerase chain reaction primer array data showed that increased LDOC1 expression up-regulated many metastasis-suppressor genes. In the xenograft model, micro-computed tomography imaging data indicated that increased LDOC1 expression is associated with weaker lung metastasis ability. The Wnt5a signaling pathway promotes osteosarcoma metastasis; LDOC1 expression decreased Wnt5a levels in osteosarcoma cells. Kaplan-Meier analysis showed that higher LDOC1 expression was associated with improved osteosarcoma patient overall survival and disease free survival (p = 0.022). Our data show that LDOC1 is a tumor suppressor in osteosarcoma, and that it regulates metastasis of osteosarcoma cells. Furthermore, LDOC1 might be a valuable prognostic marker in osteosarcomas.

  9. Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees.

    PubMed

    Laycock, Ian; Cotterell, Katie C; O'Shea-Wheller, Thomas A; Cresswell, James E

    2014-02-01

    Neonicotinoid pesticides are currently implicated in the decline of wild bee populations. Bumble bees, Bombus spp., are important wild pollinators that are detrimentally affected by ingestion of neonicotinoid residues. To date, imidacloprid has been the major focus of study into the effects of neonicotinoids on bumble bee health, but wild populations are increasingly exposed to alternative neonicotinoids such as thiamethoxam. To investigate whether environmentally realistic levels of thiamethoxam affect bumble bee performance over a realistic exposure period, we exposed queenless microcolonies of Bombus terrestris L. workers to a wide range of dosages up to 98 μgkg(-1) in dietary syrup for 17 days. Results showed that bumble bee workers survived fewer days when presented with syrup dosed at 98 μg thiamethoxamkg(-1), while production of brood (eggs and larvae) and consumption of syrup and pollen in microcolonies were significantly reduced by thiamethoxam only at the two highest concentrations (39, 98 μgkg(-1)). In contrast, we found no detectable effect of thiamethoxam at levels typically found in the nectars of treated crops (between 1 and 11 μgkg(-1)). By comparison with published data, we demonstrate that during an exposure to field-realistic concentrations lasting approximately two weeks, brood production in worker bumble bees is more sensitive to imidacloprid than thiamethoxam. We speculate that differential sensitivity arises because imidacloprid produces a stronger repression of feeding in bumble bees than thiamethoxam, which imposes a greater nutrient limitation on production of brood.

  10. Strategies and developments of immunotherapies in osteosarcoma

    PubMed Central

    WAN, JIA; ZHANG, XIANGHONG; LIU, TANG; ZHANG, XIANGSHENG

    2016-01-01

    Osteosarcoma (OS) is a frequently observed primary malignant tumor. Current therapy for osteosarcoma consists of comprehensive treatment. The long-term survival rate of patients exhibiting nonmetastatic OS varies between 65–70%. However, a number of OS cases have been observed to be resistant to currently used therapies, leading to disease recurrence and lung metastases, which are the primary reasons leading to patient mortality. In the present review, a number of pieces of evidence provide support for the potential uses of immunotherapy, including immunomodulation and vaccine therapy, for the eradication of tumors via upregulation of the immune response. Adoptive T-cell therapy and oncolytic virotherapy have been used to treat OS and resulted in objective responses. Immunologic checkpoint blockade and targeted therapy are also potentially promising therapeutic tools. Immunotherapy demonstrates significant promise with regard to improving the outcomes for patients exhibiting OS. PMID:26834853

  11. Lumbar osteosarcoma in a chinchilla (Chinchilla laniger).

    PubMed

    Simova-Curd, S; Nitzl, D; Pospischil, A; Hatt, J-M

    2008-09-01

    An 11-year-old male chinchilla was presented for investigation of progressive weight loss, apathy, anorexia, changes in faecal quality and alopecia on the tip of the tail. On clinical examination, a stiffness of the back legs was noted. Abdominal palpation revealed a hard immobile, irregular structure in the region of the last lumbar vertebrae. Subsequent radiography and ultrasonography suggested the presence of neoplasia. The following day the chinchilla was showing hindlimb paralysis, and there was severe self-trauma to the distal 5 cm of the tail. In view of the rapid clinical deterioration, the chinchilla was euthanased with the owner's consent. Macroscopic examination supported the clinical suspicion of neoplasia. Histopathological examination revealed a reactive osteoblastic osteosarcoma. To the author's knowledge, this is the first report of osteosarcoma in chinchillas.

  12. [Periosteal osteosarcoma - personal experience with five cases].

    PubMed

    Kinkor, Zdeněk; Šidlová, Henrieta; Mečiarová, Iveta; Švec, Andrej; Švajdler Ml, Marián; Vasovčák, Peter; Kodet, Roman; Matějovský, Zdeněk; Straka, Ľubomír

    2015-01-01

    The authors present five cases of periosteal osteosarcoma located in the femur (4) and tibia (1) in children and young adults (1 female and 4 males) with an age range of 9 - 23 years (mean age 15 years). Radiographs in all cases showed a broad-based soft tissue mass attached to the cortex with periosteal reaction and in two of them cortical disruption with extensive medullary involvement. Follow-ups were available in four cases (range 11 - 73 months) and revealed pelvic metastasis after 15 months with ultimately rapid dissemination and death in a 9-year-old girl and metastasis to the humerus after 13 months in a 15-year-old boy. The former tumor widely extended into the medullary cavity and an amputation was carried out, the latter had a pure juxtacortical position and an en block resection was performed; both of them were treated with chemotherapy. All the lesions displayed distinctive structural patterns combining a large island of tumorous cartilage and hypocellular, bland-looking myxoid mesenchymal stroma with abrupt transition between both components. Contrary to conventional osteosarcoma, the delicate flocculent osteoid deposits were produced by innocuous stromal cells lacking apparent atypia. They were strictly situated outside the prevailing chondroid areas and disclosed sometimes only after a meticulous search. Immunohistochemical detection of SATB2, S100protein and D2-40 assisted effectively not only in recognition of the real stromal histogenetic derivation, but also in distinction of true differentiation of a heavily mineralized extracellular matrix. Molecular analysis revealed no IDH1/2 mutation in four examined cases. Regardless of unique low-grade morphology in rare periosteal osteosarcoma, an aggressive therapeutical approach similar to conventional osteosarcoma is justified, particularly in the case of a medullary extension.

  13. Improvement in High-Grade Osteosarcoma Survival

    PubMed Central

    Hung, Giun-Yi; Yen, Hsiu-Ju; Yen, Chueh-Chuan; Wu, Po-Kuei; Chen, Cheng-Fong; Chen, Paul C-H; Wu, Hung-Ta H.; Chiou, Hong-Jen; Chen, Wei-Ming

    2016-01-01

    Abstract The aim of this study was to compare survival before and after 2004 and define the prognostic factors for high-grade osteosarcomas beyond those of typical young patients with localized extremity disease. Few studies have reported the long-term treatment outcomes of high-grade osteosarcoma in Taiwan. A total of 202 patients with primary high-grade osteosarcoma who received primary chemotherapy at Taipei Veterans General Hospital between January 1995 and December 2011 were retrospectively evaluated and compared by period (1995–2003 vs 2004–2011). Patients of all ages and tumor sites and those following or not following controlled protocols were included in analysis of demographic, tumor-related, and treatment-related variables and survival. Overall survival and progression-free survival at 5 years were, respectively, 67.7% and 48% for all patients (n = 202), 77.3% and 57.1% for patients without metastasis (n = 157), and 33.9% and 14.8% for patients with metastasis (n = 45). The survival rates of patients treated after 2004 were significantly higher (by 13%–16%) compared with those of patients treated before 2004, with an accompanying 30% increase in histological good response rate (P = .002). Factors significantly contributing to inferior survival in univariate and multivariate analyses were diagnosis before 2004, metastasis at diagnosis, and being a noncandidate for a controlled treatment protocol. By comparison with the regimens used at our institution before 2004, the current results support the effectiveness of the post-2004 regimens, which consisted of substantially reduced cycles of high-dose methotrexate and a higher dosage of ifosfamide per cycle, cisplatin, and doxorubicin, for treating high-grade osteosarcoma in Asian patients. PMID:27082623

  14. Evaluation of nucleolar organizer regions in maxillary osteosarcoma.

    PubMed

    Paparella, María Luisa; Brandizzi, Daniel; Santini-Araujo, Eduardo; Cabrini, Rómulo Luis

    2007-01-01

    Maxillary osteosarcomas are a relatively frequent malignant tumor of the oral cavity. Similarly to other skeletal osteosarcomas, they exhibit different cellular differentiation patterns, i.e. chondroblastic, osteoblastic, or fibroblastic. Although their histological features resemble those of osteosarcomas of the long bones, their pattern of evolution usually differs. Morphometric variations in silver stained Nucleolar Organizer Regions (AgNOR) have proved of value to study the biology of several tumors. However, information on the analysis of AgNOR in maxillary tumors is scarce. The aim of the present study was to analyze the variations of different morphological parameters related to AgNOR in a series of 32 cases of maxillary osteosarcoma. In each case we analyzed 100 nuclei corresponding to the prevalent cellular differentiation type, selecting the most aggressive area. We employed software previously developed at our laboratory that yields information on different AgNOR-related parameters. The results were compared with those previously reported in a study on 12 cases of osteosarcoma of long bones. Six cases of oral mucosa squamous cell carcinoma were also included for comparative purposes. Single AgNOR volume proved to be the most discriminatory and informative parameter. The value of single AgNOR volume was considerably lower in mandible osteosarcomas than in osteosarcomas of the upper maxilla (p=0.02). The values were significantly lower in maxillary osteosarcomas than in long bone osteosarcomas and in oral carcinomas. This finding would suggest a slower rate of cell activity in maxillary osteosarcomas, associated in turn to its known lower degree of aggressiveness. The present results suggest that the analysis of AgNOR is a valuable and easily applicable marker to determine the degree of malignancy and biology of maxillary osteosarcomas.

  15. Serum tumor markers in pediatric osteosarcoma: a summary review

    PubMed Central

    2012-01-01

    Osteosarcoma is the most common primary high-grade bone tumor in both adolescents and children. Early tumor detection is key to ensuring effective treatment. Serum marker discovery and validation for pediatric osteosarcoma has accelerated in recent years, coincident with an evolving understanding of molecules and their complex interactions, and the compelling need for improved pediatric osteosarcoma outcome measures in clinical trials. This review gives a short overview of serological markers for pediatric osteosarcoma, and highlights advances in pediatric osteosarcoma-related marker research within the past year. Studies in the past year involving serum markers in patients with pediatric osteosarcoma can be assigned to one of four categories, i.e., new approaches and new markers, exploratory studies in specialized disease subsets, large cross-sectional validation studies, and longitudinal studies, with and without an intervention. Most of the studies have examined the association of a serum marker with some aspect of the natural history of pediatric osteosarcoma. As illustrated by the many studies reviewed, several serum markers are emerging that show a credible association with disease modification. The expanding pool of informative osteosarcoma-related markers is expected to impact development of therapeutics for pediatric osteosarcoma positively and, it is hoped, ultimately clinical care. Combinations of serum markers of natural immunity, thyroid hormone homeostasis, and bone tumorigenesis may be undertaken together in patients with pediatric osteosarcoma. These serum markers in combination may do better. The potential effect of an intrinsic dynamic balance of tumor angiogenesis residing within a single hormone (tri-iodothyronine) is an attractive concept for regulation of vascularization in pediatric osteosarcoma. PMID:22587902

  16. Pharmacokinetic study and evaluation of the safety of taurolidine for dogs with osteosarcoma

    PubMed Central

    2013-01-01

    Background Osteosarcoma in dogs and humans share many similarities and the dog has been described as an excellent model to study this disease. The median survival in dogs has not improved in the last 25 years. Taurolidine has been shown to be cytotoxic to canine and human osteosarcoma in vitro. The goals of this study were to determine the pharmacokinetics and safety of taurolidine in healthy dogs and the safety of taurolidine in combination with doxorubicin or carboplatin in dogs with osteosarcoma. Methods Two percent taurolidine was infused into six healthy dogs (150 mg/kg) over a period of two hours and blood samples were taken periodically. One dog received taurolidine with polyvinylpyrrolidone (PVP) as its carrier and later received PVP-free taurolidine as did all other dogs in this study. Serum taurolidine concentrations were determined using high-performance liquid chromatography (HPLC) online coupled to ESI-MS/MS in the multiple reaction monitoring mode. Subsequently, the same dose of taurolidine was infused to seven dogs with osteosarcoma also treated with doxorubicin or carboplatin. Results Taurolidine infusion was safe in 6 healthy dogs and there were no significant side effects. Maximum taurolidine serum concentrations ranged between 229 to 646 μM. The dog that received taurolidine with PVP had an immediate allergic reaction but recovered fully after the infusion was stopped. Three additional dogs with osteosarcoma received doxorubicin and taurolidine without PVP. Toxicities included dilated cardiomyopathy, protein-losing nephropathy, renal insufficiency and vasculopathy at the injection site. One dog was switched to carboplatin instead of doxorubicin and an additional 4 dogs with osteosarcoma received taurolidine-carboplatin combination. One incidence of ototoxicity occurred with the taurolidine- carboplatin combination. Bone marrow and gastro-intestinal toxicity did not appear increased with taurolidine over doxorubicin or carboplatin alone

  17. Prognostic value of the Hippo pathway transcriptional coactivators YAP/TAZ and β1-integrin in conventional osteosarcoma

    PubMed Central

    Bouvier, Corinne; Macagno, Nicolas; Nguyen, Quy; Loundou, Anderson; Jiguet-Jiglaire, Carine; Gentet, Jean-Claude; Jouve, Jean-Luc; Rochwerger, Alexandre; Mattei, Jean-Camille; Bouvard, Daniel; Salas, Sébastien

    2016-01-01

    Introduction Currently, very few studies are available concerning the mammalian Hippo pathway in bone sarcomas. YAP/TAZ transcription co-activators are key downstream effectors of this pathway and may also have oncogenic properties. Additionally, recent in-vitro experiments showed that expression of β1-integrin promoted metastasis in osteosarcomas. This study investigated the expression of YAP/TAZ and β1-integrin in human osteosarcomas. Materials and methods We performed automated immunohistochemistry on tissue-microarrays (TMA) in which 69 conventional osteosarcomas biopsies performed prior to chemotherapy were embedded. Cellular localization and semi-quantitative analysis of each immunostain was performed using Immunoreactive Score (IRS) and correlated to clinico-pathological data. Results Cytoplasmic expression of β1-integrin was noted in 54/59 osteosarcomas (92%), with 33/59 cases (56%) displaying membranous staining. YAP/TAZ was expressed in 27/45 osteosarcomas (60%), with 14 cases (31%) showing cytoplasmic expression while 13 other cases (28%) displayed nuclear expression. No link was found between YAP/TAZ or β1-integrin expression and response to chemotherapy. In univariate analysis, YAP/TAZ immunoreactive score was pejoratively correlated with overall survival (p = 0.01). Expression of β1-integrin on cell membrane was also pejorative for OS (p = 0.045). In multivariate analysis, YAP/TAZ nuclear expression was an independent prognostic factor for PFS (p = 0.035). Conclusion this study indicates that β1-integrin and YAP/TAZ proteins are linked to prognosis and therefore could be therapeutic targets in conventional osteosarcomas. PMID:27608849

  18. miR-574-3p acts as a tumor promoter in osteosarcoma by targeting SMAD4 signaling pathway

    PubMed Central

    Xu, Haidong; Liu, Xiaozhou; Zhou, Juan; Chen, Xiaoyun; Zhao, Jianning

    2016-01-01

    Human osteosarcoma is the most common primary bone malignancy sarcoma that affects primarily children and people <20 years old. In the present study, it was demonstrated that miR-574-3p was downregulated in human osteosarcoma U2OS, SAOS and MG63 cells lines as well as in osteosarcoma tissue compared with the normal tissues. Downregulation of miR-574-3p by antisense miR-574-3p, inhibited cell growth and induced cell apoptosis. Overexpression of miR-574-3p by transfection with miR-574-3p mimics promoted the growth of U2OS cells. The present study then identified mothers against decapentaplegic homolog 4 (SMAD4) as a target of miR-574-3p and SMAD4 was suppressed in miR-574-3p transfected cells. Overexpression of SMAD4 could rescue the promoting effects of miR-574-3p on cancer cell growth. In conclusion, miR-574-3p exerts tumor-promoting roles by targeting the tumor-suppressing gene SMAD4 and its downstream signaling in human osteosarcoma, which provides a novel target for the treatment. PMID:28105233

  19. Transforming growth factor alpha promotes osteosarcoma metastasis by ICAM-1 and PI3K/Akt signaling pathway.

    PubMed

    Hou, Chun-Han; Lin, Feng-Ling; Tong, Kai-Biao; Hou, Sheng-Mon; Liu, Ju-Fang

    2014-06-15

    Osteosarcoma is the most common primary malignancy of bone and is characterized by a high malignant and metastatic potential. Transforming growth factor alpha (TGF-α) is classified as the EGF (epidermal growth factor)-like family, which is involved in cancer cellular activities such as proliferation, motility, migration, adhesion and invasion abilities. However, the effect of TGF-α on human osteosarcoma is largely unknown. We found that TGF-α increased the cell migration and expression of intercellular adhesion molecule-1 (ICAM-1) in human osteosarcoma cells. Transfection of cells with ICAM-1 siRNA reduced TGF-α-mediated cell migration. We also found that the phosphatidylinositol 3'-kinase (PI3K)/Akt/NF-κB pathway was activated after TGF-α treatment, and TGF-α-induced expression of ICAM-1 and cell migration was inhibited by the specific inhibitors and siRNAs of PI3K, Akt, and NF-κB cascades. In addition, knockdown of TGF-α expression markedly decreased cell metastasis in vitro and in vivo. Our results indicate that TGF-α/EGFR interaction elicits PI3K and Akt activation, which in turn activates NF-κB, resulting in the expression of ICAM-1 and contributing the migration of human osteosarcoma cells.

  20. Using Epidemiology and Genomics to Understand Osteosarcoma Etiology

    PubMed Central

    Savage, Sharon A.; Mirabello, Lisa

    2011-01-01

    Osteosarcoma is a primary bone malignancy that typically occurs during adolescence but also has a second incidence peak in the elderly. It occurs most commonly in the long bones, although there is variability in location between age groups. The etiology of osteosarcoma is not well understood; it occurs at increased rates in individuals with Paget disease of bone, after therapeutic radiation, and in certain cancer predisposition syndromes. It also occurs more commonly in taller individuals, but a strong environmental component to osteosarcoma risk has not been identified. Several studies suggest that osteosarcoma may be associated with single nucleotide polymorphisms in genes important in growth and tumor suppression but the studies are limited by sample size. Herein, we review the epidemiology of osteosarcoma as well as its known and suspected risk factors in an effort to gain insight into its etiology. PMID:21437228

  1. In vitro antitumor activity of the ethyl acetate extract of Potentilla chinensis in osteosarcoma cancer cells

    PubMed Central

    Wan, Guang; Tao, Jin-Gang; Wang, Guo-Dong; Liu, Shen-Peng; Zhao, Hong-Xing; Liang, Qiu-Dong

    2016-01-01

    The aim of the current study was to evaluate the anticancer effect of the ethanol extract of Potentilla chinensis, a Chinese medicinal plant. An MTT assay was used to evaluate the cell viability of MG-63 human osteosarcoma cancer cells and fR-2 cells. Furthermore, the effect of the extract on apoptosis induction, cell cycle phase distribution and inhibition of cell migration in the MG63 human osteosarcoma cancer cell line was evaluated. The effect of the extract on cell cycle phase distribution was assessed by flow cytometry using propidium iodide (PI). Phase contrast microscopy detected the morphological changes in MG63 cancer cells following extract treatment. The results of the study demonstrated that the extract was cytotoxic to MG63 cancer cells, while the normal cell line (epithelial cell line) showed lower susceptibility. Phase contrast microscopy showed distinguishing morphological features, such as cell shrinkage and blebbing induced by the extract treatment in osteosarcoma cancer cells. The average proportion of Annexin V-positive cells (total apoptotic cells) significantly increased from 5.6% in the control to 24.2, 38.8 and 55.7% in the 40, 80 and 150 µg/ml groups, respectively. The extract induced early and late apoptosis in the cancer cells. Flow cytometric analysis revealed that the extract induced G0/G1-cell cycle arrest, which also showed significant dose-dependence. The extract induced a significant and concentration-dependent reduction in cell migration. Moreover, DNA fragmentation was also examined by observation of the formation of DNA ladders. It was demonstrated that DNA fragmentation was increased with extract concentration compared with that in the control. Taken together, EEPC may serve as potential therapeutic agent against osteosarcoma, provided that the toxicity profile and in vivo investigations demonstrate that it is safe. PMID:27573158

  2. Aerosol Gemcitabine: Preclinical Safety and In Vivo Antitumor Activity in Osteosarcoma-Bearing Dogs

    PubMed Central

    Crabbs, Torrie A.; Wilson, Dennis W.; Cannan, Virginia A.; Skorupski, Katherine A.; Gordon, Nancy; Koshkina, Nadya; Kleinerman, Eugenie; Anderson, Peter M.

    2010-01-01

    Abstract Background Osteosarcoma is the most common skeletal malignancy in the dog and in young humans. Although chemotherapy improves survival time, death continues to be attributed to metastases. Aerosol delivery can provide a strategy with which to improve the lung drug delivery while reducing systemic toxicity. The purpose of this study is to assess the safety of a regional aerosol approach to chemotherapy delivery in osteosarcoma-bearing dogs, and second, to evaluate the effect of gemcitabine on Fas expression in the pulmonary metastasis. Methods We examined the systemic and local effects of aerosol gemcitabine on lung and pulmonary metastasis in this relevant large-animal tumor model using serial laboratory and arterial blood gas analysis and histopathology and immunohistochemistry, respectively. Results and Conclusions Six hundred seventy-two 1-h doses of aerosol gemcitabine were delivered. The treatment was well tolerated by these subjects with osteosarcoma (n = 20). Aerosol-treated subjects had metastatic foci that demonstrated extensive, predominately central, intratumoral necrosis. Fas expression was decreased in pulmonary metastases compared to the primary tumor (p = 0.008). After aerosol gemcitabine Fas expression in the metastatic foci was increased compared to lung metastases before treatment (p = 0.0075), and even was higher than the primary tumor (p = 0.025). Increased apoptosis (TUNEL) staining was also detected in aerosol gemcitabine treated metastasis compared to untreated controls (p = 0.028). The results from this pivotal translational study support the concept that aerosol gemcitabine may be useful against pulmonary metastases of osteosarcoma. Additional studies that evaluate the aerosol route of administration of gemcitabine in humans should be safe and are warranted. PMID:19803732

  3. SPAG9 is overexpressed in osteosarcoma, and regulates cell proliferation and invasion through regulation of JunD

    PubMed Central

    Xiao, Chi; Fu, Lin; Yan, Chongnan; Shou, Fenyong; Liu, Qi; Li, Lei; Cui, Shaoqian; Duan, Jingzhu; Jin, Guoxin; Chen, Jianhua; Bian, Yuanming; Wang, Xu; Wang, Huan

    2016-01-01

    Sperm-associated antigen 9 (SPAG9) is a recently characterized oncoprotein that is considered to be involved in several forms of malignant tumor. However, its biological function and expression pattern in human osteosarcoma have not yet been elucidated. In the present study, SPAG9 expression was analyzed in 58 cases of human osteosarcoma by immunohistochemistry. The results demonstrated that SPAG9 was overexpressed in 63.8% (37/58) of osteosarcoma tissues, while normal bone tissues exhibited negative SPAG9 expression. SPAG9 small interfering RNA was employed in the U2OS cell line, which has high endogenous expression, and SPAG9 transfection was performed in the MG63 cell line, which has low endogenous expression. MTT and Matrigel invasion assays demonstrated that SPAG-9-knockdown significantly reduced U2OS cell invasion and proliferation, while SPAG9 transfection enhanced MG63 cell proliferation and invasion. Furthermore, it was observed that SPAG9 positively regulated cyclin D1, phosphorylated-c-Jun NH2-terminal kinase (JNK) and JunD expression. Treatment with the JNK inhibitor, SP600125, abolished the upregulatory effect of SPAG9 on JunD. Taken together, the present study identified SPAG9 as a critical oncoprotein involved in osteosarcoma proliferation and invasion, possibly functioning through JNK-JunD signaling. PMID:27698841

  4. Caspofungin Treatment of Aspergillus fumigatus Results in ChsG-Dependent Upregulation of Chitin Synthesis and the Formation of Chitin-Rich Microcolonies.

    PubMed

    Walker, Louise A; Lee, Keunsook K; Munro, Carol A; Gow, Neil A R

    2015-10-01

    Treatment of Aspergillus fumigatus with echinocandins such as caspofungin inhibits the synthesis of cell wall β-1,3-glucan, which triggers a compensatory stimulation of chitin synthesis. Activation of chitin synthesis can occur in response to sub-MICs of caspofungin and to CaCl2 and calcofluor white (CFW), agonists of the protein kinase C (PKC), and Ca(2+)-calcineurin signaling pathways. A. fumigatus mutants with the chs gene (encoding chitin synthase) deleted (ΔAfchs) were tested for their response to these agonists to determine the chitin synthase enzymes that were required for the compensatory upregulation of chitin synthesis. Only the ΔAfchsG mutant was hypersensitive to caspofungin, and all other ΔAfchs mutants tested remained capable of increasing their chitin content in response to treatment with CaCl2 and CFW and caspofungin. The resulting increase in cell wall chitin content correlated with reduced susceptibility to caspofungin in the wild type and all ΔAfchs mutants tested, with the exception of the ΔAfchsG mutant, which remained sensitive to caspofungin. In vitro exposure to the chitin synthase inhibitor, nikkomycin Z, along with caspofungin demonstrated synergistic efficacy that was again AfChsG dependent. Dynamic imaging using microfluidic perfusion chambers demonstrated that treatment with sub-MIC caspofungin resulted initially in hyphal tip lysis. However, thickened hyphae emerged that formed aberrant microcolonies in the continued presence of caspofungin. In addition, intrahyphal hyphae were formed in response to echinocandin treatment. These in vitro data demonstrate that A. fumigatus has the potential to survive echinocandin treatment in vivo by AfChsG-dependent upregulation of chitin synthesis. Chitin-rich cells may, therefore, persist in human tissues and act as the focus for breakthrough infections.

  5. Effects of the myeloid cell nuclear differentiation antigen on the proliferation, apoptosis and migration of osteosarcoma cells.

    PubMed

    Sun, Chengliang; Liu, Chuanju; Dong, Jun; Li, Dong; Li, Wei

    2014-03-01

    Despite improvements over the past two decades, the outcome for patients with advanced osteosarcoma remains poor. Targeted therapies have emerged as promising treatment options for various malignancies. However, effective targeted cancer therapies require the identification of key molecules in the pathogenesis of cancer. The aim of this study was to evaluate the value of the myeloid cell nuclear differentiation antigen (MNDA), a member of the interferon-inducible p200 (IFI-200) family, as a therapeutic target for osteosarcoma by analyzing the baseline expression of MNDA in human osteosarcoma cells and determining the effect of MNDA overexpression on the proliferation and apoptosis profiles and migration/invasion ability in osteosarcoma cells. To this end, MNDA mRNA abundance in wild-type sarcoma osteogenic (Saos-2) cells was analyzed using reverse transcription-polymerase chain reaction, proliferation/apoptosis profiles and migration/invasion capacity in Saos-2 cells overexpressing a green fluorescence protein (GFP)-human MNDA fusion protein. Saos-2 cells found to be overexpressing GFP alone were assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometric analysis and Matrigel Transwell migration assay. The results demonstrated that MNDA mRNA was significantly less abundant in wild-type Saos-2 cells compared with human monocyte-like U-937 cells and MNDA overexpression effectively inhibited proliferation, induced apoptosis and reduced migration/invasiveness in Saos-2 cells compared with GFP overexpression alone. Preliminary observations suggested that MNDA potentially serves as a novel therapeutic target for osteosarcoma.

  6. Stem cell growth factor receptor in canine vs. feline osteosarcomas

    PubMed Central

    Wolfesberger, Birgitt; Fuchs-Baumgartinger, Andrea; Hlavaty, Juraj; Meyer, Florian R.; Hofer, Martin; Steinborn, Ralf; Gebhard, Christiane; Walter, Ingrid

    2016-01-01

    Osteosarcoma is considered the most common bone cancer in cats and dogs, with cats having a much better prognosis than dogs, since the great majority of dogs with osteosarcoma develop distant metastases. In search of a factor possibly contributing to this disparity, the stem cell growth factor receptor KIT was targeted, and the messenger (m)RNA and protein expression levels of KIT were compared in canine vs. feline osteosarcomas, as well as in normal bone. The mRNA expression of KIT was quantified by reverse transcription-quantitative polymerase chain reaction, and was observed to be significantly higher in canine (n=14) than in feline (n=5) osteosarcoma samples (P<0.001). KIT protein expression was evaluated by immunohistochemistry, which revealed that 21% of canine osteosarcoma samples did not exhibit KIT staining in their neoplastic cells, while in 14% of samples, a score of 1 (<10% positive tumour cells) was observed, and in 50% and 14% of samples, a score of 2 (10–50% positivity) and 3 (>50% positivity), respectively, was observed. By contrast, the cancer cells of all the feline bone tumour samples analysed were entirely negative for KIT. Notably, canine and feline osteocytes of healthy bone tissue lacked any KIT expression. These results could be the first evidence that KIT may be involved in the higher aggressiveness of canine osteosarcoma compared with feline osteosarcoma. PMID:27698817

  7. MDM2 and CDK4 expression in periosteal osteosarcoma.

    PubMed

    Righi, Alberto; Gambarotti, Marco; Benini, Stefania; Gamberi, Gabriella; Cocchi, Stefania; Picci, Piero; Bertoni, Franco

    2015-04-01

    Periosteal osteosarcoma is defined by the World Health Organization as an intermediate-grade, malignant, cartilaginous, and bone-forming neoplasm arising on the surface of bone. Unlike other subtypes of osteosarcoma, no data have been published about mouse double minute 2 (MDM2) and cyclin-dependent kinase 4 (CDK4) expression. For this reason, we evaluated the molecular and immunohistochemical features of MDM2 and CDK4 in 27 cases relative to 20 patients with a diagnosis of periosteal osteosarcoma, surgically treated at the Rizzoli Institute between 1981 and 2014. When possible, these results were compared with the MDM2 amplification status as determined by fluorescence in situ hybridization (FISH). All but 1 case (26/27, 96.3%) were negative for MDM2 protein using immunohistochemistry both in primary and in recurrent periosteal osteosarcoma, whereas gene amplification of MDM2 was not detected in any tumor analyzed (10 cases). The positive immunohistochemical case shows a weak/moderate focal nuclear expression of MDM2 antibody in the prevalent cartilaginous component and in the spindle cells of peripheral fibroblastic areas associated with osteoid production in a primary periosteal osteosarcoma. CDK4 immunohistochemical expression was negative in all 27 cases. This retrospective analysis has demonstrated that MDM2 and CDK4 are very rarely expressed in primary and recurrent periosteal osteosarcomas and therefore do not appear to be molecules central to the control of cancer development, growth, and progression in periosteal osteosarcoma. Therefore, when compared with low-grade central and parosteal osteosarcomas, MDM2 and CDK4 markers cannot be used diagnostically to differentiate this subtype of osteosarcoma.

  8. Relationship between RFC gene expression and intracellular drug concentration in methotrexate-resistant osteosarcoma cells.

    PubMed

    Wang, J J; Li, G J

    2014-07-24

    Osteosarcoma is a primary malignant tumor in adolescents, associated with high mortality and morbidity. The high-dose methotrexate (MTX) chemotherapy used to treat this disease may induce primary or secondary drug resistance, resulting in a reduced effect of comprehensive treatment. In this study, the relationship between reduced folate carrier (RFC) gene expression and intracellular drug concentration in MTX-resistant osteosarcoma cells (Saos-2) was investigated. MTX-resistant human osteosarcoma cells (Saos-2/MTX2.2, Saos-2/MTX4.4) were prepared. The sensitivities of Saos-2 (primary cells), Saos-2/MTX2.2, and Saos-2/MTX4.4 cells to MTX, diamminedichloroplatinum (DDP), ifosfamide (IFO), epirubicine (EPI), adriamycin (ADM), theprubicin (THP), and paclitaxel (PTX) were detected by MTT. The median inhibitory concentration (IC50) and resistance index were measured. Semi-quantitative RT-PCR was used to evaluate the expression of RFC gene in cells. The intracellular (3)H-MTX concentration was determined. Results showed that IC50 of Saos-2/MTX2.2 and Saos-2/MTX4.4 was 4.87 and 12.73 times that of Saos-2, respectively. Both Saos-2/MTX2.2 and Saos-2/MTX4.4 had resistance to IFO, ADM, EPI, THP, and PTX, but not DDP. Compared to Saos-2/MTX2.2 and Saos-2/MTX4.4, the expression of RFC mRNA in Saos-2 was significantly higher. The intracellular (3)H-MTX concentration reached a peak at 50 min. After 70 min, the concentration was maintained at a plateau. During this phase, the (3)H-MTX concentration in Saos-2 cells was 2.15 times higher than the concentration in Saos-2/MTX4.4 cells. The reduced RFC mRNA expression in PTX-resistant osteosarcoma cells may be related to the decrease in intracellular (3)H-MTX concentration.

  9. Cell apoptosis, autophagy and necroptosis in osteosarcoma treatment

    PubMed Central

    Li, Dongqi; Li, Huiling; Ren, Mingyan; Liao, Yedan; Yu, Shunling; Chen, Yanjin; Yang, Yihao; Zhang, Ya

    2016-01-01

    Osteosarcoma is the most common primary bone tumor in children and adolescents. Although combined therapy including surgery and multi-agent chemotherapy have resulted in great improvements in the overall survival of patients, chemoresistance remains an obstacle for the treatment of osteosarcoma. Molecular targets or effective agents that are actively involved in cell death including apoptosis, autophagy and necroptosis have been studied. We summarized how these agents (novel compounds, miRNAs, or proteins) regulate apoptotic, autophagic and necroptotic pathways; and discussed the current knowledge on the role of these new agents in chemotherapy resistance in osteosarcoma. PMID:27007056

  10. Expression of Bcl-2 in canine osteosarcoma

    PubMed Central

    Piro, F.; Leonardi, L.

    2015-01-01

    Osteosarcoma (OS) is the most common primary malignancy of bone. It is responsible for 80-85% of the primary bone tumors affecting dogs and it is characterized by aggressive and invasive behavior, with a high metastatic potential. Several studies on cancer and related tumorigenesis, show an involvement of the mechanisms of programmed cell death and cell survival. Many signals seem to be involved in the related mechanism of autophagy and in particular, our interest is focused on the expression of a family of Bcl-2 that seems to be involved either in the control of biomolecular mechanisms like autophagy and apoptosis. In this study we investigated the expression of Bcl-2 in different cases of spontaneous canine osteosarcoma and the related preliminary results are described. We found Bcl-2 activity was increased in OS tissue compared to normal bone tissue. These results suggested that Bcl-2 activity may play an important role in the formation of OS and as a diagnostic for neoplastic activity. However, further research is needed to confirm the role of Bcl-2 activity in OS in canines. PMID:26623359

  11. Muramyl tripeptide-phosphatidyl ethanolamine encapsulated in liposomes (L-MTP-PE) in the treatment of osteosarcoma.

    PubMed

    Meyers, Paul A; Chou, Alexander J

    2014-01-01

    Bacille Calmette-Guerin (BCG) has been used for decades as an immune stimulant to treat cancer. Early work by Fidler and Kleinerman identified muramyl dipeptide (MDP) as a critical component of the BCG cell wall which retained most of the immunostimulatory properties of the native BCG. Addition of a peptide to MDP resulted in muramyl tripeptide (MTP) which allowed incorporation into liposomal membranes. The resulting pharmaceutical, liposomal muramyl tripeptide phosphatidyl ethanolamine (L-MTP-PE or mifamurtide) showed activity in preclinical models of human cancers. Phase I studies documented the safety of the compound for human administration. These trials did not reach a maximally tolerated dose (MTD), and the dose chosen for phase II trials was a biologically optimized dose, not an MTD. Phase II studies showed decreased risk of further recurrence in patients who received mifamurtide after surgical ablation of metastatic osteosarcoma. A phase III prospective randomized trial demonstrated a statistically significant reduction in the risk of death from osteosarcoma when MTP was added to systemic chemotherapy for the treatment of localized osteosarcoma. The same trial allowed treatment of patients who presented with initially metastatic disease. While the overall and event-free survival was improved in patients with metastatic osteosarcoma who received L-MTP-PE, the sample size was small and the improvement did not achieve conventional statistical significance. From 2008 to 2012, patients with metastatic and recurrent osteosarcoma were given L-MTP-PE in an expanded access trial, and the results suggest a decreased risk of subsequent recurrence and death with the inclusion of L-MTP-PE in the treatment strategy for these high-risk patients.

  12. T-Cell-Based Immunotherapy for Osteosarcoma: Challenges and Opportunities

    PubMed Central

    Wang, Zhan; Li, Binghao; Ren, Yingqing; Ye, Zhaoming

    2016-01-01

    Even though combining surgery with chemotherapy has significantly improved the prognosis of osteosarcoma patients, advanced, metastatic, or recurrent osteosarcomas are often non-responsive to chemotherapy, making development of novel efficient therapeutic methods an urgent need. Adoptive immunotherapy has the potential to be a useful non-surgical modality for treatment of osteosarcoma. Recently, alternative strategies, including immunotherapies using naturally occurring or genetically modified T cells, have been found to hold promise in the treatment of hematologic malignancies and solid tumors. In this review, we will discuss possible T-cell-based therapies against osteosarcoma with a special emphasis on combination strategies to improve the effectiveness of adoptive T cell transfer and, thus, to provide a rationale for the clinical development of immunotherapies. PMID:27683579

  13. General Information about Osteosarcoma and Malignant Fibrous Histiocytoma of Bone

    MedlinePlus

    ... tomography, computerized tomography, or computerized axial tomography. MRI (magnetic resonance imaging) : A procedure that uses a magnet, radio waves , ... the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). A biopsy is done to diagnose osteosarcoma. ...

  14. Overexpression of miR-664 is associated with enhanced osteosarcoma cell migration and invasion ability via targeting SOX7.

    PubMed

    Bao, Yongzheng; Chen, Bin; Wu, Qiang; Hu, Konghe; Xi, Xinhua; Zhu, Wengang; Zhong, Xueren; Chen, Jianting

    2017-02-01

    Osteosarcoma (OS) is one of the most common types of primary sarcoma of bone in children and young adults, and the long-term prognosis for OS patients still remains dismal due to the lack of effective early diagnostic biomarkers. Identifying sensitive and specific biomarkers in carcinogenesis may improve diagnostic and therapeutic strategies for this malignancy. The expression of miR-664 in osteosarcoma cell lines and osteosarcoma tissues was examined using real-time PCR. The effects of miR-664 on osteosarcoma cell migration and invasion were evaluated by cell invasion assays, migration assays, and three-dimension spheroid invasion assay. The effect of miR-664 on SOX7 was determined by luciferase assays and Western blot assay. The clinical association between miR-664 and SOX7 was analyzed by real-time PCR and Western blot assay. Expression of miR-664 was found to be upregulated in OS cell lines and tissues. Overexpression of miR-664 was associated with increased migration and invasive abilities of OS cells in vitro, whereas downregulation of miR-664 appeared to inhibit their migration and invasive potential. Furthermore, using biological approaches, we showed that miR-664 directly targeted and suppressed expression of the tumor suppressor SOX7. Additionally, the expression of miR-664 was negatively correlated with SOX7 expression in OS clinical tissues. Our findings suggest that miR-664 functions as an oncogene miRNA and has an important role in promoting human OS cell invasion and migration by suppressing SOX7 expression. Consequently, miR-664 may have potential as a novel diagnostic and therapeutic target of osteosarcoma.

  15. Tumourigenic canine osteosarcoma cell lines associated with frizzled-6 up-regulation and enhanced side population cell frequency

    PubMed Central

    de Sá Rodrigues, L. C.; Holmes, K. E.; Thompson, V.; Newton, M. A.; Stein, T. J.

    2016-01-01

    An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells. PMID:25689105

  16. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment.

    PubMed

    Ségaliny, Aude I; Mohamadi, Amel; Dizier, Blandine; Lokajczyk, Anna; Brion, Régis; Lanel, Rachel; Amiaud, Jérôme; Charrier, Céline; Boisson-Vidal, Catherine; Heymann, Dominique

    2015-07-01

    Interleukin-34 (IL-34) was recently characterized as the M-CSF "twin" cytokine, regulating the proliferation/differentiation/survival of myeloid cells. The implication of M-CSF in oncology was initially suspected by the reduced metastatic dissemination in knock-out mice, due to angiogenesis impairment. Based on this observation, our work studied the involvement of IL-34 in the pathogenesis of osteosarcoma. The in vivo effects of IL-34 were assessed on tissue vasculature and macrophage infiltration in a murine preclinical model based on a paratibial inoculation of human osteosarcoma cells overexpressing or not IL-34 or M-CSF. In vitro investigations using endothelial cell precursors and mature HUVEC cells were performed to analyse the involvement of IL-34 in angiogenesis and myeloid cell adhesion. The data revealed that IL-34 overexpression was associated with the progression of osteosarcoma (tumor growth, lung metastases) and an increase of neo-angiogenesis. In vitro analyses demonstrated that IL-34 stimulated endothelial cell proliferation and vascular cord formation. Pre-treatment of endothelial cells by chondroitinases/heparinases reduced the formation of vascular tubes and abolished the associated cell signalling. In addition, IL-34 increased the in vivo recruitment of M2 tumor-associated macrophages into the tumor tissue. IL-34 increased in vitro monocyte/CD34(+) cell adhesion to activated HUVEC monolayers under physiological shear stress conditions. This work also demonstrates that IL-34 is expressed by osteosarcoma cells, is regulated by TNF-α, IL-1β, and contributes to osteosarcoma growth by increasing the neo-angiogenesis and the recruitment of M2 macrophages. By promoting new vessel formation and extravasation of immune cells, IL-34 may play a key role in tumor development and inflammatory diseases.

  17. Tumourigenic canine osteosarcoma cell lines associated with frizzled-6 up-regulation and enhanced side population cell frequency.

    PubMed

    de Sá Rodrigues, L C; Holmes, K E; Thompson, V; Newton, M A; Stein, T J

    2017-03-01

    An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells.

  18. Primary Hepatic Osteosarcoma: A Rare Cause of Primary Liver Tumor

    PubMed Central

    Tamang, Tsering Gyalpo Lama; Shuster, Marina; Chandra, Abhinav B.

    2016-01-01

    INTRODUCTION Extraosseous osteosarcomas are rare, accounting for approximately 4% of all osteosarcomas. A literature review yields very few cases of osteosarcoma primarily arising from the hepatic parenchyma. CASE REPORT This report describes a case of a man in his 50s with a history of hepatitis C and cirrhosis who presented with 5 days of progressive right upper quadrant pain. Magnetic resonance imaging of the abdomen and pelvis demonstrated a 4.4 cm × 4.8 cm × 4.8 cm right hepatic lobe mass with a large area of necrosis and peripheral enhancement. The subsequent liver biopsy showed few cores of tumor composed of fibroblastic malignant cells producing lace-like osteoid matrix. Osteosarcomatous foci in other parts of the body were excluded by performing extensive physical examination, radiologic imaging, and biopsy. Hence, a primary osteosarcoma was diagnosed. The patient underwent portal vein embolization in preparation for a surgical resection of the right liver lobe. He was admitted six weeks after the embolization for dyspnea and abdominal distension and expired due to abdominal hematoma and pulmonary embolism. CONCLUSION Based on the rarity, lack of consensus in treatment, and dismal prognosis, extraosseous osteosarcoma should be considered a separate entity from osseous osteosarcoma. More data and research are needed in this rare and understudied malignancy. PMID:27081321

  19. Large and round tumor nuclei in osteosarcoma: good clinical outcome

    PubMed Central

    de Andrea, Carlos E; Petrilli, Antonio Sergio; Jesus-Garcia, Reynaldo; Bleggi-Torres, Luiz F; Alves, Maria Teresa S

    2011-01-01

    Osteosarcoma is the most frequent primary malignant bone tumor. Distinct histological features are distinguishable based on the morphology of the tumor. Differences in nuclei size and shape are often observed in osteosarcoma reflecting its broad histopathological heterogeneity. This study explores the relevance of two nuclear parameters in osteosarcoma: large area and round shape. Computerized nuclear morphometry was performed in 56 conventional osteosarcoma preoperative biopsies. The mean patient follow-up time was 35.1 months. Based on the nuclear area, no significant difference (P = 0.09) in overall survival between patients with large (> 42.5 μm2) and small (< 42.5 μm2) tumor nuclei was found. However, when cases with large and round nuclei were analyzed jointly (> 42.5 μm2 and coefficient of nuclear roundness > 0.7), these two parameters together were likely to be a predictive factor (P = 0.05). Osteosarcoma patients with large and round tumor nuclei had a better outcome than patients with small and polymorphic (ovoid or spindle-shaped) nuclei. In this study, nuclear morphometry proved to be a useful tool to shed light on the biology of osteosarcoma showing that some morphometric parameters can be easily applied to help identifying patients with a good prognosis. PMID:21326812

  20. The effect of bone morphogenetic protein-2 on osteosarcoma metastasis

    PubMed Central

    Gill, Jonathan; Connolly, Patrick; Roth, Michael; Chung, So Hak; Zhang, Wendong; Piperdi, Sajida; Hoang, Bang; Yang, Rui; Guzik, Hillary; Gorlick, Richard; Geller, David S.

    2017-01-01

    Purpose Bone Morphogenetic Protein-2 (BMP-2) may offer the potential to enhance allograft-host osseous union in limb-salvage surgery following osteosarcoma resection. However, there is concern regarding the effect of locally applied BMP-2 on tumor recurrence and metastasis. The purpose of this project was to evaluate the effect of exogenous BMP-2 on osteosarcoma migration and invasion across a panel of tumor cell lines in vitro and to characterize the effect of BMP-2 on pulmonary osteosarcoma metastasis within a xenograft model. Experimental design The effect of BMP-2 on in vitro tumor growth and development was assessed across multiple standard and patient-derived xenograft osteosarcoma cell lines. Tumor migration capacity, invasion, and cell proliferation were characterized. In addition, the effect on metastasis was measured using a xenograft model following tail-vein injection. The effect of exogenous BMP-2 on the development of metastases was measured following both single and multiple BMP-2 administrations. Results There was no significant difference in migration capacity, invasion, or cell proliferation between the BMP-2 treated and the untreated osteosarcoma cell lines. There was no significant difference in pulmonary metastases between either the single-dose or multi-dose BMP-2 treated animals and the untreated control animals. Conclusions In the model systems tested, the addition of BMP-2 does not increase osteosarcoma proliferation, migration, invasion, or metastasis to the lungs. PMID:28264040

  1. Genetic factors conferring metastasis in osteosarcoma.

    PubMed

    Maximov, Vadim V; Aqeilan, Rami I

    2016-07-01

    Osteosarcoma (OS) is a deadly bone malignancy affecting mostly children and adolescents. OS has outstandingly complex genetic alterations likely due to p53-independent genomic instability. Based on analysis of recent published research we claim existence of various genetic mechanisms of osteosarcomagenesis conferring great variability to different OS properties including metastatic potential. We also propose a model explaining how diverse genetic mechanisms occur and providing a framework for future research. P53-independent preexisting genomic instability, which precedes and frequently causes TP53 genetic alterations, is central in our model. In addition, our analyses reveal a possible cooperation between aberrantly activated HIF-1α and AP-1 genetic pathways in OS metastasis. We also review the involvement of noncoding RNA genes in OS metastasis.

  2. Bone microenvironment signals in osteosarcoma development.

    PubMed

    Alfranca, Arantzazu; Martinez-Cruzado, Lucia; Tornin, Juan; Abarrategi, Ander; Amaral, Teresa; de Alava, Enrique; Menendez, Pablo; Garcia-Castro, Javier; Rodriguez, Rene

    2015-08-01

    The bone is a complex connective tissue composed of many different cell types such as osteoblasts, osteoclasts, chondrocytes, mesenchymal stem/progenitor cells, hematopoietic cells and endothelial cells, among others. The interaction between them is finely balanced through the processes of bone formation and bone remodeling, which regulates the production and biological activity of many soluble factors and extracellular matrix components needed to maintain the bone homeostasis in terms of cell proliferation, differentiation and apoptosis. Osteosarcoma (OS) emerges in this complex environment as a result of poorly defined oncogenic events arising in osteogenic lineage precursors. Increasing evidence supports that similar to normal development, the bone microenvironment (BME) underlies OS initiation and progression. Here, we recapitulate the physiological processes that regulate bone homeostasis and review the current knowledge about how OS cells and BME communicate and interact, describing how these interactions affect OS cell growth, metastasis, cancer stem cell fate and therapy outcome.

  3. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies.

    PubMed

    Fujitani, Hirotsugu; Kumagai, Asami; Ushiki, Norisuke; Momiuchi, Kengo; Tsuneda, Satoshi

    2015-01-01

    Nitrification is a key process in the biogeochemical nitrogen cycle and biological wastewater treatment that consists of two stepwise reactions, ammonia oxidation by ammonia-oxidizing bacteria (AOB) or archaea followed by nitrite oxidation by nitrite-oxidizing bacteria. One of the representatives of the AOB group is Nitrosomonas mobilis species. Although a few pure strains of this species have been isolated so far, approaches to their preservation in pure culture have not been established. Here, we report isolation of novel members of the N. mobilis species from autotrophic nitrifying granules used for ammonia-rich wastewater treatment. We developed an isolation method focusing on microcolonies formation of nitrifying bacteria. Two kinds of distinctive light scattering signatures in a cell-sorting system enabled to separate microcolonies from single cells and heterogeneous aggregates within granule samples. Inoculation of a pure microcolony into 96-well microtiter plates led to successful sub-culturing and increased probability of isolation. Obtained strain Ms1 is cultivated in the liquid culture with relatively high ammonia or nitrite concentration, not extremely slow growing. Considering environmental clones that were closely related to N. mobilis and detected in various environments, the availability of this novel strain would facilitate to reveal this member's ecophysiology in a variety of habitats.

  4. The role of mechanical forces in the planar-to-bulk transition in growing Escherichia coli microcolonies

    PubMed Central

    Grant, Matthew A. A.; Wacław, Bartłomiej; Allen, Rosalind J.; Cicuta, Pietro

    2014-01-01

    Mechanical forces are obviously important in the assembly of three-dimensional multicellular structures, but their detailed role is often unclear. We have used growing microcolonies of the bacterium Escherichia coli to investigate the role of mechanical forces in the transition from two-dimensional growth (on the interface between a hard surface and a soft agarose pad) to three-dimensional growth (invasion of the agarose). We measure the position within the colony where the invasion transition happens, the cell density within the colony and the colony size at the transition as functions of the concentration of the agarose. We use a phenomenological theory, combined with individual-based computer simulations, to show how mechanical forces acting between the bacterial cells, and between the bacteria and the surrounding matrix, lead to the complex phenomena observed in our experiments—in particular the observation that agarose concentration non-trivially affects the colony size at transition. Matching these approaches leads to a prediction for how the friction between the bacteria and the agarose should vary with agarose concentration. Our experimental conditions mimic numerous clinical and environmental scenarios in which bacteria invade soft matrices, as well as shedding more general light on the transition between two- and three-dimensional growth in multicellular assemblies. PMID:24920113

  5. p16(INK4A) inhibits the pro-metastatic potentials of osteosarcoma cells through targeting the ERK pathway and TGF-β1.

    PubMed

    Silva, Gabriela; Aboussekhra, Abdelilah

    2016-05-01

    Extracellular signal-regulated kinase (ERK) is a downstream component of the evolutionarily conserved mitogen-activated protein kinase-signaling pathway, which controls the expression of a plethora of genes implicated in various physiological processes. This pathway is often hyper-activated by mutations or abnormal extracellular signaling in different types of human cancer, including the most common primary malignant bone tumor osteosarcomas. p16(INK4A) is an important tumor suppressor gene frequently lost in osteosarcomas, and is associated with the progression of these malignancies. We have shown, here, that the ERK1/2 protein kinase is also activated by p16(INK4A) down-regulation in osteosarcoma cells and normal human as well as mouse cells. This inhibitory effect is associated with the suppression of the upstream kinase MEK1/2, and is mediated via the repression of miR-21-5p and the consequent up-regulation of the MEK/ERK antagonist SPRY2 in osteosarcoma cells. Furthermore, we have shown that p16(INK4) inhibits the migration/invasion abilities of these cells through miR-21-5p-dependent inhibition of ERK1/2. In addition, we present clear evidence that p16(INK4) represses the paracrine pro-migratory effect of osteosarcoma cells on stromal fibroblasts through the inhibition of the TGF-β1 expression/secretion. This effect is also ERK1/2-dependent, indicating that in addition to their cell-autonomous actions, p16(INK4) and ERK1/2 have also non-cell-autonomous cancer-related functions. Together, these results indicate that the tumor suppressor p16(INK4) protein represses the carcinogenic process of osteosarcoma cells not only as a cell cycle regulator, but also as a negative regulator of pro-carcinogenic/-metastatic pathways. This indicates that targeting the ERK pathway is of utmost therapeutic value.

  6. Liposomal nanoparticles as a drug delivery vehicle against osteosarcoma

    NASA Astrophysics Data System (ADS)

    Dhule, Santosh Subhashrao

    The delivery of curcumin, a broad-spectrum anticancer drug, has been explored in the form of liposomal nanoparticles to treat osteosarcoma (OS). Curcumin is water insoluble and an effective delivery route is through encapsulation in cyclodextrins followed by a second encapsulation in liposomes. Liposomal curcumin's potential was evaluated against cancer models of mesenchymal (OS) and epithelial origin (breast cancer). The resulting 2-Hydroxypropyl-gamma-cyclodextrin/curcumin - liposome complex shows promising anticancer potential both in vitro and in vivo against KHOS OS cell line and MCF-7 breast cancer cell line. An interesting aspect is that liposomal curcumin initiates the caspase cascade that leads to apoptotic cell death in vitro in comparison with DMSO-curcumin induced autophagic cell death. In addition, the efficiency of the liposomal curcumin formulation was confirmed in vivo using a xenograft OS model. Curcumin-loaded gamma-cyclodextrin liposomes indicate significant potential as delivery vehicles for the treatment of cancers of different tissue origin. The second part of this study examines the anti-tumor potential of curcumin and C6 ceramide (C6) against osteosarcoma cell lines when both are encapsulated in the bilayer of liposomal nanoparticles. Curcumin in combination with C6 showed 1.5 times enhanced cytotoxic effect in the case of MG-63 and KHOS OS cell lines, in comparison with systems with curcumin alone. Interestingly, C6-curcumin liposomes were found to be less toxic on untransformed human cells in comparison to OS cell lines. In addition, cell cycle assays on a KHOS cell line after treatment revealed that curcumin only liposomes induced G 2/M arrest by upregulation of cyclin B1, while C6 only liposomes induced G1 arrest by downregulation of cyclin D1. C6-curcumin liposomes induced G2/M arrest and showed a combined effect in the expression levels of cyclin D1 and cyclin B1. Using pegylated liposomes to increase the plasma half-life and tagging

  7. Met interacts with EGFR and Ron in canine osteosarcoma

    PubMed Central

    McCleese, J. K.; Bear, M. D.; Kulp, S. K.; Mazcko, C.; Khanna, C.; London, C. A.

    2014-01-01

    The receptor tyrosine kinase (RTK) Met is known to be over-expressed in canine osteosarcoma (OSA). In human cancers, the RTKs Met, epidermal growth factor receptor (EGFR) and Ron are frequently co-expressed and engage in heterodimerization, altering signal transduction and promoting resistance to targeted therapeutics. We found that EGFR and Ron are expressed in canine OSA cell lines and primary tissues, EGFR and Ron are frequently phosphorylated in OSA tumour samples, and Met is co-associated with EGFR and Ron in canine OSA cell lines. Transforming growth factor alpha (TGFα) and hepatocyte growth factor (HGF) stimulation induced amplification of ERK1/2 and STAT3 phosphorylation in OSA cells and Met was phosphorylated following TGFα stimulation providing evidence for receptor cross-talk. Lastly, treatment of OSA cells with combined gefitinib and crizotinib inhibited cell proliferation in an additive manner. Together, these data support the notion that Met, EGFR and Ron interact in OSA cells and as such, may represent viable targets for therapeutic intervention. PMID:22235915

  8. CD151-mediated adhesion is crucial to osteosarcoma pulmonary metastasis

    PubMed Central

    Sun, Mengxiong; Zhou, Chenghao; Chen, Jian; Yin, Fei; Wang, Hongsheng; Lin, Binhui; Zuo, Dongqing; Li, Suoyuan; Feng, Lijin; Duan, Zhenfeng; Cai, Zhengdong; Hua, Yingqi

    2016-01-01

    CD151, a tetraspanin family protein involved in cell-cell and cell-extracellular matrix interaction, is differentially expressed in osteosarcoma cell membranes. Thus, this study aimed to investigate the role of CD151 in osteosarcoma metastasis. We analyzed CD151 expression in patient tissue samples using immunohistochemistry. CD151 expression was also silenced with shRNA in osteosarcoma cells of high metastatic potential, and cell adhesion, migration and invasion were evaluated in vitro and pulmonary metastasis was investigated in vivo. Mediators of cell signaling pathways were also examined following suppression of CD151 expression. Overall survival for patients with low versus high CD151 expression level was 94 vs. 41 months (p=0.0451). CD151 expression in osteosarcoma cells with high metastatic potential was significantly higher than in those with low metastatic potential (p<0.001). shRNA-mediated silencing of CD151 did not influence cell viability or proliferation; however, cell adhesion, migration and invasion were all inhibited (all p<0.001). In mice inoculated with shRNA-transduced osteosarcoma cells, the number and size of lung metastatic lesions were reduced compared to the mice inoculated with control-shRNA transduced cells (p<0.001). In addition, CD151 knockdown significantly reduced Akt, p38, and p65 phosphorylation as well as focal adhesion kinase, integrin β1, p70s6, and p-mTOR levels. Taken together, CD151 induced osteosarcoma metastasis likely by regulating cell function through adhesion signaling. Further studies are necessary to fully explore the diagnostic and prognostic value of determining CD151 expression in osteosarcoma patients. PMID:27556355

  9. Establishing an osteosarcoma associated protein-protein interaction network to explore the pathogenesis of osteosarcoma

    PubMed Central

    2013-01-01

    Background The aim of this study was to establish an osteosarcoma (OS) associated protein-protein interaction network and explore the pathogenesis of osteosarcoma. Methods The gene expression profile GSE9508 was downloaded from the Gene Expression Omnibus database, including five samples of non-malignant bone (the control), seven samples for non-metastatic patients (six of which were analyzed in duplicate), and 11 samples for metastatic patients (10 of which were analyzed in duplicate). Differentially expressed genes (DEGs) between osteosarcoma and control samples were identified by packages in R with the threshold of |logFC (fold change)| > 1 and false discovery rate < 0.05. Osprey software was used to construct the interaction network of DEGs, and genes at protein-protein interaction (PPI) nodes with high degrees were identified. The Database for Annotation, Visualization and Integrated Discovery and WebGestalt software were then used to perform functional annotation and pathway enrichment analyses for PPI networks, in which P < 0.05 was considered statistically significant. Results Compared to the control samples, the expressions of 42 and 341 genes were altered in non-metastatic OS and metastatic OS samples, respectively. A total of 15 significantly enriched functions were obtained with Gene Ontology analysis (P < 0.05). The DEGs were classified and significantly enriched in three pathways, including the tricarboxylic acid cycle, lysosome and axon guidance. Genes such as HRAS, IDH3A, ATP6ap1, ATP6V0D2, SEMA3F and SEMA3A were involved in the enriched pathways. Conclusions The hub genes from metastatic OS samples are not only bio-markers of OS, but also help to improve therapies for OS. PMID:24330838

  10. Antitumor and anti-angiogenesis effects of thymoquinone on osteosarcoma through the NF-κB pathway.

    PubMed

    Peng, Lei; Liu, An; Shen, Yue; Xu, Hua-Zi; Yang, Shi-Zhou; Ying, Xiao-Zhou; Liao, Wei; Liu, Hai-Xiao; Lin, Zhong-Qin; Chen, Qing-Yu; Cheng, Shao-Wen; Shen, Wei-Dong

    2013-02-01

    Thymoquinone (TQ), the predominant bioactive constituent derived from the medicinal spice Nigella sativa (also known as black cumin), has been applied for medical purposes for more than 2,000 years. Recent studies reported that thymoquinone exhibited inhibitory effects on the cell proliferation of several cancer cell lines. This study was performed to investigate the antitumor and anti-angiogenic effects of thymoquinone on osteosarcoma in vitro and in vivo. Our results showed that thymoquinone induced a higher percentage of growth inhibition and apoptosis in the human osteosarcoma cell line SaOS-2 compared to that of control, and thymoquinone significantly blocked human umbilical vein endothelial cell (HUVEC) tube formation in a dose-dependent manner. To investigate the possible mechanisms involved in these events, we performed electrophoretic mobility shift assay (EMSA) and western blot analysis, and found that thymoquinone significantly downregulated NF-κB DNA-binding activity, XIAP, survivin and VEGF in SaOS-2 cells. Moreover, the expression of cleaved caspase-3 and Smac were upregulated in SaOS-2 cells after treatment with thymoquinone. In addition to these in vitro results, we also found that thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing NF-κB and its regulated molecules. Collectively, our results demonstrate that thymoquinone effectively inhibits tumor growth and angiogenesis both in vitro and in vivo. Moreover, inhibition of NF-κB and downstream effector molecules is a possible underlying mechanism of the antitumor and anti-angiogenic activity of thymoquinone in osteosarcoma.

  11. MicroRNA-665 suppressed the invasion and metastasis of osteosarcoma by directly inhibiting RAB23

    PubMed Central

    Dong, Chenhui; Du, Quanyin; Wang, Zimin; Wang, Yu; Wu, Siyu; Wang, Aimin

    2016-01-01

    MicroRNAs (miRNAs) are small, short and noncoding RNAs that regulate gene expression posttranscriptionally. Increasing evidences have demonstrated that deregulated expression of miRNAs is found in osteosarcoma. In this study, we demonstrated that miR-665 was downregulated in osteosarcoma tissues compared to non-tumorous tissues. The overall survival (OS) of osteosarcoma patients with low miR-665 expression was lower than that of these patients with high miR-665 expression. Ectopic expression of miR-665 suppressed the osteosarcoma cell proliferation, EMT and invasion. We identified Rab23 as a direct target gene of miR-665. Rab23 was downregulated in osteosarcoma tissues and cell lines. The expression of miR-665 was inversely associated with the expression of Rab23 in the osteosarcoma tissues. These results suggested that miR-665 acted as a tumor suppressor gene in the development of osteosarcoma. PMID:27904698

  12. Invariant NKT cells increase drug-induced osteosarcoma cell death

    PubMed Central

    Fallarini, S; Paoletti, T; Orsi Battaglini, N; Lombardi, G

    2012-01-01

    BACKGROUND AND PURPOSE In osteosarcoma (OS) patients, only a limited number of drugs are active and the regimens currently in use include a combination of at least two of these drugs: doxorubicin, cisplatin, methotrexate and ifosfamide. Today, 30–40% of patients still die of OS highlighting the urgent need for new treatments. Invariant NKT (iNKT) cells are a lymphocyte lineage with features of both T and NK cells, playing important roles in tumour suppression. Our aim was to test whether the cytoxicity induced by cisplatin, doxorubicin and methotrexate against OS cells can be enhanced by iNKT cell treatment. EXPERIMENTAL APPROACH iNKT cells were purified from human peripheral blood mononuclear cells by cell sorting (Vα24Vβ11+ cells) and used as effector cells against OS cells (U2-OS, HOS, MG-63). Cell death (calcein-AM method), perforin/granzyme B and Fas/FasL expressions were determined by flow cytometry. CD1d expression was analysed at both the gene and protein level. KEY RESULTS iNKT cells were cytotoxic against OS cells through a CD1d-dependent mechanism. This activity was specific for tumour cells, because human CD1d+ mesenchymal stem cells and CD1d- osteoblasts were not affected. iNKT cell treatment enhanced drug-induced OS cell death in a concentration-dependent manner and this effect was reduced in CD1d-silenced OS cells. CONCLUSION AND IMPLICATIONS iNKT cells kill malignant, but not non-malignant, cells. iNKT cell treatment enhances the cytotoxicity of anti-neoplastic drugs against OS cells in a CD1d-dependent manner. The present data encourage further studies on the use of iNKT cells in OS therapy. PMID:22817659

  13. [Osteosarcoma: reliability and quality of the information in the internet].

    PubMed

    Schippinger, Michael; Ruckenstuhl, Paul; Friesenbichler, Jörg; Leithner, Andreas

    2014-09-01

    The World Wide Web has grown during the last years to a considerable source of medical information for experts as well as for laymen and patients. The quality of this information is subjected to some limitation linked with the structure of the Internet and the management of Internet pages. The cross- sectional study presented evaluates and compares quality and reliability of information with respect of osteosarcoma in the most common German-language Internet pages for medical information. As both, one of the most common primary malignant bone tumors and its peak of incidence at the age of childhood and youth, osteosarcoma is considered of significant importance in orthopedic oncology.

  14. Primary osteosarcoma of the breast: pathological and imaging findings.

    PubMed

    Conde, Délio Marques; Morais, Larissa Cunha; Pacheco, Cristiane Fagundes; Ferreira, Rogério Bizinoto; Sousa-e-Silva, Érika Pereira de; Nunes, Aline Regina; Pinto, Sebastião Alves; Fonseca, Paulo Sérgio Peres

    2015-01-01

    Primary osteosarcoma of the breast (POB) is an extremely rare and aggressive tumor. Differential diagnosis of POB includes osteosarcoma of the chest wall and metaplastic breast carcinoma. Imaging tests that exclude the existence of a direct connection between the tumor and chest wall, as well as histopathological and immunohistochemical studies that rule out the presence of an epithelial component are required for the diagnosis of POB. We report a case of a 69-year old woman with POB. Imaging and pathological findings are presented. Therapeutic approach is discussed in the light of current knowledge, including potential complications.

  15. Matrix-Gla protein promotes osteosarcoma lung metastasis and associates with poor prognosis.

    PubMed

    Zandueta, Carolina; Ormazábal, Cristina; Perurena, Naiara; Martínez-Canarias, Susana; Zalacaín, Marta; Julián, Mikel San; Grigoriadis, Agamemnon E; Valencia, Karmele; Campos-Laborie, Francisco J; Rivas, Javier De Las; Vicent, Silvestre; Patiño-García, Ana; Lecanda, Fernando

    2016-08-01

    Osteosarcoma (OS) is the most prevalent osseous tumour in children and adolescents and, within this, lung metastases remain one of the factors associated with a dismal prognosis. At present, the genetic determinants driving pulmonary metastasis are poorly understood. We adopted a novel strategy using robust filtering analysis of transcriptomic profiling in tumour osteoblastic cell populations derived from human chemo-naive primary tumours displaying extreme phenotypes (indolent versus metastatic) to uncover predictors associated with metastasis and poor survival. We identified MGP, encoding matrix-Gla protein (MGP), a non-collagenous matrix protein previously associated with the inhibition of arterial calcification. Using different orthotopic models, we found that ectopic expression of Mgp in murine and human OS cells led to a marked increase in lung metastasis. This effect was independent of the carboxylation of glutamic acid residues required for its physiological role. Abrogation of Mgp prevented lung metastatic activity, an effect that was rescued by forced expression. Mgp levels dramatically altered endothelial adhesion, trans-endothelial migration in vitro and tumour cell extravasation ability in vivo. Furthermore, Mgp modulated metalloproteinase activities and TGFβ-induced Smad2/3 phosphorylation. In the clinical setting, OS patients who developed lung metastases had high serum levels of MGP at diagnosis. Thus, MGP represents a novel adverse prognostic factor and a potential therapeutic target in OS. Microarray datasets may be found at: http://bioinfow.dep.usal.es/osteosarcoma/ Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  16. Imaging of Lactobacillus brevis single cells and microcolonies without a microscope by an ultrasensitive chemiluminescent enzyme immunoassay with a photon-counting television camera.

    PubMed Central

    Yasui, T; Yoda, K

    1997-01-01

    An ultrasensitive chemiluminescent enzyme immunoassay (CLEIA) was developed for the rapid detection and quantification of Lactobacillus brevis contaminants in beer and pitching yeast (Saccharomyces cerevisiae slurry collected for reinoculation). L. brevis cells trapped on a 47-mm nucleopore membrane (0.4-micron pore size) were reacted with a peroxidase-labelled Lactobacillus group E antibody and then subjected to an enhanced CLEIA analysis with 4-iodophenol as the enhancer. The combination of a nucleopore membrane with low background characteristics that enables the antigen-antibody reaction to proceed through the pores of the membrane and a labelled antibody prepared by the maleimide hinge method with minimal nonspecific binding characteristics was essential to minimize background in the detection of single cells. An ultrahigh sensitive charge-coupled device (CCD) camera equipped with a fiber optics image intensifier permitted the imaging of single cells. A clear correlation existed between the number of luminescent spots observed and the plate count [y (CLEIA) = 0.990x (plate count) + 15.9, where n = 7, r = 0.993, and P < 0.001]. Microscopic observation confirmed that the luminescent spots were produced by single cells. This assay could be used to detect approximately 20 L. brevis cells in 633 ml of beer within 4 h. Our ultrasensitive CLEIA could also be used to detect microcolonies approximately 20 microns in diameter which had formed on a membrane after 15 to 18 h of incubation. This method, which we called the microcolony immunoluminescence (MIL) method, increased the signal-to-noise ratio dramatically. The MIL method could be used to detect a 10(0) level of L. brevis contamination in 633 ml of beer and a 1/10(8) level of L. brevis contamination in pitching yeast within 1 day (15 to 18 h to form microcolonies and 2 h for CLEIA). PMID:9361439

  17. Imaging of Lactobacillus brevis single cells and microcolonies without a microscope by an ultrasensitive chemiluminescent enzyme immunoassay with a photon-counting television camera.

    PubMed

    Yasui, T; Yoda, K

    1997-11-01

    An ultrasensitive chemiluminescent enzyme immunoassay (CLEIA) was developed for the rapid detection and quantification of Lactobacillus brevis contaminants in beer and pitching yeast (Saccharomyces cerevisiae slurry collected for reinoculation). L. brevis cells trapped on a 47-mm nucleopore membrane (0.4-micron pore size) were reacted with a peroxidase-labelled Lactobacillus group E antibody and then subjected to an enhanced CLEIA analysis with 4-iodophenol as the enhancer. The combination of a nucleopore membrane with low background characteristics that enables the antigen-antibody reaction to proceed through the pores of the membrane and a labelled antibody prepared by the maleimide hinge method with minimal nonspecific binding characteristics was essential to minimize background in the detection of single cells. An ultrahigh sensitive charge-coupled device (CCD) camera equipped with a fiber optics image intensifier permitted the imaging of single cells. A clear correlation existed between the number of luminescent spots observed and the plate count [y (CLEIA) = 0.990x (plate count) + 15.9, where n = 7, r = 0.993, and P < 0.001]. Microscopic observation confirmed that the luminescent spots were produced by single cells. This assay could be used to detect approximately 20 L. brevis cells in 633 ml of beer within 4 h. Our ultrasensitive CLEIA could also be used to detect microcolonies approximately 20 microns in diameter which had formed on a membrane after 15 to 18 h of incubation. This method, which we called the microcolony immunoluminescence (MIL) method, increased the signal-to-noise ratio dramatically. The MIL method could be used to detect a 10(0) level of L. brevis contamination in 633 ml of beer and a 1/10(8) level of L. brevis contamination in pitching yeast within 1 day (15 to 18 h to form microcolonies and 2 h for CLEIA).

  18. Ceftriaxone Pulse Dosing Fails to Eradicate Biofilm-Like Microcolony B. burgdorferi Persisters Which Are Sterilized by Daptomycin/ Doxycycline/Cefuroxime without Pulse Dosing

    PubMed Central

    Feng, Jie; Zhang, Shuo; Shi, Wanliang; Zhang, Ying

    2016-01-01

    Although the majority of Lyme disease patients can be cured, at least 10–20% of the patients continue to suffer from persisting symptoms such as fatigue, muscular and joint pain, and neurologic impairment after standard 2–4 week antibiotic treatment. While the causes for this post-treatment Lyme disease symptoms are unclear, one possibility is due to Borrelia burgdorferi persisters that are not effectively killed by current antibiotics such as doxycycline or amoxicillin used to treat Lyme disease. A previous study showed that four rounds of ceftriaxone pulse dosing treatment eradicated B. burgdorferi persisters in vitro using a relatively young late log phase culture (5 day old). In this study, we investigated if ceftriaxone pulse dosing could also eradicate B. burgdorferi persisters in older stationary phase cultures (10 day old) enriched with more resistant microcolony form of persisters. We found that ceftriaxone pulse dosing could only eradicate planktonic log phase B. burgdorferi spirochetal forms and round body forms but not more resistant aggregated biofilm-like microcolony persisters enriched in stationary phase cultures. Moreover, we found that not all drugs are suitable for pulse dosing, with bactericidal drugs ceftriaxone and cefuroxime being more appropriate for pulse dosing than bacteriostatic drug doxycycline and persister drug daptomycin. We also showed that drug combination pulse dosing treatment was more effective than single drug pulse dosing. Importantly, we demonstrate that pulse dosing treatment impaired the activity of the persister drug daptomycin and its drug combination against B. burgdorferi persisters and that the most effective way to kill the more resistant biofilm-like microcolonies is the daptomycin/doxycycline/ceftriaxone triple drug combination without pulse dosing. Our findings indicate pulse dosing may not always work as a general principle but rather depends on the specific drugs used, with cidal drugs being more appropriate

  19. BYL719, a new α-specific PI3K inhibitor: single administration and in combination with conventional chemotherapy for the treatment of osteosarcoma.

    PubMed

    Gobin, Bérengère; Huin, Marc Baud'; Lamoureux, François; Ory, Benjamin; Charrier, Céline; Lanel, Rachel; Battaglia, Séverine; Redini, Françoise; Lezot, Frédéric; Blanchard, Frédéric; Heymann, Dominique

    2015-02-15

    It has been established that disturbances in intracellular signaling pathways play a considerable part in the oncologic process. Phosphatidylinositol-3-kinase (PI3K) has become of key interest in cancer therapy because of its high mutation frequency and/or gain in function of its catalytic subunits in cancer cells. We investigated the therapeutic value of BYL719, a new specific PI3Kα inhibitor that blocks the ATP site, on osteosarcoma and bone cells. The in vitro effects of BYL719 on proliferation, apoptosis, and cell cycle were assessed in human and murine osteosarcoma cell. Its impact on bone cells was determined using human mesenchymal stem cells (hMSC) and human CD14+ osteoclast precursors. Two different murine preclinical models of osteosarcoma were used to analyze the in vivo biological activities of BYL719. BYL719 decreased cell proliferation by blocking cell cycle in G0/G1 phase with no outstanding effects on apoptosis cell death in HOS and MOS-J tumor cells. BYL719 inhibited cell migration and can thus be considered as a cytostatic drug for osteosarcoma. In murine preclinical models of osteosarcoma, BYL719 significantly decreased tumor progression and tumor ectopic bone formation as shown by a decrease of Ki67+ cells and tumor vascularization. To explore the maximum therapeutic potential of BYL719, the drug was studied in combination with conventional chemotherapeutic drugs, revealing promising efficacy with ifosfamide. BYL719 also exhibited dual activities on osteoblast and osteoclast differentiation. Overall, the present work shows that BYL719 is a promising drug in either a single or multidrug approach to curing bone sarcoma.

  20. Capillarisin Exhibits Anticancer Effects by Inducing Apoptosis, Cell Cycle Arrest and Mitochondrial Membrane Potential Loss in Osteosarcoma Cancer Cells (HOS).

    PubMed

    Chen, N-J; Hao, F-Y; Liu, H; Zhao, H; Li, J-M

    2015-08-01

    The aim of the present study was to assess the anticancer activity of capillarisin against human osteosarcoma (HOS) cancer cells in vitro. Cell viability after capillarisin drug treatment and evaluated by MTT assay. The extent of cell death induced by capillarisin was estimated by using lactate dehydrogenase (LDH) assay. The effect of capillarisin on cell cycle phase distribution and mitochondrial membrane potential (ΛΨm) was demonstrated via flow cytometry using propidium iodide (PI) and rhodamine-123 (Rh-123) DNA-binding fluorescent dyes respectively. Fluorescence microscopy was employed to examine the morphological changes in osteosarcoma cancer cells and presence of apoptotic bodies following capillarisin treatment. The results of this study revealed that capillarisin induced dose-dependent growth inhibition of these cancer cells after 12-h of incubation. Further, capillarisin induced significant release of LDH from these cell cultures and this LDH release was much more noticeable at higher concentrations of capillarisin. Hoechst 33258 staining revealed characteristic morphological features of apoptosis triggered by capillarisin treatment. Cell cycle analysis revealed that capillarisin induced dose-dependent G0/G1-phase cell cycle arrest. Capillarisin also trigerred a progressive and dose-dependent reduction in the mitochondrial membrane potential. In conclusion, capillarisin inhibits cancer cell growth of osteosarcoma cells by inducing apoptosis accompanied with G0/G1-phase cell cycle arrest and loss in mitochondrial membrane potential.

  1. In silico functional analyses and discovery of survival-associated microRNA signatures in pediatric osteosarcoma

    PubMed Central

    Sanchez-Diaz, Patricia C.; Hsiao, Tzu-Hung; Zou, Yi; Sugalski, Aaron J.; Heim-Hall, Josefine; Chen, Yidong; Langevin, Anne-Marie; Hung, Jaclyn Y.

    2014-01-01

    Purpose Osteosarcoma is the most common bone tumor in children, adolescents, and young adults. In contrast to other childhood malignancies, no biomarkers have been consistently identified as predictors of outcome. This study was conducted to assess the microRNAs(miRs) expression signatures in pre-treatment osteosarcoma specimens and correlate with outcome to identify biomarkers for disease relapse. Results A 42-miRs signature whose expression levels were associated with overall and relapse-free survival waas identified. There were 8 common miRs between the two sets of survival-associated miRs. Bioinformatic analyses of these survival-associated miRs suggested that they might regulate genes involved in ubiquitin proteasome system, TGFb, IGF, PTEN/AKT/mTOR, MAPK, PDGFR/RAF/MEK/ERK, and ErbB/HER pathways. Methods The cohort consisted of 27 patients of 70% Mexican-American ethnicity. High-throughput RT-qPCR approach was used to generate quantitative expression of 754 miRs in the human genome. We examined tumor recurrence status, survival time and their association with miR expression levels by Cox proportional hazard regression analysis. TargetScan was used to predict miR/genes interactions, and functional analyses using KEGG, BioCarta, Gene Ontology were applied to these potential targets to predict deregulated pathways. Conclusions Our findings suggested that these miRs might be potentially useful as prognostic biomarkers and therapeutic targets in pediatric osteosarcoma. PMID:25594070

  2. The urokinase receptor-derived cyclic peptide [SRSRY] suppresses neovascularization and intravasation of osteosarcoma and chondrosarcoma cells

    PubMed Central

    Ingangi, Vincenzo; Bifulco, Katia; Yousif, Ali Munaim; Ragone, Concetta; Motti, Maria Letizia; Rea, Domenica; Minopoli, Michele; Botti, Giovanni; Scognamiglio, Giuseppe; Fazioli, Flavio; Gallo, Michele; De Chiara, Annarosaria; Arra, Claudio; Grieco, Paolo; Carriero, Maria Vincenza

    2016-01-01

    The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration and uPAR88–92 is the minimal sequence required to induce cell motility and angiogenesis by interacting with the formyl peptide receptor type 1 (FPR1). In this study, we present evidence that the cyclization of the uPAR88–92 sequence generates a new potent inhibitor of migration, and extracellular matrix invasion of human osteosarcoma and chondrosarcoma cells expressing comparable levels of FPR1 on cell surface. In vitro, the cyclized peptide [SRSRY] prevents formation of capillary-like tubes by endothelial cells co-cultured with chondrosarcoma cells and trans-endothelial migration of osteosarcoma and chondrosarcoma cells. When chondrosarcoma cells were subcutaneously injected in nude mice, tumor size, intra-tumoral microvessel density and circulating tumor cells in blood samples collected before the sacrifice, were significantly reduced in animals treated daily with i.p-administration of 6 mg/Kg [SRSRY] as compared to animals treated with vehicle only. Our findings indicate that [SRSRY] prevents three key events occurring during the metastatic process of osteosarcoma and chondrosarcoma cells: the extracellular matrix invasion, the formation of a capillary network and the entry into bloodstream. PMID:27323409

  3. Osteosarcoma Metastases With Direct Cardiac Invasion: A Case Report and Review of the Pediatric Literature.

    PubMed

    Hartemayer, Robert; Kuo, Christopher; Kent, Paul

    2017-04-01

    Metastatic osteosarcoma with direct cardiac involvement is an exceptionally rare finding, with only 63 total reported cases in the English literature over the past 123 years. Although the precise incidence is unknown, we estimate that direct cardiac involvement currently occurs in <2% of metastatic osteosarcoma cases. We also find that before the adoption of adjuvant chemotherapy as a standard of care therapy for osteosarcoma, metastatic osteosarcoma to the heart was much more common than it is today, as cardiac involvement occurred in ∼20% of cases of metastatic osteosarcoma before the 1980s. This suggests that adjuvant chemotherapy has not only improved the overall prognosis of osteosarcoma, but also altered the metastatic pattern of disease. In this paper we present the case of an 11-year-old boy with metastatic osteosarcoma to the cardiac interventricular septum, as well as review 20 other previously reported pediatric cases of metastatic osteosarcoma to the heart. We also analyzed the cardiac surgical outcomes for 11 pediatric patients with metastatic osteosarcoma to the heart. The median disease-free survival time was 12 months, demonstrating that metastatic osteosarcoma to the heart is currently a rare occurrence with a poor prognosis.

  4. Histopathologic Features of Prognostic Significance in High-Grade Osteosarcoma.

    PubMed

    Chui, Michael Herman; Kandel, Rita A; Wong, Marcus; Griffin, Anthony M; Bell, Robert S; Blackstein, Martin E; Wunder, Jay S; Dickson, Brendan C

    2016-08-23

    Context .- In osteosarcoma treated with neoadjuvant chemotherapy the extent of tumor necrosis on resection is considered an indicator of treatment response, and this has been shown to correlate with survival in most but not all studies. Objective .- To identify additional histologic variables of prognostic significance in high-grade osteosarcoma. Design .- Slides of pretreatment biopsy and primary postneoadjuvant chemotherapy resections from 165 patients with high-grade osteosarcoma were reviewed. Univariate (Kaplan-Meier) and multivariate (Cox regression) analyses were performed to identify clinical and histomorphologic attributes associated with overall survival. Results .- Univariate analyses confirmed the prognostic significance of metastatic status on presentation, primary tumor size, anatomic site, and histologic subtype. Additionally, the identification of lymphovascular invasion, 10% or more residual viable tumor, and 10 or more mitoses per 10 high-powered fields assessed in posttreatment resections were associated with poor survival, retaining significance in multivariate analyses. Based on results from multivariate analysis, we developed a prognostic index incorporating primary tumor size and site, and significant histologic features assessed on resection (ie, lymphovascular invasion status, mitotic rate, and extent of viable tumor). This scoring system segregates patients into 3 risk categories with significant differences in overall survival and retained significance in an independent validation set of 42 cases. Conclusions .- The integration of clinical and microscopic features improves prognostication of patients with osteosarcoma.

  5. Immunohistochemical expression of COX-2, mPGES and EP2 receptor in normal and reactive canine bone and in canine osteosarcoma.

    PubMed

    Millanta, F; Asproni, P; Cancedda, S; Vignoli, M; Bacci, B; Poli, A

    2012-01-01

    Accumulating evidence suggests that cyclooxygenase (COX)-2 is involved in the pathogenesis of human and canine osteosarcoma. The aim of this study was to investigate the expression of COX-2 in normal, reactive and neoplastic canine bone and the events downstream to COX-2 that lead to prostaglandin E(2) (PGE(2)) production. COX-2, microsomal PGE(2) synthase-1 (mPGES-1) and the PGE(2) receptor (EP2) were assessed by immunohistochemistry in 12 samples of normal bone, 14 cases of fracture callus and 27 appendicular osteosarcomas. No immunoreactivity to COX-2, mPGES-1 or EP2 receptor was observed in normal bone. Fifty percent of reactive bone samples expressed COX-2 and 57% expressed mPGES-1 and EP2 receptor, although with weak labelling intensity. Ninety-three percent of osteosarcomas expressed COX-2, while mPGES-1 was expressed by 85% and EP2 receptor by 89% of the tumours. The data confirm that COX-2 is expressed at high level in osteosarcoma and support the use of COX-2 inhibitors to improve the response to chemotherapy. The possibility of blocking the EP2 or the selective inhibition of mPGES-1, rather than COX-2 activity, might decrease the incidence of adverse effects that occur due to the inhibition of prostanoids other than PGE(2).

  6. RanBP9/TSSC3 complex cooperates to suppress anoikis resistance and metastasis via inhibiting Src-mediated Akt signaling in osteosarcoma

    PubMed Central

    Dai, Huanzi; Lv, Yang-Fan; Yan, Guang-Ning; Meng, Gang; Zhang, Xi; Guo, Qiao-Nan

    2016-01-01

    Suppression of anoikis is a prerequisite for tumor cell metastasis, which is correlated with chemoresistance and poor prognosis. We characterized a novel interaction between RanBP9 SPRY domain and TSSC3 PH domain by which RanBP9/TSSC3 complex exerts transcription and post-translation regulation in osteosarcoma. RanBP9/TSSC3 complex was inversely correlated with a highly anoikis-resistant phenotype in osteosarcoma cells and metastasis in human osteosarcoma. RanBP9 cooperated with TSSC3 to inhibit anchorage-independent growth and to promote anoikis in vitro and suppress lung metastasis in vivo. Moreover, RanBP9 SPRY domain was required for RanBP9/TSSC3 complex-mediated anoikis resistance. Mechanistically, RanBP9 formed a ternary complex with TSSC3 and Src to scaffold this interaction, which suppressed both Src and Src-dependent Akt pathway activations and facilitated mitochondrial-associated anoikis. Collectively, the newly identified RanBP9/TSSC3 complex cooperatively suppress metastasis via downregulation of Src-dependent Akt pathway to expedite mitochondrial-associated anoikis. This study provides a biological basis for exploring the therapeutic significance of dual targeting of RanBP9 and TSSC3 in osteosarcoma. PMID:28032865

  7. Autocrine Transforming Growth Factor-β Growth Pathway in Murine Osteosarcoma Cell Lines Associated with Inability to Affect Phosphorylation of Retinoblastoma Protein

    PubMed Central

    Letterio, John J.; Yeung, Choh L.; Pegtel, Michiel; Helman, Lee J.

    2000-01-01

    Purpose. Production of active transforming growth factor-β (TGF-β ) by human osteosarcoma may contribute to malignant progression through mechanisms that include induction of angiogenesis, immune suppression and autocrine growth stimulation of tumor cell growth.To study events associated with induction of cell proliferation by TGF-β , we have evaluated the TGF-β pathway in two murine osteosarcoma cell lines, K7 and K12. Results. Northern and immunohistochemical analyses show that each cell line expressesTGF-β1 and TGF-β3 mRNA and protein. Both cell lines secrete activeTGF-β 1 and display a 30–50% reduction in growth when cultured in the presence of a TGF-β blocking antibody. Expression of TGF-β receptors TβRI, TβRII and TβRIII is demonstrated by affinity labeling with 125 -TGF-β 1, and the intermediates, Smads 2, 3 and 4, are uniformly expressed. Smads 2 and 3 are phosphorylated in response toTGF-β , while pRb phosphorylation in each osteosarcoma cell line is not affected by either exogenousTGF-β or TGF-β antibody. Conclusions. The data implicate events downstream of Smad activation, including impaired regulation of pRb, in the lack of a growth inhibitory response toTGF-β , and indicate that this murine model of osteosarcoma is valid for investigating the roles of autocrineTGF-β in vivo. PMID:18521287

  8. The Forkhead Transcription Factor FOXP2 Is Required for Regulation of p21WAF1/CIP1 in 143B Osteosarcoma Cell Growth Arrest.

    PubMed

    Gascoyne, Duncan M; Spearman, Hayley; Lyne, Linden; Puliyadi, Rathi; Perez-Alcantara, Marta; Coulton, Les; Fisher, Simon E; Croucher, Peter I; Banham, Alison H

    2015-01-01

    Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1). Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biology.

  9. Dysregulation of Ezrin phosphorylation prevents metastasis and alters cellular metabolism in osteosarcoma

    PubMed Central

    Ren, Ling; Hong, Sung-Hyeok; Chen, Qing-Rong; Briggs, Joseph; Cassavaugh, Jessica; Srinivasan, Satish; Lizardo, Michael M.; Mendoza, Arnulfo; Xia, Ashley Y.; Avadhani, Narayan; Khan, Javed; Khanna, Chand

    2013-01-01

    Ezrin links the plasma membrane to the actin cytoskeleton where it plays a pivotal role in the metastatic progression of several human cancers (1, 2), however, the precise mechanistic basis for its role remains unknown. Here we define transitions between active (phosphorylated open) and inactive (dephosphorylated closed) forms of Ezrin that occur during metastatic progression in osteosarcoma. In our evaluation of these conformations we expressed C-terminal mutant forms of Ezrin that are open (phosphomimetic T567D) or closed (phosphodeficient T567A) and compared their biological characteristics to full length wild-type Ezrin in osteosarcoma cells. Unexpectedly, cells expressing open, active Ezrin could form neither primary orthotopic tumors nor lung metastases. In contrast, cells expressing closed, inactive Ezrin were also deficient in metastasis but were unaffected in their capacity for primary tumor growth. By imaging single metastatic cells in the lung, we found that cells expressing either open or closed Ezrin displayed increased levels of apoptosis early after their arrival in the lung. Gene expression analysis suggested dysregulation of genes that are functionally linked to carbohydrate and amino acid metabolism. In particular, cells expressing closed, inactive Ezrin exhibited reduced lactate production and basal or ATP-dependent oxygen consumption. Collectively, our results suggest that dynamic regulation of Ezrin phosphorylation at amino acid T567 that controls structural transitions of this protein plays a pivotal role in tumor progression and metastasis, possibly in part by altering cellular metabolism. PMID:22147261

  10. Effects of naproxen on cell proliferation and genotoxicity in MG-63 osteosarcoma cell line.

    PubMed

    Correia, Isabel; Arantes-Rodrigues, Regina; Pinto-Leite, Rosário; Gaivão, Isabel

    2014-01-01

    The purpose of this study was to determine the efficacy of naproxen, a nonsteroidal anti-inflammatory drug, on the MG-63 human osteosarcoma cell line. MG-63 cells were exposed to naproxen in a wide range of concentrations of 0.03, 0.05, 0.1, 0.42, 0.83, and 1.67 mg/ml for 72 h. The activity of naproxen was assessed by the following assays: cell morphology; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method; terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay; comet assay; and acridine orange and monodansylcadaverine (MDC) staining. Naproxen exerted a significant inhibitory effect on MG-63 cell proliferation, in a concentration-dependent manner, in all treatment groups compared with untreated cells. An increase in frequency of DNA damage, apoptotic bodies, apoptotic cells, and autophagic vacuoles was observed in MG-63-treated cells. Although future studies are needed, these findings suggest that naproxen may lead to improvements in treatment of patients with osteosarcoma.

  11. Bone-Targeted Acid-Sensitive Doxorubicin Conjugate Micelles as Potential Osteosarcoma Therapeutics

    PubMed Central

    2015-01-01

    Osteosarcoma is a malignancy of the bone that primarily affects adolescents. Current treatments retain mortality rates, which are higher than average cancer mortality rates for the adolescent age group. We designed a micellar delivery system with the aim to increase drug accumulation in the tumor and potentially reduce side effects associated with chemotherapy. The design features are the use of the hydrophilic d-aspartic acid octapeptide as both the effective targeting agent as well as the hydrophilic micelle corona. Micelle stabilization was accomplished by binding of model drug (doxorubicin) via an acid-sensitive hydrazone bond and incorporating one to four 11-aminoundecanoic acid (AUA) moieties to manipulate the hydrophobic/hydrophilic ratio. Four micelle-forming unimers have been synthesized and their self-assembly into micelles was evaluated. Size of the micelles could be modified by changing the architecture of the unimers from linear to branched. The stability of the micelles increased with increasing content of AUA moieties. Adsorption of all micelles to hydroxyapatite occurred rapidly. Doxorubicin release occurred at pH 5.5, whereas no release was detected at pH 7.4. Cytotoxicity toward human osteosarcoma Saos-2 cells correlated with drug release data. PMID:25291150

  12. Bone-targeted acid-sensitive doxorubicin conjugate micelles as potential osteosarcoma therapeutics.

    PubMed

    Low, Stewart A; Yang, Jiyuan; Kopeček, Jindřich

    2014-11-19

    Osteosarcoma is a malignancy of the bone that primarily affects adolescents. Current treatments retain mortality rates, which are higher than average cancer mortality rates for the adolescent age group. We designed a micellar delivery system with the aim to increase drug accumulation in the tumor and potentially reduce side effects associated with chemotherapy. The design features are the use of the hydrophilic D-aspartic acid octapeptide as both the effective targeting agent as well as the hydrophilic micelle corona. Micelle stabilization was accomplished by binding of model drug (doxorubicin) via an acid-sensitive hydrazone bond and incorporating one to four 11-aminoundecanoic acid (AUA) moieties to manipulate the hydrophobic/hydrophilic ratio. Four micelle-forming unimers have been synthesized and their self-assembly into micelles was evaluated. Size of the micelles could be modified by changing the architecture of the unimers from linear to branched. The stability of the micelles increased with increasing content of AUA moieties. Adsorption of all micelles to hydroxyapatite occurred rapidly. Doxorubicin release occurred at pH 5.5, whereas no release was detected at pH 7.4. Cytotoxicity toward human osteosarcoma Saos-2 cells correlated with drug release data.

  13. Cisplatin promotes mesenchymal-like characteristics in osteosarcoma through Snail

    PubMed Central

    Fang, Shuo; Yu, Ling; Mei, Hongjun; Yang, Jian; Gao, Tian; Cheng, Anyuan; Guo, Weichun; Xia, Kezhou; Liu, Gaiwei

    2016-01-01

    More than 30% of patients with osteosarcoma succumb to pulmonary metastases. Epithelial-mesenchymal transition (EMT) is a biological process by which tumor cells gain an increased capacity for invasiveness and metastasis. A previous study confirmed the phenomenon of EMT in osteosarcoma, a mesenchymal-derived tumor. However, whether chemotherapy affects EMT remains to be elucidated. In the present study, the osteosarcoma cells were exposed to a sublethal dose of cisplatin, and any surviving cells were assumed to be more resistant to cisplatin. In addition, these cells exhibited a more mesenchymal phenotype. Immunofluorescence analysis revealed that the cisplatin treated cells had an increased long/short axis ratio and increased expression of N-cadherin compared with control cells. A panel of EMT-associated genes was subsequently assessed by quantitative PCR and western blot analysis, and they were observed to be significantly upregulated in the cisplatin treated cells. The in vitro wound healing and Transwell assay indicated that the cisplatin treated cells were more prone to migrate and invade. An in vivo assay showed that the cisplatin-treated xenograft had increased expression of EMT-associated genes, and exhibited increased pulmonary lesions compared with the control, which indicated an elevated capacity to metastasize. The expression of Snail was knocked down by specific small interfering RNA, and it was observed that Snail inhibition promoted cisplatin sensitivity, and cisplatin-induced EMT was significantly blocked. Taken together, the results of the present study supported that idea that Snail participates in cisplatin-induced EMT in osteosarcoma cells, and targeting EMT-transcription factors may offer promise for the therapeutics of osteosarcoma. PMID:28105207

  14. MicroRNAs and Potential Targets in Osteosarcoma: Review

    PubMed Central

    Sampson, Valerie B.; Yoo, Soonmoon; Kumar, Asmita; Vetter, Nancy S.; Kolb, E. Anders

    2015-01-01

    Osteosarcoma is the most common bone cancer in children and young adults. Surgery and multi-agent chemotherapy are the standard treatment regimens for this disease. New therapies are being investigated to improve overall survival in patients. Molecular targets that actively modulate cell processes, such as cell-cycle control, cell proliferation, metabolism, and apoptosis, have been studied, but it remains a challenge to develop novel, effective-targeted therapies to treat this heterogeneous and complex disease. MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating cell processes including growth, development, and disease. miRNAs function as oncogenes or tumor suppressors to regulate gene and protein expression. Several studies have demonstrated the involvement of miRNAs in the pathogenesis of osteosarcoma with the potential for development in disease diagnostics and therapeutics. In this review, we discuss the current knowledge on the role of miRNAs and their target genes and evaluate their potential use as therapeutic agents in osteosarcoma. We also summarize the efficacy of inhibition of oncogenic miRNAs or expression of tumor suppressor miRNAs in preclinical models of osteosarcoma. Recent progress on systemic delivery as well as current applications for miRNAs as therapeutic agents has seen the advancement of miR-34a in clinical trials for adult patients with non-resectable primary liver cancer or metastatic cancer with liver involvement. We suggest a global approach to the understanding of the pathogenesis of osteosarcoma may identify candidate miRNAs as promising biomarkers for this rare disease. PMID:26380245

  15. A23187-induced translocation of 5-lipoxygenase in osteosarcoma cells

    PubMed Central

    1992-01-01

    In a previous study, osteosarcoma cells expressing both 5-lipoxygenase (5-LO) and 5 lipoxygenase-activating protein (FLAP) synthesized leukotrienes upon A23187 stimulation (Dixon, R. A. F., R. E. Diehl, E. Opas, E. Rands, P. J. Vickers, J. F. Evans, J. W. Gillard, and D. K. Miller. 1990. Nature (Lond.). 343:282-284). Osteosarcoma cells expressing 5-LO but not expressing FLAP were unable to synthesize leukotrienes. Thus, it was determined that FLAP was required for the cellular synthesis of leukotrienes. To examine the role of FLAP in A23187-induced translocation of 5-LO to a membrane fraction, we have studied the A23187-stimulated translocation of 5-LO in osteosarcoma cells expressing both 5-LO and FLAP, and in osteosarcoma cells expressing 5-LO only. We demonstrate that in cells expressing both 5-LO and FLAP, 5-LO translocates to membranes in response to A23187 stimulation. This 5-LO translocation is inhibited when cells are stimulated in the presence of MK-886. In osteosarcoma cells expressing 5-LO but not expressing FLAP, 5-LO is able to associate with membranes following A23187 stimulation. In contrast to the cells containing both 5-LO and FLAP, MK-886 is unable to prevent 5-LO membrane association in cells transfected with 5-LO alone. Therefore, we have demonstrated that in this cell system, 5-LO membrane association and activation can be separated into at least two distinct steps: (1) calcium-dependent movement of 5-LO to membranes without product formation, which can occur in the absence of FLAP (membrane association), and (2) activation of 5-LO with product formation, which is FLAP dependent and inhibited by MK-886 (enzyme activation). PMID:1469057

  16. Silencing of carboxypeptidase E inhibits cell proliferation, tumorigenicity, and metastasis of osteosarcoma cells

    PubMed Central

    Fan, Shuli; Li, Xu; Li, Leiming; Wang, Liguo; Du, Zhangzhen; Yang, Yan; Zhao, Jiansong; Li, Yan

    2016-01-01

    Carboxypeptidase E (CPE), a prohormone processing enzyme, has been implicated in the progression of multiple malignancies. However, the biological role and molecular mechanisms of CPE in osteosarcoma remain elusive. In this study, we assessed the effects of CPE on cell proliferation, tumorigenicity, migration, and invasion in osteosarcoma. Our results showed that silencing of CPE significantly inhibited cell proliferation, caused cell cycle arrest at G0/G1 phase, decreased the expression levels of cell cycle protein, cyclin D1, and inhibited tumorigenicity in vivo. Additionally, CPE downregulation repressed the migratory and invasive capacities of osteosarcoma cells in vitro. Furthermore, overexpression of CPE-ΔN (a splice variant of CPE) enhanced the cell growth, migration, and invasion of osteosarcoma cells. It is possible that both CPE forms are involved in the tumorigenesis and development of osteosarcoma, and therefore CPE may provide a promising biological target for osteosarcoma therapy. PMID:27274275

  17. PERK-mediated Autophagy in Osteosarcoma Cells Resists ER Stress-induced Cell Apoptosis

    PubMed Central

    Ji, Guang-rong; Yu, Nai-chun; Xue, Xiang; Li, Zong-guang

    2015-01-01

    Osteosarcoma is a bone cancer that develops commonly in children and adolescents. However, osteosarcoma treatments often fail by the development of chemoresistance to apoptosis, and the molecular mechanisms remain unclear. In this study, we propose that autophagy is responsible for osteosarcomatous resistance to apoptosis. We implicate PERK-mediated autophagy as a significant contributor to apoptosis resistance due to ER stress in osteosarcoma cells. By immunostainings and western blots, we identified that PERK activated osteosarcomatous autophagy via inhibiting mTORC1 pathway, thereby preventing cell apoptosis. While using RNAi, we knocked down PERK and found that autophagy was suppressed, result in osteosarcomatous apoptosis. Our results identify a novel role of PERK-mediated autophagy as a significant mechanism for osteosarcoma cell survival. These results will help to understand the mechanism of chemoresistance in osteosarcoma cells, and indicate a novel target for improving osteosarcoma therapy. PMID:26078722

  18. PERK-mediated Autophagy in Osteosarcoma Cells Resists ER Stress-induced Cell Apoptosis.

    PubMed

    Ji, Guang-rong; Yu, Nai-chun; Xue, Xiang; Li, Zong-guang

    2015-01-01

    Osteosarcoma is a bone cancer that develops commonly in children and adolescents. However, osteosarcoma treatments often fail by the development of chemoresistance to apoptosis, and the molecular mechanisms remain unclear. In this study, we propose that autophagy is responsible for osteosarcomatous resistance to apoptosis. We implicate PERK-mediated autophagy as a significant contributor to apoptosis resistance due to ER stress in osteosarcoma cells. By immunostainings and western blots, we identified that PERK activated osteosarcomatous autophagy via inhibiting mTORC1 pathway, thereby preventing cell apoptosis. While using RNAi, we knocked down PERK and found that autophagy was suppressed, result in osteosarcomatous apoptosis. Our results identify a novel role of PERK-mediated autophagy as a significant mechanism for osteosarcoma cell survival. These results will help to understand the mechanism of chemoresistance in osteosarcoma cells, and indicate a novel target for improving osteosarcoma therapy.

  19. Expression of CD31, Met/hepatocyte growth factor receptor and bone morphogenetic protein in bone metastasis of osteosarcoma.

    PubMed

    Arihiro, K; Inai, K

    2001-02-01

    The mechanism of metastasis of osteosarcoma cells to other bones has not yet fully been clarified. The purpose of the present study was to examine whether various factors involve the formation of osteosarcoma metastatic foci in other bones. Immunohistochemically, CD31 expression in osteosarcoma with no bone metastasis and osteosarcoma with bone metastasis was noted in 10 and 75% of cases, respectively. Met/hepatocyte growth factor (HGF) receptor expression in osteosarcoma with no bone metastasis and osteosarcoma with bone metastasis was noted in 90 and 25% of cases, respectively. Bone morphogenetic protein (BMP) expression in osteosarcoma with no bone metastasis and osteosarcoma with bone metastasis was noted in 20 and 75% of cases, respectively. Metastasis of osteosarcoma cells to other bones was significantly correlated with expression of BMP and CD31 and with no expression of Met/HGF receptor protein in osteosarcoma cells. In contrast, expression of insulin-like growth factor receptor in osteosarcoma cells did not correlate significantly with bone metastasis. These results suggest that formation of metastatic foci of osteosarcoma cells in other bones is regulated by CD31, which is associated with migration between endothelial cells, by BMP, which can induce and activate various mesenchymal cells affecting bone formation, and by escape of effect by HGF, which promotes differentiation of osteosarcoma cells.

  20. Wnt10b Activates the Wnt, Notch and NFκB Pathways in U2OS Osteosarcoma Cells

    PubMed Central

    Mödder, Ulrike I.; Oursler, Merry Jo; Khosla, Sundeep; Monroe, David G.

    2011-01-01

    Although osteosarcoma represents the most common bone malignancy, the molecular and cellular mechanisms influencing its pathogenesis have remained elusive. Recent evidence has suggested that the Wnt signaling pathway may play a crucial role in osteosarcoma. This study employed a microarray approach to discover novel genes and pathways involved in Wnt signaling in osteosarcoma. We developed a Wnt10b-expressing cell line using the human U2OS osteosarcoma model (U2OS-Wnt10b) and performed microarray and pathway analyses using parental U2OS cells as control. Differential expression of 1003 genes encompassing 28 pathways was noted. The Wnt, NFκB and Notch pathways were chosen for further study based on their known importance in bone biology. Known Wnt-responsive genes Axin-2 (4.9-fold), CD44 (2.1-fold), endothelin-1 (4.2-fold) and sclerostin domain containing-1 (43-fold) were regulated by Wnt10b. The proinflammatory cytokines interleukin-1α and tumor necrosis factor-α, known inducers of NFκB, were upregulated both at the transcript and protein level, and NFκB reporter activity was stimulated 3.8-fold, confirming NFκB activation. Interestingly, genes involved in Notch signaling [Notch-1 (2.4-fold) and Jagged-1 (3.1-fold)] were upregulated, whereas the Notch inhibitor, lunatic fringe, was downregulated (8.2-fold). This resulted in the activation of the classic Notch-responsive genes, hairy and enhancer of split-1 (Hes-1; 2.2-fold) and hairy/enhancer-of-split related with YRPW motif-1 (Hey-1; 2.5-fold). A Hey-1 reporter construct was regulated 9.1-fold in U2OS-Wnt10b cells, confirming Notch activation. Interestingly, Wnt3a failed to induce the Notch and NFκB pathways, demonstrating Wnt-specificity. In conclusion, our data demonstrate that Wnt10b, but not Wnt3a, stimulates the NFκB and Notch pathways in U2OS osteosarcoma cells. PMID:21321991

  1. Childhood osteosarcoma of greater wing of sphenoid: case report and review of literature.

    PubMed

    Meel, Rachna; Thulkar, Sanjay; Sharma, Mehar Chand; Jagadesan, Pandjatcharan; Mohanti, Bidhu Kalyan; Sharma, Suresh Chandra; Bakhshi, Sameer

    2012-03-01

    Primary osteosarcoma of skull base is extremely rare. We present a case of primary osteosarcoma arising in greater wing of sphenoid in a child. Our patient had an incomplete excision after which he received adjuvant chemotherapy and radiotherapy. There was good response to adjuvant chemoradiotherapy and the patient is disease free at a follow-up of 18 months. Treatment of skull base osteosarcomas is difficult, as complete excision is often not possible. To the best of our knowledge, this is the first case of sphenoid wing osteosarcoma in childhood to be reported in literature.

  2. Overexpression of KH-type splicing regulatory protein regulates proliferation, migration, and implantation ability of osteosarcoma

    PubMed Central

    Pruksakorn, Dumnoensun; Teeyakasem, Pimpisa; Klangjorhor, Jeerawan; Chaiyawat, Parunya; Settakorn, Jongkolnee; Diskul-Na-Ayudthaya, Penchatr; Chokchaichamnankit, Daranee; Pothacharoen, Peraphan; Srisomsap, Chantragan

    2016-01-01

    Osteosarcoma is a common malignant bone tumor in children and adolescents. The current 5-year survival rate is ~60% and that seems to be reaching a plateau. In order to improve treatment outcomes of osteosarcoma, a better understanding of tumorigenesis and underlying molecular mechanisms is required for searching out possible new treatment targets. This study aimed to identify the potential proteins involving the pathogenesis of osteosarcoma using a proteomics approach. Proteins extracted from primary cell culture of osteosarcoma (n=7) and osteoblasts of cancellous bone (n=7) were studied. Using 2-DE based proteomics and LC-MS/MS analysis, we successfully determined seven differentially expressed protein spots. Four upregulated proteins and three downregulated proteins were observed in this study in which KH-type splicing regulatory protein (KSRP) was selected for further exploration. KSRP was significantly upregulated in osteosarcoma cells compared to osteoblasts using western blot assay. In addition, immunohistochemistry demonstrated that KSRP was also highly expressed in osteosarcoma tissue of independent cases from the experimental group. More importantly, KSRP silencing of osteosarcoma cell lines significantly decreased cell proliferation, migration ability, as well as implantation and growth ability in chick chorioallantoic membrane assay. Taken together, these findings demonstrate, that KSRP plays important roles in regulatory controls of osteosarcoma pathogenesis and serves as a potentially therapeutic target of osteosarcoma. PMID:27573585

  3. Re-calculating! Navigating through the osteosarcoma treatment roadblock.

    PubMed

    McGuire, J; Utset-Ward, T J; Reed, D R; Lynch, C C

    2017-03-01

    The survival rates for patients with osteosarcoma have remained almost static for the past three decades. Current standard of care therapy includes chemotherapies such as doxorubicin, cisplatin, and methotrexate along with complete surgical resection and surgery with or without ifosfamide and etoposide for relapse, though outcomes are hoped to be improved through clinical trials. Additionally, increased understanding of the genetics, signaling pathways and microenvironmental factors driving the disease have led to the identification of promising agents and potential paths towards translation of an exciting array of novel targeted therapies. Here, we review the mechanism of action of these emerging therapies and how, with clinical translation, they can potentially improve the survival rates for osteosarcoma patients in the near future.

  4. A case of Werner's syndrome associated with osteosarcoma.

    PubMed

    Murata, K; Hatamochi, A; Shinkai, H; Ishikawa, Y; Kawaguchi, N; Goto, M

    1999-10-01

    We described a case of Werner's syndrome associated with osteosarcoma. A 37-year-old Japanese man was diagnosed as having Werner's syndrome by the presence of juvenile cataracts, skin sclerosis and hyperpigmentation of the feet, high-pitched voice, characteristic bird-like appearance of the face with beak-shaped nose, thinning of the entire skin and hyperkeratoses on soles, hyperlipemia, hyperuricemia, diabetes melitus, and the mutated responsible gene (WRN). He had a 3-month history of a tumor on his left forearm. Histologically, the tumor included four histological patterns; a malignant fibrous histiocytoma-like, a desmoid-like, a dermatofibrosarcoma protuberans-like, and a chondrosarcoma-like pattern. Tumoral osteoid formation was also found in the tumor. Therefore, the tumor was diagnosed as osteosarcoma.

  5. Diagnostic Assessment of Osteosarcoma Chemoresistance Based on Virtual Clinical Trials

    PubMed Central

    Rejniak, K.A.; Lloyd, M.C.; Reed, D.R.; Bui, M.M.

    2015-01-01

    Osteosarcoma is the most common primary bone tumor in pediatric and young adult patients. Successful treatment of osteosarcomas requires a combination of surgical resection and systemic chemotherapy, both neoadjuvant (prior to surgery) and adjuvant (after surgery). The degree of necrosis following neoadjuvant chemotherapy correlates with the subsequent probability of disease-free survival. Tumors with less than 10% of viable cells after treatment represent patients with a more favorable prognosis. However, being able to predict early, such as at the time of the pre-treatment tumor biopsy, how the patient will respond to the standard chemotherapy would provide an opportunity for more personalized patient care. Patients with unfavorable predictions could be studied in a protocol, rather than a standard setting, towards improving therapeutic success. The onset of necrotic cells in osteosarcomas treated with chemotherapeutic agents is a measure of tumor sensitivity to the drugs. We hypothesize that the remaining viable cells, i.e., cells that have not responded to the treatment, are chemoresistant, and that the pathological characteristics of these chemoresistant tumor cells within the osteosarcoma pre-treatment biopsy can predict tumor response to the standard-of-care chemotherapeutic treatment. This hypothesis can be tested by comparing patient histopathology samples before, as well as after treatment to identify both morphological and immunochemical cellular features that are characteristic of chemoresistant cells, i.e., cells that survived treatment. Consequently, using computational simulations of dynamic changes in tumor pathology under the simulated standard of care chemotherapeutic treatment, one can couple the pre- and post-treatment morphological and spatial patterns of chemoresistant cells, and correlate them with patient clinical diagnoses. This procedure, that we named ‘Virtual Clinical Trials’, can serve as a potential predictive biomarker providing a

  6. Retroperitoneal Extraskeletal Osteosarcoma: Imaging Findings and Transarterial Chemoembolization

    SciTech Connect

    Zhang Huojun Yang Jijin Lu Jianping; Sheng Jin; Yuan Min; Jiang Xu; Li Yuxiao; Gupta, Sanjay

    2010-04-15

    Extraskeletal osteosarcoma (EOS) is an uncommon and usually highly aggressive mesenchymal tumor. Retroperitoneal extraskeletal osteosarma (REOS) is exceedingly rare. Due to the rare nature of the disease, both the diagnosis and the management of REOS can be challenging. We present the clinical history, CT findings, angiographic manifestations, and use of transarterial chemoembolization for treatment in a case of REOS. To our knowledge, the angiographic features of and attempt at transarterial treatment of REOS have not been reported in the literature.

  7. Fluoride-Induced Oxidative and Inflammatory Stress in Osteosarcoma Cells: Does It Affect Bone Development Pathway?

    PubMed

    Gandhi, Deepa; Naoghare, Pravin K; Bafana, Amit; Kannan, Krishnamurthi; Sivanesan, Saravanadevi

    2017-01-01

    Oxidative stress is reported to negatively affect osteoblast cells. Present study reports oxidative and inflammatory signatures in fluoride-exposed human osteosarcoma (HOS) cells, and their possible association with the genes involved in osteoblastic differentiation and bone development pathways. HOS cells were challenged with sublethal concentration (8 mg/L) of sodium fluoride for 30 days and analyzed for transcriptomic expression. In total, 2632 transcripts associated with several biological processes were found to be differentially expressed. Specifically, genes involved in oxidative stress, inflammation, osteoblastic differentiation, and bone development pathways were found to be significantly altered. Variation in expression of key genes involved in the abovementioned pathways was validated through qPCR. Expression of serum amyloid A1 protein, a key regulator of stress and inflammatory pathways, was validated through western blot analysis. This study provides evidence that chronic oxidative and inflammatory stress may be associated with the fluoride-induced impediment in osteoblast differentiation and bone development.

  8. Primary osteosarcoma of the ovary. A case report.

    PubMed

    Sakata, H; Hirahara, T; Ryu, A; Sawada, T; Yamamoto, M; Sakurai, I

    1991-04-01

    A case of primary osteosarcoma arising in the left ovary of a 75-year-old female is described. The chief complaint was a sensation of lower abdominal mass. An abdominal plain film showed a large calcified mass in pelvic region, and a preoperative diagnosis of "ovarian fibroma" was made. The excised tumor was divided into 4 pieces, resembling an oyster shell. Microscopically, the tumor fragments were composed of compact bone or woven bone with surrounding atypical osteoblasts and osteoclasts. The tumor was partly composed of numerous spindle cells with malignant osteoid or atypical chondroid formation, and diagnosed as "osteosarcoma". The cystic part of the lesion was lined with a single layer of columnar cells, but the tumor contained no other germ elements or stem cells, or malignant epithelium. Therefore, it is doubtful that this tumor originated from teratoma or malignant mixed mesodermal tumor, and we conclude that this ovarian osteosarcoma arose through a neoplastic change in ovarian stromal cells. The patient died 4 months after surgery due to intra-abdominal and intrathoracic dissemination of the tumor.

  9. Contrasting epidemiology of childhood osteosarcoma, Ewing's tumor, and rhabdomyosarcoma

    SciTech Connect

    Miller, R.W.

    1981-04-01

    Marked dissimilarities in the epidemiology of osteosarcoma, Ewing's tumor, and rhabdomyosarcoma indicate differences in their origins. A major clue to the genesis of Ewing's tumor comes not from defining persons at high risk but from the observation that blacks are at unusually low risk. The neoplasm does not aggregate in families and is not part of any known syndrome. No environmental causes have been identified. By contrast, osteosarcoma may be caused by external or internal ionizing radiation, and it aggregated in families with the same tumor or with dissimilar tumors and in certain genetic disorders of bone. In man and in dogs, the frequency of the neoplasm is related to bone mass and growth. Rhabdomyosarcoma of the upper versus the lower limbs seems related to muscle mass. Age peaks in the occurrence of the tumor elsewhere vary with the anatomic site; head and neck tumors develop in early childhood and urogenital tumors both in early years and in adolescence. The sex ratio (male to female) also varies with the site affected. Rhabdomyosarcoma aggregates with certain other tumors in families and overlaps with osteosarcoma in some of these relationships but is distinguished from that tumor by its excessive occurrence in neurofibromatosis.

  10. SERUM VALUES OF ALKALINE PHOSPHATASE AND LACTATE DEHYDROGENASE IN OSTEOSARCOMA

    PubMed Central

    ZUMÁRRAGA, JUAN PABLO; BAPTISTA, ANDRÉ MATHIAS; ROSA, LUIS PABLO DE LA; CAIERO, MARCELO TADEU; CAMARGO, OLAVO PIRES DE

    2016-01-01

    ABSTRACT Objective: To study the relationship between the pre and post chemotherapy (CT) serum levels of alkaline phosphatase (AP) and lactate dehydrogenase (LDH), and the percentage of tumor necrosis (TN) found in specimens after the pre surgical CT in patients with osteosarcoma. Methods: Series of cases with retrospective evaluation of patients diagnosed with osteosarcoma. Participants were divided into two groups according to serum values of both enzymes. The values of AP and LDH were obtained before and after preoperative CT. The percentage of tumor necrosis (TN) of surgical specimens of each patient was also included. Results: One hundred and thirty seven medical records were included from 1990 to 2013. Both the AP as LDH decreased in the patients studied, being the higher in pre CT than post CT. The average LHD decrease was 795.12U/L and AP decrease was 437.40 U/L. The average TN was 34.10 %. There was no statistically significant correlation between the serums values and the percentage of tumoral necrosis. Conclusion: The serum levels values of AP and LDH are not good predictors for the chemotherapy-induced necrosis in patients with osteosarcoma. Level of Evidence IV, Case Series. PMID:27217815

  11. Highly frequent allelic loss of chromosome 6q16-23 in osteosarcoma: involvement of cyclin C in osteosarcoma.

    PubMed

    Ohata, Norihide; Ito, Sachio; Yoshida, Aki; Kunisada, Toshiyuki; Numoto, Kunihiko; Jitsumori, Yoshimi; Kanzaki, Hirotaka; Ozaki, Toshifumi; Shimizu, Kenji; Ouchida, Mamoru

    2006-12-01

    The molecular pathogenesis of osteosarcoma is very complicated and associated with chaotic abnormalities on many chromosomal arms. We analyzed 12 cases of osteosarcomas with comparative genomic hybridization (CGH) to identify chromosomal imbalances, and detected highly frequent chromosomal alterations in chromosome 6q, 8p, 10p and 10q. To define the narrow rearranged region on chromosome 6 with higher resolution, loss of heterozygosity (LOH) analysis was performed with 21 microsatellite markers. Out of 31 cases, 23 cases (74%) showed allelic loss at least with one marker on chromosome 6q. We identified two distinct commonly deleted regions on chromosome 6 using markers D6S1565 located at 6q16 and 6q23MS1 at 6q23. The expression analysis of genes located at the deleted region was performed, and the decreased mRNA expression of the CCNC gene, one of the regulators of cell cycle, was detected. Growth of osteosarcoma cell line was significantly suppressed after the CCNC cDNA transfection. Fine mapping of the deleted region containing a possible tumor suppressor gene and the transfection assay suggest that the CCNC is a candidate tumor suppressor gene.

  12. An EWS-FLI1-Induced Osteosarcoma Model Unveiled a Crucial Role of Impaired Osteogenic Differentiation on Osteosarcoma Development

    PubMed Central

    Komura, Shingo; Semi, Katsunori; Itakura, Fumiaki; Shibata, Hirofumi; Ohno, Takatoshi; Hotta, Akitsu; Woltjen, Knut; Yamamoto, Takuya; Akiyama, Haruhiko; Yamada, Yasuhiro

    2016-01-01

    Summary EWS-FLI1, a multi-functional fusion oncogene, is exclusively detected in Ewing sarcomas. However, previous studies reported that rare varieties of osteosarcomas also harbor EWS-ETS family fusion. Here, using the doxycycline-inducible EWS-FLI1 system, we established an EWS-FLI1-dependent osteosarcoma model from murine bone marrow stromal cells. We revealed that the withdrawal of EWS-FLI1 expression enhances the osteogenic differentiation of sarcoma cells, leading to mature bone formation. Taking advantage of induced pluripotent stem cell (iPSC) technology, we also show that sarcoma-derived iPSCs with cancer-related genetic abnormalities exhibited an impaired differentiation program of osteogenic lineage irrespective of the EWS-FLI1 expression. Finally, we demonstrate that EWS-FLI1 contributed to secondary sarcoma development from the sarcoma iPSCs after osteogenic differentiation. These findings demonstrate that modulating cellular differentiation is a fundamental principle of EWS-FLI1-induced osteosarcoma development. This in vitro cancer model using sarcoma iPSCs should provide a unique platform for dissecting relationships between the cancer genome and cellular differentiation. PMID:26997645

  13. An EWS-FLI1-Induced Osteosarcoma Model Unveiled a Crucial Role of Impaired Osteogenic Differentiation on Osteosarcoma Development.

    PubMed

    Komura, Shingo; Semi, Katsunori; Itakura, Fumiaki; Shibata, Hirofumi; Ohno, Takatoshi; Hotta, Akitsu; Woltjen, Knut; Yamamoto, Takuya; Akiyama, Haruhiko; Yamada, Yasuhiro

    2016-04-12

    EWS-FLI1, a multi-functional fusion oncogene, is exclusively detected in Ewing sarcomas. However, previous studies reported that rare varieties of osteosarcomas also harbor EWS-ETS family fusion. Here, using the doxycycline-inducible EWS-FLI1 system, we established an EWS-FLI1-dependent osteosarcoma model from murine bone marrow stromal cells. We revealed that the withdrawal of EWS-FLI1 expression enhances the osteogenic differentiation of sarcoma cells, leading to mature bone formation. Taking advantage of induced pluripotent stem cell (iPSC) technology, we also show that sarcoma-derived iPSCs with cancer-related genetic abnormalities exhibited an impaired differentiation program of osteogenic lineage irrespective of the EWS-FLI1 expression. Finally, we demonstrate that EWS-FLI1 contributed to secondary sarcoma development from the sarcoma iPSCs after osteogenic differentiation. These findings demonstrate that modulating cellular differentiation is a fundamental principle of EWS-FLI1-induced osteosarcoma development. This in vitro cancer model using sarcoma iPSCs should provide a unique platform for dissecting relationships between the cancer genome and cellular differentiation.

  14. Berberine affects osteosarcoma via downregulating the caspase-1/IL-1β signaling axis

    PubMed Central

    Jin, Hao; Jin, Xin; Cao, Boran; Wang, Wenbo

    2017-01-01

    Osteosarcoma is one of the most devastating cancers with associated poor prognosis. Chronic bone inflammation frequently predisposes to tumorigenesis and progression of osteosarcoma. In the tumor inflammatory microenvironment, caspase-1 and its processed cytokines such as interleukin 1β (IL-1β) play an important role in the occurrence and development of cancer. Berberine is an isoquinoline alkaloid extracted from the dry root of Coptidis Rhizoma, which has been found to exhibit significant anticancer effects on a wide spectrum of carcinomas including osteosarcoma. However, the mechanisms underlying the anticancer effects of berberine in osteosarcoma remain poorly understood and their elucidation is critical for developing improved therapies. In the present study, we investigated the potential mechanism underlying the anticancer effect of berberine in osteosarcoma. We found that the expression of caspase-1 and its downstream target IL-1β were higher in osteosarcoma cells compared with normal cells both in vitro and in vivo. Furthermore, administration of berberine is capable of reducing the expression of caspase-1 and IL-1β in osteosarcoma cells and inhibiting the growth of tumor cells. Based on the above, for the first time, we propose the hyposis that berberine could gengerate an anti-osteosarcoma property through downregulating caspase-1/IL-1β inflammatory signaling axis. PMID:28000894

  15. Expression of Leptin and Sirtuin-1 is associated with poor prognosis in patients with osteosarcoma.

    PubMed

    Feng, Helin; Guo, Peng; Wang, Jin; Xu, Jianfa; Xie, Congcong; Gao, Fulu

    2016-04-01

    Sirtuin-1 (SIRT1) is a downstream target of Leptin, and its inhibition promotes p53-mediated apoptosis. This study aimed to evaluate the expression and prognostic significance of Leptin and SIRT1 in osteosarcoma. Leptin and SIRT1 levels in osteosarcoma samples from 89 patients were evaluated by immunohistochemical staining. The correlations between Leptin and SIRT1 expression with clinical parameters were analyzed by Spearman's test and Pearson's chi-squared test. Prognostic factors were identified by Univariate and multivariate Cox regression analysis. We found that Leptin and SIRT1 expression was low in 23.6% and 20.2%; moderate in 25.8% and 24.7%; and high in 50.5% and 55.1% of patients with osteosarcoma, respectively. Both Leptin and SIRT1 expression were significantly associated with the Enneking stage, distant metastasis and neo-adjuvant chemotherapy. Leptin expression and SIRT1 expression were significantly correlated and they were significantly associated with shorter overall survival. Among osteosarcoma patients who received neo-adjuvant chemotherapy, both Leptin and SIRT1 expression were significantly associated with overall survival of osteosarcoma patients in univariate analysis, but only SIRT1 expression was significantly associated with overall survival of osteosarcoma patients in multivariate analysis. In conclusion, Leptin and SIRT1 expressions are significantly associated with shorter overall survival of osteosarcoma patients, and SIRT1 expression is a significant independent prognostic indicator in patients with osteosarcoma.

  16. A genome-wide scan identifies variants in NFIB associated with metastasis in patients with osteosarcoma

    PubMed Central

    Mirabello, Lisa; Koster, Roelof; Moriarity, Branden S.; Spector, Logan G.; Meltzer, Paul S.; Gary, Joy; Machiela, Mitchell J.; Pankratz, Nathan; Panagiotou, Orestis A.; Largaespada, David; Wang, Zhaoming; Gastier-Foster, Julie M.; Gorlick, Richard; Khanna, Chand; de Toledo, Silvia Regina Caminada; Petrilli, Antonio S.; Patiño-Garcia, Ana; Sierrasesúmaga, Luis; Lecanda, Fernando; Andrulis, Irene L.; Wunder, Jay S.; Gokgoz, Nalan; Serra, Massimo; Hattinger, Claudia; Picci, Piero; Scotlandi, Katia; Flanagan, Adrienne M.; Tirabosco, Roberto; Amary, Maria Fernanda; Halai, Dina; Ballinger, Mandy L.; Thomas, David M.; Davis, Sean; Barkauskas, Donald A.; Marina, Neyssa; Helman, Lee; Otto, George M.; Becklin, Kelsie L.; Wolf, Natalie K.; Weg, Madison T.; Tucker, Margaret; Wacholder, Sholom; Fraumeni, Joseph F.; Caporaso, Neil E.; Boland, Joseph F.; Hicks, Belynda D.; Vogt, Aurelie; Burdett, Laurie; Yeager, Meredith; Hoover, Robert N.; Chanock, Stephen J.; Savage, Sharon A.

    2015-01-01

    Metastasis is the leading cause of death in osteosarcoma patients, the most common pediatric bone malignancy. We conducted a multi-stage genome-wide association study of osteosarcoma metastasis at diagnosis in 935 osteosarcoma patients to determine whether germline genetic variation contributes to risk of metastasis. We identified a SNP, rs7034162, in NFIB significantly associated with metastasis in European osteosarcoma cases, as well as in cases of African and Brazilian ancestry (meta-analysis of all cases: P=1.2×10−9, OR 2.43, 95% CI 1.83–3.24). The risk allele was significantly associated with lowered NFIB expression, which led to increased osteosarcoma cell migration, proliferation, and colony formation. Additionally, a transposon screen in mice identified a significant proportion of osteosarcomas harboring inactivating insertions in Nfib, and had lowered Nfib expression. These data suggest that germline genetic variation at rs7034162 is important in osteosarcoma metastasis, and that NFIB is an osteosarcoma metastasis susceptibility gene. PMID:26084801

  17. Construction of recombinant pEGFP-N1-hPer2 plasmid and its expression in osteosarcoma cells.

    PubMed

    Cheng, Anyuan; Zhang, Yan; Mei, Hongjun; Fang, Shuo; Ji, Peng; Yang, Jian; Yu, Ling; Guo, Weichun

    2016-04-01

    The aim of this study was to construct the eukaryotic expression vector pEGFP-N1-hPer2 and assess its expression in the human osteosarcoma cell line MG63. Total mRNA was extracted from human osteosarcoma MG63 cells, the human period 2 (hPer2) gene was obtained by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into the pEGFP-N1 vector, then the recombinant pEGFP-N1-hPer2 plasmid was constructed and transfected into MG63 cells using Lipofectamine 2000. The expression of hPer2 in MG63 cells was measured by quantitative RT-PCR and western blot analysis. The accurate construction of pEGFP-N1-hPer2 was verified by double enzyme digestion and DNA sequencing. hPer2 gene expression in the transfected cells was assessed by RT-qPCR and western blot analysis. In conclusion, the recombinant pEGFP-N1-hPer2 plasmid was constructed successfully, and expressed effectively in MG63 cells.

  18. Osteosarcoma arising from a haemangioma: case report and review of the literature.

    PubMed

    Mallınson, Paul; Coupal, Tyler; Hayes, Malcolm; Clarkson, Paul; Munk, Peter; Ouellette, Hugue

    2014-01-01

    To create awareness of the benign lesions from which osteosarcoma may arise. Osteosarcoma is a rare tumour of bone the etiology of which is poorly understood, but it may arise from benign lesions. Malignant transformation in hemangiomas, in the absence of prior radiation, is exceedingly rare and the resulting neoplasm is usually an angiosarcoma. We report the case of a 30-year-old woman where investigation for thigh pain revealed a distal femoral hemangioma. She represented with pain and mass 18 years later, leading to a confirmed diagnosis of osteosarcoma at the same site. Osteosarcomas may arise from a variety of benign lesions. In this article we report the case of a histologically confirmed hemangioma which subsequently underwent malignant change into an osteosarcoma.

  19. MicroRNA-184 Modulates Doxorubicin Resistance in Osteosarcoma Cells by Targeting BCL2L1

    PubMed Central

    Lin, Bo-chuan; Huang, Dong; Yu, Chao-qun; Mou, Yong; Liu, Yuan-hang; Zhang, Da-wei; Shi, Feng-jun

    2016-01-01

    Background Early metastasis of osteosarcoma (OS) is highly lethal and responds poorly to drug and radiation therapies. MicroRNAs (miRNAs) are a class of small noncoding RNAs that modulate gene expression at the post-transcriptional level. However, the detailed functions of specific miRNAs are not entirely understood. The aim of the present study was to investigate the role of miR-184 as a mediator of drug resistance in human osteosarcoma. Material/Methods qRT-PCR was used to analyze the expression level of miR-184 in OS cell line U-2 OS and MG-63 treated with doxorubicin. MiR-184 agomir or miR-184 antagomir was transferred into cells to regulated miR-184. The target of miR-184 was predicted by TargetScan and confirmed by luciferase reporter assay. Bcl-2-like protein 1 (BCL2L1) expression was detected by Western blot. Cell apoptosis was determined by Annexin V staining and analysis by flow cytometry. Results Doxorubicin induced time-dependent expression of miR-184 in OS cell line U-2 OS and MG-63. Luciferase reporter assay identified BCL2L1 as the direct target gene of miR-184. Furthermore, doxorubicin reduced BCL2L1 expression, which was reversed by miR-184 overexpression and further decreased by miR-184 inhibition in OS cells. In addition, miR-184 agomir reduced doxorubicin-induced cell apoptosis, whereas miR-184 antagomir enhanced apoptosis in OS cells, suggesting that up-regulation of miR-184 contributes to chemoresistance of the OS cell line. Conclusions Our data show that miR-184 was up-regulated in OS patients treated with doxorubicin therapy and leads to poor response to drug therapy by targeting BCL2L1. PMID:27222034

  20. A phase II study of clinical activity of SCH 717454 (robatumumab) in patients with relapsed osteosarcoma and Ewing sarcoma

    PubMed Central

    Bielack, Stefan S.; Gorlick, Richard G.; Skubitz, Keith; Daw, Najat C.; Herzog, Cynthia E.; Monge, Odd R.; Lassaletta, Alvaro; Boldrini, Erica; Pápai, Zsuzanna; Rubino, Joseph; Pathiraja, Kumudu; Hille, Darcy A.; Ayers, Mark; Yao, Siu‐Long; Nebozhyn, Michael; Lu, Brian; Mauro, David

    2016-01-01

    Abstract Background Robatumumab (19D12; MK‐7454 otherwise known as SCH717454) is a fully human antibody that binds to and inhibits insulin‐like growth factor receptor‐1 (IGF‐1R). This multiinstitutional study (P04720) determined the safety and clinical efficacy of robatumumab in three separate patient groups with resectable osteosarcoma metastases (Group 1), unresectable osteosarcoma metastases (Group 2), and Ewing sarcoma metastases (Group 3). Procedure Robatumumab infusions were administered every 2 weeks and were well tolerated with minimal toxicity. Centrally reviewed response data were available for 144 patients. Results Low disease burden was important for osteosarcoma response: three of 31 patients had complete response or partial response (PR) by Response Evaluation Criteria in Solid Tumors (RECIST) in resectable patients (Group 1) versus zero of 29 in unresectable patients (Group 2); median overall survival was 20 months in Group 1 versus 8.2 months in Group 2. In centrally reviewed patients with Ewing sarcoma with PET‐CT data (N = 84/115), there were six PR, 23 stable disease, and 55 progression of disease by RECIST at 2 months. Patients with Ewing sarcoma had a median overall survival of 6.9 months. However, responding patients with Ewing sarcoma were allowed to continue on treatment after study closure. A minority of patients with metastatic Ewing sarcoma showed clinical responses and have remained healthy after receiving 25–115 doses of robatumumab with remissions of >4 years duration (N = 6). Conclusions These findings show that although the IGF‐1R remains an attractive treatment target, additional research is needed to identify responders and/or means to achieve durable remissions in order to successfully exploit IGF‐1R signal blockade in Ewing sarcoma (clinicaltrials.gov: NCT00617890). PMID:27362300

  1. Expandable Total Humeral Replacement in a Child with Osteosarcoma

    PubMed Central

    Henderson, Eric R.; Gao, Jidi; Groundland, John; Letson, G. Douglas

    2015-01-01

    Case. A right-handed 8-year-old female patient presented with a conventional, high-grade osteosarcoma involving her right humerus; through-shoulder amputation was recommended. After consultation, total humerus resection with expandable, total humeral endoprosthesis reconstruction was performed with a sleeve to encourage soft-tissue ingrowth. At three-year follow-up she has received one lengthening procedure and her functional scores are excellent. Conclusion. Total humeral resection and replacement in the pediatric population are rare and although early reports of expandable total humeral endoprosthesis outcomes demonstrate high failure rates, this patient's success indicates that expandable total humeral replacement is a viable option. PMID:26090254

  2. Periosteal osteosarcoma of the calcaneum: a case report.

    PubMed

    Singh, Daljit; Sen, Ramesh; Chaudhary, Susheel; Tripathy, Sujit Kumar

    2012-04-01

    A 30-year-old woman presented with a 6-month history of pain and swelling over the sole of her right foot. Plain radiograph showed a calcified mass in the heel pad, which appeared to be arising from the spur on inferior aspect of calcaneum. Magnetic resonance imaging showed a lesion, hypointense on T1-weighted and hyperintense on T2-weighted images over the plantar aspect of the foot. Open biopsy of the mass was indicative of periosteal osteosarcoma, the variety that has never been reported in calcaneum. Below-knee amputation was done with no recurrence or distance metastasis seen at 24 months of follow up.

  3. LDHB may be a significant predictor of poor prognosis in osteosarcoma

    PubMed Central

    Li, Chao; Chen, Yu; Bai, Pingping; Wang, Jiaqiang; Liu, Zhenhui; Wang, Tao; Cai, Qiqing

    2016-01-01

    Osteosarcoma is the most common primary malignant bone tumor in children and young adults. Lactate dehydrogenase (LDH) is considered as the key glycolytic enzyme and involved in tumor initiation and metabolism. Here, we firstly found that LDHB was highly expressed in osteosarcoma cell lines. Expression profiling indicated that LDHB mRNA was elevated in osteosarcoma tissues with metastasis versus without metastasis, and LDHB high expression predicted a poor prognosis in patients. After LDHB knockdown by siRNA transfection, cell growth and proliferation were inhibited and presented a dose-dependent cell death via MTT assay. Meanwhile, wound healing and matrigel invasion assay revealed that LDHB knockdown inhibited migration and invasion activities in osteosarcoma cells. We further constructed tissue microarray in 40 osteosarcoma tissues. Correlation between LDHB and clinicopathological features indicated that LDHB expressions were associated with tumor TNM stage, recurrence and survival. Kaplan-Meier survival curve revealed that overall survival was significantly decreased in patients with high expression of LDHB. Patients with recurrence or advanced stage showed an increased LDHB, suggesting that increased LDHB was closely associated with a poor prognosis in osteosarcoma patients. Thus, LDHB can be considered as a prognostic marker for tumor recurrence and poor overall survival in osteosarcoma. PMID:27904684

  4. Serum miR-300 as a diagnostic and prognostic biomarker in osteosarcoma.

    PubMed

    Liu, Jian-Dong; Xin, Qun; Tao, Chun-Sheng; Sun, Pei-Feng; Xu, Peng; Wu, Bing; Qu, Liang; Li, Shu-Zhong

    2016-11-01

    In order to determine whether microRNA (miR)-300 is a diagnostic and prognostic biomarker in osteosarcoma, the miR-300 levels in serum of 114 osteosarcoma patients and 114 healthy controls were compared, followed by serum analysis of the differences between the pre-operative and post-operative sera of these osteosarcoma patients. It was observed that the concentration levels of miR-300 in the serum of osteosarcoma patients was significantly higher than those in the serum of healthy controls (P<0.01). Furthermore, the concentration levels of miR-300 in the post-operative serum were significantly reduced when compared with the pre-operative serum levels (P<0.001). High miR-300 levels in serum correlated significantly with clinical stage, distant metastasis and poor survival of osteosarcoma patients. Notably, serum miR-300 was an independent prognostic marker for osteosarcoma. In conclusion, our results suggested that serum miR-300 may be a potential and useful noninvasive biomarker for the early detection of osteosarcoma.

  5. Epiphyseal osteosarcoma revisited: four illustrative cases with unusual histopathology and literature review.

    PubMed

    Chow, Louis Tsun Cheung; Wong, Simon Kwok Chuen

    2015-01-01

    Osteosarcomas arising in the epiphysis are extremely rare and easily missed in the diagnostic consideration of epiphyseal tumors. It is the purpose of this study to delineate the clinical pathological characteristics of 'epiphyseal osteosarcoma' under the definition of 'a solitary long bone osteosarcoma radiographically considered an epiphyseal tumor for which the main radiologic differential diagnosis would encompass giant cell tumor, chondroblastoma and clear cell chondrosarcoma'. Four such cases with unusual histopathology were retrieved among 110 cases of osteosarcoma. Their clinical, radiological and pathological features, together with all 10 reported cases, were analyzed. The radiographic diagnoses of our four cases include two giant cell tumors, one chondroblastoma and one clear cell chondrosarcoma but turn out to be fibroblastic, giant cell rich, telangiectatic and epithelioid variant of epiphyseal osteosarcoma. Including our patients, the 14 reported epiphyseal osteosarcomas comprise 8 males and 6 females, the age at presentation ranges from 11 to 39 years, two-third in the second decade, 71.4% affect the femur. Due to their epiphyseal locations, many carry benign radiological diagnoses notably giant cell tumor and chondroblastoma. Epiphyseal osteosarcomas may not only masquerade as benign radiological bony lesions but also assume many histological patterns; orthopedic surgeons, radiologists and pathologists should be aware of such possibility. Their behavior and prognosis are dictated by the histologic types, grading and staging rather than location.

  6. Serum miR-300 as a diagnostic and prognostic biomarker in osteosarcoma

    PubMed Central

    Liu, Jian-Dong; Xin, Qun; Tao, Chun-Sheng; Sun, Pei-Feng; Xu, Peng; Wu, Bing; Qu, Liang; Li, Shu-Zhong

    2016-01-01

    In order to determine whether microRNA (miR)-300 is a diagnostic and prognostic biomarker in osteosarcoma, the miR-300 levels in serum of 114 osteosarcoma patients and 114 healthy controls were compared, followed by serum analysis of the differences between the pre-operative and post-operative sera of these osteosarcoma patients. It was observed that the concentration levels of miR-300 in the serum of osteosarcoma patients was significantly higher than those in the serum of healthy controls (P<0.01). Furthermore, the concentration levels of miR-300 in the post-operative serum were significantly reduced when compared with the pre-operative serum levels (P<0.001). High miR-300 levels in serum correlated significantly with clinical stage, distant metastasis and poor survival of osteosarcoma patients. Notably, serum miR-300 was an independent prognostic marker for osteosarcoma. In conclusion, our results suggested that serum miR-300 may be a potential and useful noninvasive biomarker for the early detection of osteosarcoma. PMID:27895748

  7. Osteosarcoma of the skull base: case report and review of literature.

    PubMed

    Chennupati, Sri Kiran; Norris, Robin; Dunham, Brian; Kazahaya, Ken

    2008-01-01

    Osteosarcoma is the most common primary malignancy of bone in children and adolescents. Osteosarcomas are an aggressive neoplasm composed of spindle cells producing osteoid. They primarily affect the long bones, particularly after radiation or chemotherapy for other neoplasms; however, 6-7% present in the head and neck. Primary head and neck osteosarcomas in children are rare. There are few case reports and limited-sized case series in the literature. A case report presentation of a skull base osteosarcoma in a teenage female. A 14-year-old African American female presented with dysphagia, voice changes, and neck pain. On examination, she had right-sided palsies in cranial nerves X, XI, and XII. Imaging revealed partial enhancement of the clivus without bony erosion and expansion of the hypoglossal canal. There were also findings consistent with chronic denervation of her right tongue and pharynx. During the evaluation process, she developed diplopia from a right cranial nerve VI palsy. Repeat imaging revealed progression of the skull base lesion with extension into the right sphenoid sinus. An endoscopic sphenoidotomy was performed to obtain tissue. The diagnosis of high-grade osteosarcoma was made by histologic morphology and immunohistochemistry. The child was treated primarily with chemotherapy. Other adjunctive therapies are being considered. Osteosarcoma of the skull base is a rare entity. We describe a case of a high-grade clival osteosarcoma presenting primarily with lower cranial nerve palsies and pain. The rapid progression, treatment options, and prognosis are discussed.

  8. Clinical and histopathological profile of primary or secondary osteosarcoma of the jaws.

    PubMed

    Angiero, Francesca; Moltrasio, Francesca; Cattoretti, Giorgio; Valente, Maria Gabriella

    2011-12-01

    Osteosarcoma of the jaw is a rare disease; we report two cases, one in which the primary osteosarcoma had occurred in the sacrum and ileum, the second at the mandible. Dissemination of osteosarcoma to other organs, especially early dissemination to the lung, is common, but metastasis to the jaw has only rarely been reported. About 10% of osteosarcomas occur in the head and neck, most in the mandible or maxilla. Clinically, both patients presented swelling, and pain at the jaw in the premolar-molar region. At radiography, extensive bone erosion and soft-tissue swelling were apparent. A biopsy was taken and a diagnosis of osteosarcoma rendered in both cases. Histological examination revealed a proliferation of atypical osteoblast-like cells with hyperchromatic nuclei and formation of scattered neoplastic osteoid tissue. Immunohistochemistry for a panel of antibodies showed strong positivity for CD99, weak positivity for S-100, but was negative for desmin, vimentin, and cytokeratins. The diagnosis for both cases was of osteogenic osteosarcoma, chondroblastic subtype. Unfortunately, both patients died, one before the planned chemotherapy regime could begin, the second during the chemotherapy course. Our report aims to highlight the importance of the diagnostic profile in formulating a diagnosis of osteosarcoma, and that this tumor, although very rare, may be primary or may metastasize to the jaws.

  9. Association between XRCC3 Thr241Met polymorphism and risk of osteosarcoma in a Chinese population.

    PubMed

    Guo, J; Lv, H C; Shi, R H; Liu, W L

    2015-12-09

    Osteosarcoma is one of the most common bone malignancies in adolescents, and hereditary factors may influence its susceptibility. We assessed the association between XRCC3 Thr241Met polymorphism and susceptibility to osteosarcoma in a Chinese population. Between May 2012 and May 2014, a total of 136 osteosarcoma patients and 136 healthy control subjects were included in our study. The XRCC3 Thr241Met polymorphism was analyzed using a polymerase chain reaction restriction fragment length polymorphism assay. By multiple logistic regression analysis, individuals carrying the Met/Met genotype of XRCC3 Thr241Met were at significantly increased risk of osteosarcoma when compared with the Thr/Thr (OR = 2.50, 95%CI = 1.13-5.66). The Thr/Met+Met/Met genotype of XRCC3 Thr241Met was furthermore found to be correlated with an elevated increased risk of osteosarcoma when compared with the Thr/Thr genotype (OR = 1.71, 95%CI = 1.03-2.87), and Met/Met genotype of XRCC3 Thr241Met was associated with an increased risk of osteosarcoma compared to the Thr/Thr (OR = 3.50, 95%CI = 1.51-8.79). In conclusion, our study firstly reports that XRCC3 Thr241Met gene polymorphism is associated with an elavated risk of osteosarcoma.

  10. ErbB2 and bone sialoprotein as markers for metastatic osteosarcoma cells

    PubMed Central

    Valabrega, G; Fagioli, F; Corso, S; Madon, E; Brach del Prever, A; Biasin, E; Linari, A; Aglietta, M; Giordano, S

    2003-01-01

    Osteosarcoma is the most common malignant bone neoplasia occurring in young patients in the first two decades of life, and represents 20% of all primitive malignant bone tumours. At present, treatment of metastatic osteosarcoma is unsatisfactory. High-dose chemotherapy followed by CD34+ leukapheresis rescue may improve these poor results. Neoplastic cells contaminating the apheresis may, however, contribute to relapse. To identify markers suitable for detecting osteosarcoma cells in aphereses we analysed the expression of bone-specific genes (Bone Sialoprotein (BSP) and Osteocalcin) and oncogenes (Met and ErbB2) in 22 patients with metastatic osteosarcoma and six healthy stem cell donors. The expression of these genes in aphereses of patients affected by metastatic osteosarcoma was assessed by RT–PCR and Southern blot analysis. Met and Osteocalcin proved to be not useful markers since they are positive in aphereses of both patients with metastatic osteosarcoma and healthy stem cell donors. On the contrary, BSP was expressed at significant levels in 85% of patients. Moreover, 18% of patients showed a strong and significantly positive (seven to 16 times higher than healthy stem cell donors) ErbB2 expression. In all positive cases, neoplastic tissue also expressed ErbB2. Our data show that ErbB2 can be a useful marker for tumour contamination in aphereses of patients affected by ErbB2-expressing osteosarcomas and that analysis of Bone Sialoprotein expression can be an alternative useful marker. PMID:12569382

  11. Periosteal Osteosarcoma Arising from the Rib and Scapula: Imaging Features in Two Cases

    PubMed Central

    Hong, Jae Beom; Choi, Joon Hyuk

    2014-01-01

    Periosteal osteosarcoma is an extremely rare chondroblastic osteosarcoma in the flat bone. There were authors reporting of two cases of periosteal osteosarcoma in the highly unusual sites. One of them arose from the rib, in a 17-year-old male, which appeared as a hypodense juxtacortical mass with periosteal reaction on CT. The other one arose from the scapula, in a 17-year-old female, which showed the intermediate signal intensity (SI) on T1-weighted image (WI), heterogeneous high SI on T2WI, and rim-enhancement on contrast-enhanced T1WI with cortical destruction on MRI. PMID:24843242

  12. Long noncoding RNAs in the progression, metastasis, and prognosis of osteosarcoma

    PubMed Central

    Yang, Zuozhang; Li, Xiaojuan; Yang, Yihao; He, Zewei; Qu, Xin; Zhang, Ya

    2016-01-01

    Long noncoding RNAs (lncRNAs) are a class of non-protein-coding molecules longer than 200 nucleotides that are involved in the development and progression of many types of tumors. Numerous lncRNAs regulate cell proliferation, metastasis, and chemotherapeutic drug resistance. Osteosarcoma is one of the main bone tumor subtypes that poses a serious threat to adolescent health. We summarized how lncRNAs regulate osteosarcoma progression, invasion, and drug resistance, as well as how lncRNAs can function as biomarkers or independent prognostic indicators with respect to osteosarcoma therapy. PMID:27685633

  13. A dog with osteosarcoma which metastasized to the eye months before metastasis to other organs.

    PubMed

    Yoshikawa, Hiroto; Nakamoto, Yuya; Ozawa, Tsuyoshi; Dickinson, Ryan M

    2008-08-01

    A 9-year-old male Shih Tzu with osteosarcoma had a forelimb amputation and underwent chemotherapy. During chemotherapy, the right eye was enucleated due to refractory glaucoma, and was diagnosed as anterior uveal malignant melanoma. The dog lived for 4 months after the enucleation without treatment. After the dog died, the mass in the eye was re-evaluated immunohistochemically, and it was diagnosed as metastasis of appendicular osteosarcoma. Metastasis of appendicular osteosarcoma to the anterior chamber is quite rare, and the clinical course which showed clinically detectable metastases to the eye before systemic multi-organ metastases was quite unique.

  14. Application of eupatilin in the treatment of osteosarcoma

    PubMed Central

    LI, YAN-YAN; WU, HAO; DONG, YI-GUO; LIN, BO; XU, GANG; MA, YU-BO

    2015-01-01

    5,7-dihydroxy-3′,4′,6-trimethoxyflavone, commonly known as eupatilin, is a traditional Asian medicinal plant, which is mainly used for the treatment of gastritis, as well as its use as an anti-inflammatory agent. Eupatilin is a bioactive compound; however, its effects on osteosarcoma (OS) have remained to be elucidated. Therefore, the present study aimed to investigate the effects of eupatilin on this malignant bone tumor, using the U-2 OS cell line. The experimental results revealed that eupatilin inhibited U-2 OS cell growth in a concentration-dependent manner and induced G2/M phase cell cycle arrest and apoptosis. Additionally, western blot analysis indicated that eupatilin was able to trigger the mitochondrial apoptotic pathway, demonstrated by the enhanced Bax/B cell lymphoma-2 ratio, decrease in mitochondrial membrane potential, release of cytochrome c, caspase-3 and -9 activation and poly(ADP-ribose)polymerase cleavage detected in the U-2 OS cells. These results indicated that eupatilin was able to inhibit U-2 OS cancer cell proliferation by the induction of apoptosis via the mitochondrial intrinsic pathway. Eupatilin may therefore represent a novel anticancer drug for use in the treatment of osteosarcoma. PMID:26622880

  15. Correlation between the expression of vegf and survival in osteosarcoma

    PubMed Central

    Baptista, André Mathias; Camargo, André Ferrari De França; Filippi, Renée Zon; Oliveira, Cláudia Regina Gomes Cardim Mendes De; Azevedo, Raymundo Soares De; Camargo, Olavo Pires De

    2014-01-01

    Objective: To present a series of 50 consecutive patients with non-metastatic extremity osteosarcoma, and attempt to correlate expression of the vascular endothelial growth factor (VEGF) protein in biopsy tissue to their prognosis regarding overall survival, disease-free survival and local recurrence. Methods: Fifty cases of non-metastatic osteosarcoma of the extremities treated between 1986 and 2006 at Instituto de Ortopedia e Traumatologia da Universidade de São Paulo, São Paulo, Brasil, were evaluated regarding expression of the VEGF protein. There were 19 females and 31 males. The mean age was 16 years old (range 5-28 years old) and the mean follow-up was 60.6 months (range 25-167 months). The variables studied were age, gender, anatomic location, type of surgery, surgical margins, tumor size, post chemotherapy necrosis, local recurrence, pulmonary metastasis and death. Results: Thirty-six patients showed VEGF expression on 30% or less cells (low), and the remaining 14 cases had VEGF expression above 30% (high). Among the 36 patients with low VEGF expression, nine developed pulmonary metastasis and four died (11.1%). Among the 14 patients with high VEGF expression, six developed pulmonary metastasis and three died (21.4%). Conclusion: There was no statistically significant correlation between the expression of VEGF and any of the variables studied. Level of Evidence IV, Therapeutic Study. PMID:25328432

  16. Tanshinone IIA induces intrinsic apoptosis in osteosarcoma cells both in vivo and in vitro associated with mitochondrial dysfunction

    PubMed Central

    Huang, Sheng-Teng; Huang, Chao-Chun; Huang, Wen-Liang; Lin, Tsu-Kung; Liao, Pei-Lin; Wang, Pei-Wen; Liou, Chia-Wei; Chuang, Jiin-Haur

    2017-01-01

    Tanshinone IIA (Tan IIA), a phytochemical derived from the roots of Salvia miltiorrhiza, has been shown to inhibit growth and induce apoptosis in various cancer cells. The association of its inhibitory effect on the primary malignant bone tumor, osteosarcoma, with mitochondrial dysfunction remains unclear. This study aimed to investigate the anti-proliferative effects of Tan IIA on human osteosarcoma 143B cells both in vitro and in vivo. Administration of Tan IIA to NOD-SCID mice implanted with 143B cells led to significant inhibition of tumor development. The inhibition of proliferation, migration, and invasion was observed in 143B cells treated with Tan IIA. The tumor proliferation markers, Ki67 and PCNA, were suppressed and apoptosis by TUNEL assay was activated respectively. Apoptosis in the Tan IIA-treated 143B cells and xerograft mice was associated with the activation of caspase cascade via the modulation of Bcl-2 family. The CD31 was inhibited in Tan IIA-treated xenografts to indicate anti-neovasculization. Tan IIA administration resulted in a significant decrease in the mitochondrial fusion proteins, Mfn1/2 and Opa1, as well as an increase in the fission protein Drp1. We concluded that mitochondrial dysfunction associated with dynamic change was involved in apoptosis and anti-angiogenesis elicited by Tan IIA. PMID:28106052

  17. BMI1 Is Expressed in Canine Osteosarcoma and Contributes to Cell Growth and Chemotherapy Resistance

    PubMed Central

    Gandour-Edwards, Regina; Withers, Sita S.; Holt, Roseline; Rebhun, Robert B.

    2015-01-01

    BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA). Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17) expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy. PMID:26110620

  18. Highly expressed ribosomal protein L34 indicates poor prognosis in osteosarcoma and its knockdown suppresses osteosarcoma proliferation probably through translational control

    PubMed Central

    Luo, Shuju; Zhao, Jinmin; Fowdur, Mitra; Wang, Kun; Jiang, Tenglong; He, Maolin

    2016-01-01

    Osteosarcoma has devastating health implications on children and adolescents. However, due to its low incidence and high tumor heterogeneity, it is hard to achieve any further improvements in therapy and overall survival. Ribosomal protein L34 (RPL34) has been increasingly recognized to promote the proliferation of malignant cells, but its role in osteosarcoma has not been investigated. In this study, real-time quantitative PCR (RT-qPCR) and immunohistochemistry revealed that RPL34 was highly expressed in osteosarcoma tissues when compared to adjacent tissues and normal bone tissues. Survival analysis showed that high expression of RPL34 predicted a poor prognosis for osteosarcoma patients. Knockdown of RPL34 in Saos-2 cells via lentivirus-mediated small interfering RNA (siRNA) significantly inhibited cell proliferation, induced cell apoptosis and G2/M phase arrest. Moreover, screening of transcription factors using University of California Santa Cruz (UCSC) Genome Browser, protein-protein interaction (PPI) network analysis, Gene Ontology (GO) and pathway enrichment analysis revealed that MYC participates in the transcriptional regulation of RPL34, which interacts with the subunits of eukaryotic translation initiation factor 3 (eIF3) and probably involves the translational control of growth-promoting proteins. Our findings suggest that RPL34 plays an important role in the proliferation of osteosarcoma cells. PMID:27883047

  19. Of dogs and men: comparative biology as a tool for the discovery of novel biomarkers and drug development targets in osteosarcoma.

    PubMed

    Rankin, Kenneth S; Starkey, Mike; Lunec, John; Gerrand, Craig H; Murphy, Sue; Biswas, Swethajit

    2012-03-01

    The similarities between human and canine osteosarcoma with regard to histology, biological behavior and molecular genetic alterations suggest that the dog provides a supplementary model for the development and preclinical testing of novel therapeutics. Counter intuitively, careful examination of the differences between OS in the two species may also be rewarding in terms of increasing our understanding of the pathogenesis of this cancer. This review will discuss the arguments in favor of the "dog model" and outline how the evaluation of treatment strategies in dogs has indicated avenues for improvement of protocols for human patients.

  20. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency.

    PubMed

    Kovac, Michal; Blattmann, Claudia; Ribi, Sebastian; Smida, Jan; Mueller, Nikola S; Engert, Florian; Castro-Giner, Francesc; Weischenfeldt, Joachim; Kovacova, Monika; Krieg, Andreas; Andreou, Dimosthenis; Tunn, Per-Ulf; Dürr, Hans Roland; Rechl, Hans; Schaser, Klaus-Dieter; Melcher, Ingo; Burdach, Stefan; Kulozik, Andreas; Specht, Katja; Heinimann, Karl; Fulda, Simone; Bielack, Stefan; Jundt, Gernot; Tomlinson, Ian; Korbel, Jan O; Nathrath, Michaela; Baumhoer, Daniel

    2015-12-03

    Osteosarcomas are aggressive bone tumours with a high degree of genetic heterogeneity, which has historically complicated driver gene discovery. Here we sequence exomes of 31 tumours and decipher their evolutionary landscape by inferring clonality of the individual mutation events. Exome findings are interpreted in the context of mutation and SNP array data from a replication set of 92 tumours. We identify 14 genes as the main drivers, of which some were formerly unknown in the context of osteosarcoma. None of the drivers is clearly responsible for the majority of tumours and even TP53 mutations are frequently mapped into subclones. However, >80% of osteosarcomas exhibit a specific combination of single-base substitutions, LOH, or large-scale genome instability signatures characteristic of BRCA1/2-deficient tumours. Our findings imply that multiple oncogenic pathways drive chromosomal instability during osteosarcoma evolution and result in the acquisition of BRCA-like traits, which could be therapeutically exploited.

  1. The osteosarcoma of the great poet Arthur Rimbaud (1854-1891).

    PubMed

    Androutsos, G

    2005-01-01

    Thanks to Arthur Rimbaud's excellent medical auto-observation, which is included in his correspondance, we can diagnose, post-mortem, an osteosarcoma in the right knee, a disease which turned out to be fatal for him.

  2. Overexpression of BMI-1 Promotes Cell Growth and Resistance to Cisplatin Treatment in Osteosarcoma

    PubMed Central

    Chen, Dafu; Hao, Dongsheng; Duan, Yuanhui; Qiu, Guixing; Wang, Yipeng

    2011-01-01

    Background BMI-1 is a member of the polycomb group of genes (PcGs), and it has been implicated in the development and progression of several malignancies, but its role in osteosarcoma remains to be elucidated. Methodology/Principal Findings In the present study, we found that BMI-1 was overexpressed in different types of osteosarcomas. Downregulation of BMI-1 by lentivirus mediated RNA interference (RNAi) significantly impaired cell viability and colony formation in vitro and tumorigenesis in vivo of osteosarcoma cells. BMI-1 knockdown sensitized cells to cisplatin-induced apoptosis through inhibition of PI3K/AKT pathway. Moreover, BMI-1-depletion-induced phenotype could be rescued by forced expression of BMI-1 wobble mutant which is resistant to inhibition by the small interfering RNA (siRNA). Conclusions/Significance These findings suggest a crucial role for BMI-1 in osteosarcoma pathogenesis. PMID:21311599

  3. Present Advances and Future Perspectives of Molecular Targeted Therapy for Osteosarcoma

    PubMed Central

    Shaikh, Atik Badshah; Li, Fangfei; Li, Min; He, Bing; He, Xiaojuan; Chen, Guofen; Guo, Baosheng; Li, Defang; Jiang, Feng; Dang, Lei; Zheng, Shaowei; Liang, Chao; Liu, Jin; Lu, Cheng; Liu, Biao; Lu, Jun; Wang, Luyao; Lu, Aiping; Zhang, Ge

    2016-01-01

    Osteosarcoma (OS) is a bone cancer mostly occurring in pediatric population. Current treatment regime of surgery and intensive chemotherapy could cure about 60%–75% patients with primary osteosarcoma, however only 15% to 30% can be cured when pulmonary metastasis or relapse has taken place. Hence, novel precise OS-targeting therapies are being developed with the hope of addressing this issue. This review summarizes the current development of molecular mechanisms and targets for osteosarcoma. Therapies that target these mechanisms with updated information on clinical trials are also reviewed. Meanwhile, we further discuss novel therapeutic targets and OS-targeting drug delivery systems. In conclusion, a full insight in OS pathogenesis and OS-targeting strategies would help us explore novel targeted therapies for metastatic osteosarcoma. PMID:27058531

  4. Bone-seeking radiopharmaceuticals as targeted agents of osteosarcoma: samarium-153-EDTMP and radium-223.

    PubMed

    Anderson, Peter M; Subbiah, Vivek; Rohren, Eric

    2014-01-01

    Osteosarcoma is a cancer characterized by formation of bone by malignant cells. Routine bone scan imaging with Tc-99m-MDP is done at diagnosis to evaluate primary tumor uptake and check for bone metastases. At time of relapse the Tc-99m-MDP bone scan also provides a specific means to assess formation of bone by malignant osteosarcoma cells and the potential for bone-seeking radiopharmaceuticals to deliver radioactivity directly into osteoblastic osteosarcoma lesions. This chapter will review and compare a bone-seeking radiopharmaceutical that emits beta-particles, samarium-153-EDTMP, with an alpha-particle emitter, radium-223. The charged alpha particles from radium-223 have far more mass and energy than beta particles (electrons) from Sm-153-EDTMP. Because radium-223 has less marrow toxicity and more radiobiological effectiveness, especially if inside the bone forming cancer cell than samarium-153-EDTMP, radium-223 may have greater potential to become widely used against osteosarcoma as a targeted therapy. Radium-223 also has more potential to be used with chemotherapy against osteosarcoma and bone metastases. Because osteosarcoma makes bone and radium-223 acts like calcium, this radiopharmaceutical could possibly become a new targeted means to achieve safe and effective reduction of tumor burden as well as facilitate better surgery and/or radiotherapy for difficult to resect large, or metastatic tumors.

  5. Osteosarcoma of the proximal fibula. An analysis of 13 cases in the northern Japan.

    PubMed

    Takahashi, Shu; Ogose, Akira; Tajino, Takahiro; Osanai, Toshihisa; Okada, Kyoji

    2007-01-01

    Osteosarcoma is the most common form of malignant bone tumor that occurs during childhood and adolescence. The proximal fibula is a relatively rare site for osteosarcoma. We reviewed 305 cases of osteosarcoma registered at the Tohoku Musculoskeletal Tumor Society (TMTS) between 1975 and 1999. Thirteen patients (4.3%) had their osteosarcomas localized in the proximal fibula. Conventional fibroblastic osteosarcoma accounted for 46% of the cases in this series. Limb-sparing surgery was performed in all 13 patients during initial surgery, and the peroneal nerve was preserved in 4 cases. These 4 cases developed local recurrences, but additional wide excision or radiation had a beneficial effect on the recurrences. In our series, the patients showed a 5-year survival rate 76 per cent. The postoperative function of the knee remained good despite various reattachment procedures of lateral co-lateral ligament. As well as resection of the proximal fibula, our results indicate that osteosarcoma of the proximal fibula has a good prognosis for cases who undergo adequate initial surgery.

  6. Heterogeneous expression and biological function of ubiquitin carboxy-terminal hydrolase-L1 in osteosarcoma.

    PubMed

    Zheng, Shuier; Qiao, Guanglei; Min, Daliu; Zhang, Zhichang; Lin, Feng; Yang, Qingcheng; Feng, Tao; Tang, Lina; Sun, Yuanjue; Zhao, Hui; Li, Hongtao; Yu, Wenxi; Yang, Yumei; Shen, Zan; Yao, Yang

    2015-04-01

    Ubiquitin carboxyl terminal hydrolase 1 (UCHL1), a member of the UCH class of DUBs, has been reported as either an oncogene or a tumor suppressor. However, the molecular mechanism underlying the biological function of UCHL1 in osteosarcoma is still unclear. This study was aimed at elucidating the roles of UCHL1 in regulating the biological behavior of osteosarcoma cells. In this study, we found that UCHL1 was elevated in osteosarcoma compared with normal bone tissue. Moreover, UCHL1 expression level was correlated with tumor maximum diameter, high rate of lung metastases and short survival time. Then, we found that knockdown of UCHL1 in osteosarcoma cell MG63 inhibited cell proliferation and significantly increased cell population in the G1 phase. Several cyclins promoting G1/S phase transition were reduced after UCHL1 knockdown, including cell cycle regulator cyclin D1, cyclin E1 and CDK6. Moreover, inhibition of UCHL1 in MG63 cells dramatically induced cell apoptosis. We also found that down-regulation of UCHL1 in MG63 significantly inhibited cell invasion. Then, we found that there was a positive correlation between UCHL1 expression level and the Akt and ERK phosphorylation status. Finally, in vivo data showed that knockdown of UCHL1 inhibited osteosarcoma growth in nude mice. These results indicate that UCHL1 could work as an oncogene and may serve as a promising therapeutic strategy for osteosarcoma.

  7. Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma

    PubMed Central

    2009-01-01

    Background Drug resistance is a primary hindrance for the efficiency of chemotherapy against osteosarcoma. Although chemotherapy has improved the prognosis of osteosarcoma patients dramatically after introduction of neo-adjuvant therapy in the early 1980's, the outcome has since reached plateau at approximately 70% for 5 year survival. The remaining 30% of the patients eventually develop resistance to multiple types of chemotherapy. In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure incurred from multidrug resistant (MDR) tumor cells, we explored the possibility of loading doxorubicin onto biocompatible, lipid-modified dextran-based polymeric nanoparticles and evaluated the efficacy. Methods Doxorubicin was loaded onto a lipid-modified dextran based polymeric nano-system. The effect of various concentrations of doxorubicin alone or nanoparticle loaded doxorubicin on KHOS, KHOSR2, U-2OS, and U-2OSR2 cells was analyzed. Effects on drug retention, immunofluorescence, Pgp expression, and induction of apoptosis were also analyzed. Results Dextran nanoparticles loaded with doxorubicin had a curative effect on multidrug resistant osteosarcoma cell lines by increasing the amount of drug accumulation in the nucleus via Pgp independent pathway. Nanoparticles loaded with doxorubicin also showed increased apoptosis in osteosarcoma cells as compared with doxorubicin alone. Conclusion Lipid-modified dextran nanoparticles loaded with doxorubicin showed pronounced anti-proliferative effects against osteosarcoma cell lines. These findings may lead to new treatment options for MDR osteosarcoma. PMID:19917123

  8. A polysaccharide from Agaricus blazei inhibits proliferation and promotes apoptosis of osteosarcoma cells.

    PubMed

    Wu, Bei; Cui, Juncheng; Zhang, Chaogui; Li, Zhihong

    2012-05-01

    Many reports have proved that traditional Chinese herbal medicines (TCM) have become popular used in disease prevention and as alternatives to cancer chemotherapy. In this study, we purified a polysaccharide (ABP-Ia) from the fruiting bodies of Agaricus blazei and identified its molecular weight to be 4.2×10(5)Da. ABP-Ia was a heteropolysaccharide fraction consisting of glucose, mannose, and galactose in a molar ratio of 1:1:1, along with trace of rhamnose. The effect of ABP-Ia at three concentrations of 100, 200 and 400 μg/mL on the cell growth and apoptosis was evaluated in osteosarcoma cell lines HOS and a normal human osteoblast cell line NHOst. ABP-Ia had a significant inhibitory effect against the growth of HOS cells, whereas a mild cytotoxicity to the HOS cells mediated by ABP-Ia was observed, which was in accordance with the results that ABP-Ia substantially induced apoptosis in a dose-dependent fashion in the HOS cells. However ABP-Ia had no or minor inhibitory and cytotoxic effects on the viability of NHOst cells even at the high concentration of 400 μg/mL. Base on all the observations, we could conclude that ABP-Ia had an evident inhibitory effect on the growth of HOS cells mainly through induction of apoptosis, with a minor toxicity to normal human osteoblast cell.

  9. PET imaging of osteosarcoma in dogs using a fluorine-18-labeled monoclonal antibody fab fragment

    SciTech Connect

    Page, R.L.; Garg, P.K.; Gard, S. ||

    1994-09-01

    Four dogs with histologically confirmed osteogenic sarcoma were studied with PET following intravenous injection of the {sup 18}F-labeled Fab fragment of TP-3, a monoclonal antibody specific for human and canine osteosarcomas. The antibody fragment was labeled using the N-succinimidyl (8-(4{prime}-({sup 18}F)fluorobenzyl)amino)suberate acylation agent. Blood clearance of activity was biphasic in all dogs but half-times were variable (T{sub 1/2{beta}} = 2-13 hr). Catabolism of labeled Fab was reflected by the decrease in protein-associated activity in serum from more than 90% at 1 min to 60%-80% at 4 hr. PET images demonstrated increased accumulation of {sup 18}F at the primary tumor site relative to normal contralateral bone in one dog as early as 15 min after injection. Biopsies obtained after euthanasia indicated higher uptake at the edges of the tumor as observed on the PET scans. Tumor uptake was 1-3 x 10{sup -3}% injected dose/g, a level similar to that reported for other Fab fragments in human tumors. In the three dogs with metastatic disease, early PET images reflected activity in the blood pool but later uptake was observed in suspected metastatic sites. These results, although preliminary, suggest that PET imaging of {sup 18}F-labeled antibody fragments is feasible and that dogs with spontaneous tumors could be a valuable model for preclinical research with radioimmunoconjugates. 34 refs., 6 figs., 2 tabs.

  10. Suppression of liver receptor homolog-1 by microRNA-451 represses the proliferation of osteosarcoma cells

    SciTech Connect

    Li, Zhiyong; Wu, Shuwen; Lv, Shouzheng; Wang, Huili; Wang, Yong; Guo, Qiang

    2015-06-05

    Liver receptor homolog-1 (LRH-1) plays an important role in the onset and progression of many cancer types. However, the role of LRH-1 in osteosarcoma has not been well investigated. In this study, the critical role of LRH-1 in osteosarcoma cells was described. Quantitative polymerase chain reaction and Western blot analysis results revealed that LRH-1 was highly overexpressed in osteosarcoma cells. LRH-1 was knocked down by small interfering RNA (siRNA), and this phenomenon significantly inhibited osteosarcoma cell proliferation. Bioinformatics analysis results showed that LRH-1 contained putative binding sites of microRNA-451 (miR-451); this result was further validated through a dual-luciferase activity reporter assay. miR-451 was overexpressed in osteosarcoma cells through transfection of miR-451 mimics; miR-451 overexpression then significantly inhibited LRH-1 expression and cell proliferation. The loss of LRH-1 by siRNA or miR-451 mimics significantly impaired Wnt/β-catenin activity, leading to G0/G1 cell cycle arrest. Results showed that LRH-1 is implicated in osteosarcoma. Therefore, miR-451-induced suppression of LRH-1 can be a novel therapy to treat osteosarcoma. - Highlights: • LRH-1 was highly overexpressed in osteosarcoma cells. • Knockdown of LRH-1 inhibited osteosarcoma cell proliferation. • miR-451 directly targeted and regulated LRH-1 expression. • Overexpression of miR-451 suppressed Wnt activity.

  11. Extraosseous osteosarcoma in a maned wolf (Chrysocyon brachyurus).

    PubMed

    Reid, Heather L; Deem, Sharon L; Citino, Scott B

    2005-09-01

    A 6-yr-old maned wolf (Chrysocyon brachyurus) was diagnosed with an extraosseous osteosarcoma on the lateral aspect of the right thigh. Antemortem radiography revealed a calcified mass with no skeletal involvement. The mass was excised, but visible regrowth of the tumor was evident within 5 wk. Histologic examination and immunohistochemistry, including staining for p53 tumor suppression gene protein, were performed on the excised mass. The maned wolf was euthanized 13 wk after the initial diagnosis. The neoplasm was located in a site commonly used for the delivery of intramuscular injections, including vaccinations. Although no definitive association can be made, it is worth noting this relationship, as vaccine-site neoplasias have been observed in other species, most notably the domestic cat (Felis domesticus).

  12. Review of microRNA in osteosarcoma and chondrosarcoma.

    PubMed

    Chang, Le; Shrestha, Swati; LaChaud, Greg; Scott, Michelle A; James, Aaron W

    2015-06-01

    MicroRNAs (miRNAs) are small noncoding RNAs, which play a complex role in posttranscriptional gene expression and can theoretically be used as a diagnostic or prognostic tool, or therapeutic target for neoplasia. Despite advances in the diagnosis and treatment of skeletal sarcomas, including osteosarcoma and chondrosarcoma, much remains unknown regarding their underpinning molecular mechanisms. Given the recent increasing knowledge base of miRNA roles in neoplasia, both as oncogenes and tumor suppressor genes, this review will focus on the available literature regarding the expression profiles and potential roles of miRNA in skeletal sarcomas. Although this is an emerging field, miRNA profiling may be of use in clarifying competing diagnoses of skeletal sarcomas and possibly indicate patient risk of resistance to traditional chemotherapeutic agents. While detecting and targeting miRNAs is currently limited to experimental investigations, miRNA may be utilized for future clinical management of skeletal sarcomas.

  13. Biodegradable bisphosphonate nanoparticles for imaging and therapeutic applications in osteosarcoma

    NASA Astrophysics Data System (ADS)

    Rudnick-Glick, S.; Corem-Salkmon, E.; Grinberg, I.; Gluz, E.; Margel, S.

    2015-08-01

    Osteosarcoma (OS) is amongst the most commonly diagnosed bone tumors occurring in adolescence, young adults and adults over the age of 65. Current treatment is based on a combination of surgery and chemotherapy. Chemotherapy has improved the survival rate, however it is associated with severe side effects due to the use of high dosages, nonspecific uptake and poor bone blood supply. At present bisphosphonates (BP) are widely used in the treatment of bone disorders including OS. We have engineered a unique biodegradable BP nanoparticle that possesses a dual functionality: 1) covalent attachment of a dye (e.g., NIR dye) or drug to the nanoparticles through the primary amine groups on the surface of the nanoparticle; 2) chelation to the bone mineral hydroxyapatite through the BP on the surface of the nanoparticle. Due to a high concentration of PEG in the BP nanoparticles they possess a relatively long plasma half-life time. Therefore, the nanoparticle has potential for use both in diagnosis and therapy of OS. Doxorubicin was conjugated to the free amine on the surface of the BP nanoparticles. In vitro experiments on osteosarcoma cells demonstrated that the doxorubicin-conjugated BP nanoparticles possess a higher efficacy than the free doxorubicin. Further investigation in vivo in a chicken embryo model confirmed that the doxorubicin-conjugated nanoparticle was significantly more effective in inhibiting tumor growth compared to free doxorubicin at a similar concentration. Additionally, we have shown that these BP nanoparticles preferentially target OS tumor tissue, thus increasing anti-cancer drug bioavailability at targeted site.

  14. Preliminary clinical research on epiphyseal distraction in osteosarcoma in children

    PubMed Central

    2014-01-01

    Background The feasibility of distal femur epiphysis preservation through epiphyseal distraction by external fixator in childhood osteosarcoma was explored. Methods Between July 2007 and May 2011, 10 children who were suffering from distal femur osteosarcoma received epiphyseal distraction by external fixator, combined with tumor resection and repair with massive allograft bone to preserve the epiphysis of the distal femur and knee function. There were six male and four female patients, 9- to 14-years old (average 10.5 years old). The tumors were staged clinically according to the Enneking staging method: six cases were classified as stage in IIA and four cases as stage in IIB. All patients were diagnosed by biopsy, then received chemotherapy before and after surgery. All patients received tumor bone resection and the defects of the bone were repaired with massive allograft bone that was fixed by intramedullary nails; the distracted epiphysis and allograft bone were fixed with cancellous screws. Results All cases received follow-up from 15 to 56 months (average 38.5 months). There were no local recurrences. One case died of lung metastasis and one case had poor incision healing for rejection of allograft bone. According to the functional evaluation criteria of the International Society of Limb Salvage (ISOLS) after operation, five cases were rated excellent, four cases good and one case fair. The ratio of excellent or good was 90.0%. There was no statistically significant difference in length between the operated and the normal lower limbs during the last review. Conclusions Epiphyseal distraction by external fixator can result in satisfactory limb length and joint function for children with a malignant bone tumor. PMID:25099460

  15. Effects of long non-coding RNA SPRY4-IT1 on osteosarcoma cell biological behavior

    PubMed Central

    Xu, Jin; Ding, Ren; Xu, Yaozeng

    2016-01-01

    Recent findings indicate that long noncoding RNAs (lncRNAs) were dysregulated in many kinds of tumors including osteosarcoma (OS). SPRY4-IT1 has been recently revealed as oncogenic regulator in various cancers, while its clinical value and potential function in OS are still unknown. To investigate the role of SPRY4-IT1 in OS, we evaluated the expression SPRY4-IT1 in OS tissues and cell lines, and investigated the effect of SPRY4-IT1 siRNA on cell proliferation, migration and invasion of OS in vitro. Our result showed that SPRY4-IT1 was upregulated in OS tissues. Further experiments revealed that SPRY4-IT1 knockdown significantly inhibited OS cells proliferation by causing G1 arrest and promoting apoptosis. Furthermore, inhibitory effects of SPRY4-IT1 on cell migration and invasion were partly associated with EMT process. In conclusion, these data suggest that SPRY4-IT1 could be an oncogene for OS, and may be served as a candidate target for new therapies in human OS. PMID:28078006

  16. Tumor Suppressor WWOX inhibits osteosarcoma metastasis by modulating RUNX2 function.

    PubMed

    Del Mare, Sara; Aqeilan, Rami I

    2015-08-10

    Osteosarcoma (OS) is among the most frequently occurring primary bone tumors, primarily affecting adolescents and young adults. This malignant osteoid forming tumor is characterized by its metastatic potential, mainly to lungs. We recently demonstrated that WW domain-containing oxidoreductase (WWOX) is frequently inactivated in human OS and that WWOX restoration in WWOX-negative OS cells suppresses tumorigenicity. Of note, WWOX levels are reduced in paired OS samples of post-treatment metastastectomies as compared to pre-treatment biopsies suggesting that decreased WWOX levels are associated with a more aggressive phenotype at the metastatic site. Nevertheless, little is known about WWOX function in OS metastasis. Here, we investigated the role of tumor suppressor WWOX in suppressing pulmonary OS metastasis both in vitro and in vivo. We demonstrated that ectopic expression of WWOX in OS cells, HOS and LM-7, inhibits OS invasion and cell migration in vitro. Furthermore, WWOX expression reduced tumor burden in vivo and inhibited metastases' seeding and colonization. Mechanistically, WWOX function is associated with reduced levels of RUNX2 metastatic target genes implicated in adhesion and motility. Our results suggest that WWOX plays a critical role in determining the aggressive phenotype of OS, and its expression could be an attractive therapeutic target to combat this devastating adolescent disease.

  17. Tumor Suppressor WWOX inhibits osteosarcoma metastasis by modulating RUNX2 function

    PubMed Central

    Del Mare, Sara; Aqeilan, Rami I.

    2015-01-01

    Osteosarcoma (OS) is among the most frequently occurring primary bone tumors, primarily affecting adolescents and young adults. This malignant osteoid forming tumor is characterized by its metastatic potential, mainly to lungs. We recently demonstrated that WW domain-containing oxidoreductase (WWOX) is frequently inactivated in human OS and that WWOX restoration in WWOX-negative OS cells suppresses tumorigenicity. Of note, WWOX levels are reduced in paired OS samples of post-treatment metastastectomies as compared to pre-treatment biopsies suggesting that decreased WWOX levels are associated with a more aggressive phenotype at the metastatic site. Nevertheless, little is known about WWOX function in OS metastasis. Here, we investigated the role of tumor suppressor WWOX in suppressing pulmonary OS metastasis both in vitro and in vivo. We demonstrated that ectopic expression of WWOX in OS cells, HOS and LM-7, inhibits OS invasion and cell migration in vitro. Furthermore, WWOX expression reduced tumor burden in vivo and inhibited metastases’ seeding and colonization. Mechanistically, WWOX function is associated with reduced levels of RUNX2 metastatic target genes implicated in adhesion and motility. Our results suggest that WWOX plays a critical role in determining the aggressive phenotype of OS, and its expression could be an attractive therapeutic target to combat this devastating adolescent disease. PMID:26256646

  18. Dealcoholated red wine induces autophagic and apoptotic cell death in an osteosarcoma cell line.

    PubMed

    Tedesco, I; Russo, M; Bilotto, S; Spagnuolo, C; Scognamiglio, A; Palumbo, R; Nappo, A; Iacomino, G; Moio, L; Russo, G L

    2013-10-01

    Until recently, the supposed preventive effects of red wine against cardiovascular diseases, the so-called "French Paradox", has been associated to its antioxidant properties. The interest in the anticancer capacity of polyphenols present in red wine strongly increased consequently to the enormous number of studies on resveratrol. In this study, using lyophilized red wine, we present evidence that its anticancer effect in a cellular model is mediated by apoptotic and autophagic cell death. Using a human osteosarcoma cell line, U2Os, we found that the lyophilized red wine was cytotoxic in a dose-dependent manner with a maximum effect in the range of 100-200 μg/ml equivalents of gallic acid. A mixed phenotype of types I/II cell death was evidenced by means of specific assays following treatment of U2Os with lyophilized red wine, e.g., autophagy and apoptosis. We found that cell death induced by lyophilized red wine proceeded through a mechanism independent from its anti-oxidant activity and involving the inhibition of PI3K/Akt kinase signaling. Considering the relative low concentration of each single bioactive compound in lyophilized red wine, our study suggests the activation of synergistic mechanism able to inhibit growth in malignant cells.

  19. Pericellular matrix formation alters the efficiency of intracellular uptake of oligonucleotides in osteosarcoma cells.

    PubMed

    Suzuki, Yoshitaka; Nishida, Yoshihiro; Naruse, Takahiro; Gemba, Takefumi; Ishiguro, Naoki

    2009-03-01

    One of the crucial roles of tumor extracellular matrix is to act as a barrier to drug delivery. In this study, we analyzed the relationship between the formation of tumor extracellular matrix and the efficiency of intracellular uptake of oligonucleotides in human osteosarcoma cell lines, HOS, and MG-63. Oligonucleotides used in this study were nuclear factor-kappa B (NF-kappaB) decoy, which might be a therapeutic tool for neoplasms. Pericellular matrix formation was examined by particle exclusion assay. Cellular uptake of fluorescein isothiocyanate-labeled NF-kappaB decoy was evaluated by fluorescent microscopy and flow cytometry. Effects of NF-kappaB decoy on cell viability and cell cycle arrest in MG-63 cells were determined by MTT assay and flow cytometry, respectively. MG-63 cells exhibited abundant pericellular matrix with time compared with HOS cells. Uptake of fluorescein isothiocyanate-labeled NF-kappaB decoy decreased in MG-63 cells with time but not in HOS cells in both monolayer and three-dimensional culture using matrigel. However, after enzymatic removal of pericellular matrix, the uptake markedly recovered in MG-63 cells. NF-kappaB decoy inhibited cell proliferation and induced G0/G1 cell cycle arrest in MG-63 cells. These results suggest that abundant pericellular matrix might disturb the uptake of NF-kappaB decoy, and modification of pericellular matrix composition would increase the efficacy of exogenous oligonucleotides treatment for neoplasms.

  20. MALAT1 promotes osteosarcoma development by targeting TGFA via MIR376A

    PubMed Central

    Luo, Wei; He, Hongbo; Xiao, Wenfeng; Liu, Qing; Deng, Zhenhan; Lu, Yaojuan; Wang, Qian; Zheng, Qiping; Li, Yusheng

    2016-01-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA (lncRNA) that contributes to the initiation and development of many solid tumors, including osteosarcoma (OS). Here, we showed that MALAT1 was increased in human OS cell lines and tissues and promoted OS cell growth, while MALAT1 knockdown suppressed OS cell growth. We also detected downregulation of MIR376A, a suppressor of OS growth, and upregulation of TGFA, a promoter of OS growth, in OS tissues. TGFA expression was positively correlated with MALAT1 expression, and both were negatively correlated with MIR376A expression. There was a direct interaction between MIR376A and MALAT1 via a putative MIR376A binding site within the MALAT1 3′-untranslated region (3′-UTR). There was also a direct interaction between MIR376A and the TGFA 3′-UTR. Thus, MALAT1 may promote OS cell growth through inhibition of MIR376A, leading to increased expression of TGFA. Our results suggest a MALAT1/MIR376A/TGFA axis mediates OS cell proliferation and tumor progression. PMID:27458156

  1. Role of mesenchymal stem cells in osteosarcoma and metabolic reprogramming of tumor cells

    PubMed Central

    Bonuccelli, Gloria; Avnet, Sofia; Grisendi, Giulia; Salerno, Manuela; Granchi, Donatella; Dominici, Massimo; Kusuzaki, Katsuyuki; Baldini, Nicola

    2014-01-01

    The tumor microenvironment plays an important role in cancer progression. Here, we focused on the role of reactive mesenchymal stem cells (MSC) in osteosarcoma (OS), and used human adipose MSC and a panel of OS cell lines (Saos-2, HOS, and 143B) to investigate the mutual effect of normal-cancer cell metabolic programming. Our results showed that MSC are driven by oxidative stress induced by OS cells to undergo Warburg metabolism, with increased lactate production. Therefore, we analyzed the expression of lactate monocarboxylate transporters. By real time PCR and immunofluorescence, in MSC we detected the expression of MCT-4, the transporter for lactate efflux, whereas MCT-1, responsible for lactate uptake, was expressed in OS cells. In agreement, silencing of MCT-1 by siRNA significantly affected the ATP production in OS cancer cells. Thus, cancer cells directly increase their mitochondrial biogenesis using this energy-rich metabolite that is abundantly provided by MSC as an effect of the altered microenvironmental conditions induced by OS cells. We also showed that lactate produced by MSC promotes the migratory ability of OS cells. These data provide novel information to be exploited for cancer therapies targeting the mutual metabolic reprogramming of cancer cells and their stroma. PMID:25277190

  2. Evaluation of optimal water fluoridation on the incidence and skeletal distribution of naturally arising osteosarcoma in pet dogs.

    PubMed

    Rebhun, R B; Kass, P H; Kent, M S; Watson, K D; Withers, S S; Culp, W T N; King, A M

    2016-01-14

    Experimental toxicological studies in laboratory animals and epidemiological human studies have reported a possible association between water fluoridation and osteosarcoma (OSA). To further explore this possibility, a case-control study of individual dogs evaluated by the UC Davis Veterinary Medical Teaching Hospital was conducted using ecologic data on water fluoridation based on the owner's residence. The case group included 161 dogs with OSA diagnosed between 2008-2012. Two cancer control groups included dogs diagnosed with lymphoma (LSA) or hemangiosarcoma (HSA) during the same period (n = 134 and n = 145, respectively). Dogs with OSA were not significantly more likely to live in an area with optimized fluoride in the water than dogs with LSA or HSA. Additional analyses within OSA patients also revealed no significant differences in age, or skeletal distribution of OSA cases relative to fluoride status. Taken together, these analyses do not support the hypothesis that optimal fluoridation of drinking water contributes to naturally occurring OSA in dogs.

  3. Cisplatin selects for stem-like cells in osteosarcoma by activating Notch signaling.

    PubMed

    Yu, Ling; Fan, Zhengfu; Fang, Shuo; Yang, Jian; Gao, Tian; Simões, Bruno M; Eyre, Rachel; Guo, Weichun; Clarke, Robert B

    2016-05-31

    Notch signaling regulates normal stem cells and is also thought to regulate cancer stem cells (CSCs). Recent data indicate that Notch signaling plays a role in the development and progression of osteosarcoma, however the regulation of Notch in chemo-resistant stem-like cells has not yet been fully elucidated. In this study we generated cisplatin-resistant osteosarcoma cells by treating them with sub-lethal dose of cisplatin, sufficient to induce DNA damage responses. Cisplatin-resistant osteosarcoma cells exhibited lower proliferation, enhanced spheroid formation and more mesenchymal characteristics than cisplatin-sensitive cells, were enriched for Stro-1+/CD117+ cells and showed increased expression of stem cell-related genes. A similar effect was observed in vivo, and in addition in vivo tumorigenicity was enhanced during serial transplantation. Using several publicly available datasets, we identified that Notch expression was closely associated with osteosarcoma stem cells and chemotherapy resistance. We confirmed that cisplatin-induced enrichment of osteosarcoma stem cells was mediated through Notch signaling in vitro, and immunohistochemistry showed that cleaved Notch1 (NICD1) positive cells were significantly increased in a relapsed xenograft which had received cisplatin treatment. Furthermore, pretreatment with a γ-secretase inhibitor (GSI) to prevent Notch signalling inhibited cisplatin-enriched osteosarcoma stem cell activity in vitro, including Stro-1+/CD117+ double positive cells and spheroid formation capacity. The Notch inhibitor DAPT also prevented tumor recurrence in resistant xenograft tumors. Overall, our results show that cisplatin induces the enrichment of osteosarcoma stem-like cells through Notch signaling, and targeted inactivation of Notch may be useful for the elimination of CSCs and overcoming drug resistance.

  4. Novel amplification and deletions in osteosarcomas detected by comparative genomic hybridization

    SciTech Connect

    Knuutila, S.; Tarkkanen, M.; Karhu, R.

    1994-09-01

    Genetic changes underlying the initiation and progression of osteosarcomas are poorly known. We have used a recently developed method, comparative genomic hybridization (CGH) to study genetic changes in 11 osteosarcomas. CGH is a powerful method that allows detection of DNA sequence copy number changes (losses, deletions, gains and amplifications) along the genome. In CGH differentially labeled tumor and normal DNA are hybridized to normal metaphase spreads. Losses and gains are detected as changes is the relative fluorescence intensity ratio and are quantitated by digital imaging. The material consisted of two parosteal osteosarcomas, eight grade II or IV primary osteosarcomas and one grade IV pulmonary metastasis. CGH showed that osteosarcomas are genetically extremely complex as the mean number of aberrations per tumor was 11 (range one to 20 per tumor). The most common (45-36%) gains were detected at 1q, 8q (not the myc-locus), 11q and X. The most common (36%) losses were detected at 2q, 6q, and 10p. High-level amplifications were seen in seven tumors at several small regions, e.g. 12q12-14 (the SAS-MDM2 locus) and 17p11.2-12. In conclusion, CGH proved to be a useful tool for analysis of DNA sequence copy number changes in osteosarcomas, where conventional cytogenetic analysis is difficult. Several chromosomal regions that have previously not been found out to undergo losses or contain gains of DNA sequences were detected. These regions are likely to contain tumor suppressor genes and oncogenes that play an important role in the development of osteosarcomas.

  5. Height at diagnosis and birth-weight as risk factors for osteosarcoma

    PubMed Central

    Mirabello, Lisa; Pfeiffer, Ruth; Murphy, Gwen; Daw, Najat C.; Patiño-Garcia, Ana; Troisi, Rebecca J.; Hoover, Robert N.; Douglass, Chester; Schüz, Joachim; Craft, Alan W.; Savage, Sharon A.

    2012-01-01

    OBJECTIVES Osteosarcoma typically occurs during puberty. Studies of the association between height and/or birth-weight and osteosarcoma are conflicting. Therefore, we conducted a large pooled analysis of height and birth-weight in osteosarcoma. METHODS Patient data from 7 studies of height, and 3 of birth-weight were obtained, resulting in 1067 cases with height and 434 cases with birth-weight data. We compared cases to the 2000 US National Center for Health Statistics Growth Charts by simulating 1000 age and gender matched controls per case. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for associations between height or birth-weight and risk of osteosarcoma for each study were estimated using logistic regression. All of the case data were combined for an aggregate analysis. RESULTS Compared to average birth-weight subjects (2665–4045g), individuals with high birth-weight (≥4046g) had an increased osteosarcoma risk (OR 1.35, 95%CI 1.01–1.79). Taller than average (51st–89th percentile) and very tall individuals (≥90th percentile) had an increased risk of osteosarcoma (OR 1.35, 95%CI 1.18–1.54, and OR 2.60, 95%CI 2.19–3.07, respectively; Ptrend <0.0001). CONCLUSIONS This is the largest analysis of height at diagnosis and birth-weight in relation to osteosarcoma. It suggests that rapid bone growth during puberty and in utero contributes to OS etiology. PMID:21465145

  6. Minibeam radiation therapy for the management of osteosarcomas: A Monte Carlo study

    SciTech Connect

    Martínez-Rovira, I.; Prezado, Y.

    2014-06-15

    Purpose: Minibeam radiation therapy (MBRT) exploits the well-established tissue-sparing effect provided by the combination of submillimetric field sizes and a spatial fractionation of the dose. The aim of this work is to evaluate the feasibility and potential therapeutic gain of MBRT, in comparison with conventional radiotherapy, for osteosarcoma treatments. Methods: Monte Carlo simulations (PENELOPE/PENEASY code) were used as a method to study the dose distributions resulting from MBRT irradiations of a rat femur and a realistic human femur phantoms. As a figure of merit, peak and valley doses and peak-to-valley dose ratios (PVDR) were assessed. Conversion of absorbed dose to normalized total dose (NTD) was performed in the human case. Several field sizes and irradiation geometries were evaluated. Results: It is feasible to deliver a uniform dose distribution in the target while the healthy tissue benefits from a spatial fractionation of the dose. Very high PVDR values (⩾20) were achieved in the entrance beam path in the rat case. PVDR values ranged from 2 to 9 in the human phantom. NTD{sub 2.0} of 87 Gy might be reached in the tumor in the human femur while the healthy tissues might receive valley NTD{sub 2.0} lower than 20 Gy. The doses in the tumor and healthy tissues might be significantly higher and lower than the ones commonly delivered used in conventional radiotherapy. Conclusions: The obtained dose distributions indicate that a gain in normal tissue sparing might be expected. This would allow the use of higher (and potentially curative) doses in the tumor. Biological experiments are warranted.

  7. Androgen receptor is a potential novel prognostic marker and oncogenic target in osteosarcoma with dependence on CDK11

    PubMed Central

    Liao, Yunfei; Sassi, Slim; Halvorsen, Stefan; Feng, Yong; Shen, Jacson; Gao, Yan; Cote, Gregory; Choy, Edwin; Harmon, David; Mankin, Henry; Hornicek, Francis; Duan, Zhenfeng

    2017-01-01

    Osteosarcoma is the most common bone cancer in children and adolescents. Previously, we have found that cyclin-dependent kinase 11 (CDK11) signaling was essential for osteosarcoma cell growth and survival. Subsequently, CDK11 siRNA gene targeting, expression profiling, and network reconstruction of differentially expressed genes were performed between CDK11 knock down and wild type osteosarcoma cells. Reconstructed network of the differentially expressed genes pointed to the AR as key to CDK11 signaling in osteosarcoma. CDK11 increased transcriptional activation of AR gene in osteosarcoma cell lines. AR protein was highly expressed in various osteosarcoma cell lines and patient tumor tissues. Tissue microarray analysis showed that the disease-free survival rate for patients with high-expression of AR was significantly shorter than for patients with low-expression of AR. In addition, AR gene expression knockdown via siRNA greatly inhibited cell growth and viability. Similar results were found in osteosarcoma cells treated with AR inhibitor. These findings suggest that CDK11 is involved in the regulation of AR pathway and AR can be a potential novel prognostic marker and therapeutic target for osteosarcoma treatment. PMID:28262798

  8. Eradication of Biofilm-Like Microcolony Structures of Borrelia burgdorferi by Daunomycin and Daptomycin but not Mitomycin C in Combination with Doxycycline and Cefuroxime

    PubMed Central

    Feng, Jie; Weitner, Megan; Shi, Wanliang; Zhang, Shuo; Zhang, Ying

    2016-01-01

    Lyme disease, caused by Borrelia burgdorferi, is the most common vector-borne disease in the United States and Europe. While the majority of Lyme disease patients can resolve their symptoms if treated promptly, 10–20% of patients suffer from prolonged symptoms called post-treatment Lyme disease syndrome (PTLDS). Although the cause for PTLDS is unclear, one possibility is the presence of bacterial persisters not effectively cleared by the current Lyme antibiotics. Recent studies identified several drug candidates including daptomycin, daunomycin, doxorubicin, and mitomycin C that had good activity against B. burgdorferi persisters. However, their relative activities against B. burgdorferi persisters have not been evaluated under the same conditions. In this study, we tested the anti-persister activities of these drugs against both 7-day and 15-day old stationary phase cultures of B. burgdorferi individually as well as in combination with Lyme antibiotics doxycycline and cefuroxime (Ceftin). Our findings demonstrate daunomycin and daptomycin were more active than mitomycin C in single drug comparison at 10 and 20 μM, as well as in drug combinations with doxycycline and cefuroxime. In addition, daunomycin was more active than doxorubicin which correlated with their ability to stain and accumulate in B. burgdorferi. The two drug combination of doxycycline and cefuroxime was unable to eradicate biofilm-like microcolonies of B. burgdorferi persisters. However, the addition of either daunomycin or daptomycin to the doxycycline + cefuroxime combination completely eradicated the biofilm-like structures and produced no visible bacterial regrowth after 7 and 21 days, while the addition of doxorubicin was unable to prevent regrowth at either 7 or 21 day subculture. Mitomycin C in combination with doxycycline and cefuroxime caused no regrowth at 7 days but visible spirochetal regrowth occurred after 21 day subculture. Furthermore, we found that cefuroxime (Ceftin), the third

  9. Eradication of Biofilm-Like Microcolony Structures of Borrelia burgdorferi by Daunomycin and Daptomycin but not Mitomycin C in Combination with Doxycycline and Cefuroxime.

    PubMed

    Feng, Jie; Weitner, Megan; Shi, Wanliang; Zhang, Shuo; Zhang, Ying

    2016-01-01

    Lyme disease, caused by Borrelia burgdorferi, is the most common vector-borne disease in the United States and Europe. While the majority of Lyme disease patients can resolve their symptoms if treated promptly, 10-20% of patients suffer from prolonged symptoms called post-treatment Lyme disease syndrome (PTLDS). Although the cause for PTLDS is unclear, one possibility is the presence of bacterial persisters not effectively cleared by the current Lyme antibiotics. Recent studies identified several drug candidates including daptomycin, daunomycin, doxorubicin, and mitomycin C that had good activity against B. burgdorferi persisters. However, their relative activities against B. burgdorferi persisters have not been evaluated under the same conditions. In this study, we tested the anti-persister activities of these drugs against both 7-day and 15-day old stationary phase cultures of B. burgdorferi individually as well as in combination with Lyme antibiotics doxycycline and cefuroxime (Ceftin). Our findings demonstrate daunomycin and daptomycin were more active than mitomycin C in single drug comparison at 10 and 20 μM, as well as in drug combinations with doxycycline and cefuroxime. In addition, daunomycin was more active than doxorubicin which correlated with their ability to stain and accumulate in B. burgdorferi. The two drug combination of doxycycline and cefuroxime was unable to eradicate biofilm-like microcolonies of B. burgdorferi persisters. However, the addition of either daunomycin or daptomycin to the doxycycline + cefuroxime combination completely eradicated the biofilm-like structures and produced no visible bacterial regrowth after 7 and 21 days, while the addition of doxorubicin was unable to prevent regrowth at either 7 or 21 day subculture. Mitomycin C in combination with doxycycline and cefuroxime caused no regrowth at 7 days but visible spirochetal regrowth occurred after 21 day subculture. Furthermore, we found that cefuroxime (Ceftin), the third

  10. Drinking water fluoridation and osteosarcoma incidence on the island of Ireland.

    PubMed

    Comber, Harry; Deady, Sandra; Montgomery, Erin; Gavin, Anna

    2011-06-01

    The incidence of osteosarcoma in Northern Ireland was compared with that in the Republic of Ireland to establish if differences in incidence between the two regions could be related to their different drinking water fluoridation policies. Data from the Northern Ireland Cancer Registry (NICR) and the National Cancer Registry of Ireland (NCRI) on osteosarcoma incidence in the respective populations were used to estimate the age-standardised and age-specific incidence rates in areas with and without drinking water fluoridation. One hundred and eighty-three osteosarcoma cases were recorded on the island of Ireland between 1994 and 2006. No significant differences were observed between fluoridated and non-fluoridated areas in either age-specific or age-standardised incidence rates of osteosarcoma. The results of this study do not support the hypothesis that osteosarcoma incidence in the island of Ireland is significantly related to public water fluoridation. However, this conclusion must be qualified, in view of the relative rarity of the cancer and the correspondingly wide confidence intervals of the relative risk estimates.

  11. Association between XRCC3 Thr241Met polymorphism and risk of osteosarcoma in a Chinese population

    PubMed Central

    Yang, Libin; An, Yongbo; Wang, Guodong; Lu, Tan; Yang, Shujuan

    2015-01-01

    The aim of this study was to investigate whether XRCC3 Thr241Met polymorphism could affect the development of osteosarcoma in a Chinese population. A total of 152 osteosarcoma patients and 304 health control subjects were included in our study. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) assay was applied to assess the XRCC3 Thr241Met gene polymorphism. By conditional logistic regression analysis, we found that TT genotype of XRCC3 Thr241Met was associated with increased risk of osteosarcoma in codominant model (OR = 2.53, 95% CI = 1.28-5.39). Moreover, XRCC3 Thr241Met gene polymorphism was correlated with an elevated increased risk of osteosarcoma in dominant (OR = 1.55, 95% CI = 1.03-2.34) and recessive models (OR = 2.30, 95% CI = 1.16-4.56). In conclusion, we found that XRCC3 Thr241Met gene polymorphism was associated with increased risk of osteosarcoma in codominant, dominant and recessive models. PMID:26617908

  12. Impact of chemotherapy on the outcome of osteosarcoma of the head and neck in adults

    PubMed Central

    Boon, Eline; van der Graaf, Winette T. A.; Gelderblom, Hans; Tesselaar, Margot E. T.; van Es, Robert J. J.; Oosting, Sjoukje F.; de Bree, Remco; van Meerten, Esther; Hoeben, Ann; Smeele, Ludi E.; Willems, Stefan M.; Witjes, Max J. H.; Buter, Jan; Baatenburg de Jong, Robert J.; Flucke, Uta E.; Peer, Petronella G. M.; Bovée, Judith V. M. G.

    2016-01-01

    Abstract Background There is an ongoing debate about the value of (neo‐)adjuvant chemotherapy in high‐ and intermediate‐grade osteosarcoma of the head and neck. Methods All records of patients older than 16 years diagnosed with osteosarcoma of the head and neck in the Netherlands between 1993 and 2013 were reviewed. Results We identified a total of 77 patients with an osteosarcoma of the head and neck; the 5‐year overall survival (OS) was 55%. In 50 patients with surgically resected high‐ or intermediate‐grade osteosarcoma of the head and neck younger than 75 years, univariate and multivariable analysis, adjusting for age and resection margins, showed that patients who had not received chemotherapy had a significantly higher risk of local recurrence (hazard ratio [HR] = 3.78 and 3.66, respectively). Conclusion In patients younger than 75 years of age with surgically resected high‐ and intermediate‐grade osteosarcoma of the head and neck, treatment with (neo‐)adjuvant chemotherapy resulted in a significantly smaller risk of local recurrence. Therefore, we suggest (neo‐)adjuvant chemotherapy in patients amenable to chemotherapy. © 2016 The Authors Head & Neck Published by Wiley Periodicals, Inc. Head Neck 39: 140–146, 2017 PMID:27507299

  13. Stereotactic Body Radiotherapy for Metastatic and Recurrent Ewing Sarcoma and Osteosarcoma

    PubMed Central

    Brown, Lindsay C.; Lester, Rachael A.; Grams, Michael P.; Haddock, Michael G.; Olivier, Kenneth R.; Arndt, Carola A. S.; Rose, Peter S.; Laack, Nadia N.

    2014-01-01

    Background. Radiotherapy has been utilized for metastatic and recurrent osteosarcoma and Ewing sarcoma (ES), in order to provide palliation and possibly prolong overall or progression-free survival. Stereotactic body radiotherapy (SBRT) is convenient for patients and offers the possibility of increased efficacy. We report our early institutional experience using SBRT for recurrent and metastatic osteosarcoma and Ewing sarcoma. Methods. We reviewed all cases of osteosarcoma or ES treated with SBRT between 2008 and 2012. Results. We identified 14 patients with a total of 27 lesions from osteosarcoma (n = 19) or ES (n = 8). The median total curative/definitive SBRT dose delivered was 40 Gy in 5 fractions (range, 30–60 Gy in 3–10 fractions). The median total palliative SBRT dose delivered was 40 Gy in 5 fractions (range, 16–50 Gy in 1–10 fractions). Two grade 2 and 1 grade 3 late toxicities occurred, consisting of myonecrosis, avascular necrosis with pathologic fracture, and sacral plexopathy. Toxicity was seen in the settings of concurrent chemotherapy and reirradiation. Conclusions. This descriptive report suggests that SBRT may be a feasible local treatment option for patients with osteosarcoma and ES. However, significant toxicity can result, and thus systematic study is warranted to clarify efficacy and characterize long-term toxicity. PMID:25548538

  14. FLI-1 distinguishes Ewing sarcoma from small cell osteosarcoma and mesenchymal chondrosarcoma.

    PubMed

    Lee, Anna F; Hayes, Malcolm M; Lebrun, David; Espinosa, Inigo; Nielsen, G Petur; Rosenberg, Andrew E; Lee, Cheng-Han

    2011-05-01

    Small cell osteosarcoma and mesenchymal chondrosarcoma are 2 primary bone tumors with a small round blue cell component, which can mimic the appearance of Ewing sarcoma. Distinguishing these tumors from each other on biopsy material is important clinically, as optimal therapy differs according to the tumor type. However, separating these entities on morphology alone can be challenging. FLI-1 has been described to be a useful marker for Ewing sarcoma, particularly when hematolymphoid markers are negative. In small cell osteosarcoma and mesenchymal chondrosarcoma, the FLI-1 staining pattern has not been adequately characterized. Using a monoclonal FLI-1 antibody, nuclear immunoreactivity in tumor cells was evaluated in 10 small cell osteosarcomas, 10 mesenchymal chondrosarcomas, and 8 Ewing sarcomas, together with a number of other small, round, blue cell tumors. None of the small cell osteosarcomas or mesenchymal chondrosarcomas exhibited FLI-1 staining in the tumor cells, in contrast to the positive nuclear FLI-1 staining in the stromal endothelial cells. In comparison, 6 of the 8 Ewing sarcomas showed moderate-to-strong nuclear FLI-1 staining of the tumor cells in addition to strong staining of the stromal endothelial cell nuclei. With the exception of lymphoblastic lymphomas, FLI-1 positivity was not seen in the other small round blue cell tumors examined. These findings show that, in contrast to Ewing sarcoma, small cell osteosarcoma and mesenchymal chondrosarcoma lack FLI-1 immunoreactivity. FLI-1 is therefore useful in the differential diagnosis of small round blue cell tumors of the bone.

  15. Association between XRCC3 Thr241Met polymorphism and risk of osteosarcoma in a Chinese population.

    PubMed

    Yang, Libin; An, Yongbo; Wang, Guodong; Lu, Tan; Yang, Shujuan

    2015-01-01

    The aim of this study was to investigate whether XRCC3 Thr241Met polymorphism could affect the development of osteosarcoma in a Chinese population. A total of 152 osteosarcoma patients and 304 health control subjects were included in our study. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) assay was applied to assess the XRCC3 Thr241Met gene polymorphism. By conditional logistic regression analysis, we found that TT genotype of XRCC3 Thr241Met was associated with increased risk of osteosarcoma in codominant model (OR = 2.53, 95% CI = 1.28-5.39). Moreover, XRCC3 Thr241Met gene polymorphism was correlated with an elevated increased risk of osteosarcoma in dominant (OR = 1.55, 95% CI = 1.03-2.34) and recessive models (OR = 2.30, 95% CI = 1.16-4.56). In conclusion, we found that XRCC3 Thr241Met gene polymorphism was associated with increased risk of osteosarcoma in codominant, dominant and recessive models.

  16. RECQL4-deficient cells are hypersensitive to oxidative stress/damage: Insights for osteosarcoma prevalence and heterogeneity in Rothmund-Thomson syndrome

    SciTech Connect

    Werner, Sean R.; Prahalad, Agasanur K. . E-mail: aprahala@iupui.edu; Yang Jieping; Hock, Janet M.

    2006-06-23

    Rothmund-Thomson syndrome (RTS) is a heterogeneous disease, associated with increased prevalence of osteosarcoma in very young patients with a mutated RECQL4 gene. In this study, we tested the ability of RECQL4 deficient fibroblasts, derived from a RTS patient to recover from hydrogen peroxide (H{sub 2}O{sub 2})-induced oxidative stress/damage. Immunoperoxidase staining for 8-oxo-deoxyguanosine (8-oxo-dG) formation in RTS and normal human fibroblasts were compared to assess DNA damage. We determined DNA synthesis, cell growth, cell cycle distribution, and viability in RTS and normal human fibroblasts before and after H{sub 2}O{sub 2} treatment. H{sub 2}O{sub 2} induces 8-oxo-dG formation in both RTS and normal fibroblasts. In normal human fibroblasts, RECQL4 was predominantly localized to cytoplasm; nuclear translocation and foci formation occurred in response to oxidant stimulation. After recovery from oxidant exposure, viable RTS fibroblasts showed irreversible growth arrest compared to normal fibroblasts. DNA synthesis decreased significantly in treated RTS cells, with concomitant reduction of cells in the S-phase. These results suggest that enhanced oxidant sensitivity in RECQL4 deficient fibroblasts derived from RTS patients could be attributed to abnormal DNA metabolism and proliferation failure. The ramifications of these findings on osteosarcoma prevalence and heterogeneity in RTS are discussed.

  17. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    SciTech Connect

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan

    2014-04-18

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.

  18. Mucoepidermoid Carcinoma Associated with Osteosarcoma in a True Malignant Mixed Tumor of the Submandibular Region.

    PubMed

    Marcotullio, Dario; de Vincentiis, Marco; Iannella, Giannicola; Cerbelli, Bruna; Magliulo, Giuseppe

    2015-01-01

    Introduction. True malignant mixed tumor, also known as carcinosarcoma, is a rare tumor of the salivary gland composed of both malignant epithelial and malignant mesenchymal elements. Frequently carcinosarcoma arises in the background of a preexisting pleomorphic adenoma; however, if no evidence of benign mixed tumor is present, the lesion is known as carcinosarcoma "de novo." We reported the first case of true malignant mixed tumor of the submandibular gland composed of high grade mucoepidermoid carcinoma associated with osteosarcoma. Case Presentation. A 69-year-old Caucasian male came to our department complaining of the appearance of an asymptomatic left submandibular neoformation progressively increasing in size over 3 months. We opted for surgical treatment. Histological examination confirmed the diagnosis of carcinosarcoma with the coexistence of high grade mucoepidermoid carcinoma and osteosarcoma. Conclusion. To the best of our knowledge, in the true malignant mixed tumor of the submandibular gland, mucoepidermoid carcinoma associated with osteosarcoma has never been previously reported.

  19. Mucoepidermoid Carcinoma Associated with Osteosarcoma in a True Malignant Mixed Tumor of the Submandibular Region

    PubMed Central

    Marcotullio, Dario; de Vincentiis, Marco; Iannella, Giannicola; Cerbelli, Bruna; Magliulo, Giuseppe

    2015-01-01

    Introduction. True malignant mixed tumor, also known as carcinosarcoma, is a rare tumor of the salivary gland composed of both malignant epithelial and malignant mesenchymal elements. Frequently carcinosarcoma arises in the background of a preexisting pleomorphic adenoma; however, if no evidence of benign mixed tumor is present, the lesion is known as carcinosarcoma “de novo.” We reported the first case of true malignant mixed tumor of the submandibular gland composed of high grade mucoepidermoid carcinoma associated with osteosarcoma. Case Presentation. A 69-year-old Caucasian male came to our department complaining of the appearance of an asymptomatic left submandibular neoformation progressively increasing in size over 3 months. We opted for surgical treatment. Histological examination confirmed the diagnosis of carcinosarcoma with the coexistence of high grade mucoepidermoid carcinoma and osteosarcoma. Conclusion. To the best of our knowledge, in the true malignant mixed tumor of the submandibular gland, mucoepidermoid carcinoma associated with osteosarcoma has never been previously reported. PMID:26600963

  20. Safety Concern between Autologous Fat Graft, Mesenchymal Stem Cell and Osteosarcoma Recurrence

    PubMed Central

    Perrot, Pierre; Rousseau, Julie; Bouffaut, Anne-Laure; Rédini, Françoise; Cassagnau, Elisabeth; Deschaseaux, Frédéric; Heymann, Marie-Françoise; Heymann, Dominique; Duteille, Franck; Trichet, Valérie; Gouin, François

    2010-01-01

    Background Osteosarcoma is the most common malignant primary bone tumour in young adult treated by neo adjuvant chemotherapy, surgical tumor removal and adjuvant multidrug chemotherapy. For correction of soft tissue defect consecutive to surgery and/or tumor treatment, autologous fat graft has been proposed in plastic and reconstructive surgery. Principal Findings We report here a case of a late local recurrence of osteosarcoma which occurred 13 years after the initial pathology and 18 months after a lipofilling procedure. Because such recurrence was highly unexpected, we investigated the possible relationship of tumor growth with fat injections and with mesenchymal stem/stromal cell like cells which are largely found in fatty tissue. Results obtained in osteosarcoma pre-clinical models show that fat grafts or progenitor cells promoted tumor growth. Significance These observations and results raise the question of whether autologous fat grafting is a safe reconstructive procedure in a known post neoplasic context. PMID:20544017

  1. Spontaneous extraskeletal osteosarcoma with various histological growth patterns in the abdominal wall of an ICR mouse

    PubMed Central

    Ito, Tsuyoshi; Katoh, Yoshitaka; Shimada, Yuko; Ohnuma-Koyama, Aya; Takahashi, Naofumi; Kuwahara, Maki; Harada, Takanori

    2015-01-01

    Extraskeletal osteosarcoma is extremely rare in mice. This case report demonstrates a spontaneous murine extraskeletal osteosarcoma that exhibited various histological growth patterns in an ICR mouse. At necropsy, the tumor mass was located in the abdominal wall and was 45 × 30 × 25 mm in size. Histopathologically, the tumor showed the following four growth patterns: a solid pattern of polygonal cells embedded in an osteoid eosinophilic matrix with calcification, an irregular sheet pattern of short spindle cells accompanying some eosinophilic multinucleated cells, a fascicular pattern of spindle cells and a cystic pattern lined by short spindle cells. Immunohistochemically, most of the tumor cells were positive for vimentin, proliferating cell nuclear antigen and osterix. The multinucleated cells mentioned above were desmin positive and were regarded as regenerative striated muscles but not tumor cells. Since no clear continuity with normal bone tissues was observed, the tumor was diagnosed as an “extraskeletal osteosarcoma.” PMID:26989300

  2. Genome-wide Association Study Identifies Two Susceptibility Loci for Osteosarcoma

    PubMed Central

    Savage, Sharon A.; Mirabello, Lisa; Wang, Zhaoming; Gastier-Foster, Julie M.; Gorlick, Richard; Khanna, Chand; Flanagan, Adrienne M.; Tirabosco, Roberto; Andrulis, Irene L.; Wunder, Jay S.; Gokgoz, Nalan; Patiño-Garcia, Ana; Sierrasesúmaga, Luis; Lecanda, Fernando; Kurucu, Nilgün; Ilhan, Inci Ergurhan; Sari, Neriman; Serra, Massimo; Hattinger, Claudia; Picci, Piero; Spector, Logan; Barkauskas, Donald A.; Marina, Neyssa; de Toledo, Silvia Regina Caminada; Petrilli, Antonio S.; Amary, Maria Fernanda; Halai, Dina; Thomas, David M.; Douglass, Chester; Meltzer, Paul S.; Jacobs, Kevin; Chung, Charles C.; Berndt, Sonja I.; Purdue, Mark P.; Caporaso, Neil E.; Tucker, Margaret; Rothman, Nathaniel; Landi, Maria Teresa; Silverman, Debra T.; Kraft, Peter; Hunter, David J.; Malats, Nuria; Kogevinas, Manolis; Wacholder, Sholom; Troisi, Rebecca; Helman, Lee; Fraumeni, Joseph F.; Yeager, Meredith; Hoover, Robert N.; Chanock, Stephen J.

    2013-01-01

    Osteosarcoma is the most common primary bone malignancy of adolescents and young adults. In order to better understand the genetic etiology of osteosarcoma, we performed a multi-stage genome-wide association study (GWAS) consisting of 941 cases and 3,291 cancer-free adult controls of European ancestry. Two loci achieved genome-wide significance: rs1906953 at 6p21.3, in the glutamate receptor metabotropic 4 [GRM4] gene (P = 8.1 ×10-9), and rs7591996 and rs10208273 in a gene desert on 2p25.2 (P = 1.0 ×10-8 and 2.9 ×10-7). These two susceptibility loci warrant further exploration to uncover the biological mechanisms underlying susceptibility to osteosarcoma. PMID:23727862

  3. Osteosarcoma in a pregnant patient with McCune-Albright syndrome.

    PubMed

    Kanazawa, Ippei; Yamauchi, Mika; Yano, Shozo; Imanishi, Yasuo; Kitazawa, Riko; Nariai, Yoshiki; Araki, Asuka; Kobayashi, Keisuke; Inaba, Masaaki; Maruyama, Riruke; Yamaguchi, Toru; Sugimoto, Toshitsugu

    2009-09-01

    Malignant transformation of fibrous dysplasia is very rare and has not been previously described in patients with McCune-Albright syndrome in the absence of radiation treatment during gestation. Here, we report a 38-year-old pregnant woman with McCune-Albright syndrome and acromegaly accompanied by osteosarcoma. The patient was in the 6th week of pregnancy, when she visited our hospital. She had multiple fibrous dysplasia, skin pigmentation, and acromegaly. The markedly high bone turnover rate during pregnancy tended to decrease after a normal delivery. Fibrous dysplasia of the lower jaw rapidly increased in the 37th week of pregnancy, and the tumor was surgically resected after delivery. Pathological examination of the resected tumor revealed fibrous dysplasia admixed with osteosarcoma containing chondroblastic and osteoblastic tissue. We firstly reported a case of osteosarcoma in a patient with McCune-Albright syndrome, which rapidly progressed during pregnancy.

  4. Design, Synthesis and Biological Evaluation of Ezrin Inhibitors Targeting Metastatic Osteosarcoma

    PubMed Central

    Paige, Mikell; Kosturko, George; Bulut, Gullay; Miessau, Matthew; Rahim, Said; Toretsky, Jeffrey A.; Brown, Milton L.; Üren, Aykut

    2014-01-01

    Respiratory failure due to pulmonary metastasis is the major cause of death for patients with osteosarcoma. However, the molecular basis for metastasis of osteosarcoma is poorly understood. Recently, ezrin, a member of the ERM family of proteins, has been associated with osteosarcoma metastasis to the lungs. The small molecule NSC 668394 was identified to bind to ezrin, inhibit in vitro and in vivo cell migration, invasion, and metastatic colony survival. Reported herein are the design and synthesis of analogues of NSC 668394, and subsequent functional ezrin inhibition studies. The binding affinity was characterized by surface plasmon resonance technique. Cell migration and invasion activity was determined by electrical cell impedance methodology. Optimization of a series of heterocyclic-dione analogues led to the discovery of compounds 21k and 21m as potential novel antimetastatic agents. PMID:24326277

  5. Letter regarding Li JS et al. entitled "ERCC polymorphisms and prognosis of patients with osteosarcoma".

    PubMed

    Jian, Yuekui; Tian, Xiaobin; Li, Bo; Zhou, Zhuojia; Wu, Xinglin

    2015-05-01

    With great interest, we read the article "ERCC polymorphisms and prognosis of patients with osteosarcoma" (by Li JS et al.), which has reached important conclusions about the relationship between ERCC polymorphisms and osteosarcoma prognosis. Through quantitative analysis, the meta-analysis showed that ERCC2 Lys751Gln (ORGG vs. AA = 0.40 (95%CI = 0.1-0.86), P heterogeneity = 0.502; I (2) = 0 %) and ERCC5 His46His (ORCC vs. TT = 0.37 (95%CI = 0.15-0.93), P heterogeneity = 0.569; I (2) = 0 %) polymorphisms might influence the prognosis of patients with osteosarcoma [1]. The meta-analysis results are encouraging. Nevertheless, some deficiencies still existed that we would like to raise.

  6. Personalized Identification of Differentially Expressed Modules in Osteosarcoma

    PubMed Central

    Liu, Xiaozhou; Li, Chengjun; Zhang, Lei; Shi, Xin; Wu, Sujia

    2017-01-01

    Background Osteosarcoma (OS), an aggressive malignant neoplasm, is the most common primary bone cancer mainly in adolescents and young adults. Differentially expressed modules tend to distinguish differences integrally. Identifying modules individually has been crucial for understanding OS mechanisms and applications of custom therapeutic decisions in the future. Material/Methods Samples came from individuals were used from control group (n=15) and OS group (n=84). Based on clique-merging, module-identification algorithm was used to identify modules from OS PPI networks. A novel approach – the individualized module aberrance score (iMAS) was performed to distinguish differences, making special use of accumulated normal samples (ANS). We performed biological process ontology to classify functionally modules. Then Support Vector Machine (SVM) was used to test distribution results of normal and OS group with screened modules. Results We identified 83 modules containing 2084 genes from PPI network in which 61 modules were significantly different. Cluster analysis of OS using the iMAS method identified 5 modules clusters. Specificity=1.00 and Sensitivity=1.00 proved the distribution outcomes of screened modules were mainly consistent with that of total data, which suggested the efficiency of 61 modules. Conclusions We conclude that a novel pipeline that identified the dysregulated modules in individuals of OS. The constructed process is expected to aid in personalized health care, which may present fruitful strategies for medical therapy. PMID:28190021

  7. Periosteal osteosarcoma--a European review of outcome.

    PubMed

    Grimer, Robert J; Bielack, Stefan; Flege, Silke; Cannon, Stephen R; Foleras, Gunnar; Andreeff, Ivan; Sokolov, Todor; Taminiau, Antonie; Dominkus, Martin; San-Julian, Mikel; Kollender, Yehuda; Gosheger, Georg

    2005-12-01

    Periosteal osteosarcoma is a rare primary malignant bone tumour. Treatment is by surgical excision, but controversy remains about the value of chemotherapy. The members of the European Musculo Skeletal Oncology Society (EMSOS) collaborated to produce a dataset of 119 patients. The predominant site for the tumour was the femur, followed by the tibia. All but 2 patients underwent surgery, with 9 requiring amputation and the others having limb salvage. A total of 81 patients had chemotherapy, of whom 50 had neoadjuvant chemotherapy. There was no standard chemotherapy regime, but all patients receiving chemotherapy were given doxorubicin combined with at least one other agent. The overall survival was 89% at 5 years and 83% at 10 years. Eight patients developed local recurrence, of whom 5 died. Survival was related to appearance of local recurrence (P < 0.0001) but no other single factor. The use of chemotherapy was not shown to be a prognostic factor, but was used in two-thirds of the patients in this study.

  8. Adjuvant therapy with carboplatin and pamidronate for canine appendicular osteosarcoma.

    PubMed

    Kozicki, A R; Robat, C; Chun, R; Kurzman, I D

    2015-09-01

    Amputation and chemotherapy are the mainstay of treatment for canine appendicular osteosarcoma (OSA). In vitro studies have demonstrated anti-tumour activity of pamidronate against canine OSA. The purpose of this study was to assess the safety of adding pamidronate to standard post-operative carboplatin chemotherapy in 17 dogs with appendicular OSA treated with limb amputation. Median disease-free interval (DFI) and median survival time (MST) were evaluated as secondary endpoints. Incidence of side effects and treatment outcomes were compared to 14 contemporary control patients treated with carboplatin alone. There were no identified side effects to the pamidronate treatment. The median DFI for the study group was 185 days compared to 172 days for the control group (P = 0.90). The MST of the study group was 311 days compared to 294 days for the control group (P = 0.89). Addition of pamidronate to carboplatin chemotherapy for the treatment of canine appendicular OSA is safe and does not impair efficacy of standard carboplatin treatment.

  9. Evaluation of ifosfamide salvage therapy for metastatic canine osteosarcoma.

    PubMed

    Batschinski, K; Dervisis, N G; Kitchell, B E

    2014-12-01

    A retrospective study was performed to assess toxicity and response rate of ifosfamide salvage treatment for dogs diagnosed with metastatic osteosarcoma (OSA). Dogs diagnosed with OSA and previously treated with standard chemotherapy were included in the study. Nineteen dogs met the inclusion criteria, and 17 dogs were evaluable for response. Ifosfamide doses ranged from 375 to 425 mg m(-2) (median dose 375 mg m(-2)), with a median of two doses administered per dog (range 1-7 doses). The overall response to ifosfamide was 11.8% [complete response (CR) = 1/17, partial response (PR) = 1/17, stable disease (SD) = 2/17, progressive disease (PD) = 13/17]. Two dogs were hospitalized due to ifosfamide toxicosis. The median survival duration from the first dose of ifosfamide to death was 95 days. Ifosfamide was well tolerated, but minor anti-tumour activity was observed.

  10. Engineered Nanomedicine with Alendronic Acid Corona Improves Targeting to Osteosarcoma

    PubMed Central

    Nguyen, Tuyen Duong Thanh; Pitchaimani, Arunkumar; Aryal, Santosh

    2016-01-01

    We engineered nanomedicine with the stealth corona made up of densely packed bone seeking ligand, alendronic acid. In a typical nanoconstruct, alendronic acid is conjugated with hydrophilic head moiety of phospholipid that has an ability to self-assemble with hydrophobic polymeric core through its hydrophobic long carbon-chain. Proposed nanomedicine has three distinct compartments namely; poly(l-lactic-co-glycolic acid) polymeric core acting as a drug reservoir and skeleton of the nanoconstruct, phospholipid monolayer covers the core acting as a diffusion barrier, and a densely packed alendronic acid corona acting as a stabilizer and targeting moiety. Thus engineered nanomedicine attain spherical entity with ~90 ± 6 nm having negative zeta potential, −37.7 ± 2 mV, and has an ability to load 7 ± 0.3 wt% of doxorubicin. In-vitro bone targeting efficiency of nanomedicine was studied using hydroxyapatite crystals as a bone model, and found significant accumulation of nanoparticle in the crystals. Moreover, cellular internalization studies with mouse osteosarcoma confirm the selectivity of nanomedicine when compared to its internalization in non-targeted mouse melanoma. This nanomedicine shows prolong stability in serum and deliver the drug into the cell exhibiting an IC50 of 3.7 μM. Given the strong interacting property of alendronic acid with bone, the proposed nanomedicine hold promises in delivering drug to bone microenvironment. PMID:27824143

  11. Clinicopathologic Features and Results of Transcatheter Arterial Chemoembolization for Osteosarcoma

    SciTech Connect

    Chu Jianping; Chen Wei; Li Jiaping; Zhuang Wenquan; Huang Yonghui; Huang Zhaomin; Yang Jianyong

    2007-04-15

    Purpose. To evaluate the effect of transcatheter arterial chemoembolization (TACE) for osteosarcoma and to describe the clinicopathologic features produced by TACE as well as the effect of different embolic materials. Methods. From January 1998 to December 2003, preoperative TACE was carried out in 32 patients. The preoperative and postoperative clinical response, levels of alkaline phosphatase (AKP), leukocyte count, and clinicopathologic features were recorded. We also compared the effect of different embolic materials: adriblastine gelatin microspheres, anhydrous alcohol, common bletilla tuber, and gelatin sponge particles. Results. The levels of AKP were significantly decreased after treatment (p < 0.05), but there was no significant difference in the leukocyte count. Large areas of necrosis were found histologically within 85.5% tumors after TACE. Embolic agents such as adriblastine microspheres, anhydrous alcohol, and common bletilla tuber have better clinical effects than gelatin sponge particles, but there was no significant difference among the first three embolic materials. After treatment, no serious complications were noted. During successful follow-up for 86 months, the survival rate after TACE at 1, 2, and 5 years was 95.5%, 72%, and 42% respectively. Conclusion. TACE accelerated tumor necrosis and shrank the tumor volume, thus making adequate tumor resection possible. The optimal time to operate is 10-14 days after TACE. TACE in combination with limb salvage surgery and postoperative periodical chemotherapy may be beneficial for increasing local control rates.

  12. Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma

    PubMed Central

    Koirala, Pratistha; Roth, Michael E.; Gill, Jonathan; Piperdi, Sajida; Chinai, Jordan M.; Geller, David S.; Hoang, Bang H.; Park, Amy; Fremed, Michael A.; Zang, Xingxing; Gorlick, Richard

    2016-01-01

    Osteosarcoma patient survival has remained stagnant for 30 years. Novel therapeutic approaches are needed to improve outcomes. We examined the expression of Programmed Death Ligand 1 (PD-L1) and defined the tumor immune microenvironment to assess the prognostic utility in osteosarcoma. PD-L1 expression in osteosarcoma was examined in two patient cohorts using immunohistochemistry (IHC) (n = 48, n = 59) and expression was validated using quantitative real time PCR (n = 21) and western blotting (n = 9). IHC was used to determine the presence of tumor infiltrating lymphocytes and antigen-presenting cells (APCs) in the tumor. Expression of PD-L1 was correlated with immune cell infiltration and event-free-survival (EFS). The 25% of primary osteosarcoma tumors that express PD-L1 were more likely to contain cells that express PD-1 than PD-L1 negative tumors (91.7% vs 47.2%, p = 0.002). Expression of PD-L1 was significantly associated with the presence of T cells, dendritic cells, and natural killer cells. Although all immune cell types examined were present in osteosarcoma samples, only infiltration by dendritic cells (28.3% vs. 83.9%, p = 0.001) and macrophages (45.5% vs. 84.4%, p = 0.031) were associated with worse five-year-EFS. PD-L1 expression was significantly associated with poorer five-year-EFS (25.0%. vs. 69.4%, p = 0.014). Further studies in osteosarcoma are needed to determine if targeting the PD-L1:PD-1 axis improves survival. PMID:27456063

  13. Expression and regulatory effects of microRNA-182 in osteosarcoma cells: A pilot study

    PubMed Central

    BIAN, DONG-LIN; WANG, XUE-MEI; HUANG, KUN; ZHAI, QI-XI; YU, GUI-BO; WU, CHENG-HUA

    2016-01-01

    The aim of the present study was to evaluate the expression level of microRNA-182 (miRNA-182) in human osteosarcoma (OS) MG-63 cells and OS tissues, and to elucidate the effect of miRNA-182 on the biological activity of tumors. In the present study, the expression of miRNA-182 in human OS MG-63 cells, OS tissues and normal osteoblast hFOB1.19 cells was determined using quantitative polymerase chain reaction. Subsequently, a miRNA-182 mimic and inhibitor were utilized to regulate the expression level of this miRNA in MG-63 cells. Cell viability and proliferation were examined using cell counting kit-8 assays, and cell apoptosis was detected by flow cytometry. Cell invasion and migration assays were performed using Transwell chambers to analyze the biological functions of miRNA-182 in vitro. The present study demonstrated that the expression level of miRNA-182 in MG-63 cells and OS tissues was significantly increased compared with the hFOB1.19 cell line (P<0.05). The present study successfully performed cell transfections of miRNA-182 inhibitor and miRNA-182 mimic into MG-63 cells and achieved the desired transfection efficiency. The present study confirmed that upregulation of miRNA-182 promotes cell apoptosis and inhibits cell viability, proliferation, invasion and migration. The present findings additionally demonstrated that miRNA-182 is a tumor suppressor gene in OS. Therefore, regulating the expression of miRNA-182 may affect the biological behavior of OS cells, which suggests a potential role for miRNA-182 in molecular therapy for malignant tumors. PMID:27123060

  14. miR-200bc/429 Inhibits Osteosarcoma Cell Proliferation and Invasion by Targeting PMP22

    PubMed Central

    Li, Xiaodong; Jiang, Han; Xiao, Lianping; Wang, Shusen; Zheng, Jinxin

    2017-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs which play a crucial role in diverse biological processes and could contribute to cancer development and progression. MiR-200bc/429 have been found to be aberrantly expressed in osteosarcoma (OS). However, the features of miR-200bc/429 in the tumorigenesis and progress of OS remain poorly understood. Material/Methods The miR-200bc/429 expression was firstly identified in human OS clinical samples and cell lines by quantitative real-time PCR (qRT-PCR). After transfection with miR-200bc/429 mimics or negative control in U2OS or MG63 cells, cell proliferation was measured by CCK-8 assay. Following that, wound-healing assay and Transwell invasion assay were performed to evaluate cell migration and invasion, respectively. Finally, luciferase reporter assay and Western blot analysis were performed to determine if peripheral myelin protein-22 (PMP22) is a direct target of miR-200bc/429. Results Results revealed that miR-200bc/429 were significantly depressed in human OS tissues and cell lines by qRT-PCR. Then, restoration of miR-200bc/429 significantly inhibited cell proliferation (P<0.05) and invasion (P<0.05) in vitro. Luciferase reporter assay and Western blot analysis revealed that miR-200bc/429 could directly target PMP22 3′ untranslated region (UTR) and inhibit its expression in U2OS and MG63 cells. Conclusions These findings suggest that miR-200bc/429 inhibit OS cells proliferation and invasion by targeting PMP22, and function as a tumor suppressor and may be a patent molecular marker as well as a potential target for OS therapy. PMID:28234890

  15. 68Ga-PSMA PET/CT in Osteosarcoma in Fibrous Dysplasia.

    PubMed

    Sasikumar, Arun; Joy, Ajith; Pillai, M R A; Alex, Tony M; Narayanan, Geetha

    2017-03-24

    Fibrous dysplasia (FD) is a benign bone lesion with a rare but potential for malignant transformation. Neither Tc-MDP nor F-FDG PET/CT can differentiate between FD and areas of malignant transformation in FD. We described a case of osteosarcoma developing in FD with selective uptake of tracer in malignant transformation areas demonstrated on a Ga-PSMA PET/CT scan. Our case highlights the ability of Ga-PSMA PET/CT to map tumor neoangiogenesis in osteosarcoma arising in FD, which can have potential implications in prognostication, possibility of antiangiogenesis-based therapeutic options, and in response assessment following chemotherapy.

  16. Reexpression of LSAMP inhibits tumor growth in a preclinical osteosarcoma model

    PubMed Central

    2014-01-01

    Background Osteosarcomas are the most common primary malignant tumors of bone, showing complex chromosomal rearrangements with multiple gains and losses. A frequent deletion within the chromosomal region 3q13.31 has been identified by us and others, and is mainly reported to be present in osteosarcomas. The purpose of the study was to further characterize the frequency and the extent of the deletion in an extended panel of osteosarcoma samples, and the expression level of the affected genes within the region. We have identified LSAMP as the target gene for the deletion, and have studied the functional implications of LSAMP-reexpression. Methods LSAMP copy number, expression level and protein level were investigated by quantitative PCR and western blotting in an osteosarcoma panel. The expression of LSAMP was restored in an osteosarcoma cell line, and differences in proliferation rate, tumor formation, gene expression, migration rate, differentiation capabilities, cell cycle distribution and apoptosis were investigated by metabolic dyes, tumor formation in vivo, gene expression profiling, time-lapse photography, differentiation techniques and flow cytometry, respectively. Results We found reduced copy number of LSAMP in 45/76 osteosarcoma samples, reduced expression level in 25/42 samples and protein expression in 9/42 samples. By restoring the expression of LSAMP in a cell line with a homozygous deletion of the gene, the proliferation rate in vitro was significantly reduced and tumor growth in vivo was significantly delayed. In response to reexpression of LSAMP, mRNA expression profiling revealed consistent upregulation of the genes hairy and enhancer of split 1 (HES1), cancer/testis antigen 2 (CTAG2) and kruppel-like factor 10 (KLF10). Conclusions The high frequency and the specificity of the deletion indicate that it is important for the development of osteosarcomas. The deletion targets the tumor suppressor LSAMP, and based on the functional evidence, the tumor

  17. Long bone florid reactive periostitis ossificans: a case in the distal femur mimicking osteosarcoma.

    PubMed

    Azorín, Daniel; López-Pino, Miguel A; González-Mediero, Imelda; Epeldegui, Tomás; López-Barea, Fernando

    2008-11-01

    Florid reactive periostitis ossificans is a well-known benign lesion classically described in hands and feet which histopathological features can lead to a misdiagnosis of osteosarcoma. To the best of our knowledge, there is only one previous report of this lesion in a long bone. In this study we report a case of florid reactive periostitis ossificans located in the distal metaphysis of the left femur that histologically mimicked an osteosarcoma and discuss the differential diagnosis between these two entities to warn about a diagnostic pitfall.

  18. Major surgery in an osteosarcoma patient refusing blood transfusion: case report

    PubMed Central

    2010-01-01

    We describe an unusual case of osteosarcoma in a Jehovah's Witness patient who underwent chemotherapy and major surgery without the need for blood transfusion. This 16-year-old girl presented with osteosarcoma of the right proximal tibia requiring proximal tibia resection, followed by endoprosthesis replacement. She was successfully treated with neoadjuvant chemotherapy and surgery with the support of haematinics, granulocyte colony-stimulating factor, recombinant erythropoietin and intraoperative normovolaemic haemodilution. This case illustrates the importance of maintaining effective, open communication and exploring acceptable therapeutic alternative in the management of these patients, whilst still respecting their beliefs. PMID:21059231

  19. Recent advances in the management of osteosarcoma and forthcoming therapeutic strategies.

    PubMed

    Lamoureux, François; Trichet, Valérie; Chipoy, Céline; Blanchard, Frédéric; Gouin, François; Redini, Françoise

    2007-02-01

    Osteosarcoma is the most frequent primary bone tumor and occurs mainly in young patients (average age: 18 years). No evolution of the survival rates has been recorded for two decades in response to current treatment, associating often toxic and badly tolerated cures of chemotherapy (given a significant rate of bad responders) with preserving surgery. Among the proposed innovative strategies, immune-based therapy, antiangiogenesis agents, tumor-suppressor or suicide gene therapy, or anticancer drugs not commonly used in osteosarcoma are presented. A further strategy is to target the tumor microenvironment rather than the tumor itself.

  20. Osteoblastic osteosarcoma in a Grey Mouse Lemur (Microcebus murinus) - short communication.

    PubMed

    Liptovszky, Mátyás; Perge, Edina; Molnár, Viktor; Sós, Endre

    2011-12-01

    The Grey Mouse Lemur (Microcebus murinus) is a nocturnal lemur species that lives only in Madagascar. It is one of the most abundant lemur species and its native populations are not endangered, but animals belonging to this species are rarely exhibited in zoos. While tumours are quite frequently described in other primates, there are very few publications about neoplasia in lemurs. In this case report we describe a mandibular osteoblastic osteosarcoma in a Grey Mouse Lemur (Microcebus murinus). To the best of the authors' knowledge, this is the first scientific article describing osteosarcoma in a prosimian and also reporting a tumour in the mandible in this taxon.

  1. Focal Chromosomal Copy Number Aberrations Identify CMTM8 and GPR177 as New Candidate Driver Genes in Osteosarcoma

    PubMed Central

    Bras, Johannes; Schaap, Gerard R.; Baas, Frank; Ylstra, Bauke; Hulsebos, Theo J. M.

    2014-01-01

    Osteosarcoma is an aggressive bone tumor that preferentially develops in adolescents. The tumor is characterized by an abundance of genomic aberrations, which hampers the identification of the driver genes involved in osteosarcoma tumorigenesis. Our study aims to identify these genes by the investigation of focal copy number aberrations (CNAs, <3 Mb). For this purpose, we subjected 26 primary tumors of osteosarcoma patients to high-resolution single nucleotide polymorphism array analyses and identified 139 somatic focal CNAs. Of these, 72 had at least one gene located within or overlapping the focal CNA, with a total of 94 genes. For 84 of these genes, the expression status in 31 osteosarcoma samples was determined by expression microarray analysis. This enabled us to identify the genes of which the over- or underexpression was in more than 35% of cases in accordance to their copy number status (gain or loss). These candidate genes were subsequently validated in an independent set and furthermore corroborated as driver genes by verifying their role in other tumor types. We identified CMTM8 as a new candidate tumor suppressor gene and GPR177 as a new candidate oncogene in osteosarcoma. In osteosarcoma, CMTM8 has been shown to suppress EGFR signaling. In other tumor types, CMTM8 is known to suppress the activity of the oncogenic protein c-Met and GPR177 is known as an overexpressed upstream regulator of the Wnt-pathway. Further studies are needed to determine whether these proteins also exert the latter functions in osteosarcoma tumorigenesis. PMID:25551557

  2. Focal chromosomal copy number aberrations identify CMTM8 and GPR177 as new candidate driver genes in osteosarcoma.

    PubMed

    Both, Joeri; Krijgsman, Oscar; Bras, Johannes; Schaap, Gerard R; Baas, Frank; Ylstra, Bauke; Hulsebos, Theo J M

    2014-01-01

    Osteosarcoma is an aggressive bone tumor that preferentially develops in adolescents. The tumor is characterized by an abundance of genomic aberrations, which hampers the identification of the driver genes involved in osteosarcoma tumorigenesis. Our study aims to identify these genes by the investigation of focal copy number aberrations (CNAs, <3 Mb). For this purpose, we subjected 26 primary tumors of osteosarcoma patients to high-resolution single nucleotide polymorphism array analyses and identified 139 somatic focal CNAs. Of these, 72 had at least one gene located within or overlapping the focal CNA, with a total of 94 genes. For 84 of these genes, the expression status in 31 osteosarcoma samples was determined by expression microarray analysis. This enabled us to identify the genes of which the over- or underexpression was in more than 35% of cases in accordance to their copy number status (gain or loss). These candidate genes were subsequently validated in an independent set and furthermore corroborated as driver genes by verifying their role in other tumor types. We identified CMTM8 as a new candidate tumor suppressor gene and GPR177 as a new candidate oncogene in osteosarcoma. In osteosarcoma, CMTM8 has been shown to suppress EGFR signaling. In other tumor types, CMTM8 is known to suppress the activity of the oncogenic protein c-Met and GPR177 is known as an overexpressed upstream regulator of the Wnt-pathway. Further studies are needed to determine whether these proteins also exert the latter functions in osteosarcoma tumorigenesis.

  3. Apigenin inhibits the proliferation and invasion of osteosarcoma cells by suppressing the Wnt/β-catenin signaling pathway.

    PubMed

    Liu, Xiaofeng; Li, Liubing; Lv, Ling; Chen, Dongmei; Shen, Liqin; Xie, Zonggang

    2015-08-01

    Osteosarcoma (OS) is the most common type of bone cancer. Even with early diagnosis and aggressive treatment, the prognosis for OS is poor. In the present study, we investigated the proliferation and invasion inhibitory effect of apigenin on human OS cells and the possible molecular mechanisms involved. The cell viability of U2OS and MG63 human OS cell lines was detected by MTT assay. Cell cycle progression and invasion were assessed by flow cytometry and the Matrigel Boyden chamber assay, respectively, and the involvement of molecular mechanisms was examined by western blot analysis. We demonstrated that apigenin inhibited proliferation and reduced invasion in human OS cells, and downregulated the expression of β-catenin in OS cells. Furthermore, the inhibitory effect of apigenin on OS cells was reversed by overexpression of β-catenin, but enhanced by knockdown of β-catenin. Collectively, our results showed that apigenin inhibits the tumor growth of OS cells by inactivating Wnt/β-catenin signaling. Therefore, apigenin is a promising chemotherapeutic agent that may be used in the treatment of human OS.

  4. Frequent Attenuation of the WWOX Tumor Suppressor in Osteosarcoma is Associated with Increased Tumorigenicity and Aberrant RUNX2 Expression

    PubMed Central

    Kurek, Kyle; Del Mare, Sara; Salah, Zaidoun; Abdeen, Suhaib; Sadiq, Hussain; Lee, Sukhee; Gaudio, Eugenio; Zanesi, Nicola; Jones, Kevin B.; DeYoung, Barry; Amir, Gail; Gebhardt, Mark; Warman, Matthew; Stein, Gary S.; Stein, Janet L.; Lian, Jane B.; Aqeilan, Rami I.

    2011-01-01

    The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor that is deleted or attenuated in most human tumors. Wwox-deficient mice develop osteosarcoma (OS), an aggressive bone tumor with poor prognosis that often metastasizes to lung. On the basis of these observations, we examined the status of WWOX in human OS specimens and cell lines. In human OS clinical samples, WWOX expression was absent or reduced in 58% of tumors examined (P< 0.0001). Compared to the primary tumors, WWOX levels frequently increased in tumors resected following chemotherapy. In contrast, tumor metastases to lung often exhibited reduced WWOX levels, relative to the primary tumor. In human OS cell lines having reduced WWOX expression, ectopic expression of WWOX inhibited proliferation and attenuated invasion in vitro, and suppressed tumorgenicity in nude mice. Expression of WWOX was associated with reduced RUNX2 expression in OS cell lines, whereas Runx2 levels were elevated in femurs of Wwox-deficient mice. Furthermore, WWOX reconstitution in HOS cells was associated with downregulation of RUNX2 levels and RUNX2 target genes, consistent with the ability of WWOX to suppress RUNX2 transactivation activity. In clinical samples, RUNX2 was expressed in the majority of primary tumors and undetectable in most tumors resected following chemotherapy, whereas most metastases were RUNX2 positive. Our results deepen the evidence of a tumor suppressor role for WWOX in OS, furthering its prognostic and therapeutic significance in this disease. PMID:20530675

  5. Frequent attenuation of the WWOX tumor suppressor in osteosarcoma is associated with increased tumorigenicity and aberrant RUNX2 expression.

    PubMed

    Kurek, Kyle C; Del Mare, Sara; Salah, Zaidoun; Abdeen, Suhaib; Sadiq, Hussain; Lee, Suk-Hee; Gaudio, Eugenio; Zanesi, Nicola; Jones, Kevin B; DeYoung, Barry; Amir, Gail; Gebhardt, Mark; Warman, Matthew; Stein, Gary S; Stein, Janet L; Lian, Jane B; Aqeilan, Rami I

    2010-07-01

    The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor that is deleted or attenuated in most human tumors. Wwox-deficient mice develop osteosarcoma (OS), an aggressive bone tumor with poor prognosis that often metastasizes to lung. On the basis of these observations, we examined the status of WWOX in human OS specimens and cell lines. In human OS clinical samples, WWOX expression was absent or reduced in 58% of tumors examined (P < 0.0001). Compared with the primary tumors, WWOX levels frequently increased in tumors resected following chemotherapy. In contrast, tumor metastases to lung often exhibited reduced WWOX levels relative to the primary tumor. In human OS cell lines having reduced WWOX expression, ectopic expression of WWOX inhibited proliferation and attenuated invasion in vitro, and suppressed tumorigenicity in nude mice. Expression of WWOX was associated with reduced RUNX2 expression in OS cell lines, whereas RUNX2 levels were elevated in femurs of Wwox-deficient mice. Furthermore, WWOX reconstitution in HOS cells was associated with downregulation of RUNX2 levels and RUNX2 target genes, consistent with the ability of WWOX to suppress RUNX2 transactivation activity. In clinical samples, RUNX2 was expressed in the majority of primary tumors and undetectable in most tumors resected following chemotherapy, whereas most metastases were RUNX2 positive. Our results deepen the evidence of a tumor suppressor role for WWOX in OS, furthering its prognostic and therapeutic significance in this disease.

  6. Runx2, p53 and pRB status as diagnostic parameters for deregulation of osteoblast growth and differentiation in a new pre-chemotherapeutic osteosarcoma cell line (OS1)

    PubMed Central

    Pereira, Barry P.; Zhou, Yefang; Gupta, Anurag; Leong, David T.; Aung, Khin Zarchi; Ling, Ling; Pho, Robert W. H.; Galindo, Mario; Salto-Tellez, Manuel; Stein, Gary S.; Cool, Simon M.; van Wijnen, Andre J.; Nathan, Saminathan S.

    2009-01-01

    Osteosarcomas are the most prevalent primary bone tumors found in pediatric patients. To understand their molecular etiology, cell culture models are used to define disease mechanisms under controlled conditions. Many osteosarcoma cell lines (e.g., SAOS-2, U2OS, MG63) are derived from Caucasian patients. However, patients exhibit individual and ethnic differences in their responsiveness to irradiation and chemotherapy. This motivated the establishment of osteosarcoma cell lines (OS1, OS2, OS3) from three ethnically Chinese patients. OS1 cells, derived from a pre-chemotherapeutic tumor in the femur of a 6-year-old female, were examined for molecular markers characteristic for osteoblasts, stem cells and cell cycle control by immunohistochemistry, reverse transcriptase-PCR, western blotting and flow cytometry. OS1 have aberrant G-banded karyotypes, possibly reflecting chromosomal abnormalities related to p53 deficiency. OS1 had ossification profiles similar to human fetal osteoblasts rather than SAOS-2 which ossifies ab initio (p<0.05). Absence of p53 correlates with increased Runx2 expression, while the slow proliferation of OS1 cells is perhaps attenuated by pRB retention. OS1 express mesenchymal stem cell markers (CD44, CD105) and differ in relative expression of CD29, CD63 and CD71 to SAOS-2. (p<0.05). Cell cycle synchronization with nocodazole did not affect Runx2 and CDK1 levels but decreased cyclin-E and increased cyclin-A (p<0.05). Xenotransplantion of OS1 in SCID mice yields spontaneous tumors that were larger and grew faster than SAOS-2 transplants. Hence, OS1 is a new osteosarcoma cell culture model derived from a pre-chemotherapeutic ethnic Chinese patient, for mechanistic studies and development of therapeutic strategies to counteract metastasis and deregulation of mesenchymal development. PMID:19746444

  7. Exploring targeted therapy of osteosarcoma using proteomics data

    PubMed Central

    Chaiyawat, Parunya; Settakorn, Jongkolnee; Sangsin, Apiruk; Teeyakasem, Pimpisa; Klangjorhor, Jeerawan; Soongkhaw, Aungsumalee; Pruksakorn, Dumnoensun

    2017-01-01

    Despite multimodal therapeutic treatments of osteosarcoma (OS), some patients develop resistance to currently available regimens and eventually end up with recurrent or metastatic outcomes. Many attempts have been made to discover effective drugs for improving outcome; however, due to the heterogeneity of the disease, new therapeutic options have not yet been identified. This study aims to explore potential targeted therapy related to protein profiles of OS. In this review of proteomics studies, we extracted data on differentially expressed proteins (DEPs) from archived literature in PubMed and our in-house repository. The data were divided into three experimental groups, DEPs in 1) OS/OB: OS vs osteoblastic (OB) cells, 2) metastasis: metastatic vs non-metastatic sublines plus fresh tissues from primary OS with and without pulmonary metastasis, and 3) chemoresistance: spheroid (higher chemoresistance) vs monolayer cells plus fresh tissues from biopsies from good and poor responders. All up-regulated protein entities in the list of DEPs were sorted and cross-referenced with identifiers of targets of US Food and Drug Administration (FDA)-approved agents and chemical inhibitors. We found that many targets of FDA-approved antineoplastic agents, mainly a group of epigenetic regulators, kinases, and proteasomes, were highly expressed in OS cells. Additionally, some overexpressed proteins were targets of FDA-approved non-cancer drugs, including immunosuppressive and antiarrhythmic drugs. The resulting list of chemical agents showed that some transferase enzyme inhibitors might have anticancer activity. We also explored common targets of OS/OB and metastasis groups, including amidophosphoribosyltransferase (PPAT), l-lactate dehydrogenase B chain (LDHB), and pyruvate kinase M2 (PKM2) as well as the common target of all categories, cathepsin D (CTSD). This study demonstrates the benefits of a text mining approach to exploring therapeutic targets related to protein expression

  8. Combination therapy with bioengineered miR-34a prodrug and doxorubicin synergistically suppresses osteosarcoma growth

    PubMed Central

    Zhao, Yong; Tu, Mei-Juan; Yu, Yi-Feng; Wang, Wei-Peng; Chen, Qiu-Xia; Qiu, Jing-Xin; Yu, Ai-Xi; Yu, Ai-Ming

    2016-01-01

    Osteosarcoma (OS) is the most common form of primary malignant bone tumor and prevalent among children and young adults. Recently we have established a novel approach to bioengineering large quantity of microRNA-34a (miR-34a) prodrug for miRNA replacement therapy. This study is to evaluate combination treatment with miR-34a prodrug and doxorubicin, which may synergistically suppress human OS cell growth via RNA interference and DNA intercalation. Synergistic effects were indeed obvious between miR-34a prodrug and doxorubicin for the suppression of OS cell proliferation, as defined by Chou-Talalay method. The strongest antiproliferative synergism was achieved when both agents were administered simultaneously to the cells at early stage, which was associated with much greater degrees of late apoptosis, necrosis, and G2 cell cycle arrest. Alteration of OS cellular processes and invasion capacity was linked to the reduction of protein levels of miR-34a targeted (proto-)oncogenes including SIRT1, c-MET, and CDK6. Moreover, orthotopic OS xenograft tumor growth was repressed to a significantly greater degree in mouse models when miR-34a prodrug and doxorubicin were co-administered intravenously. In addition, multiple doses of miR-34a prodrug and doxorubicin had no or minimal effects on mouse blood chemistry profiles. The results demonstrate that combination of doxorubicin chemotherapy and miR-34a replacement therapy produces synergistic antiproliferative effects and it is more effective than monotherapy in suppressing OS xenograft tumor growth. These findings support the development of mechanism-based combination therapy to combat OS and bioengineered miR-34a prodrug represents a new natural miRNA agent. PMID:26518752

  9. Combination therapy with bioengineered miR-34a prodrug and doxorubicin synergistically suppresses osteosarcoma growth.

    PubMed

    Zhao, Yong; Tu, Mei-Juan; Yu, Yi-Feng; Wang, Wei-Peng; Chen, Qiu-Xia; Qiu, Jing-Xin; Yu, Ai-Xi; Yu, Ai-Ming

    2015-12-15

    Osteosarcoma (OS) is the most common form of primary malignant bone tumor and prevalent among children and young adults. Recently we have established a novel approach to bioengineering large quantity of microRNA-34a (miR-34a) prodrug for miRNA replacement therapy. This study is to evaluate combination treatment with miR-34a prodrug and doxorubicin, which may synergistically suppress human OS cell growth via RNA interference and DNA intercalation. Synergistic effects were indeed obvious between miR-34a prodrug and doxorubicin for the suppression of OS cell proliferation, as defined by Chou-Talalay method. The strongest antiproliferative synergism was achieved when both agents were administered simultaneously to the cells at early stage, which was associated with much greater degrees of late apoptosis, necrosis, and G2 cell cycle arrest. Alteration of OS cellular processes and invasion capacity was linked to the reduction of protein levels of miR-34a targeted (proto-)oncogenes including SIRT1, c-MET, and CDK6. Moreover, orthotopic OS xenograft tumor growth was repressed to a significantly greater degree in mouse models when miR-34a prodrug and doxorubicin were co-administered intravenously. In addition, multiple doses of miR-34a prodrug and doxorubicin had no or minimal effects on mouse blood chemistry profiles. The results demonstrate that combination of doxorubicin chemotherapy and miR-34a replacement therapy produces synergistic antiproliferative effects and it is more effective than monotherapy in suppressing OS xenograft tumor growth. These findings support the development of mechanism-based combination therapy to combat OS and bioengineered miR-34a prodrug represents a new natural miRNA agent.

  10. STAT3 inhibitor, cucurbitacin I, is a novel therapeutic agent for osteosarcoma

    PubMed Central

    Oi, Toru; Asanuma, Kunihiro; Matsumine, Akihiko; Matsubara, Takao; Nakamura, Tomoki; Iino, Takahiro; Asanuma, Yumiko; Goto, Mikinobu; Okuno, Kazuma; Kakimoto, Takuya; Yada, Yuki; Sudo, Akihiro

    2016-01-01

    The development of clinical agents remains a costly and time-consuming process. Although identification of new uses of existing drugs has been recognized as a more efficient approach for drug discovery than development of novel drugs, little screening of drugs that might be used for a rare malignant tumor such as osteosarcoma (OS) has been performed. In this study, we attempted to identify new molecular targeted agents for OS by employing Screening Committee of Anticancer Drugs (SCADS) kits. To screen compounds for OS treatment, their effect on cell viability of the OS cell lines 143B, MG63, HOS, SAOS-2, and HUO9 were evaluated. Candidate drugs were narrowed down based on a global anti-proliferative effect against these five OS cell lines. After excluding cytotoxic compounds and compounds unsuitable for in vivo administration, cucurbitacin I was extracted. Cucurbitacin I has been found to have cytotoxic and anti-proliferative properties against several tumors through inhibition of signal transducer and activator of transcription 3 (STAT3) activation. Cucurbitacin I dose- and time-dependently inhibited the proliferation of all five OS cell lines. Following cucurbitacin I treatment, STAT3 was inactivated and analysis of Mcl-1, cleaved PARP and caspase-3 indicated apoptosis induction. Expression of cell cycle regulator proteins, such as phospho-cyclin D1, c-Myc and survivin, were suppressed. Finally, cucurbitacin I potently inhibited the tumor growth of human OS 143B cells in nude mice. Our in vitro and in vivo results suggest that STAT3 inhibition by cucurbitacin I will be an effective and new approach for the treatment of OS. PMID:27840900

  11. Resection of parosteal osteosarcoma of the distal part of the femur: an original reconstruction technique with cement and plate.

    PubMed

    Pezzillo, F; Maccauro, G; Nizegorodcew, T; Rossi, B; Gosheger, G

    2008-01-01

    Parosteal osteosarcoma is a low-grade malignant bone tumor arising from the distal femur and tibia. Wide resection of a parosteal osteosarcoma usually prevents local recurrence. In literature, hemicortical resections of low-grade malignant bone tumors and allograft reconstruction are described. We describe a new method of resection and reconstruction of parosteal osteosarcoma located in the popliteal paraosseous space of the distal part of the femur using cement and plate (LISS-SYNTHES) through dual medial and lateral incisions. The patient did not present infections and fractures and the functional results were good. After one year, no metastases developed and there were no local recurrences.

  12. Resection of Parosteal Osteosarcoma of the Distal Part of the Femur: An Original Reconstruction Technique with Cement and Plate

    PubMed Central

    Pezzillo, F.; Maccauro, G.; Nizegorodcew, T.; Rossi, B.; Gosheger, G.

    2008-01-01

    Parosteal osteosarcoma is a low-grade malignant bone tumor arising from the distal femur and tibia. Wide resection of a parosteal osteosarcoma usually prevents local recurrence. In literature, hemicortical resections of low-grade malignant bone tumors and allograft reconstruction are described. We describe a new method of resection and reconstruction of parosteal osteosarcoma located in the popliteal paraosseous space of the distal part of the femur using cement and plate (LISS-SYNTHES) through dual medial and lateral incisions. The patient did not present infections and fractures and the functional results were good. After one year, no metastases developed and there were no local recurrences. PMID:18949052

  13. Corosolic acid inhibits the proliferation of osteosarcoma cells by inducing apoptosis

    PubMed Central

    Jia, Yong; Yuan, Hua; Shan, Shouqin; Xu, Gang; Yu, Jie; Zhao, Chenguang; Mou, Xiang

    2016-01-01

    Corosolic acid (CRA), a pentacyclic triterpene isolated from medicinal herbs, has been reported to exhibit anticancer properties in several cancers. However, the anticancer activity of CRA in osteosarcoma cells is still unclear. In the present study, the inhibitory effect of CRA in osteosarcoma MG-63 cells was investigated, and the results revealed that CRA significantly inhibited the viability of MG-63 cells in a dose- and time-dependent manner. A typical apoptotic hallmark such as DNA ladder was detected by agarose gel electrophoresis following treatment with CRA. Further experiments demonstrated that CRA induced apoptosis of MG-63 cells by flow cytometry using propidium iodide and annexin V staining. In addition, it was observed that the apoptosis of MG-63 cells induced by CRA was closely associated with activation of caspase-3 and caspase-9, loss of mitochondrial membrane potential, and release of cytochrome c from mitochondria, suggesting that CRA may trigger the activation of the mitochondria-mediated apoptosis pathway. In addition, the inhibition of caspase activity attenuated the CRA-induced apoptosis of MG-63 cells, which further confirmed the role of the mitochondrial pathway in CRA-induced apoptosis. These results indicated that CRA could induce the apoptosis of osteosarcoma cells through activating the mitochondrial pathway, which provides an evidence that CRA may be a useful chemotherapeutic agent for osteosarcoma. PMID:27895790

  14. The clinical significance of the Ezrin gene and circulating tumor cells in osteosarcoma

    PubMed Central

    Zhong, Guang-Xian; Feng, Shao-Dan; Shen, Rongkai; Wu, Zhao-Yang; Chen, Fei; Zhu, Xia

    2017-01-01

    Purpose The aim of this study was to investigate the clinical significance of circulating tumor cells (CTCs) in the peripheral blood of an osteosarcoma and the Ezrin gene expressed in CTCs. Patients and methods CTC enrichment was done with CanPatrol™ CTC enrichment technique in 41 patients with osteosarcoma. The characterization of CTCs was performed using a multiple messenger RNA in situ analysis (MRIA). The expression of the Ezrin gene in CTCs was detected by RNA probe technology. The correlations of CTC counts, cell type and the expression level of the Ezrin gene with clinical stage and metastasis of osteosarcoma were analyzed using SPSS 16.0 software. Results The CTC counts correlated significantly with Enneking stage (P<0.001). The ratio of mesenchymal CTCs correlated with the distant metastases (P<0.001). Ezrin gene expression in CTCs correlated significantly with distant metastases (χ2=152.51, P=0.000). Conclusion The ratio of mesenchymal CTCs in the peripheral blood of osteosarcoma correlates with distant metastases. High expression of Ezrin gene in CTCs correlates with distant metastases. PMID:28223819

  15. Effect of Unplanned Therapy on the Prognosis of Patients with Extremity Osteosarcoma

    PubMed Central

    Wang, Bing; Xu, Ming; Zheng, Kai; Yu, Xiuchun

    2016-01-01

    Unplanned therapy for extremity osteosarcoma can result in erroneous surgical procedures and lack of neoadjuvant chemotherapy before the first operation. Our aim was to compare the prognosis between patients with extremity osteosarcoma who received unplanned therapy and those who received standard treatment. This was a retrospective review of patients with extremity osteosarcoma who received appropriate surgical treatment and neoadjuvant chemotherapy (n = 79) and those who received unplanned therapy (n = 24) between June 2000 and October 2014. Survival rate, local recurrence rate and metastasis rate were compared between the two groups. We found that patients who had unplanned therapy had a higher local recurrence rate (41.7% vs. 21.5%; P = 0.049) and a shorter mean time for recurrence (8.90 vs. 14.59 months; P = 0.018). There was no significant difference between groups in the 5-year survival rate (56.3% vs.67.8%; P = 0.356), metastasis rate (45.8% vs. 30.4%; P = 0.125) and mean time to metastasis (23.18 vs.18.24 months; P = 0.396). Our findings suggest that unplanned therapy for extremity osteosarcoma can result in failure of local control. The use of supplementary interventions after unplanned therapy, such as neoadjuvant chemotherapy and limb salvage surgery, may explain the similar survival and metastasis rates between patients receiving unplanned therapy and those receiving standard treatment. PMID:27929143

  16. Treatment of extraskeletal osteosarcoma at a previous injection site resulting in prolonged survival in 1 dog.

    PubMed

    Selmic, Laura E; Griffin, Lynn R; Rector, Megan H; Lafferty, Mary; Pool, Roy; Ehrhart, Nicole P

    2016-09-01

    A rare presentation of an extraskeletal osteosarcoma at a previous interscapular injection site in a dog is described. Treatment included surgical excision of the tumor followed by 6 rounds of intravenous carboplatin, oral toceranib, and cyclophosphamide. The dog survived for 20.5 months after diagnosis despite early development of pulmonary metastases.

  17. Mesenchymal stem cells promote osteosarcoma cell survival and drug resistance through activation of STAT3

    PubMed Central

    Liu, Shen; Wang, Lei; Fan, Qiming; Hao, Yongqiang; Fan, Cunyi; Tang, Ting-Ting

    2016-01-01

    Increasing evidence suggests that the tumor microenvironment plays a key role in the development of drug resistant tumor cells. In this study, we tried to determine whether the mesenchymal stem cells (MSCs) in the tumor microenvironment contribute to the increased chemoresistance of osteosarcoma. We found that exposure of Saos-2 and U2-OS cells to MSCs conditioned medium (CM) increased the viable cells in the presence of therapeutic concentrations of doxorubicin or cisplatin. Meanwhile, the MSC CM-associated pro-proliferative effects were accompanied by reduced caspase 3/7 activity and Annexin V binding. We confirmed that STAT3 activation by IL-6 regulates MSCs-induced chemoresistance. Blockade of this signal re-sensitized drug-resistant Saos-2 cells to drug treatment. Using a osteosarcoma mouse model with co-injection of MSCs with Saos-2cells, we found that inhibition of STAT3 prolonged the survival time of tumor bearing mice by suppressing tumor growth and increasing the sensitivity of tumor cells to doxorubicin. Finally, we demonstrated that increased expression of p-STAT3, multidrug resistance protein (MRP) and P-glycoprotein (MDR-1) was associated with high chemotherapy resistance in clinical osteosarcoma samples. Collectively, our findings suggest that MSCs within the tumor microenvironment may represent a new target to enhance chemotherapeutic efficacy in osteosarcoma patients. PMID:27340780

  18. Aberrant Retinoblastoma (RB)-E2F Transcriptional Regulation Defines Molecular Phenotypes of Osteosarcoma.

    PubMed

    Scott, Milcah C; Sarver, Aaron L; Tomiyasu, Hirotaka; Cornax, Ingrid; Van Etten, Jamie; Varshney, Jyotika; O'Sullivan, M Gerard; Subramanian, Subbaya; Modiano, Jaime F

    2015-11-20

    We previously identified two distinct molecular subtypes of osteosarcoma through gene expression profiling. These subtypes are associated with distinct tumor behavior and clinical outcomes. Here, we describe mechanisms that give rise to these molecular subtypes. Using bioinformatic analyses, we identified a significant association between deregulation of the retinoblastoma (RB)-E2F pathway and the molecular subtype with worse clinical outcomes. Xenotransplantation models recapitulated the corresponding behavior for each osteosarcoma subtype; thus, we used cell lines to validate the role of the RB-E2F pathway in regulating the prognostic gene signature. Ectopic RB resets the patterns of E2F regulated gene expression in cells derived from tumors with worse clinical outcomes (molecular phenotype 2) to those comparable with those observed in cells derived from tumors with less aggressive outcomes (molecular phenotype 1), providing a functional association between RB-E2F dysfunction and altered gene expression in osteosarcoma. DNA methyltransferase and histone deacetylase inhibitors similarly reset the transcriptional state of the molecular phenotype 2 cells from a state associated with RB deficiency to one seen with RB sufficiency. Our data indicate that deregulation of RB-E2F pathway alters the epigenetic landscape and biological behavior of osteosarcoma.

  19. Treatment of extraskeletal osteosarcoma at a previous injection site resulting in prolonged survival in 1 dog

    PubMed Central

    Selmic, Laura E.; Griffin, Lynn R.; Rector, Megan H.; Lafferty, Mary; Pool, Roy; Ehrhart, Nicole P.

    2016-01-01

    A rare presentation of an extraskeletal osteosarcoma at a previous interscapular injection site in a dog is described. Treatment included surgical excision of the tumor followed by 6 rounds of intravenous carboplatin, oral toceranib, and cyclophosphamide. The dog survived for 20.5 months after diagnosis despite early development of pulmonary metastases. PMID:27587886

  20. Hepatic extraskeletal chondroblastic osteosarcoma with unusual angioinvasion of the caudal vena cava in a dog.

    PubMed

    Wiersma, L; Kuiper, R V; Gröne, A

    2010-12-15

    Extraskeletal osteosarcomas are rare malignant mesenchymal neoplasms that are able to directly produce osteoid, without requiring a cartilage template. The extraskeletal localization indicates that these neoplasms are not associated with pre-existing skeletal elements or periosteum. We describe the gross and histological findings of a 4-year-old male Rottweiler that presented with an extraskeletal chondroblastic osteosarcoma (also known as osteosarcoma of the chondroblastic subtype) originating from the liver and extending into the lumen of the caudal vena cava, passing through the right atrium and terminating in the right ventricle of the heart immediately below the pulmonary valve. In the liver, predominantly fusiform cells grew in loosely packed streams and whorls. In the vena cava, the neoplasm was multilobular with polygonal neoplastic cells scattered within lacunae in a chondroid matrix. In the cardiac lumen, neoplastic cells produced osteoid that showed multifocal mineralization. Immunohistochemical staining showed no cytokeratin and variable S-100 protein and vimentin immunoreactivity. To the best of our knowledge, this is the first report of a chondroblastic osteosarcoma arising in the liver and showing such extensive and unusual extension into the vasculature.

  1. Expression of different phenotypes in cell lines from canine mammary spindle-cell tumours and osteosarcomas indicating a pluripotent mammary stem cell origin.

    PubMed

    Hellmén, E; Moller, M; Blankenstein, M A; Andersson, L; Westermark, B

    2000-06-01

    Mammary spindle-cell tumours and sarcomas seem to be restricted to dogs and humans. Two cell lines from spontaneous primary canine mammary spindle-cell tumours (CMT-U304 and CMT-U309) and two cell lines from spontaneous primary canine mammary osteosarcomas (CMT-U334 and CMT-U335) were established to study the mesenchymal phenotypes of mammary tumours in the female dog. The cells from the spindle-cell tumours expressed cytokeratin, vimentin and smooth muscle actin filaments. When these cells were inoculated subcutaneously into female and male nude mice they formed different types of mesenchymal tumours such as spindle-cell tumours, fibroma and rhabdomyoid tumours (n = 6/8). The cells from the osteosarcomas expressed vimentin filaments and also formed different types of mesenchymal tumours such as chondroid, rhabdomyoid, smooth muscle-like and spindle-cell tumours (n = 6/10). The cell lines CMT-U304, CMT-U309 and CMT-U335 had receptors for progesterone but none of the four cell lines had receptors for estrogen. All four cell lines and their corresponding primary tumours showed identical allelic patterns in microsatellite analysis. By in situ hybridization with genomic DNA we could verify that all formed tumours but one were of canine origin. Our results support the hypothesis that canine mammary tumours are derived from pluripotent stem cells.

  2. RhoA/ROCK pathway inhibition by fasudil suppresses the vasculogenic mimicry of U2OS osteosarcoma cells in vitro.

    PubMed

    Xia, Yun; Cai, Xianyi; Fan, Jiquan; Zhang, Liling; Li, Zhenyu; Ren, Jinghua; Wu, Gang; Zhu, Fang

    2017-02-20

    GTPase RhoA and its downstream Rho-associated coiled-coil-containing protein kinases (ROCKs) are frequently overexpressed in human cancers. Inhibition of the RhoA/ROCK pathway blocks angiogenesis mediated by the vascular endothelial growth factor, which led us to investigate the role of this pathway in vasculogenic mimicry (VM) - a process by which aggressive cancer cells form vessel-like structures that provide adequate blood supply for tumor growth. We showed that the expression of RhoA and its effector kinases ROCK1/2 was much higher in human osteosarcoma (OS) tissues and the human OS cell line U2OS than in nontumorous tissues and cell line hFOB 1.19 using western blot analysis and real-time PCR. Inhibition of the RhoA/ROCK signaling pathway by the pharmacological inhibitor fasudil reduced vascular-like channels of U2OS cells in Matrigel. Furthermore, we used rhodamine-phalloidin immunofluorescence, wound healing assay, and transwell migration assay to examine the effect of fasudil on tumor cell plasticity and motility, both of which play key roles in VM formation. Finally, we explored the underlying mechanisms of fasudil-induced VM destruction. In this context, we showed that the RhoA/ROCK signaling pathway is a novel regulator in VM of U2OS OS cells and suggest that fasudil in conjunction with established treatments may present a novel therapeutic strategy for OS.

  3. Clinical characteristics and prognosis of osteosarcoma in young children: a retrospective series of 15 cases

    PubMed Central

    2011-01-01

    Background Osteosarcoma is the most common primary bone malignancy in childhood and adolescence. However, it is very rare in children under 5 years of age. Although studies in young children are limited in number, they all underline the high rate of amputation in this population, with conflicting results being recently reported regarding their prognosis. Methods To enhance knowledge on the clinical characteristics and prognosis of osteosarcoma in young children, we reviewed the medical records and histology of all children diagnosed with osteosarcoma before the age of five years and treated in SFCE (Société Française des Cancers et leucémies de l'Enfant) centers between 1980 and 2007. Results Fifteen patients from 7 centers were studied. Long bones were involved in 14 cases. Metastases were present at diagnosis in 40% of cases. The histologic type was osteoblastic in 74% of cases. Two patients had a relevant history. One child developed a second malignancy 13 years after osteosarcoma diagnosis. Thirteen children received preoperative chemotherapy including high-dose methotrexate, but only 36% had a good histologic response. Chemotherapy was well tolerated, apart from a case of severe late convulsive encephalopathy in a one-year-old infant. Limb salvage surgery was performed in six cases, with frequent mechanical and infectious complications and variable functional outcomes. Complete remission was obtained in 12 children, six of whom relapsed. With a median follow-up of 5 years, six patients were alive in remission, seven died of their disease (45%), in a broad range of 2 months to 8 years after diagnosis, two were lost to follow-up. Conclusions Osteosarcoma seems to be more aggressive in children under five years of age, and surgical management remains a challange. PMID:21942935

  4. Neoadjuvant chemotherapy for radioinduced osteosarcoma of the extremity: The Rizzoli experience in 20 cases

    SciTech Connect

    Bacci, Gaetano . E-mail: gaetano.bacci@ior.it; Longhi, Alessandra; Forni, Cristiana R.N.; Fabbri, Nicola; Briccoli, Antonio; Barbieri, Enza; Mercuri, Mario; Balladelli, Alba B.A.; Ferrari, Stefano; Picci, Piero

    2007-02-01

    Purpose: Evaluate treatment and outcome of 20 patients with radioinduced osteosarcoma (RIO). Because of previous primary tumor treatment, RIO protocols were different from others we used for non-RIO. Patients and Methods: Between 1983 and 1998, we treated 20 RIO patients, ages 4-36 years (mean 16 years), with chemotherapy (two cycles before surgery, three postoperatively). The first preoperative cycle consisted of high-dose Methotrexate (HDMTX)/Cisplatinum (CDP)/Adriamycin (ADM) and the second of HDMTX/CDP/Ifosfamide (IFO). The three postoperative treatments were performed with cycles of MTX/CDP; IFO was used as single agent per cycle repeated three times. Results: Two patients received palliative treatment because their osteosarcoma remained unresectable after preoperative chemotherapy. The remaining 18 patients had surgery (7 amputations, 11 resections); histologic response to preoperative chemotherapy was good in 8 patients, poor in 10. At a mean follow-up of 11 years (range, 7-22 years), 9 patients remained continuously disease-free, 10 died from osteosarcoma and 1 died from a third neoplasm (myeloid acute leukemia). These results are not significantly different from those achieved in 754 patients with conventional osteosarcoma treated in the same period with protocols used for conventional treatment. However, this later group had an 18% 3-year event-free survival after treatment of relapse vs. 0% in the RIO group. Conclusion: Treated with neoadjuvant chemotherapy RIO seem to have an outcome that is not significantly different from that of comparable patients with conventional primary high grade osteosarcoma (5-year event-free survival: 40% vs. 60%, p = NS; 5-year overall survival 40% vs. 67%, p < 0.00008.

  5. In vitro generation of cytotoxic T lymphocyte response using dendritic cell immunotherapy in osteosarcoma

    PubMed Central

    He, Ye-Teng; Zhang, Qing-Min; Kou, Quan-Chun; Tang, Bo

    2016-01-01

    Immunotherapy with tumor lysate-pulsed dendritic cells (DCs) is one of the breakthrough strategies used in the treatment of cancer. However, DC-based immunotherapies for osteosarcoma are limited. In the present study, preclinical studies of a C3H osteosarcoma mouse model (produced by subcutaneous injection of LM8 murine osteosarcoma cells) validated the concept that LM8 cell lysate-pulsed bone marrow-derived DCs may evoke a more potent immune response compared with DCs that have been matured using polyinosinic:polycytidylic acid (poly I:C). A cytotoxic T lymphocyte (CTL) response was established using two groups of C3H mice (n=9) with osteosarcoma; the treatment group consisted of LM8 cell lysate-pulsed DCs and the control group consisted of DCs matured using poly I:C. Each group was immunized with doses of 1×106 cells twice per week for 3 weeks. No difference in the expression of cluster of differentiation markers was identified in the two groups. DCs pulsed with LM8 cell lysate were associated with the increased induction of CTL activity. Serum interferon-γ levels were increased in mice that received DCs pulsed with LM8 cell lysate compared with that in the poly I:C-matured DC group (P<0.041). Serum interleukin-4 was decreased in the treatment group vs. the control group (P<0.033). A mixed lymphocyte reaction assay confirmed that LM8-DC immunotherapy may evoke a significant antigen-specific immune response in a mouse model. The present study reveals promising data on efficacy of a DC-based immunotherapy in the treatment of osteosarcoma; however, further clinical studies are warranted. PMID:27446401

  6. Prognostic factors in canine appendicular osteosarcoma – a meta-analysis

    PubMed Central

    2012-01-01

    Background Appendicular osteosarcoma is the most common malignant primary canine bone tumor. When treated by amputation or tumor removal alone, median survival times (MST) do not exceed 5 months, with the majority of dogs suffering from metastatic disease. This period can be extended with adequate local intervention and adjuvant chemotherapy, which has become common practice. Several prognostic factors have been reported in many different studies, e.g. age, breed, weight, sex, neuter status, location of tumor, serum alkaline phosphatase (SALP), bone alkaline phosphatase (BALP), infection, percentage of bone length affected, histological grade or histological subtype of tumor. Most of these factors are, however, only reported as confounding factors in larger studies. Insight in truly significant prognostic factors at time of diagnosis may contribute to tailoring adjuvant therapy for individual dogs suffering from osteosarcoma. The objective of this study was to systematically review the prognostic factors that are described for canine appendicular osteosarcoma and validate their scientific importance. Results A literature review was performed on selected studies and eligible data were extracted. Meta-analyses were done for two of the three selected possible prognostic factors (SALP and location), looking at both survival time (ST) and disease free interval (DFI). The third factor (age) was studied in a qualitative manner. Both elevated SALP level and the (proximal) humerus as location of the primary tumor are significant negative prognostic factors for both ST and DFI in dogs with appendicular osteosarcoma. Increasing age was associated with shorter ST and DFI, however, was not statistically significant because information of this factor was available in only a limited number of papers. Conclusions Elevated SALP and proximal humeral location are significant negative prognosticators for canine osteosarcoma. PMID:22587466

  7. Relationship Between P15 Gene Mutation and Formation and Metastasis of Malignant Osteosarcoma

    PubMed Central

    Yu, ChangShui; Wang, WenBo

    2016-01-01

    Background As a type of primary malignant bone tumor, osteosarcoma has high incidence and poor prognosis, and is predisposed for pulmonary metastasis. The abnormal expression of P15 gene directly participates in the invasion of various cancers. Therefore, this study investigated the gene mutation of P15 in both primary lesion and pulmonary metastasis lesion of osteosarcoma in a rat model, in an attempt to elucidate the value of P15 gene as a biological marker. Material/Methods A total of 60 SD rats were randomly divided into 2 groups. Model rats had injection of osteosarcoma UMR-106 cells (5×106) inoculated underneath the right forelimb skin, while control rats received saline injection instead. Six rats were sacrificed after 0, 1, 2, 4, and 6 weeks of the inoculation. Tissue samples from inoculation sites and lungs were extracted for measuring the tumor size. SP immunohistochemical (IHC) staining was used to detect the positive expression rate, while P15 gene mutation was detected by PCR method. Results With the elongation of inoculation time, tumor size was significantly increased (p<0.05). The positive expression rates in both primary and pulmonary metastasis lesions were also significantly elevated (p<0.05). The occurrence rate of P15 gene mutation in model rats was significantly elevated and showed a correlation with the tumor formation (r=0.998, p<0.05). Conclusions The P15 gene mutation was significantly correlated with osteosarcoma formation and metastasis towards the pulmonary tissue, suggesting its potency as a novel biological marker for early diagnosis of osteosarcoma. PMID:26921270

  8. Primary Osteosarcoma of the Bone with Rhabdoid Features: A Rare, Previously Undescribed Primary Malignant Tumor of Bone

    PubMed Central

    Al Maaieh, Motasem; Rosenberg, Andrew; Conway, Sheila

    2016-01-01

    Primary osteosarcoma of the bone with rhabdoid features is a rare malignant tumor of bone, not previously described in the literature. Here we report a 69-year-old female who originally presented with a right femur pathologic fracture. Radiographs of the injury showed an aggressive-appearing lesion of the distal femur. Initial biopsy was done, which was not diagnostic; additional advanced imaging studies were performed, which failed to show any other site within the body with detectable disease process. Accordingly, the patient underwent radical resection of the distal femur and reconstruction with endoprosthesis. Histopathology obtained from the operative specimen showed osteosarcoma with rhabdoid features. Two months after surgery, the patient is symptom-free and doing well; she is currently pending adjuvant chemotherapy. Although rhabdoid features have been described in extraskeletal osteosarcoma, this appears to be the first mention of osteosarcoma of bone with rhabdoid features in the literature. PMID:28058126

  9. Curcumin inhibits hypoxia-induced proliferation and invasion of MG-63 osteosarcoma cells via downregulating Notch1.