Science.gov

Sample records for human pathogen bartonella

  1. Bartonella spp. as emerging human pathogens.

    PubMed Central

    Anderson, B E; Neuman, M A

    1997-01-01

    Members of the genus Bartonella (formerly Rochalimaea) were virtually unknown to modern-day clinicians and microbiologists until they were associated with opportunistic infections in AIDS patients about 6 years ago. Since that time, Bartonella species have been associated with cat scratch disease, bacillary angiomatosis, and a variety of other disease syndromes. Clinical presentation of infection with Bartonella ranges from a relatively mild lymphadenopathy with few other symptoms, seen in cat scratch disease, to life-threatening systemic disease in the immunocompromised patient. In some individuals, infection manifests as lesions that exhibit proliferation of endothelial cells and neovascularization, a pathogenic process unique to this genus of bacteria. As the spectrum of disease attributed to Bartonella is further defined, the need for reliable laboratory methods to diagnose infections caused by these unique organisms also increases. A brief summary of the clinical presentations associated with Bartonella infections is presented, and the current status of laboratory diagnosis and identification of these organisms is reviewed. PMID:9105751

  2. Meningitis due to a "Bartonella washoensis"-like human pathogen.

    PubMed

    Probert, Will; Louie, Janice K; Tucker, James R; Longoria, Rose; Hogue, Robin; Moler, Silvia; Graves, Margot; Palmer, Heather J; Cassady, Joseph; Fritz, Curtis L

    2009-07-01

    We report the second human case of infection caused by an organism identified as the proposed Bartonella species, "B. washoensis." The organism was isolated from a blood sample from a patient presenting with meningitis and early sepsis. Oropsylla montana fleas were implicated as the vector for disease transmission in this case.

  3. Characterization of Candidatus Bartonella ancashi: A Novel Human Pathogen Associated with Carrins Disease

    DTIC Science & Technology

    2015-03-12

    Clin Microbiol Rev 13:428-38 29. Breitschwerdt EB, Maggi RG, Lantos PM, Woods CW, Hegarty BC, Bradley JM. 2010. Bartonella vinsonii subsp...Robert Mozayeni B, Hegarty BC, Bradley JM, Mascarelli PE. 2010. PCR amplification of Bartonella koehlerae from human blood and enrichment blood cultures...Breitschwerdt EB, Sontakke S, Cannedy A, Hancock SI, Bradley JM. 2001. Infection with Bartonella weissii and detection of nanobacterium antigens in

  4. Pestilence, persistence and pathogenicity: infection strategies of Bartonella

    PubMed Central

    Minnick, Michael F; Battisti, James M

    2009-01-01

    It has been nearly two decades since the discovery of Bartonella as an agent of bacillary angiomatosis in AIDS patients and persistent bacteremia and ‘nonculturable’ endocarditis in homeless people. Since that time, the number of Bartonella species identified has increased from one to 24, and 10 of these bacteria are associated with human disease. Although Bartonella is the only genus that infects human erythrocytes and triggers pathological angiogenesis in the vascular bed, the group remains understudied compared with most other bacterial pathogens. Numerous questions regarding Bartonella's molecular pathogenesis and epidemiology remain unanswered. Virtually every mammal harbors one or more Bartonella species and their transmission typically involves a hematophagous arthropod vector. However, many details regarding epidemiology and the public health threat imposed by these animal reservoirs is unclear. A handful of studies have shown that bartonellae are highly-adapted pathogens whose parasitic strategy has evolved to cause persistent infections of the host. To this end, virulence attributes of Bartonella include the subversion of host cells with effector molecules delivered via a type IV secretion system, induction of pathological angiogenesis through various means, including inhibition of apoptosis and activation of hypoxia-inducing factor 1, use of afimbrial adhesins that are orthologs of Yersinia adhesin A, incorporation of lipopolysaccharides with low endotoxic potency in the outer membrane, and several other virulence factors that help Bartonella infect and persist in erythrocytes and endothelial cells of the host circulatory system. PMID:19659429

  5. Bartonella: emerging pathogen or emerging awareness?

    PubMed

    Mogollon-Pasapera, Elin; Otvos, Laszlo; Giordano, Antonio; Cassone, Marco

    2009-01-01

    The number of known Bartonella species is rapidly growing. Some of them are responsible for distinct infectious diseases and show different prevalence and antibiotic susceptibility profiles. Not only have some vectors of Bartonella not been fully characterized, but also intermediate hosts are actually much more numerous and diverse than previously thought. Among these, dogs differ from cats because they tend to suffer an overt disease similar to humans, thus providing the base for a useful animal indicator and research model. Among the debilitating conditions with an unclear impact on the course of these infections, specific conditions (e.g., homelessness, alcoholism) have been linked to a much higher prevalence and to high risk of unfavorable outcome. Due to the limited arsenal of antibiotics effective in vivo on this peculiar intracellular pathogen, the risk/benefit balance of antibiotic therapy is sometimes difficult to draw. In this evolving picture, the recent discoveries of new species highlights the importance of basic molecular biology resources that would bring major public health benefits if available in endemic areas, and specifically in many areas of Peru and Bolivia.

  6. Mutation-Driven Divergence and Convergence Indicate Adaptive Evolution of the Intracellular Human-Restricted Pathogen, Bartonella bacilliformis

    PubMed Central

    Paul, Sandip; Minnick, Michael F.; Chattopadhyay, Sujay

    2016-01-01

    Among all species of Bartonella, human-restricted Bartonella bacilliformis is the most virulent but harbors one of the most reduced genomes. Carrión’s disease, the infection caused by B. bacilliformis, has been afflicting poor rural populations for centuries in the high-altitude valleys of the South American Andes, where the pathogen’s distribution is probably restricted by its sand fly vector’s range. Importantly, Carrión’s disease satisfies the criteria set by the World Health Organization for a disease amenable to elimination. However, to date, there are no genome-level studies to identify potential footprints of B. bacilliformis (patho)adaptation. Our comparative genomic approach demonstrates that the evolution of this intracellular pathogen is shaped predominantly via mutation. Analysis of strains having publicly-available genomes shows high mutational divergence of core genes leading to multiple sub-species. We infer that the sub-speciation event might have happened recently where a possible adaptive divergence was accelerated by intermediate emergence of a mutator phenotype. Also, within a sub-species the pathogen shows inter-clonal adaptive evolution evidenced by non-neutral accumulation of convergent amino acid mutations. A total of 67 non-recombinant core genes (over-representing functional categories like DNA repair, glucose metabolic process, ATP-binding and ligase) were identified as candidates evolving via adaptive mutational convergence. Such convergence, both at the level of genes and their encoded functions, indicates evolution of B. bacilliformis clones along common adaptive routes, while there was little diversity within a single clone. PMID:27167125

  7. Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae

    PubMed Central

    Schröder, Gunnar; Schuelein, Ralf; Quebatte, Maxime; Dehio, Christoph

    2011-01-01

    Bacterial type IV secretion systems (T4SS) mediate interbacterial conjugative DNA transfer and transkingdom protein transfer into eukaryotic host cells in bacterial pathogenesis. The sole bacterium known to naturally transfer DNA into eukaryotic host cells via a T4SS is the plant pathogen Agrobacterium tumefaciens. Here we demonstrate T4SS-mediated DNA transfer from a human bacterial pathogen into human cells. We show that the zoonotic pathogen Bartonella henselae can transfer a cryptic plasmid occurring in the bartonellae into the human endothelial cell line EA.hy926 via its T4SS VirB/VirD4. DNA transfer into EA.hy926 cells was demonstrated by using a reporter derivative of this Bartonella-specific mobilizable plasmid generated by insertion of a eukaryotic egfp-expression cassette. Fusion of the C-terminal secretion signal of the endogenous VirB/VirD4 protein substrate BepD with the plasmid-encoded DNA-transport protein Mob resulted in a 100-fold increased DNA transfer rate. Expression of the delivered egfp gene in EA.hy926 cells required cell division, suggesting that nuclear envelope breakdown may facilitate passive entry of the transferred ssDNA into the nucleus as prerequisite for complementary strand synthesis and transcription of the egfp gene. Addition of an eukaryotic neomycin phosphotransferase expression cassette to the reporter plasmid facilitated selection of stable transgenic EA.hy926 cell lines that display chromosomal integration of the transferred plasmid DNA. Our data suggest that T4SS-dependent DNA transfer into host cells may occur naturally during human infection with Bartonella and that these chronically infecting pathogens have potential for the engineering of in vivo gene-delivery vectors with applications in DNA vaccination and therapeutic gene therapy. PMID:21844337

  8. Coyotes (Canis latrans) as the reservoir for a human pathogenic Bartonella sp.: molecular epidemiology of Bartonella vinsonii subsp. berkhoffii infection in coyotes from central coastal California.

    PubMed

    Chang, C C; Kasten, R W; Chomel, B B; Simpson, D C; Hew, C M; Kordick, D L; Heller, R; Piemont, Y; Breitschwerdt, E B

    2000-11-01

    Bartonella vinsonii subsp. berkhoffii was originally isolated from a dog suffering infectious endocarditis and was recently identified as a zoonotic agent causing human endocarditis. Following the coyote bite of a child who developed clinical signs compatible with Bartonella infection in Santa Clara County, Calif., this epidemiological study was conducted. Among 109 coyotes (Canis latrans) from central coastal California, 31 animals (28%) were found to be bacteremic with B. vinsonii subsp. berkhoffii and 83 animals (76%) had B. vinsonii subsp. berkhoffii antibodies. These findings suggest these animals could be the wildlife reservoir of B. vinsonii subsp. berkhoffii. PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of the gltA and 16S rRNA genes for these 31 isolates yielded similar profiles that were identical to those of B. vinsonii subsp. berkhoffii. Partial sequencing of the gltA and 16S rRNA genes, respectively, indicated 99.5 and 100% homology between the coyote isolate and B. vinsonii subsp. berkhoffii (ATCC 51672). PCR-RFLP analysis of the 16S-23S intergenic spacer region showed the existence of two different strain profiles, as has been reported in dogs. Six (19%) of 31 Bartonella bacteremic coyotes exhibited the strain profile that was identified in the type strain of a canine endocarditis case (B. vinsonii subsp. berkhoffii ATCC 51672). The other 25 bacteremic coyotes were infected with a strain that was similar to the strains isolated from healthy dogs. Based on whole bacterial genome analysis by pulsed-field gel electrophoresis (PFGE) with SmaI restriction endonuclease, there was more diversity in fingerprints for the coyote isolates, which had at least 10 major variants compared to the two variants described for domestic dog isolates from the eastern United States. By PFGE analysis, three Bartonella bacteremic coyotes were infected by a strain identical to the one isolated from three healthy dog carriers. Further studies are necessary

  9. Whole-Genome Analysis of Bartonella ancashensis, a Novel Pathogen Causing Verruga Peruana, Rural Ancash Region, Peru

    PubMed Central

    Hang, Jun; Clifford, Robert J.; Onmus-Leone, Fatma; Yang, Yu; Jiang, Ju; Leguia, Mariana; Kasper, Matthew R.; Maguina, Ciro; Lesho, Emil P.; Jarman, Richard G.; Richards, Allen; Blazes, David

    2017-01-01

    The genus Bartonella contains >40 species, and an increasing number of these Bartonella species are being implicated in human disease. One such pathogen is Bartonella ancashensis, which was isolated in blood samples from 2 patients living in Caraz, Peru, during a clinical trial of treatment for bartonellosis. Three B. ancashensis strains were analyzed by using whole-genome restriction mapping and high-throughput pyrosequencing. Genome-wide comparative analysis of Bartonella species showed that B. ancashensis has features seen in modern and ancient lineages of Bartonella species and is more related to B. bacilliformis. The divergence between B. ancashensis and B. bacilliformis is much greater than what is seen between known Bartonella genetic lineages. In addition, B. ancashensis contains type IV secretion system proteins, which are not present in B. bacilliformis. Whole-genome analysis indicates that B. ancashensis might represent a distinct Bartonella lineage phylogenetically related to B. bacilliformis. PMID:28221130

  10. Molecular Typing of “Candidatus Bartonella ancashi,” a New Human Pathogen Causing Verruga Peruana

    PubMed Central

    Mullins, Kristin E.; Hang, Jun; Jiang, Ju; Leguia, Mariana; Kasper, Matthew R.; Maguiña, Ciro; Jarman, Richard G.; Blazes, David L.

    2013-01-01

    A recently described clinical isolate, “Candidatus Bartonella ancashi,” was obtained from a blood sample of a patient presenting with verruga peruana in the Ancash region of Peru. This sample and a second isolate obtained 60 days later from the same patient were molecularly typed using multilocus sequence typing (MLST) and multispacer sequence typing (MST). The isolates were 100% indistinguishable from each other but phylogenetically distant from Bartonella bacilliformis and considerably divergent from other known Bartonella species, confirming their novelty. PMID:23985925

  11. Differential gene expression in laboratory strains of human head and body lice when challenged with Bartonella quintana, a pathogenic bacterium.

    PubMed

    Previte, D; Olds, B P; Yoon, K; Sun, W; Muir, W; Paige, K N; Lee, S H; Clark, J; Koehler, J E; Pittendrigh, B R

    2014-04-01

    Human head and body lice are obligatory hematophagous ectoparasites that belong to a single species, Pediculus humanus. Only body lice, however, are vectors of the infectious Gram-negative bacterium Bartonella quintana. Because of their near identical genomes, yet differential vector competence, head and body lice provide a unique model system to study the gain or loss of vector competence. Using our in vitro louse-rearing system, we infected head and body lice with blood containing B. quintana in order to detect both differences in the proliferation of B. quintana and transcriptional differences of immune-related genes in the lice. B. quintana proliferated rapidly in body lice at 6 days post-infection, but plateaued in head lice at 4 days post-infection. RNAseq and quantitative real-time PCR validation analyses determined gene expression differences. Eight immunoresponse genes were observed to be significantly different with many associated with the Toll pathway: Fibrinogen-like protein, Spaetzle, Defensin 1, Serpin, Scavenger receptor A and Apolipoporhrin 2. Our findings support the hypothesis that body lice, unlike head lice, fight infection from B. quintana only at the later stages of its proliferation.

  12. Differential gene expression in laboratory strains of human head and body lice when challenged with Bartonella quintana, a pathogenic bacterium

    PubMed Central

    Previte, D.; Olds, B. P.; Yoon, K.; Sun, W.; Muir, W.; Paige, K. N.; Lee, S. H.; Clark, J.; Koehler, J. E.; Pittendrigh, B. R.

    2014-01-01

    Human head and body lice are obligatory hematophagous ectoparasites that belong to a single species, Pediculus humanus. Only body lice, however, are vectors of the infectious Gram-negative bacterium Bartonella quintana. Because of their near identical genomes, yet differential vector competence, head and body lice provide a unique model system to study the gain or loss of vector competence. Using our in vitro louse-rearing system, we infected head and body lice with blood containing B. quintana in order to detect both differences in the proliferation of B. quintana and transcriptional differences of immune-related genes in the lice. B. quintana proliferated rapidly in body lice at 6 days postinfection, but plateaued in head lice at 4 days postinfection. RNAseq and quantitative real-time PCR validation analyses determined gene expression differences. Eight immunoresponse genes were observed to be significantly different with many associated with the Toll pathway: Fibrinogen-like protein, Spaetzle, Defensin 1, Serpin, Scavenger receptor A and Apolipoporhrin 2. Our findings support the hypothesis that body lice, unlike head lice, fight infection from B. quintana only at the later stages of its proliferation. PMID:24404961

  13. Differential effects of Bartonella henselae on human and feline macro- and micro-vascular endothelial cells.

    PubMed

    Berrich, Moez; Kieda, Claudine; Grillon, Catherine; Monteil, Martine; Lamerant, Nathalie; Gavard, Julie; Boulouis, Henri Jean; Haddad, Nadia

    2011-01-01

    Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs), namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host) ECs vs feline (reservoir host) ECs has been carried out because of the absence of any available feline endothelial cell lines.To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development sites such as skin, versus macro-vascular ECs, such as umbilical vein.Our model revealed intrinsic differences between human (Human Skin Microvascular ECs -HSkMEC and Human Umbilical Vein ECs - iHUVEC) and feline ECs susceptibility to Bartonella henselae infection.While no effect was observed on the feline ECs upon Bartonella henselae infection, the human ones displayed accelerated angiogenesis and wound healing.Noticeable differences were demonstrated between human micro- and macro-vasculature derived ECs both in terms of pseudo-tube formation and healing. Interestingly, Bartonella henselae effects on human ECs were also elicited by soluble factors.Neither Bartonella henselae-infected Human Skin Microvascular ECs clinically involved in bacillary angiomatosis, nor feline ECs increased cAMP production, as opposed to HUVEC.Bartonella henselae could stimulate the activation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) in homologous cellular systems and trigger VEGF production by HSkMECs only, but not iHUVEC or any feline ECs tested.These results may explain the decreased pathogenic potential of Bartonella henselae infection for cats as compared to humans and strongly suggest that an autocrine secretion of VEGF by human skin

  14. Zoonotic pathogens in Atlantic Forest wild rodents in Brazil: Bartonella and Coxiella infections.

    PubMed

    Rozental, Tatiana; Ferreira, Michelle Santos; Guterres, Alexandro; Mares-Guia, Maria Angélica; Teixeira, Bernardo R; Gonçalves, Jonathan; Bonvicino, Cibele Rodrigues; D'Andrea, Paulo Sergio; de Lemos, Elba Regina Sampaio

    2017-04-01

    Zoonotic pathogens comprise a significant and increasing fraction of all emerging and re-emerging infectious diseases that plague humans. Identifying host species is one of the keys to controlling emerging infectious diseases. From March 2007 until April 2012, we collected a total of 131 wild rodents in eight municipalities of Rio de Janeiro, Brazil. We investigated these rodents for infection with Coxiella burnetii, Bartonella spp. and Rickettsia spp. In total, 22.1% (29/131) of the rodents were infected by at least one pathogen; co-infection was detected in 1.5% (2/131) of rodents. Coxiella burnetii was detected in 4.6% (6/131) of the wild animals, 17.6% of the rodents harbored Bartonella spp. No cases of Rickettsia were identified. Bartonella doshiae and Bartonella vinsonii were the species found on the wild mammals. This report is the first to note C. burnetii, B. doshiae and B. vinsonii natural infections in Atlantic Forest wild rodents in Brazil. Our work highlights the potential risk of transmission to humans, since most of the infected specimens belong to generalist species that live near human dwellings.

  15. Detection of a Potential New Bartonella Species “Candidatus Bartonella rondoniensis” in Human Biting Kissing Bugs (Reduviidae; Triatominae)

    PubMed Central

    Laroche, Maureen; Berenger, Jean-Michel; Mediannikov, Oleg; Raoult, Didier; Parola, Philippe

    2017-01-01

    Background Among the Reduviidae family, triatomines are giant blood-sucking bugs. They are well known in Central and South America where they transmit Trypanosoma cruzi to mammals, including humans, through their feces. This parasitic protozoan is the causative agent of Chagas disease, a major public health issue in endemic areas. Because of the medical and economic impact of Chagas disease, the presence of other arthropod-borne pathogens in triatomines was rarely investigated. Methodology/Principal findings In this study, seven triatomines species involved in the transmission of T. cruzi were molecularly screened for the presence of known pathogens generally associated with arthropods, such as Rickettsia, Bartonella, Anaplasmataceae, Borrelia species and Coxiella burnetii. Of all included triatomine species, only Eratyrus mucronatus specimens tested positive for Bartonella species for 56% of tested samples. A new genotype of Bartonella spp. was detected in 13/23 Eratyrus mucronatus specimens, an important vector of T. cruzi to humans. This bacterium was further characterized by sequencing fragments of the ftsZ, gltA and rpoB genes. Depending on the targeted gene, this agent shares 84% to 91% of identity with B. bacilliformis, the agent of Carrion’s disease, a deadly sandfly-borne infectious disease endemic in South America. It is also closely related to animal pathogens such as B. bovis and B. chomelii. Conclusions As E. mucronatus is an invasive species that occasionally feeds on humans, the presence of potentially pathogenic Bartonella-infected bugs could present another risk for human health, along with the T. cruzi issue. PMID:28095503

  16. Human Lymphadenopathy Caused by Ratborne Bartonella, Tbilisi, Georgia

    PubMed Central

    Kandelaki, George; Malania, Lile; Bai, Ying; Chakvetadze, Neli; Katsitadze, Guram; Imnadze, Paata; Nelson, Christina; Harrus, Shimon

    2016-01-01

    Lymphadenopathy and fever that developed in a woman in Tbilisi, Georgia, most likely were caused by a ratborne Bartonella strain related B. tribocorum and B. elizabethae. The finding suggests that this Bartonella strain could be spread by infected rats and represents a potential human risk. PMID:26889959

  17. Bartonella species pathogenic for humans infect pets, free-ranging wild mammals and their ectoparasites in the Caatinga biome, Northeastern Brazil: a serological and molecular study.

    PubMed

    Fontalvo, Mariana Campos; Favacho, Alexsandra Rodrigues de Mendonça; Araujo, Andreina de Carvalho; Santos, Naylla Mayana Dos; Oliveira, Glauber Meneses Barboza de; Aguiar, Daniel Moura; Lemos, Elba Regina Sampaio de; Horta, Mauricio Claudio

    2017-02-27

    This study verified the occurrence of Bartonella spp. in dogs, cats, wild mammals and their ectoparasites in Petrolina and Lagoa Grande Counties, Pernambuco, located in a semi-arid region in Northeastern Brazil. Anti-Bartonella spp. antibodies were detected by indirect immunofluorescence assay (IFA) in 24.8% of dogs (27/109) and in 15% of cats (6/40). Bartonella sp. DNA was identified by PCR performed on DNA extracted from blood and ectoparasites using primers targeting Bartonella sp. gltA and ribC genes in 100% (9/9) of Pulex irritans from Cerdocyon thous, 57.4% (35/61) of P. irritans from dogs, 2.3% (1/43) of Ctenocephalides felis felis from dogs, 53.3% (24/45) of C. felis felis from cats, and 10% (1/10) of Polyplax spp. from Thrichomys apereoides. DNA sequencing identified Bartonella clarridgeiae and Bartonella henselae in C. felis felis from cats, Bartonella rochalimae in P. irritans from dog and C. thous, and Bartonella vinsoni berkhofii in P. irritans from dog.

  18. Mixed infections, cryptic diversity, and vector-borne pathogens: evidence from Polygenis fleas and Bartonella species.

    PubMed

    Abbot, Patrick; Aviles, Alena E; Eller, Lauren; Durden, Lance A

    2007-10-01

    Coinfections within hosts present opportunities for horizontal gene transfer between strains and competitive interactions between genotypes and thus can be a critical element of the lifestyles of pathogens. Bartonella spp. are Alphaproteobacteria that parasitize mammalian erythrocytes and endothelial cells. Their vectors are thought to be various biting arthropods, such as fleas, ticks, mites, and lice, and they are commonly cited as agents of various emerging diseases. Coinfections by different Bartonella strains and species can be common in mammals, but little is known about specificity and coinfections in arthropod vectors. We surveyed the rate of mixed infections of Bartonella in flea vectors (Polygenis gwyni) parasitizing cotton rats (Sigmodon hispidus) in which previous surveys indicated high rates of infection. We found that nearly all fleas (20 of 21) harbored one or more strains of Bartonella, with rates of coinfection approaching 90%. A strain previously identified as common in cotton rats was also common in their fleas. However, another common strain in cotton rats was absent from P. gwyni, while a rare cotton rat strain was quite common in P. gwyni. Surprisingly, some samples were also coinfected with a strain phylogenetically related to Bartonella clarridgeiae, which is typically associated with felids and ruminants. Finally, a locus (pap31) that is characteristically borne on phage in Bartonella was successfully sequenced from most samples. However, sequence diversity in pap31 was novel in the P. gwyni samples, relative to other Bartonella previously typed with pap31, emphasizing the likelihood of large reservoirs of cryptic diversity in natural populations of the pathogen.

  19. Bartonella, Rodents, Fleas and Ticks: a Molecular Field Study on Host-Vector-Pathogen Associations in Saxony, Eastern Germany.

    PubMed

    Silaghi, Cornelia; Pfeffer, Martin; Kiefer, Daniel; Kiefer, Matthias; Obiegala, Anna

    2016-11-01

    Bartonellae cause zoonotic diseases and are transmitted by arthropods. Rodents are reservoirs for most Bartonella spp. As the knowledge about Bartonella in rodents and their parasitizing ectoparasites is scarce in Germany, this study's objectives were to investigate Bartonella spp. in small mammals and in their ectoparasites. A total of 79 small mammals (seven species) were captured and their ectoparasites collected at seven sites around Leipzig, Saxony, Germany, in 2010 and 2011. Altogether, 79 spleen samples, 135 fleas (five species) and 365 ticks (three species) were investigated for Bartonella spp. by PCR targeting the ITS 16S-23S rRNA region. In total, 52 (65.8 %) small mammals, 73 (54.1 %) fleas and 51 (16.3 %) ticks were positive for Bartonella spp. Most small mammals were positive for uncultured Bartonella sp. (n = 29) followed by Bartonella grahamii (n = 12), Bartonella taylorii (n = 8) and Bartonella sp. N40 (n = 3). Likewise, most fleas were positive for uncultured Bartonella sp. (n = 45) followed by B. grahamii (n = 14), B. taylorii (n = 8), B. sp. N40 (n = 5) and Bartonella elizabethae (n = 2). Most ticks were positive for B. sp. (n = 19) followed by B. grahamii (n = 10), Bartonella chomelii (n = 3), B. taylorii (n = 2) and B. sp. N40 (n = 1). This study's results suggest that rodents and fleas may be reservoirs and vectors, respectively. Zoonotic B. grahamii and B. elizabethae were found in rodents and their fleas. Therefore, humans may contract Bartonella infection by contact to wild rodents. Ticks seem of minor importance in transmitting Bartonella spp. found in fleas and rodents. However, ticks might be vectors of B. chomelii.

  20. Molecular Characterization of First Human Bartonella Strain Isolated in Italy

    PubMed Central

    Ciervo, Alessandra; Petrucca, Andrea; Ciarrocchi, Simonetta; Pinto, Antonella; Bonazzi, Lucio; Fabio, Anna; Farnetti, Enrico; Chomel, Bruno B.; Ciceroni, Lorenzo

    2001-01-01

    The aim of this study was to characterize a Bartonella strain (BA-1) isolated from a blood culture of an Italian, human immunodeficiency virus-positive patient with bacillary angiomatosis. We analyzed the isolate using molecular biology methods such as whole-cell fatty acid analysis, PCR-restriction fragment length polymorphism analysis, type-specific 16S rRNA PCRs, sequence analysis of the 16S rRNA, pulsed-field gel electrophoresis, and arbitrarily primed PCR. The BA-1 isolate turned out to be a Bartonella quintana strain, similar but not identical to B. quintana Oklahoma, which was used as a control strain. PMID:11724882

  1. Rodent-associated Bartonella Febrile Illness, Southwestern United States

    PubMed Central

    Iralu, Jonathan; Bai, Ying; Crook, Larry; Tempest, Bruce; Simpson, Gary; McKenzie, Taylor

    2006-01-01

    Serum specimens from 114 patients hospitalized with a febrile illness were tested with an indirect immunofluorescence assay (IFA) using Bartonella antigens prepared from 6 species of sigmodontine rodents and 3 known human Bartonella pathogens: B. henselae, B. quintana, and B. elizabethae. Acute- and convalescent-phase serum samples from 5 of these patients showed seroconversion with an IFA titer >512 to rodent-associated Bartonella antigens. The highest titer was against antigen derived from the white-throated woodrat (Neotoma albigula), although this rodent is not necessarily implicated as the source of infection. Three of the 5 who seroconverted showed no cross-reaction to the 3 Bartonella human pathogens. Common clinical characteristics were fever, chills, myalgias, leukopenia, thrombocytopenia, and transaminasemia. Although antibodies to Bartonella are cross-reactive, high-titer seroconversions to rodent-associated Bartonella antigens in adults with common clinical characteristics should stimulate the search for additional Bartonella human pathogens. PMID:16836824

  2. Bartonella entry mechanisms into mammalian host cells.

    PubMed

    Eicher, Simone C; Dehio, Christoph

    2012-08-01

    The Gram-negative genus Bartonella comprises arthropod-borne pathogens that typically infect mammals in a host-specific manner. Bartonella bacilliformis and Bartonella quintana are human-specific pathogens, while several zoonotic bartonellae specific for diverse animal hosts infect humans as an incidental host. Clinical manifestations of Bartonella infections range from mild symptoms to life-threatening disease. Following transmission by blood-sucking arthropods or traumatic contact with infected animals, bartonellae display sequential tropisms towards endothelial and possibly other nucleated cells and erythrocytes, the latter in a host-specific manner. Attachment to the extracellular matrix (ECM) and to nucleated cells is mediated by surface-exposed bacterial adhesins, in particular trimeric autotransporter adhesins (TAAs). The subsequent engulfment of the pathogen into a vacuolar structure follows a unique series of events whereby the pathogen avoids the endolysosomal compartments. For Bartonella henselae and assumingly most other species, the infection process is aided at different steps by Bartonella effector proteins (Beps). They are injected into host cells through the type IV secretion system (T4SS) VirB/D4 and subvert host cellular functions to favour pathogen uptake. Bacterial binding to erythrocytes is mediated by Trw, another T4SS, in a strictly host-specific manner, followed by pathogen-forced uptake involving the IalB invasin and subsequent replication and persistence within a membrane-bound intra-erythrocytic compartment.

  3. Investigation of Bartonella acquisition and transmission in Xenopsylla ramesis fleas (Siphonaptera: Pulicidae).

    PubMed

    Morick, Danny; Krasnov, Boris R; Khokhlova, Irina S; Gottlieb, Yuval; Harrus, Shimon

    2011-07-01

    Bartonella are emerging and re-emerging pathogens affecting humans and a wide variety of animals including rodents. Horizontal transmission of Bartonella species by different hematophagous vectors is well acknowledged but vertical transmission (from mother to offspring) is questionable and was never explored in fleas. The aim of this study was to investigate whether the rodent flea, Xenopsylla ramesis, can acquire native Bartonella from wild rodents and transmit it transovarially. For this aim, Bartonella-free laboratory-reared X. ramesis fleas were placed on six naturally Bartonella-infected rodents and six species-matched Bartonella-negative rodents (three Meriones crassus jirds, two Gerbillus nanus gerbils and one Gerbillus dasyurus gerbil) for 7 days, 12-14h per day. The fleas that were placed on the Bartonella-positive rodents acquired four different Bartonella genotypes. Eggs and larvae laid and developed, respectively, by fleas from both rodent groups were collected daily for 7 days and molecularly screened for Bartonella. All eggs and larvae from both groups were found to be negative for Bartonella DNA. Interestingly, two of five gut voids regurgitated by Bartonella-positive fleas contained Bartonella DNA. The naturally infected rodents remained persistently infected with Bartonella for at least 89 days suggesting their capability to serve as competent reservoirs for Bartonella species. The findings in this study indicate that X. ramesis fleas can acquire several Bartonella strains from wild rodents but cannot transmit Bartonella transovarially.

  4. [Microbiological diagnosis of emerging bacterial pathogens: Anaplasma, Bartonella, Rickettsia, and Tropheryma whipplei].

    PubMed

    Blanco, José Ramón; Jado, Isabel; Marín, Mercedes; Sanfeliu, Isabel; Portillo, Aránzazu; Anda, Pedro; Pons, Immaculada; Oteo, José Antonio

    2008-11-01

    Ehrlichia/Anaplasma, Bartonella, Rickettsia and Tropheryma whipplei (formerly called whippelii) are fastidious bacterial organisms, considered the causative agents of potentially severe emerging and re-emerging diseases with repercussions on public health. The recent availability of advanced molecular biology and cell culture techniques has led to the implication of many of these species in human pathologies. These issues are extensively covered in number 27 of the SEIMC microbiological procedure: Diagnóstico microbiológico de las infecciones por patógenos bacterianos emergentes: Anaplasma, Bartonella, Rickettsia y Tropheryma whippelii (Microbiological diagnosis of Anaplasma, Bartonella, Rickettsia and Tropheryma whippelii infections) (2nd ed., 2007) (www.seimc.org/documentos/protocolos/microbiologia/).

  5. Adhesion and host cell modulation: critical pathogenicity determinants of Bartonella henselae

    PubMed Central

    2011-01-01

    Bartonella henselae, the agent of cat scratch disease and the vasculoproliferative disorders bacillary angiomatosis and peliosis hepatis, contains to date two groups of described pathogenicity factors: adhesins and type IV secretion systems. Bartonella adhesin A (BadA), the Trw system and possibly filamentous hemagglutinin act as promiscous or specific adhesins, whereas the virulence locus (Vir)B/VirD4 type IV secretion system modulates a variety of host cell functions. BadA mediates bacterial adherence to endothelial cells and extracellular matrix proteins and triggers the induction of angiogenic gene programming. The VirB/VirD4 type IV secretion system is responsible for, e.g., inhibition of host cell apoptosis, bacterial persistence in erythrocytes, and endothelial sprouting. The Trw-conjugation system of Bartonella spp. mediates host-specific adherence to erythrocytes. Filamentous hemagglutinins represent additional potential pathogenicity factors which are not yet characterized. The exact molecular functions of these pathogenicity factors and their contribution to an orchestral interplay need to be analyzed to understand B. henselae pathogenicity in detail. PMID:21489243

  6. Novel Bartonella Species in Insectivorous Bats, Northern China

    PubMed Central

    Han, Hui-Ju; Wen, Hong-ling; Zhao, Li; Liu, Jian-wei; Luo, Li-Mei; Zhou, Chuan-Min; Qin, Xiang-Rong; Zhu, Ye-Lei; Zheng, Xue-Xing

    2017-01-01

    Bartonella species are emerging human pathogens. Bats are known to carry diverse Bartonella species, some of which are capable of infecting humans. However, as the second largest mammalian group by a number of species, the role of bats as the reservoirs of Bartonella species is not fully explored, in term of their species diversity and worldwide distribution. China, especially Northern China, harbors a number of endemic insectivorous bat species; however, to our knowledge, there are not yet studies about Bartonella in bats in China. The aim of the study was to investigate the prevalence and genetic diversity of Bartonella species in bats in Northern China. Bartonella species were detected by PCR amplification of gltA gene in 25.2% (27/107) bats in Mengyin County, Shandong Province of China, including 1/3 Rhinolophus ferrumequinum, 2/10 Rhinolophus pusillus, 9/16 Myotis fimbriatus, 1/5 Myotis ricketti, 14/58 Myotis pequinius. Phylogenetic analysis showed that Bartonella species detected in bats in this study clustered into ten groups, and some might be novel Bartonella species. An association between Bartonella species and bat species was demonstrated and co-infection with different Bartonella species in a single bat was also observed. Our findings expanded our knowledge on the genetic diversity of Bartonella in bats, and shed light on the ecology of bat-borne Bartonella species. PMID:28081122

  7. Adhesion to and invasion of cultured human cells by Bartonella bacilliformis.

    PubMed Central

    Hill, E M; Raji, A; Valenzuela, M S; Garcia, F; Hoover, R

    1992-01-01

    Bartonella bacilliformis was tested for its ability to adhere to and invade tissue culture cell monolayers. The parasite was able to efficiently bind and penetrate human dermal fibroblasts, human laryngeal epithelium, and human umbilical vein endothelial cells. Exposure of the organism to immune serum prepared against a crude Bartonella extract containing cell wall and membranous material resulted in decreased ability of the parasite to invade host cells. There was also an overall reduction in the invasiveness of bartonellae and total host cell association when human laryngeal epithelial cells and human umbilical vein endothelial cells were preexposed to cytochalasin D, indicating an active involvement of host cells in the uptake of bartonellae. Transmission electron microscopy revealed the presence of bartonellae inside and outside intracellular vacuoles. These data suggest that a surface-associated factor is involved in the invasion process and that internalization of the parasite by host cells involves a microfilament-dependent process similar to phagocytosis. Images PMID:1398917

  8. Candidatus Bartonella merieuxii, a Potential New Zoonotic Bartonella Species in Canids from Iraq

    PubMed Central

    Chomel, Bruno B.; McMillan-Cole, Audrey C.; Kasten, Rickie W.; Stuckey, Matthew J.; Sato, Shingo; Maruyama, Soichi; Diniz, Pedro P. V. P.; Breitschwerdt, Edward B.

    2012-01-01

    Bartonellae are emerging vector-borne pathogens infecting erythrocytes and endothelial cells of various domestic and wild mammals. Blood samples were collected from domestic and wild canids in Iraq under the United States Army zoonotic disease surveillance program. Serology was performed using an indirect immunofluorescent antibody test for B. henselae, B. clarridgeiae, B. vinsonii subsp. berkhoffii and B. bovis. Overall seroprevalence was 47.4% in dogs (n = 97), 40.4% in jackals (n = 57) and 12.8% in red foxes (n = 39). Bartonella species DNA was amplified from whole blood and representative strains were sequenced. DNA of a new Bartonella species similar to but distinct from B. bovis, was amplified from 37.1% of the dogs and 12.3% of the jackals. B. vinsonii subsp. berkhoffii was also amplified from one jackal and no Bartonella DNA was amplified from foxes. Adjusting for age, the odds of dogs being Bartonella PCR positive were 11.94 times higher than for wild canids (95% CI: 4.55–31.35), suggesting their role as reservoir for this new Bartonella species. This study reports on the prevalence of Bartonella species in domestic and wild canids of Iraq and provides the first detection of Bartonella in jackals. We propose Candidatus Bartonella merieuxii for this new Bartonella species. Most of the Bartonella species identified in sick dogs are also pathogenic for humans. Therefore, seroprevalence in Iraqi dog owners and bacteremia in Iraqi people with unexplained fever or culture negative endocarditis requires further investigation as well as in United States military personnel who were stationed in Iraq. Finally, it will also be essential to test any dog brought back from Iraq to the USA for presence of Bartonella bacteremia to prevent any accidental introduction of a new Bartonella species to the New World. PMID:23029597

  9. Kinetics of Bartonella birtlesii Infection in Experimentally Infected Mice and Pathogenic Effect on Reproductive Functions

    PubMed Central

    Boulouis, Henri J.; Barrat, Francine; Bermond, Delphine; Bernex, Florence; Thibault, Danièle; Heller, Rémy; Fontaine, Jean-Jacques; Piémont, Yves; Chomel, Bruno B.

    2001-01-01

    The kinetics of infection and the pathogenic effects on the reproductive function of laboratory mice infected with Bartonella birtlesii recovered from an Apodemus species are described. B. birtlesii infection, as determined by bacteremia, occurred in BALB/c mice inoculated intravenously. Inoculation with a low-dose inoculum (1.5 × 103 CFU) induced bacteremia in only 75% of the mice compared to all of the mice inoculated with higher doses (≥1.5 × 104). Mice became bacteremic for at least 5 weeks (range, 5 to 8 weeks) with a peak ranging from 2 × 103 to 105 CFU/ml of blood. The bacteremia level was significantly higher in virgin females than in males but the duration of bacteremia was similar. In mice infected before pregnancy (n = 20), fetal loss was evaluated by enumerating resorption and fetal death on day 18 of gestation. The fetal death and resorption percentage of infected mice was 36.3% versus 14.5% for controls (P < 0.0001). Fetal suffering was evaluated by weighing viable fetuses. The weight of viable fetuses was significantly lower for infected mice than for uninfected mice (P < 0.0002). Transplacental transmission of Bartonella was demonstrated since 76% of the fetal resorptions tested was culture positive for B. birtlesii. The histopathological analysis of the placentas of infected mice showed vascular lesions in the maternal placenta, which could explain the reproductive disorders observed. BALB/c mice appeared to be a useful model for studying Bartonella infection. This study provides the first evidence of reproductive disorders in mice experimentally infected with a Bartonella strain originating from a wild rodent. PMID:11500400

  10. Cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the human pathogenic bacterium Bartonella henselae strain Houston-1 at 2.1 Å resolution

    PubMed Central

    Naqvi, Kubra F.; Staker, Bart L.; Dobson, Renwick C. J.; Serbzhinskiy, Dmitry; Sankaran, Banumathi; Myler, Peter J.; Hudson, André O.

    2016-01-01

    The enzyme dihydrodipicolinate synthase catalyzes the committed step in the synthesis of diaminopimelate and lysine to facilitate peptidoglycan and protein synthesis. Dihydrodipicolinate synthase catalyzes the condensation of l-aspartate 4-semialdehyde and pyruvate to synthesize l-2,3-dihydrodipico­linate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the pathogenic bacterium Bartonella henselae, the causative bacterium of cat-scratch disease, are presented. Protein crystals were grown in conditions consisting of 20%(w/v) PEG 4000, 100 mM sodium citrate tribasic pH 5.5 and were shown to diffract to ∼2.10 Å resolution. They belonged to space group P212121, with unit-cell parameters a = 79.96, b = 106.33, c = 136.25 Å. The final R values were R r.i.m. = 0.098, R work = 0.183, R free = 0.233. PMID:26750477

  11. Paleomicrobiology of Bartonella infections.

    PubMed

    Fournier, Pierre-Edouard; Drancourt, Michel; Aboudharam, Gérard; Raoult, Didier

    2015-01-01

    Studying ancient infectious diseases is a challenge, as written contemporary descriptions, when available, are often imprecise and do not allow for accurate discrimination among the pathogens endemic at that time. Paleomicrobiology offers a unique access to the history of these infections by identifying precisely the causative agents. Body louse-transmitted infections are amongst the most epidemic diseases in history, especially in war and famine periods. Of these, Bartonella quintana was detected by suicide PCR in 4000-year-old human remains, thus representing the oldest evidence to date of an arthropod-transmitted infection to human beings. This species has also been detected in human specimens from the 11th to 15th, 18th and 19th centuries. In addition, Bartonella henselae, a cat- and flea-associated pathogen, was detected in cat specimens from the 13th to 18th centuries, therefore demonstrating an association of the bacterium and its reservoir for over 800 years. Therefore, pathogenic Bartonella species have been involved in several outbreaks in the past millennia and should systematically be investigated in human remains from suspected epidemics.

  12. A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells

    PubMed Central

    Schulein, Ralf; Guye, Patrick; Rhomberg, Thomas A.; Schmid, Michael C.; Schröder, Gunnar; Vergunst, Annette C.; Carena, Ilaria; Dehio, Christoph

    2005-01-01

    Bacterial type IV secretion (T4S) systems mediate the transfer of macromolecular substrates into various target cells, e.g., the conjugative transfer of DNA into bacteria or the transfer of virulence proteins into eukaryotic host cells. The T4S apparatus VirB of the vascular tumor-inducing pathogen Bartonella henselae causes subversion of human endothelial cell (HEC) function. Here we report the identification of multiple protein substrates of VirB, which, upon translocation into HEC, mediate all known VirB-dependent cellular changes. These Bartonella-translocated effector proteins (Beps) A-G are encoded together with the VirB system and the T4S coupling protein VirD4 on a Bartonella-specific pathogenicity island. The Beps display a modular architecture, suggesting an evolution by extensive domain duplication and reshuffling. The C terminus of each Bep harbors at least one copy of the Bep-intracellular delivery domain and a short positively charged tail sequence. This biparte C terminus constitutes a transfer signal that is sufficient to mediate VirB/VirD4-dependent intracellular delivery of reporter protein fusions. The Bep-intracellular delivery domain is also present in conjugative relaxases of bacterial conjugation systems. We exemplarily show that the C terminus of such a conjugative relaxase mediates protein transfer through the Bartonella henselae VirB/VirD4 system into HEC. Conjugative relaxases may thus represent the evolutionary origin of the here defined T4S signal for protein transfer into human cells. PMID:15642951

  13. A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells.

    PubMed

    Schulein, Ralf; Guye, Patrick; Rhomberg, Thomas A; Schmid, Michael C; Schröder, Gunnar; Vergunst, Annette C; Carena, Ilaria; Dehio, Christoph

    2005-01-18

    Bacterial type IV secretion (T4S) systems mediate the transfer of macromolecular substrates into various target cells, e.g., the conjugative transfer of DNA into bacteria or the transfer of virulence proteins into eukaryotic host cells. The T4S apparatus VirB of the vascular tumor-inducing pathogen Bartonella henselae causes subversion of human endothelial cell (HEC) function. Here we report the identification of multiple protein substrates of VirB, which, upon translocation into HEC, mediate all known VirB-dependent cellular changes. These Bartonella-translocated effector proteins (Beps) A-G are encoded together with the VirB system and the T4S coupling protein VirD4 on a Bartonella-specific pathogenicity island. The Beps display a modular architecture, suggesting an evolution by extensive domain duplication and reshuffling. The C terminus of each Bep harbors at least one copy of the Bep-intracellular delivery domain and a short positively charged tail sequence. This biparte C terminus constitutes a transfer signal that is sufficient to mediate VirB/VirD4-dependent intracellular delivery of reporter protein fusions. The Bep-intracellular delivery domain is also present in conjugative relaxases of bacterial conjugation systems. We exemplarily show that the C terminus of such a conjugative relaxase mediates protein transfer through the Bartonella henselae VirB/VirD4 system into HEC. Conjugative relaxases may thus represent the evolutionary origin of the here defined T4S signal for protein transfer into human cells.

  14. Managing iron supply during the infection cycle of a flea borne pathogen, Bartonella henselae.

    PubMed

    Liu, Mafeng; Biville, Francis

    2013-01-01

    Bartonella are hemotropic bacteria responsible for emerging zoonoses. Most Bartonella species appear to share a natural cycle that involves an arthropod transmission, followed by exploitation of a mammalian host in which they cause long-lasting intra-erythrocytic bacteremia. Persistence in erythrocytes is considered an adaptation to transmission by bloodsucking arthropod vectors and a strategy to obtain heme required for Bartonella growth. Bartonella genomes do not encode for siderophore biosynthesis or a complete iron Fe(3+) transport system. Only genes, sharing strong homology with all components of a Fe(2+) transport system, are present in Bartonella genomes. Also, Bartonella genomes encode for a complete heme transport system. Bartonella must face various environments in their hosts and vectors. In mammals, free heme and iron are rare and oxygen concentration is low. In arthropod vectors, toxic heme levels are found in the gut where oxygen concentration is high. Bartonella genomes encode for 3-5 heme-binding proteins. In Bartonella henselae heme-binding proteins were shown to be involved in heme uptake process, oxidative stress response, and survival inside endothelial cells and in the flea. In this report, we discuss the use of the heme uptake and storage system of B. henselae during its infection cycle. Also, we establish a comparison with the iron and heme uptake systems of Yersinia pestis used during its infection cycle.

  15. Heterologous Expression of Bartonella Adhesin A in Escherichia coli by Exchange of Trimeric Autotransporter Adhesin Domains Results in Enhanced Adhesion Properties and a Pathogenic Phenotype

    PubMed Central

    Schmidgen, Thomas; Kaiser, Patrick O.; Ballhorn, Wibke; Franz, Bettina; Göttig, Stephan; Linke, Dirk

    2014-01-01

    Human-pathogenic Bartonella henselae causes cat scratch disease and vasculoproliferative disorders. An important pathogenicity factor of B. henselae is the trimeric autotransporter adhesin (TAA) Bartonella adhesin A (BadA), which is modularly constructed, consisting of a head, a long and repetitive neck-stalk module, and a membrane anchor. BadA is involved in bacterial autoagglutination, binding to extracellular matrix proteins and host cells, and in proangiogenic reprogramming. The slow growth of B. henselae and limited tools for genetic manipulation are obstacles for detailed examination of BadA and its domains. Here, we established a recombinant expression system for BadA mutants in Escherichia coli allowing functional analysis of particular BadA domains. Using a BadA mutant lacking 21 neck-stalk repeats (BadA HN23), the BadA HN23 signal sequence was exchanged with that of E. coli OmpA, and the BadA membrane anchor was additionally replaced with that of Yersinia adhesin A (YadA). Constructs were cloned in E. coli, and hybrid protein expression was detected by immunoblotting, fluorescence microscopy, and flow cytometry. Functional analysis revealed that BadA hybrid proteins mediate autoagglutination and binding to collagen and endothelial cells. In vivo, expression of this BadA construct correlated with higher pathogenicity of E. coli in a Galleria mellonella infection model. PMID:24682330

  16. Effects of rodent community diversity and composition on prevalence of an endemic bacterial pathogen - Bartonella

    USGS Publications Warehouse

    Bai, Y.; Kosoy, M.Y.; Calisher, C.H.; Cully, J.F.; Collinge, S.K.

    2009-01-01

    By studying Bartonella prevalence in rodent communities from 23 geographic sites in the western United States and one site in northern Mexico, the present study focused on the effects of rodent community diversity (measured by richness and Shannon index) and composition on prevalence of Bartonella infections. The analysis showed negative correlations of Bartonella prevalence with rodent richness and Shannon index. Further, Bartonella prevalence varied among rodent genera/species. Three models were applied to explain the observations. (1) Within-species/genus transmission: Bartonella strains usually are host-specific and adding non-host species would decrease Bartonella prevalence in its principal host through reduction of host contact (encounter reduction); (2) Frequency-dependence: Adding hosts would decrease the proportion of all infected individuals in the community, resulting in a reduction in the number of contacts between susceptible and infected individuals that usually leads to transmission (transmission reduction); and (3) Dominant species effect: Dominant species, if not susceptible to Bartonellae, can constrain the abundance of susceptible hosts (susceptible host regulation). These mechanisms work in concert; and the level of Bartonella prevalence is an outcome of regulation of all of these mechanisms on the entire system.

  17. Vertical nontransovarial transmission of Bartonella in fleas.

    PubMed

    Morick, Danny; Krasnov, Boris R; Khokhlova, Irina S; Gutiérrez, Ricardo; Gottlieb, Yuval; Harrus, Shimon

    2013-09-01

    Pathogens use diverse pathways to infect host populations by vertical and/or horizontal routes. Horizontal transmission of bacteria belonging to the Bartonella genus via haematophagous vectors is well known. Vertical transmission of Bartonella species was also suggested to occur but its routes remain to be unveiled. In a previous study, we showed the absence of transovarial transmission of Bartonella species OE 1-1 in Xenopsylla ramesis fleas, and that fleas feeding on Bartonella-positive jirds produced Bartonella-positive gut voids. This current study aimed to investigate whether vertical nontransovarial transmission of Bartonella occurs in fleas. For this aim, the X. ramesis-Bartonella sp. OE 1-1 model was used. Four groups of fleas including Bartonella-positive and Bartonella-negative female fleas and larval offspring had access to either Bartonella-negative or Bartonella-positive gut voids and faeces. Sixteen per cent of flea offspring that had access to Bartonella-positive faeces and gut voids became Bartonella positive. Our findings demonstrate that Bartonella-positive flea faeces and gut voids are proper infection sources for flea larvae and indicate that vertical nontransovarial transmission of bartonellae occurs in fleas. This information broadens our understanding of Bartonella transmission routes in flea vectors and enlightens pathways of bartonellae transmission and maintenance in flea populations in nature.

  18. Bartonella species in invasive rats and indigenous rodents from Uganda.

    PubMed

    Billeter, Sarah A; Borchert, Jeff N; Atiku, Linda A; Mpanga, Joseph T; Gage, Kenneth L; Kosoy, Michael Y

    2014-03-01

    The presence of bartonellae in invasive rats (Rattus rattus) and indigenous rodents (Arvicanthis niloticus and Cricetomys gambianus) from two districts in Uganda, Arua and Zombo, was examined by PCR detection and culture. Blood from a total of 228 R. rattus, 31 A. niloticus, and 5 C. gambianus was screened using genus-specific primers targeting the 16S-23S intergenic spacer region. Furthermore, rodent blood was plated on brain heart infusion blood agar, and isolates were verified as Bartonella species using citrate synthase gene- (gltA) specific primers. One hundred and four fleas recovered from R. rattus were also tested for the presence of Bartonella species using the same gltA primer set. An overall prevalence of 1.3% (three of 228) was obtained in R. rattus, whereas 61.3% of 31 A. niloticus and 60% of five C. gambianus were positive for the presence of Bartonella species. Genotypes related to Bartonella elizabethae, a known zoonotic pathogen, were detected in three R. rattus and one C. gambianus. Bartonella strains, similar to bacteria detected in indigenous rodents from other African countries, were isolated from the blood of A. niloticus. Bartonellae, similar to bacteria initially cultured from Ornithodorus sonrai (soft tick) from Senegal, were found in two C. gambianus. Interestingly, bartonellae detected in fleas from invasive rats were similar to bacteria identified in indigenous rodents and not their rat hosts, with an overall prevalence of 6.7%. These results suggest that if fleas are competent vectors of these bartonellae, humans residing in these two districts of Uganda are potentially at greater risk for exposure to Bartonella species from native rodents than from invasive rats. The low prevalence of bartonellae in R. rattus was quite surprising, in contrast, to the detection of these organisms in a large percentage of Rattus species from other geographical areas. A possible reason for this disparity is discussed.

  19. A Gene Transfer Agent and a Dynamic Repertoire of Secretion Systems Hold the Keys to the Explosive Radiation of the Emerging Pathogen Bartonella

    PubMed Central

    Guy, Lionel; Nystedt, Björn; Toft, Christina; Zaremba-Niedzwiedzka, Katarzyna; Berglund, Eva C.; Granberg, Fredrik; Näslund, Kristina; Eriksson, Ann-Sofie; Andersson, Siv G. E.

    2013-01-01

    Gene transfer agents (GTAs) randomly transfer short fragments of a bacterial genome. A novel putative GTA was recently discovered in the mouse-infecting bacterium Bartonella grahamii. Although GTAs are widespread in phylogenetically diverse bacteria, their role in evolution is largely unknown. Here, we present a comparative analysis of 16 Bartonella genomes ranging from 1.4 to 2.6 Mb in size, including six novel genomes from Bartonella isolated from a cow, two moose, two dogs, and a kangaroo. A phylogenetic tree inferred from 428 orthologous core genes indicates that the deadly human pathogen B. bacilliformis is related to the ruminant-adapted clade, rather than being the earliest diverging species in the genus as previously thought. A gene flux analysis identified 12 genes for a GTA and a phage-derived origin of replication as the most conserved innovations. These are located in a region of a few hundred kb that also contains 8 insertions of gene clusters for type III, IV, and V secretion systems, and genes for putatively secreted molecules such as cholera-like toxins. The phylogenies indicate a recent transfer of seven genes in the virB gene cluster for a type IV secretion system from a cat-adapted B. henselae to a dog-adapted B. vinsonii strain. We show that the B. henselae GTA is functional and can transfer genes in vitro. We suggest that the maintenance of the GTA is driven by selection to increase the likelihood of horizontal gene transfer and argue that this process is beneficial at the population level, by facilitating adaptive evolution of the host-adaptation systems and thereby expansion of the host range size. The process counters gene loss and forces all cells to contribute to the production of the GTA and the secreted molecules. The results advance our understanding of the role that GTAs play for the evolution of bacterial genomes. PMID:23555299

  20. A gene transfer agent and a dynamic repertoire of secretion systems hold the keys to the explosive radiation of the emerging pathogen Bartonella.

    PubMed

    Guy, Lionel; Nystedt, Björn; Toft, Christina; Zaremba-Niedzwiedzka, Katarzyna; Berglund, Eva C; Granberg, Fredrik; Näslund, Kristina; Eriksson, Ann-Sofie; Andersson, Siv G E

    2013-03-01

    Gene transfer agents (GTAs) randomly transfer short fragments of a bacterial genome. A novel putative GTA was recently discovered in the mouse-infecting bacterium Bartonella grahamii. Although GTAs are widespread in phylogenetically diverse bacteria, their role in evolution is largely unknown. Here, we present a comparative analysis of 16 Bartonella genomes ranging from 1.4 to 2.6 Mb in size, including six novel genomes from Bartonella isolated from a cow, two moose, two dogs, and a kangaroo. A phylogenetic tree inferred from 428 orthologous core genes indicates that the deadly human pathogen B. bacilliformis is related to the ruminant-adapted clade, rather than being the earliest diverging species in the genus as previously thought. A gene flux analysis identified 12 genes for a GTA and a phage-derived origin of replication as the most conserved innovations. These are located in a region of a few hundred kb that also contains 8 insertions of gene clusters for type III, IV, and V secretion systems, and genes for putatively secreted molecules such as cholera-like toxins. The phylogenies indicate a recent transfer of seven genes in the virB gene cluster for a type IV secretion system from a cat-adapted B. henselae to a dog-adapted B. vinsonii strain. We show that the B. henselae GTA is functional and can transfer genes in vitro. We suggest that the maintenance of the GTA is driven by selection to increase the likelihood of horizontal gene transfer and argue that this process is beneficial at the population level, by facilitating adaptive evolution of the host-adaptation systems and thereby expansion of the host range size. The process counters gene loss and forces all cells to contribute to the production of the GTA and the secreted molecules. The results advance our understanding of the role that GTAs play for the evolution of bacterial genomes.

  1. Bartonella spp. in Bats, Guatemala.

    PubMed

    Bai, Ying; Kosoy, Michael; Recuenco, Sergio; Alvarez, Danilo; Moran, David; Turmelle, Amy; Ellison, James; Garcia, Daniel L; Estevez, Alejandra; Lindblade, Kim; Rupprecht, Charles

    2011-07-01

    To better understand the role of bats as reservoirs of Bartonella spp., we estimated Bartonella spp. prevalence and genetic diversity in bats in Guatemala during 2009. We found prevalence of 33% and identified 21 genetic variants of 13 phylogroups. Vampire bat-associated Bartonella spp. may cause undiagnosed illnesses in humans.

  2. Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella

    PubMed Central

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C.; Dehio, Christoph

    2011-01-01

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens

  3. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    PubMed

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C; Dehio, Christoph

    2011-02-10

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens

  4. Analysis of Endothelial Adherence of Bartonella henselae and Acinetobacter baumannii Using a Dynamic Human Ex Vivo Infection Model.

    PubMed

    Weidensdorfer, Marko; Chae, Ju Ik; Makobe, Celestine; Stahl, Julia; Averhoff, Beate; Müller, Volker; Schürmann, Christoph; Brandes, Ralf P; Wilharm, Gottfried; Ballhorn, Wibke; Christ, Sara; Linke, Dirk; Fischer, Doris; Göttig, Stephan; Kempf, Volkhard A J

    2015-12-28

    Bacterial adherence determines the virulence of many human-pathogenic bacteria. Experimental approaches elucidating this early infection event in greater detail have been performed using mainly methods of cellular microbiology. However, in vitro infections of cell monolayers reflect the in vivo situation only partially, and animal infection models are not available for many human-pathogenic bacteria. Therefore, ex vivo infection of human organs might represent an attractive method to overcome these limitations. We infected whole human umbilical cords ex vivo with Bartonella henselae or Acinetobacter baumannii under dynamic flow conditions mimicking the in vivo infection situation of human endothelium. For this purpose, methods for quantifying endothelium-adherent wild-type and trimeric autotransporter adhesin (TAA)-deficient bacteria were set up. Data revealed that (i) A. baumannii binds in a TAA-dependent manner to endothelial cells, (ii) this organ infection model led to highly reproducible adherence rates, and furthermore, (iii) this model allowed to dissect the biological function of TAAs in the natural course of human infections. These findings indicate that infection models using ex vivo human tissue samples ("organ microbiology") might be a valuable tool in analyzing bacterial pathogenicity with the capacity to replace animal infection models at least partially.

  5. Prevalence and Potential Risk Factors for Bartonella Infection in Tunisian Stray Dogs.

    PubMed

    Belkhiria, Jaber; Chomel, Bruno B; Ben Hamida, Taoufik; Kasten, Rickie W; Stuckey, Matthew J; Fleischman, Drew A; Christopher, Mary M; Boulouis, Henri-Jean; Farver, Thomas B

    2017-03-27

    Bartonellae are blood-borne and vector-transmitted pathogens, some are zoonotic, which have been reported in several Mediterranean countries. Transmission from dogs to humans is suspected, but has not been clearly demonstrated. Our objectives were to determine the seroprevalence of Bartonella henselae, Bartonella vinsonii subsp. berkhoffii, Bartonella clarridgeiae, and Bartonella bovis (as a proxy for Candidatus Bartonella merieuxii) in stray dogs from Tunisia, identify the Bartonella species infecting the dogs and evaluate potential risk factors for canine infection. Blood samples were collected between January and November 2013 from 149 dogs in 10 Tunisian governorates covering several climatic zones. Dog-specific and geographic variables were analyzed as potential risk factors for Bartonella spp. seropositivity and PCR-positivity. DNA was extracted from the blood of all dogs and tested by PCR for Bartonella, targeting the ftsZ and rpoB genes. Partial sequencing was performed on PCR-positive dogs. Twenty-nine dogs (19.5%, 95% confidence interval: 14-27.4) were seropositive for one or more Bartonella species, including 17 (11.4%) for B. vinsonii subsp. berkhoffii, 14 (9.4%) for B. henselae, 13 (8.4%) for B. clarridgeiae, and 7 (4.7%) for B. bovis. Statistical analysis revealed a few potential risk factors, mainly dog's age and breed, latitude and average winter temperature. Twenty-two (14.8%) dogs, including 8 of the 29 seropositive dogs, were PCR-positive for Bartonella based on the ftsZ gene, with 18 (81.8%) of these 22 dogs also positive for the rpoB gene. Partial sequencing showed that all PCR-positive dogs were infected with Candidatus B. merieuxii. Dogs from arid regions and regions with cold average winter temperatures were less likely to be PCR-positive than dogs from other climatic zones. The widespread presence of Bartonella spp. infection in Tunisian dogs suggests a role for stray dogs as potential reservoirs of Bartonella species in Tunisia.

  6. Molecular Survey of Bartonella Species and Yersinia pestis in Rodent Fleas (Siphonaptera) From Chihuahua, Mexico.

    PubMed

    Fernández-González, Adriana M; Kosoy, Michael Y; Rubio, André V; Graham, Christine B; Montenieri, John A; Osikowicz, Lynn M; Bai, Ying; Acosta-Gutiérrez, Roxana; Ávila-Flores, Rafael; Gage, Kenneth L; Suzán, Gerardo

    2016-01-01

    Rodent fleas from northwestern Chihuahua, Mexico, were analyzed for the presence of Bartonella and Yersinia pestis. In total, 760 fleas belonging to 10 species were tested with multiplex polymerase chain reaction analysis targeting the gltA (338-bp) and pla genes (478-bp) of Bartonella and Y. pestis, respectively. Although none was positive for Y. pestis, 307 fleas were infected with Bartonella spp., resulting in an overall prevalence of 40.4%. A logistic regression analysis indicated that the presence of Bartonella is more likely to occur in some flea species. From a subset of Bartonella-positive fleas, phylogenetic analyses of gltA gene sequences revealed 13 genetic variants clustering in five phylogroups (I–V), two of which were matched with known pathogenic Bartonella species (Bartonella vinsonii subsp. arupensis and Bartonella washoensis) and two that were not related with any previously described species or subspecies of Bartonella. Variants in phylogroup V, which were mainly obtained from Meringis spp. fleas, were identical to those reported recently in their specific rodent hosts (Dipodomys spp.) in the same region, suggesting that kangaroo rats and their fleas harbor other Bartonella species not reported previously. Considering the Bartonella prevalence and the flea genotypes associated with known pathogenic Bartonella species, we suggest that analysis of rodent and flea communities in the region should continue for their potential implications for human health. Given that nearby locations in the United States have reported Y. pestis in wild animals and their fleas, we suggest conducting larger-scale studies to increase our knowledge of this bacterium.

  7. A longitudinal study of Bartonella infection in populations of woodrats and their fleas.

    PubMed

    Morway, Christina; Kosoy, Michael; Eisen, Rebecca; Montenieri, John; Sheff, Kelly; Reynolds, Pamela J; Powers, Nelson

    2008-12-01

    Rodent-borne bartonellae have been identified as human pathogens. Little is known about Bartonella infections in woodrat hosts and their fleas and how woodrat-flea associations may affect the dynamics of Bartonella infections. We collected blood samples and fleas from two species of woodrats (Neotoma micropus and N. albigula) from Santa Fe County, NM, from 2002-2005. The most predominant flea species were Orchopeas sexdentatus and O. neotomae. Bartonella prevalence in woodrats was 64% overall, with a lower prevalence occurring in the pre-reproductive period compared to the early and late reproductive periods. A negative correlation between Bartonella prevalence in N. micropus and weight of N. micropus was observed. Flea load in Neotoma species was highest in the early reproductive period compared to the pre- and late reproductive periods and was higher in N. micropus compared to N. albigula. Bartonella prevalence in fleas was highest in the early reproductive period and lowest in the late reproductive period, and it was higher in fleas collected from N. micropus than in fleas collected from N. albigula. Abundance of O. sexdentatus was significantly higher in N. micropus compared to N. albigula, and abundance of O. sexdentatus and O. neotomae was highest in the early reproductive period. No direct correlations were found either between Bartonella prevalence in woodrats and in fleas or between Bartonella prevalence in woodrats and flea loads. Out of 25 partially characterized Bartonella isolates from Neotoma woodrats, 24 belonged to one genogroup based on sequencing of the gltA gene.

  8. Bartonella clarridgeiae, B. henselae and Rickettsia felis in fleas from Morocco.

    PubMed

    Boudebouch, N; Sarih, M; Beaucournu, J-C; Amarouch, H; Hassar, M; Raoult, D; Parola, P

    2011-10-01

    A total of 554 fleas were collected in the Moroccan Casablanca and Tiznit regions from domesticated animals and ruminants between August 2007 and October 2008 and were tested for the presence of Rickettsia spp. and Bartonella spp. using molecular methods. For the first time in Morocco, we found Rickettsia felis, the agent of flea-borne spotted fever in Ctenocephalides felis; B. henselae, an agent of cat scratch disease; and Bartonella clarridgeiae, a cat pathogen and potentially a human pathogen.

  9. Intruders below the Radar: Molecular Pathogenesis of Bartonella spp.

    PubMed Central

    Harms, Alexander

    2012-01-01

    Summary: Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease. PMID:22232371

  10. Bartonella species in fleas from Palestinian territories: prevalence and genetic diversity.

    PubMed

    Nasereddin, A; Risheq, A; Harrus, S; Azmi, K; Ereqat, S; Baneth, G; Salant, H; Mumcuoglu, K Y; Abdeen, Z

    2014-12-01

    Bartonellosis is an infectious bacterial disease. The prevalence and genetic characteristics of Bartonella spp. in fleas of wild and domestic animals from Palestinian territories are described. Flea samples (n=289) were collected from 121 cats, 135 dogs, 26 hyraxes and seven rats from northern (n=165), central (n=113), and southern Palestinian territories (n=11). The prevalent flea species were: Ctenocephalides felis (n=119/289; 41.2%), Ctenocephalides canis (n=159/289; 55%), and Xenopsylla sp. (n=7/289; 2.4%). Targeting the Intergenic Transcribed Spacer (ITS) locus, DNA of Bartonella was detected in 22% (64/289) of all fleas. Fifty percent of the C. felis and 57% of the Xenopsylla sp. contained Bartonella DNA. DNA sequencing showed the presence of Bartonella clarridgeiae (50%), Bartonella henselae (27%), and Bartonella koehlerae (3%) in C. felis. Xenopsylla sp. collected from Rattus rattus rats were infected with Bartonella tribocorum, Bartonella elizabethae, and Bartonella rochalimae. Phylogenetic sequence analysis using the 16S ribosomal RNA gene obtained four genetic clusters, B. henselae and B. koehlerae as subcluster 1, B. clarridgeiae as cluster 2, while the rat Bartonella species (B. tribocorum and B. elizabethae) were an outgroup cluster. These findings showed the important role of cat and rat fleas as vectors of zoonotic Bartonella species in Palestinian territories. It is hoped that this publication will raise awareness among physicians, veterinarians, and other health workers of the high prevalence of Bartonella spp. in fleas in Palestinian territories and the potential risk of these pathogens to humans and animals in this region.

  11. Bartonella Species Identified in Rodent and Feline Hosts from Island and Mainland Western Australia.

    PubMed

    Dybing, Narelle A; Jacobson, Caroline; Irwin, Peter; Algar, Dave; Adams, Peter J

    2016-04-01

    Bacteria of the genus Bartonella have been described in multiple mammalian hosts with many species capable of causing disease in humans. Cats and various species of rats have been reported to play a role as vertebrate hosts to a number of Bartonella spp. This study aimed to identify Bartonella spp. in Western Australia, Dirk Hartog Island (DHI), and Christmas Island (CI) and to investigate the presence of potential arthropod vectors. Feral cats were collected from CI (n = 35), DHI (n = 23) and southwest Western Australia (swWA; n = 58), and black rats were collected from CI (n = 48). Individuals were necropsied, ectoparasites were collected by external examination of carcasses, and splenic tissue was collected for polymerase chain reaction analysis to detect Bartonella DNA. Bartonella henselae DNA was detected from two cats and Bartonella koehlerae DNA from one cat in southwest WA, but Bartonella DNA was not identified in cats on DHI or CI. Bartonella phoceensis (28/48 = 58.3%) and a novel Bartonella genotype (8/48 = 16.7%) based on the internal transcribed space region were detected in the spleens of black rats on CI. Detection of Bartonella spp. in each location corresponded to the presence of ectoparasites. Cats from southwest WA harbored four species of fleas, including Ctenocephalides felis, and black rats on CI were infested with multiple species of ectoparasites, including mites, fleas, and lice. Conversely, cats on Dirk Hartog and CI were free of ectoparasites. This study has identified the DNA of Bartonella species from island and mainland swWA with some (B. henselae and B. koehlerae) of known zoonotic importance. This study further extends the geographical range for the pathogenic B. koehlerae. The association of Bartonella with ectoparasites is unsurprising, but little is known about the specific vector competence of the ectoparasites identified in this study.

  12. Clinical and Pathologic Evaluation of Chronic Bartonella henselae or Bartonella clarridgeiae Infection in Cats

    PubMed Central

    Kordick, Dorsey L.; Brown, Talmage T.; Shin, KwangOk; Breitschwerdt, Edward B.

    1999-01-01

    Human Bartonella infections result in diverse medical presentations, whereas many cats appear to tolerate chronic bacteremia without obvious clinical abnormalities. Eighteen specific-pathogen-free cats were inoculated with Bartonella henselae- and/or Bartonella clarridgeiae-infected cat blood and monitored for 454 days. Relapsing bacteremia did not correlate with changes in protein profiles or differences in antigenic protein recognition. Intradermal skin testing did not induce a delayed type hypersensitivity reaction to cat scratch disease skin test antigen. Thirteen cats were euthanatized at the end of the study. Despite persistent infection, clinical signs were minimal and gross necropsy results were unremarkable. Histopathology revealed peripheral lymph node hyperplasia (in all of the 13 cats), splenic follicular hyperplasia (in 9 cats), lymphocytic cholangitis/pericholangitis (in 9 cats), lymphocytic hepatitis (in 6 cats), lymphoplasmacytic myocarditis (in 8 cats), and interstitial lymphocytic nephritis (in 4 cats). Structures suggestive of Bartonella were visualized in some Warthin-Starry stained sections, and Bartonella DNA was amplified from the lymph node (from 6 of the 13 cats), liver (from 11 cats) heart (from 8 cats), kidney (from 9 cats), lung (from 2 cats), and brain (from 9 cats). This study indicates that B. henselae or B. clarridgeiae can induce chronic infection following blood transfusion in specific-pathogen-free cats and that Bartonella DNA can be detected in blood, brain, lymph node, myocardium, liver, and kidney tissues of both blood culture-positive cats and blood culture-negative cats. Detection of histologic changes in these cats supports a potential etiologic role for Bartonella species in several idiopathic disease processes in cats. PMID:10203518

  13. Human isolates of Bartonella tamiae induce pathology in experimentally inoculated immunocompetent mice

    PubMed Central

    2010-01-01

    Background Bartonella tamiae, a newly described bacterial species, was isolated from the blood of three hospitalized patients in Thailand. These patients presented with headache, myalgia, anemia, and mild liver function abnormalities. Since B. tamiae was presumed to be the cause of their illness, these isolates were inoculated into immunocompetent mice to determine their relative pathogenicity in inducing manifestations of disease and pathology similar to that observed in humans. Methods Three groups of four Swiss Webster female mice aged 15-18 months were each inoculated with 106-7 colony forming units of one of three B. tamiae isolates [Th239, Th307, and Th339]. A mouse from each experimental group was sampled at 3, 4, 5 and 6 weeks post-inoculation. Two saline inoculated age-matched controls were included in the study. Samples collected at necropsy were evaluated for the presence of B. tamiae DNA, and tissues were formalin-fixed, stained with hematoxylin and eosin, and examined for histopathology. Results Following inoculation with B. tamiae, mice developed ulcerative skin lesions and subcutaneous masses on the lateral thorax, as well as axillary and inguinal lymphadenopathy. B. tamiae DNA was found in subcutaneous masses, lymph node, and liver of inoculated mice. Histopathological changes were observed in tissues of inoculated mice, and severity of lesions correlated with the isolate inoculated, with the most severe pathology induced by B. tamiae Th239. Mice inoculated with Th239 and Th339 demonstrated myocarditis, lymphadenitis with associated vascular necrosis, and granulomatous hepatitis and nephritis with associated hepatocellular and renal necrosis. Mice inoculated with Th307 developed a deep dermatitis and granulomas within the kidneys. Conclusions The three isolates of B. tamiae evaluated in this study induce disease in immunocompetent Swiss Webster mice up to 6 weeks after inoculation. The human patients from whom these isolates were obtained had

  14. Association of Bartonella with the fleas (Siphonaptera) of rodents and bats using molecular techniques.

    PubMed

    Reeves, Will K; Rogers, Thomas E; Durden, Lance A; Dasch, Gregory A

    2007-06-01

    Bartonella spp. are putatively vector-borne bacterial agents of humans and animals. Fleas have been incriminated as vectors of Bartonella spp. and are suspected of transmitting Bartonella of rodents and bats, but some of these Bartonella spp. have not yet been directly detected in wild caught fleas. We report the molecular detection of Bartonella tribocorum, Bartonella vinsonii subsp. vinsonii, and two novel genotypes of Bartonella from the fleas Xenopsylla cheopis, Ctenophthalmus pseudagyrtes, Sternopsylla texanus, or Orchopeas howardi.

  15. Survey of Bartonella spp. in U.S. bed bugs detects Burkholderia multivorans but not Bartonella.

    PubMed

    Saenz, Virna L; Maggi, Ricardo G; Breitschwerdt, Edward B; Kim, Jung; Vargo, Edward L; Schal, Coby

    2013-01-01

    Bed bugs (Cimex lectularius L.) have resurged in the United States and globally. Bed bugs are hematophagous ectoparasites of humans and other animals, including domestic pets, chickens, and bats, and their blood feeding habits contribute to their potential as disease vectors. Several species of Bartonella are re-emergent bacterial pathogens that also affect humans, domestic pets, bats and a number of other wildlife species. Because reports of both bed bugs and Bartonella have been increasing in the U.S., and because their host ranges can overlap, we investigated whether the resurgences of these medically important pathogens and their potential vector might be linked, by screening for Bartonella spp. in bed bugs collected from geographic areas where these pathogens are prevalent and from bed bugs that have been in culture in the laboratory for several years. We screened a total of 331 bed bugs: 316 bed bugs from 36 unique collections in 29 geographic locations in 13 states, 10 bed bugs from two colonies maintained in the laboratory for 3 yr, and 5 bed bugs from a colony that has been in culture since before the recent resurgence of bed bugs. Bartonella spp. DNA was screened using a polymerase chain reaction assay targeting the 16S-23S rRNA intergenic transcribed spacer region. Bartonella DNA was not amplified from any bed bug, but five bed bugs from four different apartments of an elderly housing building in North Carolina contained DNA sequences that corresponded to Burkholderia multivorans, an important pathogen in nosocomial infections that was not previously linked to an arthropod vector.

  16. Survey of Bartonella spp. in U.S. Bed Bugs Detects Burkholderia multivorans but Not Bartonella

    PubMed Central

    Saenz, Virna L.; Maggi, Ricardo G.; Breitschwerdt, Edward B.; Kim, Jung; Vargo, Edward L.; Schal, Coby

    2013-01-01

    Bed bugs (Cimex lectularius L.) have resurged in the United States and globally. Bed bugs are hematophagous ectoparasites of humans and other animals, including domestic pets, chickens, and bats, and their blood feeding habits contribute to their potential as disease vectors. Several species of Bartonella are re-emergent bacterial pathogens that also affect humans, domestic pets, bats and a number of other wildlife species. Because reports of both bed bugs and Bartonella have been increasing in the U.S., and because their host ranges can overlap, we investigated whether the resurgences of these medically important pathogens and their potential vector might be linked, by screening for Bartonella spp. in bed bugs collected from geographic areas where these pathogens are prevalent and from bed bugs that have been in culture in the laboratory for several years. We screened a total of 331 bed bugs: 316 bed bugs from 36 unique collections in 29 geographic locations in 13 states, 10 bed bugs from two colonies maintained in the laboratory for 3 yr, and 5 bed bugs from a colony that has been in culture since before the recent resurgence of bed bugs. Bartonella spp. DNA was screened using a polymerase chain reaction assay targeting the 16S–23S rRNA intergenic transcribed spacer region. Bartonella DNA was not amplified from any bed bug, but five bed bugs from four different apartments of an elderly housing building in North Carolina contained DNA sequences that corresponded to Burkholderia multivorans, an important pathogen in nosocomial infections that was not previously linked to an arthropod vector. PMID:24040015

  17. A Bartonella vinsonii berkhoffii typing scheme based upon 16S-23S ITS and Pap31 sequences from dog, coyote, gray fox, and human isolates.

    PubMed

    Maggi, Ricardo G; Chomel, Bruno; Hegarty, Barbara C; Henn, Jennifer; Breitschwerdt, Edward B

    2006-04-01

    Since the isolation of Bartonella vinsonii subspecies berkhoffii from a dog with endocarditis in 1993, this organism has emerged as an important pathogen in dogs and as an emerging pathogen in people. Current evidence indicates that coyotes, dogs and gray foxes potentially serve as reservoir hosts. Based upon sequence differences within the 16S-23S ITS region and Pap31 gene, we propose a classification scheme that divides B. vinsonii subsp. berkhoffii isolates into four distinct types. Two conserved sequences, of 37 and 18 bp, respectively, are differentially present within the ITS region of each of the four B. vinsonii subsp. berkhoffii types. To date, B. vinsonii berkhoffii types I, II, and III have been identified in the US, type III in Europe and type IV in Canada. Based upon the proposed genotyping scheme, the geographic distribution of B. vinsonii berkhoffii types needs to be more thoroughly delineated in future molecular epidemiological studies involving Bartonella infection in coyotes, dogs, gray foxes, human beings and potentially other animals or in arthropod vectors. Strain typing may help to better define the reservoir potential, carriership patterns, modes of transmission, and geographic distribution for each B. vinsonii berkhoffii type.

  18. Bartonella infections in deer keds (Lipoptena cervi) and moose (Alces alces) in Norway.

    PubMed

    Duodu, Samuel; Madslien, Knut; Hjelm, Eva; Molin, Ylva; Paziewska-Harris, Anna; Harris, Philip D; Colquhoun, Duncan J; Ytrehus, Bjørnar

    2013-01-01

    Infections with Bartonella spp. have been recognized as emerging zoonotic diseases in humans. Large knowledge gaps exist, however, relating to reservoirs, vectors, and transmission of these bacteria. We describe identification by culture, PCR, and housekeeping gene sequencing of Bartonella spp. in fed, wingless deer keds (Lipoptena cervi), deer ked pupae, and blood samples collected from moose, Alces alces, sampled within the deer ked distribution range in Norway. Direct sequencing from moose blood sampled in a deer ked-free area also indicated Bartonella infection but at a much lower prevalence. The sequencing data suggested the presence of mixed infections involving two species of Bartonella within the deer ked range, while moose outside the range appeared to be infected with a single species. Bartonella were not detected or cultured from unfed winged deer keds. The results may indicate that long-term bacteremia in the moose represents a reservoir of infection and that L. cervi acts as a vector for the spread of infection of Bartonella spp. Further research is needed to evaluate the role of L. cervi in the transmission of Bartonella to animals and humans and the possible pathogenicity of these bacteria for humans and animals.

  19. Bartonella (Rochalimaea) quintana infections.

    PubMed Central

    Maurin, M; Raoult, D

    1996-01-01

    Bartonella (formerly Rochalimaea) quintana is the etiological agent of trench fever, a disease extensively reported during the World Wars. Recent molecular biology approaches have allowed dramatic extension of the spectrum of Bartonella infections. B. quintana is now also recognized as an etiological agent of fever and bacteremia, endocarditis, bacillary angiomatosis, and chronic lymphadenopathy. Human immunodeficiency virus-infected patients and/or homeless people are the most vulnerable to infection. Poverty and louse infestation were the main epidemiological factors associated with B. quintana infections during wartime. Although poverty and chronic alcoholism have been associated with modern cases of trench fever and bacteremia due to B. quintana in Europe and the United States, vectors for B. quintana have not been clearly identified and B. quintana has not been isolated from modern-day lice. Microscopic bacillary angiomatosis lesions are characterized by tumor-like capillary lobules, with proliferating endothelial cells. In vitro experiments have shown that B. quintana survives within endothelial cells and stimulates cell proliferation. These observations, together with the finding that lesions may regress when antibiotic therapy is administered, strongly suggest that B. quintana itself stimulates angiogenesis. Bartonella infections are characterized by a high frequency of relapses after brief courses of antibiotic therapy. It is to be noted that in vitro, although Bartonella species are highly susceptible to antibiotics, only the aminoglycosides have proved to be bactericidal. However, the most effective antibiotic regimen for Bartonella infections remains to be established. PMID:8809460

  20. Bartonella quintana characteristics and clinical management.

    PubMed

    Foucault, Cédric; Brouqui, Philippe; Raoult, Didier

    2006-02-01

    Bartonella quintana, a pathogen that is restricted to human hosts and louse vectors, was first characterized as the agent of trench fever. The disease was described in 1915 on the basis of natural and experimental infections in soldiers. It is now recognized as a reemerging pathogen among homeless populations in cities in the United States and Europe and is responsible for a wide spectrum of conditions, including chronic bacteremia, endocarditis, and bacillary angiomatosis. Diagnosis is based on serologic analysis, culture, and molecular biology. Recent characterization of its genome allowed the development of modern diagnosis and typing methods. Guidelines for the treatment of B. quintana infections are presented.

  1. Dogs are more permissive than cats or guinea pigs to experimental infection with a human isolate of Bartonella rochalimae.

    PubMed

    Chomel, Bruno B; Henn, Jennifer B; Kasten, Rickie W; Nieto, Nathan C; Foley, Janet; Papageorgiou, Sophia; Allen, Claire; Koehler, Jane E

    2009-01-01

    Bartonella rochalimae was first isolated from the blood of a human who traveled to Peru and was exposed to multiple insect bites. Foxes and dogs are likely natural reservoirs for this bacterium. We report the results of experimental inoculation of two dogs, five cats and six guinea pigs with the only human isolate of this new Bartonella species. Both dogs became bacteremic for 5-7 weeks, with a peak of 10(3)-10(4) colony forming units (CFU)/mL blood. Three cats had low bacteremia levels (< 200 CFU/mL) of 6-8 weeks' duration. One cat that remained seronegative had two bacterial colonies isolated at a single culture time point. A fifth cat never became bacteremic, but seroconverted. None of the guinea pigs became bacteremic, but five seroconverted. These results suggest that dogs could be a reservoir of this strain of B. rochalimae, in contrast to cats and guinea pigs.

  2. Bartonella infection in sylvatic small mammals of central Sweden.

    PubMed Central

    Holmberg, M.; Mills, J. N.; McGill, S.; Benjamin, G.; Ellis, B. A.

    2003-01-01

    Sylvatic small mammals were captured in rural habitats near Uppsala, Sweden, to measure the prevalence of bartonella infections, characterize bacterial isolates and identify their host range, and increase our understanding of host-pathogen ecology. During 7 nights of trapping at 3 localities, 236 small mammals were captured (trap success 30%). Bartonella were isolated from bloods of Apodemus flavicollis (19 of 110 tested), Apodemus sylvaticus (6/25), Clethrionomys glareolus (9/60), Microtus agrestis (1/3), Mus musculus (1/18), and Sorex araneus (3/20). Nucleotide sequencing (a 338 bp fragment of the gltA gene) of 40 isolates yielded 6 unique genotypes. Five of the 6 genotypes were most similar to other known bartonella isolated from Old World small-mammal hosts. The most frequent genotype (83%) was isolated from A. flavicollis and M. musculus and was identical to Bartonella grahamii, a recently demonstrated human pathogen. These two hosts were most frequently captured in and around human structures and work places, thus providing conditions that could potentially lead to frequent human infections. PMID:12613756

  3. Prevalence of Bartonella infection in wild African lions (Panthera leo) and cheetahs (Acinonyx jubatus).

    PubMed

    Molia, S; Chomel, B B; Kasten, R W; Leutenegger, C M; Steele, B R; Marker, L; Martenson, J S; Keet, D F; Bengis, R G; Peterson, R P; Munson, L; O'Brien, S J

    2004-05-20

    Bartonella species are emerging pathogens that have been isolated worldwide from humans and other mammals. Our objective was to estimate the prevalence of Bartonella infection in free-ranging African lions (Panthera leo) and cheetahs (Acinonyx jubatus). Blood and/or serum samples were collected from a convenience sample of 113 lions and 74 cheetahs captured in Africa between 1982 and 2002. Whole blood samples available from 58 of the lions and 17 of the cheetahs were cultured for evidence of Bartonella spp., and whole blood from 54 of the 58 lions and 73 of the 74 cheetahs tested for the presence of Bartonella DNA by TaqMan PCR. Serum samples from the 113 lions and 74 cheetahs were tested for the presence of antibodies against Bartonella henselae using an immunofluorescence assay. Three (5.2%) of the 58 lions and one (5.9%) of the 17 cheetahs were bacteremic. Two lions were infected with B. henselae, based on PCR/RFLP of the citrate synthase gene. The third lion and the cheetah were infected with previously unidentified Bartonella strains. Twenty-three percent of the 73 cheetahs and 3.7% of the 54 lions tested by TaqMan PCR were positive for Bartonella spp. B. henselae antibody prevalence was 17% (19/113) for the lions and 31% (23/74) for the cheetahs. The prevalence of seropositivity, bacteremia, and positive TaqMan PCR was not significantly different between sexes and age categories (juvenile versus adult) for both lions and cheetahs. Domestic cats are thus no longer the only known carriers of Bartonella spp. in Africa. Translocation of B. henselae seronegative and TaqMan PCR negative wild felids might be effective in limiting the spread of Bartonella infection.

  4. Bartonella species in bats (Chiroptera) and bat flies (Nycteribiidae) from Nigeria, West Africa.

    PubMed

    Kamani, Joshua; Baneth, Gad; Mitchell, Mark; Mumcuoglu, Kosta Y; Gutiérrez, Ricardo; Harrus, Shimon

    2014-09-01

    Previous and ongoing studies have incriminated bats as reservoirs of several emerging and re-emerging zoonoses. Most of these studies, however, have focused on viral agents and neglected important bacterial pathogens. To date, there has been no report investigating the prevalence of Bartonella spp. in bats and bat flies from Nigeria, despite the fact that bats are used as food and for cultural ritual purposes by some ethnic groups in Nigeria. To elucidate the role of bats as reservoirs of bartonellae, we screened by molecular methods 148 bats and 34 bat flies, Diptera:Hippoboscoidea:Nycteribiidae (Cyclopodia greeffi) from Nigeria for Bartonella spp. Overall, Bartonella spp. DNA was detected in 76 out of 148 (51.4%) bat blood samples tested and 10 out of 24 (41.7%) bat flies tested by qPCR targeting the 16S-23S internal transcribed spacer (ITS) locus. Bartonella was isolated from 23 of 148 (15.5%) bat blood samples, and the isolates were genetically characterized. Prevalence of Bartonella spp. culture-positive samples ranged from 0% to 45.5% among five bat species. Micropterus spp. bats had a significantly higher relative risk of 3.45 for being culture positive compared to Eidolon helvum, Epomophorus spp., Rhinolophus spp., and Chaerephon nigeriae. Bartonella spp. detected in this study fall into three distinct clusters along with other Bartonella spp. isolated from bats and bat flies from Kenya and Ghana, respectively. The isolation of Bartonella spp. in 10.0-45.5% of four out of five bat species screened in this study indicates a widespread infection in bat population in Nigeria. Further investigation is warranted to determine the role of these bacteria as a cause of human and animal diseases in Nigeria.

  5. Bartonella species and trombiculid mites of rats from the Mekong Delta of Vietnam.

    PubMed

    Loan, Hoang Kim; Cuong, Nguyen Van; Takhampunya, Ratree; Klangthong, Kewalin; Osikowicz, Lynn; Kiet, Bach Tuan; Campbell, James; Bryant, Juliet; Promstaporn, Sommai; Kosoy, Michael; Hoang, Nguyen Van; Morand, Serge; Chaval, Yannick; Hien, Vo Be; Carrique-Mas, Juan

    2015-01-01

    A survey of Bartonella spp. from 275 rats purchased in food markets (n=150) and trapped in different ecosystems (rice field, forest, and animal farms) (n=125) was carried out during October, 2012-March, 2013, in the Mekong Delta of Vietnam. The overall Bartonella spp. prevalence detected by culture and PCR in blood was 14.9% (10.7-19.1%), the highest corresponding to Rattus tanezumi (49.2%), followed by Rattus norvegicus (20.7%). Trapped rats were also investigated for the presence and type of chiggers (larvae of trombiculid mites), and Bartonella spp. were investigated on chigger pools collected from each rat by RT-PCR. A total of five Bartonella spp. were identified in rats, three of which (B. elizabethae, B. rattimassiliensis, and B. tribocorum) are known zoonotic pathogens. Among trapped rats, factors independently associated with increased prevalence of Bartonella spp. included: (1) Rat species (R. tanezumi); (2) the number of Trombiculini-Blankaartia and Schoengastiini-Ascoschoengastia mites found on rats; and (3) the habitat of the rat (i.e., forest/fields vs. animal farms). The prevalence of Bartonella infection among chiggers from Bartonella spp.-positive R. tanezumi rats was 5/25 (25%), compared with 1/27 (3.7%) among Bartonella spp.-negative R. tanezumi rats (relative risk [RR]=5.4, 95% confidence interval [CI] 0.68-43.09). The finding of Bartonella spp.-positive chiggers on Bartonella spp.-negative rats is strongly suggestive of a transovarial transmission cycle. Rats are ubiquitous in areas of human activity and farms in the Mekong Delta; in addition, trapping and trading of rats for food is common. To correctly assess the human risks due to rat trapping, marketing, and carcass dressing, further studies are needed to establish the routes of transmission and cycle of infection. The widespread presence of these zoonotic pathogens in rats and the abundance of human-rat interactions suggest that surveillance efforts should be enhanced to detect any human

  6. Molecular Evidence of Bartonella Species in Ixodid Ticks and Domestic Animals in Palestine.

    PubMed

    Ereqat, Suheir; Nasereddin, Abdelmajeed; Vayssier-Taussat, Muriel; Abdelkader, Ahmad; Al-Jawabreh, Amer; Zaid, Taher; Azmi, Kifaya; Abdeen, Ziad

    2016-01-01

    Ticks play an important role in disease transmission as vectors for human and animal pathogens, including the Gram-negative pathogen Bartonella. Here, we evaluated the presence of Bartonella in ixodid ticks and domestic animals from Palestine. We tested 633 partly engorged ticks and 139 blood samples from domestic animals (dogs, sheep and camels) for Bartonella using ITS-PCR. Bartonella DNA was detected in 3.9% of the tested ticks. None of the ticks collected from sheep and goats were positive for Bartonella. Seventeen R. sanguineus ticks (17/391; 4.3%) collected from dogs were infected with B. rochalimae (n = 10), B. chomelii (n = 6), and B. koehlerae (n = 1). Four H. dromedarri ticks (4/63; 6.3%) obtained from camels were infected with B. bovis (n = 2) and B. rochalimae (n = 2). Among canine blood samples (n = 110), we found one asymptomatic female dog to be infected with B. rochalimae (0.9%). The detection of zoonotic Bartonella species in this study should raise awareness of these vector-borne diseases among physicians, veterinarians and public health workers and highlight the importance of surveillance and preventive measures in the region.

  7. Molecular Evidence of Bartonella Species in Ixodid Ticks and Domestic Animals in Palestine

    PubMed Central

    Ereqat, Suheir; Nasereddin, Abdelmajeed; Vayssier-Taussat, Muriel; Abdelkader, Ahmad; Al-Jawabreh, Amer; Zaid, Taher; Azmi, Kifaya; Abdeen, Ziad

    2016-01-01

    Ticks play an important role in disease transmission as vectors for human and animal pathogens, including the Gram-negative pathogen Bartonella. Here, we evaluated the presence of Bartonella in ixodid ticks and domestic animals from Palestine. We tested 633 partly engorged ticks and 139 blood samples from domestic animals (dogs, sheep and camels) for Bartonella using ITS-PCR. Bartonella DNA was detected in 3.9% of the tested ticks. None of the ticks collected from sheep and goats were positive for Bartonella. Seventeen R. sanguineus ticks (17/391; 4.3%) collected from dogs were infected with B. rochalimae (n = 10), B. chomelii (n = 6), and B. koehlerae (n = 1). Four H. dromedarri ticks (4/63; 6.3%) obtained from camels were infected with B. bovis (n = 2) and B. rochalimae (n = 2). Among canine blood samples (n = 110), we found one asymptomatic female dog to be infected with B. rochalimae (0.9%). The detection of zoonotic Bartonella species in this study should raise awareness of these vector-borne diseases among physicians, veterinarians and public health workers and highlight the importance of surveillance and preventive measures in the region. PMID:27540374

  8. An Immunocompromised Murine Model of Chronic Bartonella Infection

    PubMed Central

    Chiaraviglio, Lucius; Duong, Scott; Brown, Daniel A.; Birtles, Richard J.; Kirby, James E.

    2010-01-01

    Bartonella are ubiquitous Gram-negative pathogens that cause chronic blood stream infections in mammals. Two species most often responsible for human infection, B. henselae and B. quintana, cause prolonged febrile illness in immunocompetent hosts, known as cat scratch disease and trench fever, respectively. Fascinatingly, in immunocompromised hosts, these organisms also induce new blood vessel formation leading to the formation of angioproliferative tumors, a disease process named bacillary angiomatosis. In addition, they cause an endothelial-lined cystic disease in the liver known as bacillary peliosis. Unfortunately, there are as yet no completely satisfying small animal models for exploring these unique human pathologies, as neither species appears able to sustain infection in small animal models. Therefore, we investigated the potential use of other Bartonella species for their ability to recapitulate human pathologies in an immunodeficient murine host. Here, we demonstrate the ability of Bartonella taylorii to cause chronic infection in SCID/BEIGE mice. In this model, Bartonella grows in extracellular aggregates, embedded within collagen matrix, similar to previous observations in cat scratch disease, bacillary peliosis, and bacillary angiomatosis. Interestingly, despite overwhelming infection later in disease, evidence for significant intracellular replication in endothelial or other cell types was not evident. We believe that this new model will provide an important new tool for investigation of Bartonella–host interaction. PMID:20395436

  9. An investigation of Bartonella spp., Rickettsia typhi, and Seoul hantavirus in rats (Rattus spp.) from an inner-city neighborhood of Vancouver, Canada: is pathogen presence a reflection of global and local rat population structure?

    PubMed

    Himsworth, Chelsea G; Bai, Ying; Kosoy, Michael Y; Wood, Heidi; DiBernardo, Antonia; Lindsay, Robbin; Bidulka, Julie; Tang, Patrick; Jardine, Claire; Patrick, David

    2015-01-01

    Urban Norway and black rats (Rattus norvegicus and Rattus rattus) are reservoirs for variety of zoonotic pathogens. Many of these pathogens, including Rickettsia typhi, Bartonella spp., and Seoul hantavirus (SEOV), are thought to be endemic in rat populations worldwide; however, past field research has found these organisms to be absent in certain rat populations. Rats (Rattus spp.) from an inner city neighborhood of Vancouver, Canada, were tested for exposure to and/or infection with SEOV and R. typhi (using serology and PCR), as well as Bartonella spp. (using culture and sequencing). Approximately 25% of 404 rats tested were infected with Bartonella tribocorum, which demonstrated significant geographic clustering within the study area. Infection was associated with both season and sexual maturity. Seroreactivity against R. typhi and SEOV was observed in 0.36% and 1.45% of 553 rats tested, respectively, although PCR screening results for these pathogens were negative, suggesting that they are not endemic in the study population. Overall, these results suggest that the geographic distribution of rat-associated zoonoses, including R. typhi, SEOV, and Bartonella spp., is less ubiquitous than previously appreciated, and is likely dependent on patterns of dispersion and establishment of the rat reservoir host. Further study on global and local Rattus spp. population structures may help to elucidate the ecology of zoonotic organisms in these species.

  10. Zoonotic Bartonella species in fleas and blood from red foxes in Australia.

    PubMed

    Kaewmongkol, Gunn; Kaewmongkol, Sarawan; Fleming, Patricia A; Adams, Peter J; Ryan, Una; Irwin, Peter J; Fenwick, Stanley G

    2011-12-01

    Bartonella are arthropod-borne, fastidious, Gram-negative, and aerobic bacilli distributed by fleas, lice, sand flies, and, possibly, ticks. The zoonotic Bartonella species, Bartonella henselae and Bartonella clarridgeiae, which are the causes of cat scratch disease and endocarditis in humans, have been reported from cats, cat fleas, and humans in Australia. However, to date, there has been no report of B. henselae or B. clarridgeiae in Australian wild animals and their ectoparasites. B. henselae and B. clarridgeiae were detected in fleas (Ctenocephalides felis) from red foxes (Vulpes vulpes), an introduced pest animal species in Australia, and only B. clarridgeiae was detected in blood from one red fox. Phylogenetic analysis of the ribosomal intergenic spacer region revealed that the B. henselae detected in the current study were related to B. henselae strain Houston-1, a major pathogenic strain in humans in Australia, and confirmed the genetic distinctness of B. clarridgeiae. The identification and characterization of Bartonella species in red foxes in the Southwest of Western Australia suggests that red foxes may act as reservoirs of infection for animals and humans in this region.

  11. Lectins in human pathogenic fungi.

    PubMed

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  12. Molecular detection of Rickettsia felis, Rickettsia typhi and two genotypes closely related to Bartonella elizabethae.

    PubMed

    De Sousa, Rita; Edouard-Fournier, Pierre; Santos-Silva, Margarida; Amaro, Fatima; Bacellar, Fatima; Raoult, Didier

    2006-10-01

    A total of 56 fleas were collected from mice, rats, and one hedgehog in national parks of mainland Portugal and the Madeira Island. All fleas were tested for the presence of bacteria of the genera Rickettsia and Bartonella using PCR assays. In fleas from mainland Portugal, we detected Rickettsia felis in one Archaeopsylla erinacei maura flea and in one Ctenophtalmus sp. In five Leptopsylla segnis fleas taken from rats in the Madeira Island, we identified Rickettsia typhi. In addition, in four fleas from the genera Ornithophaga and Stenoponia collect from mice and a rat in mainland Portugal, we detected the presence of two new Bartonella genotypes closely related to Bartonella elizabethae. Our findings emphasize the potential risk of flea-transmitted infections in mainland Portugal and the Madeira archipelago, and extend our knowledge of the potential flea vectors of human pathogens.

  13. Bartonella spp. in cats from Buenos Aires, Argentina.

    PubMed

    Cicuttin, Gabriel L; Brambati, Diego F; De Gennaro, María F; Carmona, Fernando; Isturiz, María L; Pujol, Laura E; Belerenian, Guillermo C; Gil, Horacio

    2014-01-10

    In Argentina, data on the presence of members of the genus Bartonella is scarce. To increase knowledge about these zoonotic pathogens in this country, the presence and variability of Bartonella spp. was investigated in cats and dogs from Buenos Aires. Bartonella spp. was detected in 17.8% of cats, while all dogs tested negative by PCR and Reverse Line Blot. B. henselae was the most frequent species, being detected in 11.9% (14/101), while B. clarridgeiae was found in only 5.9% (6/101) of the cats. Afterwards, B. henselae isolates and positive blood samples were characterized by Multiple Locus Sequence Typing (MLST) and Multiple Locus Variable Number Tandem Repeats Analysis (MLVA). As result, four different MLST sequence types (ST) and eight MLVA profiles were identified. ST 1 was the most frequent variant found in cats, followed by ST 8. Interestingly, some of the MLVA profiles that were detected in this study have been previously associated with human disease, and represents a potential risk of infection. Veterinarians and physicians should consider the presence of these emerging pathogens in their diagnostic routine.

  14. Prevalence of Rickettsia felis and the first identification of Bartonella henselae Fizz/CAL-1 in cat fleas (Siphonaptera: Pulicidae) from Taiwan.

    PubMed

    Tsai, Kun-Hsien; Huang, Chin-Gi; Fang, Chi-Tai; Shu, Pei-Yun; Huang, Jyh-Hsiung; Wu, Wen-Jer

    2011-03-01

    Cat fleas (Ctenocephalides felis [Bouché]) are the primary ectoparasites of dog and cat populations. In this study, we report the monthly population dynamics of Rickettsia felis and Bartonella spp. (two zoonotic pathogens that can cause human disease) in cat fleas collected from dogs and cats in Taipei, Taiwan, from December 2006 to December 2007. Natural R. felis infection in individual cat fleas was assessed by polymerase chain reaction (PCR) using pRF-, ompB-, and gltA-specific primer pairs. Samples positive by PCR were confirmed with DNA sequencing. R. felis was detected in cat fleas year round, and the average infection rate was 21.4% (90 of 420) in 2007. Cat fleas also play an important role in the transmission of Bartonella between reservoirs and other mammalian hosts. In this study, we used primer pairs specific for the Bartonella gltA and rpoB genes to detect Bartonella infections. Of the 420 cat fleas tested, 38 were positive by PCR for Bartonella. Sequence similarities to Bartonella henselae, Bartonella clarridgeiae, and Bartonella koehlerae were observed in 6.2% (26 of 420), 2.1% (9 of 420), and 0.7% (3 of 420) of the fleas, respectively. Based on the pap31 gene sequence, several amplicons of the B. henselae detected in the cat fleas could be subgrouped into three strains: Fizz/CAL-1 (n = 18), Marseille (n = 5), and Houston-1 (n = 3). These results demonstrate that cat fleas infected with R. felis are endemic to Taiwan, and highlight the role of C. felis in Bartonella transmission between reservoirs and other mammal hosts and demonstrate the genetic variability of B. henselae in Taiwan.

  15. Detection of multiple Bartonella species in digestive and reproductive tissues of fleas collected from sympatric mammals.

    PubMed

    Brinkerhoff, R Jory; Kabeya, Hidenori; Inoue, Kai; Bai, Ying; Maruyama, Soichi

    2010-07-01

    At least 12 species in the genus Bartonella are zoonotic pathogens that may be transmitted among mammalian hosts by fleas or other arthropods. Apparent host specificity by some Bartonella species to mammalian hosts has been observed, and the detection of multiple Bartonella species in mammalian fleas suggests that fleas take bloodmeals from a variety of host species. However, many flea species are observed to parasitize a narrow host range. Therefore, we suspect that fleas may acquire Bartonella by a mechanism other than ingesting infectious blood. We found that detection of multiple Bartonella genotypes and species is apparently common in fleas and that the majority of fleas tested (5/9) carried Bartonella species atypical of their hosts. We also detected Bartonella DNA in flea reproductive tissues, suggesting that vertical transmission of this organism in vectors is possible, potentially leading to the accumulation of Bartonella diversity over time within fleas.

  16. Seroprevalence of Toxoplasma gondii and concurrent bartonella spp., feline immunodeficiency virus, and feline leukemia infections in cats from Grenada, West Indies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toxoplasma gondii and Bartonella spp. are zoonotic pathogens of cats. Feline Immunodeficiency Virus (FIV), and Feline Leukemia Virus (FeLv) are related to Human Iimmunodeficiency Virus, and Human Leukemia Virus, respectively, and these viruses are immunosuppressive. In the present study, the prevale...

  17. Seroprevalence of Toxoplasma gondii and concurrent Bartonella spp., feline immunodeficiency virus, feline leukemia virus, and Dirofilaria immitis infections in Egyptian cats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toxoplasma gondii and Bartonella spp. are zoonotic pathogens of cats. Feline Immunodeficiency Virus (FIV), and Feline Leukemia Virus (FeLv) are related to Human Immunodeficiency Virus, and Human Leukemia Virus, respectively, and these viruses are immunosuppressive. In the present study, the prevalen...

  18. Fleas and Flea-Associated Bartonella Species in Dogs and Cats from Peru.

    PubMed

    Rizzo, M F; Billeter, S A; Osikowicz, L; Luna-Caipo, D V; Cáceres, A G; Kosoy, M

    2015-11-01

    In the present study, we investigated 238 fleas collected from cats and dogs in three regions of Peru (Ancash, Cajamarca, and Lima) for the presence of Bartonella DNA. Bartonella spp. were detected by amplification of the citrate synthase gene (16.4%) and the 16S-23S intergenic spacer region (20.6%). Bartonella rochalimae was the most common species detected followed by Bartonella clarridgeiae and Bartonella henselae. Our results demonstrate that dogs and cats in Peru are infested with fleas harboring zoonotic Bartonella spp. and these infected fleas could pose a disease risk for humans.

  19. Flea species infesting dogs in Florida and Bartonella spp. prevalence rates.

    PubMed

    Yore, K; DiGangi, B; Brewer, M; Balakrishnan, N; Breitschwerdt, E B; Lappin, M

    2014-01-31

    Several Bartonella spp. associated with fleas can induce a variety of clinical syndromes in both dogs and humans. However, few studies have investigated the prevalence of Bartonella in the blood of dogs and their fleas. The objectives of this study were to determine the genera of fleas infesting shelter dogs in Florida, the prevalence of Bartonella spp. within the fleas, and the prevalence of Bartonella spp. within the blood of healthy dogs from which the fleas were collected. Fleas, serum, and EDTA-anti-coagulated whole blood were collected from 80 healthy dogs, and total DNA was extracted for PCR amplification of Bartonella spp. The genera of fleas infesting 43 of the dogs were determined phenotypically. PCR amplicons from blood and flea pools were sequenced to confirm the Bartonella species. Amplicons for which sequencing revealed homology to Bartonella vinsonii subsp. berkhoffii (Bvb) underwent specific genotyping by targeting the 16S-23S intergenic spacer region. A total of 220 fleas were collected from 80 dogs and pooled by genus (43 dogs) and flea species. Bartonella spp. DNA was amplified from 14 of 80 dog blood samples (17.5%) and from 9 of 80 pooled fleas (11.3%). B. vinsonii subsp. berkhoffii DNA was amplified from nine dogs and five of the flea pools. Bartonella rochalimae (Br) DNA was amplified from six dogs and two flea pools. One of 14 dogs was co-infected with Bvb and Br. The dog was infested with Pulex spp. fleas containing Br DNA and a single Ctenocephalides felis flea. Of the Bvb bacteremic dogs, five and four were infected with genotypes II and I, respectively. Of the Bvb PCR positive flea pools, three were Bvb genotype II and two were Bvb genotype I. Amplification of Bvb DNA from Pulex spp. collected from domestic dogs, suggests that Pulex fleas may be a vector for dogs and a source for zoonotic transfer of this pathogen from dogs to people. The findings of this study provide evidence to support the hypothesis that flea-infested dogs may be a

  20. Bartonellae are Prevalent and Diverse in Costa Rican Bats and Bat Flies.

    PubMed

    Judson, S D; Frank, H K; Hadly, E A

    2015-12-01

    Species in the bacterial genus, Bartonella, can cause disease in both humans and animals. Previous reports of Bartonella in bats and ectoparasitic bat flies suggest that bats could serve as mammalian hosts and bat flies as arthropod vectors. We compared the prevalence and genetic similarity of bartonellae in individual Costa Rican bats and their bat flies using molecular and sequencing methods targeting the citrate synthase gene (gltA). Bartonellae were more prevalent in bat flies than in bats, and genetic variants were sometimes, but not always, shared between bats and their bat flies. The detected bartonellae genetic variants were diverse, and some were similar to species known to cause disease in humans and other mammals. The high prevalence and sharing of bartonellae in bat flies and bats support a role for bat flies as a potential vector for Bartonella, while the genetic diversity and similarity to known species suggest that bartonellae could spill over into humans and animals sharing the landscape.

  1. Bartonella infection in shelter cats and dogs and their ectoparasites.

    PubMed

    Tsai, Yi-Lun; Lin, Chao-Chen; Chomel, Bruno B; Chuang, Shih-Te; Tsai, Kun-Hsien; Wu, Wen-Jer; Huang, Chin-Gi; Yu, Jiann-Chung; Sung, Min-Hua; Kass, Philip H; Chang, Chao-Chin

    2011-08-01

    Mainly through vector transmission, domestic cats and dogs are infected by several Bartonella spp. and represent a large reservoir for human infections. This study investigated the relationship of prevalences of Bartonella infection in shelter dogs and cats and various ectoparasite species infesting them (fleas, ticks, and lice). Moreover, relationships between Bartonella infection and animal gender and age and presence of ectoparasites were analyzed. Blood samples were collected from 120 dogs and 103 cats. There were 386 ticks and 36 fleas harvested on these dogs, and 141 fleas, 4 ticks, and 2 lice harvested on these cats. Isolation/detection of Bartonella sp. was performed by culture, polymerase chain reaction (PCR), and partial sequencing. Bartonella was isolated from 21 (20.4%) cats and detected by PCR from 20 (19.4%) cats, 2 (1.7%) dogs, 55 (39%) fleas collected from cats, 28 (10%) ticks DNA samples, and 1 (2.8%) flea collected from dogs. When combining culture and PCR data, 27 cats and 55 fleas collected on cats were positive for Bartonella henselae or Bartonella clarridgeiae, but none were coinfected. Approximately half of the B. henselae isolates from 21 cats were B. henselae type I. Moreover, B. henselae, Bartonella phoceensis, Bartonella queenslandensis, Bartonella rattimassiliensis, Bartonella elizabethae DNA was detected in ticks collected from dogs and one flea was B. clarridgeiae PCR positive. This is the first report of such a wide variety of Bartonella spp. detected in Rhipicephalus sanguineus. Further studies are required to understand the relative importance of these ectoparasites to transmit Bartonella spp. in dogs and cats.

  2. Infection-associated type IV secretion systems of Bartonella and their diverse roles in host cell interaction

    PubMed Central

    Dehio, Christoph

    2008-01-01

    Type IV secretion systems (T4SSs) are transporters of Gram-negative bacteria that mediate interbacterial DNA transfer, and translocation of virulence factors into eukaryotic host cells. The α-proteobacterial genus Bartonella comprises arthropod-borne pathogens that colonize endothelial cells and erythrocytes of their mammalian reservoir hosts, thereby causing long-lasting intraerythrocytic infections. The deadly human pathogen Bartonella bacilliformis holds an isolated position in the Bartonella phylogeny as a sole representative of an ancestral lineage. All other species evolved in a separate ‘modern’ lineage by radial speciation and represent highly host-adapted pathogens of limited virulence potential. Unlike B. bacilliformis, the species of the modern lineage encode at least one of the closely related T4SSs, VirB/VirD4 or Vbh. These VirB-like T4SSs represent major host adaptability factors that contributed to the remarkable evolutionary success of the modern lineage. At the molecular level, the VirB/VirD4 T4SS was shown to translocate several effector proteins into endothelial cells that subvert cellular functions critical for establishing chronic infection. A third T4SS, Trw, is present in a sub-branch of the modern lineage. Trw does not translocate any known effectors, but produces multiple variant pilus subunits critically involved in the invasion of erythrocytes. The T4SSs laterally acquired by the bartonellae have thus adopted highly diverse functions during infection, highlighting their versatility as pathogenicity factors. PMID:18489724

  3. Contrasting Patterns in Mammal–Bacteria Coevolution: Bartonella and Leptospira in Bats and Rodents

    PubMed Central

    Lei, Bonnie R.; Olival, Kevin J.

    2014-01-01

    Background Emerging bacterial zoonoses in bats and rodents remain relatively understudied. We conduct the first comparative host–pathogen coevolutionary analyses of bacterial pathogens in these hosts, using Bartonella spp. and Leptospira spp. as a model. Methodology/Principal Findings We used published genetic data for 51 Bartonella genotypes from 24 bat species, 129 Bartonella from 38 rodents, and 26 Leptospira from 20 bats. We generated maximum likelihood and Bayesian phylogenies for hosts and bacteria, and tested for coevoutionary congruence using programs ParaFit, PACO, and Jane. Bartonella spp. and their bat hosts had a significant coevolutionary fit (ParaFitGlobal = 1.9703, P≤0.001; m2 global value = 7.3320, P≤0.0001). Bartonella spp. and rodent hosts also indicated strong overall patterns of cospeciation (ParaFitGlobal = 102.4409, P≤0.001; m2 global value = 86.532, P≤0.0001). In contrast, we were unable to reject independence of speciation events in Leptospira and bats (ParaFitGlobal = 0.0042, P = 0.84; m2 global value = 4.6310, P = 0.5629). Separate analyses of New World and Old World data subsets yielded results congruent with analysis from entire datasets. We also conducted event-based cophylogeny analyses to reconstruct likely evolutionary histories for each group of pathogens and hosts. Leptospira and bats had the greatest number of host switches per parasite (0.731), while Bartonella and rodents had the fewest (0.264). Conclusions/Significance In both bat and rodent hosts, Bartonella exhibits significant coevolution with minimal host switching, while Leptospira in bats lacks evolutionary congruence with its host and has high number of host switches. Reasons underlying these variable coevolutionary patterns in host range are likely due to differences in disease-specific transmission and host ecology. Understanding the coevolutionary patterns and frequency of host-switching events between bacterial pathogens and

  4. Plant innate immunity against human bacterial pathogens

    PubMed Central

    Melotto, Maeli; Panchal, Shweta; Roy, Debanjana

    2014-01-01

    Certain human bacterial pathogens such as the enterohemorrhagic Escherichia coli and Salmonella enterica are not proven to be plant pathogens yet. Nonetheless, under certain conditions they can survive on, penetrate into, and colonize internal plant tissues causing serious food borne disease outbreaks. In this review, we highlight current understanding on the molecular mechanisms of plant responses against human bacterial pathogens and discuss salient common and contrasting themes of plant interactions with phytopathogens or human pathogens. PMID:25157245

  5. Molecular evidence for Bartonella spp. in cat and dog fleas from Germany and France.

    PubMed

    Just, F T; Gilles, J; Pradel, I; Pfalzer, S; Lengauer, H; Hellmann, K; Pfister, K

    2008-10-01

    Nine hundred and fifty-two fleas were collected from 148 cats and 133 dogs at 18 widely distributed geographic locations in Germany and France and examined for the presence of six different Bartonella spp. (Bartonella bacilliformis, Bartonella clarridgeiae, Bartonella elizabethae, Bartonella henselae, Bartonella quintana, Bartonella vinsonii subsp. berkhoffii) by PCR. Thirty-five specimens (3.7%) tested positive for either B. henselae (14 positive fleas) or B. clarridgeiae (21 positive fleas). DNA of other Bartonella spp. were not detected. Bartonella clarridgeiae was the dominating species in samples from France (19 out of 22 positive fleas), whereas B. henselae was more frequent in Germany (11 out of 13 positive fleas). With 3.5% (22 out of 632 fleas) in France and 4.1% (13 out of 320 fleas) in Germany, the overall prevalences of pathogen did not vary significantly between the flea populations of both countries. 5.4% of cats in France versus 16.1% of cats from Germany were infested by fleas carrying Bartonella, whereas 9.5% of dogs in France but none of the examined dogs from Germany were infested by Bartonella positive fleas. The molecular evidence of Bartonella infections reveals that agents of zoonotic potential are established in flea populations in Germany and France and that the spectrum of species can vary significantly from country to country.

  6. Bartonella and Brucella—Weapons and Strategies for Stealth Attack

    PubMed Central

    Ben-Tekaya, Houchaima; Gorvel, Jean-Pierre; Dehio, Christoph

    2013-01-01

    Bartonella spp. and Brucella spp. are closely related α-proteobacterial pathogens that by distinct stealth-attack strategies cause chronic infections in mammals including humans. Human infections manifest by a broad spectrum of clinical symptoms, ranging from mild to fatal disease. Both pathogens establish intracellular replication niches and subvert diverse pathways of the host’s immune system. Several virulence factors allow them to adhere to, invade, proliferate, and persist within various host-cell types. In particular, type IV secretion systems (T4SS) represent essential virulence factors that transfer effector proteins tailored to recruit host components and modulate cellular processes to the benefit of the bacterial intruders. This article puts the remarkable features of these two pathogens into perspective, highlighting the mechanisms they use to hijack signaling and trafficking pathways of the host as the basis for their stealthy infection strategies. PMID:23906880

  7. Bartonella and Brucella--weapons and strategies for stealth attack.

    PubMed

    Ben-Tekaya, Houchaima; Gorvel, Jean-Pierre; Dehio, Christoph

    2013-08-01

    Bartonella spp. and Brucella spp. are closely related α-proteobacterial pathogens that by distinct stealth-attack strategies cause chronic infections in mammals including humans. Human infections manifest by a broad spectrum of clinical symptoms, ranging from mild to fatal disease. Both pathogens establish intracellular replication niches and subvert diverse pathways of the host's immune system. Several virulence factors allow them to adhere to, invade, proliferate, and persist within various host-cell types. In particular, type IV secretion systems (T4SS) represent essential virulence factors that transfer effector proteins tailored to recruit host components and modulate cellular processes to the benefit of the bacterial intruders. This article puts the remarkable features of these two pathogens into perspective, highlighting the mechanisms they use to hijack signaling and trafficking pathways of the host as the basis for their stealthy infection strategies.

  8. Bartonella infection in small mammals and their ectoparasites in Lithuania.

    PubMed

    Lipatova, Indre; Paulauskas, Algimantas; Puraite, Irma; Radzijevskaja, Jana; Balciauskas, Linas; Gedminas, Vaclovas

    2015-01-01

    The Bartonella pathogen is an emerging zoonotic agent. Epidemiological studies worldwide have demonstrated that small mammals are reservoir hosts of Bartonella spp. and their ectoparasites are potential vectors. The aim of this study was to investigate the prevalence of Bartonella infections in small mammals (Rodentia, Insectivora) and their ectoparasites (fleas and ticks) in Lithuania. A total of 430 small mammals representing nine species were captured with live-traps in Lithuania during 2013-2014. A total of 151 fleas representing eight species were collected from 109 (25.8%) small mammals. Five hundred and seventy ticks (Ixodes ricinus) were collected from 68 (16.1%) small mammals. Bartonella DNA was detected in 102 (23.7%) small mammals, 44 (29.1%) fleas and five (3.7%) pooled tick samples. Sequence analysis of 16S-23S rRNA ITS region showed that sequences were identical or similar to Bartonella grahamii, Bartonella taylorii and Bartonella rochalimae. This study is the first investigating the distribution and diversity of Bartonella species in small mammals and their ectoparasites in Lithuania. B. grahamii, B. taylorii, and B. rochalimae were detected in small mammals and their fleas, and B. grahamii in ticks obtained from small mammals.

  9. Flea-borne Bartonella grahamii and Bartonella taylorii in bank voles.

    PubMed

    Bown, Kevin J; Bennet, Malcolm; Begon, Michael

    2004-04-01

    Bartonella species are increasingly associated with a range of human and animal diseases. Despite this, we have a poor understanding of the ecology and epidemiology of many species, especially those circulating in wild populations. Previous studies have demonstrated that a diverse range of Bartonella species are abundant in wild rodent populations; little is known regarding their modes of transmission, although both direct and indirect routes have been suggested. In this study, with bank voles (Clethrionomys glareolus) as the host species, we demonstrate that the rodent flea Ctenophthalmus nobilis is a competent vector of at least two Bartonella species, B. grahamii, which has previously been associated with human infection, and B. taylorii. In contrast, no evidence of either horizontal or vertical transmission was seen in bank voles inoculated with B. taylorii maintained in an arthropod-free environment; this finding suggests that fleas may be essential for transmitting some Bartonella species.

  10. Flea-borne Bartonella grahamii and Bartonella taylorii in Bank Voles

    PubMed Central

    Bennett, Malcolm; Begon, Michael

    2004-01-01

    Bartonella species are increasingly associated with a range of human and animal diseases. Despite this, we have a poor understanding of the ecology and epidemiology of many species, especially those circulating in wild populations. Previous studies have demonstrated that a diverse range of Bartonella species are abundant in wild rodent populations; little is known regarding their modes of transmission, although both direct and indirect routes have been suggested. In this study, with bank voles (Clethrionomys glareolus) as the host species, we demonstrate that the rodent flea Ctenophthalmus nobilis is a competent vector of at least two Bartonella species, B. grahamii, which has previously been associated with human infection, and B. taylorii. In contrast, no evidence of either horizontal or vertical transmission was seen in bank voles inoculated with B. taylorii maintained in an arthropod-free environment; this finding suggests that fleas may be essential for transmitting some Bartonella species. PMID:15200860

  11. Potentially Zoonotic Bartonella in Bats from France and Spain

    PubMed Central

    Stuckey, Matthew J.; Boulouis, Henri-Jean; Cliquet, Florence; Picard-Meyer, Evelyne; Servat, Alexandre; Aréchiga-Ceballos, Nidia; Echevarría, Juan E.

    2017-01-01

    We detected Bartonella in 11 of 109 insectivorous bats from France and 1 of 26 bats from Spain. These genetic variants are closely related to bat-associated Bartonella described in Finland and the United Kingdom and to B. mayotimonensis, the agent of a human endocarditis case in the United States. PMID:28221109

  12. Prevalence and Diversity of Bartonella Species in Rodents from Georgia (Caucasus)

    PubMed Central

    Malania, Lile; Bai, Ying; Osikowicz, Lynn M.; Tsertsvadze, Nikoloz; Katsitadze, Guram; Imnadze, Paata; Kosoy, Michael

    2016-01-01

    Bartonella infections are widespread and highly prevalent in rodents. Several rodent-associated Bartonella species have been related to human diseases. Recently, Bartonella species was reported as the etiology of a human case in the country of Georgia (Caucasus). However, information on Bartonella in rodents in Georgia is absent. Rodent hearts were collected from Georgia to investigate the presence and diversity of Bartonella species. Bartonella bacteria were cultured from 37.2% (16/43) of rodents examined, while Bartonella DNA was detected in 41.2% (28/68) of rodents by polymerase chain reaction targeting citrate synthase (gltA) gene. Sequences of gltA showed that rodents in this region harbored multiple Bartonella strains, including Bartonella elizabethae, Bartonella tribocorum, Bartonella grahamii, and an unknown genogroup. The first three Bartonella species, known to be rat-associated and human cases linked, were commonly observed in wood mice (Apodemus [Sylvaemus] uralensis) (5/8 positive with B. elizabethae and B. tribocorum) and social voles (Microtus socialis) (4/6 positive with B. grahamii and B. elizabethae) in this study. The frequent distribution of these Bartonella species suggests that they may contribute to unidentified clinical infections. The unknown genogroup was observed in 24 Bartonella isolates and/or DNA extracts from heart tissues, all of which were obtained from Libyan jirds (Meriones libycus). Further characterization of the bacterial cultures based on sequence analysis of four additional genes (ftsZ, nuoG, rpoB, and ssrA) supported that the jird-associated Bartonella strains comprise a distinct monophyletic clade. The impact of this bacterium on wildlife and human health needs to be determined. PMID:27162268

  13. Diversity of Bartonella and Rickettsia spp. in Bats and Their Blood-Feeding Ectoparasites from South Africa and Swaziland.

    PubMed

    Dietrich, Muriel; Tjale, Mabotse A; Weyer, Jacqueline; Kearney, Teresa; Seamark, Ernest C J; Nel, Louis H; Monadjem, Ara; Markotter, Wanda

    2016-01-01

    In addition to several emerging viruses, bats have been reported to host multiple bacteria but their zoonotic threats remain poorly understood, especially in Africa where the diversity of bats is important. Here, we investigated the presence and diversity of Bartonella and Rickettsia spp. in bats and their ectoparasites (Diptera and Siphonaptera) collected across South Africa and Swaziland. We collected 384 blood samples and 14 ectoparasites across 29 different bat species and found positive samples in four insectivorous and two frugivorous bat species, as well as their Nycteribiidae flies. Phylogenetic analyses revealed diverse Bartonella genotypes and one main group of Rickettsia, distinct from those previously reported in bats and their ectoparasites, and for some closely related to human pathogens. Our results suggest a differential pattern of host specificity depending on bat species. Bartonella spp. identified in bat flies and blood were identical supporting that bat flies may serve as vectors. Our results represent the first report of bat-borne Bartonella and Rickettsia spp. in these countries and highlight the potential role of bats as reservoirs of human bacterial pathogens.

  14. Diversity of Bartonella and Rickettsia spp. in Bats and Their Blood-Feeding Ectoparasites from South Africa and Swaziland

    PubMed Central

    Dietrich, Muriel; Tjale, Mabotse A.; Weyer, Jacqueline; Kearney, Teresa; Seamark, Ernest C. J.; Nel, Louis H.; Monadjem, Ara; Markotter, Wanda

    2016-01-01

    In addition to several emerging viruses, bats have been reported to host multiple bacteria but their zoonotic threats remain poorly understood, especially in Africa where the diversity of bats is important. Here, we investigated the presence and diversity of Bartonella and Rickettsia spp. in bats and their ectoparasites (Diptera and Siphonaptera) collected across South Africa and Swaziland. We collected 384 blood samples and 14 ectoparasites across 29 different bat species and found positive samples in four insectivorous and two frugivorous bat species, as well as their Nycteribiidae flies. Phylogenetic analyses revealed diverse Bartonella genotypes and one main group of Rickettsia, distinct from those previously reported in bats and their ectoparasites, and for some closely related to human pathogens. Our results suggest a differential pattern of host specificity depending on bat species. Bartonella spp. identified in bat flies and blood were identical supporting that bat flies may serve as vectors. Our results represent the first report of bat-borne Bartonella and Rickettsia spp. in these countries and highlight the potential role of bats as reservoirs of human bacterial pathogens. PMID:26999518

  15. Demonstration of Bartonella grahamii DNA in Ocular Fluids of a Patient with Neuroretinitis

    PubMed Central

    Kerkhoff, F. T.; Bergmans, A. M. C.; van der Zee, A.; Rothova, A.

    1999-01-01

    We describe the clinical and laboratory features of a 55-year-old human immunodeficiency virus-negative female patient who presented with bilateral intraocular inflammatory disease (neuroretinitis type) and behavioral changes caused by a Bartonella grahamii infection. Diagnosis was based on the PCR analysis of DNA extracted from the intraocular fluids. DNA analysis of the PCR product revealed a 100% identity with the 16S rRNA gene sequence of B. grahamii. The patient was successfully treated with doxycycline (200 mg/day) and rifampin (600 mg/day) for 4 weeks. This is the first report that demonstrates the presence of a Bartonella species in the intraocular fluids of a nonimmunocompromised patient and that indicates that B. grahamii is pathogenic for humans. PMID:10565926

  16. Candidatus Bartonella antechini: a novel Bartonella species detected in fleas and ticks from the yellow-footed antechinus (Antechinus flavipes), an Australian marsupial.

    PubMed

    Kaewmongkol, Gunn; Kaewmongkol, Sarawan; Owen, Helen; Fleming, Patricia A; Adams, Peter J; Ryan, Una; Irwin, Peter J; Fenwick, Stanley G

    2011-05-05

    Bartonella are fastidious, Gram-negative, aerobic bacilli belonging to the Alphaproteobacteria group. In the last ten years, the discovery of new Bartonella species from a variety of mammalian hosts, arthropod vectors and geographical areas has increased. More than 20 species of Bartonella have been identified, of which approximately thirteen are associated with disease in humans and animals. Recently, four novel species of Bartonella were isolated from mammalian hosts in Australia: Bartonella australis from eastern grey kangaroos (Macropus giganteus) and Bartonella rattaustraliani, Bartonella queenslandensis and Bartonella coopersplainsensis from rodents. Bartonella-like organisms have also been detected from Ixodes tasmani ticks collected from koalas (Phascolarctos cinereus). However, very little is known about Bartonella spp. in other marsupials in Australia. We report the identification of a novel Bartonella species detected from fleas (Acanthopsylla jordani) and ticks (Ixodes antechini) collected from a small carnivorous marsupial, Antechinus flavipes (Mardos or Yellow-footed antechinus) in the southwest of Western Australia. New nested-PCRs targeting the gltA gene and the ribosomal ITS region were developed as part of the present study. DNA sequencing of the 16S rRNA, gltA, ftsZ and rpoB genes and the ribosomal ITS region revealed that this detection is a distinct Bartonella species and is related to B. australis isolated from kangaroos. This is the first report of two different possible arthropod vectors in Australia (ticks and fleas) being infected with the same species of Bartonella. We propose the name Candidatus Bartonella antechini n. sp. for the recently characterized organism.

  17. Seroprevalence of Bartonella Species in Patients with Ocular Inflammation.

    PubMed

    Brydak-Godowska, Joanna; Kopacz, Dorota; Borkowski, Piotr K; Fiecek, Beata; Hevelke, Agata; Rabczenko, Daniel; Tylewska-Wierzbanowska, Stanisława; Kęcik, Dariusz; Chmielewski, Tomasz

    2017-04-13

    Bartonella species, vector-borne etiologic agents of many systemic or self-limited infections, are responsible for a widening spectrum of diseases in humans, including inflammatory conditions of the eye. The aim of this study was to determine whether there is any relationship between uveitis and the evidence of Bartonella spp. infection in the serum, ocular fluid, and cataract mass in patients with intraocular inflammation. Polymerase chain reaction (PCR)-based tests and DNA sequencing were performed on surgery-extracted specimens of intraocular fluid and lens mass of 33 patients. Sera from 51 patients and 101 control subjects were tested for the presence of specific antibodies against Bartonella spp. Neither IgM-class antibodies against Bartonella spp. nor Bartonella spp. DNA were detected. A specific IgG-class antibody was found in 33.3% of the patients with uveitis. The rate of positive Bartonella serology was higher among the uveitis patients than that in control subjects. This high rate may in part result from unrecognized indirect mechanisms rather than the immediate presence and multiplication of Bartonella spp. in the eyeball. Nonetheless we believe that screening for Bartonella spp. should become part of the diagnostic workup in uveitis.

  18. Bartonella Osteomyelitis of the Acetabulum: Case Report and Review of the Literature

    PubMed Central

    Kreppel, Andrew J.; Schlaudecker, Elizabeth P.

    2015-01-01

    Abstract Introduction: Bartonella henselae commonly involves the mononuclear phagocyte system (MPS), and its most common presentation is lymphadenitis. Rarely, it can cause isolated osteomyelitis. We present a case of a 3 year old with constitutional symptoms and new onset of limp. Previously reported cases of osteomyelitis due to B. henselae are also reviewed here, keeping the index case in mind. Methods: We conducted a Medline search using MeSH subject headings Bartonella and osteomyelitis, limited to humans. Results: The index case is a 3-year-old female who had a subacute presentation with new-onset leg pain and fever. Subsequent imaging demonstrated osteomyelitis of the acetabulum. Multiple diagnostic attempts were unsuccessful, and the patient did not respond to empiric therapy. Despite indeterminate serology, the diagnosis of Bartonella osteomyelitis was eventually confirmed by PCR on bone biopsy of the lesion. The literature search revealed 48 publications, which were reduced to 28 when limiting articles to the English language and the pediatric population. After a report of 36 pediatric cases in 2007, there have been an additional 12 pediatric cases since 1998. Generally, these patients had a subacute presentation with relatively mild constitutional symptoms. Most commonly, bone involvement occurred as osteolytic lesions of the axial skeleton. Of the total 48 cases reported, only four reported involvement of the axial skeleton. Conclusion: We present the first case, to our knowledge, of pediatric osteomyelitis of the pelvis due to B. henselae with indeterminate serologic and positive PCR results. Bartonella osteomyelitis should be included in the differential diagnosis when typical pathogens are not identified or if the patient is slow to respond to standard therapies. The sensitivity of tissue PCR for Bartonella osteomyelitis is now better than the current gold standard of serology, and new management guidelines may need to reflect this. PMID:26273806

  19. Molecular detection of Bartonella quintana, B. Elizabethae, B. Koehlerae, B. Doshiae, B. Taylorii, and Rickettsia felis in rodent fleas collected in Kabul, Afghanistan.

    PubMed

    Marié, Jean-Lou; Fournier, Pierre-Edouard; Rolain, Jean-Marc; Briolant, Sébastien; Davoust, Bernard; Raoult, Didier

    2006-03-01

    The prevalences of Bartonella spp. and Rickettsia spp. were investigated using molecular methods in 77 rodent fleas collected in November 2002 by the French forces detachment in Kabul, Afghanistan. Overall, Bartonella DNA was detected in 15.5% of gerbil fleas and 40.5% of rat fleas, whereas Rickettsia felis was found in 9% of gerbil fleas. We described for the first time in this country Bartonella quintana, B. koehlerae, B. taylorii, and Rickettsia felis in fleas from the gerbil species Meriones lybicus, and B. elizabethae and B. doshiae in rat fleas. Of these, B. quintana, B. elizabethae, B. koehlerae, and R. felis are recognized human pathogens. These results emphasize the potential risk of flea-borne infections transmitted by rodents in this area, and suggest that preventive measures should be taken in the general framework of zoonoses management.

  20. Small Indian mongooses and masked palm civets serve as new reservoirs of Bartonella henselae and potential sources of infection for humans.

    PubMed

    Sato, S; Kabeya, H; Shigematsu, Y; Sentsui, H; Une, Y; Minami, M; Murata, K; Ogura, G; Maruyama, S

    2013-12-01

    The prevalence and genetic properties of Bartonella species were investigated in small Indian mongooses and masked palm civets in Japan. Bartonella henselae, the causative agent of cat-scratch disease (CSD) was isolated from 15.9% (10/63) of the mongooses and 2.0% (1/50) of the masked palm civets, respectively. The bacteraemic level ranged from 3.0 × 10(1) to 8.9 × 10(3) CFU/mL in mongooses and was 7.0 × 10(3) CFU/mL in the masked palm civet. Multispacer typing (MST) analysis based on nine intergenic spacers resulted in the detection of five MST genotypes (MSTs 8, 14, 37, 58 and 59) for the isolates, which grouped in lineage 1 with MST genotypes of isolates from all CSD patients and most of the cats in Japan. It was also found that MST14 from the mongoose strains was the predominant genotype of cat and human strains. This is the first report on the isolation of B. henselae from small Indian mongooses and masked palm civets. The data obtained in the present study suggest that these animals serve as new reservoirs for B. henselae, and may play a role as potential sources of human infection.

  1. Bartonella quintana deploys host and vector temperature-specific transcriptomes.

    PubMed

    Abromaitis, Stephanie; Nelson, Christopher S; Previte, Domenic; Yoon, Kyong S; Clark, J Marshall; DeRisi, Joseph L; Koehler, Jane E

    2013-01-01

    The bacterial pathogen Bartonella quintana is passed between humans by body lice. B. quintana has adapted to both the human host and body louse vector niches, producing persistent infection with high titer bacterial loads in both the host (up to 10(5) colony-forming units [CFU]/ml) and vector (more than 10(8) CFU/ml). Using a novel custom microarray platform, we analyzed bacterial transcription at temperatures corresponding to the host (37°C) and vector (28°C), to probe for temperature-specific and growth phase-specific transcriptomes. We observed that transcription of 7% (93 genes) of the B. quintana genome is modified in response to change in growth phase, and that 5% (68 genes) of the genome is temperature-responsive. Among these transcriptional changes in response to temperature shift and growth phase was the induction of known B. quintana virulence genes and several previously unannotated genes. Hemin binding proteins, secretion systems, response regulators, and genes for invasion and cell attachment were prominent among the differentially-regulated B. quintana genes. This study represents the first analysis of global transcriptional responses by B. quintana. In addition, the in vivo experiments provide novel insight into the B. quintana transcriptional program within the body louse environment. These data and approaches will facilitate study of the adaptation mechanisms employed by Bartonella during the transition between human host and arthropod vector.

  2. [Extraction and characterization of the lipopolysaccharide of Bartonella quintana

    PubMed

    Matera, G.; Liberto, M.C.; Pollio, A.; Diana, R.; Martucci, M.; Parlato, G.; Gulletta, E.; Foca', A.

    1999-01-01

    Bartonella quintana has been reported as the cause of trench fever, persistent endocarditis, bacteriaemia and has been isolated with an increasing incidence in clinical specimens from AIDS patients. One of the main pathogenic factors of gram-negative bacteria, including B. quintana, is the lipopolysaccharide (LPS). However, very little information is available on the features of Bartonella LPS. The aim of the present study was to extract, purify and characterise B. quintana LPS. The effect of the LPS under scrutiny was also evaluated on TNFa release by means of the "in vitro" human whole blood model of sepsis. The Oklahoma strain of B. quintana was grown on sheep blood agar, at 37 C, in a moist atmosphere containing 5% carbon dioxide. Cells were harvested and washed in sterile and apyrogenic saline solution and LPS extracted following the procedure of Westphal e Jann (1965), modified by Minnick (1994). The LPS of B. quintana showed the migration pattern of a deep rough chemotype, and the chromogenic limulus amoebocyte lysate test (LAL test) revealed strong reactivity at low concentrations (6.2 pg/ml). Samples of human whole blood stimulated by 1000 ng/ml of B. quintana LPS released 1707 378 pg/ml of TNFa.

  3. Evolutionary dynamics of pathoadaptation revealed by three independent acquisitions of the VirB/D4 type IV secretion system in Bartonella.

    PubMed

    Harms, Alexander; Segers, Francisca H I D; Quebatte, Maxime; Mistl, Claudia; Manfredi, Pablo; Körner, Jonas; Chomel, Bruno B; Kosoy, Michael; Maruyama, Soichi; Engel, Philipp; Dehio, Christoph

    2017-03-07

    The α-proteobacterial genus Bartonella comprises a group of ubiquitous mammalian pathogens that are studied as a model for the evolution of bacterial pathogenesis. Vast abundance of two particular phylogenetic lineages of Bartonella had been linked to enhanced host adaptability enabled by lineage-specific acquisition of a VirB/D4 type IV secretion system (T4SS) and parallel evolution of complex effector repertoires. However, the limited availability of genome sequences from one of those lineages as well as other, remote branches of Bartonella has so far hampered comprehensive understanding of how the VirB/D4 T4SS and its effectors called Beps have shaped Bartonella evolution. Here, we report the discovery of a third repertoire of Beps associated with the VirB/D4 T4SS of B. ancashensis, a novel human pathogen that lacks any signs of host adaptability and is only distantly related to the two species-rich lineages encoding a VirB/D4 T4SS. Furthermore, sequencing of ten new Bartonella isolates from under-sampled lineages enabled combined in silico analyses and wet lab experiments that suggest several parallel layers of functional diversification during evolution of the three Bep repertoires from a single ancestral effector. Our analyses show that the Beps of B. ancashensis share many features with the two other repertoires, but may represent a more ancestral state that has not yet unleashed the adaptive potential of such an effector set. We anticipate that the effectors of B. ancashensis will enable future studies to dissect the evolutionary history of Bartonella effectors and help unraveling the evolutionary forces underlying bacterial host adaptation.

  4. Evolutionary Dynamics of Pathoadaptation Revealed by Three Independent Acquisitions of the VirB/D4 Type IV Secretion System in Bartonella

    PubMed Central

    Harms, Alexander; Segers, Francisca H.I.D.; Quebatte, Maxime; Mistl, Claudia; Manfredi, Pablo; Körner, Jonas; Chomel, Bruno B.; Kosoy, Michael; Maruyama, Soichi; Engel, Philipp

    2017-01-01

    The α-proteobacterial genus Bartonella comprises a group of ubiquitous mammalian pathogens that are studied as a model for the evolution of bacterial pathogenesis. Vast abundance of two particular phylogenetic lineages of Bartonella had been linked to enhanced host adaptability enabled by lineage-specific acquisition of a VirB/D4 type IV secretion system (T4SS) and parallel evolution of complex effector repertoires. However, the limited availability of genome sequences from one of those lineages as well as other, remote branches of Bartonella has so far hampered comprehensive understanding of how the VirB/D4 T4SS and its effectors called Beps have shaped Bartonella evolution. Here, we report the discovery of a third repertoire of Beps associated with the VirB/D4 T4SS of B. ancashensis, a novel human pathogen that lacks any signs of host adaptability and is only distantly related to the two species-rich lineages encoding a VirB/D4 T4SS. Furthermore, sequencing of ten new Bartonella isolates from under-sampled lineages enabled combined in silico analyses and wet lab experiments that suggest several parallel layers of functional diversification during evolution of the three Bep repertoires from a single ancestral effector. Our analyses show that the Beps of B. ancashensis share many features with the two other repertoires, but may represent a more ancestral state that has not yet unleashed the adaptive potential of such an effector set. We anticipate that the effectors of B. ancashensis will enable future studies to dissect the evolutionary history of Bartonella effectors and help unraveling the evolutionary forces underlying bacterial host adaptation. PMID:28338931

  5. Ectoparasites and associated pathogens of free-roaming and captive animals in zoos of South Carolina.

    PubMed

    Nelder, Mark P; Reeves, Will K; Adler, Peter H; Wozniak, Arthur; Wills, William

    2009-10-01

    A survey of ectoparasites and their associated pathogens was conducted in two South Carolina zoos, from 2004 to 2007. Dead, wild birds and mammals, as well as captive animals examined during routine veterinary checks constituted the study populations. Ectoparasites were tested for species of Anaplasma, Bartonella, Coxiella burnetii, Ehrlichia, Rickettsia, and Trypanosoma. Forty-six species of ectoparasites were collected from 133 free-roaming and captive hosts and their associated nesting and bedding materials. Six vector-borne pathogens were detected molecularly in the ectoparasites, including Anaplasma phagocytophilum in the tick Ixodes dentatus Marx from an eastern cottontail rabbit, Bartonella clarridgeiae in the cat flea Ctenocephalides felis (Bouché) from a Virginia opossum, Bartonella sp. Oh6 in the squirrel flea Orchopeas howardi (Baker) from an eastern grey squirrel, Bartonella sp. T7498 in the sucking louse Neohaematopinus sciuri Jancke from a squirrel, Rickettsia sp. Rf2125 in C. felis from a zookeeper and a grizzly bear, and Rickettsiales sp. Ib 2006 in Ixodes brunneus Koch from an American crow. While the pathology of some of these pathogens is poorly known, Anaplasma phagocytophilum (causative agent of human granulocytic anaplasmosis) and Bartonella clarridgeiae (causative agent of a disease similar to cat-scratch disease) can infect humans. Ectoparasites and their pathogens, especially those originating from free-roaming animals, present a potential threat to captive animals and humans.

  6. Bed bugs and possible transmission of human pathogens: a systematic review.

    PubMed

    Lai, Olivia; Ho, Derek; Glick, Sharon; Jagdeo, Jared

    2016-10-01

    The global population of bed bugs (Cimex lectularius and Cimex hemipterus, family Cimicidae) has undergone a significant resurgence since the late 1990s. This is likely due to an increase in global travel, trade, and the number of insecticide-resistant bed bugs. The global bed bug population is estimated to be increasing by 100-500 % annually. The worldwide spread of bed bugs is concerning, because they are a significant socioeconomic burden and a major concern to public health. According to the United States Environmental Protection Agency, bed bugs are "a pest of significant health importance." Additionally, 68 % of U.S. pest professionals reported that bed bugs are the most challenging pest to treat. Upwards of 45 disease pathogens have been reported in bed bugs. Recent studies report that bed bugs may be competent vectors for pathogens, such as Bartonella quintana and Trypanosoma cruzi. However, public health reports have thus far failed to produce evidence that major infectious disease outbreaks have been associated with bed bugs. Since many disease pathogens have previously been reported in bed bugs and the worldwide bed bug population is now drastically increasing, it stands to reason to wonder if bed bugs might transmit human pathogens. This review includes a literature search on recently published clinical and laboratory studies (1990-2016) investigating bed bugs as potential vectors of infectious disease, and reports the significant findings and limitations of the reviewed studies. To date, no published study has demonstrated a causal relationship between bed bugs and infectious disease transmission in humans. Also, we present and propose to expand on previous hypotheses as to why bed bugs do not transmit human pathogens. Bed bugs may contain "neutralizing factors" that attenuate pathogen virulence and, thereby, decrease the ability of bed bugs to transmit infectious disease.

  7. Human pathogens in body and head lice.

    PubMed

    Fournier, Pierre-Edouard; Ndihokubwayo, Jean-Bosco; Guidran, Jo; Kelly, Patrick J; Raoult, Didier

    2002-12-01

    Using polymerase chain reaction and sequencing, we investigated the prevalence of Rickettsia prowazekii, Bartonella quintana, and Borrelia recurrentis in 841 body lice collected from various countries. We detected R. prowazekii in body lice from Burundi in 1997 and in lice from Burundi and Rwanda in 2001; B. quintana infections of body lice were widespread. We did not detect B. recurrentis in any lice.

  8. Detection and identification of Bartonella sp. in fleas from carnivorous mammals in Andalusia, Spain.

    PubMed

    Márquez, F J; Millán, J; Rodríguez-Liébana, J J; García-Egea, I; Muniain, M A

    2009-12-01

    A total of 559 fleas representing four species (Pulex irritans, Ctenocephalides felis, Ctenocephalides canis and Spilopsyllus cuniculi) collected on carnivores (five Iberian lynx Lynx pardinus, six European wildcat Felis silvestris, 10 common genet Genetta genetta, three Eurasian badger Meles meles, 22 red fox Vulpes vulpes, 87 dogs and 23 cats) in Andalusia, southern Spain, were distributed in 156 pools of monospecific flea from each carnivore, and tested for Bartonella infection in an assay based on polymerase chain reaction (PCR) amplification of the 16 S-23 S rRNA intergenic spacer region. Twenty-one samples (13.5%) were positive and the sequence data showed the presence of four different Bartonella species. Bartonella henselae was detected in nine pools of Ctenocephalides felis from cats and dogs and in three pools of Ctenocephalides canis from cats; Bartonella clarridgeiae in Ctenocephalides felis from a cat, and Bartonella alsatica in Spilopsyllus cuniculi from a wildcat. DNA of Bartonella sp., closely related to Bartonella rochalimae, was found in seven pools of Pulex irritans from foxes. This is the first detection of B. alsatica and Bartonella sp. in the Iberian Peninsula. All of these Bartonella species have been implicated as agents of human diseases. The present survey confirms that carnivores are major reservoirs for Bartonella spp.

  9. Prevalence and Phylogenetic Analysis of Bartonella Species of Wild Carnivores and Their Fleas in Northwestern Mexico.

    PubMed

    López-Pérez, A M; Osikowicz, L; Bai, Y; Montenieri, J; Rubio, A; Moreno, K; Gage, K; Suzán, G; Kosoy, M

    2017-03-01

    The host-parasite-vector relationship of Bartonella spp. system in wild carnivores and their fleas from northwestern Mexico was investigated. Sixty-six carnivores belonging to eight species were sampled, and 285 fleas belonging to three species were collected during spring (April-May) and fall (October-November) seasons. We detected Bartonella species in 7 carnivores (10.6%) and 27 fleas (9.5%) through either blood culture or PCR. Of the 27 Bartonella-positive fleas, twenty-two were Pulex simulans, three were Pulex irritans and one was Echidnophaga gallinacea. The gltA gene and ITS region sequences alignment revealed six and eight genetic variants of Bartonella spp., respectively. These variants were clustered into Bartonella rochalimae, Bartonella vinsonii subsp. berkhoffii and another genotype, which likely represents a novel species of Bartonella spp. Although experimental infection studies are required to prove the vector role of P. simulans, our results suggest that this flea may play an important role in the Bartonella transmission. The results indicated possible host-specific relationships between Bartonella genotypes and the families of the carnivores, but further studies are needed to verify this finding. The presence of zoonotic species of Bartonella spp. in wild carnivores raises the issue of their potential risk for humans in fragmented ecosystems.

  10. Strategies of exploitation of mammalian reservoirs by Bartonella species.

    PubMed

    Deng, Hongkuan; Le Rhun, Danielle; Buffet, Jean-Philippe R; Cotté, Violaine; Read, Amanda; Birtles, Richard J; Vayssier-Taussat, Muriel

    2012-02-27

    Numerous mammal species, including domestic and wild animals such as ruminants, dogs, cats and rodents, as well as humans, serve as reservoir hosts for various Bartonella species. Some of those species that exploit non-human mammals as reservoir hosts have zoonotic potential. Our understanding of interactions between bartonellae and reservoir hosts has been greatly improved by the development of animal models for infection and the use of molecular tools allowing large scale mutagenesis of Bartonella species. By reviewing and combining the results of these and other approaches we can obtain a comprehensive insight into the molecular interactions that underlie the exploitation of reservoir hosts by Bartonella species, particularly the well-studied interactions with vascular endothelial cells and erythrocytes.

  11. Strategies of exploitation of mammalian reservoirs by Bartonella species

    PubMed Central

    2012-01-01

    Numerous mammal species, including domestic and wild animals such as ruminants, dogs, cats and rodents, as well as humans, serve as reservoir hosts for various Bartonella species. Some of those species that exploit non-human mammals as reservoir hosts have zoonotic potential. Our understanding of interactions between bartonellae and reservoir hosts has been greatly improved by the development of animal models for infection and the use of molecular tools allowing large scale mutagenesis of Bartonella species. By reviewing and combining the results of these and other approaches we can obtain a comprehensive insight into the molecular interactions that underlie the exploitation of reservoir hosts by Bartonella species, particularly the well-studied interactions with vascular endothelial cells and erythrocytes. PMID:22369683

  12. Effects of Bartonella spp. on flea feeding and reproductive performance.

    PubMed

    Morick, Danny; Krasnov, Boris R; Khokhlova, Irina S; Gutiérrez, Ricardo; Fielden, Laura J; Gottlieb, Yuval; Harrus, Shimon

    2013-06-01

    Numerous pathogens are transmitted from one host to another by hematophagous insect vectors. The interactions between a vector-borne organism and its vector vary in many ways, most of which are yet to be explored and identified. These interactions may play a role in the dynamics of the infection cycle. One way to evaluate these interactions is by studying the effects of the tested organism on the vector. In this study, we tested the effects of infection with Bartonella species on fitness-related variables of fleas by using Bartonella sp. strain OE 1-1, Xenopsylla ramesis fleas, and Meriones crassus jirds as a model system. Feeding parameters, including blood meal size and metabolic rate during digestion, as well as reproductive parameters, including fecundity, fertility, and life span, were compared between fleas experimentally infected with Bartonella and uninfected fleas. In addition, the developmental time, sex ratio, and body size of F1 offspring fleas were compared between the two groups. Most tested parameters did not differ between infected and uninfected fleas. However, F1 males produced by Bartonella-positive females were significantly smaller than F1 males produced by Bartonella-negative female fleas. The findings in this study suggest that bartonellae are well adapted to their flea vectors, and by minimally affecting their fitness they have evolved to better spread themselves in the natural environment.

  13. Effects of Bartonella spp. on Flea Feeding and Reproductive Performance

    PubMed Central

    Morick, Danny; Krasnov, Boris R.; Khokhlova, Irina S.; Gutiérrez, Ricardo; Fielden, Laura J.; Gottlieb, Yuval

    2013-01-01

    Numerous pathogens are transmitted from one host to another by hematophagous insect vectors. The interactions between a vector-borne organism and its vector vary in many ways, most of which are yet to be explored and identified. These interactions may play a role in the dynamics of the infection cycle. One way to evaluate these interactions is by studying the effects of the tested organism on the vector. In this study, we tested the effects of infection with Bartonella species on fitness-related variables of fleas by using Bartonella sp. strain OE 1-1, Xenopsylla ramesis fleas, and Meriones crassus jirds as a model system. Feeding parameters, including blood meal size and metabolic rate during digestion, as well as reproductive parameters, including fecundity, fertility, and life span, were compared between fleas experimentally infected with Bartonella and uninfected fleas. In addition, the developmental time, sex ratio, and body size of F1 offspring fleas were compared between the two groups. Most tested parameters did not differ between infected and uninfected fleas. However, F1 males produced by Bartonella-positive females were significantly smaller than F1 males produced by Bartonella-negative female fleas. The findings in this study suggest that bartonellae are well adapted to their flea vectors, and by minimally affecting their fitness they have evolved to better spread themselves in the natural environment. PMID:23542614

  14. Infections by Leptospira interrogans, Seoul virus, and Bartonella spp. among Norway rats (Rattus norvegicus) from the urban slum environment in Brazil.

    PubMed

    Costa, Federico; Porter, Fleur Helena; Rodrigues, Gorete; Farias, Helena; de Faria, Marcus Tucunduva; Wunder, Elsio A; Osikowicz, Lynn M; Kosoy, Michael Y; Reis, Mitermayer Galvão; Ko, Albert I; Childs, James E

    2014-01-01

    Norway rats (Rattus norvegicus) are reservoir hosts for zoonotic pathogens that cause significant morbidity and mortality in humans. Studies evaluating the prevalence of zoonotic pathogens in tropical Norway rat populations are rare, and data on co-infection with multiple pathogens are nonexistent. Herein, we describe the prevalence of leptospiral carriage, Seoul virus (SEOV), and Bartonella spp. infection independently, in addition to the rates of co-infection among urban, slum-dwelling Norway rats in Salvador, Brazil, trapped during the rainy season from June to August of 2010. These data were complemented with previously unpublished Leptospira and SEOV prevalence information collected in 1998. Immunofluorescence staining of kidney impressions was used to identify Leptospira interrogans in 2010, whereas isolation was used in 1998, and western blotting was used to detect SEOV antibodies in 2010, whereas enzyme-linked immunosorbent assay (ELISA) was used in 1998: in 2010, Bartonella spp. were isolated from a subsample of rats. The most common pathogen in both years was Leptospira spp. (83%, n=142 in 1998, 63%, n=84 in 2010). SEOV was detected in 18% of individuals in both 1998 and 2010 (n=78 in 1998; n=73 in 2010), and two species of Bartonella were isolated from 5 of 26 rats (19%) tested in 2010. The prevalence of all agents increased significantly with rat mass/age. Acquisition of Leptospira spp. occurred at a younger mass/age than SEOV and Bartonella spp. infection, suggesting differences in the transmission dynamics of these pathogens. These data indicate that Norway rats in Salvador serve as reservoir hosts for all three of these zoonotic pathogens and that the high prevalence of leptospiral carriage in Salvador rats poses a high degree of risk to human health.

  15. Infections by Leptospira interrogans, Seoul Virus, and Bartonella spp. Among Norway Rats (Rattus norvegicus) from the Urban Slum Environment in Brazil

    PubMed Central

    Porter, Fleur Helena; Rodrigues, Gorete; Farias, Helena; de Faria, Marcus Tucunduva; Wunder, Elsio A.; Osikowicz, Lynn M.; Kosoy, Michael Y.; Reis, Mitermayer Galvão; Ko, Albert I.; Childs, James E.

    2014-01-01

    Abstract Norway rats (Rattus norvegicus) are reservoir hosts for zoonotic pathogens that cause significant morbidity and mortality in humans. Studies evaluating the prevalence of zoonotic pathogens in tropical Norway rat populations are rare, and data on co-infection with multiple pathogens are nonexistent. Herein, we describe the prevalence of leptospiral carriage, Seoul virus (SEOV), and Bartonella spp. infection independently, in addition to the rates of co-infection among urban, slum-dwelling Norway rats in Salvador, Brazil, trapped during the rainy season from June to August of 2010. These data were complemented with previously unpublished Leptospira and SEOV prevalence information collected in 1998. Immunofluorescence staining of kidney impressions was used to identify Leptospira interrogans in 2010, whereas isolation was used in 1998, and western blotting was used to detect SEOV antibodies in 2010, whereas enzyme-linked immunosorbent assay (ELISA) was used in 1998: in 2010, Bartonella spp. were isolated from a subsample of rats. The most common pathogen in both years was Leptospira spp. (83%, n=142 in 1998, 63%, n=84 in 2010). SEOV was detected in 18% of individuals in both 1998 and 2010 (n=78 in 1998; n=73 in 2010), and two species of Bartonella were isolated from 5 of 26 rats (19%) tested in 2010. The prevalence of all agents increased significantly with rat mass/age. Acquisition of Leptospira spp. occurred at a younger mass/age than SEOV and Bartonella spp. infection, suggesting differences in the transmission dynamics of these pathogens. These data indicate that Norway rats in Salvador serve as reservoir hosts for all three of these zoonotic pathogens and that the high prevalence of leptospiral carriage in Salvador rats poses a high degree of risk to human health. PMID:24359425

  16. Sexual Reproduction of Human Fungal Pathogens

    PubMed Central

    Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.

    2014-01-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

  17. Sexual reproduction of human fungal pathogens.

    PubMed

    Heitman, Joseph; Carter, Dee A; Dyer, Paul S; Soll, David R

    2014-08-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms.

  18. Looking in ticks for human bacterial pathogens.

    PubMed

    Mediannikov, O; Fenollar, F

    2014-12-01

    Ticks are considered to be second worldwide to mosquitoes as vectors of human diseases and the most important vectors of disease-causing pathogens in domestic and wild animals. A number of emerging tick-borne pathogens are already discovered; however, the proportion of undiagnosed infectious diseases, especially in tropical regions, may suggest that there are still more pathogens associated with ticks. Moreover, the identification of bacteria associated with ticks may provide new tool for the control of ticks and tick-borne diseases. Described here molecular methods of screening of ticks, extensive use of modern culturomics approach, newly developed artificial media and different cell line cultures may significantly improve our knowledge about the ticks as the agents of human and animal pathology.

  19. Association of Bartonella Species with Wild and Synanthropic Rodents in Different Brazilian Biomes.

    PubMed

    Gonçalves, Luiz Ricardo; Favacho, Alexsandra Rodrigues de Mendonça; Roque, André Luiz Rodrigues; Mendes, Natalia Serra; Fidelis Junior, Otávio Luiz; Benevenute, Jyan Lucas; Herrera, Heitor Miraglia; D'Andrea, Paulo Sérgio; de Lemos, Elba Regina Sampaio; Machado, Rosangela Zacarias; André, Marcos Rogério

    2016-12-15

    Bartonella spp. comprise an ecologically successful group of microorganisms that infect erythrocytes and have adapted to different hosts, which include a wide range of mammals, besides humans. Rodents are reservoirs of about two-thirds of Bartonella spp. described to date; and some of them have been implicated as causative agents of human diseases. In our study, we performed molecular and phylogenetic analyses of Bartonella spp. infecting wild rodents from five different Brazilian biomes. In order to characterize the genetic diversity of Bartonella spp., we performed a robust analysis based on three target genes, followed by sequencing, Bayesian inference, and maximum likelihood analysis. Bartonella spp. were detected in 25.6% (117/457) of rodent spleen samples analyzed, and this occurrence varied among different biomes. The diversity analysis of gltA sequences showed the presence of 15 different haplotypes. Analysis of the phylogenetic relationship of gltA sequences performed by Bayesian inference and maximum likelihood showed that the Bartonella species detected in rodents from Brazil was closely related to the phylogenetic group A detected in other cricetid rodents from North America, probably constituting only one species. Last, the Bartonella species genogroup identified in the present study formed a monophyletic group that included Bartonella samples from seven different rodent species distributed in three distinct biomes. In conclusion, our study showed that the occurrence of Bartonella bacteria in rodents is much more frequent and widespread than previously recognized.

  20. Heat Inactivation of Human Pathogens on Catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the National Advisory Committee on Microbiological Criteria for Food (NACMCF) determined that the cooking (time/temperature) for finfish would be different than for meat products and identified a need for time/temperature requirements to assure the thermal inactivation of the human pathogens: Sa...

  1. The Interaction of Human Enteric Pathogens with Plants

    PubMed Central

    Lim, Jeong-A; Lee, Dong Hwan; Heu, Sunggi

    2014-01-01

    There are an increasing number of outbreaks of human pathogens related to fresh produce. Thus, the growth of human pathogens on plants should be explored. Human pathogens can survive under the harsh environments in plants, and can adhere and actively invade plants. Plant-associated microbiota or insects contribute to the survival and transmission of enteric pathogens in plants. Human enteric pathogens also trigger plant innate immunity, but some pathogens–such as Salmonella–can overcome this defense mechanism. PMID:25288993

  2. Isolation of Bartonella washoensis from a Dog with Mitral Valve Endocarditis

    PubMed Central

    Chomel, Bruno B.; Wey, Aaron C.; Kasten, Rickie W.

    2003-01-01

    We report the first documented case of Bartonella washoensis bacteremia in a dog with mitral valve endocarditis. B. washoensis was isolated in 1995 from a human patient with cardiac disease. The main reservoir species appears to be ground squirrels (Spermophilus beecheyi) in the western United States. Based on echocardiographic findings, a diagnosis of infective vegetative valvular mitral endocarditis was made in a spayed 12-year-old female Doberman pinscher. A year prior to presentation, the referring veterinarian had detected a heart murmur, which led to progressive dyspnea and a diagnosis of congestive heart failure the week before examination. One month after initial presentation, symptoms worsened. An emergency therapy for congestive heart failure was unsuccessfully implemented, and necropsy evaluation of the dog was not permitted. Indirect immunofluorescence tests showed that the dog was strongly seropositive (titer of 1:4,096) for several Bartonella antigens (B. vinsonii subsp. berkhoffii, B. clarridgeiae, and B. henselae), highly suggestive of Bartonella endocarditis. Standard aerobic and aerobic-anaerobic cultures were negative. However, a specific blood culture for Bartonella isolation grew a fastidious, gram-negative organism 7 days after being plated. Phenotypic and genotypic characterizations of the isolate, including partial sequencing of the citrate synthase (gltA), groEL, and 16S rRNA genes, indicated that this organism was identical to B. washoensis. The dog was seronegative for all tick-borne pathogens tested (Anaplasma phagocytophilum, Ehrlichia canis, and Rickettsia rickettsii), but the sample was highly positive for B. washoensis (titer of 1:8,192) and, according to indirect immunofluorescent-antibody assay, weakly positive for phase II Coxiella burnetii infection. PMID:14605197

  3. Bartonella infections and HIV disease.

    PubMed

    Lindauer, A

    1996-01-01

    Successful assessment and treatment of Bartonella in HIV-seropositive people depends on nursing's fundamental role in the management of these bacterial infections. Bartonella species are responsible for a variety of infections, including cat scratch disease and bacillary angiomatosis, which can be debilitating to people living with AIDS. This paper provides an overview of the clinical presentation and nursing management of Bartonella infection in PLWAs. The author discusses common diagnostic procedures, treatment strategies, and the nurse's role in caring for patients with a Bartonella infection.

  4. Molecular detection of Bartonella spp. in deer ked pupae, adult keds and moose blood in Finland.

    PubMed

    Korhonen, E M; Pérez Vera, C; Pulliainen, A T; Sironen, T; Aaltonen, K; Kortet, R; Härkönen, L; Härkönen, S; Paakkonen, T; Nieminen, P; Mustonen, A-M; Ylönen, H; Vapalahti, O

    2015-02-01

    The deer ked (Lipoptena cervi) is a haematophagous ectoparasite of cervids that harbours haemotrophic Bartonella. A prerequisite for the vector competence of the deer ked is the vertical transmission of the pathogen from the mother to its progeny and transstadial transmission from pupa to winged adult. We screened 1154 pupae and 59 pools of winged adult deer keds from different areas in Finland for Bartonella DNA using PCR. Altogether 13 pupa samples and one winged adult deer ked were positive for the presence of Bartonella DNA. The amplified sequences were closely related to either B. schoenbuchensis or B. bovis. The same lineages were identified in eight blood samples collected from free-ranging moose. This is the first demonstration of Bartonella spp. DNA in a winged adult deer ked and, thus, evidence for potential transstadial transmission of Bartonella spp. in the species.

  5. Cell entry by human pathogenic arenaviruses.

    PubMed

    Rojek, Jillian M; Kunz, Stefan

    2008-04-01

    The arenaviruses Lassa virus (LASV) in Africa and Machupo (MACV), Guanarito (GTOV) and Junin viruses (JUNV) in South America cause severe haemorrhagic fevers in humans with fatality rates of 15-35%. The present review focuses on the first steps of infection with human pathogenic arenaviruses, the interaction with their cellular receptor molecules and subsequent entry into the host cell. While similarities exist in genomic organization, structure and clinical disease caused by pathogenic Old World and New World arenaviruses these pathogens use different primary receptors. The Old World arenaviruses employ alpha-dystroglycan, a cellular receptor for proteins of the extracellular matrix, and the human pathogenic New World arenaviruses use the cellular cargo receptor transferrin receptor 1. While the New World arenavirus JUNV enters cells via clathrin-dependent endocytosis, evidence occurred for clathrin-independent entry of the prototypic Old World arenavirus lymphocytic choriomeningitis virus. Upon internalization, arenaviruses are delivered to the endosome, where pH-dependent membrane fusion is mediated by the envelope glycoprotein (GP). While arenavirus GPs share characteristics with class I fusion GPs of other enveloped viruses, unusual mechanistic features of GP-mediated membrane fusion have recently been discovered for arenaviruses with important implications for viral entry.

  6. High Prevalence of Rickettsia typhi and Bartonella Species in Rats and Fleas, Kisangani, Democratic Republic of the Congo

    PubMed Central

    Laudisoit, Anne; Falay, Dadi; Amundala, Nicaise; Akaibe, Dudu; de Bellocq, Joëlle Goüy; Van Houtte, Natalie; Breno, Matteo; Verheyen, Erik; Wilschut, Liesbeth; Parola, Philippe; Raoult, Didier; Socolovschi, Cristina

    2014-01-01

    The prevalence and identity of Rickettsia and Bartonella in urban rat and flea populations were evaluated in Kisangani, Democratic Republic of the Congo (DRC) by molecular tools. An overall prevalence of 17% Bartonella species and 13% Rickettsia typhi, the agent of murine typhus, was found in the cosmopolitan rat species, Rattus rattus and Rattus norvegicus that were infested by a majority of Xenopsylla cheopis fleas. Bartonella queenslandensis, Bartonella elizabethae, and three Bartonella genotypes were identified by sequencing in rat specimens, mostly in R. rattus. Rickettsia typhi was detected in 72% of X. cheopis pools, the main vector and reservoir of this zoonotic pathogen. Co-infections were observed in rodents, suggesting a common mammalian host shared by R. typhi and Bartonella spp. Thus, both infections are endemic in DRC and the medical staffs need to be aware knowing the high prevalence of impoverished populations or immunocompromised inhabitants in this area. PMID:24445202

  7. High prevalence of Rickettsia typhi and Bartonella species in rats and fleas, Kisangani, Democratic Republic of the Congo.

    PubMed

    Laudisoit, Anne; Falay, Dadi; Amundala, Nicaise; Akaibe, Dudu; de Bellocq, Joëlle Goüy; Van Houtte, Natalie; Breno, Matteo; Verheyen, Erik; Wilschut, Liesbeth; Parola, Philippe; Raoult, Didier; Socolovschi, Cristina

    2014-03-01

    The prevalence and identity of Rickettsia and Bartonella in urban rat and flea populations were evaluated in Kisangani, Democratic Republic of the Congo (DRC) by molecular tools. An overall prevalence of 17% Bartonella species and 13% Rickettsia typhi, the agent of murine typhus, was found in the cosmopolitan rat species, Rattus rattus and Rattus norvegicus that were infested by a majority of Xenopsylla cheopis fleas. Bartonella queenslandensis, Bartonella elizabethae, and three Bartonella genotypes were identified by sequencing in rat specimens, mostly in R. rattus. Rickettsia typhi was detected in 72% of X. cheopis pools, the main vector and reservoir of this zoonotic pathogen. Co-infections were observed in rodents, suggesting a common mammalian host shared by R. typhi and Bartonella spp. Thus, both infections are endemic in DRC and the medical staffs need to be aware knowing the high prevalence of impoverished populations or immunocompromised inhabitants in this area.

  8. Bartonella henselae transmission by blood transfusion in mice

    PubMed Central

    da Silva, Marilene Neves; Vieira-Damiani, Gislaine; Ericson, Marna Elise; Gupta, Kalpna; Gilioli, Rovilson; de Almeida, Amanda Roberta; Drummond, Marina Rovani; Lania, Bruno Grosselli; de Almeida Lins, Karina; Soares, Tania Cristina Benetti; Velho, Paulo Eduardo Neves Ferreira

    2016-01-01

    BACKGROUND Bartonella spp. are neglected fastidious Gram-negative bacilli. We isolated Bartonella henselae from 1.2% of 500 studied blood donors and demonstrated that the bacteria remain viable in red blood cell units after 35 days of experimental infection. Now, we aim to evaluate the possibility of B. henselae transmission by blood transfusion in a mouse model. STUDY DESIGN AND METHODS Eight BALB/c mice were intraperitoneal inoculated with a 30μLof suspension with 104 CFU/mL of B. henselae and a second group of eight mice were inoculated with saline solution and used as control. After 96 hours of inoculation, the animals were euthanized. We collected blood and tissue samples from skin, liver, and spleen. Thirty microliters of blood from four Bartonella-inoculated animals were transfused into a new group (n=4). Another group received blood from the control animals. B. henselae infection was investigated by conventional and nested polymerase chain reaction (PCR). RESULTS Blood samples from all 24 mice were negative by molecular tests though half of the tissue samples were positive by nested PCR in the intraperitoneal Bartonella-investigated animals. Tissues from two of the four mice that received blood transfusions from Bartonella-inoculated animals were also nested PCR positives. CONCLUSIONS Transmission of B. henselae by transfusion is possible in mice even when donor animals have undetectable bloodstream infection. The impact of human Bartonella sp. transmission through blood transfusion recipients must be evaluated. PMID:26968530

  9. Bartonella Endocarditis and Pauci-Immune Glomerulonephritis: A Case Report and Review of the Literature.

    PubMed

    Raybould, Jillian E; Raybould, Alison L; Morales, Megan K; Zaheer, Misbah; Lipkowitz, Michael S; Timpone, Joseph G; Kumar, Princy N

    2016-09-01

    Among culture-negative endocarditis in the United States, Bartonella species are the most common cause, with Bartonella henselae and Bartonella quintana comprising the majority of cases. Kidney manifestations, particularly glomerulonephritis, are common sequelae of infectious endocarditis, with nearly half of all Bartonella patients demonstrating renal involvement. Although a pauci-immune pattern is a frequent finding in infectious endocarditis-associated glomerulonephritis, it is rarely reported in Bartonella endocarditis. Anti-neutrophil cytoplasmic antibody (ANCA) positivity can be seen with many pathogens causing endocarditis and has been previously reported with Bartonella species. In addition, ANCA-associated vasculitis can also present with renal and cardiac involvement, including noninfectious valvular vegetations and pauci-immune glomerulonephritis. Given the overlap in their clinical presentation, it is difficult to differentiate between Bartonella endocarditis and ANCA-associated vasculitis but imperative to do so to guide management decisions. We present a case of ANCA-positive Bartonella endocarditis with associated pauci-immune glomerulonephritis that was successfully treated with medical management alone.

  10. Functional Profiling of Human Fungal Pathogen Genomes

    PubMed Central

    Goranov, Alexi I.; Madhani, Hiten D.

    2015-01-01

    Fungal infections are challenging to diagnose and often difficult to treat, with only a handful of drug classes existing. Understanding the molecular mechanisms by which pathogenic fungi cause human disease is imperative. Here, we discuss how the development and use of genome-scale genetic resources, such as whole-genome knockout collections, can address this unmet need. Using work in Saccharomcyes cerevisiae as a guide, studies of Cryptococcus neoformans and Candida albicans have shown how the challenges of large-scale gene deletion can be overcome, and how such collections can be effectively used to obtain insights into mechanisms of pathogenesis. We conclude that, with concerted efforts, full genome-wide functional analysis of human fungal pathogen genomes is within reach. PMID:25377143

  11. Molecular Identification of Human Fungal Pathogens

    DTIC Science & Technology

    2009-03-01

    deposited these sequences, after careful quality control to insure that they are correct and accurate, into the database. In addition to reference...immunosuppressive agents are, like humans, at risk for infections, particularly from a variety of potential fungal pathogens [32,33]. Second- ary infections...evaluation of its taxonomy. J Clin Microbiol 1993; 31: 18041810. 31 Smeak DD, Gallagher L, Birchard SJ, Fossum TW. Management of intractable pleural effusion

  12. Infection with Bartonella henselae in a Danish Family

    PubMed Central

    Maggi, Ricardo G.; Balakrishnan, Nandhakumar; Bradley, Julie M.

    2015-01-01

    Bartonella species constitute emerging, vector-borne, intravascular pathogens that produce long-lasting bacteremia in reservoir-adapted (natural host or passive carrier of a microorganism) and opportunistic hosts. With the advent of more sensitive and specific diagnostic tests, there is evolving microbiological evidence supporting concurrent infection with one or more Bartonella spp. in more than one family member; however, the mode(s) of transmission to or among family members remains unclear. In this study, we provide molecular microbiological evidence of Bartonella henselae genotype San Antonio 2 (SA2) infection in four of six Danish family members, including a child who died of unknown causes at 14 months of age. PMID:25740763

  13. Bartonella-Associated Transverse Myelitis

    PubMed Central

    Hirzel, Cedric; Bloch, Andreas; Fischer, Urs; Jeannet, Natalie; Berlinger, Livia; Krestel, Heinz

    2017-01-01

    Each year in the United States, 500 patients are hospitalized for cat-scratch disease, caused by Bartonella henselae infection. We report a case of rare but serious neurologic B. henselae infection. When typical features of cat-scratch disease occur with neurologic findings, Bartonella infection should be suspected and diagnostic testing should be performed. PMID:28322716

  14. Pathogenic human viruses in coastal waters

    USGS Publications Warehouse

    Griffin, Dale W.; Donaldson, Kim A.; Paul, J.H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and

  15. Host–pathogen coevolution in human tuberculosis

    PubMed Central

    Gagneux, Sebastien

    2012-01-01

    Tuberculosis (TB) is a disease of antiquity. Yet TB today still causes more adult deaths than any other single infectious disease. Recent studies show that contrary to the common view postulating an animal origin for TB, Mycobacterium tuberculosis complex (MTBC), the causative agent of TB, emerged as a human pathogen in Africa and colonized the world accompanying the Out-of-Africa migrations of modern humans. More recently, evolutionarily ‘modern’ lineages of MTBC expanded as a consequence of the global human population increase, and spread throughout the world following waves of exploration, trade and conquest. While epidemiological data suggest that the different phylogenetic lineages of MTBC might have adapted to different human populations, overall, the phylogenetically ‘modern’ MTBC lineages are more successful in terms of their geographical spread compared with the ‘ancient’ lineages. Interestingly, the global success of ‘modern’ MTBC correlates with a hypo-inflammatory phenotype in macrophages, possibly reflecting higher virulence, and a shorter latency in humans. Finally, various human genetic variants have been associated with different MTBC lineages, suggesting an interaction between human genetic diversity and MTBC variation. In summary, the biology and the epidemiology of human TB have been shaped by the long-standing association between MTBC and its human host. PMID:22312052

  16. A Focal Chorioretinal Bartonella Lesion Analyzed by Optical Coherence Tomography Angiography.

    PubMed

    Pichi, Francesco; Srivastava, Sunil K; Levinson, Ashleigh; Baynes, Kimberly M; Traut, Caitlyn; Lowder, Careen Y

    2016-06-01

    Neovascularization may be associated with cat-scratch neuroretinitis in the absence of retinal vascular occlusion. Bartonella organisms establish an intimate relationship with the vascular endothelium, causing angioproliferative lesions, which might represent a dedicated pathogenic strategy for expanding the bacterial host cell habitat. In the eye, pathological angiogenesis caused by Bartonella has been described as peripapillary or macular choroidal neovascularization, but the presence of neovascularization within foci of chorioretinitis has never before been reported. The authors present a case of Bartonella chorioretinitis in which optical coherence tomography angiography, by detecting erythrocyte motion, was able to identify neovessels inside the infectious focus. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:585-588.].

  17. Molecular detection of zoonotic bartonellae (B. henselae, B. elizabethae and B. rochalimae) in fleas collected from dogs in Israel.

    PubMed

    Sofer, S; Gutiérrez, R; Morick, D; Mumcuoglu, K Y; Harrus, S

    2015-09-01

    Fleas represent an acknowledged burden on dogs worldwide. The characterization of flea species infesting kennel dogs from two localities in Israel (Rehovot and Jerusalem) and their molecular screening for Bartonella species (Rhizobiales: Bartonellaceae) was investigated. A total of 355 fleas were collected from 107 dogs. The fleas were morphologically classified and molecularly screened targeting the Bartonella 16S-23S internal transcribed spacer (ITS). Of the 107 dogs examined, 80 (74.8%) were infested with Ctenocephalides canis (Siphonaptera: Pulicidae), 68 (63.6%) with Ctenocephalides felis, 15 (14.0%) with Pulex irritans (Siphonaptera: Pulicidae) and one (0.9%) with Xenopsylla cheopis (Siphonaptera: Pulicidae). Fleas were grouped into 166 pools (one to nine fleas per pool) according to species and host. Thirteen of the 166 flea pools (7.8%) were found to be positive for Bartonella DNA. Detected ITS sequences were 99-100% similar to those of four Bartonella species: Bartonella henselae (six pools); Bartonella elizabethae (five pools); Bartonella rochalimae (one pool), and Bartonella bovis (one pool). The present study indicates the occurrence of a variety of flea species in dogs in Israel; these flea species are, in turn, carriers of several zoonotic Bartonella species. Physicians, veterinarians and public health workers should be aware of the presence of these pathogens in dog fleas in Israel and preventive measures should be implemented.

  18. Seroprevalence of Toxoplasma gondii and concurrent Bartonella spp., feline immunodeficiency virus, feline leukemia virus, and Dirofilaria immitis infections in Egyptian cats.

    PubMed

    Al-Kappany, Y M; Lappin, M R; Kwok, O C H; Abu-Elwafa, S A; Hilali, M; Dubey, J P

    2011-04-01

    Toxoplasma gondii and Bartonella spp. are zoonotic pathogens of cats. Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLv) are related to human immunodeficiency virus and human leukemia virus, respectively, and these viruses are immunosuppressive. In the present study, the prevalence of antibodies to T. gondii , Bartonella spp., FIV, as well as FeLv and Dirofilaria immitis antigens was determined in sera from feral cats (Felis catus) from Cairo, Egypt. Using a modified agglutination test, antibodies to T. gondii were found in 172 (95.5%) of the 180 cats with titers of 1∶5 in 9, 1∶10 in 9, 1∶20 in 3, 1∶40 in 5, 1∶80 in 5, 1∶160 in 15, 1∶320 in 22, and 1∶640 or higher in 104. Thus, 57.4% had high T. gondii titers. Antibodies to Bartonella spp. were found in 105 (59.6%) of 178, with titers of 1∶64 in 45, 1∶128 in 39, 1∶256 in 13, 1∶512 in 3, 1∶1,024 in 4, and 1∶2,048 in 1 cat. Antibodies to FIV were detected in 59 (33.9%) of 174 cats. Of 174 cats tested, antigens to FeLv, and D. immitis were detected in 8 (4.6%) and 6 (3.4%) cats, respectively. The results indicate a high prevalence of T. gondii, Bartonella spp., and FIV infections in cats from Cairo, Egypt. This is the first report of Bartonella spp., and D. immitis infection in cats in Egypt.

  19. Contamination of produce with human pathogens: sources and solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of foodborne illnesses associated with the presence of human pathogens have led to increased concern about the prevalence of pathogens in the environment and the vulnerability of fresh produce to contamination by these pathogens. As the FDA strives to mandate treatments to reduce pathogen...

  20. The BatR/BatS Two-Component Regulatory System Controls the Adaptive Response of Bartonella henselae during Human Endothelial Cell Infection ▿ † ‡

    PubMed Central

    Quebatte, Maxime; Dehio, Michaela; Tropel, David; Basler, Andrea; Toller, Isabella; Raddatz, Guenter; Engel, Philipp; Huser, Sonja; Schein, Hermine; Lindroos, Hillevi L.; Andersson, Siv G. E.; Dehio, Christoph

    2010-01-01

    Here, we report the first comprehensive study of Bartonella henselae gene expression during infection of human endothelial cells. Expression of the main cluster of upregulated genes, comprising the VirB type IV secretion system and its secreted protein substrates, is shown to be under the positive control of the transcriptional regulator BatR. We demonstrate binding of BatR to the promoters of the virB operon and a substrate-encoding gene and provide biochemical evidence that BatR and BatS constitute a functional two-component regulatory system. Moreover, in contrast to the acid-inducible (pH 5.5) homologs ChvG/ChvI of Agrobacterium tumefaciens, BatR/BatS are optimally activated at the physiological pH of blood (pH 7.4). By conservation analysis of the BatR regulon, we show that BatR/BatS are uniquely adapted to upregulate a genus-specific virulence regulon during hemotropic infection in mammals. Thus, we propose that BatR/BatS two-component system homologs represent vertically inherited pH sensors that control the expression of horizontally transmitted gene sets critical for the diverse host-associated life styles of the alphaproteobacteria. PMID:20418395

  1. Bartonella species and their ectoparasites: selective host adaptation or strain selection between the vector and the mammalian host?

    PubMed

    Tsai, Yi-Lun; Chang, Chao-Chin; Chuang, Shih-Te; Chomel, Bruno B

    2011-07-01

    A wide range of blood-sucking arthropods have either been confirmed or are suspected as important vectors in Bartonella transmission to mammals, including humans. Overall, it appears that the diversity of Bartonella species DNA identified in ectoparasites is much broader than the species detected in their mammalian hosts, suggesting a mechanism of adaptation of Bartonella species to their host-vector ecosystem. However, these mechanisms leading to the fitness between the vectors and their hosts still need to be investigated.

  2. Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors☆

    PubMed Central

    Chomel, Bruno B.; Boulouis, Henri-Jean; Breitschwerdt, Edward B.; Kasten, Rickie W.; Vayssier-Taussat, Muriel; Birtles, Richard J.; Koehler, Jane E.; Dehio, Christoph

    2009-01-01

    Bartonella spp. are facultative intracellular bacteria that cause characteristic host-restricted hemotropic infections in mammals and are typically transmitted by blood-sucking arthropods. In the mammalian reservoir, these bacteria initially infect a yet unrecognized primary niche, which seeds organisms into the blood stream leading to the establishment of a long-lasting intra-erythrocytic bacteremia as the hall-mark of infection. Bacterial type IV secretion systems, which are supra-molecular transporters ancestrally related to bacterial conjugation systems, represent crucial pathogenicity factors that have contributed to a radial expansion of the Bartonella lineage in nature by facilitating adaptation to unique mammalian hosts. On the molecular level, the type IV secretion system VirB/VirD4 is known to translocate a cocktail of different effector proteins into host cells, which subvert multiple cellular functions to the benefit of the infecting pathogen. Furthermore, bacterial adhesins mediate a critical, early step in the pathogenesis of the bartonellae by binding to extracellular matrix components of host cells, which leads to firm bacterial adhesion to the cell surface as a prerequisite for the efficient translocation of type IV secretion effector proteins. The best-studied adhesins in bartonellae are the orthologous trimeric autotransporter adhesins, BadA in Bartonella henselae and the Vomp family in Bartonella quintana. Genetic diversity and strain variability also appear to enhance the ability of bartonellae to invade not only specific reservoir hosts, but also accidental hosts, as shown for B. henselae. Bartonellae have been identified in many different blood-sucking arthropods, in which they are typically found to cause extracellular infections of the mid-gut epithelium. Adaptation to specific vectors and reservoirs seems to be a common strategy of bartonellae for transmission and host diversity. However, knowledge regarding arthropod specificity

  3. Molecular detection and identification of Bartonella species in rat fleas from northeastern Thailand.

    PubMed

    Billeter, Sarah A; Colton, Leah; Sangmaneedet, Somboon; Suksawat, Fanan; Evans, Brian P; Kosoy, Michael Y

    2013-09-01

    The presence of Bartonella species in Xenopsylla cheopis fleas collected from Rattus spp. (R. exulans, R. norvegicus, and R. rattus) in Khon Kaen Province, Thailand was investigated. One hundred ninety-three fleas obtained from 62 rats, were screened by polymerase chain reaction using primers specific for the 16S-23S intergenic spacer region, and the presence of Bartonella DNA was confirmed by using the citrate synthase gene. Bartonella DNA was detected in 59.1% (114 of 193) of fleas examined. Sequencing demonstrated the presence of Bartonella spp. similar to B. elizabethae, B. rattimassiliensis, B. rochalimae, and B. tribocorum in the samples tested with a cutoff for sequence similarity ≥ 96% and 4 clustered together with the closest match with B. grahamii (95.5% identity). If X. cheopis proves to be a competent vector of these species, our results suggest that humans and animals residing in this area may be at risk for infection by several zoonotic Bartonella species.

  4. Prevalence and genetic diversity of Bartonella strains in rodents from northwestern Mexico.

    PubMed

    Rubio, André V; Ávila-Flores, Rafael; Osikowicz, Lynn M; Bai, Ying; Suzán, Gerardo; Kosoy, Michael Y

    2014-12-01

    Bartonella infections were investigated in wild rodents from northwestern Chihuahua, Mexico. A total of 489 rodents belonging to 14 species were surveyed in four areas. Bartonella bacteria were cultured from 50.1% of rodent samples (245/489). Infection rates ranged from 0% to 83.3% per rodent species, with no significant difference between sites except for Cynomys ludovicianus. Phylogenetic analyses of the citrate synthase gene (gltA) of the Bartonella isolates revealed 23 genetic variants (15 novel and 8 previously described), clustering into five phylogroups. Three phylogroups were associated with Bartonella vinsonii subsp. vinsonii, B. vinsonii subsp. arupensis, and B. washoensis, respectively. The other two phylogroups were not genetically related to any known Bartonella species. The genetic variants and phylogenetic groups exhibited a high degree of host specificity, mainly at the genus and family levels. This is the first study that describes the genetic diversity of Bartonella strains in wild rodents from Mexico. Considering that some variants found in this study are associated with Bartonella species that have been reported as zoonotic, more investigations are needed to further understand the ecology of Bartonella species in Mexican wildlife and their implications for human health.

  5. GEOGRAPHIC DISTRIBUTION AND MOLECULAR DIVERSITY OF BARTONELLA SPP. INFECTIONS IN MOOSE (ALCES ALCES) IN FINLAND.

    PubMed

    Pérez Vera, Cristina; Aaltonen, Kirsi; Spillmann, Thomas; Vapalahti, Olli; Sironen, Tarja

    2016-04-28

    Moose, Alces alces (Artiodactyla: Cervidae) in Finland are heavily infested with deer keds, Lipoptena cervi (Diptera: Hippoboschidae). The deer ked, which carries species of the genus Bartonella, has been proposed as a vector for the transmission of bartonellae to animals and humans. Previously, bartonella DNA was found in deer keds as well as in moose blood collected in Finland. We investigated the prevalence and molecular diversity of Bartonella spp. infection from blood samples collected from free-ranging moose. Given that the deer ked is not present in northernmost Finland, we also investigated whether there were geographic differences in the prevalence of bartonella infection in moose. The overall prevalence of bartonella infection was 72.9% (108/148). Geographically, the prevalence was highest in the south (90.6%) and lowest in the north (55.9%). At least two species of bartonellae were identified by multilocus sequence analysis. Based on logistic regression analysis, there was no significant association between bartonella infection and either age or sex; however, moose from outside the deer ked zone were significantly less likely to be infected (P<0.015) than were moose hunted within the deer ked zone.

  6. Human milk glycoproteins protect infants against human pathogens.

    PubMed

    Liu, Bo; Newburg, David S

    2013-08-01

    Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a substrate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase, lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of HMGPs that may contribute to the ability of human milk to protect neonates from disease.

  7. Human Milk Glycoproteins Protect Infants Against Human Pathogens

    PubMed Central

    Liu, Bo

    2013-01-01

    Abstract Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a substrate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase, lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of HMGPs that may contribute to the ability of human milk to protect neonates from disease. PMID:23697737

  8. Rickettsial pathogens in the tropical rat mite Ornithonyssus bacoti (Acari: Macronyssidae) from Egyptian rats (Rattus spp.).

    PubMed

    Reeves, Will K; Loftis, Amanda D; Szumlas, Daniel E; Abbassy, Magda M; Helmy, Ibrahim M; Hanafi, Hanafi A; Dasch, Gregory A

    2007-01-01

    We collected and tested 616 tropical rat mites (Ornithonyssus bacoti (Hirst)) from rats (Rattus norvegicus (Berkenhout) and R. rattus (Linnaeus)) throughout 14 governorates in Egypt and tested DNA extracts from pools of these mites for Bartonella spp., Coxiella burnetii, and Rickettsia spp. by PCR amplification and sequencing. Three different mite-associated bacterial agents, including one Bartonella and two Rickettsia spp., were detected in eight pools of mites. Further research could demonstrate the vector potential of mites and pathogenicity of these agents to humans or animals.

  9. Bartonella genotypes in fleas (insecta: siphonaptera) collected from rodents in the negev desert, Israel.

    PubMed

    Morick, Danny; Krasnov, Boris R; Khokhlova, Irina S; Shenbrot, Georgy I; Kosoy, Michael Y; Harrus, Shimon

    2010-10-01

    Fleas collected from rodents in the Negev Desert in southern Israel were molecularly screened for Bartonella species. A total of 1,148 fleas, collected from 122 rodents belonging to six species, were pooled in 245 pools based on flea species, sex, and rodent host species. Two Bartonella gene fragments, corresponding to RNA polymerase B (rpoB) and citrate synthase (gltA), were targeted, and 94 and 74 flea pools were found positive by PCR, respectively. The Bartonella 16S-23S internal transcribed spacer (ITS) region was also targeted, and 66 flea pools were found to be positive by PCR. Sixteen different Bartonella gltA genotypes were detected in 94 positive flea pools collected from 5 different rodent species, indicating that fleas collected from each rodent species can harbor several Bartonella genotypes. Based on gltA analysis, identified Bartonella genotypes were highly similar or identical to strains previously detected in rodent species from different parts of the world. A gltA fragment 100% similar to Bartonella henselae was detected in one flea pool. Another 2 flea pools contained gltA fragments that were closely related to B. henselae (98% similarity). The high sequence similarities to the zoonotic pathogen B. henselae warrant further investigation.

  10. Bartonella spp. in fruit bats and blood-feeding Ectoparasites in Madagascar.

    PubMed

    Brook, Cara E; Bai, Ying; Dobson, Andrew P; Osikowicz, Lynn M; Ranaivoson, Hafaliana C; Zhu, Qiyun; Kosoy, Michael Y; Dittmar, Katharina

    2015-02-01

    We captured, ectoparasite-combed, and blood-sampled cave-roosting Madagascan fruit bats (Eidolon dupreanum) and tree-roosting Madagascan flying foxes (Pteropus rufus) in four single-species roosts within a sympatric geographic foraging range for these species in central Madagascar. We describe infection with novel Bartonella spp. in sampled Eidolon dupreanum and associated bat flies (Cyclopodia dubia), which nest close to or within major known Bartonella lineages; simultaneously, we report the absence of Bartonella spp. in Thaumapsylla sp. fleas collected from these same bats. This represents the first documented finding of Bartonella infection in these species of bat and bat fly, as well as a new geographic record for Thaumapsylla sp. We further relate the absence of both Bartonella spp. and ectoparasites in sympatrically sampled Pteropus rufus, thus suggestive of a potential role for bat flies in Bartonella spp. transmission. These findings shed light on transmission ecology of bat-borne Bartonella spp., recently demonstrated as a potentially zoonotic pathogen.

  11. Molecular detection of Bartonella henselae and Bartonella clarridgeiae in clinical samples of pet cats from Southern Italy.

    PubMed

    Pennisi, M G; La Camera, E; Giacobbe, L; Orlandella, B M; Lentini, V; Zummo, S; Fera, M T

    2010-06-01

    Bartonella henselae is considered an emerging pathogen of veterinary and medical interest that can be occasionally transmitted to humans. Cats are considered to be the only reservoir host for B. henselae. In this study, we used a nested-PCR assay to investigate the prevalence of B.henselae and Bartonella clarridgeiae DNA in peripheral blood samples, fine needle lymph node aspirate specimens and oral swabs from 85 cats in order to develop an easy diagnostic strategy for the selection of infection-free cats that are being considered as pets, especially for immunocompromised patients. Overall, molecular analysis showed that 71 cats (83.5%) tested PCR positive for the presence of B. henselae DNA. PCR amplification of DNA B. henselae produced positive products from lymph node aspirate specimens (62/85; 72.9%) similar to those obtained from blood samples (60/85; 70.6%) and higher than those from oral swabs (51/85; 60%) of cats. No PCR product was obtained for B. clarridgeiae. The simultaneous analysis of three different clinical samples in our study increased the diagnostic possibilities for B. henselae infection in the examined cats from 60-72.9% to 83.5%. Lymph node aspirates were found to be the most effective clinical samples for the detection of B. henselae and blood samples were the next best. Oral swab samples were used in this study with good results when considered in combination with blood and/or lymph node aspiration. The use of nested-PCR assay on these three clinical samples may enhance the diagnostic sensitivity for bartonellosis in cats irrespective of the clinical status of animals.

  12. Comparative microbiological features of Bartonella henselae infection in a dog with fever of unknown origin and granulomatous lymphadenitis.

    PubMed

    Drut, Amandine; Bublot, Isabelle; Breitschwerdt, Edward B; Chabanne, Luc; Vayssier-Taussat, Muriel; Cadoré, Jean-Luc

    2014-04-01

    We report the first documented case of Bartonella henselae infection in a dog from France and the first isolation of B. henselae from a dog with fever of unknown origin. This observation contributes to the "One Health" concept focusing on zoonotic pathogens emerging from companion animals. A 1-year-old female German shepherd dog was referred for evaluation of fever of unknown origin of 1 month duration. Diagnostic investigations confirmed diffuse pyogranulomatous lymphadenitis. The dog became afebrile, and lymph node size normalized in response to a 6-week course of doxycycline. Retrospectively, Bartonella DNA was amplified from an EDTA-anticoagulated blood sample obtained before antimicrobial therapy, with the gtlA fragment sharing 99 % identity with the 350-bp gtlA fragment of the B. henselae Houston-1 strain. The same strain was isolated in the blood of three healthy cats from the household. Two months after discontinuation of doxycycline, the dog experienced a febrile relapse. Bartonella DNA was again amplified from blood prior to and immediately after administration of a 6-week course azithromycin therapy. However, without administration of additional medications, PCR was negative 9 months after azithromycin therapy and the dog remains clinically healthy 12 months following the second course of antibiotics. The medical management of this case raises several clinically relevant comparative infectious disease issues, including the extent to which Bartonella spp. contribute to fever of unknown origin and pyogranulomatous inflammatory diseases in dogs and humans, and the potential of doxycycline and azithromycin treatment failures. The possibility that dogs could constitute an underestimated reservoir for B. henselae transmission to people is also discussed.

  13. Preliminary Survey of Ectoparasites and Associated Pathogens from Norway Rats in New York City

    PubMed Central

    Frye, M. J.; Firth, C.; Bhat, M.; Firth, M. A.; Che, X.; Lee, D.; Williams, S. H.; Lipkin, W. I.

    2015-01-01

    The Norway rat (Rattus norvegicus) is a reservoir of many zoonotic pathogens and lives in close proximity to humans in urban environments. Human infection with rodent-borne disease occurs either directly through contact with a rat or its excreta, or indirectly via arthropod vectors such as fleas and ticks. Here, we report on the diversity and abundance of ectoparasitic arthropod species and associated pathogenic bacteria from 133 Norway rats trapped over a 10-mo period in Manhattan, New York, NY. Norway rats were host to the tropical rat mite [Ornithonyssus bacoti (Hirst)], the spiny rat mite (Laelaps echidnina Berlese), Laelaps nuttalli Hirst, the spined rat louse [Polyplax spinulosa (Burmeister)], and the Oriental rat flea [(Xenopsylla cheopis) (Rothschild)], with an average of 1.7 species per individual. A flea index of 4.1 X. cheopis was determined, whereas previous studies in New York City reported 0.22 fleas per rat. Multiple species of pathogenic Bartonella were identified from Oriental rat fleas that were related to Bartonella tribocorum, Bartonella rochalimae, and Bartonella elizabethae. However, no evidence of Yersinia pestis or Rickettsia spp. infection was detected in fleas. The identification of multiple medically important ectoparasite species in New York City underscores the need for future efforts to fully characterize the diversity and distribution of ectoparasites on Norway rats, and assess the risk to humans of vector-borne disease transmission. PMID:26336309

  14. Preliminary Survey of Ectoparasites and Associated Pathogens from Norway Rats in New York City.

    PubMed

    Frye, M J; Firth, C; Bhat, M; Firth, M A; Che, X; Lee, D; Williams, S H; Lipkin, W I

    2015-03-01

    The Norway rat (Rattus norvegicus) is a reservoir of many zoonotic pathogens and lives in close proximity to humans in urban environments. Human infection with rodent-borne disease occurs either directly through contact with a rat or its excreta, or indirectly via arthropod vectors such as fleas and ticks. Here, we report on the diversity and abundance of ectoparasitic arthropod species and associated pathogenic bacteria from 133 Norway rats trapped over a 10-mo period in Manhattan, New York, NY. Norway rats were host to the tropical rat mite [Ornithonyssus bacoti (Hirst)], the spiny rat mite (Laelaps echidnina Berlese), Laelaps nuttalli Hirst, the spined rat louse [Polyplax spinulosa (Burmeister)], and the Oriental rat flea [(Xenopsylla cheopis) (Rothschild)], with an average of 1.7 species per individual. A flea index of 4.1 X. cheopis was determined, whereas previous studies in New York City reported 0.22 fleas per rat. Multiple species of pathogenic Bartonella were identified from Oriental rat fleas that were related to Bartonella tribocorum, Bartonella rochalimae, and Bartonella elizabethae. However, no evidence of Yersinia pestis or Rickettsia spp. infection was detected in fleas. The identification of multiple medically important ectoparasite species in New York City underscores the need for future efforts to fully characterize the diversity and distribution of ectoparasites on Norway rats, and assess the risk to humans of vector-borne disease transmission.

  15. Detection of Bartonella spp. in wild rodents in Israel using HRM real-time PCR.

    PubMed

    Morick, Danny; Baneth, Gad; Avidor, Boaz; Kosoy, Michael Y; Mumcuoglu, Kosta Y; Mintz, Dvir; Eyal, Osnat; Goethe, Ralph; Mietze, Andreas; Shpigel, Nahum; Harrus, Shimon

    2009-11-18

    The prevalence of Bartonella spp. in wild rodents was studied in 19 geographical locations in Israel. One hundred and twelve rodents belonging to five species (Mus musculus, Rattus rattus, Microtus socialis, Acomys cahirinus and Apodemus sylvaticus) were included in the survey. In addition, 156 ectoparasites were collected from the rodents. Spleen sample from each rodent and the ectoparasites were examined for the presence of Bartonella DNA using high resolution melt (HRM) real-time PCR. The method was designed for the simultaneous detection and differentiation of eight Bartonella spp. according to the nucleotide variation in each of two gene fragments (rpoB and gltA) and the 16S-23S intergenic spacer (ITS) locus, using the same PCR protocol which allowed the simultaneous amplification of the three different loci. Bartonella DNA was detected in spleen samples of 19 out of 79 (24%) black rats (R. rattus) and in 1 of 4 (25%) Cairo spiny mice (A. cahirinus). In addition, 15 of 34 (44%) flea pools harbored Bartonella DNA. Only rat flea (Xenopsyla cheopis) pools collected from black rats (R. rattus) were positive for Bartonella DNA. The Bartonella sp. detected in spleen samples from black rats (R. rattus) was closely related to both B. tribocorum and B. elizabethae. The species detected in the Cairo spiny mouse (A. cahirinus) spleen sample was closely related to the zoonotic pathogen, B. elizabethae. These results indicate that Bartonella species are highly prevalent in suburban rodent populations and their ectoparasites in Israel. Further investigation of the prevalence and zoonotic potential of the Bartonella species detected in the black rats and the Cairo spiny mouse is warranted.

  16. Novel Bartonella infection in northern and southern sea otters (Enhydra lutris kenyoni and Enhydra lutris nereis).

    PubMed

    Carrasco, Sebastian E; Chomel, Bruno B; Gill, Verena A; Kasten, Rickie W; Maggi, Ricardo G; Breitschwerdt, Edward B; Byrne, Barbara A; Burek-Huntington, Kathleen A; Miller, Melissa A; Goldstein, Tracey; Mazet, Jonna A K

    2014-06-04

    Since 2002, vegetative valvular endocarditis (VVE), septicemia and meningoencephalitis have contributed to an Unusual Mortality Event (UME) of northern sea otters in southcentral Alaska. Streptococcal organisms were commonly isolated from vegetative lesions and organs from these sea otters. Bartonella infection has also been associated with bacteremia and VVE in terrestrial mammals, but little is known regarding its pathogenic significance in marine mammals. Our study evaluated whether Streptococcus bovis/equinus (SB/E) and Bartonella infections were associated with UME-related disease characterized by VVE and septicemia in Alaskan sea otter carcasses recovered 2004-2008. These bacteria were also evaluated in southern sea otters in California. Streptococcus bovis/equinus were cultured from 45% (23/51) of northern sea otter heart valves, and biochemical testing and sequencing identified these isolates as Streptococcus infantarius subsp. coli. One-third of sea otter hearts were co-infected with Bartonella spp. Our analysis demonstrated that SB/E was strongly associated with UME-related disease in northern sea otters (P<0.001). While Bartonella infection was also detected in 45% (23/51) and 10% (3/30) of heart valves of northern and southern sea otters examined, respectively, it was not associated with disease. Phylogenetic analysis of the Bartonella ITS region allowed detection of two Bartonella species, one novel species closely related to Bartonella spp. JM-1, B. washoensis and Candidatus B. volans and another molecularly identical to B. henselae. Our findings help to elucidate the role of pathogens in northern sea otter mortalities during this UME and suggested that Bartonella spp. is common in sea otters from Alaska and California.

  17. Whole-Genome Sequencing of Two Bartonella bacilliformis Strains

    PubMed Central

    Guillen, Yolanda; Casadellà, Maria; García-de-la-Guarda, Ruth; Espinoza-Culupú, Abraham; Paredes, Roger; Ruiz, Joaquim

    2016-01-01

    Bartonella bacilliformis is the causative agent of Carrion’s disease, a highly endemic human bartonellosis in Peru. We performed a whole-genome assembly of two B. bacilliformis strains isolated from the blood of infected patients in the acute phase of Carrion’s disease from the Cusco and Piura regions in Peru. PMID:27389274

  18. Molecular detection of Bartonella alsatica in European wild rabbits (Oryctolagus cuniculus) in Andalusia (Spain).

    PubMed

    Márquez, Francisco J

    2010-10-01

    A sample of 279 European wild rabbits, Oryctolagus cuniculus (141 males, 138 females), captured alive in Andalusia (Spain) and belonging to the two haplotype classes previously described for this species (230 and 49 corresponding with haplotypes A and B, respectively), were tested for the presence of Bartonella alsatica DNA. Two species-specific nested polymerase chain reaction assays targeting for 16S-23S rRNA intergenic spacer region and RNA polymerase β subunit genes have been developed. Forty-eight (17.20%) rabbits were infected with B. alsatica. Two-way contingency table analyses and the calculation of Cramer's V statistic showed no differences in infection rate, considering haplotype lineage or sex. The risk of infection of human population, especially for hunters in close contact with this demonstrated human pathogen, should be considered.

  19. Detection of Rickettsia rickettsii and Bartonella henselae in Rhipicephalus sanguineus ticks from California.

    PubMed

    Wikswo, Mary Elizabeth; Hu, Renjie; Metzger, Marco E; Eremeeva, Marina E

    2007-01-01

    Sixty-two questing adult Rhipicephalus sanguineus (Latreille) ticks were collected by direct removal from blades of turfgrass and adjacent concrete walkways at a suburban home in Riverside County, CA, and tested for the presence of Rickettsia, Bartonella, and Ehrlichia DNA. Polymerase chain reaction (PCR) was used to amplify fragments of the 17-kDa antigen gene and the rOmpA gene of the spotted fever group rickettsiae. One male tick contained R. rickettsii DNA; its genotype differed from R. rickettsii isolates found in Montana and Arizona that cause Rocky Mountain spotted fever and from Hlp#2 and 364D serotypes. One male tick and one female tick contained B. henselae DNA. No Ehrlichia platys or Ehrlichia canis DNAs were detected using nested PCR for their 16S rRNA genes. These findings extend the area where Rickettsia rickettsii may be vectored by Rh. sanguineus. Rh. sanguineus also may be infected with Bartonella henselae, a human pathogen that is typically associated with fleas and causes cat scratch disease.

  20. Evolution of Bacterial Pathogens within the Human Host

    PubMed Central

    Bliven, Kimberly A.; Maurelli, Anthony T.

    2015-01-01

    Selective pressures within the human host, including interactions with innate and adaptive immune responses, exposure to medical interventions such as antibiotics, and competition with commensal microbiota all facilitate the evolution of bacterial pathogens. In this chapter, we present examples of pathogen strategies which emerged as a result of selective pressures within the human host niche, and discuss the resulting co-evolutionary ‘arms race’ between these organisms. In bacterial pathogens, many of the genes responsible for these strategies are encoded on mobile pathogenicity islands (PAIs) or plasmids, underscoring the importance of horizontal gene transfer (HGT) in the emergence of virulent microbial species. PMID:26999399

  1. Do Bartonella Infections Cause Agitation, Panic Disorder, and Treatment-Resistant Depression?

    PubMed Central

    Schaller, James L.; Burkland, Glenn A.; Langhoff, P.J.

    2007-01-01

    Introduction Bartonella is an emerging infection found in cities, suburbs, and rural locations. Routine national labs offer testing for only 2 species, but at least 9 have been discovered as human infections within the last 15 years. Some authors discuss Bartonella cases having atypical presentations, with serious morbidity considered uncharacteristic of more routine Bartonella infections. Some atypical findings include distortion of vision, abdominal pain, severe liver and spleen tissue abnormalities, thrombocytopenic purpura, bone infection, arthritis, abscesses, heart tissue and heart valve problems. While some articles discuss Bartonella as a cause of neurologic illnesses, psychiatric illnesses have received limited attention. Case reports usually do not focus on psychiatric symptoms and typically only as incidental comorbid findings. In this article, we discuss patients exhibiting new-onset agitation, panic attacks, and treatment-resistant depression, all of which may be attributed to Bartonella. Methods Three patients receiving care in an outpatient clinical setting developed acute onset personality changes and agitation, depression, and panic attacks. They were retrospectively examined for evidence of Bartonella infections. The medical and psychiatric treatment progress of each patient was tracked until both were significantly resolved and the Bartonella was cured. Results The patients generally seemed to require higher dosing of antidepressants, benzodiazepines, or antipsychotics in order to function normally. Doses were reduced following antibiotic treatment and as the presumed signs of Bartonella infection remitted. All patients improved significantly following treatment and returned to their previously healthy or near-normal baseline mental health status. Discussion New Bartonella species are emerging as human infections. Most do not have antibody or polymerase chain reaction (PCR) diagnostic testing at this time. Manual differential examinations are of

  2. Seroprevalence of Toxoplasma gondii and concurrent Bartonella spp., feline immunodeficiency virus, and feline leukemia virus infections in cats from Grenada, West Indies.

    PubMed

    Dubey, J P; Lappin, M R; Kwok, O C H; Mofya, S; Chikweto, A; Baffa, A; Doherty, D; Shakeri, J; Macpherson, C N L; Sharma, R N

    2009-10-01

    Toxoplasma gondii and Bartonella spp. are zoonotic pathogens of cats. Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLv) are related to human immunodeficiency virus, and human leukemia virus, respectively; all of these viruses are immunosuppressive. In the present study, the prevalence of antibodies to T. gondi, Bartonella spp., FIV, as well as FeLv antigen were determined in sera from 75 domestic and 101 feral cats (Felis catus) from the Caribbean island of Grenada, West Indies. Using a modified agglutination test, antibodies to T. gondii were found in 23 (30.6%) of the 75 pet cats with titers of 1:25 in 1, 1:50 in 3, 1:400 in 4, 1:500 in 12, 1:800 in 2, and 1:1,600 in 1, and 28 (27.7%) of 101 feral cats with titers of 1:25 in 4, 1:50 in 7, 1:200 in 4, 1:400 in 1, 1:500 in 3, 1:800 in 2, 1:1,600 in 3, and 1:3,200 in 4. Overall, in both pet and feral cats, the seroprevalence increased with age. Antibodies to Bartonella spp. were found in 38 (50.6%) of the 75 pet cats and 52.4% of 101 feral cats. Antibodies to FIV were found in 6 domestic and 22 feral cats. None of the 176 cats was positive for FeLv antigen. There was no correlation among T. gondii, Bartonella spp., and FIV seropositivity.

  3. First report for the seasonal and annual prevalence of flea-borne bartonella from rodents and soricomorphs in the Republic of Korea.

    PubMed

    Kim, Baek-Jun; Kim, Su-Jin; Kang, Jun-Gu; Ko, Sungjin; Won, Sohyun; Kim, Hyewon; Kim, Heung-Chul; Kim, Myung-Soon; Chong, Sung-Tae; Klein, Terry A; Lee, Sanghun; Chae, Joon-Seok

    2013-07-01

    Rodents and soricomorphs are animal hosts of fleas and associated zoonotic microbial pathogens. A total of 4,889 small mammals were collected from Gyeonggi and Gangwon Provinces, Republic of Korea, from 2008 through 2010, including: Apodemus agrarius (4,122, 84.3%), followed by Crocidura lasiura (282, 5.8%), Microtus fortis (257, 5.3%), Myodes regulus (77, 1.6%), Micromys minutus (71, 1.5%), Mus musculus (63, 1.3%), and 4 other species (17, 0.3%). A total of 1,099 fleas belonging to 10 species and 7 genera were collected. Ctenophthalmus congeneroides (724, 65.9%) was the most commonly collected flea, followed by Stenoponia sidimi (301, 27.4%), Neopsylla bidentatiformis (29, 2.6%), and Rhadinopsylla insolita (25, 2.3%). The remaining species accounted for only 1.8% (20, range 1-6) of all fleas collected. The 2 dominant flea species, C. congeneroides and S. sidimi, showed an inverse seasonal pattern, with higher populations of C. congeneroides from January-September, whereas S. sidimi was more frequently collected during October-December. The overall flea infestation rates (FIR) and flea indices (FI) were 14.1% and 0.22, respectively, and were highest during April-June (19.7% and 0.30, respectively). A total of 735 of the 1,099 fleas were assayed for the detection of Bartonella spp. by PCR using Bartonella-specific primers, of which 515 were positive for Bartonella, with an overall maximum likelihood estimate (MLE) of 700.7/1,000. The highest MLE values were observed during April-June (899.2) and July-September (936.2) trapping periods and, although lower, were similar for January-March (566.7) and October-December (574.1). C. congeneroides demonstrated high MLEs for all seasons (range 752.5-934.8), while S. sidimi was positive for Bartonella only during January-March (MLE=342.1) and October-December (MLE=497.2) collection periods. Continued long-term surveillance of small mammals and associated ectoparasites is needed to improve our understanding of the prevalence

  4. [Zoonotic diseases caused by bacteria of the genus Bartonella genus: new reservoirs ? New vectors?].

    PubMed

    Chomel, Bruno B; Boulouis, Henri-Jean

    2005-03-01

    Domestic animals and wildlife represent a large reservoir for bartonellae, at least eight species or subspecies of which have been reported to cause zoonotic infections. In addition, numerous orphan clinical syndromes are now being attributed to Bartonella henselae infection. Many mammalian species, including cats, dogs, rodents and ruminants are the main bartonellae reservoirs. Cats are the main reservoir for B. henselae. It appears that domestic dogs, at least in non tropical regions, are more likely to be accidental hosts than reservoirs, and constitute excellent sentinels for human infections. Bartonellae are vector-borne bacteria. The mode of B. henselae transmission by cat fleas is now better understood, but new potential vectors have recently been identified, including ticks and biting flies. This articles summarizes current knowledge of the etiology, new clinical features and epidemiological characteristics of these emerging zoonoses.

  5. Vibrio fluvialis: an emerging human pathogen

    PubMed Central

    Ramamurthy, Thandavarayan; Chowdhury, Goutam; Pazhani, Gururaja P.; Shinoda, Sumio

    2014-01-01

    Vibrio fluvialis is a pathogen commonly found in coastal environs. Considering recent increase in numbers of diarrheal outbreaks and sporadic extraintestinal cases, V. fluvialis has been considered as an emerging pathogen. Though this pathogen can be easily isolated by existing culture methods, its identification is still a challenging problem due to close phenotypic resemblance either with Vibrio cholerae or Aeromonas spp. However, using molecular tools, it is easy to identify V. fluvialis from clinical and different environmental samples. Many putative virulence factors have been reported, but its mechanisms of pathogenesis and survival fitness in the environment are yet to be explored. This chapter covers some of the major discoveries that have been made to understand the importance of V. fluvialis. PMID:24653717

  6. Bartonella quintana Endocarditis in Dogs

    PubMed Central

    Rolain, Jean-Marc; Maggi, Ricardo; Sontakke, Sushama; Keene, Bruce; Hunter, Stuart; Lepidi, Hubert; Breitschwerdt, Kyle T.; Breitschwerdt, Edward B.; Raoult, Didier

    2006-01-01

    We provide the first evidence that Bartonella quintana can infect dogs and cause typical signs of endocarditis. Using PCR and sequencing, we identified B. quintana in the blood of a dog from the United States with aortic valve endocarditis and probably also in the mitral valve of a dog from New Zealand with endocarditis. PMID:17326937

  7. Prevalence of Rickettsia and Bartonella species in Spanish cats and their fleas.

    PubMed

    Gracia, María Jesús; Marcén, José Miguel; Pinal, Rocio; Calvete, Carlos; Rodes, Daniel

    2015-12-01

    The aim of this study was to determine the prevalence of Bartonella henselae, Rickettsia felis, and Rickettsia typhi in fleas and companion cats (serum and claws) and to assess their presence as a function of host, host habitat, and level of parasitism. Eighty-nine serum and claw samples and 90 flea pools were collected. Cat sera were assayed by IFA for Bartonella henselae and Rickettssia species IgG antibodies. Conventional PCRs were performed on DNA extracted from nails and fleas collected from cats. A large portion (55.8%) of the feline population sampled was exposed to at least one of the three tested vector-borne pathogens. Seroreactivity to B. henselae was found in 50% of the feline studied population, and to R. felis in 16.3%. R. typhi antibodies were not found in any cat. No Bartonella sp. DNA was amplified from the claws. Flea samples from 41 cats (46%) showed molecular evidence for at least one pathogen; our study demonstrated a prevalence rate of 43.3 % of Rickettsia sp and 4.4% of Bartonella sp. in the studied flea population. None of the risk factors studied (cat's features, host habitat, and level of parasitation) was associated with either the serology or the PCR results for Bartonella sp. and Rickettsia sp.. Flea-associated infectious agents are common in cats and fleas and support the recommendation that stringent flea control should be maintained on cats.

  8. Zoonotic Bartonella species in fleas collected on gray foxes (Urocyon cinereoargenteus).

    PubMed

    Gabriel, Mourad W; Henn, Jennifer; Foley, Janet E; Brown, Richard N; Kasten, Rickie W; Foley, Patrick; Chomel, Bruno B

    2009-12-01

    Bartonella spp. are fastidious, gram-negative, rod-shaped bacteria and are usually vector-borne. However, the vector has not been definitively identified for many recently described species. In northern California, gray foxes (Urocyon cinereoargenteus) are infected with two zoonotic Bartonella species, B. rochalimae and B. vinsonii subsp. berkhoffii. Fleas (range 1-8 fleas per fox) were collected from 22 (41.5%) of 54 gray foxes from urban and backcountry zones near Hoopa, California. The flea species were determined, and DNA was individually extracted to establish the Bartonella species harbored by these fleas. Of the 108 fleas collected, 99 (92%) were identified as Pulex simulans. Overall, 39% (42/108) of the fleas were polymerase chain reaction (PCR)-positive for Bartonella, with B. rochalimae and B. vinsonii subsp. berkhoffii identified in 34 (81%) and 8 (19%) of the PCR-positive fleas, respectively. There was no difference between the prevalence of Bartonella spp. in P. simulans for the urban and backcountry zones. Fourteen (64%) of the 22 foxes were Bartonella bacteremic at one or more of the capture dates. In 10 instances, both the foxes and the fleas collected from them at the same blood collection were Bartonella-positive. B. rochalimae was the predominant species identified in both foxes and fleas. The competency of Pulex fleas as a vector of B. rochalimae has not been confirmed and will need to be demonstrated experimentally. Pulex spp. fleas readily feed on humans and may represent a source of human exposure to zoonotic species of Bartonella.

  9. Molecular Detection of Candidatus Bartonella hemsundetiensis in Bats.

    PubMed

    Lilley, Thomas M; Veikkolainen, Ville; Pulliainen, Arto T

    2015-11-01

    Although bats have been implicated as reservoir hosts for a number of zoonotic and life-threatening viruses, the bat bacterial flora and its zoonotic threat remain elusive. However, members of the vector-borne bacterial genera Bartonella causing various human as well as animal diseases have recently been isolated or detected from bats and their ectoparasites. In this study, we sampled 124 insectivorous microbats (Daubenton's bat, Myotis daubentonii) for peripheral blood in southwestern Finland in 2010. A Bartonella-specific PCR targeting rpoB (RNA polymerase β-subunit) was positive with blood samples from 46 bats (prevalence 37%). Scaled mass indexes of the infected and noninfected bats did not differ (p = 0.057). One rpoB sequence was identical with the rpoB sequence of B. naantaliensis strain 2574/1, previously isolated from bats in Finland. The rest of the sequences were highly similar to each other with nucleotide identity scores of 96% or higher. Nucleotide identity scores to the previously described type strain sequences of Bartonella or other database entries were no higher than 87%. Sequence analyses of another gene, gltA (citrate synthase), gave no higher than 90% nucleotide identity scores. On the basis of the conventional 95% sequence similarity cutoff in bacterial species delineation, a novel species of Bartonella was detected. We propose a species name Candidatus B. hemsundetiensis. Phylogenetic analyses based on rpoB and gltA sequences indicate that Candidatus B. hemsundetiensis clusters in a deep-branching position close to the ancestral species B. tamiae and B. bacilliformis. Our study reinforces the importance of bats as reservoirs of Bartonella.

  10. Prediction of molecular mimicry candidates in human pathogenic bacteria.

    PubMed

    Doxey, Andrew C; McConkey, Brendan J

    2013-08-15

    Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria.

  11. Prediction of molecular mimicry candidates in human pathogenic bacteria

    PubMed Central

    Doxey, Andrew C; McConkey, Brendan J

    2013-01-01

    Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria. PMID:23715053

  12. High prevalence of Toxoplasma gondii infection in Ethiopian cats in Addis Ababa, coinfection, and a review of toxoplasmosis in humans and other animals in Ethiopia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toxoplasma gondii and Bartonella spp. are zoonotic pathogens of cats. Feline Immunodeficiency Virus (FIV), and Feline Leukemia Virus (FeLv) are related to Human Immunodeficiency Virus, and Human T-lymphotrophic Virus, respectively, and these viruses are immunosuppressive. In the present study, the p...

  13. Corynebacterium ulcerans, an emerging human pathogen.

    PubMed

    Hacker, Elena; Antunes, Camila A; Mattos-Guaraldi, Ana L; Burkovski, Andreas; Tauch, Andreas

    2016-09-01

    While formerly known infections of Corynebacterium ulcerans are rare and mainly associated with contact to infected cattle, C. ulcerans has become an emerging pathogen today. In Western Europe, cases of respiratory diphtheria caused by C. ulcerans have been reported more often than infections by Corynebacterium diphtheria, while systemic infections are also increasingly reported. Little is known about factors that contribute to host colonization and virulence of this zoonotic pathogen. Research in this field has received new impetus by the publication of several C. ulcerans genome sequences in the past years. This review gives a comprehensive overview of the basic knowledge of C. ulcerans, as well as the recent advances made in the analysis of putative virulence factors.

  14. Molecular Identification of Human Fungal Pathogens

    DTIC Science & Technology

    2007-03-01

    United States, 1980–1989. National Nosocomial Infections Surveillance System. Am. J. Med. 91(3B):86S–89S. 2. Hostetter, M. K. 1996. New insights into...algorithms for the database. Preliminary identifications using our methods have been successful and resulted in a publication, as well as a new ...survey may result in a new paradigm for medical mycology because the number of pathogenic fungi could be grossly underestimated. All Medical Mycology

  15. Pathogens and host immunity in the ancient human oral cavity

    PubMed Central

    Warinner, Christina; Matias Rodrigues, João F.; Vyas, Rounak; Trachsel, Christian; Shved, Natallia; Grossmann, Jonas; Radini, Anita; Hancock, Y.; Tito, Raul Y.; Fiddyment, Sarah; Speller, Camilla; Hendy, Jessica; Charlton, Sophy; Luder, Hans Ulrich; Salazar-García, Domingo C.; Eppler, Elisabeth; Seiler, Roger; Hansen, Lars; Samaniego Castruita, José Alfredo; Barkow-Oesterreicher, Simon; Teoh, Kai Yik; Kelstrup, Christian; Olsen, Jesper V.; Nanni, Paolo; Kawai, Toshihisa; Willerslev, Eske; von Mering, Christian; Lewis, Cecil M.; Collins, Matthew J.; Gilbert, M. Thomas P.; Rühli, Frank; Cappellini, Enrico

    2014-01-01

    Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize: (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) the first evidence of ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, “red-complex” pathogens, and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity, and diet, thereby extending the direct investigation of common diseases into the human evolutionary past. PMID:24562188

  16. Bartonella dromedarii sp. nov. isolated from domesticated camels (Camelus dromedarius) in Israel.

    PubMed

    Rasis, Michal; Rudoler, Nir; Schwartz, David; Giladi, Michael

    2014-11-01

    Bartonella spp. are fastidious, Gram-negative bacilli that cause a wide spectrum of diseases in humans. Most Bartonella spp. have adapted to a specific host, generally a domestic or wild mammal. Dromedary camels (Camelus dromedarius) have become a focus of growing public-health interest because they have been identified as a reservoir host for the Middle East respiratory syndrome coronavirus. Nevertheless, data on camel zoonoses are limited. We aimed to study the occurrence of Bartonella bacteremia among dromedaries in Israel. Nine of 51 (17.6%) camels were found to be bacteremic with Bartonella spp.; bacteremia levels ranged from five to >1000 colony-forming units/mL. Phylogenetic reconstruction based on the concatenated sequences of gltA and rpoB genes demonstrated that the dromedary Bartonella isolates are closely related to other ruminant-derived Bartonella spp., with B. bovis being the nearest relative. Using electron microscopy, the novel isolates were shown to be flagellated, whereas B. bovis is nonflagellated. Sequence comparisons analysis of the housekeeping genes ftsZ, ribC, and groEL showed the highest homology to B. chomelii, B. capreoli, and B. birtlesii, respectively. Sequence analysis of the gltA and rpoB revealed ∼96% identity to B. bovis, a previously suggested cutoff value for sequence-based differentiation of Bartonella spp., suggesting that this approach does not have sufficient discriminatory power for differentiating ruminant-related Bartonella spp. A comprehensive multilocus sequence typing (MLST) analysis based on nine genetic loci (gltA, rpoB, ftsZ, internal transcribed spacer (ITS), 16S rRNA, ribC, groEL, nuoG, and SsrA) identified seven sequence types of the new dromedary isolates. This is the first description of a Bartonella sp. from camelids. On the basis of a distinct reservoir and ecological niche, sequence analyses, and expression of flagella, we designate these isolates as a novel Bartonella sp. named Bartonella dromedarii sp

  17. Prevalence of zoonotic Bartonella species among rodents and shrews in Thailand.

    PubMed

    Pangjai, Decha; Maruyama, Soichi; Boonmar, Sumalee; Kabeya, Hidenori; Sato, Shingo; Nimsuphan, Burin; Petkanchanapong, Wimol; Wootta, Wattanapong; Wangroongsarb, Piyada; Boonyareth, Maskiet; Preedakoon, Poom; Saisongkorh, Watcharee; Sawanpanyalert, Pathom

    2014-03-01

    We investigated the prevalence of Bartonella species in 10 rodent and one shrew species in Thailand. From February 2008 to May 2010, a total of 375 small animals were captured in 9 provinces in Thailand. Bartonella strains were isolated from 57 rodents (54 from Rattus species and 3 from Bandicota indica) and one shrew (Suncus murinus) in 7 of the 9 provinces, and identified to the species level. Sequence analysis of the citrate synthase and RNA polymerase β subunit genes identified the 58 isolates from each Bartonella-positive animal as B. tribocorum in 27 (46.6%) animals, B. rattimassiliensis in 17 (29.3%) animals, B. elizabethae in 10 (17.2%) animals and B. queenslandensis in 4 (6.9%) animals. R. norvegicus, R. rattus, and Suncus murinus carried B. elizabethae, which causes endocarditis in humans. The prevalence of Bartonella bacteremic animals by province was 42.9% of the animals collected in Phang Nga, 26.8% in Chiang Rai, 20.4% in Sa Kaeo, 16.7% in Nakhon Si Thammarat, 12.0% in Surat Thani, 9.1% in Mae Hong Son and Loei Provinces. These results indicate that Bartonella organisms are widely distributed in small mammals in Thailand and some animal species may serve as important reservoirs of zoonotic Bartonella species in the country.

  18. Growth rate, transmission mode and virulence in human pathogens

    PubMed Central

    Cornwallis, Charlie K.; Buckling, Angus; West, Stuart A.

    2017-01-01

    The harm that pathogens cause to hosts during infection, termed virulence, varies across species from negligible to a high likelihood of rapid death. Classic theory for the evolution of virulence is based on a trade-off between pathogen growth, transmission and host survival, which predicts that higher within-host growth causes increased transmission and higher virulence. However, using data from 61 human pathogens, we found the opposite correlation to the expected positive correlation between pathogen growth rate and virulence. We found that (i) slower growing pathogens are significantly more virulent than faster growing pathogens, (ii) inhaled pathogens and pathogens that infect via skin wounds are significantly more virulent than pathogens that are ingested, but (iii) there is no correlation between symptoms of infection that aid transmission (such as diarrhoea and coughing) and virulence. Overall, our results emphasize how virulence can be influenced by mechanistic life-history details, especially transmission mode, that determine how parasites infect and exploit their hosts. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289261

  19. Development of a real-time PCR for Bartonella spp. detection, a current emerging microorganism.

    PubMed

    Parra, Elena; Segura, Ferran; Tijero, Jessica; Pons, Imma; Nogueras, Maria-Mercedes

    2017-04-01

    A real-time PCR assay using SYBR Green was optimized to detect those Bartonella that are most frequently described as pathogens. The assay was genus-specific. Sequencing allowed to distinguish species. Assay sensitivity was determined using 10-fold serial dilutions of genomic DNA. Dynamic range was 100 ng-100 fg and sensitivity was 50 copies/reaction.

  20. Presence of Bartonella Species in Wild Carnivores of Northern Spain

    PubMed Central

    Gerrikagoitia, Xeider; Gil, Horacio; García-Esteban, Coral; Anda, Pedro; Juste, R. A.

    2012-01-01

    The genus Bartonella was detected by PCR in 5.7% (12/212) of wild carnivores from Northern Spain. Based on hybridization and sequence analyses, Bartonella henselae was identified in a wildcat (Felis silvestris), Bartonella rochalimae in a red fox (Vulpes vulpes) and in a wolf (Canis lupus), and Bartonella sp. in badgers (Meles meles). PMID:22138983

  1. Louse-borne bacterial pathogens in lice (Phthiraptera) of rodents and cattle from Egypt.

    PubMed

    Reeves, Will K; Szumlas, Daniel E; Moriarity, John R; Loftis, Amanda D; Abbassy, Magda M; Helmy, Ibrahim M; Dasch, Gregory A

    2006-04-01

    We collected 1,023 lice, representing 5 species, from rats and domestic cattle throughout 13 governorates in Egypt and tested these lice for Anaplasma marginale, Bartonella spp., Brucella spp., Borrelia recurrentis, Coxiella burnetii, Francisella tularensis, and Rickettsia spp. by PCR amplification and sequencing. Five different louse-borne bacterial agents were detected in lice from rodents or cattle, including "Bartonella rattimassiliensis", "B. phoceensis", and Bartonella sp. near Bartonella tribocorum, Coxiella burnetii, and Rickettsia typhi. More lice from governorates bordering the Mediterranean and Red Seas contained pathogens. Our data indicate that lice of urban and domestic animals harbor pathogenic or potentially pathogenic bacterial agents throughout Egypt.

  2. [THE IDENTIFICATION AND DIFFERENTIATION OF BACTERIOPHAGES OF HUMAN PATHOGENIC VIBRIO].

    PubMed

    Gaevskaia, N E; Kudriakova, T A; Makedonova, L D; Kachkina, G V

    2015-04-01

    The issue of identification and differentiation of large group of bacteriophages of human pathogenic vibrio is still unresolved. In research and practical applied purposes it is important to consider characteristics of bacteriophages for establishing similarity and differences between them. The actual study was carried out to analyze specimens of DNA-containing bacteriophages of pathogenic vibrio. The overwhelming majority of them characterized by complicated type of symmetry--phages with double-helical DNA and also phages with mono-helical DNA structure discovered recently in vibrio. For the first time, the general framework of identification and differentiation of bacteriophages of pathogenic vibrio was developed. This achievement increases possibility to establish species assignment of phages and to compare with phages registered in the database. "The collection of bacteriophages and test-strains of human pathogenic vibrio" (No2010620549 of 24.09.210).

  3. Subtyping Cryptosporidium ubiquitum, an emerging zoonotic pathogen in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cryptosporidium ubiquitum is an emerging and important human pathogen with a broad range of mammalian hosts. Linkage between human and animal cases of C. ubiquitum has not been possible because of a lack of subtyping tools. In this study, we utilized the 60 kDa glycoprotein gene of C. ubiquitum to d...

  4. The role of extraintestinal foodborne pathogens in human illness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years understanding the role of foodborne pathogens in human disease has evolved to include conditions outside the gastrointestinal diseases typically associated with bacteria such as Salmonella, Shiga toxin-producing Escherichia coli (STEC), Listeria monocytogenes, etc. Other human pathog...

  5. Human RECQ Helicase Pathogenic Variants, Population Variation and "Missing" Diseases.

    PubMed

    Fu, Wenqing; Ligabue, Alessio; Rogers, Kai J; Akey, Joshua M; Monnat, Raymond J

    2017-02-01

    Heritable loss of function mutations in the human RECQ helicase genes BLM, WRN, and RECQL4 cause Bloom, Werner, and Rothmund-Thomson syndromes, cancer predispositions with additional developmental or progeroid features. In order to better understand RECQ pathogenic and population variation, we systematically analyzed genetic variation in all five human RECQ helicase genes. A total of 3,741 unique base pair-level variants were identified, across 17,605 potential mutation sites. Direct counting of BLM, RECQL4, and WRN pathogenic variants was used to determine aggregate and disease-specific carrier frequencies. The use of biochemical and model organism data, together with computational prediction, identified over 300 potentially pathogenic population variants in RECQL and RECQL5, the two RECQ helicases that are not yet linked to a heritable deficiency syndrome. Despite the presence of these predicted pathogenic variants in the human population, we identified no individuals homozygous for any biochemically verified or predicted pathogenic RECQL or RECQL5 variant. Nor did we find any individual heterozygous for known pathogenic variants in two or more of the disease-associated RECQ helicase genes BLM, RECQL4, or WRN. Several postulated RECQ helicase deficiency syndromes-RECQL or RECQL5 loss of function, or compound haploinsufficiency for the disease-associated RECQ helicases-may remain missing, as they likely incompatible with life.

  6. Looking in apes as a source of human pathogens.

    PubMed

    Keita, Mamadou B; Hamad, Ibrahim; Bittar, Fadi

    2014-12-01

    Because of the close genetic relatedness between apes and humans, apes are susceptible to many human infectious agents and can serve as carriers of these pathogens. Consequently, they present a serious health hazard to humans. Moreover, many emerging infectious diseases originate in wildlife and continue to threaten human populations, especially vector-borne diseases described in great apes, such as malaria and rickettsiosis. These wild primates may be permanent reservoirs and important sources of human pathogens. In this special issue, we report that apes, including chimpanzees (Pan troglodytes), bonobos (Pan paniscus), gorillas (Gorilla gorilla and Gorilla beringei), orangutans (Pongo pygmaeus and Pongo abelii), gibbons (Hylobates spp., Hoolock spp. and Nomascus spp) and siamangs (Symphalangus syndactylus syndactylus and Symphalangus continentis), have many bacterial, viral, fungal and parasitic species that are capable of infecting humans. Serious measures should be adopted in tropical forests and sub-tropical areas where habitat overlaps are frequent to survey and prevent infectious diseases from spreading from apes to people.

  7. The Bartonella henselae SitABCD transporter is required for confronting oxidative stress during cell and flea invasion.

    PubMed

    Liu, MaFeng; Bouhsira, Emilie; Boulouis, Henri-Jean; Biville, Francis

    2013-10-01

    Bartonella henselae is a zoonotic pathogen that possesses a flea-cat-flea transmission cycle and causes cat scratch disease in humans via cat scratches and bites. In order to establish infection, B. henselae must overcome oxidative stress damage produced by the mammalian host and arthropod vector. B. henselae encodes for putative Fe²⁺ and Mn²⁺ transporter SitABCD. In B. henselae, SitAB knockdown increases sensitivity to hydrogen peroxide. We consistently show that SitAB knockdown decreases the ability of B. henselae to survive in both human endothelial cells and cat fleas, thus demonstrating that the SitABCD transporter plays an important role during the B. henselae infection cycle.

  8. Bacillus cereus, a volatile human pathogen.

    PubMed

    Bottone, Edward J

    2010-04-01

    Bacillus cereus is a Gram-positive aerobic or facultatively anaerobic, motile, spore-forming, rod-shaped bacterium that is widely distributed environmentally. While B. cereus is associated mainly with food poisoning, it is being increasingly reported to be a cause of serious and potentially fatal non-gastrointestinal-tract infections. The pathogenicity of B. cereus, whether intestinal or nonintestinal, is intimately associated with the production of tissue-destructive exoenzymes. Among these secreted toxins are four hemolysins, three distinct phospholipases, an emesis-inducing toxin, and proteases. The major hurdle in evaluating B. cereus when isolated from a clinical specimen is overcoming its stigma as an insignificant contaminant. Outside its notoriety in association with food poisoning and severe eye infections, this bacterium has been incriminated in a multitude of other clinical conditions such as anthrax-like progressive pneumonia, fulminant sepsis, and devastating central nervous system infections, particularly in immunosuppressed individuals, intravenous drug abusers, and neonates. Its role in nosocomial acquired bacteremia and wound infections in postsurgical patients has also been well defined, especially when intravascular devices such as catheters are inserted. Primary cutaneous infections mimicking clostridial gas gangrene induced subsequent to trauma have also been well documented. B. cereus produces a potent beta-lactamase conferring marked resistance to beta-lactam antibiotics. Antimicrobials noted to be effective in the empirical management of a B. cereus infection while awaiting antimicrobial susceptibility results for the isolate include ciprofloxacin and vancomycin.

  9. Dissecting the human immunologic memory for pathogens.

    PubMed

    Zielinski, Christina E; Corti, Davide; Mele, Federico; Pinto, Dora; Lanzavecchia, Antonio; Sallusto, Federica

    2011-03-01

    Studies on immunologic memory in animal models and especially in the human system are instrumental to identify mechanisms and correlates of protection necessary for vaccine development. In this article, we provide an overview of the cellular basis of immunologic memory. We also describe experimental approaches based on high throughput cell cultures, which we have developed to interrogate human memory T cells, B cells, and plasma cells. We discuss how these approaches can provide new tools and information for vaccine design, in a process that we define as 'analytic vaccinology'.

  10. Combining culture techniques for Bartonella: the best of both worlds.

    PubMed

    Lynch, Tarah; Iverson, Jennifer; Kosoy, Michael

    2011-04-01

    In this study we compared some common Bartonella culturing methodologies using four diverse species causing human illnesses. Based on a review of the literature, we focused on three major inconsistencies between protocols: base medium, cell coculture, and temperature. Our data showed that Bartonella tamiae demonstrated temperature-dependent growth limitations between common culturing conditions only 2°C apart. Additionally, growth of B. quintana was significantly enhanced by the presence of mammalian cell coculture under mammalian cell culture conditions; however, when the medium was modified to incorporate insect cell culture-based medium, coculturing with mammalian cells was no longer needed. In this study, we were able to overcome these temperature- and cell-dependent limitations and accommodate all of the strains tested by combining mammalian cell culture-based medium with insect cell culture-based medium.

  11. Rickettsia felis and Bartonella henselae in fleas from Lebanon.

    PubMed

    Mba, Pamela Angue; Marié, Jean-Lou; Rolain, Jean-Marc; Davoust, Bernard; Beaucournu, Jean-Claude; Raoult, Didier; Parola, Philippe

    2011-07-01

    A total of 155 fleas collected in 2009 in Lebanon from 16 cats (104 Ctenocephalides felis specimens, 1 C. canis specimen) and 2 dogs (50 C. canis specimens) were tested for the presence of Rickettsia spp. and Bartonella spp. using molecular methods, including real-time quantitative polymerase chain reaction (PCR), regular PCR, and sequencing of amplified PCR products. Rickettsia felis, the agent of the emerging flea-borne spotted fever in humans, was identified in 17 (16%) C. felis cat fleas. Bartonella henselae, an agent of cat scratch disease, was identified in three (2.9%) C. felis. Our results emphasize the potential risk of these emerging flea-borne infections in Lebanon.

  12. YERSINIA ENTEROCOLITICA: AN IMPORTANT HUMAN FOODBORNE PATHOGEN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yersinia enterocolitica is a Gram-negative microbe of public health importance and is under national FoodNet surveillance in the United States. The majority of human yersiniosis cases are foodborne. Consumption of dairy products (milk, ice cream), water, vegetables (tofu), and pork have been linke...

  13. Surveillance of Egyptian fleas for agents of public health significance: Anaplasma, Bartonella, Coxiella, Ehrlichia, Rickettsia, and Yersinia pestis.

    PubMed

    Loftis, Amanda D; Reeves, Will K; Szumlas, Daniel E; Abbassy, Magda M; Helmy, Ibrahim M; Moriarity, John R; Dasch, Gregory A

    2006-07-01

    Serologic surveys in Egypt have documented human and animal exposure to vector-borne bacterial pathogens, but the presence and distribution of these agents in arthropods has not been determined. Between July 2002 and July 2003, fleas were collected from 221 mammals trapped in 17 cities throughout Egypt. A total of 987 fleas were collected, representing four species (Ctenocephalides felis, Echidnophaga gallinacea, Leptopsylla segnis, and Xenopsylla cheopis); 899 of these fleas were X. cheopis from rats (Rattus spp.). Fleas were tested for DNA from Anaplasma spp., Bartonella spp., Coxiella burnetii, Ehrlichia spp., Rickettsia spp., and Yersinia pestis. Rickettsia typhi, the agent of murine typhus, was detected in X. cheopis and L. segnis from rats from nine cities. A spotted-fever group Rickettsia sp. similar to "RF2125" was detected in E. gallinacea, and two unidentified spotted fever group Rickettsia were detected in two X. cheopis. Novel Bartonella genotypes were detected in X. cheopis and L. segnis from three cities. Coxiella burnetii was detected in two fleas. Anaplasma, Ehrlichia, and Y. pestis were not detected.

  14. Rapid, Sensitive Detection of Bartonella quintana by Loop-Mediated Isothermal Amplification of the groEL Gene

    PubMed Central

    Hu, Shoukui; Niu, Lina; Luo, Lijuan; Song, Xiuping; Sun, Jimin; Liu, Qiyong

    2016-01-01

    Trench fever, caused by Bartonella quintana, is recognized as a re-emerging and neglected disease. Rapid and sensitive detection approaches are urgently required to monitor and help control B. quintana infections. Here, loop-mediated isothermal amplification (LAMP), which amplifies target DNA at a fixed temperature with high sensitivity, specificity and rapidity, was employed to detect B. quintana. Thirty-six strains, including 10 B. quintana, 13 other Bartonella spp., and 13 other common pathogens, were applied to verify and evaluate the LAMP assay. The specificity of the LAMP assay was 100%, and the limit of detection was 125 fg/reaction. The LAMP assay was compared with qPCR in the examination of 100 rhesus and 20 rhesus-feeder blood samples; the diagnostic accuracy was found to be 100% when LAMP was compared to qPCR, but the LAMP assay was significantly more sensitive (p < 0.05). Thus, LAMP methodology is a useful for diagnosis of trench fever in humans and primates, especially in low-resource settings, because of its rapid, sensitive detection that does not require sophisticated equipment. PMID:27916953

  15. Aspergillus fumigatus: contours of an opportunistic human pathogen.

    PubMed

    McCormick, Allison; Loeffler, Jürgen; Ebel, Frank

    2010-11-01

    Aspergillus fumigatus is currently the major air-borne fungal pathogen. It is able to cause several forms of disease in humans of which invasive aspergillosis is the most severe. The high mortality rate of this disease prompts increased efforts to disclose the basic principles of A. fumigatus pathogenicity. According to our current knowledge, A. fumigatus lacks sophisticated virulence traits; it is nevertheless able to establish infection due to its robustness and ability to adapt to a wide range of environmental conditions. This review focuses on two crucial aspects of invasive aspergillosis: (i) properties of A. fumigatus that are relevant during infection and may distinguish it from non-pathogenic Aspergillus species and (ii) interactions of the pathogen with the innate and adaptive immune systems.

  16. Aerococcus: an increasingly acknowledged human pathogen.

    PubMed

    Rasmussen, M

    2016-01-01

    Aerococci have often been misidentified as streptococci in microbiology laboratories, leading to an underestimation of these bacteria as causes of human infections. An increased awareness of aerococci and the introduction of matrix-assisted laser desorption ionization time-of-flight mass spectrometry, has led to an increased isolation of Aerococcus urinae and Aerococcus sanguinicola from human urine and blood. The two species are found in human urine and can cause urinary tract infections (UTI). Aerococcus urinae can, in older males with underlying urinary tract conditions, cause invasive infections such as urosepsis or infective endocarditis. The prognosis of invasive aerococcal infections appears to be relatively favourable despite the old age of patients and their many comorbidities. Though clinical breakpoints are still not in place, aerococci seem to be sensitive to penicillins, carbapenems and vancomycin. There is synergy between penicillin and aminoglycosides against some A. urinae isolates and this combination is often used in aerococcal infective endocarditis. The treatment of complicated aerococcal UTI is not obvious as many isolates are resistant to fluoroquinolones. In addition, A. urinae is resistant to sulphamethoxazole, and there are methodological problems in the determination of trimethoprim sensitivity. In complicated UTI, ampicillin is probably a safe treatment option, whereas nitrofurantoin is probably effective in uncomplicated UTI. Treatment studies in aerococcal infections are needed as is a better understanding of the natural niches for aerococci and the pathogenesis and clinical course of aerococcal infections.

  17. Human Fungal Pathogens of Mucorales and Entomophthorales

    PubMed Central

    Mendoza, Leonel; Vilela, Raquel; Voelz, Kerstin; Ibrahim, Ashraf S.; Voigt, Kerstin; Lee, Soo Chan

    2015-01-01

    In recent years, we have seen an increase in the number of immunocompromised cohorts as a result of infections and/or medical conditions, which has resulted in an increased incidence of fungal infections. Although rare, the incidence of infections caused by fungi belonging to basal fungal lineages is also continuously increasing. Basal fungal lineages diverged at an early point during the evolution of the fungal lineage, in which, in a simplified four-phylum fungal kingdom, Zygomycota and Chytridiomycota belong to the basal fungi, distinguishing them from Ascomycota and Basidiomycota. Currently there are no known human infections caused by fungi in Chytridiomycota; only Zygomycotan fungi are known to infect humans. Hence, infections caused by zygomycetes have been called zygomycosis, and the term “zygomycosis” is often used as a synonym for “mucormycosis.” In the four-phylum fungal kingdom system, Zygomycota is classified mainly based on morphology, including the ability to form coenocytic (aseptated) hyphae and zygospores (sexual spores). In the Zygomycota, there are 10 known orders, two of which, the Mucorales and Entomophthorales, contain species that can infect humans, and the infection has historically been known as zygomycosis. However, recent multilocus sequence typing analyses (the fungal tree of life [AFTOL] project) revealed that the Zygomycota forms not a monophyletic clade but instead a polyphyletic clade, whereas Ascomycota and Basidiomycota are monophyletic. Thus, the term “zygomycosis” needed to be further specified, resulting in the terms “mucormycosis” and “entomophthoramycosis.” This review covers these two different types of fungal infections. PMID:25377138

  18. Bartonella infections in fleas (Siphonaptera: Pulicidae) and lack of bartonellae in ticks (Acari: Ixodidae) from Hungary.

    PubMed

    Sréter-Lancz, Zsuzsa; Tornyai, Krisztián; Széll, Zoltán; Sréter, Tamás; Márialigeti, Károly

    2006-12-01

    Fleas (95 Pulex irritans, 50 Ctenocephalides felis, 45 Ctenocephalides canis) and ixodid ticks (223 ixodes ricinus, 231 Dermacentor reticulatus, 204 Haemaphysalis concinna) were collected in Hungary and tested, in assays based on PCR, for Bartonella infection. Low percentages of P. irritans (4.2%) and C. felis (4.0%) were found to be infected. The groEL sequences of the four isolates from P. irritans were different from all the homologous sequences for bartonellae previously stored in GenBank but closest to those of Bartonella sp. SE-Bart-B (sharing 96% identities). The groEL sequences of the two isolates from C. felis were identical with those of the causative agents of cat scratch disease, Bartonella henselae and Bartonella clarridgeiae, respectively. The pap31 sequences of B. henselae amplified from Hungarian fleas were identical with that of Marseille strain. No Bartonella-specific amplification products were detected in C. canis, I. ricinus, D. reticulatus and H. concinna pools.

  19. Waterborne human pathogenic viruses of public health concern.

    PubMed

    Ganesh, Atheesha; Lin, Johnson

    2013-12-01

    In recent years, the impending impact of waterborne pathogens on human health has become a growing concern. Drinking water and recreational exposure to polluted water have shown to be linked to viral infections, since viruses are shed in extremely high numbers in the faeces and vomit of infected individuals and are routinely introduced into the water environment. All of the identified pathogenic viruses that pose a significant public health threat in the water environment are transmitted via the faecal-oral route. This group, are collectively known as enteric viruses, and their possible health effects include gastroenteritis, paralysis, meningitis, hepatitis, respiratory illness and diarrhoea. This review addresses both past and recent investigations into viral contamination of surface waters, with emphasis on six types of potential waterborne human pathogenic viruses. In addition, the viral associated illnesses are outlined with reference to their pathogenesis and routes of transmission.

  20. A translocated effector required for Bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors.

    PubMed

    Okujava, Rusudan; Guye, Patrick; Lu, Yun-Yueh; Mistl, Claudia; Polus, Florine; Vayssier-Taussat, Muriel; Halin, Cornelia; Rolink, Antonius G; Dehio, Christoph

    2014-06-01

    Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps) into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs) infected with a ΔbepE mutant of B. henselae (Bhe) displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID) domain of BepEBhe (BID2.EBhe). Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d.) model for B. tribocorum (Btr) infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we propose that

  1. A Translocated Effector Required for Bartonella Dissemination from Derma to Blood Safeguards Migratory Host Cells from Damage by Co-translocated Effectors

    PubMed Central

    Okujava, Rusudan; Guye, Patrick; Lu, Yun-Yueh; Mistl, Claudia; Polus, Florine; Vayssier-Taussat, Muriel; Halin, Cornelia; Rolink, Antonius G.; Dehio, Christoph

    2014-01-01

    Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps) into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs) infected with a ΔbepE mutant of B. henselae (Bhe) displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID) domain of BepEBhe (BID2.EBhe). Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d.) model for B. tribocorum (Btr) infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we propose that

  2. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    USGS Publications Warehouse

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  3. Focus on food safety: Human pathogens on plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article introduces the first Focus Issue of Phytopathology, a dedicated issue of the journal that highlights a topic of significant interest to our readership. This first Focus Issue addresses the topic of food safety and the biology of human pathogens on plants, a relatively new problem in pla...

  4. Lipolytic Enzymes Involved in the Virulence of Human Pathogenic Fungi

    PubMed Central

    Park, Minji; Do, Eunsoo

    2013-01-01

    Pathogenic microbes secrete various enzymes with lipolytic activities to facilitate their survival within the host. Lipolytic enzymes include extracellular lipases and phospholipases, and several lines of evidence have suggested that these enzymes contribute to the virulence of pathogenic fungi. Candida albicans and Cryptococcus neoformans are the most commonly isolated human fungal pathogens, and several biochemical and molecular approaches have identified their extracellular lipolytic enzymes. The role of lipases and phospholipases in the virulence of C. albicans has been extensively studied, and these enzymes have been shown to contribute to C. albicans morphological transition, colonization, cytotoxicity, and penetration to the host. While not much is known about the lipases in C. neoformans, the roles of phospholipases in the dissemination of fungal cells in the host and in signaling pathways have been described. Lipolytic enzymes may also influence the survival of the lipophilic cutaneous pathogenic yeast Malassezia species within the host, and an unusually high number of lipase-coding genes may complement the lipid dependency of this fungus. This review briefly describes the current understanding of the lipolytic enzymes in major human fungal pathogens, namely C. albicans, C. neoformans, and Malassezia spp. PMID:23874127

  5. Rickettsia felis and Bartonella spp. in fleas from cats in Albania.

    PubMed

    Silaghi, Cornelia; Knaus, Martin; Rapti, Dhimiter; Shukullari, Enstela; Pfister, Kurt; Rehbein, Steffen

    2012-01-01

    Fleas can serve as vectors for bacterial pathogens like Bartonella and Rickettsia species, which have been isolated worldwide. However, the knowledge of the epidemiology of vector-borne diseases in general and thus on flea-borne diseases in Albania is limited. Therefore, from 78 free-roaming cats in Tirana, Albania, fleas (371 Ctenocephalides felis and 5 Ctenocephalides canis) were collected to examine them for the presence of Rickettsia and Bartonella species. Ten of the 371 C. felis (2.7%) were positive for Rickettsia felis, and 24 (6.5%) for Bartonella spp. (B. henselae and B. clarridgeiae). In total, fleas from 15 cats (19.2%) were positive for either one or the other of the pathogens. The results of this study provided evidence for the presence of R. felis (causing flea-borne spotted fever) and Bartonella spp. (causing cat scratch disease) in Albania. Thus, these infectious diseases should be considered as differential diagnoses when febrile symptoms are presented, especially after contact with cats or their fleas.

  6. Aeromonas dhakensis, an Increasingly Recognized Human Pathogen

    PubMed Central

    Chen, Po-Lin; Lamy, Brigitte; Ko, Wen-Chien

    2016-01-01

    Aeromonas dhakensis was first isolated from children with diarrhea in Dhaka, Bangladesh and described in 2002. In the past decade, increasing evidence indicate this species is widely distributed in the environment and can cause a variety of infections both in human and animals, especially in coastal areas. A. dhakensis is often misidentified as A. hydrophila, A. veronii, or A. caviae by commercial phenotypic tests in the clinical laboratory. Correct identification relies on molecular methods. Increasingly used matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) may be able to identify Aeromonas specie rapidly and accurately. A. dhakensis has shown its potent virulence in different animal models and clinical infections. Although several virulence factors had been reported, no single mechanism is conclusive. Characteristically A. dhakensis is the principal species causing soft tissue infection and bacteremia, especially among patients with liver cirrhosis or malignancy. Of note, A. dhakensis bacteremia is more lethal than bacteremia due to other Aeromonas species. The role of this species in gastroenteritis remains controversial. Third generation cephalosporins and carbapenems should be used cautiously in the treatment of severe A. dhakensis infection due to the presence of AmpC ββ-lactamase and metallo-β-lactamase genes, and optimal regimens may be cefepime or fluoroquinolones. Studies of bacterial virulence factors and associated host responses may provide the chance to understand the heterogeneous virulence between species. The hypothesis A. dhakensis with varied geographic prevalence and enhanced virulence that compared to other Aeromonas species warrants more investigations. PMID:27303382

  7. Isolation of Bartonella capreoli from elk

    USGS Publications Warehouse

    Bai, Y.; Cross, P.C.; Malania, L.; Kosoy, M.

    2011-01-01

    The aim of the present study was to investigate the presence of Bartonella infections in elk populations. We report the isolation of four Bartonella strains from 55 elk blood samples. Sequencing analysis demonstrated that all four strains belong to Bartonella capreoli, a bacterium that was originally described in the wild roe deer of Europe. Our finding first time demonstrated that B. capreoli has a wide geographic range, and that elk may be another host for this bacterium. Further investigations are needed to determine the impact of this bacterium on wildlife.

  8. Prevalence, Isolation and Molecular Characterization of Bartonella Species in Republic of Korea.

    PubMed

    Ko, S; Kang, J-G; Kim, H-C; Klein, T A; Choi, K-S; Song, J-W; Youn, H-Y; Chae, J-S

    2016-02-01

    To determine the prevalence of Bartonella species and identify which species of Bartonella naturally infects the striped field mouse (Apodemus agrarius) in the Republic of Korea (ROK), spleens from 200 mice were assayed by nested polymerase chain reaction (nPCR) targeting the RNA polymerase subunit beta (rpoB) gene and the 16S-23S internal transcribed spacer (ITS) region for members of the genus Bartonella. Utilizing PCR techniques, the prevalence of Bartonella spp. ranged from 31.5% (63/200) to 62.0% (124/200) for the rpoB and ITS gene fragments, respectively. The most prevalent species, Bartonella grahamii, was assigned to 17 genotypes and closely related to the zoonotic pathogens, B. taylorii, B. tribocorum, B. phoceensis and B. henselae, which also were detected. Two Bartonella isolates (KRBG28 and KRBG32) were recovered from blood of A. agrarius captured in Gyeonggi Province, ROK. Comparison of the 16S rRNA, hemin-binding protein E (hbpE), glutamate dehydrogenase 1 (gdh1), invasion-associated protein B (ialB), cell division protein (ftsZ), citrate synthase (gltA), 60 kDa heat shock protein (groEL), rpoB gene fragments and the ITS region sequences from the isolates with GenBank was confirmed as B. grahamii. Phylogenetic analysis based on the alignment of concatenated sequences (4933 bp) of KRBG28 and KRBG32 clustered with B. grahamii, forming an independent clade between Asian and American/European B. grahamii genogroups.

  9. Viral Diversity, Prey Preference, and Bartonella Prevalence in Desmodus rotundus in Guatemala.

    PubMed

    Wray, Amy K; Olival, Kevin J; Morán, David; Lopez, Maria Renee; Alvarez, Danilo; Navarrete-Macias, Isamara; Liang, Eliza; Simmons, Nancy B; Lipkin, W Ian; Daszak, Peter; Anthony, Simon J

    2016-12-01

    Certain bat species serve as natural reservoirs for pathogens in several key viral families including henipa-, lyssa-, corona-, and filoviruses, which may pose serious threats to human health. The Common Vampire Bat (Desmodus rotundus), due to its abundance, sanguivorous feeding habit involving humans and domestic animals, and highly social behavioral ecology, may have an unusually high potential for interspecies disease transmission. Previous studies have investigated rabies dynamics in D. rotundus, yet the diversity of other viruses, bacteria, and other microbes that these bats may carry remains largely unknown. We screened 396 blood, urine, saliva, and fecal samples from D. rotundus captured in Guatemala for 13 viral families and genera. Positive results were found for rhabdovirus, adenovirus, and herpesvirus assays. We also screened these samples for Bartonella spp. and found that 38% of individuals tested positive. To characterize potential for interspecies transmission associated with feeding behavior, we also analyzed cytochrome B sequences from fecal samples to identify prey species and found that domestic cattle (Bos taurus) made up the majority of blood meals. Our findings suggest that the risk of pathogen spillover from Desmodus rotundus, including between domestic animal species, is possible and warrants further investigation to characterize this microbial diversity and expand our understanding of foraging ecology in their populations.

  10. Ticks infesting humans in Italy and associated pathogens

    PubMed Central

    2014-01-01

    Background Ticks may transmit a large variety of pathogens, which cause illnesses in animals and humans, commonly referred to as to tick-borne diseases (TBDs). The incidence of human TBDs in Italy is underestimated because of poor surveillance and the scant amount of studies available. Methods Samples (n = 561) were collected from humans in four main geographical areas of Italy (i.e., northwestern, northeastern, southern Italy, and Sicily), which represent a variety of environments. After being morphologically identified, ticks were molecularly tested with selected protocols for the presence of pathogens of the genera Rickettsia, Babesia, Theileria, Candidatus Neoehrlichia mikurensis, Borrelia and Anaplasma. Results Ticks belonged to 16 species of the genera Argas, Dermacentor, Haemaphysalis, Hyalomma, Ixodes and Rhipicephalus, with Ixodes ricinus (59.5%) being the species most frequently retrieved, followed by Rhipicephalus sanguineus sensu lato (21.4%). Nymphs were the life stage most frequently retrieved (41%), followed by adult females (34.6%). The overall positivity to any pathogen detected was 18%. Detected microorganisms were Rickettsia spp. (17.0%), Anaplasma phagocytophilum (0.8%), Borrelia afzelii (0.5%), Borrelia valaisiana (0.3%), C. N. mikurensis (0.5%) and Babesia venatorum (0.6%). Conclusions Results indicate that people living in the Italian peninsula are at risk of being bitten by different tick species, which may transmit a plethora of TBD causing pathogens and that co-infections may also occur. PMID:25023709

  11. Detecting the emergence of novel, zoonotic viruses pathogenic to humans.

    PubMed

    Rosenberg, Ronald

    2015-03-01

    RNA viruses, with their high potential for mutation and epidemic spread, are the most common class of pathogens found as new causes of human illness. Despite great advances made in diagnostic technology since the 1950s, the annual rate at which novel virulent viruses have been found has remained at 2-3. Most emerging viruses are zoonoses; they have jumped from mammal or bird hosts to humans. An analysis of virus discovery indicates that the small number of novel viruses discovered annually is an artifact of inadequate surveillance in tropical and subtropical countries, where even established endemic pathogens are often misdiagnosed. Many of the emerging viruses of the future are already infecting humans but remain to be uncovered by a strategy of disease surveillance in selected populations.

  12. Detecting the emergence of novel, zoonotic viruses pathogenic to humans

    PubMed Central

    2015-01-01

    RNA viruses, with their high potential for mutation and epidemic spread, are the most common class of pathogens found as new causes of human illness. Despite great advances made in diagnostic technology since the 1950s, the annual rate at which novel virulent viruses have been found has remained at 2–3. Most emerging viruses are zoonoses; they have jumped from mammal or bird hosts to humans. An analysis of virus discovery indicates that the small number of novel viruses discovered annually is an artifact of inadequate surveillance in tropical and subtropical countries, where even established endemic pathogens are often misdiagnosed. Many of the emerging viruses of the future are already infecting humans but remain to be uncovered by a strategy of disease surveillance in selected populations. PMID:25416679

  13. Human pathogenic bacteria, fungi, and viruses in Drosophila

    PubMed Central

    Panayidou, Stavria; Ioannidou, Eleni; Apidianakis, Yiorgos

    2014-01-01

    Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila–microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection. PMID:24398387

  14. Pathogen receptor discovery with a microfluidic human membrane protein array.

    PubMed

    Glick, Yair; Ben-Ari, Ya'ara; Drayman, Nir; Pellach, Michal; Neveu, Gregory; Boonyaratanakornkit, Jim; Avrahami, Dorit; Einav, Shirit; Oppenheim, Ariella; Gerber, Doron

    2016-04-19

    The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein-pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism.

  15. Zoonotic Bartonella species in wild rodents in the state of Mato Grosso do Sul, Brazil.

    PubMed

    Favacho, Alexsandra Rodrigues de Mendonça; Andrade, Marcelle Novaes; de Oliveira, Renata Carvalho; Bonvicino, Cibele Rodrigues; D'Andrea, Paulo Sergio; de Lemos, Elba Regina Sampaio

    2015-01-01

    Several rodent-associated Bartonella species cause disease in humans but little is known about their epidemiology in Brazil. The presence of Bartonella spp. in wild rodents captured in two municipalities of the Mato Grosso do Sul state was assessed by polymerase chain reaction (PCR). Fragments of heart tissue from 42 wild rodents were tested using primers targeting the Bartonella 16S-23S intergenic transcribed spacer (ITS) region and citrate synthase gltA gene. The wild rodents were identified based on external and cranial morphology and confirmed at species level by mitochondrial DNA (cytochrome B) sequencing and karyotype. Overall, 42.9% (18/42) of the wild rodents were PCR positive for Bartonella spp.: Callomys callosus (04), Cerradomys maracajuensis (04), Hylaeamus megacephalus (01), Necromys lasiurus (06), Nectomys squamipes (01), Oecomys catherinae (01) and Oxymycterus delator (01). Bartonella vinsonii subsp. arupensis was detected in N. lasiurus (46%) and C. callosus (21%) captured in the two study sites. We reported the first molecular detection of B. vinsonii subsp. arupensis in different species of wild rodents collected in the Brazilian territory. Further studies are needed to examine the role of these mammals in the eco-epidemiology of bartonellosis in Brazil.

  16. Lack of transplacental transmission of Bartonella bovis.

    PubMed

    Chastant-Maillard, S; Boulouis, H-J; Reynaud, K; Thoumire, S; Gandoin, C; Bouillin, C; Cordonnier, N; Maillard, R

    2015-02-01

    Transplacental transmission of Bartonella spp. has been reported for rodents, but not for cats and has never been investigated in cattle. The objective of this study was to assess vertical transmission of Bartonella in cattle. Fifty-six cow-calf pairs were tested before (cows) and after (calves) caesarean section for Bartonella bacteremia and/or serology, and the cotyledons were checked for gross lesions and presence of the bacteria. None of the 29 (52%) bacteremic cows gave birth to bacteremic calves, and all calves were seronegative at birth. Neither placentitis nor vasculitis were observed in all collected cotyledons. Bartonella bovis was not detected in placental cotyledons. Therefore, transplacental transmission of B. bovis and multiplication of the bacteria in the placenta do not seem likely. The lack of transplacental transmission may be associated with the particular structure of the placenta in ruminants or to a poor affinity/agressiveness of B. bovis for this tissue.

  17. Multiple infections of rodents with zoonotic pathogens in Austria.

    PubMed

    Schmidt, Sabrina; Essbauer, Sandra S; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald; Ulrich, Rainer G

    2014-07-01

    Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.

  18. Multiple Infections of Rodents with Zoonotic Pathogens in Austria

    PubMed Central

    Schmidt, Sabrina; Essbauer, Sandra S.; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H.; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald

    2014-01-01

    Abstract Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host–pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans. PMID

  19. Risk Factors for Bartonella species Infection in Blood Donors from Southeast Brazil

    PubMed Central

    Diniz, Pedro Paulo Vissotto de Paiva; Velho, Paulo Eduardo Neves Ferreira; Pitassi, Luiza Helena Urso; Drummond, Marina Rovani; Lania, Bruno Grosselli; Barjas-Castro, Maria Lourdes; Sowy, Stanley; Breitschwerdt, Edward B.; Scorpio, Diana Gerardi

    2016-01-01

    Bacteria from the genus Bartonella are emerging blood-borne bacteria, capable of causing long-lasting infection in marine and terrestrial mammals, including humans. Bartonella are generally well adapted to their main host, causing persistent infection without clinical manifestation. However, these organisms may cause severe disease in natural or accidental hosts. In humans, Bartonella species have been detected from sick patients presented with diverse disease manifestations, including cat scratch disease, trench fever, bacillary angiomatosis, endocarditis, polyarthritis, or granulomatous inflammatory disease. However, with the advances in diagnostic methods, subclinical bloodstream infection in humans has been reported, with the potential for transmission through blood transfusion been recently investigated by our group. The objective of this study was to determine the risk factors associated with Bartonella species infection in asymptomatic blood donors presented at a major blood bank in Southeastern Brazil. Five hundred blood donors were randomly enrolled and tested for Bartonella species infection by specialized blood cultured coupled with high-sensitive PCR assays. Epidemiological questionnaires were designed to cover major potential risk factors, such as age, gender, ethnicity, contact with companion animals, livestock, or wild animals, bites from insects or animal, economical status, among other factors. Based on multivariate logistic regression, bloodstream infection with B. henselae or B. clarridgeiae was associated with cat contact (adjusted OR: 3.4, 95% CI: 1.1–9.6) or history of tick bite (adjusted OR: 3.7, 95% CI: 1.3–13.4). These risk factors should be considered during donor screening, as bacteremia by these Bartonella species may not be detected by traditional laboratory screening methods, and it may be transmitted by blood transfusion. PMID:26999057

  20. Essential metals at the host-pathogen interface: nutritional immunity and micronutrient assimilation by human fungal pathogens.

    PubMed

    Crawford, Aaron; Wilson, Duncan

    2015-11-01

    The ability of pathogenic microorganisms to assimilate sufficient nutrients for growth within their hosts is a fundamental requirement for pathogenicity. However, certain trace nutrients, including iron, zinc and manganese, are actively withheld from invading pathogens in a process called nutritional immunity. Therefore, successful pathogenic species must have evolved specialized mechanisms in order to adapt to the nutritionally restrictive environment of the host and cause disease. In this review, we discuss recent advances which have been made in our understanding of fungal iron and zinc acquisition strategies and nutritional immunity against fungal infections, and explore the mechanisms of micronutrient uptake by human pathogenic fungi.

  1. Human herpesvirus 8 – A novel human pathogen

    PubMed Central

    Edelman, Daniel C

    2005-01-01

    In 1994, Chang and Moore reported on the latest of the gammaherpesviruses to infect humans, human herpesvirus 8 (HHV-8) [1]. This novel herpesvirus has and continues to present challenges to define its scope of involvement in human disease. In this review, aspects of HHV-8 infection are discussed, such as, the human immune response, viral pathogenesis and transmission, viral disease entities, and the virus's epidemiology with an emphasis on HHV-8 diagnostics. PMID:16138925

  2. Highly Pathogenic New World and Old World Human Arenaviruses Induce Distinct Interferon Responses in Human Cells

    PubMed Central

    Huang, Cheng; Kolokoltsova, Olga A.; Yun, Nadezhda E.; Seregin, Alexey V.; Ronca, Shannon; Koma, Takaaki

    2015-01-01

    ABSTRACT The arenavirus family includes several important pathogens that cause severe and sometimes fatal diseases in humans. The highly pathogenic Old World (OW) arenavirus Lassa fever virus (LASV) is the causative agent of Lassa fever (LF) disease in humans. LASV infections in severe cases are generally immunosuppressive without stimulating interferon (IFN) induction, a proinflammatory response, or T cell activation. However, the host innate immune responses to highly pathogenic New World (NW) arenaviruses are not well understood. We have previously shown that the highly pathogenic NW arenavirus, Junin virus (JUNV), induced an IFN response in human A549 cells. Here, we report that Machupo virus (MACV), another highly pathogenic NW arenavirus, also induces an IFN response. Importantly, both pathogenic NW arenaviruses, in contrast to the OW highly pathogenic arenavirus LASV, readily elicited an IFN response in human primary dendritic cells and A549 cells. Coinfection experiments revealed that LASV could potently inhibit MACV-activated IFN responses even at 6 h after MACV infection, while the replication levels of MACV and LASV were not affected by virus coinfection. Our results clearly demonstrated that although all viruses studied herein are highly pathogenic to humans, the host IFN responses toward infections with the NW arenaviruses JUNV and MACV are quite different from responses to infections with the OW arenavirus LASV, a discovery that needs to be further investigated in relevant animal models. This finding might help us better understand various interplays between the host immune system and highly pathogenic arenaviruses as well as distinct mechanisms underlying viral pathogenesis. IMPORTANCE Infections of humans with the highly pathogenic OW LASV are accompanied by potent suppression of interferon or proinflammatory cytokine production. In contrast, infections with the highly pathogenic NW arenavirus JUNV are associated with high levels of IFNs and

  3. Giant viruses of amoebae as potential human pathogens.

    PubMed

    Colson, Philippe; La Scola, Bernard; Raoult, Didier

    2013-01-01

    Giant viruses infecting phagocytic protists are composed of mimiviruses, the record holders of particle and genome size amongst viruses, and marseilleviruses. Since the discovery in 2003 at our laboratory of the first of these giant viruses, the Mimivirus, a growing body of data has revealed that they are common inhabitants of our biosphere. Moreover, from the outset, the story of Mimivirus has been linked to that of patients exhibiting pneumonia and it was shown that patients developed antibodies to this amoebal pathogen. Since then, there have been several proven cases of human infection or colonization with giant viruses of amoebae, which are known to host several bacteria that are human pathogens. Mimiviruses and marseilleviruses represent a major challenge in human pathology, as virological procedures implemented to date have not used appropriate media to allow their culture, and molecular techniques have used filtration steps that likely prevented their detection. Nevertheless, there is an increasing body of evidence that mimiviruses might cause pneumonia and that humans carry marseilleviruses, and re-analyses of metagenomic databases have provided evidence that these giant viruses can be common in human samples. The proportion of human infections related to these giant mimiviruses and marseilleviruses and the precise short- and long-term consequences of these infections have been scarcely investigated so far and should be the subject of future works.

  4. Bartonella henselae trimeric autotransporter adhesin BadA expression interferes with effector translocation by the VirB/D4 type IV secretion system.

    PubMed

    Lu, Yun-Yueh; Franz, Bettina; Truttmann, Matthias C; Riess, Tanja; Gay-Fraret, Jérémie; Faustmann, Marco; Kempf, Volkhard A J; Dehio, Christoph

    2013-05-01

    The Gram-negative, zoonotic pathogen Bartonella henselae is the aetiological agent of cat scratch disease, bacillary angiomatosis and peliosis hepatis in humans. Two pathogenicity factors of B. henselae - each displaying multiple functions in host cell interaction - have been characterized in greater detail: the trimeric autotransporter Bartonella adhesin A (BadA) and the type IV secretion system VirB/D4 (VirB/D4 T4SS). BadA mediates, e.g. binding to fibronectin (Fn), adherence to endothelial cells (ECs) and secretion of vascular endothelial growth factor (VEGF). VirB/D4 translocates several Bartonella effector proteins (Beps) into the cytoplasm of infected ECs, resulting, e.g. in uptake of bacterial aggregates via the invasome structure, inhibition of apoptosis and activation of a proangiogenic phenotype. Despite this knowledge of the individual activities of BadA or VirB/D4 it is unknown whether these major virulence factors affect each other in their specific activities. In this study, expression and function of BadA and VirB/D4 were analysed in a variety of clinical B. henselae isolates. Data revealed that most isolates have lost expression of either BadA or VirB/D4 during in vitro passages. However, the phenotypic effects of coexpression of both virulence factors was studied in one clinical isolate that was found to stably coexpress BadA and VirB/D4, as well as by ectopic expression of BadA in a strain expressing VirB/D4 but not BadA. BadA, which forms a dense layer on the bacterial surface, negatively affected VirB/D4-dependent Bep translocation and invasome formation by likely preventing close contact between the bacterial cell envelope and the host cell membrane. In contrast, BadA-dependent Fn binding, adhesion to ECs and VEGF secretion were not affected by a functional VirB/D4 T4SS. The obtained data imply that the essential virulence factors BadA and VirB/D4 are likely differentially expressed during different stages of the infection cycle of

  5. Comamonas testosteroni: Is It Still a Rare Human Pathogen?

    PubMed Central

    Farooq, Shaika; Farooq, Rumana; Nahvi, Nahida

    2017-01-01

    Comamonas testosteroni (formally Pseudomonas testosteroni) is common environmental bacterium that is not part of the human microbiome. Since its identification as a human pathogen in 1987, numerous reports have drizzled in, implicating this organism for various infections. Although these organisms are of low virulence, some of their obscurity perhaps is due to the incapability of clinical laboratories to identify them. Most of the reported cases are bloodstream infections. We report a case of gastroenteritis caused by this organism in a 65-year-old female with colostomy in situ. PMID:28203137

  6. Prostatitis, Steatitis, and Diarrhea in a Dog following Presumptive Flea-Borne Transmission of Bartonella henselae

    PubMed Central

    Balakrishnan, Nandhakumar; Pritchard, Jessica; Ericson, Marna; Grindem, Carol; Phillips, Kathryn; Jennings, Samuel; Mathews, Kyle; Tran, Huy; Birkenheuer, Adam J.

    2014-01-01

    Bartonella henselae is increasingly associated with a variety of pathological entities, which are often similar in dogs and human patients. Following an acute flea infestation, a dog developed an unusual clinical presentation for canine bartonellosis. Comprehensive medical, microbiological, and surgical interventions were required for diagnosis and to achieve a full recovery. PMID:24920774

  7. Prostatitis, steatitis, and diarrhea in a dog following presumptive flea-borne transmission of Bartonella henselae.

    PubMed

    Balakrishnan, Nandhakumar; Pritchard, Jessica; Ericson, Marna; Grindem, Carol; Phillips, Kathryn; Jennings, Samuel; Mathews, Kyle; Tran, Huy; Birkenheuer, Adam J; Breitschwerdt, Edward B

    2014-09-01

    Bartonella henselae is increasingly associated with a variety of pathological entities, which are often similar in dogs and human patients. Following an acute flea infestation, a dog developed an unusual clinical presentation for canine bartonellosis. Comprehensive medical, microbiological, and surgical interventions were required for diagnosis and to achieve a full recovery.

  8. Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis

    PubMed Central

    Desjardins, Christopher A.; Champion, Mia D.; Holder, Jason W.; Muszewska, Anna; Goldberg, Jonathan; Bailão, Alexandre M.; Brigido, Marcelo Macedo; Ferreira, Márcia Eliana da Silva; Garcia, Ana Maria; Grynberg, Marcin; Gujja, Sharvari; Heiman, David I.; Henn, Matthew R.; Kodira, Chinnappa D.; León-Narváez, Henry; Longo, Larissa V. G.; Ma, Li-Jun; Malavazi, Iran; Matsuo, Alisson L.; Morais, Flavia V.; Pereira, Maristela; Rodríguez-Brito, Sabrina; Sakthikumar, Sharadha; Salem-Izacc, Silvia M.; Sykes, Sean M.; Teixeira, Marcus Melo; Vallejo, Milene C.; Walter, Maria Emília Machado Telles; Yandava, Chandri; Young, Sarah; Zeng, Qiandong; Zucker, Jeremy; Felipe, Maria Sueli; Goldman, Gustavo H.; Haas, Brian J.; McEwen, Juan G.; Nino-Vega, Gustavo; Puccia, Rosana; San-Blas, Gioconda; Soares, Celia Maria de Almeida; Birren, Bruce W.; Cuomo, Christina A.

    2011-01-01

    Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of

  9. Bioactive berry compounds-novel tools against human pathogens.

    PubMed

    Puupponen-Pimiä, Riitta; Nohynek, Liisa; Alakomi, Hanna-Leena; Oksman-Caldentey, Kirsi-Marja

    2005-04-01

    Berry fruits are rich sources of bioactive compounds, such as phenolics and organic acids, which have antimicrobial activities against human pathogens. Among different berries and berry phenolics, cranberry, cloudberry, raspberry, strawberry and bilberry especially possess clear antimicrobial effects against, e.g. Salmonella and Staphylococcus. Complex phenolic polymers, like ellagitannins, are strong antibacterial agents present in cloudberry and raspberry. Several mechanisms of action in the growth inhibition of bacteria are involved, such as destabilisation of cytoplasmic membrane, permeabilisation of plasma membrane, inhibition of extracellular microbial enzymes, direct actions on microbial metabolism and deprivation of the substrates required for microbial growth. Antimicrobial activity of berries may also be related to antiadherence of bacteria to epithelial cells, which is a prerequisite for colonisation and infection of many pathogens. Antimicrobial berry compounds may have important applications in the future as natural antimicrobial agents for food industry as well as for medicine. Some of the novel approaches are discussed.

  10. The action of berry phenolics against human intestinal pathogens.

    PubMed

    Puupponen-Pimiä, Riitta; Nohynek, Liisa; Alakomi, Hanna-Leena; Oksman-Caldentey, Kirsi-Marja

    2005-01-01

    Phenolic compounds present in berries selectively inhibit the growth of human gastrointestinal pathogens. Especially cranberry, cloudberry, raspberry, strawberry and bilberry possess clear antimicrobial effects against e.g. salmonella and staphylococcus. Complex phenolic polymers, such as ellagitannins, are strong antibacterial agents present in cloudberry, raspberry and strawberry. Berry phenolics seem to affect the growth of different bacterial species with different mechanisms. Adherence of bacteria to epithelial surfaces is a prerequisite for colonization and infection of many pathogens. Antimicrobial activity of berries may also be related to anti-adherence activity of the berries. Utilization of enzymes in berry processing increases the amount of phenolics and antimicrobial activity of the berry products. Antimicrobial berry compounds are likely to have many important applications in the future as natural antimicrobial agents for food industry as well as for medicine.

  11. Human pathogens in marine mammal meat – a northern perspective.

    PubMed

    Tryland, M; Nesbakken, T; Robertson, L; Grahek-Ogden, D; Lunestad, B T

    2014-09-01

    Only a few countries worldwide hunt seals and whales commercially. In Norway, hooded and harp seals and minke whales are commercially harvested, and coastal seals (harbour and grey seals) are hunted as game. Marine mammal meat is sold to the public and thus included in general microbiological meat control regulations. Slaughtering and dressing of marine mammals are performed in the open air on deck, and many factors on board sealing or whaling vessels may affect meat quality, such as the ice used for cooling whale meat and the seawater used for cleaning, storage of whale meat in the open air until ambient temperature is reached, and the hygienic conditions of equipment, decks, and other surfaces. Based on existing reports, it appears that meat of seal and whale does not usually represent a microbiological hazard to consumers in Norway, because human disease has not been associated with consumption of such foods. However, as hygienic control on marine mammal meat is ad hoc, mainly based on spot-testing, and addresses very few human pathogens, this conclusion may be premature. Additionally, few data from surveys or systematic quality control screenings have been published. This review examines the occurrence of potential human pathogens in marine mammals, as well as critical points for contamination of meat during the slaughter, dressing, cooling, storage and processing of meat. Some zoonotic agents are of particular relevance as foodborne pathogens, such as Trichinella spp., Toxoplasma gondii, Salmonella and Leptospira spp. In addition, Mycoplasma spp. parapoxvirus and Mycobacterium spp. constitute occupational risks during handling of marine mammals and marine mammal products. Adequate training in hygienic procedures is necessary to minimize the risk of contamination on board, and acquiring further data is essential for obtaining a realistic assessment of the microbiological risk to humans from consuming marine mammal meat.

  12. Characterization of the general stress response in Bartonella henselae

    PubMed Central

    Tu, Nhan; Lima, Amorce; Bandeali, Zahra; Anderson, Burt

    2016-01-01

    Bacteria utilize a general stress response system to combat stresses from their surrounding environments. In alpha-proteobacteria, the general stress response uses an alternate sigma factor as the main regulator and incorporates it with a two-component system into a unique regulatory circuit. This system has been described in several alpha-proteobacterial species, including the pathogens Bartonella quintana and Brucella abortus. Most of the studies have focused on characterizing the PhyR anti-anti-sigma factor, the NepR anti-sigma factor, and the alternate sigma factor. However, not enough attention is directed toward studying the role of histidine kinases in the general stress response. Our study identifies the general stress response system in Bartonella henselae, where the gene synteny is conserved and both the PhyR and alternate sigma factor have similar sequence and domain structures with other alpha-proteobacteria. Our data showed that the general stress response genes are up-regulated under conditions that mimic the cat flea vector. Furthermore, we showed that both RpoE and PhyR positively regulate this system and that RpoE also affects transcription of genes encoding heme-binding proteins and the gene encoding the BadA adhesin. Finally, we identified a histidine kinase, annotated as BH13820 that can potentially phosphorylate PhyR. PMID:26724735

  13. Can we understand modern humans without considering pathogens?

    PubMed Central

    Thomas, Frédéric; Daoust, Simon P; Raymond, Michel

    2012-01-01

    Throughout our evolutionary history, humankind has always lived in contact with large numbers of pathogens. Some cultural traits, such as sedentarization and animal domestication, have considerably increased new parasitic contacts and epidemic transitions. Here, we review the various phenotypic traits that have been proposed to be affected by the highly parasitic human environment, including fertility, birth weight, fluctuating asymmetry, body odours, food recipes, sexual behaviour, pregnancy sickness, language, religion and intellectual quotient. We also discuss how such knowledge is important to understanding several aspects of the current problems faced by humanity in our changing world and to predicting the long-term consequences of parasite eradication policies on our health and well-being. The study of the evolutionary interactions between humans and parasites is a burgeoning and most promising field, as demonstrated by the recent increasing popularity of Darwinian medicine. PMID:25568057

  14. Molecular Basis of Latency in Pathogenic Human Viruses

    NASA Astrophysics Data System (ADS)

    Garcia-Blanco, Mariano A.; Cullen, Bryan R.

    1991-11-01

    Several human viruses are able to latently infect specific target cell populations in vivo. Analysis of the replication cycles of herpes simplex virus, Epstein-Barr virus, and human immunodeficiency virus suggests that the latent infections established by these human pathogens primarily result from a lack of host factors critical for the expression of viral early gene products. The subsequent activation of specific cellular transcription factors in response to extracellular stimuli can induce the expression of these viral regulatory proteins and lead to a burst of lytic viral replication. Latency in these eukaryotic viruses therefore contrasts with latency in bacteriophage, which is maintained primarily by the expression of virally encoded repressors of lytic replication.

  15. Human pathogens in plant biofilms: Formation, physiology, and detection.

    PubMed

    Ximenes, Eduardo; Hoagland, Lori; Ku, Seockmo; Li, Xuan; Ladisch, Michael

    2017-01-09

    Fresh produce, viewed as an essential part of a healthy life style is usually consumed in the form of raw or minimally processed fruits and vegetables, and is a potentially important source of food-borne human pathogenic bacteria and viruses. These are passed on to the consumer since the bacteria can form biofilms or otherwise populate plant tissues, thereby using plants as vectors to infect animal hosts. The life cycle of the bacteria in plants differs from those in animals or humans and results in altered physiochemical and biological properties (e.g., physiology, immunity, native microflora, physical barriers, mobility, and temperature). Mechanisms by which healthy plants may become contaminated by microorganisms, develop biofilms, and then pass on their pathogenic burden to people are explored in the context of hollow fiber microfiltration by which plant-derived microorganisms may be recovered and rapidly concentrated to facilitate study of their properties. Enzymes, when added to macerated plant tissues, hydrolyze or alter macromolecules that would otherwise foul hollow-fiber microfiltration membranes. Hence, microfiltration may be used to quickly increase the concentration of microorganisms to detectable levels. This review discusses microbial colonization of vegetables, formation and properties of biofilms, and how hollow fiber microfiltration may be used to concentrate microbial targets to detectable levels. The use of added enzymes helps to disintegrate biofilms and minimize hollow fiber membrane fouling, thereby providing a new tool for more time effectively elucidating mechanisms by which biofilms develop and plant tissue becomes contaminated with human pathogens. Biotechnol. Bioeng. 2016;9999: 1-16. © 2017 Wiley Periodicals, Inc.

  16. Human platelet gel supernatant inactivates opportunistic wound pathogens on skin.

    PubMed

    Edelblute, Chelsea M; Donate, Amy L; Hargrave, Barbara Y; Heller, Loree C

    2015-01-01

    Activation of human platelets produces a gel-like substance referred to as platelet rich plasma or platelet gel. Platelet gel is used clinically to promote wound healing; it also exhibits antimicrobial properties that may aid in the healing of infected wounds. The purpose of this study was to quantify the efficacy of human platelet gel against the opportunistic bacterial wound pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus on skin. These opportunistic pathogens may exhibit extensive antibiotic resistance, necessitating the development of alternative treatment options. The antimicrobial efficacy of platelet gel supernatants was quantified using an in vitro broth dilution assay, an ex vivo inoculated skin assay, and in an in vivo skin decontamination assay. Human platelet gel supernatants were highly bactericidal against A. baumannii and moderately but significantly bactericidal against S. aureus in vitro and in the ex vivo skin model. P. aeruginosa was not inactivated in vitro; a low but significant inactivation level was observed ex vivo. These supernatants were quite effective at inactivating a model organism on skin in vivo. These results suggest application of platelet gel has potential clinical applicability, not only in the acceleration of wound healing, but also against relevant bacteria causing wound infections.

  17. Human microbiome versus food-borne pathogens: friend or foe.

    PubMed

    Josephs-Spaulding, Jonathan; Beeler, Erik; Singh, Om V

    2016-06-01

    As food safety advances, there is a great need to maintain, distribute, and provide high-quality food to a much broader consumer base. There is also an ever-growing "arms race" between pathogens and humans as food manufacturers. The human microbiome is a collective organ of microbes that have found community niches while associating with their host and other microorganisms. Humans play an important role in modifying the environment of these organisms through their life choices, especially through individual diet. The composition of an individual's diet influences the digestive system-an ecosystem with the greatest number and largest diversity of organisms currently known. Organisms living on and within food have the potential to be either friends or foes to the consumer. Maintenance of this system can have multiple benefits, but lack of maintenance can lead to a host of chronic and preventable diseases. Overall, this dynamic system is influenced by intense competition from food-borne pathogens, lifestyle, overall diet, and presiding host-associated microbiota.

  18. Pathogen receptor discovery with a microfluidic human membrane protein array

    PubMed Central

    Glick, Yair; Ben-Ari, Ya’ara; Drayman, Nir; Pellach, Michal; Neveu, Gregory; Boonyaratanakornkit, Jim; Avrahami, Dorit; Einav, Shirit; Oppenheim, Ariella

    2016-01-01

    The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein–pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism. PMID:27044079

  19. A New Clade of African Body and Head Lice Infected by Bartonella quintana and Yersinia pestis-Democratic Republic of the Congo.

    PubMed

    Drali, Rezak; Shako, Jean-Christophe; Davoust, Bernard; Diatta, Georges; Raoult, Didier

    2015-11-01

    The human body louse is known as a vector for the transmission of three serious diseases-specifically, epidemic typhus, trench fever, and relapsing fever caused by Rickettsia prowazekii, Bartonella quintana, and Borrelia recurrentis, respectively-that have killed millions of people. It is also suspected in the transmission of a fourth pathogen, Yersinia pestis, which is the etiologic agent of plague. To date, human lice belonging to the genus Pediculus have been classified into three mitochondrial clades: A, B, and C. Here, we describe a fourth mitochondrial clade, Clade D, comprising head and body lice. Clade D may be a vector of B. quintana and Y. pestis, which is prevalent in a highly plague-endemic area near the Rethy Health District, Orientale Province, Democratic Republic of the Congo.

  20. A New Clade of African Body and Head Lice Infected by Bartonella quintana and Yersinia pestis—Democratic Republic of the Congo

    PubMed Central

    Drali, Rezak; Shako, Jean-Christophe; Davoust, Bernard; Diatta, Georges; Raoult, Didier

    2015-01-01

    The human body louse is known as a vector for the transmission of three serious diseases—specifically, epidemic typhus, trench fever, and relapsing fever caused by Rickettsia prowazekii, Bartonella quintana, and Borrelia recurrentis, respectively—that have killed millions of people. It is also suspected in the transmission of a fourth pathogen, Yersinia pestis, which is the etiologic agent of plague. To date, human lice belonging to the genus Pediculus have been classified into three mitochondrial clades: A, B, and C. Here, we describe a fourth mitochondrial clade, Clade D, comprising head and body lice. Clade D may be a vector of B. quintana and Y. pestis, which is prevalent in a highly plague-endemic area near the Rethy Health District, Orientale Province, Democratic Republic of the Congo. PMID:26392158

  1. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    PubMed

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  2. Bartonella henselae infection in a family experiencing neurological and neurocognitive abnormalities after woodlouse hunter spider bites

    PubMed Central

    2013-01-01

    Background Bartonella species comprise a group of zoonotic pathogens that are usually acquired by vector transmission or by animal bites or scratches. Methods PCR targeting the Bartonella 16S-23S intergenic spacer (ITS) region was used in conjunction with BAPGM (Bartonella alpha Proteobacteria growth medium) enrichment blood culture to determine the infection status of the family members and to amplify DNA from spiders and woodlice. Antibody titers to B. vinsonii subsp. berkhoffii (Bvb) genotypes I-III, B. henselae (Bh) and B. koehlerae (Bk) were determined using an IFA test. Management of the medical problems reported by these patients was provided by their respective physicians. Results In this investigation, immediately prior to the onset of symptoms two children in a family experienced puncture-like skin lesions after exposure to and presumptive bites from woodlouse hunter spiders. Shortly thereafter, the mother and both children developed hive-like lesions. Over the ensuing months, the youngest son was diagnosed with Guillain-Barre (GBS) syndrome followed by Chronic Inflammatory Demyelinating Polyradiculoneuropathy (CIDP). The older son developed intermittent disorientation and irritability, and the mother experienced fatigue, headaches, joint pain and memory loss. When tested approximately three years after the woodlouse hunter spider infestation, all three family members were Bartonella henselae seroreactive and B. henselae DNA was amplified and sequenced from blood, serum or Bartonella alpha-proteobacteria (BAPGM) enrichment blood cultures from the mother and oldest son. Also, B. henselae DNA was PCR amplified and sequenced from a woodlouse and from woodlouse hunter spiders collected adjacent to the family’s home. Conclusions Although it was not possible to determine whether the family’s B. henselae infections were acquired by spider bites or whether the spiders and woodlice were merely accidental hosts, physicians should consider the possibility that B

  3. Standardized metadata for human pathogen/vector genomic sequences.

    PubMed

    Dugan, Vivien G; Emrich, Scott J; Giraldo-Calderón, Gloria I; Harb, Omar S; Newman, Ruchi M; Pickett, Brett E; Schriml, Lynn M; Stockwell, Timothy B; Stoeckert, Christian J; Sullivan, Dan E; Singh, Indresh; Ward, Doyle V; Yao, Alison; Zheng, Jie; Barrett, Tanya; Birren, Bruce; Brinkac, Lauren; Bruno, Vincent M; Caler, Elizabet; Chapman, Sinéad; Collins, Frank H; Cuomo, Christina A; Di Francesco, Valentina; Durkin, Scott; Eppinger, Mark; Feldgarden, Michael; Fraser, Claire; Fricke, W Florian; Giovanni, Maria; Henn, Matthew R; Hine, Erin; Hotopp, Julie Dunning; Karsch-Mizrachi, Ilene; Kissinger, Jessica C; Lee, Eun Mi; Mathur, Punam; Mongodin, Emmanuel F; Murphy, Cheryl I; Myers, Garry; Neafsey, Daniel E; Nelson, Karen E; Nierman, William C; Puzak, Julia; Rasko, David; Roos, David S; Sadzewicz, Lisa; Silva, Joana C; Sobral, Bruno; Squires, R Burke; Stevens, Rick L; Tallon, Luke; Tettelin, Herve; Wentworth, David; White, Owen; Will, Rebecca; Wortman, Jennifer; Zhang, Yun; Scheuermann, Richard H

    2014-01-01

    High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs) for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium's minimal information (MIxS) and NCBI's BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI). The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will provide a

  4. Prevalence and diversity of Bartonella spp. in bats in Peru.

    PubMed

    Bai, Ying; Recuenco, Sergio; Gilbert, Amy Turmelle; Osikowicz, Lynn M; Gómez, Jorge; Rupprecht, Charles; Kosoy, Michael Y

    2012-09-01

    Bartonella infections were investigated in bats in the Amazon part of Peru. A total of 112 bats belonging to 19 species were surveyed. Bartonella bacteria were cultured from 24.1% of the bats (27/112). Infection rates ranged from 0% to 100% per bat species. Phylogenetic analyses of gltA of the Bartonella isolates revealed 21 genetic variants clustering into 13 divergent phylogroups. Some Bartonella strains were shared by bats of multiple species, and bats of some species were infected with multiple Bartonella strains, showing no evident specific Bartonella sp.-bat relationships. Rarely found in other bat species, the Bartonella strains of phylogroups I and III discovered from the common vampire bats (Desmodus rotundus) were more specific to the host bat species, suggesting some level of host specificity.

  5. Drosophila as a genetic model for studying pathogenic human viruses.

    PubMed

    Hughes, Tamara T; Allen, Amanda L; Bardin, Joseph E; Christian, Megan N; Daimon, Kansei; Dozier, Kelsey D; Hansen, Caom L; Holcomb, Lisa M; Ahlander, Joseph

    2012-02-05

    Viruses are infectious particles whose viability is dependent on the cells of living organisms, such as bacteria, plants, and animals. It is of great interest to discover how viruses function inside host cells in order to develop therapies to treat virally infected organisms. The fruit fly Drosophila melanogaster is an excellent model system for studying the molecular mechanisms of replication, amplification, and cellular consequences of human viruses. In this review, we describe the advantages of using Drosophila as a model system to study human viruses, and highlight how Drosophila has been used to provide unique insight into the gene function of several pathogenic viruses. We also propose possible directions for future research in this area.

  6. Drosophila as a genetic model for studying pathogenic human viruses

    PubMed Central

    Hughes, Tamara T.; Allen, Amanda L.; Bardin, Joseph E.; Christian, Megan N.; Daimon, Kansei; Dozier, Kelsey D.; Hansen, Caom L.; Holcomb, Lisa M.; Ahlander, Joseph

    2011-01-01

    Viruses are infectious particles whose viability is dependent on the cells of living organisms, such as bacteria, plants, and animals. It is of great interest to discover how viruses function inside host cells in order to develop therapies to treat virally infected organisms. The fruit fly Drosophila melanogaster is an excellent model system for studying the molecular mechanisms of replication, amplification, and cellular consequences of human viruses. In this review, we describe the advantages of using Drosophila as a model system to study human viruses, and highlight how Drosophila has been used to provide unique insight into the gene function of several pathogenic viruses. We also propose possible directions for future research in this area. PMID:22177780

  7. Cryptosporidium muris, a Rodent Pathogen, Recovered from a Human in Perú

    PubMed Central

    Xiao, Lihua; Terashima, Angélica; Guerra, Humberto; Gotuzzo, Eduardo; Saldías, Gustavo; Bonilla, J. Alfredo; Zhou, Ling; Lindquist, Alan; Upton, Steve J.

    2003-01-01

    Cryptosporidium muris, predominantly a rodent species of Cryptosporidium, is not normally considered a human pathogen. Recently, isolated human infections have been reported from Indonesia, Thailand, France, and Kenya. We report the first case of C. muris in a human in the Western Hemisphere. This species may be an emerging zoonotic pathogen capable of infecting humans. PMID:14519260

  8. Bartonella clarridgeiae and Bartonella vinsonii subsp. berkhoffii exposure in captive wild canids in Brazil.

    PubMed

    Fleischman, D A; Chomel, B B; Kasten, R W; André, M R; Gonçalves, L R; Machado, R Z

    2015-02-01

    SUMMARY Wild canids are potential hosts for numerous species of Bartonella, yet little research has been done to quantify their infection rates in South America. We sought to investigate Bartonella seroprevalence in captive wild canids from 19 zoos in São Paulo and Mato Grosso states, Brazil. Blood samples were collected from 97 wild canids belonging to four different native species and three European wolves (Canis lupus). Indirect immunofluorescent antibody testing was performed to detect the presence of B. henselae, B. vinsonii subsp. berkhoffii, B. clarridgeiae, and B. rochalimae. Overall, Bartonella antibodies were detected in 11 of the canids, including five (12·8%) of 39 crab-eating foxes (Cerdocyon thous), three (11·1%) of 27 bush dogs (Speothos venaticus), two (8·7%) of 23 maned wolves (Chrysocyon brachyurus) and one (12·5%) of eight hoary foxes (Lycalopex vetulus), with titres ranging from 1:64 to 1:512. Knowing that many species of canids make excellent reservoir hosts for Bartonella, and that there is zoonotic potential for all Bartonella spp. tested for, it will be important to conduct further research in non-captive wild canids to gain an accurate understanding of Bartonella infection in free-ranging wild canids in South America.

  9. Distinct activities of Bartonella henselae type IV secretion effector proteins modulate capillary-like sprout formation.

    PubMed

    Scheidegger, F; Ellner, Y; Guye, P; Rhomberg, T A; Weber, H; Augustin, H G; Dehio, C

    2009-07-01

    The zoonotic pathogen Bartonella henselae (Bh) can lead to vasoproliferative tumour lesions in the skin and inner organs known as bacillary angiomatosis and bacillary peliosis. The knowledge on the molecular and cellular mechanisms involved in this pathogen-triggered angiogenic process is confined by the lack of a suitable animal model and a physiologically relevant cell culture model of angiogenesis. Here we employed a three-dimensional in vitro angiogenesis assay of collagen gel-embedded endothelial cell (EC) spheroids to study the angiogenic properties of Bh. Spheroids generated from Bh-infected ECs displayed a high capacity to form sprouts, which represent capillary-like projections into the collagen gel. The VirB/VirD4 type IV secretion system and a subset of its translocated Bartonella effector proteins (Beps) were found to profoundly modulate this Bh-induced sprouting activity. BepA, known to protect ECs from apoptosis, strongly promoted sprout formation. In contrast, BepG, triggering cytoskeletal rearrangements, potently inhibited sprouting. Hence, the here established in vitro model of Bartonella- induced angiogenesis revealed distinct and opposing activities of type IV secretion system effector proteins, which together with a VirB/VirD4-independent effect may control the angiogenic activity of Bh during chronic infection of the vasculature.

  10. Infection Rates of Wolbachia sp. and Bartonella sp. in Different Populations of Fleas.

    PubMed

    Zurita, Antonio; Gutiérrez, Sara García; Cutillas, Cristina

    2016-11-01

    In the present study, a molecular detection of Bartonella sp. and Wolbachia sp. in Ctenocephalides felis (Siphonaptera: Pulicidae) isolated from Canis lupus familiaris from different geographical areas of Spain, Iran and South Africa, and in Stenoponia tripectinata tripectinata isolated from Mus musculus from the Canary Islands has been carried out by amplification of the 16S ribosomal RNA partial gene of Wolbachia sp. and intergenic spacer region (its region) of Bartonella sp. A total of 70 % of C. felis analysed were infected by W. pipientis. This percentage of prevalence was considerably higher in female fleas than in male fleas. Bartonella DNA was not detected in C. felis from dogs, while Bartonella elizabethae was detected and identified in S. t. tripectinata from M. musculus from the Canary Islands representing 43.75 % prevalence. This report is the first to identify B. elizabethae in S. t. tripectinata collected in M. musculus from the Canary Islands. Thus, our results demonstrate that this flea is a potential vector of B. elizabethae and might play roles in human infection. The zoonotic character of this bartonellosis emphasizes the need to alert public health authorities and the veterinary community of the risk of infection.

  11. Human pathogens on plants: designing a multidisciplinary strategy for research.

    PubMed

    Fletcher, Jacqueline; Leach, Jan E; Eversole, Kellye; Tauxe, Robert

    2013-04-01

    Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define

  12. Prevalence of selected vector-borne organisms and identification of Bartonella species DNA in North American river otters (Lontra canadensis).

    PubMed

    Chinnadurai, Sathya K; Birkenheuer, Adam J; Blanton, Hunter L; Maggi, Ricardo G; Belfiore, Natalia; Marr, Henry S; Breitschwerdt, Edward B; Stoskopf, Michael K

    2010-07-01

    Trapper-killed North American river otters (Lontra canadensis) in North Carolina, USA, were screened for multiple vector-borne bacteria known to be pathogenic to mammals. Blood was collected from 30 carcasses in 2006, from 35 in 2007, and from one live otter in 2008. Samples were screened using conventional polymerase chain reaction (PCR) tests for DNA from Bartonella spp., Ehrlichia spp., and spotted fever group Rickettsia spp. All samples were negative for Rickettsia spp. Twelve of 30 samples from 2006 produced amplicons using the assay designed to detect Ehrlichia spp., but sequencing revealed that the amplified DNA fragment was from a novel Wolbachia sp., thought to be an endosymbiote of a Dirofilaria sp. Between 2006 and 2007, DNA from a novel Bartonella sp. was detected in 19 of 65 animals (29%). Blood from one live otter captured in 2008 was found positive for this Bartonella sp. by both PCR and culture. The pathogenicity of this Bartonella species in river otters or other mammals is unknown.

  13. The graphene oxide contradictory effects against human pathogens

    NASA Astrophysics Data System (ADS)

    Palmieri, Valentina; Carmela Lauriola, Maria; Ciasca, Gabriele; Conti, Claudio; De Spirito, Marco; Papi, Massimiliano

    2017-04-01

    Standing out as the new wonder bidimensional material, graphene oxide (GO) has aroused an exceptional interest in biomedical research by holding promise for being the antibacterial of future. First, GO possesses a specific interaction with microorganisms combined with a mild toxicity for human cells. Additionally, its antibacterial action seems to be directed to multiple targets in pathogens, causing both membranes mechanical injury and oxidative stress. Lastly, compared to other carbon materials, GO has easy and low-cost processing and is environment-friendly. This remarkable specificity and multi-targeting antibacterial activity come at a time when antibiotic resistance represents the major health challenge. Unfortunately, a comprehensive framework to understand how to effectively utilize this material against microorganisms is still lacking. In the last decade, several groups tried to define the mechanisms of interaction between GO flakes and pathogens but conflicting results have been reported. This review is focused on all the contradictions of GO antimicrobial properties in solution. Flake size, incubation protocol, time of exposure and species considered are examples of factors influencing results. These parameters will be summarized and analyzed with the aim of defining the causes of contradictions, to allow fast GO clinical application.

  14. Rickettsia felis, an emerging flea-transmitted human pathogen

    PubMed Central

    Yazid Abdad, Mohammad; Stenos, John; Graves, Stephen

    2011-01-01

    Rickettsia felis was first recognised two decades ago and has now been described as endemic to all continents except Antarctica. The rickettsiosis caused by R. felis is known as flea-borne spotted fever or cat-flea typhus. The large number of arthropod species found to harbour R. felis and that may act as potential vectors support the view that it is a pan-global microbe. The main arthropod reservoir and vector is the cat flea, Ctenocephalides felis, yet more than 20 other species of fleas, ticks, and mites species have been reported to harbour R. felis. Few bacterial pathogens of humans have been found associated with such a diverse range of invertebrates. With the projected increase in global temperature over the next century, there is concern that changes to the ecology and distribution of R. felis vectors may adversely impact public health. PMID:24149035

  15. Functional genome of the human pathogenic fungus Paracoccidioides brasiliensis.

    PubMed

    Felipe, Maria Sueli S; Torres, Fernando A G; Maranhão, Andrea Q; Silva-Pereira, Ildinete; Poças-Fonseca, Marcio J; Campos, Elida G; Moraes, Lídia M P; Arraes, Fabrício B M; Carvalho, Maria José A; Andrade, Rosângela V; Nicola, André M; Teixeira, Marcus M; Jesuíno, Rosália S A; Pereira, Maristela; Soares, Célia M A; Brígido, Marcelo M

    2005-09-01

    Paracoccidioides brasiliensis is a dimorphic and thermo-regulated fungus which is the causative agent of paracoccidioidomycosis, an endemic disease widespread in Latin America. Pathogenicity is assumed to be a consequence of the cellular differentiation process that this fungus undergoes from mycelium to yeast cells during human infection. In an effort to elucidate the molecular mechanisms involved in this process a network of Brazilian laboratories carried out a transcriptome project for both cell types. This review focuses on the data analysis yielding a comprehensive view of the fungal metabolism and the molecular adaptations during dimorphism in P. brasiliensis from analysis of 6022 groups, related to expressed genes, which were generated from both mycelium and yeast phases.

  16. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants.

    PubMed

    Barak, Jeri D; Schroeder, Brenda K

    2012-01-01

    Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.

  17. A Quantitative Prioritisation of Human and Domestic Animal Pathogens in Europe

    PubMed Central

    McIntyre, K. Marie; Setzkorn, Christian; Hepworth, Philip J.; Morand, Serge; Morse, Andrew P.; Baylis, Matthew

    2014-01-01

    Disease or pathogen risk prioritisations aid understanding of infectious agent impact within surveillance or mitigation and biosecurity work, but take significant development. Previous work has shown the H-(Hirsch-)index as an alternative proxy. We present a weighted risk analysis describing infectious pathogen impact for human health (human pathogens) and well-being (domestic animal pathogens) using an objective, evidence-based, repeatable approach; the H-index. This study established the highest H-index European pathogens. Commonalities amongst pathogens not included in previous surveillance or risk analyses were examined. Differences between host types (humans/animals/zoonotic) in pathogen H-indices were explored as a One Health impact indicator. Finally, the acceptability of the H-index proxy for animal pathogen impact was examined by comparison with other measures. 57 pathogens appeared solely in the top 100 highest H-indices (1) human or (2) animal pathogens list, and 43 occurred in both. Of human pathogens, 66 were zoonotic and 67 were emerging, compared to 67 and 57 for animals. There were statistically significant differences between H-indices for host types (humans, animal, zoonotic), and there was limited evidence that H-indices are a reasonable proxy for animal pathogen impact. This work addresses measures outlined by the European Commission to strengthen climate change resilience and biosecurity for infectious diseases. The results include a quantitative evaluation of infectious pathogen impact, and suggest greater impacts of human-only compared to zoonotic pathogens or scientific under-representation of zoonoses. The outputs separate high and low impact pathogens, and should be combined with other risk assessment methods relying on expert opinion or qualitative data for priority setting, or could be used to prioritise diseases for which formal risk assessments are not possible because of data gaps. PMID:25136810

  18. Fate of pathogenic bacteria in microcosms mimicking human body sites.

    PubMed

    Castellani, Francesco; Ghidini, Valentina; Tafi, Maria Carla; Boaretti, Marzia; Lleo, Maria M

    2013-07-01

    During the infectious process, pathogens may reach anatomical sites where they are exposed to substances interfering with their growth. These substances can include molecules produced by the host, and his resident microbial population, as well as exogenous antibacterial drugs. Suboptimal concentrations of inhibitory molecules and stress conditions found in vivo (high or low temperatures, lack of oxygen, extreme pH) might induce in bacteria the activation of survival mechanisms blocking their division capability but allowing them to stay alive. These "dormant" bacteria can be reactivated in particular circumstances and would be able to express their virulence traits. In this study, it was evaluated the effect of some environmental conditions, such as optimal and suboptimal temperatures, direct light and antibiotic sub-inhibitory concentrations doses of antibiotic, on the human pathogens Escherichia coli and Enterococcus faecalis when incubated in fluids accumulated in the body of patients with different pathologies. It is shown that inoculation in a number of accumulated body fluids and the presence of gentamicin, reliable conditions encountered during pathological states, induce stress-responding strategies enabling bacteria to persist in microcosms mimicking the human body. Significant differences were detected in Gram-negative and Gram-positive species with E. faecalis surviving, as starved or viable but non-culturable forms, in any microcosm and condition tested and E. coli activating a viable but non-culturable state only in some clinical samples. The persistence of bacteria under these conditions, being non-culturable, might explain some recurrent infections without isolation of the causative agent after application of the standard microbiological methods.

  19. The discovery of HTLV-1, the first pathogenic human retrovirus

    PubMed Central

    Coffin, John M.

    2015-01-01

    After the discovery of retroviral reverse transcriptase in 1970, there was a flurry of activity, sparked by the “War on Cancer,” to identify human cancer retroviruses. After many false claims resulting from various artifacts, most scientists abandoned the search, but the Gallo laboratory carried on, developing both specific assays and new cell culture methods that enabled them to report, in the accompanying 1980 PNAS paper, identification and partial characterization of human T-cell leukemia virus (HTLV; now known as HTLV-1) produced by a T-cell line from a lymphoma patient. Follow-up studies, including collaboration with the group that first identified a cluster of adult T-cell leukemia (ATL) cases in Japan, provided conclusive evidence that HTLV was the cause of this disease. HTLV-1 is now known to infect at least 4–10 million people worldwide, about 5% of whom will develop ATL. Despite intensive research, knowledge of the viral etiology has not led to improvement in treatment or outcome of ATL. However, the technology for discovery of HTLV and acknowledgment of the existence of pathogenic human retroviruses laid the technical and intellectual foundation for the discovery of the cause of AIDS soon afterward. Without this advance, our ability to diagnose and treat HIV infection most likely would have been long delayed. PMID:26696625

  20. Infection of Domestic Dogs in Peru by Zoonotic Bartonella Species: A Cross-Sectional Prevalence Study of 219 Asymptomatic Dogs

    PubMed Central

    Diniz, Pedro Paulo V. P.; Morton, Bridget A.; Tngrian, Maryam; Kachani, Malika; Barrón, Eduardo A.; Gavidia, Cesar M.; Gilman, Robert H.; Angulo, Noelia P.; Brenner, Elliott C.; Lerner, Richard; Chomel, Bruno B.

    2013-01-01

    Bartonella species are emerging infectious organisms transmitted by arthropods capable of causing long-lasting infection in mammalian hosts. Among over 30 species described from four continents to date, 15 are known to infect humans, with eight of these capable of infecting dogs as well. B. bacilliformis is the only species described infecting humans in Peru; however, several other Bartonella species were detected in small mammals, bats, ticks, and fleas in that country. The objective of this study was to determine the serological and/or molecular prevalence of Bartonella species in asymptomatic dogs in Peru in order to indirectly evaluate the potential for human exposure to zoonotic Bartonella species. A convenient sample of 219 healthy dogs was obtained from five cities and three villages in Peru. EDTA-blood samples were collected from 205 dogs, whereas serum samples were available from 108 dogs. The EDTA-blood samples were screened by PCR followed by nucleotide sequencing for species identification. Antibodies against B. vinsonii berkhoffii and B. rochalimae were detected by IFA (cut-off of 1∶64). Bartonella DNA was detected in 21 of the 205 dogs (10%). Fifteen dogs were infected with B. rochalimae, while six dogs were infected with B. v. berkhoffii genotype III. Seropositivity for B. rochalimae was detected in 67 dogs (62%), and for B. v. berkhoffii in 43 (40%) of the 108 dogs. Reciprocal titers ≥1∶256 for B. rochalimae were detected in 19% of dogs, and for B. v. berkhoffii in 6.5% of dogs. This study identifies for the first time a population of dogs exposed to or infected with zoonotic Bartonella species, suggesting that domestic dogs may be the natural reservoir of these zoonotic organisms. Since dogs are epidemiological sentinels, Peruvian humans may be exposed to infections with B. rochalimae or B. v. berkhoffii. PMID:24040427

  1. Bartonella henselae bacteremia in a mother and son potentially associated with tick exposure

    PubMed Central

    2013-01-01

    Background Bartonella henselae is a zoonotic, alpha Proteobacterium, historically associated with cat scratch disease (CSD), but more recently associated with persistent bacteremia, fever of unknown origin, arthritic and neurological disorders, and bacillary angiomatosis, and peliosis hepatis in immunocompromised patients. A family from the Netherlands contacted our laboratory requesting to be included in a research study (NCSU-IRB#1960), designed to characterize Bartonella spp. bacteremia in people with extensive arthropod or animal exposure. All four family members had been exposed to tick bites in Zeeland, southwestern Netherlands. The mother and son were exhibiting symptoms including fatigue, headaches, memory loss, disorientation, peripheral neuropathic pain, striae (son only), and loss of coordination, whereas the father and daughter were healthy. Methods Each family member was tested for serological evidence of Bartonella exposure using B. vinsonii subsp. berkhoffii genotypes I-III, B. henselae and B. koehlerae indirect fluorescent antibody assays and for bacteremia using the BAPGM enrichment blood culture platform. Results The mother was seroreactive to multiple Bartonella spp. antigens and bacteremia was confirmed by PCR amplification of B. henselae DNA from blood, and from a BAPGM blood agar plate subculture isolate. The son was not seroreactive to any Bartonella sp. antigen, but B. henselae DNA was amplified from several blood and serum samples, from BAPGM enrichment blood culture, and from a cutaneous striae biopsy. The father and daughter were seronegative to all Bartonella spp. antigens, and negative for Bartonella DNA amplification. Conclusions Historically, persistent B. henselae bacteremia was not thought to occur in immunocompetent humans. To our knowledge, this study provides preliminary evidence supporting the possibility of persistent B. henselae bacteremia in immunocompetent persons from Europe. Cat or flea contact was considered an unlikely

  2. Pathogen reduction in human plasma using an ultrashort pulsed laser

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogen reduction is an ideal approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses, and they introduce chemicals with concerns of side effects which prevent...

  3. Bartonella species in bat flies (Diptera: Nycteribiidae) from western Africa.

    PubMed

    Billeter, S A; Hayman, D T S; Peel, A J; Baker, K; Wood, J L N; Cunningham, A; Suu-Ire, R; Dittmar, K; Kosoy, M Y

    2012-03-01

    Bat flies are obligate ectoparasites of bats and it has been hypothesized that they may be involved in the transmission of Bartonella species between bats. A survey was conducted to identify whether Cyclopodia greefi greefi (Diptera: Nycteribiidae) collected from Ghana and 2 islands in the Gulf of Guinea harbour Bartonella. In total, 137 adult flies removed from Eidolon helvum, the straw-coloured fruit bat, were screened for the presence of Bartonella by culture and PCR analysis. Bartonella DNA was detected in 91 (66·4%) of the specimens examined and 1 strain of a Bartonella sp., initially identified in E. helvum blood from Kenya, was obtained from a bat fly collected in Ghana. This is the first study, to our knowledge, to report the identification and isolation of Bartonella in bat flies from western Africa.

  4. Bartonella infection in rodents and their flea ectoparasites: an overview.

    PubMed

    Gutiérrez, Ricardo; Krasnov, Boris; Morick, Danny; Gottlieb, Yuval; Khokhlova, Irina S; Harrus, Shimon

    2015-01-01

    Epidemiological studies worldwide have reported a high prevalence and a great diversity of Bartonella species, both in rodents and their flea parasites. The interaction among Bartonella, wild rodents, and fleas reflects a high degree of adaptation among these organisms. Vertical and horizontal efficient Bartonella transmission pathways within flea communities and from fleas to rodents have been documented in competence studies, suggesting that fleas are key players in the transmission of Bartonella to rodents. Exploration of the ecological traits of rodents and their fleas may shed light on the mechanisms used by bartonellae to become established in these organisms. The present review explores the interrelations within the Bartonella-rodent-flea system. The role of the latter two components is emphasized.

  5. Bartonella, a Common Cause of Endocarditis: a Report on 106 Cases and Review

    PubMed Central

    Edouard, Sophie; Nabet, Cecile; Lepidi, Hubert; Fournier, Pierre-Edouard

    2014-01-01

    Bartonella spp. are fastidious bacteria that cause blood culture-negative endocarditis and have been increasingly reported. In this study, we included all patients retrospectively and prospectively diagnosed with Bartonella endocarditis in our French reference center between 2005 and 2013. Our diagnosis was based on the modified Duke criteria and microbiological findings, including serological and PCR results. To review the published literature, we searched all human Bartonella endocarditis cases published in the PubMed database between January 2005 and October 2013. We report here a large series of 106 cases, which include 59 cases that had not previously been reported or mentioned. Indirect immunofluorescence assays, Western blotting, and real-time PCR from total blood, serum, and valve tissue exhibited sensitivities of 58%, 100%, 33%, 36%, and 91%, respectively. The number of cases reported in the literature between 2005 and 2013 increased to reach a cumulative number of 196 cases. The number of cases reported in the literature by other centers is increasing more rapidly than that reported by our French reference center (P < 10−2). Currently, there is a lack of criteria for the diagnosis of Bartonella endocarditis. We suggest that a positive PCR result from a cardiac valve or blood specimen, an IgG titer of ≥800 using an immunofluorescence assay, or a positive Western blot assay be considered major Duke criteria for Bartonella endocarditis. There is no real increase in the incidence of these infections but rather a better understanding and interest in the disease resulting from the improvement of diagnostic tools. PMID:25540398

  6. Ctenocephalides felis an in vitro potential vector for five Bartonella species.

    PubMed

    Bouhsira, Emilie; Ferrandez, Yann; Liu, MaFeng; Franc, Michel; Boulouis, Henri-Jean; Biville, Francis

    2013-03-01

    The blood-sucking arthropod Ctenocephalides felis has been confirmed as a vector for Bartonella henselae and is a suspected vector for Bartonella clarridgeiae, Bartonella quintana and Bartonella koehlerae in Bartonella transmission to mammals. To understand the absence of other Bartonella species in the cat flea, we have developed an artificial flea-feeding method with blood infected successively with five different Bartonella species. The results demonstrated the ability of these five Bartonella species to persist in C. felis suggesting an ability of fleas to be a potential vector for several Bartonella species. In addition, we demonstrated a regurgitation of Bartonella DNA in uninfected blood used to feed C. felis thus suggesting a potential horizontal transmission of Bartonella through C. felis saliva. On the contrary, no vertical transmission was detected in these artificial conditions.

  7. Genetic Dissection of the Host Tropism of Human-Tropic Pathogens

    PubMed Central

    Douam, Florian; Gaska, Jenna M.; Winer, Benjamin Y.; Ding, Qiang; von Schaewen, Markus; Ploss, Alexander

    2016-01-01

    Infectious diseases are the second leading cause of death worldwide. Although the host multitropism of some pathogens has rendered their manipulation possible in animal models, the human-restricted tropism of numerous viruses, bacteria, fungi, and parasites has seriously hampered our understanding of these pathogens. Hence, uncovering the genetic basis underlying the narrow tropism of such pathogens is critical for understanding their mechanisms of infection and pathogenesis. Moreover, such genetic dissection is essential for the generation of permissive animal models that can serve as critical tools for the development of therapeutics or vaccines against challenging human pathogens. In this review, we describe different experimental approaches utilized to uncover the genetic foundation regulating pathogen host tropism as well as their relevance for studying the tropism of several important human pathogens. Finally, we discuss the current and future uses of this knowledge for generating genetically modified animal models permissive for these pathogens. PMID:26407032

  8. Genetic Dissection of the Host Tropism of Human-Tropic Pathogens.

    PubMed

    Douam, Florian; Gaska, Jenna M; Winer, Benjamin Y; Ding, Qiang; von Schaewen, Markus; Ploss, Alexander

    2015-01-01

    Infectious diseases are the second leading cause of death worldwide. Although the host multitropism of some pathogens has rendered their manipulation possible in animal models, the human-restricted tropism of numerous viruses, bacteria, fungi, and parasites has seriously hampered our understanding of these pathogens. Hence, uncovering the genetic basis underlying the narrow tropism of such pathogens is critical for understanding their mechanisms of infection and pathogenesis. Moreover, such genetic dissection is essential for the generation of permissive animal models that can serve as critical tools for the development of therapeutics or vaccines against challenging human pathogens. In this review, we describe different experimental approaches utilized to uncover the genetic foundation regulating pathogen host tropism as well as their relevance for studying the tropism of several important human pathogens. Finally, we discuss the current and future uses of this knowledge for generating genetically modified animal models permissive for these pathogens.

  9. Oncoviruses and Pathogenic MicroRNAs in Humans

    PubMed Central

    Fujii, Yoichi Robertus

    2009-01-01

    For disease prognosis, the functional significance of the oncoviral integration locus in oncogenesis has remained enigmatic. The locus encodes several transcripts without protein products, but microRNAs (miRNAs) have recently been identified from a common oncoviral integration locus. miRNA is an endogenous, non-coding small RNA by which gene expression is suppressed. Although miRNA genes, such as let-7 in the nematode, have orthologs among animals, the relationship between miRNAs and tumorigenesis or tumor suppression has been mainly discovered in several human cancers. On the contrary, this review clearly demonstrates the potential for human tumorigenesis of both miRNA genes from oncoviral integration sites and other cellular onco-microRNA genes, and we conclude that alteration of the miRNA profile of cells can be defined as tumorigenic or tumor suppressive. Thus, we explain here that virally-pathogenic miRNAs could also be partly responsible for oncogenesis or oncogene suppression to confirm’ the RNA wave’, with the miRNAs hypothesized as a mobile and functional genetic element. PMID:19920887

  10. Molecular detection of Rickettsia felis and Bartonella henselae in dog and cat fleas in Central Oromia, Ethiopia.

    PubMed

    Kumsa, Bersissa; Parola, Philippe; Raoult, Didier; Socolovschi, Cristina

    2014-03-01

    Fleas are important vectors of several Rickettsia and Bartonella spp. that cause emerging zoonotic diseases worldwide. In this study, 303 fleas collected from domestic dogs and cats in Ethiopia and identified morphologically as Ctenocephalides felis felis, C. canis, Pulex irritans, and Echidnophaga gallinacea were tested for Rickettsia and Bartonella DNA by using molecular methods. Rickettsia felis was detected in 21% of fleas, primarily C. felis, with a similar prevalence in fleas from dogs and cats. A larger proportion of flea-infested dogs (69%) than cats (37%) harbored at least one C. felis infected with R. felis. Rickettsia typhi was not detected. Bartonella henselae DNA was detected in 6% (2 of 34) of C. felis collected from cats. Our study highlights the likelihood of human exposure to R. felis, an emerging agent of spotted fever, and B. henselae, the agent of cat-scratch disease, in urban areas in Ethiopia.

  11. Molecular Detection of Rickettsia felis and Bartonella henselae in Dog and Cat Fleas in Central Oromia, Ethiopia

    PubMed Central

    Kumsa, Bersissa; Parola, Philippe; Raoult, Didier; Socolovschi, Cristina

    2014-01-01

    Fleas are important vectors of several Rickettsia and Bartonella spp. that cause emerging zoonotic diseases worldwide. In this study, 303 fleas collected from domestic dogs and cats in Ethiopia and identified morphologically as Ctenocephalides felis felis, C. canis, Pulex irritans, and Echidnophaga gallinacea were tested for Rickettsia and Bartonella DNA by using molecular methods. Rickettsia felis was detected in 21% of fleas, primarily C. felis, with a similar prevalence in fleas from dogs and cats. A larger proportion of flea-infested dogs (69%) than cats (37%) harbored at least one C. felis infected with R. felis. Rickettsia typhi was not detected. Bartonella henselae DNA was detected in 6% (2 of 34) of C. felis collected from cats. Our study highlights the likelihood of human exposure to R. felis, an emerging agent of spotted fever, and B. henselae, the agent of cat-scratch disease, in urban areas in Ethiopia. PMID:24445204

  12. Prevalence of Anaplasma, Bartonella and Borrelia Species in Haemaphysalis longicornis collected from goats in North Korea

    PubMed Central

    Kang, Jun-Gu; Ko, Sungjin; Smith, W. Barney; Kim, Heung-Chul; Lee, In-Yong

    2016-01-01

    North Korea is located on the northern part of the Korean Peninsula in East Asia. While tick-borne pathogens of medical and veterinary importance have been reported from China and South Korea, they have not been reported from North Korea. To screen for zoonotic tick-borne pathogens in North Korea, ticks were collected from domestic goats. A total of 292 (27 nymph, 26 male, 239 female) Haemaphysalis (H.) longicornis were collected and assayed individually for selected tick-borne pathogens. A total of 77 (26.4%) were positive for Anaplasma bovis, followed by Bartonella (B.) grahamii (15, 5.1%), Anaplasma phagocytophilum (12, 4.1%), Bartonella henselae (10, 3.4%), and Borrelia spp. (3, 1.0%) based on 16S ribosomal RNA and ITS species-specific nested polymerase chain reaction. Using the groEL-based nested PCR, a total of 6 and 1 H. longicornis were positive for B. grahamii and B. henselae, respectively. All products were sequenced and demonstrated 100% identity and homology with previously reported sequences from other countries in GenBank. This is the first report of the detection of tick-borne pathogens in the North Korea and suggests that farm animals may act as reservoirs for zoonotic tick-borne pathogens. PMID:26645342

  13. Prevalence of Anaplasma, Bartonella and Borrelia Species in Haemaphysalis longicornis collected from goats in North Korea.

    PubMed

    Kang, Jun-Gu; Ko, Sungjin; Smith, W Barney; Kim, Heung-Chul; Lee, In-Yong; Chae, Joon-Seok

    2016-06-30

    North Korea is located on the northern part of the Korean Peninsula in East Asia. While tick-borne pathogens of medical and veterinary importance have been reported from China and South Korea, they have not been reported from North Korea. To screen for zoonotic tick-borne pathogens in North Korea, ticks were collected from domestic goats. A total of 292 (27 nymph, 26 male, 239 female) Haemaphysalis (H.) longicornis were collected and assayed individually for selected tick-borne pathogens. A total of 77 (26.4%) were positive for Anaplasma bovis, followed by Bartonella (B.) grahamii (15, 5.1%), Anaplasma phagocytophilum (12, 4.1%), Bartonella henselae (10, 3.4%), and Borrelia spp. (3, 1.0%) based on 16S ribosomal RNA and ITS species-specific nested polymerase chain reaction. Using the groEL-based nested PCR, a total of 6 and 1 H. longicornis were positive for B. grahamii and B. henselae, respectively. All products were sequenced and demonstrated 100% identity and homology with previously reported sequences from other countries in GenBank. This is the first report of the detection of tick-borne pathogens in the North Korea and suggests that farm animals may act as reservoirs for zoonotic tick-borne pathogens.

  14. Competence of Cimex lectularius Bed Bugs for the Transmission of Bartonella quintana, the Agent of Trench Fever

    PubMed Central

    Leulmi, Hamza; Bitam, Idir; Berenger, Jean Michel; Lepidi, Hubert; Rolain, Jean Marc; Almeras, Lionel; Raoult, Didier; Parola, Philippe

    2015-01-01

    Background Bartonella quintana, the etiologic agent of trench fever and other human diseases, is transmitted by the feces of body lice. Recently, this bacterium has been detected in other arthropod families such as bed bugs, which begs the question of their involvement in B. quintana transmission. Although several infectious pathogens have been reported and are suggested to be transmitted by bed bugs, the evidence regarding their competence as vectors is unclear. Methodology/Principal Findings Bed bugs at the adult and instar developmental stages were fed three successive human blood meals inoculated with B. quintana bacterium from day one (D1) to D5; subsequently they were fed with pathogen-free human blood until the end of the experiment. Bed bugs and feces were collected in time series, to evaluate their capacities to acquire, multiply and expel viable B. quintana using molecular biology, immunohistochemistry and cultures assays. B. quintana was detected molecularly in 100% of randomly selected experimentally infected bed bug specimens (D3). The monitoring of B. quintana in bed bug feces showed that the bacterium was detectable starting on the 3rd day post-infection (pi) and persisted until day 18±1 pi. Although immunohistochemistry assays localized the bacteria to the gastrointestinal bed bug gut, the detection of B. quintana in the first and second instar larva stages suggested a vertical non-transovarial transmission of the bacterium. Conclusion The present work demonstrated for the first time that bed bugs can acquire, maintain for more than 2 weeks and release viable B. quintana organisms following a stercorarial shedding. We also observed the vertical transmission of the bacterium to their progeny. Although the biological role of bed bugs in the transmission of B. quintana under natural conditions has yet to be confirmed, the present work highlights the need to reconsider monitoring of these arthropods for the transmission of human pathogens. PMID

  15. Prevalence of Anaplasma and Bartonella spp. in Ticks Collected from Korean Water Deer (Hydropotes inermis argyropus).

    PubMed

    Kang, Jun-Gu; Ko, Sungjin; Kim, Heung-Chul; Chong, Sung-Tae; Klein, Terry A; Chae, Jeong-Byoung; Jo, Yong-Sun; Choi, Kyoung-Seong; Yu, Do-Hyeon; Park, Bae-Keun; Park, Jinho; Chae, Joon-Seok

    2016-02-01

    Deer serve as reservoirs of tick-borne pathogens that impact on medical and veterinary health worldwide. In the Republic of Korea, the population of Korean water deer (KWD, Hydropotes inermis argyropus) has greatly increased from 1982 to 2011, in part, as a result of reforestation programs established following the Korean War when much of the land was barren of trees. Eighty seven Haemaphysalis flava, 228 Haemaphysalis longicornis, 8 Ixodes nipponensis, and 40 Ixodes persulcatus (21 larvae, 114 nymphs, and 228 adults) were collected from 27 out of 70 KWD. A total of 89/363 ticks (266 pools, 24.5% minimum infection rate) and 5 (1.4%) fed ticks were positive for Anaplasma phagocytophilum using nested PCR targeting the 16S rRNA and groEL genes, respectively. The 16S rRNA gene fragment sequences of 88/89 (98.9%) of positive samples for A. phagocytophilum corresponded to previously described gene sequences from KWD spleen tissues. The 16S rRNA gene fragment sequences of 20/363 (5.5%) of the ticks were positive for A. bovis and were identical to previously reported sequences. Using the ITS specific nested PCR, 11/363 (3.0%) of the ticks were positive for Bartonella spp. This is the first report of Anaplasma and Bartonella spp. detected in ticks collected from KWD, suggesting that ticks are vectors of Anaplasma and Bartonella spp. between reservoir hosts in natural surroundings.

  16. Prevalence of Anaplasma and Bartonella spp. in Ticks Collected from Korean Water Deer (Hydropotes inermis argyropus)

    PubMed Central

    Kang, Jun-Gu; Ko, Sungjin; Kim, Heung-Chul; Chong, Sung-Tae; Klein, Terry A.; Chae, Jeong-Byoung; Jo, Yong-Sun; Choi, Kyoung-Seong; Yu, Do-Hyeon; Park, Bae-Keun; Park, Jinho; Chae, Joon-Seok

    2016-01-01

    Deer serve as reservoirs of tick-borne pathogens that impact on medical and veterinary health worldwide. In the Republic of Korea, the population of Korean water deer (KWD, Hydropotes inermis argyropus) has greatly increased from 1982 to 2011, in part, as a result of reforestation programs established following the Korean War when much of the land was barren of trees. Eighty seven Haemaphysalis flava, 228 Haemaphysalis longicornis, 8 Ixodes nipponensis, and 40 Ixodes persulcatus (21 larvae, 114 nymphs, and 228 adults) were collected from 27 out of 70 KWD. A total of 89/363 ticks (266 pools, 24.5% minimum infection rate) and 5 (1.4%) fed ticks were positive for Anaplasma phagocytophilum using nested PCR targeting the 16S rRNA and groEL genes, respectively. The 16S rRNA gene fragment sequences of 88/89 (98.9%) of positive samples for A. phagocytophilum corresponded to previously described gene sequences from KWD spleen tissues. The 16S rRNA gene fragment sequences of 20/363 (5.5%) of the ticks were positive for A. bovis and were identical to previously reported sequences. Using the ITS specific nested PCR, 11/363 (3.0%) of the ticks were positive for Bartonella spp. This is the first report of Anaplasma and Bartonella spp. detected in ticks collected from KWD, suggesting that ticks are vectors of Anaplasma and Bartonella spp. between reservoir hosts in natural surroundings. PMID:26951985

  17. Salmonella, a cross-kingdom pathogen infecting humans and plants.

    PubMed

    Hernández-Reyes, Casandra; Schikora, Adam

    2013-06-01

    Infections with non-typhoidal Salmonella strains are constant and are a non-negligible threat to the human population. In the last two decades, salmonellosis outbreaks have increasingly been associated with infected fruits and vegetables. For a long time, Salmonellae were assumed to survive on plants after a more or less accidental infection. However, this notion has recently been challenged. Studies on the infection mechanism in vegetal hosts, as well as on plant immune systems, revealed an active infection process resembling in certain features the infection in animals. On one hand, Salmonella requires the type III secretion systems to effectively infect plants and to suppress their resistance mechanisms. On the other hand, plants recognize these bacteria and react to the infection with an induced defense mechanism similar to the reaction to other plant pathogens. In this review, we present the newest reports on the interaction between Salmonellae and plants. We discuss the possible ways used by these bacteria to infect plants as well as the plant responses to the infection. The recent findings indicate that plants play a central role in the dissemination of Salmonella within the ecosystem.

  18. Manganese superoxide dismutase from human pathogen Clostridium difficile.

    PubMed

    Li, Wei; Wang, Hongfei; Lei, Cheng; Ying, Tianlei; Tan, Xiangshi

    2015-05-01

    Clostridium difficile is a human pathogen that causes severe antibiotic-associated Clostridium difficile infection (CDI). Herein the MnSODcd from C. difficile was cloned, expressed in Escherichia Coli,and characterized by X-ray crystallography, UV/Vis and EPR spectroscopy, and activity assay, et al. The crystal structure of MnSODcd (2.32 Å) reveals a manganese coordination geometry of distorted trigonal bipyramidal, with His111, His197 and Asp193 providing the equatorial ligands and with His56 and a hydroxide or water forming the axial ligands. The catalytic activity of MnSODcd (8,600 U/mg) can be effectively inhibited by 2-methoxyestradiol with an IC50 of 75 μM. The affinity investigation between 2-methoxyestradiol and MnSODcd by ITC indicated a binding constant of 8.6 μM with enthalpy changes (ΔH = -4.08 ± 0.03 kcal/mol, ΔS = 9.53 ± 0.02 cal/mol/deg). An inhibitory mechanism of MnSODcd by 2-methoxyestradiol was probed and proposed based on molecular docking models and gel filtration analysis. The 2-methoxyestradiol may bind MnSODcd to interfere with the cross-linking between the two active sites of the dimer enzyme, compromising the SOD activity. These results provide valuable insight into the rational design of MnSODcd inhibitors for potential therapeutics for CDI.

  19. Inactivation of human pathogenic dermatophytes by non-thermal plasma.

    PubMed

    Scholtz, Vladimír; Soušková, Hana; Hubka, Vit; Švarcová, Michaela; Julák, Jaroslav

    2015-12-01

    Non-thermal plasma (NTP) was tested as an in vitro deactivation method on four human pathogenic dermatophytes belonging to all ecological groups including anthropophilic Trichophyton rubrum and Trichophyton interdigitale, zoophilic Arthroderma benhamiae, and geophilic Microsporum gypseum. The identification of all strains was confirmed by sequencing of ITS rDNA region (internal transcribed spacer region of ribosomal DNA). Dermatophyte spores were suspended in water or inoculated on agar plates and exposed to NTP generated by a positive or negative corona discharge, or cometary discharge. After 15 min of exposure to NTP a significant decrease in the number of surviving spores in water suspensions was observed in all species. Complete spore inactivation and thus decontamination was observed in anthropophilic species after 25 min of exposure. Similarly, a significant decrease in the number of surviving spores was observed after 10-15 min of exposure to NTP on the surface of agar plates with full inhibition after 25 min in all tested species except of M. gypseum. Although the sensitivity of dermatophytes to the action of NTP appears to be lower than that of bacteria and yeast, our results suggest that NTP has the potential to be used as an alternative treatment strategy for dermatophytosis and could be useful for surface decontamination in clinical practice.

  20. Bartonella quintana in head lice from Sénégal.

    PubMed

    Boutellis, Amina; Veracx, Aurélie; Angelakis, Emmanouil; Diatta, Georges; Mediannikov, Oleg; Trape, Jean-François; Raoult, Didier

    2012-07-01

    Head and body lice are strict, obligate human ectoparasites with three mitochondrial clades (A, B, and C). Body lice have been implicated as vectors of human diseases, and as the principal vectors of epidemic typhus, relapsing fever, and Bartonella quintata-associated diseases (trench fever, bacillary angiomatosis, endocarditis, chronic bacteremia, and chronic lymphadenopathy). Using molecular methods (real-time and traditional PCR), we assessed the presence of Bartonella quintana DNA in black head lice collected from three locations in Sénégal. DNA from B. quintana was identified in 19 lice (6.93%) collected from 7 patients (7%) in Dakar. B. quintana-positive lice collected from three subjects were identified as clades C and A.

  1. Bartonella chomelii is the most frequent species infecting cattle grazing in communal mountain pastures in Spain.

    PubMed

    Antequera-Gómez, M L; Lozano-Almendral, L; Barandika, J F; González-Martín-Niño, R M; Rodríguez-Moreno, I; García-Pérez, A L; Gil, H

    2015-01-01

    The presence of Bartonella spp. was investigated in domestic ungulates grazing in communal pastures from a mountain area in northern Spain, where 18.3% (17/93) of cattle were found to be positive by PCR combined with a reverse line blot (PCR/RLB), whereas sheep (n = 133) or horses (n = 91) were found not to be infected by this pathogen. Bartonella infection was significantly associated with age, since older animals showed a higher prevalence than heifers and calves. In contrast to other studies, B. chomelii was the most frequent species found in cattle (14/17), while B. bovis was detected in only three animals. Moreover, 18 B. chomelii isolates and one B. bovis isolate were obtained from nine animals. Afterwards, B. chomelii isolates were characterized by a multilocus sequence typing (MLST) method which was adapted in this study. This method presented a high discrimination power, identifying nine different sequence types (STs). This characterization also showed the presence of different STs simultaneously in the same host and that STs had switched over time in one of the animals. In addition, B. chomelii STs seem to group phylogenetically in two different lineages. The only B. bovis isolate was characterized with a previously described MLST method. This isolate corresponded to a new ST which is located in lineage I, where the B. bovis strains infecting Bos taurus subsp. taurus are grouped. Further studies on the dynamics of Bartonella infection in cattle and the potential ectoparasites involved in the transmission of this microorganism should be performed, improving knowledge about the interaction of Bartonella spp. and domestic ungulates.

  2. Bartonella chomelii Is the Most Frequent Species Infecting Cattle Grazing in Communal Mountain Pastures in Spain

    PubMed Central

    Antequera-Gómez, M. L.; Lozano-Almendral, L.; Barandika, J. F.; González-Martín-Niño, R. M.; Rodríguez-Moreno, I.; García-Pérez, A. L.

    2014-01-01

    The presence of Bartonella spp. was investigated in domestic ungulates grazing in communal pastures from a mountain area in northern Spain, where 18.3% (17/93) of cattle were found to be positive by PCR combined with a reverse line blot (PCR/RLB), whereas sheep (n = 133) or horses (n = 91) were found not to be infected by this pathogen. Bartonella infection was significantly associated with age, since older animals showed a higher prevalence than heifers and calves. In contrast to other studies, B. chomelii was the most frequent species found in cattle (14/17), while B. bovis was detected in only three animals. Moreover, 18 B. chomelii isolates and one B. bovis isolate were obtained from nine animals. Afterwards, B. chomelii isolates were characterized by a multilocus sequence typing (MLST) method which was adapted in this study. This method presented a high discrimination power, identifying nine different sequence types (STs). This characterization also showed the presence of different STs simultaneously in the same host and that STs had switched over time in one of the animals. In addition, B. chomelii STs seem to group phylogenetically in two different lineages. The only B. bovis isolate was characterized with a previously described MLST method. This isolate corresponded to a new ST which is located in lineage I, where the B. bovis strains infecting Bos taurus subsp. taurus are grouped. Further studies on the dynamics of Bartonella infection in cattle and the potential ectoparasites involved in the transmission of this microorganism should be performed, improving knowledge about the interaction of Bartonella spp. and domestic ungulates. PMID:25381240

  3. Bartonella vinsonii subsp. berkhoffii in free-ranging white-tailed deer (Odocoileus virginianus).

    PubMed

    Chitwood, M Colter; Maggi, Ricardo G; Kennedy-Stoskopf, Suzanne; Toliver, Marcée; DePerno, Christopher S

    2013-04-01

    Bartonella vinsonii subsp. berkhoffii has not been detected previously in white-tailed deer (Odocoileus virginianus). We tested whole blood from 60 white-tailed deer for Bartonella spp. DNA; three (5%) were positive for Bartonella vinsonii subsp. berkhoffii. This is the first detection of Bartonella vinsonii subsp. berkhoffii in white-tailed deer.

  4. Prevalence of Bartonella henselae and Bartonella clarridgeiae in an urban Indonesian cat population.

    PubMed

    Marston, E L; Finkel, B; Regnery, R L; Winoto, I L; Graham, R R; Wignal, S; Simanjuntak, G; Olson, J G

    1999-01-01

    We studied evidence of Bartonella henselae and Bartonella clarridgeiae infection in 54 cats living in Jakarta, Indonesia. By using an indirect immunofluorescence assay, we found immunoglobulin G antibody to B. henselae in 40 of 74 cats (54%). The blood of 14 feral cats was cultured on rabbit blood agar plates for 28 days. Bartonella-like colonies were identified as B. henselae or B. clarridgeiae by using restriction fragment length polymorphism analysis and direct sequencing of the PCR amplicons. Of the cats sampled in the study, 6 of 14 (43%; all feral) were culture positive for B. henselae; 3 of 14 (21%; 2 feral and 1 pet) culture positive for B. clarridgeiae. This is the first report that documents B. henselae and B. clarridgeiae infections in Indonesian cats.

  5. Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains

    PubMed Central

    Rohmer, Laurence; Fong, Christine; Abmayr, Simone; Wasnick, Michael; Larson Freeman, Theodore J; Radey, Matthew; Guina, Tina; Svensson, Kerstin; Hayden, Hillary S; Jacobs, Michael; Gallagher, Larry A; Manoil, Colin; Ernst, Robert K; Drees, Becky; Buckley, Danielle; Haugen, Eric; Bovee, Donald; Zhou, Yang; Chang, Jean; Levy, Ruth; Lim, Regina; Gillett, Will; Guenthener, Don; Kang, Allison; Shaffer, Scott A; Taylor, Greg; Chen, Jinzhi; Gallis, Byron; D'Argenio, David A; Forsman, Mats; Olson, Maynard V; Goodlett, David R; Kaul, Rajinder; Miller, Samuel I; Brittnacher, Mitchell J

    2007-01-01

    Background Francisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans. Results Comparison of the genomes of human pathogenic Francisella strains with the genome of U112 identifies genes specific to the human pathogenic strains and reveals pseudogenes that previously were unidentified. In addition, this analysis provides a coarse chronology of the evolutionary events that took place during the emergence of the human pathogenic strains. Genomic rearrangements at the level of insertion sequences (IS elements), point mutations, and small indels took place in the human pathogenic strains during and after differentiation from the nonpathogenic strain, resulting in gene inactivation. Conclusion The chronology of events suggests a substantial role for genetic drift in the formation of pseudogenes in Francisella genomes. Mutations that occurred early in the evolution, however, might have been fixed in the population either because of evolutionary bottlenecks or because they were pathoadaptive (beneficial in the context of infection). Because the structure of Francisella genomes is similar to that of the genomes of other emerging or highly pathogenic bacteria, this evolutionary scenario may be shared by pathogens from other species. PMID:17550600

  6. Iron acquisition functions expressed by the human pathogen Acinetobacter baumannii.

    PubMed

    Zimbler, Daniel L; Penwell, William F; Gaddy, Jennifer A; Menke, Sharon M; Tomaras, Andrew P; Connerly, Pamela L; Actis, Luis A

    2009-02-01

    Acinetobacter baumannii is a gram-negative bacterium that causes serious infections in compromised patients. More recently, it has emerged as the causative agent of severe infections in military personnel wounded in Iraq and Afghanistan. This pathogen grows under a wide range of conditions including iron-limiting conditions imposed by natural and synthetic iron chelators. Initial studies using the type strain 19606 showed that the iron proficiency of this pathogen depends on the expression of the acinetobactin-mediated iron acquisition system. More recently, we have observed that hemin but not human hemoglobin serves as an iron source when 19606 isogenic derivatives affected in acinetobactin transport and biosynthesis were cultured under iron-limiting conditions. This finding is in agreement with the observation that the genome of the strain 17978 has a gene cluster coding for putative hemin-acquisition functions, which include genes coding for putative hemin utilization functions and a TonBExbBD energy transducing system. This system restored enterobactin biosynthesis in an E. coli ExbBD deficient strain but not when introduced into a TonB mutant. PCR and Southern blot analyses showed that this hemin-utilization gene cluster is also present in the 19606 strain. Analysis of the 17978 genome also showed that this strain harbors genes required for acinetobactin synthesis and transport as well as a gene cluster that could code for additional iron acquisition functions. This hypothesis is in agreement with the fact that the inactivation of the basD acinetobactin biosynthetic gene did not affect the growth of A. baumannii 17978 cells under iron-chelated conditions. Interestingly, this second iron uptake gene cluster is flanked by perfect inverted repeats and includes transposase genes that are expressed transcriptionally. Also interesting is the observation that this additional cluster could not be detected in the type strain 19606, an observation that suggests some

  7. Intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in continental and insular Greece.

    PubMed

    Diakou, Anastasia; Di Cesare, Angela; Accettura, Paolo Matteo; Barros, Luciano; Iorio, Raffaella; Paoletti, Barbara; Frangipane di Regalbono, Antonio; Halos, Lénaïg; Beugnet, Frederic; Traversa, Donato

    2017-01-01

    This survey investigated the distribution of various intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in four regions of Greece. A total number of one hundred and fifty cats living in three Islands (Crete, Mykonos and Skopelos) and in Athens municipality was established as a realistic aim to be accomplished in the study areas. All cats were examined with different microscopic, serological and molecular assays aiming at evaluating the occurrence of intestinal parasites, and exposure to or presence of vector-borne infections. A total of 135 cats (90%) was positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-four (29.3%) cats were positive for one single infection, while 91 (60.7%) for more than one pathogen. A high number of (n. 53) multiple infections caused by feline intestinal and vector-borne agents including at least one zoonotic pathogen was detected. Among them, the most frequently recorded helminths were roundworms (Toxocara cati, 24%) and Dipylidium caninum (2%), while a high number of examined animals (58.8%) had seroreaction for Bartonella spp., followed by Rickettsia spp. (43.2%) and Leishmania infantum (6.1%). DNA-based assays revealed the zoonotic arthropod-borne organisms Bartonella henselae, Bartonella clarridgeiae, Rickettsia spp., and L. infantum. These results show that free-ranging cats living in areas of Greece under examination may be exposed to a plethora of internal parasites and vector-borne pathogens, some of them potentially able to infect humans. Therefore, epidemiological vigilance and appropriate control measures are crucial for the prevention and control of these infections and to minimize the risk of infection for people.

  8. Intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in continental and insular Greece

    PubMed Central

    Diakou, Anastasia; Di Cesare, Angela; Accettura, Paolo Matteo; Barros, Luciano; Iorio, Raffaella; Paoletti, Barbara; Frangipane di Regalbono, Antonio; Halos, Lénaïg; Beugnet, Frederic; Traversa, Donato

    2017-01-01

    This survey investigated the distribution of various intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in four regions of Greece. A total number of one hundred and fifty cats living in three Islands (Crete, Mykonos and Skopelos) and in Athens municipality was established as a realistic aim to be accomplished in the study areas. All cats were examined with different microscopic, serological and molecular assays aiming at evaluating the occurrence of intestinal parasites, and exposure to or presence of vector-borne infections. A total of 135 cats (90%) was positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-four (29.3%) cats were positive for one single infection, while 91 (60.7%) for more than one pathogen. A high number of (n. 53) multiple infections caused by feline intestinal and vector-borne agents including at least one zoonotic pathogen was detected. Among them, the most frequently recorded helminths were roundworms (Toxocara cati, 24%) and Dipylidium caninum (2%), while a high number of examined animals (58.8%) had seroreaction for Bartonella spp., followed by Rickettsia spp. (43.2%) and Leishmania infantum (6.1%). DNA-based assays revealed the zoonotic arthropod-borne organisms Bartonella henselae, Bartonella clarridgeiae, Rickettsia spp., and L. infantum. These results show that free-ranging cats living in areas of Greece under examination may be exposed to a plethora of internal parasites and vector-borne pathogens, some of them potentially able to infect humans. Therefore, epidemiological vigilance and appropriate control measures are crucial for the prevention and control of these infections and to minimize the risk of infection for people. PMID:28141857

  9. Assessment of persistence of Bartonella henselae in Ctenocephalides felis.

    PubMed

    Bouhsira, Emilie; Franc, Michel; Boulouis, Henri-Jean; Jacquiet, Philippe; Raymond-Letron, Isabelle; Liénard, Emmanuel

    2013-12-01

    Bartonella henselae (Rhizobiales: Bartonellaceae) is a Gram-negative fastidious bacterium of veterinary and zoonotic importance. The cat flea Ctenocephalides felis (Siphonaptera: Pulicidae) is the main recognized vector of B. henselae, and transmission among cats and humans occurs mainly through infected flea feces. The present study documents the use of a quantitative molecular approach to follow the daily kinetics of B. henselae within the cat flea and its excreted feces after exposure to infected blood for 48 h in an artificial membrane system. B. henselae DNA was detected in both fleas and feces for the entire life span of the fleas (i.e., 12 days) starting from 24 h after initiation of the blood meal.

  10. Bartonella vinsonii subsp. berkhoffii endocarditis in a dog from Saskatchewan

    PubMed Central

    Cockwill, Ken R.; Taylor, Susan M.; Philibert, Helene M.; Breitschwerdt, Edward B.; Maggi, Ricardo G.

    2007-01-01

    A dog referred for lameness was diagnosed with culture-negative endocarditis. Antibodies to Bartonella spp. were detected. Antibiotic treatment resulted in transient clinical improvement, but the dog developed cardiac failure and was euthanized. Bartonella vinsonii subsp. berkhoffii genotype IV was identified within the aortic heart valve lesions by PCR amplification and DNA sequencing. PMID:17824328

  11. Bartonella henselae AS A PUTATIVE CAUSE OF CONGENITAL CHOLESTASIS

    PubMed Central

    VELHO, Paulo Eduardo Neves Ferreira; BELLOMO-BRANDÃO, Maria Ângela; DRUMMOND, Marina Rovani; MAGALHÃES, Renata Ferreira; HESSEL, Gabriel; BARJAS-CASTRO, Maria de Lourdes; ESCANHOELA, Cecília Amélia Fazzio; NEGRO, Gilda Maria Barbaro DEL; OKAY, Thelma Suely

    2016-01-01

    SUMMARY Severe anemia and cholestatic hepatitis are associated with bartonella infections. A putative vertical Bartonella henselae infection was defined on the basis of ultrastructural and molecular analyses in a three-year-old child with anemia, jaundice and hepatosplenomegaly since birth. Physicians should consider bartonellosis in patients with anemia and hepatitis of unknown origin. PMID:27410916

  12. Draft Genome Sequences of 12 Feline Bartonella henselae Isolates

    PubMed Central

    Woudstra, Cédric; Fach, Patrick; Chomel, Bruno B.; Haddad, Nadia

    2017-01-01

    ABSTRACT Bartonella henselae is the main causative agent of cat scratch disease. In this report, we present the draft genome sequences of 12 strains of Bartonella henselae originating from the United States, Denmark, and France. These strains were isolated from cats and belonged to either 16S rRNA genotype I or 16S rRNA genotype II. PMID:28360154

  13. Novel Bartonella Agent as Cause of Verruga Peruana

    PubMed Central

    Mullins, Kristin; Smoak, Bonnie L.; Jiang, Ju; Canal, Enrique; Solorzano, Nelson; Hall, Eric; Meza, Rina; Maguina, Ciro; Myers, Todd; Richards, Allen L.; Laughlin, Larry

    2013-01-01

    While studying chronic verruga peruana infections in Peru from 2003, we isolated a novel Bartonella agent, which we propose be named Candidatus Bartonella ancashi. This case reveals the inherent weakness of relying solely on clinical syndromes for diagnosis and underscores the need for a new diagnostic paradigm in developing settings. PMID:23764047

  14. The origin of human pathogens: evaluating the role of agriculture and domestic animals in the evolution of human disease.

    PubMed

    Pearce-Duvet, Jessica M C

    2006-08-01

    Many significant diseases of human civilization are thought to have arisen concurrently with the advent of agriculture in human society. It has been hypothesised that the food produced by farming increased population sizes to allow the maintenance of virulent pathogens, i.e. civilization pathogens, while domestic animals provided sources of disease to humans. To determine the relationship between pathogens in humans and domestic animals, I examined phylogenetic data for several human pathogens that are commonly evolutionarily linked to domestic animals: measles, pertussis, smallpox, tuberculosis, taenid worms, and falciparal malaria. The majority are civilization pathogens, although I have included others whose evolutionary origins have traditionally been ascribed to domestic animals. The strongest evidence for a domestic-animal origin exists for measles and pertussis, although the data do not exclude a non-domestic origin. As for the other pathogens, the evidence currently available makes it difficult to determine if the domestic-origin hypothesis is supported or refuted; in fact, intriguing data for tuberculosis and taenid worms suggests that transmission may occur as easily from humans to domestic animals. These findings do not abrogate the importance of agriculture in disease transmission; rather, if anything, they suggest an alternative, more complex series of effects than previously elucidated. Rather than domestication, the broader force for human pathogen evolution could be ecological change, namely anthropogenic modification of the environment. This is supported by evidence that many current emerging infectious diseases are associated with human modification of the environment. Agriculture may have changed the transmission ecology of pre-existing human pathogens, increased the success of pre-existing pathogen vectors, resulted in novel interactions between humans and wildlife, and, through the domestication of animals, provided a stable conduit for human

  15. Bartonella Infection in Rodents and Their Flea Ectoparasites: An Overview

    PubMed Central

    Gutiérrez, Ricardo; Krasnov, Boris; Morick, Danny; Gottlieb, Yuval; Khokhlova, Irina S.

    2015-01-01

    Abstract Epidemiological studies worldwide have reported a high prevalence and a great diversity of Bartonella species, both in rodents and their flea parasites. The interaction among Bartonella, wild rodents, and fleas reflects a high degree of adaptation among these organisms. Vertical and horizontal efficient Bartonella transmission pathways within flea communities and from fleas to rodents have been documented in competence studies, suggesting that fleas are key players in the transmission of Bartonella to rodents. Exploration of the ecological traits of rodents and their fleas may shed light on the mechanisms used by bartonellae to become established in these organisms. The present review explores the interrelations within the Bartonella–rodent–flea system. The role of the latter two components is emphasized. PMID:25629778

  16. Bartonella quintana in body lice and head lice from homeless persons, San Francisco, California, USA.

    PubMed

    Bonilla, Denise L; Kabeya, Hidenori; Henn, Jennifer; Kramer, Vicki L; Kosoy, Michael Y

    2009-06-01

    Bartonella quintana is a bacterium that causes trench fever in humans. Past reports have shown Bartonella spp. infections in homeless populations in San Francisco, California, USA. The California Department of Public Health in collaboration with San Francisco Project Homeless Connect initiated a program in 2007 to collect lice from the homeless to test for B. quintana and to educate the homeless and their caregivers on prevention and control of louse-borne disease. During 2007-2008, 33.3% of body lice-infested persons and 25% of head lice-infested persons had lice pools infected with B. quintana strain Fuller. Further work is needed to examine how homeless persons acquire lice and determine the risk for illness to persons infested with B. quintana-infected lice.

  17. The arable ecosystem as battleground for emergence of new human pathogens

    PubMed Central

    van Overbeek, Leonard S.; van Doorn, Joop; Wichers, Jan H.; van Amerongen, Aart; van Roermund, Herman J. W.; Willemsen, Peter T. J.

    2014-01-01

    Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh) vegetables, sprouts, and occasionally fruits made clear that these pathogens are not only transmitted to humans via the “classical” routes of meat, eggs, and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure), water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals. PMID:24688484

  18. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    PubMed Central

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  19. Surface properties of Entamoeba: increased rates of human erythrocyte phagocytosis in pathogenic strains

    PubMed Central

    1978-01-01

    The assertion that ingestion of human erythrocytes is restricted to invasive strains of Entamoeba histolytica has not been evaluated previously by comparative studies. In this report we describe the in vitro ingestion of human erythrocytes by pathogenic and nonpathogenic Entamoeba. Microscopic evaluation of erythrophagocytosis by eight different Entamoeba grown in culture revealed that strains of E. histolytica isolated from cases of human dysentery show a much higher rate of erythrocyte ingestion than nonpathogenic strains. However, all strains are able to phagocytize erythrocytes. The extremely high rate of phagocytic activity shown by pathogenic E. histolytica could be one of the properties related to the pathogenicity of this parasitic protozoan. PMID:722237

  20. Comparative innate immune interactions of human and bovine secretory IgA with pathogenic and non-pathogenic bacteria.

    PubMed

    Hodgkinson, Alison J; Cakebread, Julie; Callaghan, Megan; Harris, Paul; Brunt, Rachel; Anderson, Rachel C; Armstrong, Kelly M; Haigh, Brendan

    2017-03-01

    Secretory IgA (SIgA) from milk contributes to early colonization and maintenance of commensal/symbiotic bacteria in the gut, as well as providing defence against pathogens. SIgA binds bacteria using specific antigenic sites or non-specifically via its glycans attached to α-heavy-chain and secretory component. In our study, we tested the hypothesis that human and bovine SIgA have similar innate-binding activity for bacteria. SIgAs, isolated from human and bovine milk, were incubated with a selection of commensal, pathogenic and probiotic bacteria. Using flow cytometry, we measured numbers of bacteria binding SIgA and their level of SIgA binding. The percentage of bacteria bound by human and bovine SIgA varied from 30 to 90% depending on bacterial species and strains, but was remarkably consistent between human and bovine SIgA. The level of SIgA binding per bacterial cell was lower for those bacteria that had a higher percentage of SIgA-bound bacteria, and higher for those bacteria that had lower percentage of SIgA-bound bacteria. Overall, human and bovine SIgA interacted with bacteria in a comparable way. This contributes to longer term research about the potential benefits of bovine SIgA for human consumers.

  1. Human mobility networks and persistence of rapidly mutating pathogens

    PubMed Central

    Aleta, Alberto; Hisi, Andreia N. S.; Colizza, Vittoria; Moreno, Yamir

    2017-01-01

    Rapidly mutating pathogens may be able to persist in the population and reach an endemic equilibrium by escaping hosts’ acquired immunity. For such diseases, multiple biological, environmental and population-level mechanisms determine the dynamics of the outbreak, including pathogen's epidemiological traits (e.g. transmissibility, infectious period and duration of immunity), seasonality, interaction with other circulating strains and hosts’ mixing and spatial fragmentation. Here, we study a susceptible-infected-recovered-susceptible model on a metapopulation where individuals are distributed in sub-populations connected via a network of mobility flows. Through extensive numerical simulations, we explore the phase space of pathogen's persistence and map the dynamical regimes of the pathogen following emergence. Our results show that spatial fragmentation and mobility play a key role in the persistence of the disease whose maximum is reached at intermediate mobility values. We describe the occurrence of different phenomena including local extinction and emergence of epidemic waves, and assess the conditions for large-scale spreading. Findings are highlighted in reference to previous studies and to real scenarios. Our work uncovers the crucial role of hosts’ mobility on the ecological dynamics of rapidly mutating pathogens, opening the path for further studies on disease ecology in the presence of a complex and heterogeneous environment.

  2. Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans.

    PubMed

    Kim, Hanhae; Jung, Kwang-Woo; Maeng, Shinae; Chen, Ying-Lien; Shin, Junha; Shim, Jung Eun; Hwang, Sohyun; Janbon, Guilhem; Kim, Taeyup; Heitman, Joseph; Bahn, Yong-Sun; Lee, Insuk

    2015-03-05

    Cryptococcus neoformans is an opportunistic human pathogenic fungus that causes meningoencephalitis. Due to the increasing global risk of cryptococcosis and the emergence of drug-resistant strains, the development of predictive genetics platforms for the rapid identification of novel genes governing pathogenicity and drug resistance of C. neoformans is imperative. The analysis of functional genomics data and genome-scale mutant libraries may facilitate the genetic dissection of such complex phenotypes but with limited efficiency. Here, we present a genome-scale co-functional network for C. neoformans, CryptoNet, which covers ~81% of the coding genome and provides an efficient intermediary between functional genomics data and reverse-genetics resources for the genetic dissection of C. neoformans phenotypes. CryptoNet is the first genome-scale co-functional network for any fungal pathogen. CryptoNet effectively identified novel genes for pathogenicity and drug resistance using guilt-by-association and context-associated hub algorithms. CryptoNet is also the first genome-scale co-functional network for fungi in the basidiomycota phylum, as Saccharomyces cerevisiae belongs to the ascomycota phylum. CryptoNet may therefore provide insights into pathway evolution between two distinct phyla of the fungal kingdom. The CryptoNet web server (www.inetbio.org/cryptonet) is a public resource that provides an interactive environment of network-assisted predictive genetics for C. neoformans.

  3. Isolation of Bartonella henselae, Bartonella koehlerae subsp. koehlerae, Bartonella koehlerae subsp. bothieri and a new subspecies of B. koehlerae from free-ranging lions (Panthera leo) from South Africa, cheetahs (Acinonyx jubatus) from Namibia and captive cheetahs from California.

    PubMed

    Molia, S; Kasten, R W; Stuckey, M J; Boulouis, H J; Allen, J; Borgo, G M; Koehler, J E; Chang, C C; Chomel, B B

    2016-11-01

    Bartonellae are blood- and vector-borne Gram-negative bacteria, recognized as emerging pathogens. Whole-blood samples were collected from 58 free-ranging lions (Panthera leo) in South Africa and 17 cheetahs (Acinonyx jubatus) from Namibia. Blood samples were also collected from 11 cheetahs (more than once for some of them) at the San Diego Wildlife Safari Park. Bacteria were isolated from the blood of three (5%) lions, one (6%) Namibian cheetah and eight (73%) cheetahs from California. The lion Bartonella isolates were identified as B. henselae (two isolates) and B. koehlerae subsp. koehlerae. The Namibian cheetah strain was close but distinct from isolates from North American wild felids and clustered between B. henselae and B. koehlerae. It should be considered as a new subspecies of B. koehlerae. All the Californian semi-captive cheetah isolates were different from B. henselae or B. koehlerae subsp. koehlerae and from the Namibian cheetah isolate. They were also distinct from the strains isolated from Californian mountain lions (Felis concolor) and clustered with strains of B. koehlerae subsp. bothieri isolated from free-ranging bobcats (Lynx rufus) in California. Therefore, it is likely that these captive cheetahs became infected by an indigenous strain for which bobcats are the natural reservoir.

  4. Experimental Reservoirs of Human Pathogens: The Vibrio Cholerae Paradigm (7th Annual SFAF Meeting, 2012)

    ScienceCinema

    Colwell, Rita [University of Maryland

    2016-07-12

    Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  5. REAL-TIME PCR DETECTION OF THREE HUMAN-PATHOGENIC SPECIES FROM THE MICROSPORIDIAL GENUS ENCEPHALITOZOON

    EPA Science Inventory

    Three microsporidial species from the genus Encephalitozoon, E. hellem, E. cuniculi and E. intestinalis, have emerged as important opportunistic pathogens of humans affecting organ transplant recipients, AIDS patients, and other immunocompromised patients. Even though these thre...

  6. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens.

    PubMed

    March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A; Shlomai, Amir; Mota, Maria M; Fleming, Heather E; Khetani, Salman R; Rice, Charles M; Bhatia, Sangeeta N

    2015-12-01

    The development of therapies and vaccines for human hepatropic pathogens requires robust model systems that enable the study of host-pathogen interactions. However, in vitro liver models of infection typically use either hepatoma cell lines that exhibit aberrant physiology or primary human hepatocytes in culture conditions in which they rapidly lose their hepatic phenotype. To achieve stable and robust in vitro primary human hepatocyte models, we developed micropatterned cocultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive fibroblast cells. By using this system, which can be established over a period of days, and maintained over multiple weeks, we demonstrate how to recapitulate in vitro hepatic life cycles for the hepatitis B and C viruses and the Plasmodium pathogens P. falciparum and P. vivax. The MPCC platform can be used to uncover aspects of host-pathogen interactions, and it has the potential to be used for drug and vaccine development.

  7. Dosage sensitivity is a major determinant of human copy number variant pathogenicity

    PubMed Central

    Rice, Alan M.; McLysaght, Aoife

    2017-01-01

    Human copy number variants (CNVs) account for genome variation an order of magnitude larger than single-nucleotide polymorphisms. Although much of this variation has no phenotypic consequences, some variants have been associated with disease, in particular neurodevelopmental disorders. Pathogenic CNVs are typically very large and contain multiple genes, and understanding the cause of the pathogenicity remains a major challenge. Here we show that pathogenic CNVs are significantly enriched for genes involved in development and genes that have greater evolutionary copy number conservation across mammals, indicative of functional constraints. Conversely, genes found in benign CNV regions have more variable copy number. These evolutionary constraints are characteristic of genes in pathogenic CNVs and can only be explained by dosage sensitivity of those genes. These results implicate dosage sensitivity of individual genes as a common cause of CNV pathogenicity. These evolutionary metrics suggest a path to identifying disease genes in pathogenic CNVs. PMID:28176757

  8. Thioaptamers for Therapeutic Targeting of Pathogenic Human Proteomes

    DTIC Science & Technology

    2005-05-31

    urgent need to expand the current therapeutic annamentarium. The pathogenic mechanism of arenaviruses is believed to involve dysregulation of cytokines... arenaviruses . Summary of Results Figure I. Schematic repreSt:ntation for immune responses post infection. Target A represents immune response clearing...working to develop thioaptamer countenneasures against BT agents including arenaviruses and flaviviruses. ODN Agentf: thioaptamers RNA and DNA

  9. Human enteric pathogen internalization by root uptake into food crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With an increasing number of outbreaks and illnesses associated with pre-harvest contaminated produce, understanding the potential and mechanisms of produce contamination by enteric pathogens can aid in the development of preventative measures and post-harvest processing to reduce microbial populati...

  10. Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake.

    PubMed

    Staley, Christopher; Reckhow, Kenneth H; Lukasik, Jerzy; Harwood, Valerie J

    2012-11-01

    We investigated the potential for a variety of environmental reservoirs to harbor or contribute fecal indicator bacteria (FIB), DNA markers of human fecal contamination, and human pathogens to a freshwater lake. We hypothesized that submerged aquatic vegetation (SAV), sediments, and stormwater act as reservoirs and/or provide inputs of FIB and human pathogens to this inland water. Analysis included microbial source tracking (MST) markers of sewage contamination (Enterococcus faecium esp gene, human-associated Bacteroides HF183, and human polyomaviruses), pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses), and FIB (fecal coliforms, Escherichia coli, and enterococci). Bayesian analysis was used to assess relationships among microbial and physicochemical variables. FIB in the water were correlated with concentrations in SAV and sediment. Furthermore, the correlation of antecedent rainfall and major rain events with FIB concentrations and detection of human markers and pathogens points toward multiple reservoirs for microbial contaminants in this system. Although pathogens and human-source markers were detected in 55% and 21% of samples, respectively, markers rarely coincided with pathogen detection. Bayesian analysis revealed that low concentrations (<45 CFU × 100 ml(-1)) of fecal coliforms were associated with 93% probability that pathogens would not be detected; furthermore the Bayes net model showed associations between elevated temperature and rainfall with fecal coliform and enterococci concentrations, but not E. coli. These data indicate that many under-studied matrices (e.g. SAV, sediment, stormwater) are important reservoirs for FIB and potentially human pathogens and demonstrate the usefulness of Bayes net analysis for water quality assessment.

  11. Detection of serum antibodies against Bartonella species in cats with sporotrichosis from Rio de Janeiro, Brazil.

    PubMed

    Kitada, Amanda A B; Favacho, Alexsandra R M; Oliveira, Raquel V C; Pessoa, Adonai A; Gomes, Raphael; Honse, Carla O; Gremião, Isabella D F; Lemos, Elba R S; Pereira, Sandro A

    2014-04-01

    Cat scratch disease is a zoonosis caused by Bartonella species, transmitted to humans through scratches or bites from infected cats and via direct contact with infected feces. Sporotrichosis, caused by the fungal complex Sporothrix, is transmitted by traumatic inoculation of the fungus. Cats are important in zoonotic transmission. Serum samples from 112 domestic cats with sporotrichosis and 77 samples from healthy cats were analyzed by indirect immunofluorescence assay (IFA), using the commercial kit Bartonella henselae IFA IgG (Bion). The presence of antibodies against feline leukemia virus (FeLV) and of feline immunodeficiency virus (FIV) core antigens was detected using the commercial kit Snap Combo FIV-FeLV (Idexx). The group of animals with sporotrichosis contained 93 males with a median age of 22 months, eight (7.1%) of which were positive for FIV and 15 (13.4%) for FeLV. The group of animals without sporotrichosis contained 36 males with a median age 48 months, 10 (13.0%) of which were positive for FIV and eight (10.4%) for FeLV. Of the 112 cats with sporotrichosis and 77 cats without mycosis, 72 (64.3%) and 35 (45.5%), respectively, were IFA reactive. No association was found between age, sex, FIV/FeLV and the presence of antibodies to Bartonella species. The results suggest that the study population can be considered a potential source of zoonotic infection for both diseases.

  12. 76 FR 30176 - Expedited Review for New Animal Drug Applications for Human Pathogen Reduction Claims; Withdrawal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... HUMAN SERVICES Food and Drug Administration (Formerly Docket No. 2001D-0107) Expedited Review for New Animal Drug Applications for Human Pathogen Reduction Claims; Withdrawal of Guidance AGENCY: Food and... guidance for industry 121 entitled ``Expedited Review for New Animal Drug Applications for Human...

  13. Rats, cities, people, and pathogens: a systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers.

    PubMed

    Himsworth, Chelsea G; Parsons, Kirbee L; Jardine, Claire; Patrick, David M

    2013-06-01

    Urban Norway and black rats (Rattus norvegicus and Rattus rattus) are the source of a number of pathogens responsible for significant human morbidity and mortality in cities around the world. These pathogens include zoonotic bacteria (Leptospira interrogans, Yersina pestis, Rickettsia typhi, Bartonella spp., Streptobacillus moniliformis), viruses (Seoul hantavirus), and parasites (Angiostrongylus cantonensis). A more complete understanding of the ecology of these pathogens in people and rats is critical for determining the public health risks associated with urban rats and for developing strategies to monitor and mitigate those risks. Although the ecology of rat-associated zoonoses is complex, due to the multiple ways in which rats, people, pathogens, vectors, and the environment may interact, common determinants of human disease can still be identified. This review summarizes the ecology of zoonoses associated with urban rats with a view to identifying similarities, critical differences, and avenues for further study.

  14. The Food Production Environment and the Development of Antimicrobial Resistance in Human Pathogens of Animal Origin

    PubMed Central

    Lekshmi, Manjusha; Ammini, Parvathi; Kumar, Sanath; Varela, Manuel F.

    2017-01-01

    Food-borne pathogens are a serious human health concern worldwide, and the emergence of antibiotic-resistant food pathogens has further confounded this problem. Once-highly-efficacious antibiotics are gradually becoming ineffective against many important pathogens, resulting in severe treatment crises. Among several reasons for the development and spread of antimicrobial resistance, their overuse in animal food production systems for purposes other than treatment of infections is prominent. Many pathogens of animals are zoonotic, and therefore any development of resistance in pathogens associated with food animals can spread to humans through the food chain. Human infections by antibiotic-resistant pathogens such as Campylobacter spp., Salmonella spp., Escherichia coli and Staphylococcus aureus are increasing. Considering the human health risk due to emerging antibiotic resistance in food animal–associated bacteria, many countries have banned the use of antibiotic growth promoters and the application in animals of antibiotics critically important in human medicine. Concerted global efforts are necessary to minimize the use of antimicrobials in food animals in order to control the development of antibiotic resistance in these systems and their spread to humans via food and water. PMID:28335438

  15. The Food Production Environment and the Development of Antimicrobial Resistance in Human Pathogens of Animal Origin.

    PubMed

    Lekshmi, Manjusha; Ammini, Parvathi; Kumar, Sanath; Varela, Manuel F

    2017-03-14

    Food-borne pathogens are a serious human health concern worldwide, and the emergence of antibiotic-resistant food pathogens has further confounded this problem. Once-highly-efficacious antibiotics are gradually becoming ineffective against many important pathogens, resulting in severe treatment crises. Among several reasons for the development and spread of antimicrobial resistance, their overuse in animal food production systems for purposes other than treatment of infections is prominent. Many pathogens of animals are zoonotic, and therefore any development of resistance in pathogens associated with food animals can spread to humans through the food chain. Human infections by antibiotic-resistant pathogens such as Campylobacter spp., Salmonella spp., Escherichia coli and Staphylococcus aureus are increasing. Considering the human health risk due to emerging antibiotic resistance in food animal-associated bacteria, many countries have banned the use of antibiotic growth promoters and the application in animals of antibiotics critically important in human medicine. Concerted global efforts are necessary to minimize the use of antimicrobials in food animals in order to control the development of antibiotic resistance in these systems and their spread to humans via food and water.

  16. Genetic characterization of flea-derived Bartonella species from native animals in Australia suggests host-parasite co-evolution.

    PubMed

    Kaewmongkol, Gunn; Kaewmongkol, Sarawan; McInnes, Linda M; Burmej, Halina; Bennett, Mark D; Adams, Peter J; Ryan, Una; Irwin, Peter J; Fenwick, Stanley G

    2011-12-01

    Fleas are important arthropod vectors for a variety of diseases in veterinary and human medicine, and bacteria belonging to the genus Bartonella are among the organisms most commonly transmitted by these ectoparasites. Recently, a number of novel Bartonella species and novel species candidates have been reported in marsupial fleas in Australia. In the present study the genetic diversity of marsupial fleas was investigated; 10 species of fleas were collected from seven different marsupial and placental mammal hosts in Western Australia including woylies (Bettongia penicillata), western barred bandicoots (Perameles bougainville), mardos (Antechinus flavipes), bush rats (Rattus fuscipes), red foxes (Vulpes vulpes), feral cats (Felis catus) and rabbits (Oryctolagus cuniculus). PCR and sequence analysis of the cytochrome oxidase subunit I (COI) and the 18S rRNA genes from these fleas was performed. Concatenated phylogenetic analysis of the COI and 18S rRNA genes revealed a close genetic relationship between marsupial fleas, with Pygiopsylla hilli from woylies, Pygiopsylla tunneyi from western barred bandicoots and Acanthopsylla jordani from mardos, forming a separate cluster from fleas collected from the placental mammals in the same geographical area. The clustering of Bartonella species with their marsupial flea hosts suggests co-evolution of marsupial hosts, marsupial fleas and Bartonella species in Australia.

  17. Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture

    PubMed Central

    Boxall, Alistair B.A.; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D.; Haygarth, Philip M.; Hutchinson, Thomas; Kovats, R. Sari; Leonardi, Giovanni; Levy, Leonard S.; Nichols, Gordon; Parsons, Simon A.; Potts, Laura; Stone, David; Topp, Edward; Turley, David B.; Walsh, Kerry; Wellington, Elizabeth M.H.; Williams, Richard J.

    2009-01-01

    Objective Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes. PMID:19440487

  18. Airborne pathogens from dairy manure aerial irrigation and the human health risk

    USGS Publications Warehouse

    Borchardt, Mark A.; Burch, Tucker R

    2016-01-01

    Dairy manure, like the fecal excrement from any domesticated or wild animal, can contain pathogens capable of infecting humans and causing illness or even death. Pathogens in dairy manure can be broadly divided into categories of taxonomy or infectiousness. Dividing by taxonomy there are three pathogen groups in dairy manure: viruses (e.g., bovine rotavirus), bacteria (e.g., Salmonella species), and protozoa (e.g., Cryptosporidium parvum). There are two categories of infectiousness for pathogens found in animals: those that are zoonotic and those that are not. A zoonotic pathogen is one that can infect both human and animal hosts. Some zoonotic pathogens found in dairy manure cause illness in both hosts (e.g., Salmonella) while other zoonotic pathogens, like Escherichia coli O157:H7, (enterohemorrhagic E. coli (EHEC)) cause illness only in humans. As a general rule, the gastrointestinal viruses found in dairy manure are not zoonotic. While there are exceptions (e.g., rare reports of bovine rotavirus infecting children), for the most part the viruses in dairy manure are not a human health concern. The primary concerns are the zoonotic bacteria and protozoa in dairy manure.

  19. Cat fleas (Ctenocephalides felis) from cats and dogs in New Zealand: Molecular characterisation, presence of Rickettsia felis and Bartonella clarridgeiae and comparison with Australia.

    PubMed

    Chandra, Shona; Forsyth, Maureen; Lawrence, Andrea L; Emery, David; Šlapeta, Jan

    2017-01-30

    The cat flea (Ctenocephalides felis) is the most common flea species parasitising both domestic cats and dogs globally. Fleas are known vectors of zoonotic pathogens such as vector borne Rickettsia and Bartonella. This study compared cat fleas from domestic cats and dogs in New Zealand's North and South Islands to Australian cat fleas, using the mitochondrial DNA (mtDNA) marker, cytochrome c oxidase subunit I and II (cox1, cox2). We assessed the prevalence of Rickettsia and Bartonella using genus specific multiplexed real-time PCR assays. Morphological identification confirmed that the cat flea (C. felis) is the most common flea in New Zealand. The examined fleas (n=43) at cox1 locus revealed six closely related C. felis haplotypes (inter-haplotype distance 1.1%) across New Zealand. The New Zealand C. felis haplotypes were identical or near identical with haplotypes from southern Australia demonstrating common dispersal of haplotype lineage across both the geographical (Tasman Sea) and climate scale. New Zealand cat fleas carried Rickettsia felis (5.3%) and Bartonella clarridgeiae (18.4%). To understand the capability of C. felis to vector zoonotic pathogens, we determined flea cox1 and cox2 haplotype diversity with the tandem multiplexed real-time PCR and sequencing for Bartonella and Rickettsia. This enabled us to demonstrate highly similar cat fleas on cat and dog populations across Australia and New Zealand.

  20. Isolation or detection of Bartonella vinsonii subspecies berkhoffii and Bartonella rochalimae in the endangered island foxes (Urocyon littoralis).

    PubMed

    Schaefer, Jonathan D; Kasten, Rickie W; Coonan, Timothy J; Clifford, Deana L; Chomel, Bruno B

    2011-12-29

    Bartonella rochalimae (B.r.) and Bartonella vinsonii subsp. berkhoffii (B.v.b.) have been isolated from gray foxes (Urocyon cinereoargenteus) in mainland California and high Bartonella seroprevalence was reported in island foxes (U. litorralis), especially from Santa Cruz and Santa Rosa Islands. As a follow-up study, the objectives were to determine the prevalence of Bartonella bacteremia and seropositivity and to identify the Bartonella species infecting a convenience sample of 51 island foxes living on Santa Rosa Island. Using an immuno-fluorescence antibody test directed against B.v.b and Bartonella clarridgeiae (B.c.), used as a substitute for B.r., the overall antibody prevalence was 62.7% with 16 (31.4%) foxes seropositive for B.c. only, 5 (9.8%) for B.v.b. only, and 11 (21.6%) for both antigens. B.v.b. was isolated from 6 (11.8%) foxes using blood culture medium. An additional seropositive fox tested PCR positive for B.v.b. and 3 other seropositive foxes tested PCR positive for B. rochalimae. All of the isolated B.v.b. colonies and the B.v.b. PCR positive sample belonged to type III, the same type found to infect mainland gray foxes. Therefore, Bartonella infection is widespread within this island fox population with evidence for B.v.b. type III reservoir host-specificity. Presence of B. rochalimae in the Channel Islands has been detected for the first time using PCR.

  1. A multi-gene analysis of diversity of Bartonella detected in fleas from Algeria.

    PubMed

    Bitam, Idir; Rolain, Jean Marc; Nicolas, Violaine; Tsai, Yi-Lun; Parola, Philippe; Gundi, Vijay A K B; Chomel, Bruno B; Raoult, Didier

    2012-01-01

    We report the molecular detection of several Bartonella species in 44 (21.5%) of 204 fleas from Algeria collected from 26 rodents and 7 hedgehogs. Bartonella elizabethae and B. clarridgeiae were detected in the fleas collected on hedgehogs. Bartonella tribocorum and B. elizabethae were detected in fleas collected from rats and mice, and sequences similar to an unnamed Bartonella sp. detected in rodents from China were detected in rats as well as a genotype of Bartonella closely related to Bartonella rochalimae detected in fleas collected on brown rats (Rattus norvegicus).

  2. Occurrence of human pathogenic Clostridium botulinum among healthy dairy animals: an emerging public health hazard

    PubMed Central

    Abdel-Moein, Khaled A.; Hamza, Dalia A.

    2016-01-01

    The current study was conducted to investigate the occurrence of human pathogenic Clostridium botulinum in the feces of dairy animals. Fecal samples were collected from 203 apparently healthy dairy animals (50 cattle, 50 buffaloes, 52 sheep, 51 goats). Samples were cultured to recover C. botulinum while human pathogenic C. botulinum strains were identified after screening of all C. botulinum isolates for the presence of genes that encode toxins type A, B, E, F. The overall prevalence of C. botulinum was 18.7% whereas human pathogenic C. botulinum strains (only type A) were isolated from six animals at the rates of 2, 2, 5.8, and 2% for cattle, buffaloes, sheep, and goats, respectively. High fecal carriage rates of C. botulinum among apparently healthy dairy animals especially type A alarm both veterinary and public health communities for a potential role which may be played by dairy animals in the epidemiology of such pathogen. PMID:27077311

  3. Occurrence of human pathogenic Clostridium botulinum among healthy dairy animals: an emerging public health hazard.

    PubMed

    Abdel-Moein, Khaled A; Hamza, Dalia A

    2016-01-01

    The current study was conducted to investigate the occurrence of human pathogenic Clostridium botulinum in the feces of dairy animals. Fecal samples were collected from 203 apparently healthy dairy animals (50 cattle, 50 buffaloes, 52 sheep, 51 goats). Samples were cultured to recover C. botulinum while human pathogenic C. botulinum strains were identified after screening of all C. botulinum isolates for the presence of genes that encode toxins type A, B, E, F. The overall prevalence of C. botulinum was 18.7% whereas human pathogenic C. botulinum strains (only type A) were isolated from six animals at the rates of 2, 2, 5.8, and 2% for cattle, buffaloes, sheep, and goats, respectively. High fecal carriage rates of C. botulinum among apparently healthy dairy animals especially type A alarm both veterinary and public health communities for a potential role which may be played by dairy animals in the epidemiology of such pathogen.

  4. Comparative analysis of glutaredoxin domains from bacterial opportunistic pathogens.

    PubMed

    Leeper, Thomas; Zhang, Suxin; Van Voorhis, Wesley C; Myler, Peter J; Varani, Gabriele

    2011-09-01

    Glutaredoxin proteins (GLXRs) are essential components of the glutathione system that reductively detoxify substances such as arsenic and peroxides and are important in the synthesis of DNA via ribonucleotide reductases. NMR solution structures of glutaredoxin domains from two Gram-negative opportunistic pathogens, Brucella melitensis and Bartonella henselae, are presented. These domains lack the N-terminal helix that is frequently present in eukaryotic GLXRs. The conserved active-site cysteines adopt canonical proline/tyrosine-stabilized geometries. A difference in the angle of α-helix 2 relative to the β-sheet surface and the presence of an extended loop in the human sequence suggests potential regulatory regions and/or protein-protein interaction motifs. This observation is consistent with mutations in this region that suppress defects in GLXR-ribonucleotide reductase interactions. These differences between the human and bacterial forms are adjacent to the dithiol active site and may permit species-selective drug design.

  5. Pathogen inactivation of human serum facilitates its clinical use for islet cell culture and subsequent transplantation.

    PubMed

    Ståhle, Magnus U; Brandhorst, Daniel; Korsgren, Olle; Knutson, Folke

    2011-01-01

    Serum is regarded as an essential supplement to promote survival and growth of cells during culture. However, the potential risk of transmitting diseases disqualifies the use of serum for clinical cell therapy in most countries. Hence, most clinical cell therapy programs have replaced human serum with human serum albumin, which can result in inferior quality of released cell products. Photochemical treatment of different blood products utilizing Intercept® technology has been shown to inactivate a broad variety of pathogens of RNA and DNA origin. The present study assesses the feasibility of using pathogen-inactivated, blood group-compatible serum for use in human pancreatic islet culture. Isolated human islets were cultured at 37°C for 3-4 days in CMRL 1066 supplemented with 10% of either pathogen-inactivated or nontreated human serum. Islet quality assessment included glucose-stimulated insulin release (perifusion), ADP/ATP ratio, cytokine expression, and posttransplant function in diabetic nude mice. No differences were found between islets cultured in pathogen-inactivated or control serum regarding stimulated insulin release, intracellular insulin content, and ADP/ATP ratio. Whether media was supplemented with treated or nontreated serum, islet expression of IL-6, IL-8, MCP-1, or tissue factor was not affected. The final diabetes-reversal rate of mice receiving islets cultured in pathogen-inactivated or nontreated serum was 78% and 87%, respectively (NS). As reported here, pathogen-inactivated human serum does not affect viability or functional integrity of cultured human islets. The implementation of this technology for RNA- and DNA-based pathogen inactivation should enable reintroduction of human serum for clinical cell therapy.

  6. Molecular analysis for screening human bacterial pathogens in municipal wastewater treatment and reuse.

    PubMed

    Kumaraswamy, Rajkumari; Amha, Yamrot M; Anwar, Muhammad Z; Henschel, Andreas; Rodríguez, Jorge; Ahmad, Farrukh

    2014-10-07

    Effective and sensitive monitoring of human pathogenic bacteria in municipal wastewater treatment is important not only for managing public health risk related to treated wastewater reuse, but also for ensuring proper functioning of the treatment plant. In this study, three different 16S rRNA gene molecular analysis methodologies were employed to screen bacterial pathogens in samples collected at three different stages of an activated sludge plant. Overall bacterial diversity was analyzed using next generation sequencing (NGS) on the Illumina MiSeq platform, as well as PCR-DGGE followed by band sequencing. In addition, a microdiversity analysis was conducted using PCR-DGGE, targeting Escherichia coli. Bioinformatics analysis was performed using QIIME protocol by clustering sequences against the Human Pathogenic Bacteria Database. NGS data were also clustered against the Greengenes database for a genera-level diversity analysis. NGS proved to be the most effective approach screening the sequences of 21 potential human bacterial pathogens, while the E. coli microdiversity analysis yielded one (O157:H7 str. EDL933) out of the two E. coli strains picked up by NGS. Overall diversity using PCR-DGGE did not yield any pathogenic sequence matches even though a number of sequences matched the NGS results. Overall, sequences of Gram-negative pathogens decreased in relative abundance along the treatment train while those of Gram-positive pathogens increased.

  7. Indoor air as a vehicle for human pathogens: Introduction, objectives, and expectation of outcome.

    PubMed

    Sattar, Syed A

    2016-09-02

    Airborne spread of pathogens can be rapid, widespread, and difficult to prevent. In this international workshop, a panel of 6 experts will expound on the following: (1) the potential for indoor air to spread a wide range of human pathogens, plus engineering controls to reduce the risk for exposure to airborne infectious agents; (2) the behavior of aerosolized infectious agents indoors and the use of emerging air decontamination technologies; (3) a survey of quantitative methods to recover infectious agents and their surrogates from indoor air with regard to survival and inactivation of airborne pathogens; (4) mathematical models to predict the movement of pathogens indoors and the use of such information to optimize the benefits of air decontamination technologies; and (5) synergy between different infectious agents, such as legionellae and fungi, in the built environment predisposing to possible transmission-related health impacts of aerosolized biofilm-based opportunistic pathogens. After the presentations, the panel will address a set of preformulated questions on selection criteria for surrogate microbes to study the survival and inactivation of airborne human pathogens, desirable features of technologies for microbial decontamination of indoor air, knowledge gaps, and research needs. It is anticipated that the deliberations of the workshop will provide the attendees with an update on the significance of indoor air as a vehicle for transmitting human pathogens with a brief on what is currently being done to mitigate the risks from airborne infectious agents.

  8. Fatal myocarditis-associated Bartonella quintana endocarditis: a case report

    PubMed Central

    2009-01-01

    Introduction Bartonella spp. infection is not rare and must be considered with great care in patients with suspected infective endocarditis, particularly if regular blood cultures remain sterile. Management of these infections requires knowledge of the identification and treatment of these bacteria. Case presentation A 50-year-old Senegalese man was admitted to our Department of Cardiac Surgery with a culture-negative endocarditis. Despite valvular surgery and adequate antibiotic treatment, recurrence of the endocarditis was observed on the prosthetic mitral valve. Heart failure required circulatory support. Weaning off the circulatory support could not be attempted owing to the absence of heart recovery. Bacteriological diagnosis of Bartonella quintana endocarditis was performed by molecular methods retrospectively after the death of the patient. Conclusions This case report underlines the severity and difficulty of the diagnosis of Bartonella quintana endocarditis. The clinical picture suggested possible Bartonella quintana associated myocarditis, a feature that should be considered in new cases. PMID:19830188

  9. Bartonella and Toxoplasma infections in stray cats from Iraq.

    PubMed

    Switzer, Alexandra D; McMillan-Cole, Audrey C; Kasten, Rickie W; Stuckey, Matthew J; Kass, Philip H; Chomel, Bruno B

    2013-12-01

    Because of overpopulation, stray/feral cats were captured on military bases in Iraq as part of the US Army Zoonotic Disease Surveillance Program. Blood samples were collected from 207 cats, mainly in Baghdad but also in North and West Iraq, to determine the prevalence of Bartonella and Toxoplasma infections. Nine (4.3%) cats, all from Baghdad, were bacteremic with B. henselae type I. Seroprevalence was 30.4% for T. gondii, 15% for B. henselae, and 12.6% for B. clarridgeiae. Differences in Bartonella prevalence by location were statistically significant, because most of the seropositive cats were from Baghdad. There was no association between T. gondii seropositivity and either of the two Bartonella species surveyed. This report is the first report on the prevalence of Bartonella and T. gondii among stray cats in Iraq, which allows for better evaluation of the zoonotic risk potential to the Iraqi people and deployed military personnel by feral cat colonies.

  10. Splenorenal Manifestations of Bartonella henselae Infection in a Pediatric Patient

    PubMed Central

    Rising, Taylor; Fulton, Nicholas; Vasavada, Pauravi

    2016-01-01

    Bartonella henselae is a bacterium which can cause a wide range of clinical manifestations, ranging from fever of unknown origin to a potentially fatal endocarditis. We report a case of Bartonella henselae infection in a pediatric-aged patient following a scratch from a kitten. The patient initially presented with a prolonged fever of unknown origin which was unresponsive to antibiotic treatment. The patient was hospitalized with worsening fevers and night sweat. Subsequent ultrasound imaging demonstrated multiple hypoechoic foci within the spleen. A contrast-enhanced CT of the abdomen and pelvis was also obtained which showed hypoattenuating lesions in the spleen and bilateral kidneys. Bartonella henselae IgG and IgM titers were positive, consistent with an acute Bartonella henselae infection. The patient was discharged with a course of oral rifampin and trimethoprim-sulfamethoxazole, and all symptoms had resolved following two weeks of therapy. PMID:27127672

  11. Culture of human cell lines by a pathogen-inactivated human platelet lysate.

    PubMed

    Fazzina, R; Iudicone, P; Mariotti, A; Fioravanti, D; Procoli, A; Cicchetti, E; Scambia, G; Bonanno, G; Pierelli, L

    2016-08-01

    Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety.

  12. Human GBP1 does not localize to pathogen vacuoles but restricts Toxoplasma gondii.

    PubMed

    Johnston, Ashleigh C; Piro, Anthony; Clough, Barbara; Siew, Malvin; Virreira Winter, Sebastian; Coers, Jörn; Frickel, Eva-Maria

    2016-08-01

    Guanylate binding proteins (GBPs) are a family of large interferon-inducible GTPases that are transcriptionally upregulated upon infection with intracellular pathogens. Murine GBPs (mGBPs) including mGBP1 and 2 localize to and disrupt pathogen-containing vacuoles (PVs) resulting in the cell-autonomous clearing or innate immune detection of PV-resident pathogens. Human GBPs (hGBPs) are known to exert antiviral host defense and activate the NLRP3 inflammasome, but it is unclear whether hGBPs can directly recognize and control intravacuolar pathogens. Here, we report that endogenous or ectopically expressed hGBP1 fails to associate with PVs formed in human cells by the bacterial pathogens Chlamydia trachomatis or Salmonella typhimurium or the protozoan pathogen Toxoplasma gondii. While we find that hGBP1 expression has no discernible effect on intracellular replication of C. trachomatis and S. typhimurium, we observed enhanced early Toxoplasma replication in CRISPR hGBP1-deleted human epithelial cells. We thus identified a novel role for hGBP1 in cell-autonomous immunity that is independent of PV translocation, as observed for mGBPs. This study highlights fundamental differences between human and murine GBPs and underlines the need to study the functions of GBPs at cellular locations away from PVs.

  13. Beyond cat scratch disease: widening spectrum of Bartonella henselae infection.

    PubMed

    Florin, Todd A; Zaoutis, Theoklis E; Zaoutis, Lisa B

    2008-05-01

    Bartonella henselae was discovered a quarter of a century ago as the causative agent of cat scratch disease, a clinical entity described in the literature for more than half a century. As diagnostic techniques improve, our knowledge of the spectrum of clinical disease resulting from infection with Bartonella is expanding. This review summarizes current knowledge regarding the microbiology, clinical manifestations, diagnostic techniques, and treatment of B. henselae infection.

  14. Interaction of probiotics and pathogens--benefits to human health?

    PubMed

    Salminen, Seppo; Nybom, Sonja; Meriluoto, Jussi; Collado, Maria Carmen; Vesterlund, Satu; El-Nezami, Hani

    2010-04-01

    The probiotic terminology has matured over the years and currently a unified definition has been formed. Lactic acid bacteria (LAB) and bifidobacteria have been reported to remove heavy metals, cyanotoxins and mycotoxins from aqueous solutions. The binding processes appear to be species and strain specific. The most efficient microbial species and strains in the removal of these compounds vary between components tested. However, it is of interest to note that most strains characterized until now do not bind positive components or nutrients in the diet. This has significant implications to future detoxification biotechnology development. In a similar manner, lactic acid bacteria and bifidobacteria interact directly with viruses and pathogens in food and water as well as toxin producing microbes and some toxins. This review updates information and aims to characterize these interactions in association. The target is to understand probiotic health effects and to relate the mechanisms and actions to future potential of specific probiotic bacteria on decontamination of foods and water, and diets. The same aim is targeted in characterizing the role of probiotics in inactivating pathogens and viruses of health importance to facilitate the establishment of novel means of disease risk reduction related health benefits.

  15. Serological and pathogenic characterization of Erysipelothrix rhusiopathiae isolates from two human cases of endocarditis in Japan.

    PubMed

    Harada, Kazuki; Amano, Kennichiro; Akimoto, Shinnich; Yamamoto, Kinya; Yamamoto, Yoshihiro; Yanagihara, Katsunori; Kohno, Shigeru; Kishida, Naoki; Takahashi, Toshio

    2011-10-01

    We characterized the serological and pathogenic properties of two Erysipelothrix rhusiopathiae isolates from human cases of infective endocarditis in Japan. One isolate was recovered from a fisherman, and was identified as serovar 3, which is known to be prevalent among fish isolates. This strain exhibited high virulence in mice but was avirulent in swine. Another was untypable, and avirulent in both mice and swine. Our results suggest that various serological and athogenical types of E. rhusiopathiae can induce human endocarditis. This is the first report to characterize the pathogenicity of E. rhusiopathiae isolates from human endocarditis.

  16. Diversifying selection and concerted evolution of a type IV secretion system in Bartonella.

    PubMed

    Nystedt, Björn; Frank, A Carolin; Thollesson, Mikael; Andersson, Siv G E

    2008-02-01

    We have studied the evolution of a type IV secretion system (T4SS), in Bartonella, which is thought to have changed function from conjugation to erythrocyte adherence following a recent horizontal gene transfer event. The system, called Trw, is unique among T4SSs in that genes encoding both exo- and intracellular components are located within the same duplicated fragment. This provides an opportunity to study the influence of selection on proteins involved in host-pathogen interactions. We sequenced the trw locus from several strains of Bartonella henselae and investigated its evolutionary history by comparisons to other Bartonella species. Several instances of recombination and gene conversion events where detected in the 2- to 5-fold duplicated gene fragments encompassing trwJIH, explaining the homogenization of the anchoring protein TrwI and the divergence of the minor pilus protein TrwJ. A phylogenetic analysis of the 7- to 8-fold duplicated gene coding for the major pilus protein TrwL displayed 2 distinct clades, likely representing a subfunctionalization event. The analyses of the B. henselae strains also identified a recent horizontal transfer event of almost the complete trwL region. We suggest that the switch in function of the T4SS was mediated by the duplication of the genes encoding pilus components and their diversification by combinatorial sequence shuffling within and among genomes. We suggest that the pilus proteins have evolved by diversifying selection to match a divergent set of erythrocyte surface structures, consistent with the trench warfare coevolutionary model.

  17. Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism.

    PubMed

    Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark

    2008-06-07

    Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We suggest that specific behavioural manifestations of collectivism (e.g. ethnocentrism, conformity) can inhibit the transmission of pathogens; and so we hypothesize that collectivism (compared with individualism) will more often characterize cultures in regions that have historically had higher prevalence of pathogens. Drawing on epidemiological data and the findings of worldwide cross-national surveys of individualism/collectivism, our results support this hypothesis: the regional prevalence of pathogens has a strong positive correlation with cultural indicators of collectivism and a strong negative correlation with individualism. The correlations remain significant even when controlling for potential confounding variables. These results help to explain the origin of a paradigmatic cross-cultural difference, and reveal previously undocumented consequences of pathogenic diseases on the variable nature of human societies.

  18. Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism

    PubMed Central

    Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark

    2008-01-01

    Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We suggest that specific behavioural manifestations of collectivism (e.g. ethnocentrism, conformity) can inhibit the transmission of pathogens; and so we hypothesize that collectivism (compared with individualism) will more often characterize cultures in regions that have historically had higher prevalence of pathogens. Drawing on epidemiological data and the findings of worldwide cross-national surveys of individualism/collectivism, our results support this hypothesis: the regional prevalence of pathogens has a strong positive correlation with cultural indicators of collectivism and a strong negative correlation with individualism. The correlations remain significant even when controlling for potential confounding variables. These results help to explain the origin of a paradigmatic cross-cultural difference, and reveal previously undocumented consequences of pathogenic diseases on the variable nature of human societies. PMID:18302996

  19. Mammalian microRNA: an important modulator of host-pathogen interactions in human viral infections.

    PubMed

    Ojha, Chet Raj; Rodriguez, Myosotys; Dever, Seth M; Mukhopadhyay, Rita; El-Hage, Nazira

    2016-10-26

    MicroRNAs (miRNAs), which are small non-coding RNAs expressed by almost all metazoans, have key roles in the regulation of cell differentiation, organism development and gene expression. Thousands of miRNAs regulating approximately 60 % of the total human genome have been identified. They regulate genetic expression either by direct cleavage or by translational repression of the target mRNAs recognized through partial complementary base pairing. The active and functional unit of miRNA is its complex with Argonaute proteins known as the microRNA-induced silencing complex (miRISC). De-regulated miRNA expression in the human cell may contribute to a diverse group of disorders including cancer, cardiovascular dysfunctions, liver damage, immunological dysfunction, metabolic syndromes and pathogenic infections. Current day studies have revealed that miRNAs are indeed a pivotal component of host-pathogen interactions and host immune responses toward microorganisms. miRNA is emerging as a tool for genetic study, therapeutic development and diagnosis for human pathogenic infections caused by viruses, bacteria, parasites and fungi. Many pathogens can exploit the host miRNA system for their own benefit such as surviving inside the host cell, replication, pathogenesis and bypassing some host immune barriers, while some express pathogen-encoded miRNA inside the host contributing to their replication, survival and/or latency. In this review, we discuss the role and significance of miRNA in relation to some pathogenic viruses.

  20. Prosthetic Valve Endocarditis Caused by Bartonella henselae: A Case Report of Molecular Diagnostics Informing Nonsurgical Management

    PubMed Central

    Bartley, Patricia; Angelakis, Emmanouil; Raoult, Didier; Sampath, Rangarajan; Bonomo, Robert A.

    2016-01-01

    Identifying the pathogen responsible for culture-negative valve endocarditis often depends on molecular studies performed on surgical specimens. A patient with Ehlers-Danlos syndrome who had an aortic graft, a mechanical aortic valve, and a mitral anulloplasty ring presented with culture-negative prosthetic valve endocarditis and aortic graft infection. Research-based polymerase chain reaction (PCR)/electrospray ionization mass spectrometry on peripheral blood samples identified Bartonella henselae. Quantitative PCR targeting the16S-23S ribonucleic acid intergenic region and Western immunoblotting confirmed this result. This, in turn, permitted early initiation of pathogen-directed therapy and subsequent successful medical management of B henselae prosthetic valve endocarditis and aortic graft infection. PMID:27844027

  1. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival.

    PubMed

    Al-Laaeiby, Ayat; Kershaw, Michael J; Penn, Tina J; Thornton, Christopher R

    2016-03-24

    The dematiaceous (melanised) fungus Lomentospora (Scedosporium) prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H₂O₂), UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN)-melanin biosynthetic enzymes polyketide synthase (PKS1), tetrahydroxynapthalene reductase (4HNR) and scytalone dehydratase (SCD1). Infectious propagules (spores) of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H₂O₂ treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not

  2. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival

    PubMed Central

    Al-Laaeiby, Ayat; Kershaw, Michael J.; Penn, Tina J.; Thornton, Christopher R.

    2016-01-01

    The dematiaceous (melanised) fungus Lomentospora (Scedosporium) prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H2O2), UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN)-melanin biosynthetic enzymes polyketide synthase (PKS1), tetrahydroxynapthalene reductase (4HNR) and scytalone dehydratase (SCD1). Infectious propagules (spores) of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H2O2 treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not contribute to

  3. Serological survey of vector-borne zoonotic pathogens in pet cats and cats from animal shelters and feral colonies.

    PubMed

    Case, Joseph Brad; Chomel, Bruno; Nicholson, William; Foley, Janet E

    2006-04-01

    Although cats and their arthropod parasites can sometimes be important sources of zoonotic diseases in humans, the extent of exposure among various cat populations to many potential zoonotic agents remains incompletely described. In this study, 170 domestic cats living in private homes, feral cat colonies, and animal shelters from California and Wisconsin were evaluated by serology to determine the levels of exposure to a group of zoonotic vector-borne pathogens. Serological positive test results were observed in 17.2% of cats for Rickettsia rickettsii, 14.9% for R akari, 4.9% for R typhi, 11.1% for R felis, and 14.7% for Bartonella henselae. Although vector-borne disease exposure has been documented previously in cats, the evaluation of multiple pathogens and diverse cat populations simultaneously performed here contributes to our understanding of feline exposure to these zoonotic pathogens.

  4. CaPSID: A bioinformatics platform for computational pathogen sequence identification in human genomes and transcriptomes

    PubMed Central

    2012-01-01

    Background It is now well established that nearly 20% of human cancers are caused by infectious agents, and the list of human oncogenic pathogens will grow in the future for a variety of cancer types. Whole tumor transcriptome and genome sequencing by next-generation sequencing technologies presents an unparalleled opportunity for pathogen detection and discovery in human tissues but requires development of new genome-wide bioinformatics tools. Results Here we present CaPSID (Computational Pathogen Sequence IDentification), a comprehensive bioinformatics platform for identifying, querying and visualizing both exogenous and endogenous pathogen nucleotide sequences in tumor genomes and transcriptomes. CaPSID includes a scalable, high performance database for data storage and a web application that integrates the genome browser JBrowse. CaPSID also provides useful metrics for sequence analysis of pre-aligned BAM files, such as gene and genome coverage, and is optimized to run efficiently on multiprocessor computers with low memory usage. Conclusions To demonstrate the usefulness and efficiency of CaPSID, we carried out a comprehensive analysis of both a simulated dataset and transcriptome samples from ovarian cancer. CaPSID correctly identified all of the human and pathogen sequences in the simulated dataset, while in the ovarian dataset CaPSID’s predictions were successfully validated in vitro. PMID:22901030

  5. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans

    PubMed Central

    Caza, Mélissa; Kronstad, James W.

    2013-01-01

    Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900

  6. Bat–man disease transmission: zoonotic pathogens from wildlife reservoirs to human populations

    PubMed Central

    Allocati, N; Petrucci, A G; Di Giovanni, P; Masulli, M; Di Ilio, C; De Laurenzi, V

    2016-01-01

    Bats are natural reservoir hosts and sources of infection of several microorganisms, many of which cause severe human diseases. Because of contact between bats and other animals, including humans, the possibility exists for additional interspecies transmissions and resulting disease outbreaks. The purpose of this article is to supply an overview on the main pathogens isolated from bats that have the potential to cause disease in humans. PMID:27551536

  7. An investigation into the seroprevalence of Toxoplasma gondii, Bartonella spp., feline immunodeficiency virus (FIV), and feline leukaemia virus (FeLV) in cats in Addis Ababa, Ethiopia.

    PubMed

    Tiao, N; Darrington, C; Molla, B; Saville, W J A; Tilahun, G; Kwok, O C H; Gebreyes, W A; Lappin, M R; Jones, J L; Dubey, J P

    2013-05-01

    Toxoplasma gondii and Bartonella spp. are zoonotic pathogens of cats. Feline immunodeficiency virus (FIV), and feline leukaemia virus (FeLV) are immunosuppressive viruses of cats that can affect T. gondii oocyst shedding. In this study, the prevalence of antibodies to T. gondii, Bartonella spp., FIV, as well as FeLV antigens were determined in sera from feral cats (Felis catus) from Addis Ababa, Ethiopia. Using the modified agglutination test, IgG antibodies to T. gondii were found in 41 (85.4%) of the 48 cats with titres of 1:25 in one, 1:50 in one, 1:200 in six, 1:400 in six, 1:800 in six, 1:1600 in eight, and 1:3200 in 13 cats. Toxoplasma gondii IgM antibodies were found in 11/46 cats tested by ELISA, suggesting recent infection. Antibodies to Bartonella spp. were found in five (11%) of 46 cats tested. Antibodies to FIV or FeLV antigen were not detected in any of the 41 cats tested. The results indicate a high prevalence of T. gondii and a low prevalence of Bartonella spp. infection in cats in Ethiopia.

  8. Phylogenetic analysis of Bartonella detected in rodent fleas in Yunnan, China.

    PubMed

    Li, Dong Mei; Liu, Qi Yong; Yu, Dong Zheng; Zhang, Jian Zhong; Gong, Zheng Da; Song, Xiu Ping

    2007-10-01

    Previous studies have demonstrated a diversity of Bartonella spp. in rodent populations in Yunnan Province, China. Although Bartonella spp. have been isolated from cat fleas and cattle ticks collected from their animal hosts, little is known about Bartonella carried by rodent fleas. In this study, Bartonella DNA was detected by polymerase chain reaction (PCR) in two of five species of rodent fleas. These included Xenopsylla cheopis and Ctenophthalmus lushuiensis, which were collected from Rattus tanezumi flavipectus and from the nests of voles, respectively, during 1997 from two sites in western Yunnan Province, China. Sequence analysis of the Bartonella citrate synthase gene (gltA) amplicons obtained from six of 65 grouped flea samples showed that Bartonella genetic variants were clustered in four groups. One from Xenopsylla cheopis was identical to Bartonella tribocorum, whereas the other three genotypes from Ctenophthalmus lushuiensis were related to the vole-associated Bartonella isolates and cat-associated Bartonella clarridgeiae. This is the first detection of this Bartonella variant from fleas in China. Therefore, further investigations are needed to clarify the distribution of Bartonella in rodents and their ectoparasites in China to define the role of these arthropods in the transmission routes of Bartonella.

  9. Recovery, Bioaccumulation, and Inactivation of Human Waterborne Pathogens by the Chesapeake Bay Nonnative Oyster, Crassostrea ariakensis

    PubMed Central

    Graczyk, Thaddeus K.; Girouard, Autumn S.; Tamang, Leena; Nappier, Sharon P.; Schwab, Kellogg J.

    2006-01-01

    The introduction of nonnative oysters (i.e., Crassostrea ariakensis) into the Chesapeake Bay has been proposed as necessary for the restoration of the oyster industry; however, nothing is known about the public health risks related to contamination of these oysters with human pathogens. Commercial market-size C. ariakensis triploids were maintained in large marine tanks with water of low (8-ppt), medium (12-ppt), and high (20-ppt) salinities spiked with 1.0 × 105 transmissive stages of the following human pathogens: Cryptosporidium parvum oocysts, Giardia lamblia cysts, and microsporidian spores (i.e., Encephalitozoon intestinalis, Encephalitozoon hellem, and Enterocytozoon bieneusi). Viable oocysts and spores were still detected in oysters on day 33 post-water inoculation (pwi), and cysts were detected on day 14 pwi. The recovery, bioaccumulation, depuration, and inactivation rates of human waterborne pathogens by C. ariakensis triploids were driven by salinity and were optimal in medium- and high-salinity water. The concentration of human pathogens from ambient water by C. ariakensis and the retention of these pathogens without (or with minimal) inactivation and a very low depuration rate provide evidence that these oysters may present a public health threat upon entering the human food chain, if harvested from polluted water. This conclusion is reinforced by the concentration of waterborne pathogens used in the present study, which was representative of levels of infectious agents in surface waters, including the Chesapeake Bay. Aquacultures of nonnative oysters in the Chesapeake Bay will provide excellent ecological services in regard to efficient cleaning of human-infectious agents from the estuarine waters. PMID:16672482

  10. Probiotic Potential of Lactobacillus Strains with Antimicrobial Activity against Some Human Pathogenic Strains

    PubMed Central

    Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan

    2014-01-01

    The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147

  11. Conserved differences in protein sequence determine the human pathogenicity of Ebolaviruses

    PubMed Central

    Pappalardo, Morena; Juliá, Miguel; Howard, Mark J.; Rossman, Jeremy S.; Michaelis, Martin; Wass, Mark N.

    2016-01-01

    Reston viruses are the only Ebolaviruses that are not pathogenic in humans. We analyzed 196 Ebolavirus genomes and identified specificity determining positions (SDPs) in all nine Ebolavirus proteins that distinguish Reston viruses from the four human pathogenic Ebolaviruses. A subset of these SDPs will explain the differences in human pathogenicity between Reston and the other four ebolavirus species. Structural analysis was performed to identify those SDPs that are likely to have a functional effect. This analysis revealed novel functional insights in particular for Ebolavirus proteins VP40 and VP24. The VP40 SDP P85T interferes with VP40 function by altering octamer formation. The VP40 SDP Q245P affects the structure and hydrophobic core of the protein and consequently protein function. Three VP24 SDPs (T131S, M136L, Q139R) are likely to impair VP24 binding to human karyopherin alpha5 (KPNA5) and therefore inhibition of interferon signaling. Since VP24 is critical for Ebolavirus adaptation to novel hosts, and only a few SDPs distinguish Reston virus VP24 from VP24 of other Ebolaviruses, human pathogenic Reston viruses may emerge. This is of concern since Reston viruses circulate in domestic pigs and can infect humans, possibly via airborne transmission. PMID:27009368

  12. Conserved differences in protein sequence determine the human pathogenicity of Ebolaviruses.

    PubMed

    Pappalardo, Morena; Juliá, Miguel; Howard, Mark J; Rossman, Jeremy S; Michaelis, Martin; Wass, Mark N

    2016-03-24

    Reston viruses are the only Ebolaviruses that are not pathogenic in humans. We analyzed 196 Ebolavirus genomes and identified specificity determining positions (SDPs) in all nine Ebolavirus proteins that distinguish Reston viruses from the four human pathogenic Ebolaviruses. A subset of these SDPs will explain the differences in human pathogenicity between Reston and the other four ebolavirus species. Structural analysis was performed to identify those SDPs that are likely to have a functional effect. This analysis revealed novel functional insights in particular for Ebolavirus proteins VP40 and VP24. The VP40 SDP P85T interferes with VP40 function by altering octamer formation. The VP40 SDP Q245P affects the structure and hydrophobic core of the protein and consequently protein function. Three VP24 SDPs (T131S, M136L, Q139R) are likely to impair VP24 binding to human karyopherin alpha5 (KPNA5) and therefore inhibition of interferon signaling. Since VP24 is critical for Ebolavirus adaptation to novel hosts, and only a few SDPs distinguish Reston virus VP24 from VP24 of other Ebolaviruses, human pathogenic Reston viruses may emerge. This is of concern since Reston viruses circulate in domestic pigs and can infect humans, possibly via airborne transmission.

  13. Regulatory and pathogenic mechanisms in human autoimmune myasthenia gravis.

    PubMed

    Le Panse, Rozen; Cizeron-Clairac, Géraldine; Cuvelier, Mélinée; Truffault, Frédérique; Bismuth, Jacky; Nancy, Patrice; De Rosbo, Nicole Kerlero; Berrih-Aknin, Sonia

    2008-01-01

    The thymus is frequently hyperplastic in young female myasthenia gravis (MG) patients presenting with anti-acetylcholine receptor (AChR) antibodies. This thymic pathology is characterized by the presence of ectopic germinal centers (GCs) containing B cells involved at least partially in the production of pathogenic anti-AChR antibodies. Our recent studies have furthered our understanding of the mechanisms leading to GC formation in the hyperplastic thymus. First, we showed that CXCL13 and CCL21, chemokines involved in GC formation, are overexpressed in MG thymus. Second, we demonstrated an increase in pro-inflammatory activity in the thymus from MG patients and its partial normalization by glucocorticoids, as evidenced by gene expression profile. Third, we found that pro-inflammatory cytokines are able to upregulate the expression of AChR subunits in thymic epithelial and myoid cells. Fourth, we showed that the function of T regulatory (Treg) cells, whose role is to downregulate the immune response, is severely impaired in the thymus of MG patients; such a defect could explain the chronic immune activation observed consistently in MG thymic hyperplasia. Altogether, these new data suggest that CXCL13 and CCL21, which are produced in excess in MG thymus, attract peripheral B cells and activated T cells, which are maintained chronically activated in the inflammatory thymic environment because of the defect in suppressive activity of Treg cells. Presence of AChR in the thymus and upregulation of its expression by the pro-inflammatory environment contribute to the triggering and maintenance of the anti-AChR autoimmune response.

  14. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations.

    PubMed

    Kang, Eunju; Wu, Jun; Gutierrez, Nuria Marti; Koski, Amy; Tippner-Hedges, Rebecca; Agaronyan, Karen; Platero-Luengo, Aida; Martinez-Redondo, Paloma; Ma, Hong; Lee, Yeonmi; Hayama, Tomonari; Van Dyken, Crystal; Wang, Xinjian; Luo, Shiyu; Ahmed, Riffat; Li, Ying; Ji, Dongmei; Kayali, Refik; Cinnioglu, Cengiz; Olson, Susan; Jensen, Jeffrey; Battaglia, David; Lee, David; Wu, Diana; Huang, Taosheng; Wolf, Don P; Temiakov, Dmitry; Belmonte, Juan Carlos Izpisua; Amato, Paula; Mitalipov, Shoukhrat

    2016-12-08

    Maternally inherited mitochondrial (mt)DNA mutations can cause fatal or severely debilitating syndromes in children, with disease severity dependent on the specific gene mutation and the ratio of mutant to wild-type mtDNA (heteroplasmy) in each cell and tissue. Pathogenic mtDNA mutations are relatively common, with an estimated 778 affected children born each year in the United States. Mitochondrial replacement therapies or techniques (MRT) circumventing mother-to-child mtDNA disease transmission involve replacement of oocyte maternal mtDNA. Here we report MRT outcomes in several families with common mtDNA syndromes. The mother's oocytes were of normal quality and mutation levels correlated with those in existing children. Efficient replacement of oocyte mutant mtDNA was performed by spindle transfer, resulting in embryos containing >99% donor mtDNA. Donor mtDNA was stably maintained in embryonic stem cells (ES cells) derived from most embryos. However, some ES cell lines demonstrated gradual loss of donor mtDNA and reversal to the maternal haplotype. In evaluating donor-to-maternal mtDNA interactions, it seems that compatibility relates to mtDNA replication efficiency rather than to mismatch or oxidative phosphorylation dysfunction. We identify a polymorphism within the conserved sequence box II region of the D-loop as a plausible cause of preferential replication of specific mtDNA haplotypes. In addition, some haplotypes confer proliferative and growth advantages to cells. Hence, we propose a matching paradigm for selecting compatible donor mtDNA for MRT.

  15. Clinical and tree hollow populations of human pathogenic yeast in Hamilton, Ontario, Canada are different.

    PubMed

    Carvalho, Chris; Yang, Jiaqi; Vogan, Aaron; Maganti, Harinad; Yamamura, Deborah; Xu, Jianping

    2014-05-01

    Yeast are among the most frequent pathogens in humans. The dominant yeast causing human infections belong to the genus Candida and Candida albicans is the most frequently isolated species. However, several non-C. albicans species are becoming increasingly common in patients worldwide. The relationships between yeast in humans and the natural environments remain poorly understood. Furthermore, it is often difficult to identify or exclude the origins of disease-causing yeast from specific environmental reservoirs. In this study, we compared the yeast isolates from tree hollows and from clinics in Hamilton, Ontario, Canada. Our surveys and analyses showed significant differences in yeast species composition, in their temporal dynamics, and in yeast genotypes between isolates from tree hollows and hospitals. Our results are inconsistent with the hypothesis that yeast from trees constitute a significant source of pathogenic yeast in humans in this region. Similarly, the yeast in humans and clinics do not appear to contribute to yeast in tree hollows.

  16. Opportunistic fungal pathogen Candida glabrata circulates between humans and yellow-legged gulls

    PubMed Central

    Al-Yasiri, Mohammed Hashim; Normand, Anne-Cécile; L’Ollivier, Coralie; Lachaud, Laurence; Bourgeois, Nathalie; Rebaudet, Stanislas; Piarroux, Renaud; Mauffrey, Jean-François; Ranque, Stéphane

    2016-01-01

    The opportunistic pathogenic yeast Candida glabrata is a component of the mycobiota of both humans and yellow-legged gulls that is prone to develop fluconazole resistance. Whether gulls are a reservoir of the yeast and facilitate the dissemination of human C. glabrata strains remains an open question. In this study, MLVA genotyping highlighted the lack of genetic structure of 190 C. glabrata strains isolated from either patients in three hospitals or fecal samples collected from gull breeding colonies located in five distinct areas along the French Mediterranean littoral. Fluconazole-resistant isolates were evenly distributed between both gull and human populations. These findings demonstrate that gulls are a reservoir of this species and facilitate the diffusion of C. glabrata and indirect transmission to human or animal hosts via environmental contamination. This eco-epidemiological view, which can be applied to other vertebrate host species, broadens our perspective regarding the reservoirs and dissemination patterns of antifungal-resistant human pathogenic yeast. PMID:27782182

  17. Opportunistic fungal pathogen Candida glabrata circulates between humans and yellow-legged gulls.

    PubMed

    Al-Yasiri, Mohammed Hashim; Normand, Anne-Cécile; L'Ollivier, Coralie; Lachaud, Laurence; Bourgeois, Nathalie; Rebaudet, Stanislas; Piarroux, Renaud; Mauffrey, Jean-François; Ranque, Stéphane

    2016-10-26

    The opportunistic pathogenic yeast Candida glabrata is a component of the mycobiota of both humans and yellow-legged gulls that is prone to develop fluconazole resistance. Whether gulls are a reservoir of the yeast and facilitate the dissemination of human C. glabrata strains remains an open question. In this study, MLVA genotyping highlighted the lack of genetic structure of 190 C. glabrata strains isolated from either patients in three hospitals or fecal samples collected from gull breeding colonies located in five distinct areas along the French Mediterranean littoral. Fluconazole-resistant isolates were evenly distributed between both gull and human populations. These findings demonstrate that gulls are a reservoir of this species and facilitate the diffusion of C. glabrata and indirect transmission to human or animal hosts via environmental contamination. This eco-epidemiological view, which can be applied to other vertebrate host species, broadens our perspective regarding the reservoirs and dissemination patterns of antifungal-resistant human pathogenic yeast.

  18. Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Perez-Rueda, Ernesto; Rodríguez-Vázquez, Katya

    2016-06-01

    DNA methylation plays an important role in gene expression and virulence in some pathogenic bacteria. In this report, we describe DNA methyltransferases (MTases) present in human pathogenic bacteria and compared them with related species, which are not pathogenic or less pathogenic, based in comparative genomics. We performed a search in the KEGG database of the KEGG database orthology groups associated with adenine and cytosine DNA MTase activities (EC: 2.1.1.37, EC: 2.1.1.113 and EC: 2.1.1.72) in 37 human pathogenic species and 18 non/less pathogenic relatives and performed comparisons of the number of these MTases sequences according to their genome size, the DNA MTase type and with their non-less pathogenic relatives. We observed that Helicobacter pylori and Neisseria spp. presented the highest number of MTases while ten different species did not present a predicted DNA MTase. We also detected a significant increase of adenine MTases over cytosine MTases (2.19 vs. 1.06, respectively, p < 0.001). Adenine MTases were the only MTases associated with restriction modification systems and DNA MTases associated with type I restriction modification systems were more numerous than those associated with type III restriction modification systems (0.84 vs. 0.17, p < 0.001); additionally, there was no correlation with the genome size and the total number of DNA MTases, indicating that the number of DNA MTases is related to the particular evolution and lifestyle of specific species, regulating the expression of virulence genes in some pathogenic bacteria.

  19. Aerially transmitted human fungal pathogens: what can we learn from metagenomics and comparative genomics?

    PubMed

    Aliouat-Denis, Cécile-Marie; Chabé, Magali; Delhaes, Laurence; Dei-Cas, Eduardo

    2014-01-01

    In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  20. Phylogenetic and geographic patterns of bartonella host shifts among bat species.

    PubMed

    McKee, Clifton D; Hayman, David T S; Kosoy, Michael Y; Webb, Colleen T

    2016-10-01

    The influence of factors contributing to parasite diversity in individual hosts and communities are increasingly studied, but there has been less focus on the dominant processes leading to parasite diversification. Using bartonella infections in bats as a model system, we explored the influence of three processes that can contribute to bartonella diversification and lineage formation: (1) spatial correlation in the invasion and transmission of bartonella among bats (phylogeography); (2) divergent adaptation of bartonellae to bat hosts and arthropod vectors; and (3) evolutionary codivergence between bats and bartonellae. Using a combination of global fit techniques and ancestral state reconstruction, we found that codivergence appears to be the dominant process leading to diversification of bartonella in bats, with lineages of bartonellae corresponding to separate bat suborders, superfamilies, and families. Furthermore, we estimated the rates at which bartonellae shift bat hosts across taxonomic scales (suborders, superfamilies, and families) and found that transition rates decrease with increasing taxonomic distance, providing support for a mechanism that can contribute to the observed evolutionary congruence between bats and their associated bartonellae. While bartonella diversification is associated with host sympatry, the influence of this factor is minor compared to the influence of codivergence and there is a clear indication that some bartonella lineages span multiple regions, particularly between Africa and Southeast Asia. Divergent adaptation of bartonellae to bat hosts and arthropod vectors is apparent and can dilute the overall pattern of codivergence, however its importance in the formation of Bartonella lineages in bats is small relative to codivergence. We argue that exploring all three of these processes yields a more complete understanding of bat-bartonella relationships and the evolution of the genus Bartonella, generally. Application of these

  1. The Bartonella quintana Extracytoplasmic Function Sigma Factor RpoE Has a Role in Bacterial Adaptation to the Arthropod Vector Environment

    PubMed Central

    Abromaitis, Stephanie

    2013-01-01

    Bartonella quintana is a vector-borne bacterial pathogen that causes fatal disease in humans. During the infectious cycle, B. quintana transitions from the hemin-restricted human bloodstream to the hemin-rich body louse vector. Because extracytoplasmic function (ECF) sigma factors often regulate adaptation to environmental changes, we hypothesized that a previously unstudied B. quintana ECF sigma factor, RpoE, is involved in the transition from the human host to the body louse vector. The genomic context of B. quintana rpoE identified it as a member of the ECF15 family of sigma factors found only in alphaproteobacteria. ECF15 sigma factors are believed to be the master regulators of the general stress response in alphaproteobacteria. In this study, we examined the B. quintana RpoE response to two stressors that are encountered in the body louse vector environment, a decreased temperature and an increased hemin concentration. We determined that the expression of rpoE is significantly upregulated at the body louse (28°C) versus the human host (37°C) temperature. rpoE expression also was upregulated when B. quintana was exposed to high hemin concentrations. In vitro and in vivo analyses demonstrated that RpoE function is regulated by a mechanism involving the anti-sigma factor NepR and the response regulator PhyR. The ΔrpoE ΔnepR mutant strain of B. quintana established that RpoE-mediated transcription is important in mediating the tolerance of B. quintana to high hemin concentrations. We present the first analysis of an ECF15 sigma factor in a vector-borne human pathogen and conclude that RpoE has a role in the adaptation of B. quintana to the hemin-rich arthropod vector environment. PMID:23564167

  2. Detection of Bartonella quintana in African body and head lice.

    PubMed

    Sangaré, Abdoul Karim; Boutellis, Amina; Drali, Rezak; Socolovschi, Cristina; Barker, Stephen C; Diatta, Georges; Rogier, Christophe; Olive, Marie-Marie; Doumbo, Ogobara K; Raoult, Didier

    2014-08-01

    Currently, the body louse is the only recognized vector of Bartonella quintana, an organism that causes trench fever. In this work, we investigated the prevalence of this bacterium in human lice in different African countries. We tested 616 head lice and 424 body lice from nine African countries using real-time polymerase chain reaction targeting intergenic spacer region 2 and specific B. quintana genes. Overall, B. quintana DNA was found in 54% and 2% of body and head lice, respectively. Our results also show that there are more body lice positive for B. quintana in poor countries, which was determined by the gross domestic product, than in wealthy areas (228/403 versus 0/21, P < 0.001). A similar finding was obtained for head lice (8/226 versus 2/390, P = 0.007). Our findings suggest that head lice in Africa may be infected by B. quintana when patients live in poor economic conditions and are also exposed to body lice.

  3. Detection of Bartonella quintana in African Body and Head Lice

    PubMed Central

    Sangaré, Abdoul Karim; Boutellis, Amina; Drali, Rezak; Socolovschi, Cristina; Barker, Stephen C.; Diatta, Georges; Rogier, Christophe; Olive, Marie-Marie; Doumbo, Ogobara K.; Raoult, Didier

    2014-01-01

    Currently, the body louse is the only recognized vector of Bartonella quintana, an organism that causes trench fever. In this work, we investigated the prevalence of this bacterium in human lice in different African countries. We tested 616 head lice and 424 body lice from nine African countries using real-time polymerase chain reaction targeting intergenic spacer region 2 and specific B. quintana genes. Overall, B. quintana DNA was found in 54% and 2% of body and head lice, respectively. Our results also show that there are more body lice positive for B. quintana in poor countries, which was determined by the gross domestic product, than in wealthy areas (228/403 versus 0/21, P < 0.001). A similar finding was obtained for head lice (8/226 versus 2/390, P = 0.007). Our findings suggest that head lice in Africa may be infected by B. quintana when patients live in poor economic conditions and are also exposed to body lice. PMID:24935950

  4. Chemical ecology of animal and human pathogen vectors in a changing global climate.

    PubMed

    Pickett, John A; Birkett, Michael A; Dewhirst, Sarah Y; Logan, James G; Omolo, Maurice O; Torto, Baldwyn; Pelletier, Julien; Syed, Zainulabeuddin; Leal, Walter S

    2010-01-01

    Infectious diseases affecting livestock and human health that involve vector-borne pathogens are a global problem, unrestricted by borders or boundaries, which may be exacerbated by changing global climate. Thus, the availability of effective tools for control of pathogen vectors is of the utmost importance. The aim of this article is to review, selectively, current knowledge of the chemical ecology of pathogen vectors that affect livestock and human health in the developed and developing world, based on key note lectures presented in a symposium on "The Chemical Ecology of Disease Vectors" at the 25th Annual ISCE meeting in Neuchatel, Switzerland. The focus is on the deployment of semiochemicals for monitoring and control strategies, and discusses briefly future directions that such research should proceed along, bearing in mind the environmental challenges associated with climate change that we will face during the 21st century.

  5. Use of Mass-Participation Outdoor Events to Assess Human Exposure to Tickborne Pathogens

    PubMed Central

    Hall, Jessica L.; Alpers, Kathrin; Bown, Kevin J.; Martin, Stephen J.

    2017-01-01

    Mapping the public health threat of tickborne pathogens requires quantification of not only the density of infected host-seeking ticks but also the rate of human exposure to these ticks. To efficiently sample a high number of persons in a short time, we used a mass-participation outdoor event. In June 2014, we sampled ≈500 persons competing in a 2-day mountain marathon run across predominantly tick-infested habitat in Scotland. From the number of tick bites recorded and prevalence of tick infection with Borrelia burgdoferi sensu lato and B. miyamotoi, we quantified the frequency of competitor exposure to the pathogens. Mass-participation outdoor events have the potential to serve as excellent windows for epidemiologic study of tickborne pathogens; their concerted use should improve spatial and temporal mapping of human exposure to infected ticks. PMID:28221107

  6. Use of Mass-Participation Outdoor Events to Assess Human Exposure to Tickborne Pathogens.

    PubMed

    Hall, Jessica L; Alpers, Kathrin; Bown, Kevin J; Martin, Stephen J; Birtles, Richard J

    2017-03-01

    Mapping the public health threat of tickborne pathogens requires quantification of not only the density of infected host-seeking ticks but also the rate of human exposure to these ticks. To efficiently sample a high number of persons in a short time, we used a mass-participation outdoor event. In June 2014, we sampled ≈500 persons competing in a 2-day mountain marathon run across predominantly tick-infested habitat in Scotland. From the number of tick bites recorded and prevalence of tick infection with Borrelia burgdoferi sensu lato and B. miyamotoi, we quantified the frequency of competitor exposure to the pathogens. Mass-participation outdoor events have the potential to serve as excellent windows for epidemiologic study of tickborne pathogens; their concerted use should improve spatial and temporal mapping of human exposure to infected ticks.

  7. The Role of Human Movement in the Transmission of Vector-Borne Pathogens

    PubMed Central

    Stoddard, Steven T.; Morrison, Amy C.; Vazquez-Prokopec, Gonzalo M.; Paz Soldan, Valerie; Kochel, Tadeusz J.; Kitron, Uriel; Elder, John P.; Scott, Thomas W.

    2009-01-01

    Background Human movement is a key behavioral factor in many vector-borne disease systems because it influences exposure to vectors and thus the transmission of pathogens. Human movement transcends spatial and temporal scales with different influences on disease dynamics. Here we develop a conceptual model to evaluate the importance of variation in exposure due to individual human movements for pathogen transmission, focusing on mosquito-borne dengue virus. Methodology and Principal Findings We develop a model showing that the relevance of human movement at a particular scale depends on vector behavior. Focusing on the day-biting Aedes aegypti, we illustrate how vector biting behavior combined with fine-scale movements of individual humans engaged in their regular daily routine can influence transmission. Using a simple example, we estimate a transmission rate (R0) of 1.3 when exposure is assumed to occur only in the home versus 3.75 when exposure at multiple locations—e.g., market, friend's—due to movement is considered. Movement also influences for which sites and individuals risk is greatest. For the example considered, intriguingly, our model predicts little correspondence between vector abundance in a site and estimated R0 for that site when movement is considered. This illustrates the importance of human movement for understanding and predicting the dynamics of a disease like dengue. To encourage investigation of human movement and disease, we review methods currently available to study human movement and, based on our experience studying dengue in Peru, discuss several important questions to address when designing a study. Conclusions/Significance Human movement is a critical, understudied behavioral component underlying the transmission dynamics of many vector-borne pathogens. Understanding movement will facilitate identification of key individuals and sites in the transmission of pathogens such as dengue, which then may provide targets for surveillance

  8. Human metapneumovirus: review of an important respiratory pathogen.

    PubMed

    Panda, Swagatika; Mohakud, Nirmal Kumar; Pena, Lindomar; Kumar, Subrat

    2014-08-01

    Human metapneumovirus (hMPV), discovered in 2001, most commonly causes upper and lower respiratory tract infections in young children, but is also a concern for elderly subjects and immune-compromised patients. hMPV is the major etiological agent responsible for about 5% to 10% of hospitalizations of children suffering from acute respiratory tract infections. hMPV infection can cause severe bronchiolitis and pneumonia in children, and its symptoms are indistinguishable from those caused by human respiratory syncytial virus. Initial infection with hMPV usually occurs during early childhood, but re-infections are common throughout life. Due to the slow growth of the virus in cell culture, molecular methods (such as reverse transcriptase PCR (RT-PCR)) are the preferred diagnostic modality for detecting hMPV. A few vaccine candidates have been shown to be effective in preventing clinical disease, but none are yet commercially available. Our understanding of hMPV has undergone major changes in recent years and in this article we will review the currently available information on the molecular biology and epidemiology of hMPV. We will also review the current therapeutic interventions and strategies being used to control hMPV infection, with an emphasis on possible approaches that could be used to develop an effective vaccine against hMPV.

  9. Can Plant Viruses Cross the Kingdom Border and Be Pathogenic to Humans?

    PubMed Central

    Balique, Fanny; Lecoq, Hervé; Raoult, Didier; Colson, Philippe

    2015-01-01

    Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans. PMID:25903834

  10. Can plant viruses cross the kingdom border and be pathogenic to humans?

    PubMed

    Balique, Fanny; Lecoq, Hervé; Raoult, Didier; Colson, Philippe

    2015-04-20

    Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans.

  11. Seroepidemiology of Bartonella infection in gray foxes from Texas.

    PubMed

    Schaefer, Jonathan D; Moore, Guy M; Namekata, Michael S; Kasten, Rick W; Chomel, Bruno B

    2012-05-01

    Gray foxes (Urocyon cinereoargenteus) were shown to be naturally infected with Bartonella rochalimae, a Bartonella species similar to Bartonella clarridgeiae (B.c.), and Bartonella vinsonii subspecies berkhoffii (B.v.berkhoffii) in northern California. A serological survey was performed to investigate the presence of Bartonella infection in 132 gray foxes from West/Central Texas. Using an immunofluorescence antibody test directed against B.v.berkhoffii and B.c., the antibody prevalence was 50% (66/132), with 22 (33.3%) individuals seropositive for B.c. only, 8 (12.2%) for B.v.berkhoffii, and 36 (54.5%) seroreactive for both B.c. and B.v.berkhoffii. The foxes had 3.63 more odds (95% confidence interval [CI]=1.38, 10.25) to be seropositive for B.c. than for B.v.berkhoffii. Female foxes were more likely to be seropositive for B.c. (odds ratio [OR]=2.90, 95% CI=1.33, 6.36) and also for both antigens (OR=2.50, 95% CI=1.06, 5.90) than males.

  12. Rhizobium pusense is the main human pathogen in the genus Agrobacterium/Rhizobium.

    PubMed

    Aujoulat, F; Marchandin, H; Zorgniotti, I; Masnou, A; Jumas-Bilak, E

    2015-05-01

    Rhizobium pusense was recently described after isolation from the rhizosphere of chickpea. Multilocus sequence-based analysis of clinical isolates identified as Agrobacterium (Rhizobium) radiobacter demonstrated that R. pusense is the main human pathogen within Agrobacterium (Rhizobium) spp. Clinical microbiology of Agrobacterium (Rhizobium) should be considered in the light of recent taxonomic changes.

  13. Draft Genome Sequence of the Animal and Human Pathogen Malassezia pachydermatis Strain CBS 1879

    PubMed Central

    Triana, Sergio; González, Andrés; Ohm, Robin A.; Wösten, Han A. B.; de Cock, Hans; Restrepo, Silvia

    2015-01-01

    Malassezia pachydermatis is a basidiomycetous yeast that causes infections in humans and animals. Here, we report the genome sequence of Malassezia pachydermatis strain CBS 1879, which will facilitate the study of mechanisms underlying pathogenicity of the only non-lipid-dependent Malasezzia species. PMID:26472839

  14. Genome sequence of the human- and animal-pathogenic strain Nocardia cyriacigeorgica GUH-2.

    PubMed

    Zoropogui, Anthony; Pujic, Petar; Normand, Philippe; Barbe, Valérie; Beaman, Blaine; Beaman, LoVelle; Boiron, Patrick; Colinon, Céline; Deredjian, Amélie; Graindorge, Arnault; Mangenot, Sophie; Nazaret, Sylvie; Neto, Manuelle; Petit, Stéphanie; Roche, David; Vallenet, David; Rodríguez-Nava, Veronica; Richard, Yves; Cournoyer, Benoit; Blaha, Didier

    2012-04-01

    The pathogenic strain Nocardia cyriacigeorgica GUH-2 was isolated from a fatal human nocardiosis case, and its genome was sequenced. The complete genomic sequence of this strain contains 6,194,645 bp, an average G+C content of 68.37%, and no plasmids. We also identified several protein-coding genes to which N. cyriacigeorgica's virulence can potentially be attributed.

  15. Developing a Salivary Antibody Multiplex Immunoassay to Measure Human Exposure to Environmental Pathogens

    EPA Science Inventory

    The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. The principal objective of this work is to devel...

  16. Cold plasma - a non-thermal processing technology to inactivate human pathogens on foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma is a novel non-thermal food processing technology, suitable for application to fresh and fresh-cut fruits and vegetables. Reductions of 3-5 logs have been achieved against human pathogens such as Salmonella and E. coli O157:H7 on fresh produce and against phytopathogens and spoilage orga...

  17. Genome Sequence of a Strain of the Human Pathogenic Bacterium Pseudomonas alcaligenes That Caused Bloodstream Infection.

    PubMed

    Suzuki, Masato; Suzuki, Satowa; Matsui, Mari; Hiraki, Yoichi; Kawano, Fumio; Shibayama, Keigo

    2013-10-31

    Pseudomonas alcaligenes, a Gram-negative aerobic bacterium, is a rare opportunistic human pathogen. Here, we report the whole-genome sequence of P. alcaligenes strain MRY13-0052, which was isolated from a bloodstream infection in a medical institution in Japan and is resistant to antimicrobial agents, including broad-spectrum cephalosporins and monobactams.

  18. Evolutionary study of Yersinia genomes deciphers emergence of human pathogenic species

    PubMed Central

    Tan, Shi Yang; Tan, Irene Kit Ping; Tan, Mui Fern; Dutta, Avirup; Choo, Siew Woh

    2016-01-01

    On record, there are 17 species in the Yersinia genus, of which three are known to be pathogenic to human. While the chromosomal and pYV (or pCD1) plasmid-borne virulence genes as well as pathogenesis of these three species are well studied, their genomic evolution is poorly understood. Our study aims to predict the key evolutionary events that led to the emergence of pathogenic Yersinia species by analyzing gene gain-and-loss, virulence genes, and “Clustered regularly-interspaced short palindromic repeats”. Our results suggest that the most recent ancestor shared by the human pathogenic Yersinia was most probably an environmental species that had adapted to the human body. This might have led to ecological specialization that diverged Yersinia into ecotypes and distinct lineages based on differential gene gain-and-loss in different niches. Our data also suggest that Y. pseudotuberculosis group might be the donor of the ail virulence gene to Y. enterocolitica. Hence, we postulate that evolution of human pathogenic Yersinia might not be totally in parallel, but instead, there were lateral gene transfer events. Furthermore, the presence of virulence genes seems to be important for the positive selection of virulence plasmid. Our studies provide better insights into the evolutionary biology of these bacteria. PMID:27796355

  19. Giardia duodenalis induces pathogenic dysbiosis of human intestinal microbiota biofilms.

    PubMed

    Beatty, Jennifer K; Akierman, Sarah V; Motta, Jean-Paul; Muise, Stacy; Workentine, Matthew L; Harrison, Joe J; Bhargava, Amol; Beck, Paul L; Rioux, Kevin P; McKnight, Gordon Webb; Wallace, John L; Buret, Andre G

    2017-02-22

    Giardia duodenalis is a prevalent cause of acute diarrheal disease worldwide. However, recent outbreaks in Italy and Norway have revealed a link between giardiasis and the subsequent development of chronic post-infectious irritable bowel syndrome. While the mechanisms underlying the causation of post-infectious irritable bowel syndrome remain obscure, recent findings suggest that alterations in gut microbiota communities are linked to the pathophysiology of irritable bowel syndrome. In the present study, we use a laboratory biofilm system to culture and enrich mucosal microbiota from human intestinal biopsies. Subsequently, we show that co-culture with Giardia induces disturbances in biofilm species composition and biofilm structure resulting in microbiota communities that are intrinsically dysbiotic - even after the clearance of Giardia. These microbiota abnormalities were mediated in part by secretory-excretory Giardia cysteine proteases. Using in vitro cell culture and germ-free murine infection models, we show that Giardia-induced disruptions of microbiota promote bacterial invasion, resulting in epithelial apoptosis, tight junctional disruption, and bacterial translocation across an intestinal epithelial barrier. Additionally, these dysbiotic microbiota communities resulted in increased activation of the Toll-like receptor 4 signalling pathway, and overproduction of the pro-inflammatory cytokine IL-1beta in humanized germ-free mice. Previous studies that have sought explanations and risk factors for the development of post-infectious irritable bowel syndrome have focused on features of enteropathogens and attributes of the infected host. We propose that polymicrobial interactions involving Giardia and gut microbiota may cause persistent dysbiosis, offering a new interpretation of the reasons why those afflicted with giardiasis are predisposed to gastrointestinal disorders post-infection.

  20. Identification of Different Bartonella Species in the Cattle Tail Louse (Haematopinus quadripertusus) and in Cattle Blood

    PubMed Central

    Gutiérrez, Ricardo; Cohen, Liron; Morick, Danny; Mumcuoglu, Kosta Y.; Harrus, Shimon

    2014-01-01

    Bartonella spp. are worldwide-distributed facultative intracellular bacteria that exhibit an immense genomic diversity across mammal and arthropod hosts. The occurrence of cattle-associated Bartonella species was investigated in the cattle tail louse Haematopinus quadripertusus and in dairy cattle blood from Israel. Lice were collected from cattle from two dairy farms during summer 2011, and both lice and cow blood samples were collected from additional seven farms during the successive winter. The lice were identified morphologically and molecularly using 18S rRNA sequencing. Thereafter, they were screened for Bartonella DNA by conventional and real-time PCR assays using four partial genetic loci (gltA, rpoB, ssrA, and internal transcribed spacer [ITS]). A potentially novel Bartonella variant, closely related to other ruminant bartonellae, was identified in 11 of 13 louse pools collected in summer. In the cattle blood, the prevalence of Bartonella infection was 38%, identified as B. bovis and B. henselae (24 and 12%, respectively). A third genotype, closely related to Bartonella melophagi and Bartonella chomelii (based on the ssrA gene) and to B. bovis (based on the ITS sequence) was identified in a single cow. The relatively high prevalence of these Bartonella species in cattle and the occurrence of phylogenetically diverse Bartonella variants in both cattle and their lice suggest the potential role of this animal system in the generation of Bartonella species diversity. PMID:24973066

  1. Prevalence, hematological findings and genetic diversity of Bartonella spp. in domestic cats from Valdivia, Southern Chile.

    PubMed

    Müller, Ananda; Walker, Romina; Bittencourt, Pedro; Machado, Rosangela Zacarias; Benevenute, Jyan Lucas; DO Amaral, Renan Bressiani; Gonçalves, Luiz Ricardo; André, Marcos Rogério

    2016-12-12

    The present study determined the prevalence, hematological findings and genetic diversity of Bartonella spp. in domestic cats from Valdivia, Southern Chile. A complete blood count and nuoG gene real-time quantitative PCR (qPCR) for Bartonella spp. were performed in 370 blood samples from cats in Valdivia, Southern Chile. nuoG qPCR-positive samples were submitted to conventional PCR for the gltA gene and sequencing for species differentiation and phylogenetic analysis. Alignment of gltA gene was used to calculate the nucleotide diversity, polymorphic level, number of variable sites and average number of nucleotide differences. Bartonella DNA prevalence in cats was 18·1% (67/370). Twenty-nine samples were sequenced with 62·0% (18/29) identified as Bartonella henselae, 34·4% (10/29) as Bartonella clarridgeiae, and 3·4% (1/29) as Bartonella koehlerae. Bartonella-positive cats had low DNA bacterial loads and their hematological parameters varied minimally. Each Bartonella species from Chile clustered together and with other Bartonella spp. described in cats worldwide. Bartonella henselae and B. clarridgeiae showed a low number of variable sites, haplotypes and nucleotide diversity. Bartonella clarridgeiae and B. koehlerae are reported for the first time in cats from Chile and South America, respectively.

  2. Exserohilum rostratum: Characterization of a Cross-Kingdom Pathogen of Plants and Humans

    PubMed Central

    Sharma, Kalpana; Goss, Erica M.; Dickstein, Ellen R.; Smith, Matthew E.; Johnson, Judith A.; Southwick, Frederick S.; van Bruggen, Ariena H. C.

    2014-01-01

    Pathogen host shifts represent a major source of new infectious diseases. There are several examples of cross-genus host jumps that have caused catastrophic epidemics in animal and plant species worldwide. Cross-kingdom jumps are rare, and are often associated with nosocomial infections. Here we provide an example of human-mediated cross-kingdom jumping of Exserohilum rostratum isolated from a patient who had received a corticosteroid injection and died of fungal meningitis in a Florida hospital in 2012. The clinical isolate of E. rostratum was compared with two plant pathogenic isolates of E. rostratum and an isolate of the closely related genus Bipolaris in terms of morphology, phylogeny, and pathogenicity on one C3 grass, Gulf annual rye grass (Lolium multiflorum), and two C4 grasses, Japanese stilt grass (Microstegium vimineum) and bahia grass (Paspalum notatum). Colony growth and color, as well as conidia shape and size were the same for the clinical and plant isolates of E. rostratum, while these characteristics differed slightly for the Bipolaris sp. isolate. The plant pathogenic and clinical isolates of E. rostratum were indistinguishable based on morphology and ITS and 28S rDNA sequence analysis. The clinical isolate was as pathogenic to all grass species tested as the plant pathogenic strains that were originally isolated from plant hosts. The clinical isolate induced more severe symptoms on stilt grass than on rye grass, while this was the reverse for the plant isolates of E. rostratum. The phylogenetic similarity between the clinical and plant-associated E. rostratum isolates and the ability of the clinical isolate to infect plants suggests that a plant pathogenic strain of E. rostratum contaminated the corticosteroid injection fluid and was able to cause systemic disease in the affected patient. This is the first proof that a clinical isolate of E. rostratum is also an effective plant pathogen. PMID:25285444

  3. Bartonella species in wild rodents and fleas from them in Japan.

    PubMed

    Kabeya, Hidenori; Inoue, Kai; Izumi, Yasuhito; Morita, Tatsushi; Imai, Soichi; Maruyama, Soichi

    2011-12-01

    The purpose of this study was to assess the role of fleas for transmission of Bartonella species among wild rodents in Japan. Flea samples were collected from wild rodents and examined genetically for Bartonella infection. Bartonella DNA was detected from 16 of 40 (40.0%) flea samples. Sequence analysis demonstrated that 3 of 16 (18.8%) of the Bartonella-positive animals were infested with fleas from which the closely related Bartonella DNA sequence was detected, indicating that the fleas acquired Bartonella from the infested rodents. The DNA was detected in hemolymph, the midgut and the ovary (only in female), indicating that Bartonella might be colonized through the midgut and distributed into the body.

  4. Antigenic Relationships among Human Pathogenic Orientia tsutsugamushi Isolates from Thailand

    PubMed Central

    Nawtaisong, Pruksa; Tanganuchitcharnchai, Ampai; Smith, Derek J.; Day, Nicholas P. J.; Paris, Daniel H.

    2016-01-01

    Background Scrub typhus is a common cause of undiagnosed febrile illness in certain tropical regions, but can be easily treated with antibiotics. The causative agent, Orientia tsutsugamushi, is antigenically variable which complicates diagnosis and efforts towards vaccine development. Methodology/Principal Findings This study aimed to dissect the antigenic and genetic relatedness of O. tsutsugamushi strains and investigate sero-diagnostic reactivities by titrating individual patient sera against their O. tsutsugamushi isolates (whole-cell antigen preparation), in homologous and heterologous serum-isolate pairs from the same endemic region in NE Thailand. The indirect immunofluorescence assay was used to titrate Orientia tsutsugamushi isolates and human sera, and a mathematical technique, antigenic cartography, was applied to these data to visualise the antigenic differences and cross-reactivity between strains and sera. No functional or antigen-specific analyses were performed. The antigenic variation found in clinical isolates was much less pronounced than the genetic differences found in the 56kDa type-specific antigen genes. The Karp-like sera were more broadly reactive than the Gilliam-like sera. Conclusions/Significance Antigenic cartography worked well with scrub typhus indirect immunofluorescence titres. The data from humoral responses suggest that a Karp-like strain would provide broader antibody cross-reactivity than a Gilliam-like strain. Although previous exposure to O. tsutsugamushi could not be ruled out, scrub typhus patient serum antibody responses were characterised by strong homologous, but weak heterologous antibody titres, with little evidence for cross-reactivity by Gilliam-like sera, but a broader response from some Karp-like sera. This work highlights the importance of antigenic variation in O. tsutsugamushi diagnosis and determination of new serotypes. PMID:27248711

  5. Including pathogen risk in life cycle assessment of wastewater management. 2. Quantitative comparison of pathogen risk to other impacts on human health.

    PubMed

    Heimersson, Sara; Harder, Robin; Peters, Gregory M; Svanström, Magdalena

    2014-08-19

    Resource recovery from sewage sludge has the potential to save natural resources, but the potential risks connected to human exposure to heavy metals, organic micropollutants, and pathogenic microorganisms attract stakeholder concern. The purpose of the presented study was to include pathogen risks to human health in life cycle assessment (LCA) of wastewater and sludge management systems, as this is commonly omitted from LCAs due to methodological limitations. Part 1 of this article series estimated the overall pathogen risk for such a system with agricultural use of the sludge, in a way that enables the results to be integrated in LCA. This article (part 2) presents a full LCA for two model systems (with agricultural utilization or incineration of sludge) to reveal the relative importance of pathogen risk in relation to other potential impacts on human health. The study showed that, for both model systems, pathogen risk can constitute an important part (in this study up to 20%) of the total life cycle impacts on human health (expressed in disability adjusted life years) which include other important impacts such as human toxicity potential, global warming potential, and photochemical oxidant formation potential.

  6. [ASSESSMENT OF POTENTIAL RISK FOR CONTAMINATION OF SURFACE WATER RESERVOIRS BY PATHOGENS OF HUMAN PARASITIC DISEASES].

    PubMed

    Khromenkova, E P; Dimidova, L L; Dumbadze, O S; Aidinov, G T; Shendo, G L; Agirov, A Kh; Batchaev, Kh Kh

    2015-01-01

    Sanitary and parasitological studies of the waste effluents and surface reservoir waters were conducted in the south of Russia. The efficiency of purification of waste effluents from the pathogens of parasitic diseases was investigated in the region's sewage-purification facilities. The water of the surface water reservoirs was found to contain helminthic eggs and larvae and intestinal protozoan cysts because of the poor purification and disinfection of service fecal sewage waters. The poor purification and disinvasion of waste effluents in the region determine the potential risk of contamination of the surface water reservoirs and infection of the population with the pathogens of human parasitic diseases.

  7. Galleria mellonella as a model host for human pathogens: recent studies and new perspectives.

    PubMed

    Junqueira, Juliana Campos

    2012-10-01

    The number of studies using G. mellonella as a model host for human pathogens has increased significantly in the last few years. Important studies were published from different countries for evaluating the pathogenesis of bacterial and fungal infections and for exploring the host defenses against pathogens. Therefore, standardized conditions for the use of G. melonella larvae need to be established. Recent research showed that the deprivation of G. mellonella larvae of food during the experiment caused a reduction in immune responses and an increased susceptibility to infection, suggesting that incubating of larvae in the presence or absence of nutrition may affect the results and comparisons among different laboratories.

  8. Transmission dynamics of Bartonella sp. strain OE 1-1 in Sundevall's jirds (Meriones crassus).

    PubMed

    Morick, Danny; Krasnov, Boris R; Khokhlova, Irina S; Gottlieb, Yuval; Harrus, Shimon

    2013-02-01

    A high prevalence of Bartonella infection is found in many natural systems; however, the transmission dynamics leading to observations of these infections is not fully understood. The capability of Xenopsylla ramesis fleas to serve as competent vectors of Bartonella sp. OE 1-1 (a strain closely related to the zoonotic Bartonella elizabethae) to Meriones crassus jirds was investigated. Naïve X. ramesis fleas were placed for 72 h on naïve jirds or jirds that were either experimentally or naturally infected with Bartonella sp. strain OE 1-1, after which they were placed on naïve jirds. Postfeeding, 69 to 100% of the fleas collected from each Bartonella-positive jird contained Bartonella DNA, and all naïve jirds became positive for Bartonella sp. OE 1-1 after infestation with the infected fleas. In addition, maternal transmission of Bartonella sp. OE 1-1 in jirds was tested by mating 5 Bartonella-positive and 5 naïve female jirds with 10 naïve male jirds in the absence of fleas. Fifteen offspring were delivered by each group. Cultures of blood drawn from all offspring on days 35 and 47 postdelivery were found to be negative for Bartonella. A single spleen sample from the offspring of a Bartonella-positive mother was found molecularly positive for Bartonella sp. OE 1-1. This study demonstrates that X. ramesis fleas are competent vectors of Bartonella sp. OE 1-1 to M. crassus jirds and indicates that maternal transmission is probably not the major transmission route from female jirds to their offspring. We suggest that the dynamics of Bartonella sp. OE 1-1 in the M. crassus jird population in nature is mostly dependent on its vectors.

  9. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools.

    PubMed

    Bittar, Fadi; Keita, Mamadou B; Lagier, Jean-Christophe; Peeters, Martine; Delaporte, Eric; Raoult, Didier

    2014-11-24

    Wild apes are considered to be the most serious reservoir and source of zoonoses. However, little data are available about the gut microbiota and pathogenic bacteria in gorillas. For this propose, a total of 48 fecal samples obtained from 21 Gorilla gorilla gorilla individuals (as revealed via microsatellite analysis) were screened for human bacterial pathogens using culturomics and molecular techniques. By applying culturomics to one index gorilla and using specific media supplemented by plants, we tested 12,800 colonies and identified 147 different bacterial species, including 5 new species. Many opportunistic pathogens were isolated, including 8 frequently associated with human diseases; Mycobacterium bolletii, Proteus mirabilis, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Escherichia coli, Staphylococcus aureus and Clostridium botulinum. The genus Treponema accounted for 27.4% of the total reads identified at the genus level via 454 pyrosequencing. Using specific real-time PCR on 48 gorilla fecal samples, in addition to classical human pathogens, we also observed the fastidious bacteria Bartonella spp. Borrelia spp., Coxiella burnetii and Tropheryma whipplei in the gorilla population. We estimated that the prevalence of these pathogens vary between 4.76% and 85.7%. Therefore, gorillas share many bacterial pathogens with humans suggesting that they could be a reservoir for their emergence.

  10. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools

    PubMed Central

    Bittar, Fadi; Keita, Mamadou B.; Lagier, Jean-Christophe; Peeters, Martine; Delaporte, Eric; Raoult, Didier

    2014-01-01

    Wild apes are considered to be the most serious reservoir and source of zoonoses. However, little data are available about the gut microbiota and pathogenic bacteria in gorillas. For this propose, a total of 48 fecal samples obtained from 21 Gorilla gorilla gorilla individuals (as revealed via microsatellite analysis) were screened for human bacterial pathogens using culturomics and molecular techniques. By applying culturomics to one index gorilla and using specific media supplemented by plants, we tested 12,800 colonies and identified 147 different bacterial species, including 5 new species. Many opportunistic pathogens were isolated, including 8 frequently associated with human diseases; Mycobacterium bolletii, Proteus mirabilis, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Escherichia coli, Staphylococcus aureus and Clostridium botulinum. The genus Treponema accounted for 27.4% of the total reads identified at the genus level via 454 pyrosequencing. Using specific real-time PCR on 48 gorilla fecal samples, in addition to classical human pathogens, we also observed the fastidious bacteria Bartonella spp. Borrelia spp., Coxiella burnetii and Tropheryma whipplei in the gorilla population. We estimated that the prevalence of these pathogens vary between 4.76% and 85.7%. Therefore, gorillas share many bacterial pathogens with humans suggesting that they could be a reservoir for their emergence. PMID:25417711

  11. Bacteria associated with crabs from cold waters with emphasis on the occurrence of potential human pathogens.

    PubMed Central

    Faghri, M A; Pennington, C L; Cronholm, L S; Atlas, R M

    1984-01-01

    A diverse array of bacterial species, including several potential human pathogens, was isolated from edible crabs collected in cold waters. Crabs collected near Kodiak Island, Alaska, contained higher levels of bacteria than crabs collected away from regions of human habitation. The bacteria associated with the crabs collected near Kodiak included Yersinia enterocolitica, Klebsiella pneumoniae, and coagulase-negative Staphylococcus species; the pathogenicity of these isolates was demonstrated in mice. Although coliforms were not found, the bacterial species associated with the tissues of crabs collected near Kodiak indicate possible fecal contamination that may have occurred through contact with sewage. Compared with surrounding waters and sediments, the crab tissues contained much higher proportions of gram-positive cocci. As revealed by indirect plate counts and direct scanning electron microscopic observations, muscle and hemolymph tissues contained much lower levels of bacteria than shell and gill tissues. After the death of a crab, however, the numbers of bacteria associated with hemolymph and muscle tissues increased significantly. Microcosm studies showed that certain bacterial populations, e.g., Vibrio cholerae, can be bioaccumulated in crab gill tissues. The results of this study indicate the need for careful review of waste disposal practices where edible crabs may be contaminated with microorganisms that are potential human pathogens and the need for surveillance of shellfish for pathogenic microorganisms that naturally occur in marine ecosystems. Images PMID:6742824

  12. Dissection of the host-pathogen interaction in human tuberculosis using a bioengineered 3-dimensional model

    PubMed Central

    Tezera, Liku B; Bielecka, Magdalena K; Chancellor, Andrew; Reichmann, Michaela T; Shammari, Basim Al; Brace, Patience; Batty, Alex; Tocheva, Annie; Jogai, Sanjay; Marshall, Ben G; Tebruegge, Marc; Jayasinghe, Suwan N; Mansour, Salah; Elkington, Paul T

    2017-01-01

    Cell biology differs between traditional cell culture and 3-dimensional (3-D) systems, and is modulated by the extracellular matrix. Experimentation in 3-D presents challenges, especially with virulent pathogens. Mycobacterium tuberculosis (Mtb) kills more humans than any other infection and is characterised by a spatially organised immune response and extracellular matrix remodelling. We developed a 3-D system incorporating virulent mycobacteria, primary human blood mononuclear cells and collagen–alginate matrix to dissect the host-pathogen interaction. Infection in 3-D led to greater cellular survival and permitted longitudinal analysis over 21 days. Key features of human tuberculosis develop, and extracellular matrix integrity favours the host over the pathogen. We optimised multiparameter readouts to study emerging therapeutic interventions: cytokine supplementation, host-directed therapy and immunoaugmentation. Each intervention modulates the host-pathogen interaction, but has both beneficial and harmful effects. This methodology has wide applicability to investigate infectious, inflammatory and neoplastic diseases and develop novel drug regimes and vaccination approaches. DOI: http://dx.doi.org/10.7554/eLife.21283.001 PMID:28063256

  13. Human pathogenic bacteria, fungi, and viruses in Drosophila: disease modeling, lessons, and shortcomings.

    PubMed

    Panayidou, Stavria; Ioannidou, Eleni; Apidianakis, Yiorgos

    2014-02-15

    Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila-microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection.

  14. Behavioural defences in animals against pathogens and parasites: parallels with the pillars of medicine in humans

    PubMed Central

    Hart, Benjamin L.

    2011-01-01

    No other theme in animal biology seems to be more central than the concept of employing strategies to survive and successfully reproduce. In nature, controlling or avoiding pathogens and parasites is an essential fitness strategy because of the ever-present disease-causing organisms. The disease-control strategies discussed here are: physical avoidance and removal of pathogens and parasites; quarantine or peripheralization of conspecifics that could be carrying potential pathogens; herbal medicine, animal style, to prevent or treat an infection; potentiation of the immune system; and care of sick or injured group members. These strategies are seen as also encompassing the pillars of human medicine: (i) quarantine; (ii) immune-boosting vaccinations; (iii) use of medicinal products; and (iv) caring or nursing. In contrast to animals, in humans, the disease-control strategies have been consolidated into a consistent and extensive medical system. A hypothesis that explains some of this difference between animals and humans is that humans are sick more often than animals. This increase in sickness in humans leading to an extensive, cognitively driven medical system is attributed to an evolutionary dietary transition from mostly natural vegetation to a meat-based diet, with an increase in health-eroding free radicals and a dietary reduction of free-radical-scavenging antioxidants. PMID:22042917

  15. The Pathogen Recognition Receptor NOD2 Regulates Human FOXP3+ T Cell Survival

    PubMed Central

    Rahman, Meher K.; Midtling, Emilie H.; Svingen, Phyllis A.; Xiong, Yuning; Bell, Michael P.; Tung, Jeanne; Smyrk, Tom; Egan, Larry J.; Faubion, William A.

    2013-01-01

    The expression of pathogen recognition receptors in human FOXP3+ T regulatory cells is established, yet the function of these receptors is currently obscure. In the process of studying the function of both peripheral and lamina propria FOXP3+ lymphocytes in patients with the human inflammatory bowel disease Crohn’s disease, we observed a clear deficiency in the quantity of FOXP3+ lymphocytes in patients with disease-associated polymorphisms in the pathogen recognition receptor gene NOD2. Subsequently, we determined that the NOD2 ligand, muramyl dipeptide (MDP), activates NF-κB in primary human FOXP3+ T cells. This activation is functionally relevant, as MDP-stimulated human FOXP3+ T cells are protected from death receptor Fas-mediated apoptosis. Importantly, apoptosis protection was not evident in MDP-stimulated FOXP3+ T cells isolated from a patient with the disease-associated polymorphism. Thus, we propose that one function of pathogen recognition receptors in human T regulatory cells is the protection against death receptor-mediated apoptosis in a Fas ligand-rich environment, such as that of the inflamed intestinal subepithelial space. PMID:20483763

  16. Identification of human enteric pathogens in gull feces at Southwestern Lake Michigan bathing beaches.

    PubMed

    Kinzelman, Julie; McLellan, Sandra L; Amick, Ashley; Preedit, Justine; Scopel, Caitlin O; Olapade, Ola; Gradus, Steve; Singh, Ajaib; Sedmak, Gerald

    2008-12-01

    Ring-billed (Larus delawarensis Ord, 1815) and herring (Larus argentatus Pontoppidan, 1763) gulls are predominant species of shorebirds in coastal areas. Gulls contribute to the fecal indicator burden in beach sands, which, once transported to bathing waters, may result in water quality failures. The importance of these contamination sources must not be overlooked when considering the impact of poor bathing water quality on human health. This study examined the occurrence of human enteric pathogens in gull populations at Racine, Wisconsin. For 12 weeks in 2004 and 2005, and 7 weeks in 2006, 724 gull fecal samples were examined for pathogen occurrence on traditional selective media (BBL CHROMagar-Salmonella, Remel Campy-BAP, 7% horse blood agar) or through the use of novel isolation techniques (Campylobacter, EC FP5-funded CAMPYCHECK Project), and confirmed using polymerase chain reaction (PCR) for pathogens commonly harbored in gulls. An additional 226 gull fecal samples, collected in the same 12-week period in 2004, from a beach in Milwaukee, Wisconsin, were evaluated with standard microbiological methods and PCR. Five isolates of Salmonella (0.7%), 162 (22.7%) isolates of Campylobacter, 3 isolates of Aeromonas hydrophila group 2 (0.4%), and 28 isolates of Plesiomonas shigelloides (3.9%) were noted from the Racine beach. No occurrences of Salmonella and 3 isolates of Campylobacter (0.4%) were found at the Milwaukee beach. A subset of the 2004 samples was also examined for Giardia and Cryptosporidium and was found to be negative. Information as to the occurrence of human pathogens in beach ecosystems is essential to design further studies assessing human health risk and to determine the parameters influencing the fate and transport of pathogens in the nearshore environment.

  17. Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables.

    PubMed

    Beuchat, Larry R

    2002-04-01

    Outbreaks of human infections associated with consumption of raw fruits and vegetables have occurred with increased frequency during the past decade. Factors contributing to this increase may include changes in agronomic and processing practices, an increase in per capita consumption of raw or minimally processed fruits and vegetables, increased international trade and distribution, and an increase in the number of immuno-compromised consumers. A general lack of efficacy of sanitizers in removing or killing pathogens on raw fruits and vegetables has been attributed, in part, to their inaccessibility to locations within structures and tissues that may harbor pathogens. Understanding the ecology of pathogens and naturally occurring microorganisms is essential before interventions for elimination or control of growth can be devised.

  18. Hyphal Growth in Human Fungal Pathogens and Its Role in Virulence

    PubMed Central

    Brand, Alexandra

    2012-01-01

    Most of the fungal species that infect humans can grow in more than one morphological form but only a subset of pathogens produce filamentous hyphae during the infection process. This subset is phylogenetically unrelated and includes the commonly carried yeasts, Candida albicans, C. dubliniensis, and Malassezia spp., and the acquired pathogens, Aspergillus fumigatus and dermatophytes such as Trichophyton rubrum and T. mentagrophytes. The primary function of hypha formation in these opportunistic pathogens is to invade the substrate they are adhered to, whether biotic or abiotic, but other functions include the directional translocation between host environments, consolidation of the colony, nutrient acquisition and the formation of 3-dimensional matrices. To support these functions, polarised hyphal growth is co-regulated with other factors that are essential for normal hypha function in vivo. PMID:22121367

  19. Phage display-based strategies for cloning and optimization of monoclonal antibodies directed against human pathogens.

    PubMed

    Clementi, Nicola; Mancini, Nicasio; Solforosi, Laura; Castelli, Matteo; Clementi, Massimo; Burioni, Roberto

    2012-01-01

    In the last two decades, several phage display-selected monoclonal antibodies (mAbs) have been described in the literature and a few of them have managed to reach the clinics. Among these, the anti-respiratory syncytial virus (RSV) Palivizumab, a phage-display optimized mAb, is the only marketed mAb directed against microbial pathogens. Palivizumab is a clear example of the importance of choosing the most appropriate strategy when selecting or optimizing an anti-infectious mAb. From this perspective, the extreme versatility of phage-display technology makes it a useful tool when setting up different strategies for the selection of mAbs directed against human pathogens, especially when their possible clinical use is considered. In this paper, we review the principal phage display strategies used to select anti-infectious mAbs, with particular attention focused on those used against hypervariable pathogens, such as HCV and influenza viruses.

  20. Image-based Analysis to Study Plant Infection with Human Pathogens

    PubMed Central

    Schikora, Marek; Schikora, Adam

    2014-01-01

    Our growing awareness that contaminated plants, fresh fruits and vegetables are responsible for a significant proportion of food poisoning with pathogenic microorganisms indorses the demand to understand the interactions between plants and human pathogens. Today we understand that those pathogens do not merely survive on or within plants, they actively infect plant organisms by suppressing their immune system. Studies on the infection process and disease development used mainly physiological, genetic, and molecular approaches, and image-based analysis provides yet another method for this toolbox. Employed as an observational tool, it bears the potential for objective and high throughput approaches, and together with other methods it will be very likely a part of data fusion approaches in the near future. PMID:25505501

  1. Genomic reconnaissance of clinical isolates of emerging human pathogen Mycobacterium abscessus reveals high evolutionary potential

    PubMed Central

    Choo, Siew Woh; Wee, Wei Yee; Ngeow, Yun Fong; Mitchell, Wayne; Tan, Joon Liang; Wong, Guat Jah; Zhao, Yongbing; Xiao, Jingfa

    2014-01-01

    Mycobacterium abscessus (Ma) is an emerging human pathogen that causes both soft tissue infections and systemic disease. We present the first comparative whole-genome study of Ma strains isolated from patients of wide geographical origin. We found a high proportion of accessory strain-specific genes indicating an open, non-conservative pan-genome structure, and clear evidence of rapid phage-mediated evolution. Although we found fewer virulence factors in Ma compared to M. tuberculosis, our data indicated that Ma evolves rapidly and therefore should be monitored closely for the acquisition of more pathogenic traits. This comparative study provides a better understanding of Ma and forms the basis for future functional work on this important pathogen. PMID:24515248

  2. Assessing microbial decontamination of indoor air with particular focus on human pathogenic viruses.

    PubMed

    Duchaine, Caroline

    2016-09-02

    Transmission of bacterial, fungal, and viral pathogens is of primary importance in public and occupational health and infection control. Although several standardized protocols have been proposed to target microbes on fomites through surface decontamination, use of microbicidal agents, and cleaning processes, only limited guidance is available on microbial decontamination of indoor air to reduce the risk of pathogen transmission between individuals. This article reviews the salient aspects of airborne transmission of infectious agents, exposure assessment, in vitro assessment of microbicidal agents, and processes for air decontamination for infection prevention and control. Laboratory-scale testing (eg, rotating chambers, wind tunnels) and promising field-scale methodologies to decontaminate indoor air are also presented. The potential of bacteriophages as potential surrogates for the study of airborne human pathogenic viruses is also discussed.

  3. Bartonella henselae Infective Endocarditis Detected by a Prolonged Blood Culture.

    PubMed

    Mito, Tsutomu; Hirota, Yusuke; Suzuki, Shingo; Noda, Kazutaka; Uehara, Takanori; Ohira, Yoshiyuki; Ikusaka, Masatomi

    A 65-year-old Japanese man was admitted with a 4-month history of fatigue and exertional dyspnea. Transthoracic echocardiography revealed a vegetation on the aortic valve and severe aortic regurgitation. Accordingly, infective endocarditis and heart failure were diagnosed. Although a blood culture was negative on day 7 after admission, a prolonged blood culture with subculture was performed according to the patient's history of contact with cats. Consequently, Bartonella henselae was isolated. Bartonella species are fastidious bacteria that cause blood culture-negative infective endocarditis. This case demonstrates that B. henselae may be detected by prolonged incubation of blood cultures.

  4. Bartonella spp. antibodies in forensic samples from Swedish heroin addicts.

    PubMed

    McGill, Svena; Hjelm, Eva; Rajs, Jovan; Lindquist, Olle; Friman, Göran

    2003-06-01

    A high frequency of Bartonella elizabethae seropositivity (39%) was recorded among intravenous heroin addicts in Stockholm, Sweden, who died from a lethal injection. Some of the B. elizabethae-seropositive individuals also had antibodies to B. henselae Houston-1, B. grahamii, and B. quintana, but none had antibodies to B. henselae Marseille or B. vinsonii subsp. vinsonii. Hepatitis was a frequent finding but no case had peliosis hepatitis. There was no case of endocarditis, but in three persons active subacute-to-chronic myocarditis was found; two of these cases were Bartonella-positive and HIV-negative.

  5. Bartonella henselae Infective Endocarditis Detected by a Prolonged Blood Culture

    PubMed Central

    Mito, Tsutomu; Hirota, Yusuke; Suzuki, Shingo; Noda, Kazutaka; Uehara, Takanori; Ohira, Yoshiyuki; Ikusaka, Masatomi

    2016-01-01

    A 65-year-old Japanese man was admitted with a 4-month history of fatigue and exertional dyspnea. Transthoracic echocardiography revealed a vegetation on the aortic valve and severe aortic regurgitation. Accordingly, infective endocarditis and heart failure were diagnosed. Although a blood culture was negative on day 7 after admission, a prolonged blood culture with subculture was performed according to the patient's history of contact with cats. Consequently, Bartonella henselae was isolated. Bartonella species are fastidious bacteria that cause blood culture-negative infective endocarditis. This case demonstrates that B. henselae may be detected by prolonged incubation of blood cultures. PMID:27746451

  6. Potential Human Pathogenic Bacteria in a Mixed Urban Watershed as Revealed by Pyrosequencing

    PubMed Central

    Ibekwe, A. Mark; Leddy, Menu; Murinda, Shelton E.

    2013-01-01

    Current microbial source tracking (MST) methods for water depend on testing for fecal indicator bacterial counts or specific marker gene sequences to identify fecal contamination where potential human pathogenic bacteria could be present. In this study, we applied 454 high-throughput pyrosequencing to identify bacterial pathogen DNA sequences, including those not traditionally monitored by MST and correlated their abundances to specific sources of contamination such as urban runoff and agricultural runoff from concentrated animal feeding operations (CAFOs), recreation park area, waste-water treatment plants, and natural sites with little or no human activities. Samples for pyrosequencing were surface water, and sediment collected from 19 sites. A total of 12,959 16S rRNA gene sequences with average length of ≤400 bp were obtained, and were assigned to corresponding taxonomic ranks using ribosomal database project (RDP), Classifier and Greengenes databases. The percent of total potential pathogens were highest in urban runoff water (7.94%), agricultural runoff sediment (6.52%), and Prado Park sediment (6.00%), respectively. Although the numbers of DNA sequence tags from pyrosequencing were very high for the natural site, corresponding percent potential pathogens were very low (3.78–4.08%). Most of the potential pathogenic bacterial sequences identified were from three major phyla, namely, Proteobacteria, Bacteroidetes, and Firmicutes. The use of deep sequencing may provide improved and faster methods for the identification of pathogen sources in most watersheds so that better risk assessment methods may be developed to enhance public health. PMID:24278139

  7. UV light inactivation of human and plant pathogens in unfiltered surface irrigation water.

    PubMed

    Jones, Lisa A; Worobo, Randy W; Smart, Christine D

    2014-02-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 10(8) or 10(9) CFU/liter for bacteria or 10(4) or 10(5) zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively.

  8. The human pathogenic vibrios--a public health update with environmental perspectives.

    PubMed Central

    West, P. A.

    1989-01-01

    Pathogenic Vibrio species are naturally-occurring bacteria in freshwater and saline aquatic environments. Counts of free-living bacteria in water are generally less than required to induce disease. Increases in number of organisms towards an infective dose can occur as water temperatures rise seasonally followed by growth and concentration of bacteria on higher animals, such as chitinous plankton, or accumulation by shellfish and seafood. Pathogenic Vibrio species must elaborate a series of virulence factors to elicit disease in humans. Activities which predispose diarrhoeal and extraintestinal infections include ingestion of seafood and shellfish and occupational or recreational exposure to natural aquatic environments, especially those above 20 degrees C. Travel to areas endemic for diseases due to pathogenic Vibrio species may be associated with infections. Host risk factors strongly associated with infections are lack of gastric acid and liver disorders. Involvement of pathogenic Vibrio species in cases of diarrhoea should be suspected especially if infection is associated with ingestion of seafood or shellfish, raw or undercooked, in the previous 72 h. Vibrio species should be suspected in any acute infection associated with wounds sustained or exposed in the marine or estuarine environment. Laboratories serving coastal areas where infection due to pathogenic Vibrio species are most likely to occur should consider routine use of TCBS agar and other detection regimens for culture of Vibrio species from faeces, blood and samples from wound and ear infections. PMID:2673820

  9. Chicken as Reservoir for Extraintestinal Pathogenic Escherichia coli in Humans, Canada

    PubMed Central

    Bergeron, Catherine Racicot; Prussing, Catharine; Boerlin, Patrick; Daignault, Danielle; Dutil, Lucie; Reid-Smith, Richard J.; Zhanel, George G.

    2012-01-01

    We previously described how retail meat, particularly chicken, might be a reservoir for extraintestinal pathogenic Escherichia coli (ExPEC) causing urinary tract infections (UTIs) in humans. To rule out retail beef and pork as potential reservoirs, we tested 320 additional E. coli isolates from these meats. Isolates from beef and pork were significantly less likely than those from chicken to be genetically related to isolates from humans with UTIs. We then tested whether the reservoir for ExPEC in humans could be food animals themselves by comparing geographically and temporally matched E. coli isolates from 475 humans with UTIs and from cecal contents of 349 slaughtered animals. We found genetic similarities between E. coli from animals in abattoirs, principally chickens, and ExPEC causing UTIs in humans. ExPEC transmission from food animals could be responsible for human infections, and chickens are the most probable reservoir. PMID:22377351

  10. Oral pathogens change proliferation properties of oral tumor cells by affecting gene expression of human defensins.

    PubMed

    Hoppe, T; Kraus, D; Novak, N; Probstmeier, R; Frentzen, M; Wenghoefer, M; Jepsen, S; Winter, J

    2016-10-01

    The impact of oral pathogens onto the generation and variability of oral tumors has only recently been investigated. To get further insights, oral cancer cells were treated with pathogens and additionally, as a result of this bacterial cellular infection, with human defensins, which are as anti-microbial peptide members of the innate immune system. After cell stimulation, proliferation behavior, expression analysis of oncogenic relevant defensin genes, and effects on EGFR signaling were investigated. The expression of oncogenic relevant anti-microbial peptides was analyzed with real-time PCR and immunohistochemistry. Cell culture experiments were performed to examine cellular impacts caused by stimulation, i.e., altered gene expression, proliferation rate, and EGF receptor-dependent signaling. Incubation of oral tumor cells with an oral pathogen (Porphyromonas gingivalis) and human α-defensins led to an increase in cell proliferation. In contrast, another oral bacterium used, Aggregatibacter actinomycetemcomitans, enhanced cell death. The bacteria and anti-microbial peptides exhibited diverse effects on the transcript levels of oncogenic relevant defensin genes and epidermal growth factor receptor signaling. These two oral pathogens exhibited opposite primary effects on the proliferation behavior of oral tumor cells. Nevertheless, both microbe species led to similar secondary impacts on the proliferation rate by modifying expression levels of oncogenic relevant α-defensin genes. In this respect, oral pathogens exerted multiplying effects on tumor cell proliferation. Additionally, human defensins were shown to differently influence epidermal growth factor receptor signaling, supporting the hypothesis that these anti-microbial peptides serve as ligands of EGFR, thus modifying the proliferation behavior of oral tumor cells.

  11. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution.

    PubMed

    Fumagalli, Matteo; Sironi, Manuela; Pozzoli, Uberto; Ferrer-Admetlla, Anna; Ferrer-Admettla, Anna; Pattini, Linda; Nielsen, Rasmus

    2011-11-01

    Previous genome-wide scans of positive natural selection in humans have identified a number of non-neutrally evolving genes that play important roles in skin pigmentation, metabolism, or immune function. Recent studies have also shown that a genome-wide pattern of local adaptation can be detected by identifying correlations between patterns of allele frequencies and environmental variables. Despite these observations, the degree to which natural selection is primarily driven by adaptation to local environments, and the role of pathogens or other ecological factors as selective agents, is still under debate. To address this issue, we correlated the spatial allele frequency distribution of a large sample of SNPs from 55 distinct human populations to a set of environmental factors that describe local geographical features such as climate, diet regimes, and pathogen loads. In concordance with previous studies, we detected a significant enrichment of genic SNPs, and particularly non-synonymous SNPs associated with local adaptation. Furthermore, we show that the diversity of the local pathogenic environment is the predominant driver of local adaptation, and that climate, at least as measured here, only plays a relatively minor role. While background demography by far makes the strongest contribution in explaining the genetic variance among populations, we detected about 100 genes which show an unexpectedly strong correlation between allele frequencies and pathogenic environment, after correcting for demography. Conversely, for diet regimes and climatic conditions, no genes show a similar correlation between the environmental factor and allele frequencies. This result is validated using low-coverage sequencing data for multiple populations. Among the loci targeted by pathogen-driven selection, we found an enrichment of genes associated to autoimmune diseases, such as celiac disease, type 1 diabetes, and multiples sclerosis, which lends credence to the hypothesis that some

  12. Seroprevalence of Bartonella infection in American free-ranging and captive pumas (Felis concolor) and bobcats (Lynx rufus).

    PubMed

    Chomel, Bruno B; Kikuchi, Yoko; Martenson, Janice S; Roelke-Parker, Melodie E; Chang, Chao-Chin; Kasten, Rickie W; Foley, Janet E; Laudre, John; Murphy, Kerry; Swift, Pamela K; Kramer, Vicki L; O'brien, Stephen J

    2004-01-01

    Bartonella henselae is the main agent of cat scratch disease in humans and domestic cats are the main reservoir of this bacterium. We conducted a serosurvey to investigate the role of American wild felids as a potential reservoir of Bartonella species. A total of 479 samples (439 serum samples and 40 Nobuto strips) collected between 1984 and 1999 from pumas (Felis concolor) and 91 samples (58 serum samples and 33 Nobuto strips) collected from bobcats (Lynx rufus) in North America, Central America and South America were screened for B. henselae antibodies. The overall prevalence of B. henselae antibodies was respectively 19.4% in pumas and 23.1% in bobcats, with regional variations. In the USA, pumas from the southwestern states were more likely to be seropositive for B. henselae (prevalence ratio (PR) = 2.82, 95% confidence interval (CI) = 1.55, 5.11) than pumas from the Northwest and Mountain states. Similarly, adults were more likely to be B. henselae seropositive than juveniles and kittens (PR = 1.77, 95% CI = 1.07, 2.93). Adult pumas were more likely to have higher B. henselae antibody titers than juveniles and kittens (p = 0.026). B. henselae antibody prevalence was 22.4% (19/85) in bobcats from the USA and 33.3% (2/6) in the Mexican bobcats. In the USA, antibody prevalence varied depending on the geographical origin of the bobcats. In California, the highest prevalence was in bobcats from the coastal range (37.5%). These results suggest a potential role of wild felids in the epidemiological cycle of Bartonella henselae or closely related Bartonella species.

  13. Human and Pathogen Factors Associated with Chlamydia trachomatis-Related Infertility in Women.

    PubMed

    Menon, S; Timms, P; Allan, J A; Alexander, K; Rombauts, L; Horner, P; Keltz, M; Hocking, J; Huston, W M

    2015-10-01

    Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen worldwide. Infection can result in serious reproductive pathologies, including pelvic inflammatory disease, ectopic pregnancy, and infertility, in women. However, the processes that result in these reproductive pathologies have not been well defined. Here we review the evidence for the human disease burden of these chlamydial reproductive pathologies. We then review human-based evidence that links Chlamydia with reproductive pathologies in women. We present data supporting the idea that host, immunological, epidemiological, and pathogen factors may all contribute to the development of infertility. Specifically, we review the existing evidence that host and pathogen genotypes, host hormone status, age of sexual debut, sexual behavior, coinfections, and repeat infections are all likely to be contributory factors in development of infertility. Pathogen factors such as infectious burden, treatment failure, and tissue tropisms or ascension capacity are also potential contributory factors. We present four possible processes of pathology development and how these processes are supported by the published data. We highlight the limitations of the evidence and propose future studies that could improve our understanding of how chlamydial infertility in women occurs and possible future interventions to reduce this disease burden.

  14. Simple PCR-based DNA microarray system to identify human pathogenic fungi in skin.

    PubMed

    Sato, Tomotaka; Takayanagi, Atsushi; Nagao, Keisuke; Tomatsu, Nobuhiro; Fukui, Toshifumi; Kawaguchi, Masahiro; Kudoh, Jun; Amagai, Masayuki; Yamamoto, Nobuko; Shimizu, Nobuyoshi

    2010-07-01

    Fungal diseases in immunocompromised hosts pose significant threats to their prognoses. An accurate diagnosis and identification of the fungal pathogens causing the infection are critical to determine the proper therapeutic interventions, but these are often not achieved, due to difficulties with isolation and morphological identification. In an effort to ultimately carry out the simultaneous detection of all human pathogenic microbes, we developed a simple system to identify 26 clinically important fungi by using a combination of PCR amplification and DNA microarray assay (designated PCR-DM), in which PCR-amplified DNA from the internal transcribed spacer region of the rRNA gene was hybridized to a DNA microarray fabricated with species-specific probes sets using the Bubble Jet technology. PCR-DM reliably identified all 26 reference strains; hence, we applied it to cases of onychomycosis, taking advantage of the accessibility of tissue from skin. PCR-DM detected fungal DNA and identified pathogens in 92% of 106 microscopy-confirmed onychomycosis specimens. In contrast, culture was successful for only 36 specimens (34%), 3 of which had results inconsistent with the results of PCR-DM, but sequence analysis of the isolates proved that the PCR-DM result was correct. Thus, PCR-DM provides a powerful method to identify pathogenic fungi with high sensitivity and speed directly from tissue specimens, and this concept could be applied to other fungal or nonfungal infectious human diseases in less accessible anatomical sites.

  15. [Human plague and pneumonic plague : pathogenicity, epidemiology, clinical presentations and therapy].

    PubMed

    Riehm, Julia M; Löscher, Thomas

    2015-07-01

    Yersinia pestis is a highly pathogenic gram-negative bacterium and the causative agent of human plague. In the last 1500 years and during three dreaded pandemics, millions of people became victims of Justinian's plague, the Black Death, or modern plague. Today, Y. pestis is endemic in natural foci of Asian, African and American countries. Due to its broad dissemination in mammal species and fleas, eradication of the pathogen will not be possible in the near future. In fact, plague is currently classified as a "re-emerging disease". Infection may occur after the bite of an infected flea, but also after oral ingestion or inhalation of the pathogen. The clinical presentations comprise the bubonic and pneumonic form, septicemia, rarely pharyngitis, and meningitis. Most human cases can successfully be treated with antibiotics. However, the high transmission rate and lethality of pneumonic plague require international and mandatory case notification and quarantine of patients. Rapid diagnosis, therapy and barrier nursing are not only crucial for the individual patient but also for the prevention of further spread of the pathogen or of epidemics. Therefore, WHO emergency schedules demand the isolation of cases, identification and surveillance of contacts as well as control of zoonotic reservoir animals and vectors. These sanctions and effective antibiotic treatment usually allow a rapid containment of outbreaks. However, multiple antibiotic resistant strains of Y. pestis have been isolated from patients in the past. So far, no outbreaks with such strains have been reported.

  16. Steps toward broad-spectrum therapeutics: discovering virulence-associated genes present in diverse human pathogens

    PubMed Central

    Stubben, Chris J; Duffield, Melanie L; Cooper, Ian A; Ford, Donna C; Gans, Jason D; Karlyshev, Andrey V; Lingard, Bryan; Oyston, Petra CF; de Rochefort, Anna; Song, Jian; Wren, Brendan W; Titball, Rick W; Wolinsky, Murray

    2009-01-01

    Background New and improved antimicrobial countermeasures are urgently needed to counteract increased resistance to existing antimicrobial treatments and to combat currently untreatable or new emerging infectious diseases. We demonstrate that computational comparative genomics, together with experimental screening, can identify potential generic (i.e., conserved across multiple pathogen species) and novel virulence-associated genes that may serve as targets for broad-spectrum countermeasures. Results Using phylogenetic profiles of protein clusters from completed microbial genome sequences, we identified seventeen protein candidates that are common to diverse human pathogens and absent or uncommon in non-pathogens. Mutants of 13 of these candidates were successfully generated in Yersinia pseudotuberculosis and the potential role of the proteins in virulence was assayed in an animal model. Six candidate proteins are suggested to be involved in the virulence of Y. pseudotuberculosis, none of which have previously been implicated in the virulence of Y. pseudotuberculosis and three have no record of involvement in the virulence of any bacteria. Conclusion This work demonstrates a strategy for the identification of potential virulence factors that are conserved across a number of human pathogenic bacterial species, confirming the usefulness of this tool. PMID:19874620

  17. Heme Binding Proteins of Bartonella henselae Are Required when Undergoing Oxidative Stress During Cell and Flea Invasion

    PubMed Central

    Liu, MaFeng; Ferrandez, Yann; Bouhsira, Emilie; Monteil, Martine; Franc, Michel; Boulouis, Henri-Jean; Biville, Francis

    2012-01-01

    Bartonella are hemotropic bacteria responsible for emerging zoonoses. These heme auxotroph alphaproteobacteria must import heme for their growth, since they cannot synthesize it. To import exogenous heme, Bartonella genomes encode for a complete heme uptake system enabling transportation of this compound into the cytoplasm and degrading it to release iron. In addition, these bacteria encode for four or five outer membrane heme binding proteins (Hbps). The structural genes of these highly homologous proteins are expressed differently depending on oxygen, temperature and heme concentrations. These proteins were hypothesized as being involved in various cellular processes according to their ability to bind heme and their regulation profile. In this report, we investigated the roles of the four Hbps of Bartonella henselae, responsible for cat scratch disease. We show that Hbps can bind heme in vitro. They are able to enhance the efficiency of heme uptake when co-expressed with a heme transporter in Escherichia coli. Using B. henselae Hbp knockdown mutants, we show that these proteins are involved in defense against the oxidative stress, colonization of human endothelial cell and survival in the flea. PMID:23144761

  18. Heme binding proteins of Bartonella henselae are required when undergoing oxidative stress during cell and flea invasion.

    PubMed

    Liu, MaFeng; Ferrandez, Yann; Bouhsira, Emilie; Monteil, Martine; Franc, Michel; Boulouis, Henri-Jean; Biville, Francis

    2012-01-01

    Bartonella are hemotropic bacteria responsible for emerging zoonoses. These heme auxotroph alphaproteobacteria must import heme for their growth, since they cannot synthesize it. To import exogenous heme, Bartonella genomes encode for a complete heme uptake system enabling transportation of this compound into the cytoplasm and degrading it to release iron. In addition, these bacteria encode for four or five outer membrane heme binding proteins (Hbps). The structural genes of these highly homologous proteins are expressed differently depending on oxygen, temperature and heme concentrations. These proteins were hypothesized as being involved in various cellular processes according to their ability to bind heme and their regulation profile. In this report, we investigated the roles of the four Hbps of Bartonella henselae, responsible for cat scratch disease. We show that Hbps can bind heme in vitro. They are able to enhance the efficiency of heme uptake when co-expressed with a heme transporter in Escherichia coli. Using B. henselae Hbp knockdown mutants, we show that these proteins are involved in defense against the oxidative stress, colonization of human endothelial cell and survival in the flea.

  19. Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens

    PubMed Central

    Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.

    2009-01-01

    The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880

  20. Leptospira wolffii, a potential new pathogenic Leptospira species detected in human, sheep and dog.

    PubMed

    Zakeri, Sedigheh; Khorami, Nargess; Ganji, Zahra F; Sepahian, Neda; Malmasi, Abdol-Ali; Gouya, Mohammad Mehdi; Djadid, Navid D

    2010-03-01

    Leptospirosis is the most common zoonotic disease, which is transmitted to humans through contaminated water or direct exposure to the urine of infected animals. In this study, the presence and prevalence of Leptospira species in the infected samples of human (n=369) and sheep (n=75) sera and also dogs' urine (n=150), collected from four provinces of Iran, were investigated by using nested-PCR/RFLP assay followed by sequencing analysis. Nested-PCR assay detected that 98/369 (26.5%) human, 13/75 (17.33%) of sheep's sera and 33/150 (22%) dogs' urine samples were positive for Leptospira DNA. RFLP assay detected that all positive cases had either pathogenic or intermediate Leptospira species. By sequence analysis, Leptospira interrogans was the most prevalent species among the examined samples of human (53/82, 64.6%) and sheep (11/13, 84.6%). However, in dog samples, Leptospira wolffii (27/29, 93.1%) was detected for the first time and was the dominant species. The presence of L. wolffii with 100% identity in clinical human samples and animals suspected with Leptospira may provide evidence for circulation of L. wolffii and its role in transmission cycle within human and animal hosts. In addition, this species can be potentially pathogenic to human and probably animal hosts. A large epidemiology survey would be needed to define the presence and the prevalence of this species in global endemic regions.

  1. Detection of Bartonella spp. in wild carnivores, hyraxes, hedgehog and rodents from Israel.

    PubMed

    Marciano, Odelya; Gutiérrez, Ricardo; Morick, Danny; King, Roni; Nachum-Biala, Yaarit; Baneth, Gad; Harrus, Shimon

    2016-09-01

    Bartonella infection was explored in wild animals from Israel. Golden jackals (Canis aureus), red foxes (Vulpes vulpes), rock hyraxes (Procavia capensis), southern white-breasted hedgehogs (Erinaceus concolor), social voles (Microtus socialis), Tristram's jirds (Meriones tristrami), Cairo spiny mice (Acomys cahirinus), house mice (Mus musculus) and Indian crested porcupines (Hystrix indica) were sampled and screened by molecular and isolation methods. Bartonella-DNA was detected in 46 animals: 9/70 (13%) golden jackals, 2/11 (18%) red foxes, 3/35 (9%) rock hyraxes, 1/3 (33%) southern white-breasted hedgehogs, 5/57 (9%) Cairo spiny mice, 25/43 (58%) Tristram's jirds and 1/6 (16%) house mice. Bartonella rochalimae and B. rochalimae-like were widespread among jackals, foxes, hyraxes and jirds. This report represents the first detection of this zoonotic Bartonella sp. in rock hyraxes and golden jackals. Moreover, DNA of Bartonella vinsonii subsp. berkhoffii, Bartonella acomydis, Candidatus Bartonella merieuxii and other uncharacterized genotypes were identified. Three different Bartonella strains were isolated from Tristram's jirds, and several genotypes were molecularly detected from these animals. Furthermore, this study reports the first detection of Bartonella infection in a southern hedgehog. Our study indicates that infection with zoonotic and other Bartonella species is widespread among wild animals and stresses their potential threat to public health.

  2. BID-F1 and BID-F2 domains of Bartonella henselae effector protein BepF trigger together with BepC the formation of invasome structures.

    PubMed

    Truttmann, Matthias C; Guye, Patrick; Dehio, Christoph

    2011-01-01

    The gram-negative, zoonotic pathogen Bartonella henselae (Bhe) translocates seven distinct Bartonella effector proteins (Beps) via the VirB/VirD4 type IV secretion system (T4SS) into human cells, thereby interfering with host cell signaling [1], [2]. In particular, the effector protein BepG alone or the combination of effector proteins BepC and BepF trigger massive F-actin rearrangements that lead to the establishment of invasome structures eventually resulting in the internalization of entire Bhe aggregates [2], [3]. In this report, we investigate the molecular function of the effector protein BepF in the eukaryotic host cell. We show that the N-terminal [E/T]PLYAT tyrosine phosphorylation motifs of BepF get phosphorylated upon translocation but do not contribute to invasome-mediated Bhe uptake. In contrast, we found that two of the three BID domains of BepF are capable to trigger invasome formation together with BepC, while a mutation of the WxxxE motif of the BID-F1 domain inhibited its ability to contribute to the formation of invasome structures. Next, we show that BepF function during invasome formation can be replaced by the over-expression of constitutive-active Rho GTPases Rac1 or Cdc42. Finally we demonstrate that BID-F1 and BID-F2 domains promote the formation of filopodia-like extensions in NIH 3T3 and HeLa cells as well as membrane protrusions in HeLa cells, suggesting a role for BepF in Rac1 and Cdc42 activation during the process of invasome formation.

  3. BID-F1 and BID-F2 Domains of Bartonella henselae Effector Protein BepF Trigger Together with BepC the Formation of Invasome Structures

    PubMed Central

    Truttmann, Matthias C.; Guye, Patrick; Dehio, Christoph

    2011-01-01

    The gram-negative, zoonotic pathogen Bartonella henselae (Bhe) translocates seven distinct Bartonella effector proteins (Beps) via the VirB/VirD4 type IV secretion system (T4SS) into human cells, thereby interfering with host cell signaling [1], [2]. In particular, the effector protein BepG alone or the combination of effector proteins BepC and BepF trigger massive F-actin rearrangements that lead to the establishment of invasome structures eventually resulting in the internalization of entire Bhe aggregates [2], [3]. In this report, we investigate the molecular function of the effector protein BepF in the eukaryotic host cell. We show that the N-terminal [E/T]PLYAT tyrosine phosphorylation motifs of BepF get phosphorylated upon translocation but do not contribute to invasome-mediated Bhe uptake. In contrast, we found that two of the three BID domains of BepF are capable to trigger invasome formation together with BepC, while a mutation of the WxxxE motif of the BID-F1 domain inhibited its ability to contribute to the formation of invasome structures. Next, we show that BepF function during invasome formation can be replaced by the over-expression of constitutive-active Rho GTPases Rac1 or Cdc42. Finally we demonstrate that BID-F1 and BID-F2 domains promote the formation of filopodia-like extensions in NIH 3T3 and HeLa cells as well as membrane protrusions in HeLa cells, suggesting a role for BepF in Rac1 and Cdc42 activation during the process of invasome formation. PMID:22043280

  4. A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans

    PubMed Central

    Gomes, Ana C; Miranda, Isabel; Silva, Raquel M; Moura, Gabriela R; Thomas, Benjamin; Akoulitchev, Alexandre; Santos, Manuel AS

    2007-01-01

    Background Genetic code alterations have been reported in mitochondrial, prokaryotic, and eukaryotic cytoplasmic translation systems, but their evolution and how organisms cope and survive such dramatic genetic events are not understood. Results Here we used an unusual decoding of leucine CUG codons as serine in the main human fungal pathogen Candida albicans to elucidate the global impact of genetic code alterations on the proteome. We show that C. albicans decodes CUG codons ambiguously and tolerates partial reversion of their identity from serine back to leucine on a genome-wide scale. Conclusion Such codon ambiguity expands the proteome of this human pathogen exponentially and is used to generate important phenotypic diversity. This study highlights novel features of C. albicans biology and unanticipated roles for codon ambiguity in the evolution of the genetic code. PMID:17916231

  5. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates.

    PubMed

    Lamb, Joleah B; van de Water, Jeroen A J M; Bourne, David G; Altier, Craig; Hein, Margaux Y; Fiorenza, Evan A; Abu, Nur; Jompa, Jamaluddin; Harvell, C Drew

    2017-02-17

    Plants are important in urban environments for removing pathogens and improving water quality. Seagrass meadows are the most widespread coastal ecosystem on the planet. Although these plants are known to be associated with natural biocide production, they have not been evaluated for their ability to remove microbiological contamination. Using amplicon sequencing of the 16S ribosomal RNA gene, we found that when seagrass meadows are present, there was a 50% reduction in the relative abundance of potential bacterial pathogens capable of causing disease in humans and marine organisms. Moreover, field surveys of more than 8000 reef-building corals located adjacent to seagrass meadows showed twofold reductions in disease levels compared to corals at paired sites without adjacent seagrass meadows. These results highlight the importance of seagrass ecosystems to the health of humans and other organisms.

  6. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens.

    PubMed

    Hernández-Reyes, Casandra; Schenk, Sebastian T; Neumann, Christina; Kogel, Karl-Heinz; Schikora, Adam

    2014-11-01

    The implementation of beneficial microorganisms for plant protection has a long history. Many rhizobia bacteria are able to influence the immune system of host plants by inducing resistance towards pathogenic microorganisms. In this report, we present a translational approach in which we demonstrate the resistance-inducing effect of Ensifer meliloti (Sinorhizobium meliloti) on crop plants that have a significant impact on the worldwide economy and on human nutrition. Ensifer meliloti is usually associated with root nodulation in legumes and nitrogen fixation. Here, we suggest that the ability of S. meliloti to induce resistance depends on the production of the quorum-sensing molecule, oxo-C14-HSL. The capacity to enhanced resistance provides a possibility to the use these beneficial bacteria in agriculture. Using the Arabidopsis-Salmonella model, we also demonstrate that the application of N-acyl-homoserine lactones-producing bacteria could be a successful strategy to prevent plant-originated infections with human pathogens.

  7. Role of Non-coding Regulatory RNA in the Virulence of Human Pathogenic Vibrios.

    PubMed

    Pérez-Reytor, Diliana; Plaza, Nicolás; Espejo, Romilio T; Navarrete, Paola; Bastías, Roberto; Garcia, Katherine

    2016-01-01

    In recent decades, the identification of small non-coding RNAs in bacteria has revealed an important regulatory mechanism of gene expression involved in the response to environmental signals and to the control of virulence. In the family Vibrionaceae, which includes several human and animal pathogens, small non-coding RNAs (sRNAs) are closely related to important processes including metabolism, quorum sensing, virulence, and fitness. Studies conducted in silico and experiments using microarrays and high-throughput RNA sequencing have led to the discovery of an unexpected number of sRNAs in Vibrios. The present review discusses the most relevant reports regarding the mechanisms of action of sRNAs and their implications in the virulence of the main human pathogens in the family Vibrionaceae: Vibrio parahaemolyticus, V. vulnificus and V. cholerae.

  8. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens

    PubMed Central

    Hernández-Reyes, Casandra; Schenk, Sebastian T; Neumann, Christina; Kogel, Karl-Heinz; Schikora, Adam

    2014-01-01

    The implementation of beneficial microorganisms for plant protection has a long history. Many rhizobia bacteria are able to influence the immune system of host plants by inducing resistance towards pathogenic microorganisms. In this report, we present a translational approach in which we demonstrate the resistance-inducing effect of Ensifer meliloti (Sinorhizobium meliloti) on crop plants that have a significant impact on the worldwide economy and on human nutrition. Ensifer meliloti is usually associated with root nodulation in legumes and nitrogen fixation. Here, we suggest that the ability of S. meliloti to induce resistance depends on the production of the quorum-sensing molecule, oxo-C14-HSL. The capacity to enhanced resistance provides a possibility to the use these beneficial bacteria in agriculture. Using the Arabidopsis-Salmonella model, we also demonstrate that the application of N-acyl-homoserine lactones-producing bacteria could be a successful strategy to prevent plant-originated infections with human pathogens. PMID:25234390

  9. Role of Non-coding Regulatory RNA in the Virulence of Human Pathogenic Vibrios

    PubMed Central

    Pérez-Reytor, Diliana; Plaza, Nicolás; Espejo, Romilio T.; Navarrete, Paola; Bastías, Roberto; Garcia, Katherine

    2017-01-01

    In recent decades, the identification of small non-coding RNAs in bacteria has revealed an important regulatory mechanism of gene expression involved in the response to environmental signals and to the control of virulence. In the family Vibrionaceae, which includes several human and animal pathogens, small non-coding RNAs (sRNAs) are closely related to important processes including metabolism, quorum sensing, virulence, and fitness. Studies conducted in silico and experiments using microarrays and high-throughput RNA sequencing have led to the discovery of an unexpected number of sRNAs in Vibrios. The present review discusses the most relevant reports regarding the mechanisms of action of sRNAs and their implications in the virulence of the main human pathogens in the family Vibrionaceae: Vibrio parahaemolyticus, V. vulnificus and V. cholerae. PMID:28123382

  10. Pathogen exposure varies widely among sympatric populations of wild and domestic felids across the United States.

    PubMed

    Carver, Scott; Bevins, Sarah N; Lappin, Michael R; Boydston, Erin E; Lyren, Lisa M; Alldredge, Mathew; Logan, Kenneth A; Sweanor, Linda L; Riley, Seth P D; Serieys, Laurel E K; Fisher, Robert N; Vickers, T Winston; Boyce, Walter; Mcbride, Roy; Cunningham, Mark C; Jennings, Megan; Lewis, Jesse; Lunn, Tamika; Crooks, Kevin R; Vandewoude, Sue

    2016-03-01

    Understanding how landscape, host, and pathogen traits contribute to disease exposure requires systematic evaluations of pathogens within and among host species and geographic regions. The relative importance of these attributes is critical for management of wildlife and mitigating domestic animal and human disease, particularly given rapid ecological changes, such as urbanization. We screened > 1000 samples from sympatric populations of puma (Puma concolor), bobcat (Lynx rufus), and domestic cat (Felis catus) across urban gradients in six sites, representing three regions, in North America for exposure to a representative suite of bacterial, protozoal, and viral pathogens (Bartonella sp., Toxoplasma gondii, feline herpesvirus-1, feline panleukopenea virus, feline calicivirus, and feline immunodeficiency virus). We evaluated prevalence within each species, and examined host trait and land cover determinants of exposure; providing an unprecedented analysis of factors relating to potential for infections in domesticated and wild felids. Prevalence differed among host species (highest for puma and lowest for domestic cat) and was greater for indirectly transmitted pathogens. Sex was inconsistently predictive of exposure to directly transmitted pathogens only, and age infrequently predictive of both direct and indirectly transmitted pathogens. Determinants of pathogen exposure were widely divergent between the wild felid species. For puma, suburban land use predicted increased exposure to Bartonella sp. in southern California, and FHV-1 exposure increased near urban edges in Florida. This may suggest interspecific transmission with domestic cats via flea vectors (California) and direct contact (Florida) around urban boundaries. Bobcats captured near urban areas had increased exposure to T. gondii in Florida, suggesting an urban source of prey Bobcats captured near urban areas in Colorado and Florida had higher FIV exposure, possibly suggesting increased intraspecific

  11. Pathogen exposure varies widely among sympatric populations of wild and domestic felids across the United States

    USGS Publications Warehouse

    Carver, Scott; Bevins, Sarah N.; Lappin, Michael R.; Boydston, Erin E.; Lyren, Lisa M.; Alldredge, Mathew W.; Logan, Kenneth A.; Sweanor, Linda L.; Riley, Seth P.D.; Serieys, Laurel E.K.; Fisher, Robert N.; Vickers, T. Winston; Boyce, Walter M.; McBride, Roy; Cunnigham, Mark C.; Jennings, Megan; Lewis, Jesse S.; Lunn, Tamika; Crooks, Kevin R.; VandeWoude, Sue

    2016-01-01

    Understanding how landscape, host, and pathogen traits contribute to disease exposure requires systematic evaluations of pathogens within and among host species and geographic regions. The relative importance of these attributes is critical for management of wildlife and mitigating domestic animal and human disease, particularly given rapid ecological changes, such as urbanization. We screened >1,000 samples from sympatric populations of puma (Puma concolor), bobcat (Lynx rufus) and domestic cat (Felis catus) across urban gradients in six sites, representing three regions, in North America for exposure to a representative suite of bacterial, protozoal and viral pathogens (Bartonella sp., Toxoplasma gondii, feline herpesvirus-1, feline panleukopenea virus, feline calicivirus, feline immunodeficiency virus). We evaluated prevalence within each species, and examined host trait and land cover determinants of exposure-providing an unprecedented analysis of factors relating to potential for infections in domesticated and wild felids. Prevalence differed among host species (highest for puma and lowest for domestic cat) and was greater for indirectly transmitted pathogens. Sex was inconsistently predictive of exposure to directly transmitted pathogens only, and age infrequently predictive of both direct and indirectly transmitted pathogens. Determinants of pathogen exposure were widely divergent between the wild felid species. For puma, suburban landuse predicted increased exposure to Bartonella sp. in southern California, and FHV-1 exposure increased near urban edges in Florida. This may suggest inter-specific transmission with domestic cats via flea vectors (California) and direct contact (Florida) around urban boundaries. Bobcats captured near urban areas had increased exposure to T. gondii in Florida, suggesting an urban source of prey. Bobcats captured near urban areas in Colorado and Florida had higher FIV exposure, possibly suggesting increased intra

  12. First Probable Case of Subcutaneous Infection Due to Truncatella angustata: a New Fungal Pathogen of Humans?

    PubMed Central

    Żak, Iwona; Tyrak, Jerzy; Bryk, Agata

    2015-01-01

    Truncatella angustata is a coelomycetous fungus, typically associated with vascular plants as either an endophyte or a pathogen. This organism has not previously been implicated in human disease. This report describes a case of T. angustata subcutaneous infection in an immunocompetent patient. A conclusive diagnosis was achieved through partial sequencing of ribosomal DNA (rDNA) cluster. The patient was successfully treated with voriconazole followed by itraconazole. PMID:25809973

  13. [Lice and lice-borne diseases in humans].

    PubMed

    Houhamdi, L; Parola, P; Raoult, D

    2005-01-01

    Among the three lice which parasite the human being, the human body louse, Pediculus humanus humanus, is a vector of infectious diseases. It lives and multiplies in clothes and human infestation is associated with cold weather and a lack of hygiene. Three pathogenic bacteria are transmitted by the body louse: 1) Rickettsia prowazekii, the agent of epidemic typhus of which the most recent outbreak (and the largest since World War II) was observed during the civil war in Burundi; 2) Borrelia recurrentis, the agent of relapsing fever, historically responsible of massive outbreaks in Eurasia and Africa, which prevails currently in Ethiopia and neighboring countries; 3) Bartonella quintana, the agent of trench fever, bacillary angiomatosis, chronic bacteremia, endocarditis, and lymphadenopathy. Body louse infestation, associated with a decline in social and hygienic conditions provoked by civil unrest and economic instability, is reemergent worldwide. Recently, a forth human pathogen, Acinetobacter baumannii, has been associated to the body louse.

  14. Inactivation of human pathogens during phase II composting of manure-based mushroom growth substrate.

    PubMed

    Weil, Jennifer D; Cutter, Catherine N; Beelman, Robert B; LaBorde, Luke F

    2013-08-01

    Commercial production of white button mushrooms (Agaricus bisporus) requires a specialized growth substrate prepared from composted agricultural by-products. Because horse and poultry manures are widely used in substrate formulations, there is a need to determine the extent to which the composting process is capable of eliminating human pathogens. In this study, partially composted substrate was inoculated with a pathogen cocktail (log 10⁶ to 10⁸ CFU/g) containing Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella. Pathogen and indicator-organism reductions were followed at temperatures that typically occurred during a standard 6-day phase II pasteurization and conditioning procedure. Controlled-temperature water bath studies at 48.8, 54.4, and 60°C demonstrated complete destruction of the three pathogens after 36.0, 8.0, and 0.5 h, respectively. Destruction of L. monocytogenes and E. coli O157:H7 at 54.4°C occurred more slowly than E. coli, total coliforms, Enterobacteriaceae, and Salmonella. Microbial reductions that occurred during a standard 6-day phase II pasteurization and conditioning treatment were studied in a small-scale mushroom production research facility. After phase II composting, E. coli, coliforms, and Enterobacteriaceae were below detectable levels, and inoculated pathogens were not detected by direct plating or by enrichment. The results of this study show that a phase II composting process can be an effective control measure for eliminating risks associated with the use of composted animal manures during mushroom production. Growers are encouraged to validate and verify their own composting processes through periodic microbial testing for pathogens and to conduct studies to assure uniform distribution of substrate temperatures during phase II.

  15. A general framework for estimating the relative pathogenicity of human genetic variants

    PubMed Central

    Kircher, Martin; Witten, Daniela M.; Jain, Preti; O’Roak, Brian J.; Cooper, Gregory M.; Shendure, Jay

    2014-01-01

    Our capacity to sequence human genomes has exceeded our ability to interpret genetic variation. Current genomic annotations tend to exploit a single information type (e.g. conservation) and/or are restricted in scope (e.g. to missense changes). Here, we describe Combined Annotation Dependent Depletion (CADD), a framework that objectively integrates many diverse annotations into a single, quantitative score. We implement CADD as a support vector machine trained to differentiate 14.7 million high-frequency human derived alleles from 14.7 million simulated variants. We pre-compute “C-scores” for all 8.6 billion possible human single nucleotide variants and enable scoring of short insertions/deletions. C-scores correlate with allelic diversity, annotations of functionality, pathogenicity, disease severity, experimentally measured regulatory effects, and complex trait associations, and highly rank known pathogenic variants within individual genomes. The ability of CADD to prioritize functional, deleterious, and pathogenic variants across many functional categories, effect sizes and genetic architectures is unmatched by any current annotation. PMID:24487276

  16. Characterization of Antibacterial Activities of Eastern Subterranean Termite, Reticulitermes flavipes, against Human Pathogens

    PubMed Central

    Zeng, Yuan; Hu, Xing Ping

    2016-01-01

    The emergence and dissemination of multidrug resistant bacterial pathogens necessitate research to find new antimicrobials against these organisms. We investigated antimicrobial production by eastern subterranean termites, Reticulitermes flavipes, against a panel of bacteria including three multidrug resistant (MDR) and four non-MDR human pathogens. We determined that the crude extract of naïve termites had a broad-spectrum activity against the non-MDR bacteria but it was ineffective against the three MDR pathogens Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA), and Acinetobacter baumannii. Heat or trypsin treatment resulted in a complete loss of activity suggesting that antibacterial activity was proteinaceous in nature. The antimicrobial activity changed dramatically when the termites were fed with either heat-killed P. aeruginosa or MRSA. Heat-killed P. aeruginosa induced activity against P. aeruginosa and MRSA while maintaining or slightly increasing activity against non-MDR bacteria. Heat-killed MRSA induced activity specifically against MRSA, altered the activity against two other Gram-positive bacteria, and inhibited activity against three Gram-negative bacteria. Neither the naïve termites nor the termites challenged with heat-killed pathogens produced antibacterial activity against A. baumannii. Further investigation demonstrated that hemolymph, not the hindgut, was the primary source of antibiotic activity. This suggests that the termite produces these antibacterial activities and not the hindgut microbiota. Two-dimensional gel electrophoretic analyses of 493 hemolymph protein spots indicated that a total of 38 and 65 proteins were differentially expressed at least 2.5-fold upon being fed with P. aeruginosa and MRSA, respectively. Our results provide the first evidence of constitutive and inducible activities produced by R. flavipes against human bacterial pathogens. PMID:27611223

  17. Rickettsia and Bartonella Species in Fleas from Reunion Island

    PubMed Central

    Dieme, Constentin; Parola, Philippe; Guernier, Vanina; Lagadec, Erwan; Le Minter, Gildas; Balleydier, Elsa; Pagès, Frederic; Dellagi, Koussay; Tortosa, Pablo; Raoult, Didier; Socolovschi, Cristina

    2015-01-01

    Rickettsia felis, Rickettsia typhi, and Bartonella DNA was detected by molecular tools in 12% of Rattus rattus fleas (Xenopsylla species) collected from Reunion Island. One-third of the infested commensal rodents captured during 1 year carried at least one infected flea. As clinical signs of these zoonoses are non-specific, they are often misdiagnosed. PMID:25646263

  18. "Candidatus Mycoplasma haemomacaque" and Bartonella quintana bacteremia in cynomolgus monkeys.

    PubMed

    Maggi, Ricardo G; Mascarelli, Patricia E; Balakrishnan, Nandhakumar; Rohde, Cynthia M; Kelly, Catherine M; Ramaiah, Lila; Leach, Michael W; Breitschwerdt, Edward B

    2013-05-01

    Here, we report latent infections with Bartonella quintana and a hemotropic Mycoplasma sp. in a research colony of cynomolgus monkeys (Macaca fascicularis). Sequence alignments, evolutionary analysis, and signature nucleotide sequence motifs of the hemotropic Mycoplasma 16S rRNA and RNase P genes indicate the presence of a novel organism.

  19. Rickettsia and Bartonella species in fleas from Reunion Island.

    PubMed

    Dieme, Constentin; Parola, Philippe; Guernier, Vanina; Lagadec, Erwan; Le Minter, Gildas; Balleydier, Elsa; Pagès, Frederic; Dellagi, Koussay; Tortosa, Pablo; Raoult, Didier; Socolovschi, Cristina

    2015-03-01

    Rickettsia felis, Rickettsia typhi, and Bartonella DNA was detected by molecular tools in 12% of Rattus rattus fleas (Xenopsylla species) collected from Reunion Island. One-third of the infested commensal rodents captured during 1 year carried at least one infected flea. As clinical signs of these zoonoses are non-specific, they are often misdiagnosed.

  20. Antigenic relationship between the animal and human pathogen Pythium insidiosum and nonpathogenic Pythium species.

    PubMed Central

    Mendoza, L; Kaufman, L; Standard, P

    1987-01-01

    Identification of the newly named pathogenic oomycete Pythium insidiosum and its differentiation from other Pythium species by morphologic criteria alone can be difficult and time-consuming. Antigenic analysis by fluorescent-antibody and immunodiffusion precipitin techniques demonstrated that the P. insidiosum isolates that cause pythiosis in dogs, horses, and humans are identical and that they were distinguishable from other Pythium species by these means. The immunologic data agreed with the morphologic data. This indicated that the animal and human isolates belonged to a single species, P. insidiosum. Fluorescent-antibody and immunodiffusion reagents were developed for the specific identification of P. insidiosum. PMID:3121666

  1. Progress in rapid detection and identification of unknown human and agricultural pathogens

    SciTech Connect

    Barnes, T; Holzrichter, J F; Milanovich, F P

    1999-08-13

    , such as their full genomic information, can be very helpful in identifying malevolent users. In addition, it is undoubtedly true that an understanding of replication and human or other sensitivity to pathogens will improve our medical understanding of human health in general.

  2. Antifungal activity of different neem leaf extracts and the nimonol against some important human pathogens

    PubMed Central

    Mahmoud, D.A.; Hassanein, N.M.; Youssef, K.A.; Abou Zeid, M.A.

    2011-01-01

    This study was conducted to evaluate the effect of aqueous, ethanolic and ethyl acetate extracts from neem leaves on growth of some human pathogens (Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus terreus, Candida albicans and Microsporum gypseum) in vitro. Different concentrations (5, 10, 15 and 20%) prepared from these extracts inhibited the growth of the test pathogens and the effect gradually increased with concentration. The 20% ethyl acetate extract gave the strongest inhibition compared with the activity obtained by the same concentration of the other extracts. High Performance Liquid Chromatography (HPLC) analysis of ethyl acetate extract showed the presence of a main component (nimonol) which was purified and chemically confirmed by Nuclear Magnetic Resonance (NMR) spectroscopic analysis. The 20% ethyl acetate extract lost a part of its antifungal effect after pooling out the nimonol and this loss in activity was variable on test pathogens. The purified nimonol as a separate compound did not show any antifungal activity when assayed against all the six fungal pathogens. PMID:24031718

  3. Exploring the Unique N-Glycome of the Opportunistic Human Pathogen Acanthamoeba*

    PubMed Central

    Schiller, Birgit; Makrypidi, Georgia; Razzazi-Fazeli, Ebrahim; Paschinger, Katharina; Walochnik, Julia; Wilson, Iain B. H.

    2012-01-01

    Glycans play key roles in host-pathogen interactions; thus, knowing the N-glycomic repertoire of a pathogen can be helpful in deciphering its methods of establishing and sustaining a disease. Therefore, we sought to elucidate the glycomic potential of the facultative amoebal parasite Acanthamoeba. This is the first study of its asparagine-linked glycans, for which we applied biochemical tools and various approaches of mass spectrometry. An initial glycomic screen of eight strains from five genotypes of this human pathogen suggested, in addition to the common eukaryotic oligomannose structures, the presence of pentose and deoxyhexose residues on their N-glycans. A more detailed analysis was performed on the N-glycans of a genotype T11 strain (4RE); fractionation by HPLC and tandem mass spectrometric analyses indicated the presence of a novel mannosylfucosyl modification of the reducing terminal core as well as phosphorylation of mannose residues, methylation of hexose and various forms of pentosylation. The largest N-glycan in the 4RE strain contained two N-acetylhexosamine, thirteen hexose, one fucose, one methyl, and two pentose residues; however, in this and most other strains analyzed, glycans with compositions of Hex8–9HexNAc2Pnt0–1 tended to dominate in terms of abundance. Although no correlation between pathogenicity and N-glycan structure can be proposed, highly unusual structures in this facultative parasite can be found which are potential virulence factors or therapeutic targets. PMID:23139421

  4. Association between Bartonella species infection and disease in pet cats as determined using serology and culture.

    PubMed

    Sykes, Jane E; Westropp, Joellen L; Kasten, Rick W; Chomel, Bruno B

    2010-08-01

    This study's objective was to determine whether a relationship exists between infection or seropositivity to Bartonella species and clinical illness in cats. Blood samples were obtained for Bartonella species isolation and immunofluorescent antibody serology from 298 cats presenting to a tertiary referral hospital. Medical records were searched and the history, physical examination findings and the results of diagnostic testing relating to the visit at which Bartonella species testing was performed were recorded. Fifty-two (17%) samples were seropositive for Bartonella henselae, four (1%) for Bartonella clarridgeiae, and 57 (19%) for both organisms. Nineteen (6.4%) samples were culture positive, 17 for B henselae and two for B clarridgeiae. Gingivostomatitis was associated with Bartonella species isolation (P=0.001), but not seropositivity. There was no association with uveitis, neurologic signs, or chronic kidney disease, and a weak association between seropositivity and idiopathic lower urinary tract disease (feline interstitial cystitis) (P=0.05).

  5. Demographic features of Bartonella infections in Richardson's ground squirrels (Spermophilus richardsonii).

    PubMed

    Jardine, C; Waldner, C; Wobeser, G; Leighton, F A

    2006-10-01

    The epidemiology of Bartonella infections in Richardson's ground squirrels (Spermophilus richardsonii) was studied at multiple sites in Saskatchewan, Canada, from 2002 to 2004. The overall prevalence of Bartonella infection was 48%. Juvenile squirrels were significantly more likely to be infected with Bartonella than were adults (58% and 37%, respectively), and juvenile animals also were significantly more likely to have high levels of bacteremia compared to adult animals. Prevalence of Bartonella infection appeared to decrease with age; only 24% of animals known to be > or = 2 yr old were infected with Bartonella. Prevalence of infection was lowest in May (27%) and highest in late summer and early autumn (71%). The prevalence of fleas also varied seasonally, and animals were more likely to have fleas in the late summer and early autumn than in early summer. We found no relationship between Bartonella prevalence and host density or flea prevalence.

  6. Comparative genotypic and pathogenic examination of Campylobacter concisus isolates from diarrheic and non-diarrheic humans

    PubMed Central

    2011-01-01

    Background Campylobacter concisus is an emerging enteric pathogen, yet it is commonly isolated from feces and the oral cavities of healthy individuals. This genetically complex species is comprised of several distinct genomospecies which may vary in pathogenic potential. Results We compared pathogenic and genotypic properties of C. concisus fecal isolates from diarrheic and healthy humans residing in the same geographic region. Analysis of amplified fragment length polymorphism (AFLP) profiles delineated two main clusters. Isolates assigned to AFLP cluster 1 belonged to genomospecies A (based on genomospecies-specific differences in the 23S rRNA gene) and were predominantly isolated from healthy individuals. This cluster also contained a reference oral strain. Isolates assigned to this cluster induced greater expression of epithelial IL-8 mRNA and more frequently contained genes coding for the zonnula occludins toxin and the S-layer RTX. Furthermore, isolates from healthy individuals induced greater apoptotic DNA fragmentation and increased metabolic activity than those from diarrheic individuals, and isolates assigned to genomospecies A (of which the majority were from healthy individuals) exhibited higher haemolytic activity compared to genomospecies B isolates. In contrast, AFLP cluster 2 was predominated by isolates belonging to genomospecies B and those from diarrheic individuals. Isolates from this cluster displayed greater mean epithelial invasion and translocation than cluster 1 isolates. Conclusion Two main genetically distinct clusters (i.e., genomospecies) were identified among C. concisus fecal isolates from healthy and diarrheic individuals. Strains within these clusters differed with respect to clinical presentation and pathogenic properties, supporting the hypothesis that pathogenic potential varies between genomospecies. ALFP cluster 2 isolates were predominantly from diarrheic patients, and exhibited higher levels of epithelial invasion and

  7. Human Milk Blocks DC-SIGN-Pathogen Interaction via MUC1.

    PubMed

    Koning, Nathalie; Kessen, Sabine F M; Van Der Voorn, J Patrick; Appelmelk, Ben J; Jeurink, Prescilla V; Knippels, Leon M J; Garssen, Johan; Van Kooyk, Yvette

    2015-01-01

    Beneficial effects of breastfeeding are well-recognized and include both immediate neonatal protection against pathogens and long-term protection against allergies and autoimmune diseases. Although several proteins have been identified to have anti-viral or anti-bacterial effects like secretory IgA or lactoferrin, the mechanisms of immune modulation are not fully understood. Recent studies identified important beneficial effects of glycans in human milk, such as those expressed in oligosaccharides or on glycoproteins. Glycans are recognized by the carbohydrate receptors C-type lectins on dendritic cell (DC) and specific tissue macrophages, which exert important functions in immune modulation and immune homeostasis. A well-characterized C-type lectin is dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), which binds terminal fucose. The present study shows that in human milk, MUC1 is the major milk glycoprotein that binds to the lectin domain of DC-SIGN and prevents pathogen interaction through the presence of Lewis x-type oligosaccharides. Surprisingly, this was specific for human milk, as formula, bovine or camel milk did not show any presence of proteins that interacted with DC-SIGN. The expression of DC-SIGN is found in young infants along the entire gastrointestinal tract. Our data thus suggest the importance of human milk glycoproteins for blocking pathogen interaction to DC in young children. Moreover, a potential benefit of human milk later in life in shaping the infants immune system through DC-SIGN cannot be ruled out.

  8. Human Monoclonal Antibodies Against a Plethora of Viral Pathogens From Single Combinatorial Libraries

    NASA Astrophysics Data System (ADS)

    Williamson, R. Anthony; Burioni, Roberto; Sanna, Pietro P.; Partridge, Lynda J.; Barbas, Carlos F., III; Burton, Dennis R.

    1993-05-01

    Conventional antibody generation usually requires active immunization with antigen immediately prior to the preparation procedure. Combinatorial antibody library technology offers the possibility of cloning a range of antibody specificities at a single point in time and then accessing these specificities at will. Here we show that human monoclonal antibody Fab fragments against a plethora of infectious agents can be readily derived from a single library. Further examination of a number of libraries shows that whenever antibody against a pathogen can be detected in the serum of the donor, then specific antibodies can be derived from the corresponding library. We describe the generation of human Fab fragments against herpes simplex virus types 1 and 2, human cytomegalovirus, varicella zoster virus, rubella, human immunodeficiency virus type 1, and respiratory syncytial virus. The antibodies are shown to be highly specific and a number are effective in neutralizing virus in vitro.

  9. Bartonella sp. Bacteremia in Patients with Neurological and Neurocognitive Dysfunction ▿

    PubMed Central

    Breitschwerdt, E. B.; Maggi, R. G.; Nicholson, W. L.; Cherry, N. A.; Woods, C. W.

    2008-01-01

    We detected infection with a Bartonella species (B. henselae or B. vinsonii subsp. berkhoffii) in blood samples from six immunocompetent patients who presented with a chronic neurological or neurocognitive syndrome including seizures, ataxia, memory loss, and/or tremors. Each of these patients had substantial animal contact or recent arthropod exposure as a potential risk factor for Bartonella infection. Additional studies should be performed to clarify the potential role of Bartonella spp. as a cause of chronic neurological and neurocognitive dysfunction. PMID:18632903

  10. From deep-sea volcanoes to human pathogens: a conserved quorum-sensing signal in Epsilonproteobacteria

    PubMed Central

    Pérez-Rodríguez, Ileana; Bolognini, Marie; Ricci, Jessica; Bini, Elisabetta; Vetriani, Costantino

    2015-01-01

    Chemosynthetic Epsilonproteobacteria from deep-sea hydrothermal vents colonize substrates exposed to steep thermal and redox gradients. In many bacteria, substrate attachment, biofilm formation, expression of virulence genes and host colonization are partly controlled via a cell density-dependent mechanism involving signal molecules, known as quorum sensing. Within the Epsilonproteobacteria, quorum sensing has been investigated only in human pathogens that use the luxS/autoinducer-2 (AI-2) mechanism to control the expression of some of these functions. In this study we showed that luxS is conserved in Epsilonproteobacteria and that pathogenic and mesophilic members of this class inherited this gene from a thermophilic ancestor. Furthermore, we provide evidence that the luxS gene is expressed—and a quorum-sensing signal is produced—during growth of Sulfurovum lithotrophicum and Caminibacter mediatlanticus, two Epsilonproteobacteria from deep-sea hydrothermal vents. Finally, we detected luxS transcripts in Epsilonproteobacteria-dominated biofilm communities collected from deep-sea hydrothermal vents. Taken together, our findings indicate that the epsiloproteobacterial lineage of the LuxS enzyme originated in high-temperature geothermal environments and that, in vent Epsilonproteobacteria, luxS expression is linked to the production of AI-2 signals, which are likely produced in situ at deep-sea vents. We conclude that the luxS gene is part of the ancestral epsilonproteobacterial genome and represents an evolutionary link that connects thermophiles to human pathogens. PMID:25397946

  11. Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators.

    PubMed

    Wu, Shubiao; Carvalho, Pedro N; Müller, Jochen A; Manoj, Valsa Remony; Dong, Renjie

    2016-01-15

    Removal of human pathogens from wastewater is a critical factor with linkage to human health. Constructed Wetlands (CWs) are environmental friendly ecosystems that are applicable not only for chemical pollution control, but also for the reduction of pathogens from wastewater. Yet the knowledge on the fate and removal of such indicator bacteria in CWs is still not sufficient due to the complexity of removal mechanisms and influencing factors. This review serves to provide a better understanding of this state-of-the-art technology, which is necessary for further investigations and design development. The fecal indicator bacteria in CWs mainly come from three sources, namely, influent wastewaters, regrowth within the CWs, and animal activities. The properties of microbial contamination vary depending on the different sources. The removal of pathogens is a complex process that is influenced by operational parameters such as hydraulic regime and retention time, vegetation, seasonal fluctuation, and water composition. The most frequent and well-validated removal mechanisms include natural die-off due to starvation or predation, sedimentation and filtration, and adsorption. The concentration of the main fecal indicator bacteria in the effluent was found to be exponentially related to the loading rate. Generally, horizontal subsurface flow CWs have better reduction capacity than free water surface flow CWs, and hybrid wetland systems were found to be the most efficient due to a longer retention time. Further improvement of fecal indicator bacteria removal in CWs is needed, however, levels in CW effluents are still higher than most of the regulation standards for reuse.

  12. Host and Pathogen Hyaluronan Signal Through Human Siglec-9 to Suppress Neutrophil Activation

    PubMed Central

    Secundino, Ismael; Lizcano, Anel; Roupé, K. Markus; Wang, Xiaoxia; Cole, Jason N.; Olson, Joshua; Ali, S. Raza; Dahesh, Samira; Amayreh, Lenah K.; Henningham, Anna; Varki, Ajit; Nizet, Victor

    2015-01-01

    Inhibitory CD33-related Siglec receptors regulate immune cell activation upon engaging ubiquitous sialic acids (Sias) on host cell surface glycans. Through molecular mimicry, Sia-expressing pathogen group B Streptococcus binds inhibitory human Siglec-9 (hSiglec-9) to blunt neutrophil activation and promote bacterial survival. We unexpectedly discovered that hSiglec-9 also specifically binds high molecular weight hyaluronan (HMW-HA), another ubiquitous host glycan, through a region of its terminal Ig-like V-set domain distinct from the Sia-binding site. HMW-HA recognition by hSiglec-9 limited neutrophil extracellular trap (NET) formation, oxidative burst, and apoptosis, defining HMW-HA as a regulator of neutrophil activation. However, the pathogen group A Streptococcus (GAS) expresses a HMW-HA capsule that engages hSiglec-9, blocking NET formation and oxidative burst, thereby promoting bacterial survival. Thus, a single inhibitory lectin receptor detects two distinct glycan “self-associated molecular patterns” to maintain neutrophil homeostasis, and two leading human bacterial pathogens have independently evolved molecular mimicry to exploit this immunoregulatory mechanism. PMID:26411873

  13. Opportunistic pathogen Candida albicans elicits a temporal response in primary human mast cells.

    PubMed

    Lopes, José Pedro; Stylianou, Marios; Nilsson, Gunnar; Urban, Constantin F

    2015-07-20

    Immunosuppressed patients are frequently afflicted with severe mycoses caused by opportunistic fungal pathogens. Besides being a commensal, colonizing predominantly skin and mucosal surfaces, Candida albicans is the most common human fungal pathogen. Mast cells are present in tissues prone to fungal colonization being expectedly among the first immune cells to get into contact with C. albicans. However, mast cell-fungus interaction remains a neglected area of study. Here we show that human mast cells mounted specific responses towards C. albicans. Collectively, mast cell responses included the launch of initial, intermediate and late phase components determined by the secretion of granular proteins and cytokines. Initially mast cells reduced fungal viability and occasionally internalized yeasts. C. albicans could evade ingestion by intracellular growth leading to cellular death. Furthermore, secreted factors in the supernatants of infected cells recruited neutrophils, but not monocytes. Late stages were marked by the release of cytokines that are known to be anti-inflammatory suggesting a modulation of initial responses. C. albicans-infected mast cells formed extracellular DNA traps, which ensnared but did not kill the fungus. Our results suggest that mast cells serve as tissue sentinels modulating antifungal immune responses during C. albicans infection. Consequently, these findings open new doors for understanding fungal pathogenicity.

  14. From deep-sea volcanoes to human pathogens: a conserved quorum-sensing signal in Epsilonproteobacteria.

    PubMed

    Pérez-Rodríguez, Ileana; Bolognini, Marie; Ricci, Jessica; Bini, Elisabetta; Vetriani, Costantino

    2015-05-01

    Chemosynthetic Epsilonproteobacteria from deep-sea hydrothermal vents colonize substrates exposed to steep thermal and redox gradients. In many bacteria, substrate attachment, biofilm formation, expression of virulence genes and host colonization are partly controlled via a cell density-dependent mechanism involving signal molecules, known as quorum sensing. Within the Epsilonproteobacteria, quorum sensing has been investigated only in human pathogens that use the luxS/autoinducer-2 (AI-2) mechanism to control the expression of some of these functions. In this study we showed that luxS is conserved in Epsilonproteobacteria and that pathogenic and mesophilic members of this class inherited this gene from a thermophilic ancestor. Furthermore, we provide evidence that the luxS gene is expressed--and a quorum-sensing signal is produced--during growth of Sulfurovum lithotrophicum and Caminibacter mediatlanticus, two Epsilonproteobacteria from deep-sea hydrothermal vents. Finally, we detected luxS transcripts in Epsilonproteobacteria-dominated biofilm communities collected from deep-sea hydrothermal vents. Taken together, our findings indicate that the epsiloproteobacterial lineage of the LuxS enzyme originated in high-temperature geothermal environments and that, in vent Epsilonproteobacteria, luxS expression is linked to the production of AI-2 signals, which are likely produced in situ at deep-sea vents. We conclude that the luxS gene is part of the ancestral epsilonproteobacterial genome and represents an evolutionary link that connects thermophiles to human pathogens.

  15. Sequence and annotation of the apicoplast genome of the human pathogen Babesia microti.

    PubMed

    Garg, Aprajita; Stein, Anna; Zhao, William; Dwivedi, Ankit; Frutos, Roger; Cornillot, Emmanuel; Ben Mamoun, Choukri

    2014-01-01

    The apicomplexan intraerythrocytic parasite Babesia microti is an emerging human pathogen and the primary cause of human babesiosis, a malaria-like illness endemic in the United States. The pathogen is transmitted to humans by the tick vector, Ixodes scapularis, and by transfusion of blood from asymptomatic B. microti-infected donors. Whereas the nuclear and mitochondrial genomes of this parasite have been sequenced, assembled and annotated, its apicoplast genome remained incomplete, mainly due to its low representation and high A+T content. Here we report the complete sequence and annotation of the apicoplast genome of the B. microti R1 isolate. The genome consists of a 28.7 kb circular molecule encoding primarily functions important for maintenance of the apicoplast DNA, transcription, translation and maturation of organellar proteins. Genome analysis and annotation revealed a unique gene structure and organization of the B. microti apicoplast genome and suggest that all metabolic and non-housekeeping functions in this organelle are nuclear-encoded. B. microti apicoplast functions are significantly different from those of the host, suggesting that they might be useful as targets for development of potent and safe therapies for the treatment of human babesiosis.

  16. Blastocystis: how do specific diets and human gut microbiota affect its development and pathogenicity?

    PubMed

    Lepczyńska, M; Białkowska, J; Dzika, E; Piskorz-Ogórek, K; Korycińska, J

    2017-03-22

    Blastocystis is an enteric parasite that inhabits the gastrointestinal tract of humans and many animals. This emerging parasite has a worldwide distribution. It is often identified as the most common eukaryotic organism reported in human fecal samples. This parasite is recognized and diagnosed more often than ever before. Furthermore, some strains develop resistance against currently recommended drugs, such as metronidazole; therefore, the use of natural remedies or special diets has many positive aspects that may address this problem. The goal of this review is to compare natural treatments and various diets against the efficacy of drugs, and describe their influence on the composition of the gut microbiota, which affects Blastocystis growth and the occurrence of symptoms. This article reviews important work in the literature, including the classification, life cycle, epidemiology, pathogenesis, pathogenicity, genetics, biology, and treatment of Blastocystis. It also includes a review of the current knowledge about human gut microbiota and various diets proposed for Blastocystis eradication. The literature has revealed that garlic, ginger, some medical plants, and many spices contain the most effective organic compounds for parasite eradication. They work by inhibiting parasitic enzymes and nucleic acids, as well as by inhibiting protein synthesis. The efficacy of any specific organic compound depends on the Blastocystis subtype, and, consequently, on its immunity to treatment. In conclusion, the article discusses the findings that human gut microbiota composition triggers important mechanisms at the molecular level, and, thus, has a crucial influence on the parasitic pathogenicity.

  17. The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs.

    PubMed

    Stewart, Jill R; Gast, Rebecca J; Fujioka, Roger S; Solo-Gabriele, Helena M; Meschke, J Scott; Amaral-Zettler, Linda A; Del Castillo, Erika; Polz, Martin F; Collier, Tracy K; Strom, Mark S; Sinigalliano, Christopher D; Moeller, Peter D R; Holland, A Fredrick

    2008-11-07

    Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ecosystems, and identifying sources of contamination. This research is facilitating improved risk assessments for seafood consumers and those who use the oceans for recreation. A number of challenges still remain and define future directions of research and public policy. Sample processing and molecular detection techniques need to be advanced to allow rapid and specific identification of microbes of public health concern from complex environmental samples. Water quality standards need to be updated to more accurately reflect health risks and to provide managers with improved tools for decision-making. Greater discrimination of virulent versus harmless microbes is needed to identify environmental reservoirs of pathogens and factors leading to human infections. Investigations must include examination of microbial community dynamics that may be important from a human health perspective. Further research is needed to evaluate the ecology of non-enteric water-transmitted diseases. Sentinels should also be established and monitored, providing early warning of dangers to ecosystem health. Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans.

  18. Draft Genome Sequence of the Serratia rubidaea CIP 103234T Reference Strain, a Human-Opportunistic Pathogen.

    PubMed

    Bonnin, Rémy A; Girlich, Delphine; Imanci, Dilek; Dortet, Laurent; Naas, Thierry

    2015-11-19

    We provide here the first genome sequence of a Serratia rubidaea isolate, a human-opportunistic pathogen. This reference sequence will permit a comparison of this species with others of the Serratia genus.

  19. Molecular Detection of Bartonella Species in Fleas Collected from Dogs and Cats from Costa Rica.

    PubMed

    Rojas, Norman; Troyo, Adriana; Castillo, Daniela; Gutierrez, Ricardo; Harrus, Shimon

    2015-10-01

    The bacterial genus Bartonella includes several species with zoonotic potential, some of which are common in domestic dogs and cats, as well as in their fleas. Because there is no previous information about the presence of Bartonella species in fleas from Central America, this study aimed at evaluating the presence of Bartonella spp. in fleas collected from dogs and cats in Costa Rica. A total 72 pools of Ctenocephalides felis and 21 pools of Pulex simulans were screened by conventional PCR to detect Bartonella DNA fragments of the citrate synthase (gltA) and the β subunit RNA polymerase (rpoB) genes. Three (4.2%) pools of C. felis and five pools (22.7%) of P. simulans were found positive for Bartonella DNA. Sequences corresponding to Bartonella vinsonii subsp. berkhoffii strain Winnie, B. rochalimae, and an undescribed Bartonella sp. (clone BR10) were detected in flea pools from dogs, whereas Bartonella henselae and B. clarridgeiae sequences were identified in flea pools from cats. The detection of zoonotic Bartonella spp. in this study should increase the awareness to these flea-borne diseases among physicians and public health workers and highlight the importance of flea control in the region.

  20. Detection of human bacterial pathogens in ticks collected from Louisiana black bears (Ursus americanus luteolus).

    PubMed

    Leydet, Brian F; Liang, Fang-Ting

    2013-04-01

    There are 4 major human-biting tick species in the northeastern United States, which include: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. The black bear is a large mammal that has been shown to be parasitized by all the aforementioned ticks. We investigated the bacterial infections in ticks collected from Louisiana black bears (Ursus americanus subspecies luteolus). Eighty-six ticks were collected from 17 black bears in Louisiana from June 2010 to March 2011. All 4 common human-biting tick species were represented. Each tick was subjected to polymerase chain reaction (PCR) targeting select bacterial pathogens and symbionts. Bacterial DNA was detected in 62% of ticks (n=53). Rickettsia parkeri, the causative agent of an emerging spotted fever group rickettsiosis, was identified in 66% of A. maculatum, 28% of D. variabilis, and 11% of I. scapularis. The Lyme disease bacterium, Borrelia burgdorferi, was detected in 2 I. scapularis, while one A. americanum was positive for Borrelia bissettii, a putative human pathogen. The rickettsial endosymbionts Candidatus Rickettsia andeanae, rickettsial endosymbiont of I. scapularis, and Rickettsia amblyommii were detected in their common tick hosts at 21%, 39%, and 60%, respectively. All ticks were PCR-negative for Anaplasma phagocytophilum, Ehrlichia spp., and Babesia microti. This is the first reported detection of R. parkeri in vector ticks in Louisiana; we also report the novel association of R. parkeri with I. scapularis. Detection of both R. parkeri and B. burgdorferi in their respective vectors in Louisiana demands further investigation to determine potential for human exposure to these pathogens.

  1. Secondary Lymphoid Organ Homing Phenotype of Human Myeloid Dendritic Cells Disrupted by an Intracellular Oral Pathogen

    PubMed Central

    Miles, Brodie; Zakhary, Ibrahim; El-Awady, Ahmed; Scisci, Elizabeth; Carrion, Julio; O'Neill, John C.; Rawlings, Aaron; Stern, J. Kobi; Susin, Cristiano

    2014-01-01

    Several intracellular pathogens, including a key etiological agent of chronic periodontitis, Porphyromonas gingivalis, infect blood myeloid dendritic cells (mDCs). This infection results in pathogen dissemination to distant inflammatory sites (i.e., pathogen trafficking). The alteration in chemokine-chemokine receptor expression that contributes to this pathogen trafficking function, particularly toward sites of neovascularization in humans, is unclear. To investigate this, we utilized human monocyte-derived DCs (MoDCs) and primary endothelial cells in vitro, combined with ex vivo-isolated blood mDCs and serum from chronic periodontitis subjects and healthy controls. Our results, using conditional fimbria mutants of P. gingivalis, show that P. gingivalis infection of MoDCs induces an angiogenic migratory profile. This profile is enhanced by expression of DC-SIGN on MoDCs and minor mfa-1 fimbriae on P. gingivalis and is evidenced by robust upregulation of CXCR4, but not secondary lymphoid organ (SLO)-homing CCR7. This disruption of SLO-homing capacity in response to respective chemokines closely matches surface expression of CXCR4 and CCR7 and is consistent with directed MoDC migration through an endothelial monolayer. Ex vivo-isolated mDCs from the blood of chronic periodontitis subjects, but not healthy controls, expressed a similar migratory profile; moreover, sera from chronic periodontitis subjects expressed elevated levels of CXCL12. Overall, we conclude that P. gingivalis actively “commandeers” DCs by reprogramming the chemokine receptor profile, thus disrupting SLO homing, while driving migration toward inflammatory vascular sites. PMID:24126519

  2. Light modulates metabolic pathways and other novel physiological traits in the human pathogen Acinetobacter baumannii.

    PubMed

    Müller, Gabriela L; Tuttobene, Marisel; Altilio, Matías; Martinez Amezaga, Maitena; Nguyen, Meaghan; Pamela Cribb, P; Cybulski, Larisa E; Ramírez, María Soledad; Altabe, Silvia; Mussi, María Alejandra

    2017-03-13

    Light sensing in chemotrophic bacteria has been relatively recently ascertained. In the human pathogen Acinetobacter baumannii, light modulates motility, biofilm formation and virulence through the BLUF photoreceptor BlsA. In addition, light can induce reduction in susceptibility to certain antibiotics such as minocycline and tigecycline in a photoreceptor-independent manner. In this work we identified new traits whose expression are modulated by light in this pathogen, which comprise not only important determinants related to pathogenicity and antibiotic resistance, but also metabolic pathways, which represents a novel concept for chemotrophic bacteria. Indeed, the phenylacetic acid catabolic pathway as well as trehalose biosynthesis were modulated by light, responses that completely depend on BlsA. We further show that tolerance to some antibiotics as well as modulation of antioxidant enzyme levels are also influenced by light, likely contributing to bacterial persistence in adverse environments. Also, we present evidence indicating that surfactant production is modulated by light. Finally, the expression of whole pathways and gene clusters such as genes involved in lipid metabolism and genes encoding components of the type VI secretion system, as well as efflux pumps related to antibiotic resistance, were differentially induced by light. Overall, our results indicate that light modulates global features of A. baumannii lifestyle.Importance The discovery that non-phototrophic bacteria respond to light constituted a novel concept in microbiology. In this context, we demonstrated that light could modulate aspects related to bacterial virulence, persistence and resistance to antibiotics in the human pathogen Acinetobacter baumannii In this work, we present the novel finding that light directly regulates metabolism in this chemotrophic bacterium. Insights into the mechanism show the involvement of the photoreceptor BlsA. In addition, tolerance to antibiotics and

  3. Detection of Zoonotic Pathogens and Characterization of Novel Viruses Carried by Commensal Rattus norvegicus in New York City

    PubMed Central

    Bhat, Meera; Firth, Matthew A.; Williams, Simon H.; Frye, Matthew J.; Simmonds, Peter; Conte, Juliette M.; Ng, James; Garcia, Joel; Bhuva, Nishit P.; Lee, Bohyun; Che, Xiaoyu; Quan, Phenix-Lan; Lipkin, W. Ian

    2014-01-01

    ABSTRACT Norway rats (Rattus norvegicus) are globally distributed and concentrate in urban environments, where they live and feed in closer proximity to human populations than most other mammals. Despite the potential role of rats as reservoirs of zoonotic diseases, the microbial diversity present in urban rat populations remains unexplored. In this study, we used targeted molecular assays to detect known bacterial, viral, and protozoan human pathogens and unbiased high-throughput sequencing to identify novel viruses related to agents of human disease in commensal Norway rats in New York City. We found that these rats are infected with bacterial pathogens known to cause acute or mild gastroenteritis in people, including atypical enteropathogenic Escherichia coli, Clostridium difficile, and Salmonella enterica, as well as infectious agents that have been associated with undifferentiated febrile illnesses, including Bartonella spp., Streptobacillus moniliformis, Leptospira interrogans, and Seoul hantavirus. We also identified a wide range of known and novel viruses from groups that contain important human pathogens, including sapoviruses, cardioviruses, kobuviruses, parechoviruses, rotaviruses, and hepaciviruses. The two novel hepaciviruses discovered in this study replicate in the liver of Norway rats and may have utility in establishing a small animal model of human hepatitis C virus infection. The results of this study demonstrate the diversity of microbes carried by commensal rodent species and highlight the need for improved pathogen surveillance and disease monitoring in urban environments. PMID:25316698

  4. afa-8 Gene cluster is carried by a pathogenicity island inserted into the tRNA(Phe) of human and bovine pathogenic Escherichia coli isolates.

    PubMed

    Lalioui, L; Le Bouguénec, C

    2001-02-01

    We recently described a new afimbrial adhesin, AfaE-VIII, produced by animal strains associated with diarrhea and septicemia and by human isolates associated with extraintestinal infections. Here, we report that the afa-8 operon, encoding AfaE-VIII adhesin, from the human blood isolate Escherichia coli AL862 is carried by a 61-kb genomic region with characteristics typical of a pathogenicity island (PAI), including a size larger than 10 kb, the presence of an integrase-encoding gene, the insertion into a tRNA locus (pheR), and the presence of a small direct repeat at each extremity. Moreover, the G+C content of the afa-8 operon (46.4%) is lower than that of the E. coli K-12/MG1655 chromosome (50.8%). Within this PAI, designated PAI I(AL862), we identified open reading frames able to code for products similar to proteins involved in sugar utilization. Four probes spanning these sequences hybridized with 74.3% of pathogenic afa-8-positive E. coli strains isolated from humans and animals, 25% of human pathogenic afa-8-negative E. coli strains, and only 8% of fecal strains (P = 0.05), indicating that these sequences are strongly associated with the afa-8 operon and that this genetic association may define a PAI widely distributed among human and animal afa-8-positive strains. One of the distinctive features of this study is that E. coli AL862 also carries another afa-8-containing PAI (PAI II(AL862)), which appeared to be similar in size and genetic organization to PAI I(AL862) and was inserted into the pheV gene. We investigated the insertion sites of afa-8-containing PAI in human and bovine pathogenic E. coli strains and found that this PAI preferentially inserted into the pheV gene.

  5. [Arms racing between human beings and pathogens: NDM-1 and superbugs].

    PubMed

    Sun, Mingwei; Zheng, Beiwen; Gao, George F; Zhu, Baoli

    2010-11-01

    Throughout human history, pandemic bacterial diseases such as the plague and tuberculosis have posed an enormous threat to human beings. The discovery of antibiotics has provided us with powerful arsenal for the defense against bacterial infections. However, bacteria are acquiring more and more resistance genes to shield off antibiotics through mutation and horizontal gene transfer. Therefore, novel antibiotics must be produced and the arms race between bacterial pathogens and antibiotics is becoming increasingly intense. Recently, researchers have found that plasmids carrying a new metallo-beta-lactamase gene, blaNDM-1, and many other antibiotics resistance genes can easily spread through bacterial populations and confer recipient stains resistance to nearly all of the current antibiotics. It is a threat to the human health and a great challenge for our medical science, which we are facing. We need to find new ways to fight and win this arms racing.

  6. Calpains: Potential Targets for Alternative Chemotherapeutic Intervention Against Human Pathogenic Trypanosomatids

    PubMed Central

    M.H, Branquinha; F.A, Marinho; L.S, Sangenito; S.S.C, Oliveira; K.C, Gonçalves; V, Ennes-Vidal; C.M, d’Avila-Levy; A.L.S, Santos

    2013-01-01

    The treatment for both leishmaniasis and trypanosomiasis, which are severe human infections caused by trypanosomatids belonging to Leishmania and Trypanosoma genera, respectively, is extremely limited because of concerns of toxicity and efficacy with the available anti-protozoan drugs, as well as the emergence of drug resistance. Consequently, the urgency for the discovery of new trypanosomatid targets and novel bioactive compounds is particularly necessary. In this context, the investigation of changes in parasite gene expression between drug resistant/sensitive strains and in the up-regulation of virulence-related genes in infective forms has brought to the fore the involvement of calpain-like proteins in several crucial pathophysiological processes performed by trypanosomatids. These studies were encouraged by the publication of the complete genome sequences of three human pathogenic trypanosomatids, Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, which allowed in silico analyses that in turn directed the identification of numerous genes with interesting chemotherapeutic characteristics, including a large family of calpain-related proteins, in which to date 23 genes were assigned as calpains in T. brucei, 40 in T. cruzi and 33 in L. braziliensis. In the present review, we intend to add to these biochemical/biological reports the investigations performed upon the inhibitory capability of calpain inhibitors against human pathogenic trypanosomatids. PMID:23899207

  7. The genus Shewanella: from the briny depths below to human pathogen.

    PubMed

    Janda, J Michael; Abbott, Sharon L

    2014-11-01

    The genus Shewanella is currently composed of more than 50 species that inhabit a range of marine environs and ecosystems. Several members of this genus, including S. oneidensis, have been identified that could potentially play key roles in environmental processes such as bioremediation of toxic elements and heavy metals and serving as microbial fuel cells. In contrast to this beneficial role, shewanellae are increasingly being implicated as human pathogens in persons exposed through occupational or recreational activities to marine niches containing shewanellae. Documented illnesses linked to Shewanella include skin and soft tissue infections, bacteremia, and otitis media. At present, it is unclear exactly how many Shewanella species are truly bona fide human pathogens. Recent advances in the taxonomy and phylogenetic relatedness of members of this genus, however, support the concept that most human infections are caused by a single species, S. algae. Some phylogenetic data further suggest that some current members of the genus are not true Shewanella species sensu stricto. The current review summarizes our present knowledge of the distribution, epidemiology, disease spectrum, and identification of microbial species focusing on a clinical perspective.

  8. Pathogenic Rickettsia Species Acquire Vitronectin from Human Serum to Promote Res