Sample records for human performance modeling

  1. The Five Key Questions of Human Performance Modeling.

    PubMed

    Wu, Changxu

    2018-01-01

    Via building computational (typically mathematical and computer simulation) models, human performance modeling (HPM) quantifies, predicts, and maximizes human performance, human-machine system productivity and safety. This paper describes and summarizes the five key questions of human performance modeling: 1) Why we build models of human performance; 2) What the expectations of a good human performance model are; 3) What the procedures and requirements in building and verifying a human performance model are; 4) How we integrate a human performance model with system design; and 5) What the possible future directions of human performance modeling research are. Recent and classic HPM findings are addressed in the five questions to provide new thinking in HPM's motivations, expectations, procedures, system integration and future directions.

  2. Evaluating Models of Human Performance: Safety-Critical Systems Applications

    NASA Technical Reports Server (NTRS)

    Feary, Michael S.

    2012-01-01

    This presentation is part of panel discussion on Evaluating Models of Human Performance. The purpose of this panel is to discuss the increasing use of models in the world today and specifically focus on how to describe and evaluate models of human performance. My presentation will focus on discussions of generating distributions of performance, and the evaluation of different strategies for humans performing tasks with mixed initiative (Human-Automation) systems. I will also discuss issues with how to provide Human Performance modeling data to support decisions on acceptability and tradeoffs in the design of safety critical systems. I will conclude with challenges for the future.

  3. Model for Predicting the Performance of Planetary Suit Hip Bearing Designs

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Hharvill, Lauren; Rajulu, Sudhakar

    2012-01-01

    Designing a space suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. During the development period of the suit numerous design iterations need to occur before the hardware meets human performance requirements. Using computer models early in the design phase of hardware development is advantageous, by allowing virtual prototyping to take place. A virtual design environment allows designers to think creatively, exhaust design possibilities, and study design impacts on suit and human performance. A model of the rigid components of the Mark III Technology Demonstrator Suit (planetary-type space suit) and a human manikin were created and tested in a virtual environment. The performance of the Mark III hip bearing model was first developed and evaluated virtually by comparing the differences in mobility performance between the nominal bearing configurations and modified bearing configurations. Suited human performance was then simulated with the model and compared to actual suited human performance data using the same bearing configurations. The Mark III hip bearing model was able to visually represent complex bearing rotations and the theoretical volumetric ranges of motion in three dimensions. The model was also able to predict suited human hip flexion and abduction maximums to within 10% of the actual suited human subject data, except for one modified bearing condition in hip flexion which was off by 24%. Differences between the model predictions and the human subject performance data were attributed to the lack of joint moment limits in the model, human subject fitting issues, and the limited suit experience of some of the subjects. The results demonstrate that modeling space suit rigid segments is a feasible design tool for evaluating and optimizing suited human performance. Keywords: space suit, design, modeling, performance

  4. A contrast-sensitive channelized-Hotelling observer to predict human performance in a detection task using lumpy backgrounds and Gaussian signals

    NASA Astrophysics Data System (ADS)

    Park, Subok; Badano, Aldo; Gallas, Brandon D.; Myers, Kyle J.

    2007-03-01

    Previously, a non-prewhitening matched filter (NPWMF) incorporating a model for the contrast sensitivity of the human visual system was introduced for modeling human performance in detection tasks with different viewing angles and white-noise backgrounds by Badano et al. But NPWMF observers do not perform well detection tasks involving complex backgrounds since they do not account for random backgrounds. A channelized-Hotelling observer (CHO) using difference-of-Gaussians (DOG) channels has been shown to track human performance well in detection tasks using lumpy backgrounds. In this work, a CHO with DOG channels, incorporating the model of the human contrast sensitivity, was developed similarly. We call this new observer a contrast-sensitive CHO (CS-CHO). The Barten model was the basis of our human contrast sensitivity model. A scalar was multiplied to the Barten model and varied to control the thresholding effect of the contrast sensitivity on luminance-valued images and hence the performance-prediction ability of the CS-CHO. The performance of the CS-CHO was compared to the average human performance from the psychophysical study by Park et al., where the task was to detect a known Gaussian signal in non-Gaussian distributed lumpy backgrounds. Six different signal-intensity values were used in this study. We chose the free parameter of our model to match the mean human performance in the detection experiment at the strongest signal intensity. Then we compared the model to the human at five different signal-intensity values in order to see if the performance of the CS-CHO matched human performance. Our results indicate that the CS-CHO with the chosen scalar for the contrast sensitivity predicts human performance closely as a function of signal intensity.

  5. Modeling Human Steering Behavior During Path Following in Teleoperation of Unmanned Ground Vehicles.

    PubMed

    Mirinejad, Hossein; Jayakumar, Paramsothy; Ersal, Tulga

    2018-04-01

    This paper presents a behavioral model representing the human steering performance in teleoperated unmanned ground vehicles (UGVs). Human steering performance in teleoperation is considerably different from the performance in regular onboard driving situations due to significant communication delays in teleoperation systems and limited information human teleoperators receive from the vehicle sensory system. Mathematical models capturing the teleoperation performance are a key to making the development and evaluation of teleoperated UGV technologies fully simulation based and thus more rapid and cost-effective. However, driver models developed for the typical onboard driving case do not readily address this need. To fill the gap, this paper adopts a cognitive model that was originally developed for a typical highway driving scenario and develops a tuning strategy that adjusts the model parameters in the absence of human data to reflect the effect of various latencies and UGV speeds on driver performance in a teleoperated path-following task. Based on data collected from a human subject test study, it is shown that the tuned model can predict both the trend of changes in driver performance for different driving conditions and the best steering performance of human subjects in all driving conditions considered. The proposed model with the tuning strategy has a satisfactory performance in predicting human steering behavior in the task of teleoperated path following of UGVs. The established model is a suited candidate to be used in place of human drivers for simulation-based studies of UGV mobility in teleoperation systems.

  6. Development of task network models of human performance in microgravity

    NASA Technical Reports Server (NTRS)

    Diaz, Manuel F.; Adam, Susan

    1992-01-01

    This paper discusses the utility of task-network modeling for quantifying human performance variability in microgravity. The data are gathered for: (1) improving current methodologies for assessing human performance and workload in the operational space environment; (2) developing tools for assessing alternative system designs; and (3) developing an integrated set of methodologies for the evaluation of performance degradation during extended duration spaceflight. The evaluation entailed an analysis of the Remote Manipulator System payload-grapple task performed on many shuttle missions. Task-network modeling can be used as a tool for assessing and enhancing human performance in man-machine systems, particularly for modeling long-duration manned spaceflight. Task-network modeling can be directed toward improving system efficiency by increasing the understanding of basic capabilities of the human component in the system and the factors that influence these capabilities.

  7. Analytic Guided-Search Model of Human Performance Accuracy in Target- Localization Search Tasks

    NASA Technical Reports Server (NTRS)

    Eckstein, Miguel P.; Beutter, Brent R.; Stone, Leland S.

    2000-01-01

    Current models of human visual search have extended the traditional serial/parallel search dichotomy. Two successful models for predicting human visual search are the Guided Search model and the Signal Detection Theory model. Although these models are inherently different, it has been difficult to compare them because the Guided Search model is designed to predict response time, while Signal Detection Theory models are designed to predict performance accuracy. Moreover, current implementations of the Guided Search model require the use of Monte-Carlo simulations, a method that makes fitting the model's performance quantitatively to human data more computationally time consuming. We have extended the Guided Search model to predict human accuracy in target-localization search tasks. We have also developed analytic expressions that simplify simulation of the model to the evaluation of a small set of equations using only three free parameters. This new implementation and extension of the Guided Search model will enable direct quantitative comparisons with human performance in target-localization search experiments and with the predictions of Signal Detection Theory and other search accuracy models.

  8. An Overview of the Human Systems Integration Division

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2015-01-01

    This presentation will provide an overview of the Human Systems Integration Division, and will highlight some of the human performance modeling efforts undertaken in previously presented MIDAS human performance modeling efforts.

  9. Human Performance Models of Pilot Behavior

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Hooey, Becky L.; Byrne, Michael D.; Deutsch, Stephen; Lebiere, Christian; Leiden, Ken; Wickens, Christopher D.; Corker, Kevin M.

    2005-01-01

    Five modeling teams from industry and academia were chosen by the NASA Aviation Safety and Security Program to develop human performance models (HPM) of pilots performing taxi operations and runway instrument approaches with and without advanced displays. One representative from each team will serve as a panelist to discuss their team s model architecture, augmentations and advancements to HPMs, and aviation-safety related lessons learned. Panelists will discuss how modeling results are influenced by a model s architecture and structure, the role of the external environment, specific modeling advances and future directions and challenges for human performance modeling in aviation.

  10. A model of human event detection in multiple process monitoring situations

    NASA Technical Reports Server (NTRS)

    Greenstein, J. S.; Rouse, W. B.

    1978-01-01

    It is proposed that human decision making in many multi-task situations might be modeled in terms of the manner in which the human detects events related to his tasks and the manner in which he allocates his attention among his tasks once he feels events have occurred. A model of human event detection performance in such a situation is presented. An assumption of the model is that, in attempting to detect events, the human generates the probability that events have occurred. Discriminant analysis is used to model the human's generation of these probabilities. An experimental study of human event detection performance in a multiple process monitoring situation is described and the application of the event detection model to this situation is addressed. The experimental study employed a situation in which subjects simulataneously monitored several dynamic processes for the occurrence of events and made yes/no decisions on the presence of events in each process. Input to the event detection model of the information displayed to the experimental subjects allows comparison of the model's performance with the performance of the subjects.

  11. A Perspective on Computational Human Performance Models as Design Tools

    NASA Technical Reports Server (NTRS)

    Jones, Patricia M.

    2010-01-01

    The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.

  12. Development, Testing, and Validation of a Model-Based Tool to Predict Operator Responses in Unexpected Workload Transitions

    NASA Technical Reports Server (NTRS)

    Sebok, Angelia; Wickens, Christopher; Sargent, Robert

    2015-01-01

    One human factors challenge is predicting operator performance in novel situations. Approaches such as drawing on relevant previous experience, and developing computational models to predict operator performance in complex situations, offer potential methods to address this challenge. A few concerns with modeling operator performance are that models need to realistic, and they need to be tested empirically and validated. In addition, many existing human performance modeling tools are complex and require that an analyst gain significant experience to be able to develop models for meaningful data collection. This paper describes an effort to address these challenges by developing an easy to use model-based tool, using models that were developed from a review of existing human performance literature and targeted experimental studies, and performing an empirical validation of key model predictions.

  13. Predicting detection performance with model observers: Fourier domain or spatial domain?

    PubMed

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-02-27

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images.

  14. Predicting detection performance with model observers: Fourier domain or spatial domain?

    PubMed Central

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-01-01

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images. PMID:27239086

  15. Computational Model-Based Prediction of Human Episodic Memory Performance Based on Eye Movements

    NASA Astrophysics Data System (ADS)

    Sato, Naoyuki; Yamaguchi, Yoko

    Subjects' episodic memory performance is not simply reflected by eye movements. We use a ‘theta phase coding’ model of the hippocampus to predict subjects' memory performance from their eye movements. Results demonstrate the ability of the model to predict subjects' memory performance. These studies provide a novel approach to computational modeling in the human-machine interface.

  16. Human performance modeling for system of systems analytics :soldier fatigue.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, Craig R.; Campbell, James E.; Miller, Dwight Peter

    2005-10-01

    The military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives as can be seen in the Department of Defense's (DoD) Defense Modeling and Simulation Office's (DMSO) Master Plan (DoD 5000.59-P 1995). To this goal, the military is currently spending millions of dollars on programs devoted to HPM in various military contexts. Examples include the Human Performance Modeling Integration (HPMI) program within the Air Force Research Laboratory, which focuses on integrating HPMs with constructive models of systems (e.g. cockpit simulations) and the Navy's Human Performance Center (HPC) established in Septembermore » 2003. Nearly all of these initiatives focus on the interface between humans and a single system. This is insufficient in the era of highly complex network centric SoS. This report presents research and development in the area of HPM in a system-of-systems (SoS). Specifically, this report addresses modeling soldier fatigue and the potential impacts soldier fatigue can have on SoS performance.« less

  17. Feedforward object-vision models only tolerate small image variations compared to human

    PubMed Central

    Ghodrati, Masoud; Farzmahdi, Amirhossein; Rajaei, Karim; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi

    2014-01-01

    Invariant object recognition is a remarkable ability of primates' visual system that its underlying mechanism has constantly been under intense investigations. Computational modeling is a valuable tool toward understanding the processes involved in invariant object recognition. Although recent computational models have shown outstanding performances on challenging image databases, they fail to perform well in image categorization under more complex image variations. Studies have shown that making sparse representation of objects by extracting more informative visual features through a feedforward sweep can lead to higher recognition performances. Here, however, we show that when the complexity of image variations is high, even this approach results in poor performance compared to humans. To assess the performance of models and humans in invariant object recognition tasks, we built a parametrically controlled image database consisting of several object categories varied in different dimensions and levels, rendered from 3D planes. Comparing the performance of several object recognition models with human observers shows that only in low-level image variations the models perform similar to humans in categorization tasks. Furthermore, the results of our behavioral experiments demonstrate that, even under difficult experimental conditions (i.e., briefly presented masked stimuli with complex image variations), human observers performed outstandingly well, suggesting that the models are still far from resembling humans in invariant object recognition. Taken together, we suggest that learning sparse informative visual features, although desirable, is not a complete solution for future progresses in object-vision modeling. We show that this approach is not of significant help in solving the computational crux of object recognition (i.e., invariant object recognition) when the identity-preserving image variations become more complex. PMID:25100986

  18. Validating models of target acquisition performance in the dismounted soldier context

    NASA Astrophysics Data System (ADS)

    Glaholt, Mackenzie G.; Wong, Rachel K.; Hollands, Justin G.

    2018-04-01

    The problem of predicting real-world operator performance with digital imaging devices is of great interest within the military and commercial domains. There are several approaches to this problem, including: field trials with imaging devices, laboratory experiments using imagery captured from these devices, and models that predict human performance based on imaging device parameters. The modeling approach is desirable, as both field trials and laboratory experiments are costly and time-consuming. However, the data from these experiments is required for model validation. Here we considered this problem in the context of dismounted soldiering, for which detection and identification of human targets are essential tasks. Human performance data were obtained for two-alternative detection and identification decisions in a laboratory experiment in which photographs of human targets were presented on a computer monitor and the images were digitally magnified to simulate range-to-target. We then compared the predictions of different performance models within the NV-IPM software package: Targeting Task Performance (TTP) metric model and the Johnson model. We also introduced a modification to the TTP metric computation that incorporates an additional correction for target angular size. We examined model predictions using NV-IPM default values for a critical model constant, V50, and we also considered predictions when this value was optimized to fit the behavioral data. When using default values, certain model versions produced a reasonably close fit to the human performance data in the detection task, while for the identification task all models substantially overestimated performance. When using fitted V50 values the models produced improved predictions, though the slopes of the performance functions were still shallow compared to the behavioral data. These findings are discussed in relation to the models' designs and parameters, and the characteristics of the behavioral paradigm.

  19. Human performance models for computer-aided engineering

    NASA Technical Reports Server (NTRS)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)

    1989-01-01

    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  20. Identification of human operator performance models utilizing time series analysis

    NASA Technical Reports Server (NTRS)

    Holden, F. M.; Shinners, S. M.

    1973-01-01

    The results of an effort performed by Sperry Systems Management Division for AMRL in applying time series analysis as a tool for modeling the human operator are presented. This technique is utilized for determining the variation of the human transfer function under various levels of stress. The human operator's model is determined based on actual input and output data from a tracking experiment.

  1. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operatingmore » experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.« less

  2. Simulating Visual Attention Allocation of Pilots in an Advanced Cockpit Environment

    NASA Technical Reports Server (NTRS)

    Frische, F.; Osterloh, J.-P.; Luedtke, A.

    2011-01-01

    This paper describes the results of experiments conducted with human line pilots and a cognitive pilot model during interaction with a new 40 Flight Management System (FMS). The aim of these experiments was to gather human pilot behavior data in order to calibrate the behavior of the model. Human behavior is mainly triggered by visual perception. Thus, the main aspect was to setup a profile of human pilots' visual attention allocation in a cockpit environment containing the new FMS. We first performed statistical analyses of eye tracker data and then compared our results to common results of familiar analyses in standard cockpit environments. The comparison has shown a significant influence of the new system on the visual performance of human pilots. Further on, analyses of the pilot models' visual performance have been performed. A comparison to human pilots' visual performance revealed important improvement potentials.

  3. Stanford/NASA-Ames Center of Excellence in model-based human performance

    NASA Technical Reports Server (NTRS)

    Wandell, Brian A.

    1990-01-01

    The human operator plays a critical role in many aeronautic and astronautic missions. The Stanford/NASA-Ames Center of Excellence in Model-Based Human Performance (COE) was initiated in 1985 to further our understanding of the performance capabilities and performance limits of the human component of aeronautic and astronautic projects. Support from the COE is devoted to those areas of experimental and theoretical work designed to summarize and explain human performance by developing computable performance models. The ultimate goal is to make these computable models available to other scientists for use in design and evaluation of aeronautic and astronautic instrumentation. Within vision science, two topics have received particular attention. First, researchers did extensive work analyzing the human ability to recognize object color relatively independent of the spectral power distribution of the ambient lighting (color constancy). The COE has supported a number of research papers in this area, as well as the development of a substantial data base of surface reflectance functions, ambient illumination functions, and an associated software package for rendering and analyzing image data with respect to these spectral functions. Second, the COE supported new empirical studies on the problem of selecting colors for visual display equipment to enhance human performance in discrimination and recognition tasks.

  4. Economics of human performance and systems total ownership cost.

    PubMed

    Onkham, Wilawan; Karwowski, Waldemar; Ahram, Tareq Z

    2012-01-01

    Financial costs of investing in people is associated with training, acquisition, recruiting, and resolving human errors have a significant impact on increased total ownership costs. These costs can also affect the exaggerate budgets and delayed schedules. The study of human performance economical assessment in the system acquisition process enhances the visibility of hidden cost drivers which support program management informed decisions. This paper presents the literature review of human total ownership cost (HTOC) and cost impacts on overall system performance. Economic value assessment models such as cost benefit analysis, risk-cost tradeoff analysis, expected value of utility function analysis (EV), growth readiness matrix, multi-attribute utility technique, and multi-regressions model were introduced to reflect the HTOC and human performance-technology tradeoffs in terms of the dollar value. The human total ownership regression model introduces to address the influencing human performance cost component measurement. Results from this study will increase understanding of relevant cost drivers in the system acquisition process over the long term.

  5. Human performance cognitive-behavioral modeling: a benefit for occupational safety.

    PubMed

    Gore, Brian F

    2002-01-01

    Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.

  6. Human performance cognitive-behavioral modeling: a benefit for occupational safety

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2002-01-01

    Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.

  7. A Systemic Cause Analysis Model for Human Performance Technicians

    ERIC Educational Resources Information Center

    Sostrin, Jesse

    2011-01-01

    This article presents a systemic, research-based cause analysis model for use in the field of human performance technology (HPT). The model organizes the most prominent barriers to workplace learning and performance into a conceptual framework that explains and illuminates the architecture of these barriers that exist within the fabric of everyday…

  8. Designing automation for human use: empirical studies and quantitative models.

    PubMed

    Parasuraman, R

    2000-07-01

    An emerging knowledge base of human performance research can provide guidelines for designing automation that can be used effectively by human operators of complex systems. Which functions should be automated and to what extent in a given system? A model for types and levels of automation that provides a framework and an objective basis for making such choices is described. The human performance consequences of particular types and levels of automation constitute primary evaluative criteria for automation design when using the model. Four human performance areas are considered--mental workload, situation awareness, complacency and skill degradation. Secondary evaluative criteria include such factors as automation reliability, the risks of decision/action consequences and the ease of systems integration. In addition to this qualitative approach, quantitative models can inform design. Several computational and formal models of human interaction with automation that have been proposed by various researchers are reviewed. An important future research need is the integration of qualitative and quantitative approaches. Application of these models provides an objective basis for designing automation for effective human use.

  9. Probabilistic risk assessment for a loss of coolant accident in McMaster Nuclear Reactor and application of reliability physics model for modeling human reliability

    NASA Astrophysics Data System (ADS)

    Ha, Taesung

    A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential usefulness of quantifying model uncertainty as sensitivity analysis in the PRA model.

  10. Correlation between human observer performance and model observer performance in differential phase contrast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ke; Garrett, John; Chen, Guang-Hong

    2013-11-15

    Purpose: With the recently expanding interest and developments in x-ray differential phase contrast CT (DPC-CT), the evaluation of its task-specific detection performance and comparison with the corresponding absorption CT under a given radiation dose constraint become increasingly important. Mathematical model observers are often used to quantify the performance of imaging systems, but their correlations with actual human observers need to be confirmed for each new imaging method. This work is an investigation of the effects of stochastic DPC-CT noise on the correlation of detection performance between model and human observers with signal-known-exactly (SKE) detection tasks.Methods: The detectabilities of different objectsmore » (five disks with different diameters and two breast lesion masses) embedded in an experimental DPC-CT noise background were assessed using both model and human observers. The detectability of the disk and lesion signals was then measured using five types of model observers including the prewhitening ideal observer, the nonprewhitening (NPW) observer, the nonprewhitening observer with eye filter and internal noise (NPWEi), the prewhitening observer with eye filter and internal noise (PWEi), and the channelized Hotelling observer (CHO). The same objects were also evaluated by four human observers using the two-alternative forced choice method. The results from the model observer experiment were quantitatively compared to the human observer results to assess the correlation between the two techniques.Results: The contrast-to-detail (CD) curve generated by the human observers for the disk-detection experiments shows that the required contrast to detect a disk is inversely proportional to the square root of the disk size. Based on the CD curves, the ideal and NPW observers tend to systematically overestimate the performance of the human observers. The NPWEi and PWEi observers did not predict human performance well either, as the slopes of their CD curves tended to be steeper. The CHO generated the best quantitative agreement with human observers with its CD curve overlapping with that of human observer. Statistical equivalence between CHO and humans can be claimed within 11% of the human observer results, including both the disk and lesion detection experiments.Conclusions: The model observer method can be used to accurately represent human observer performance with the stochastic DPC-CT noise for SKE tasks with sizes ranging from 8 to 128 pixels. The incorporation of the anatomical noise remains to be studied.« less

  11. Statistical modelling of networked human-automation performance using working memory capacity.

    PubMed

    Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja

    2014-01-01

    This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.

  12. A model of human decision making in multiple process monitoring situations

    NASA Technical Reports Server (NTRS)

    Greenstein, J. S.; Rouse, W. B.

    1982-01-01

    Human decision making in multiple process monitoring situations is considered. It is proposed that human decision making in many multiple process monitoring situations can be modeled in terms of the human's detection of process related events and his allocation of attention among processes once he feels event have occurred. A mathematical model of human event detection and attention allocation performance in multiple process monitoring situations is developed. An assumption made in developing the model is that, in attempting to detect events, the human generates estimates of the probabilities that events have occurred. An elementary pattern recognition technique, discriminant analysis, is used to model the human's generation of these probability estimates. The performance of the model is compared to that of four subjects in a multiple process monitoring situation requiring allocation of attention among processes.

  13. Evaluation of internal noise methods for Hotelling observers

    NASA Astrophysics Data System (ADS)

    Zhang, Yani; Pham, Binh T.; Eckstein, Miguel P.

    2005-04-01

    Including internal noise in computer model observers to degrade model observer performance to human levels is a common method to allow for quantitatively comparisons of human and model performance. In this paper, we studied two different types of methods for injecting internal noise to Hotelling model observers. The first method adds internal noise to the output of the individual channels: a) Independent non-uniform channel noise, b) Independent uniform channel noise. The second method adds internal noise to the decision variable arising from the combination of channel responses: a) internal noise standard deviation proportional to decision variable's standard deviation due to the external noise, b) internal noise standard deviation proportional to decision variable's variance caused by the external noise. We tested the square window Hotelling observer (HO), channelized Hotelling observer (CHO), and Laguerre-Gauss Hotelling observer (LGHO). The studied task was detection of a filling defect of varying size/shape in one of four simulated arterial segment locations with real x-ray angiography backgrounds. Results show that the internal noise method that leads to the best prediction of human performance differs across the studied models observers. The CHO model best predicts human observer performance with the channel internal noise. The HO and LGHO best predict human observer performance with the decision variable internal noise. These results might help explain why previous studies have found different results on the ability of each Hotelling model to predict human performance. Finally, the present results might guide researchers with the choice of method to include internal noise into their Hotelling models.

  14. Modeling and Evaluating Pilot Performance in NextGen: Review of and Recommendations Regarding Pilot Modeling Efforts, Architectures, and Validation Studies

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher; Sebok, Angelia; Keller, John; Peters, Steve; Small, Ronald; Hutchins, Shaun; Algarin, Liana; Gore, Brian Francis; Hooey, Becky Lee; Foyle, David C.

    2013-01-01

    NextGen operations are associated with a variety of changes to the national airspace system (NAS) including changes to the allocation of roles and responsibilities among operators and automation, the use of new technologies and automation, additional information presented on the flight deck, and the entire concept of operations (ConOps). In the transition to NextGen airspace, aviation and air operations designers need to consider the implications of design or system changes on human performance and the potential for error. To ensure continued safety of the NAS, it will be necessary for researchers to evaluate design concepts and potential NextGen scenarios well before implementation. One approach for such evaluations is through human performance modeling. Human performance models (HPMs) provide effective tools for predicting and evaluating operator performance in systems. HPMs offer significant advantages over empirical, human-in-the-loop testing in that (1) they allow detailed analyses of systems that have not yet been built, (2) they offer great flexibility for extensive data collection, (3) they do not require experimental participants, and thus can offer cost and time savings. HPMs differ in their ability to predict performance and safety with NextGen procedures, equipment and ConOps. Models also vary in terms of how they approach human performance (e.g., some focus on cognitive processing, others focus on discrete tasks performed by a human, while others consider perceptual processes), and in terms of their associated validation efforts. The objectives of this research effort were to support the Federal Aviation Administration (FAA) in identifying HPMs that are appropriate for predicting pilot performance in NextGen operations, to provide guidance on how to evaluate the quality of different models, and to identify gaps in pilot performance modeling research, that could guide future research opportunities. This research effort is intended to help the FAA evaluate pilot modeling efforts and select the appropriate tools for future modeling efforts to predict pilot performance in NextGen operations.

  15. Simulating Human Cognition in the Domain of Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    Experiments intended to assess performance in human-machine interactions are often prohibitively expensive, unethical or otherwise impractical to run. Approximations of experimental results can be obtained, in principle, by simulating the behavior of subjects using computer models of human mental behavior. Computer simulation technology has been developed for this purpose. Our goal is to produce a cognitive model suitable to guide the simulation machinery and enable it to closely approximate a human subject's performance in experimental conditions. The described model is designed to simulate a variety of cognitive behaviors involved in routine air traffic control. As the model is elaborated, our ability to predict the effects of novel circumstances on controller error rates and other performance characteristics should increase. This will enable the system to project the impact of proposed changes to air traffic control procedures and equipment on controller performance.

  16. The Development of Web-Based Collaborative Training Model for Enhancing Human Performances on ICT for Students in Banditpattanasilpa Institute

    ERIC Educational Resources Information Center

    Pumipuntu, Natawut; Kidrakarn, Pachoen; Chetakarn, Somchock

    2015-01-01

    This research aimed to develop the model of Web-based Collaborative (WBC) Training model for enhancing human performances on ICT for students in Banditpattanasilpa Institute. The research is divided into three phases: 1) investigating students and teachers' training needs on ICT web-based contents and performance, 2) developing a web-based…

  17. Performance Improvement: Applying a Human Performance Model to Organizational Processes in a Military Training Environment

    ERIC Educational Resources Information Center

    Aaberg, Wayne; Thompson, Carla J.; West, Haywood V.; Swiergosz, Matthew J.

    2009-01-01

    This article provides a description and the results of a study that utilized the human performance (HP) model and methods to explore and analyze a training organization. The systemic and systematic practices of the HP model are applicable to military training organizations as well as civilian organizations. Implications of the study for future…

  18. Planetary Suit Hip Bearing Model for Predicting Design vs. Performance

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Harvil, Lauren; Rajulu, Sudhakar

    2011-01-01

    Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. In order to verifying that new suit designs meet requirements, full prototypes must eventually be built and tested with human subjects. Using computer models early in the design phase of new hardware development can be advantageous, allowing virtual prototyping to take place. Having easily modifiable models of the suit hard sections may reduce the time it takes to make changes to the hardware designs and then to understand their impact on suit and human performance. A virtual design environment gives designers the ability to think outside the box and exhaust design possibilities before building and testing physical prototypes with human subjects. Reductions in prototyping and testing may eventually reduce development costs. This study is an attempt to develop computer models of the hard components of the suit with known physical characteristics, supplemented with human subject performance data. Objectives: The primary objective was to develop an articulating solid model of the Mark III hip bearings to be used for evaluating suit design performance of the hip joint. Methods: Solid models of a planetary prototype (Mark III) suit s hip bearings and brief section were reverse-engineered from the prototype. The performance of the models was then compared by evaluating the mobility performance differences between the nominal hardware configuration and hardware modifications. This was accomplished by gathering data from specific suited tasks. Subjects performed maximum flexion and abduction tasks while in a nominal suit bearing configuration and in three off-nominal configurations. Performance data for the hip were recorded using state-of-the-art motion capture technology. Results: The results demonstrate that solid models of planetary suit hard segments for use as a performance design tool is feasible. From a general trend perspective, the suited performance trends were comparable between the model and the suited subjects. With the three off-nominal bearing configurations compared to the nominal bearing configurations, human subjects showed decreases in hip flexion of 64%, 6%, and 13% and in hip abduction of 59%, 2%, and 20%. Likewise the solid model showed decreases in hip flexion of 58%, 1%, and 25% and in hip abduction of 56%, 0%, and 30%, under the same condition changes from the nominal configuration. Differences seen between the model predictions and the human subject performance data could be attributed to the model lacking dynamic elements and performing kinematic analysis only, the level of fit of the subjects with the suit, the levels of the subject s suit experience.

  19. New Integrated Modeling Capabilities: MIDAS' Recent Behavioral Enhancements

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.; Jarvis, Peter A.

    2005-01-01

    The Man-machine Integration Design and Analysis System (MIDAS) is an integrated human performance modeling software tool that is based on mechanisms that underlie and cause human behavior. A PC-Windows version of MIDAS has been created that integrates the anthropometric character "Jack (TM)" with MIDAS' validated perceptual and attention mechanisms. MIDAS now models multiple simulated humans engaging in goal-related behaviors. New capabilities include the ability to predict situations in which errors and/or performance decrements are likely due to a variety of factors including concurrent workload and performance influencing factors (PIFs). This paper describes a new model that predicts the effects of microgravity on a mission specialist's performance, and its first application to simulating the task of conducting a Life Sciences experiment in space according to a sequential or parallel schedule of performance.

  20. Probabilistic simulation of the human factor in structural reliability

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Chamis, Christos C.

    1991-01-01

    Many structural failures have occasionally been attributed to human factors in engineering design, analyses maintenance, and fabrication processes. Every facet of the engineering process is heavily governed by human factors and the degree of uncertainty associated with them. Factors such as societal, physical, professional, psychological, and many others introduce uncertainties that significantly influence the reliability of human performance. Quantifying human factors and associated uncertainties in structural reliability require: (1) identification of the fundamental factors that influence human performance, and (2) models to describe the interaction of these factors. An approach is being developed to quantify the uncertainties associated with the human performance. This approach consists of a multi factor model in conjunction with direct Monte-Carlo simulation.

  1. Robotics-based synthesis of human motion.

    PubMed

    Khatib, O; Demircan, E; De Sapio, V; Sentis, L; Besier, T; Delp, S

    2009-01-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

  2. Strategy generalization across orientation tasks: testing a computational cognitive model.

    PubMed

    Gunzelmann, Glenn

    2008-07-08

    Humans use their spatial information processing abilities flexibly to facilitate problem solving and decision making in a variety of tasks. This article explores the question of whether a general strategy can be adapted for performing two different spatial orientation tasks by testing the predictions of a computational cognitive model. Human performance was measured on an orientation task requiring participants to identify the location of a target either on a map (find-on-map) or within an egocentric view of a space (find-in-scene). A general strategy instantiated in a computational cognitive model of the find-on-map task, based on the results from Gunzelmann and Anderson (2006), was adapted to perform both tasks and used to generate performance predictions for a new study. The qualitative fit of the model to the human data supports the view that participants were able to tailor a general strategy to the requirements of particular spatial tasks. The quantitative differences between the predictions of the model and the performance of human participants in the new experiment expose individual differences in sample populations. The model provides a means of accounting for those differences and a framework for understanding how human spatial abilities are applied to naturalistic spatial tasks that involve reasoning with maps. 2008 Cognitive Science Society, Inc.

  3. Feature Extraction of Event-Related Potentials Using Wavelets: An Application to Human Performance Monitoring

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Shensa, Mark J.; Remington, Roger W. (Technical Monitor)

    1998-01-01

    This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many f ree parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation,-, algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance.

  4. Feature extraction of event-related potentials using wavelets: an application to human performance monitoring

    NASA Technical Reports Server (NTRS)

    Trejo, L. J.; Shensa, M. J.

    1999-01-01

    This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many free parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance. Copyright 1999 Academic Press.

  5. Human factors with nonhumans - Factors that affect computer-task performance

    NASA Technical Reports Server (NTRS)

    Washburn, David A.

    1992-01-01

    There are two general strategies that may be employed for 'doing human factors research with nonhuman animals'. First, one may use the methods of traditional human factors investigations to examine the nonhuman animal-to-machine interface. Alternatively, one might use performance by nonhuman animals as a surrogate for or model of performance by a human operator. Each of these approaches is illustrated with data in the present review. Chronic ambient noise was found to have a significant but inconsequential effect on computer-task performance by rhesus monkeys (Macaca mulatta). Additional data supported the generality of findings such as these to humans, showing that rhesus monkeys are appropriate models of human psychomotor performance. It is argued that ultimately the interface between comparative psychology and technology will depend on the coordinated use of both strategies of investigation.

  6. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments

    PubMed Central

    Jozwik, Kamila M.; Kriegeskorte, Nikolaus; Storrs, Katherine R.; Mur, Marieke

    2017-01-01

    Recent advances in Deep convolutional Neural Networks (DNNs) have enabled unprecedentedly accurate computational models of brain representations, and present an exciting opportunity to model diverse cognitive functions. State-of-the-art DNNs achieve human-level performance on object categorisation, but it is unclear how well they capture human behavior on complex cognitive tasks. Recent reports suggest that DNNs can explain significant variance in one such task, judging object similarity. Here, we extend these findings by replicating them for a rich set of object images, comparing performance across layers within two DNNs of different depths, and examining how the DNNs’ performance compares to that of non-computational “conceptual” models. Human observers performed similarity judgments for a set of 92 images of real-world objects. Representations of the same images were obtained in each of the layers of two DNNs of different depths (8-layer AlexNet and 16-layer VGG-16). To create conceptual models, other human observers generated visual-feature labels (e.g., “eye”) and category labels (e.g., “animal”) for the same image set. Feature labels were divided into parts, colors, textures and contours, while category labels were divided into subordinate, basic, and superordinate categories. We fitted models derived from the features, categories, and from each layer of each DNN to the similarity judgments, using representational similarity analysis to evaluate model performance. In both DNNs, similarity within the last layer explains most of the explainable variance in human similarity judgments. The last layer outperforms almost all feature-based models. Late and mid-level layers outperform some but not all feature-based models. Importantly, categorical models predict similarity judgments significantly better than any DNN layer. Our results provide further evidence for commonalities between DNNs and brain representations. Models derived from visual features other than object parts perform relatively poorly, perhaps because DNNs more comprehensively capture the colors, textures and contours which matter to human object perception. However, categorical models outperform DNNs, suggesting that further work may be needed to bring high-level semantic representations in DNNs closer to those extracted by humans. Modern DNNs explain similarity judgments remarkably well considering they were not trained on this task, and are promising models for many aspects of human cognition. PMID:29062291

  7. Visual performance modeling in the human operator simulator

    NASA Technical Reports Server (NTRS)

    Strieb, M. I.

    1979-01-01

    A brief description of the history of the development of the human operator simulator (HOS) model is presented. Features of the HOS micromodels that impact on the obtainment of visual performance data are discussed along with preliminary details on a HOS pilot model designed to predict the results of visual performance workload data obtained through oculometer studies on pilots in real and simulated approaches and landings.

  8. Dynamic inverse models in human-cyber-physical systems

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan M.; Scobee, Dexter R. R.; Burden, Samuel A.; Sastry, S. Shankar

    2016-05-01

    Human interaction with the physical world is increasingly mediated by automation. This interaction is characterized by dynamic coupling between robotic (i.e. cyber) and neuromechanical (i.e. human) decision-making agents. Guaranteeing performance of such human-cyber-physical systems will require predictive mathematical models of this dynamic coupling. Toward this end, we propose a rapprochement between robotics and neuromechanics premised on the existence of internal forward and inverse models in the human agent. We hypothesize that, in tele-robotic applications of interest, a human operator learns to invert automation dynamics, directly translating from desired task to required control input. By formulating the model inversion problem in the context of a tracking task for a nonlinear control system in control-a_ne form, we derive criteria for exponential tracking and show that the resulting dynamic inverse model generally renders a portion of the physical system state (i.e., the internal dynamics) unobservable from the human operator's perspective. Under stability conditions, we show that the human can achieve exponential tracking without formulating an estimate of the system's state so long as they possess an accurate model of the system's dynamics. These theoretical results are illustrated using a planar quadrotor example. We then demonstrate that the automation can intervene to improve performance of the tracking task by solving an optimal control problem. Performance is guaranteed to improve under the assumption that the human learns and inverts the dynamic model of the altered system. We conclude with a discussion of practical limitations that may hinder exact dynamic model inversion.

  9. Predicting the Consequences of Workload Management Strategies with Human Performance Modeling

    NASA Technical Reports Server (NTRS)

    Mitchell, Diane Kuhl; Samma, Charneta

    2011-01-01

    Human performance modelers at the US Army Research Laboratory have developed an approach for establishing Soldier high workload that can be used for analyses of proposed system designs. Their technique includes three key components. To implement the approach in an experiment, the researcher would create two experimental conditions: a baseline and a design alternative. Next they would identify a scenario in which the test participants perform all their representative concurrent interactions with the system. This scenario should include any events that would trigger a different set of goals for the human operators. They would collect workload values during both the control and alternative design condition to see if the alternative increased workload and decreased performance. They have successfully implemented this approach for military vehicle. designs using the human performance modeling tool, IMPRINT. Although ARL researches use IMPRINT to implement their approach, it can be applied to any workload analysis. Researchers using other modeling and simulations tools or conducting experiments or field tests can use the same approach.

  10. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.

    PubMed

    Modares, Hamidreza; Ranatunga, Isura; Lewis, Frank L; Popa, Dan O

    2016-03-01

    An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x - y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method.

  11. Evaluation of a human bio-engineered skin equivalent for drug permeation studies.

    PubMed

    Asbill, C; Kim, N; El-Kattan, A; Creek, K; Wertz, P; Michniak, B

    2000-09-01

    To test the barrier function of a bio-engineered human skin (BHS) using three model drugs (caffeine, hydrocortisone, and tamoxifen) in vitro. To investigate the lipid composition and microscopic structure of the BHS. The human skin substitute was composed of both epidermal and dermal layers, the latter having a bovine collagen matrix. The permeability of the BHS to three model drugs was compared to that obtained in other percutaneous testing models (human cadaver skin, hairless mouse skin, and EpiDerm). Lipid analysis of the BHS was performed by high performance thin layered chromatography. Histological evaluation of the BHS was performed using routine H&E staining. The BHS mimicked human skin in terms of lipid composition, gross ultrastructure, and the formation of a stratum corneum. However, the permeability of the BHS to caffeine, hydrocortisone, and tamoxifen was 3-4 fold higher than that of human cadaver skin. In summary, the results indicate that the BHS may be an acceptable in vitro model for drug permeability testing.

  12. Human performance interfaces in air traffic control.

    PubMed

    Chang, Yu-Hern; Yeh, Chung-Hsing

    2010-01-01

    This paper examines how human performance factors in air traffic control (ATC) affect each other through their mutual interactions. The paper extends the conceptual SHEL model of ergonomics to describe the ATC system as human performance interfaces in which the air traffic controllers interact with other human performance factors including other controllers, software, hardware, environment, and organisation. New research hypotheses about the relationships between human performance interfaces of the system are developed and tested on data collected from air traffic controllers, using structural equation modelling. The research result suggests that organisation influences play a more significant role than individual differences or peer influences on how the controllers interact with the software, hardware, and environment of the ATC system. There are mutual influences between the controller-software, controller-hardware, controller-environment, and controller-organisation interfaces of the ATC system, with the exception of the controller-controller interface. Research findings of this study provide practical insights in managing human performance interfaces of the ATC system in the face of internal or external change, particularly in understanding its possible consequences in relation to the interactions between human performance factors.

  13. Human Centered Modeling and Simulation

    Science.gov Websites

    Contacts Researchers Thrust Area 2: Human Centered Modeling and Simulation Thrust Area Leader: Dr. Matthew performance of human occupants and operators are paramount in the achievement of ground vehicle design objectives, but these occupants are also the most variable components of the human-machine system. Modeling

  14. The contributions of human factors on human error in Malaysia aviation maintenance industries

    NASA Astrophysics Data System (ADS)

    Padil, H.; Said, M. N.; Azizan, A.

    2018-05-01

    Aviation maintenance is a multitasking activity in which individuals perform varied tasks under constant pressure to meet deadlines as well as challenging work conditions. These situational characteristics combined with human factors can lead to various types of human related errors. The primary objective of this research is to develop a structural relationship model that incorporates human factors, organizational factors, and their impact on human errors in aviation maintenance. Towards that end, a questionnaire was developed which was administered to Malaysian aviation maintenance professionals. Structural Equation Modelling (SEM) approach was used in this study utilizing AMOS software. Results showed that there were a significant relationship of human factors on human errors and were tested in the model. Human factors had a partial effect on organizational factors while organizational factors had a direct and positive impact on human errors. It was also revealed that organizational factors contributed to human errors when coupled with human factors construct. This study has contributed to the advancement of knowledge on human factors effecting safety and has provided guidelines for improving human factors performance relating to aviation maintenance activities and could be used as a reference for improving safety performance in the Malaysian aviation maintenance companies.

  15. A computational feedforward model predicts categorization of masked emotional body language for longer, but not for shorter, latencies.

    PubMed

    Stienen, Bernard M C; Schindler, Konrad; de Gelder, Beatrice

    2012-07-01

    Given the presence of massive feedback loops in brain networks, it is difficult to disentangle the contribution of feedforward and feedback processing to the recognition of visual stimuli, in this case, of emotional body expressions. The aim of the work presented in this letter is to shed light on how well feedforward processing explains rapid categorization of this important class of stimuli. By means of parametric masking, it may be possible to control the contribution of feedback activity in human participants. A close comparison is presented between human recognition performance and the performance of a computational neural model that exclusively modeled feedforward processing and was engineered to fulfill the computational requirements of recognition. Results show that the longer the stimulus onset asynchrony (SOA), the closer the performance of the human participants was to the values predicted by the model, with an optimum at an SOA of 100 ms. At short SOA latencies, human performance deteriorated, but the categorization of the emotional expressions was still above baseline. The data suggest that, although theoretically, feedback arising from inferotemporal cortex is likely to be blocked when the SOA is 100 ms, human participants still seem to rely on more local visual feedback processing to equal the model's performance.

  16. Space station crew safety: Human factors interaction model

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.; Junge, M. K.

    1985-01-01

    A model of the various human factors issues and interactions that might affect crew safety is developed. The first step addressed systematically the central question: How is this space station different from all other spacecraft? A wide range of possible issue was identified and researched. Five major topics of human factors issues that interacted with crew safety resulted: Protocols, Critical Habitability, Work Related Issues, Crew Incapacitation and Personal Choice. Second, an interaction model was developed that would show some degree of cause and effect between objective environmental or operational conditions and the creation of potential safety hazards. The intermediary steps between these two extremes of causality were the effects on human performance and the results of degraded performance. The model contains three milestones: stressor, human performance (degraded) and safety hazard threshold. Between these milestones are two countermeasure intervention points. The first opportunity for intervention is the countermeasure against stress. If this countermeasure fails, performance degrades. The second opportunity for intervention is the countermeasure against error. If this second countermeasure fails, the threshold of a potential safety hazard may be crossed.

  17. Correlation between a 2D Channelized Hotelling Observer and Human Observers in a Low-contrast Detection Task with Multi-slice Reading in CT

    PubMed Central

    Yu, Lifeng; Chen, Baiyu; Kofler, James M.; Favazza, Christopher P.; Leng, Shuai; Kupinski, Matthew A.; McCollough, Cynthia H.

    2017-01-01

    Purpose Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e. multi-slice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multi-slice reading, and to determine if the 2D model observer still correlate well with human observer performance in multi-slice reading. Methods A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at 5 dose levels (CTDIvol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multi-slice channelized Hotelling observer (CHO_MS), which integrates multi-slice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multi-slice viewing performance and the two CHO models. Results Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode (Pearson product-moment correlation coefficient R=0.972, 95% confidence interval (CI): 0.919 to 0.990) and with the CHO_MS performance in the multi-slice viewing mode (R=0.952, 95% CI: 0.865 to 0.984). The CHO_2D performance, calculated from the 2D viewing mode, also had a strong correlation with human observer performance in the multi-slice viewing mode (R=0.957, 95% CI: 879 to 0.985). Human observer performance varied between the multi-slice and 2D modes. One reader performed better in the multi-slice mode (p=0.013); whereas the other two readers showed no significant difference between the two viewing modes (p=0.057 and p=0.38). Conclusions A 2D CHO model is highly correlated with human observer performance in detecting spherical low contrast objects in multi-slice viewing of CT images. This finding provides some evidence for the use of a simpler, 2D CHO to assess image quality in clinically relevant CT tasks where multi-slice viewing is used. PMID:28555878

  18. Correlation between a 2D channelized Hotelling observer and human observers in a low-contrast detection task with multislice reading in CT.

    PubMed

    Yu, Lifeng; Chen, Baiyu; Kofler, James M; Favazza, Christopher P; Leng, Shuai; Kupinski, Matthew A; McCollough, Cynthia H

    2017-08-01

    Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e., multislice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multislice reading, and to determine if the 2D model observer still correlate well with human observer performance in multislice reading. A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at five dose levels (CTDI vol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multislice channelized Hotelling observer (CHO_MS), which integrates multislice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multislice viewing performance and the two CHO models. Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode [Pearson product-moment correlation coefficient R = 0.972, 95% confidence interval (CI): 0.919 to 0.990] and with the CHO_MS performance in the multislice viewing mode (R = 0.952, 95% CI: 0.865 to 0.984). The CHO_2D performance, calculated from the 2D viewing mode, also had a strong correlation with human observer performance in the multislice viewing mode (R = 0.957, 95% CI: 879 to 0.985). Human observer performance varied between the multislice and 2D modes. One reader performed better in the multislice mode (P = 0.013); whereas the other two readers showed no significant difference between the two viewing modes (P = 0.057 and P = 0.38). A 2D CHO model is highly correlated with human observer performance in detecting spherical low contrast objects in multislice viewing of CT images. This finding provides some evidence for the use of a simpler, 2D CHO to assess image quality in clinically relevant CT tasks where multislice viewing is used. © 2017 American Association of Physicists in Medicine.

  19. Human Engineering Modeling and Performance Lab Study Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.

  20. An integrated physiology model to study regional lung damage effects and the physiologic response

    PubMed Central

    2014-01-01

    Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032

  1. Evaluation of Human and Anthropomorphic Test Device Finite Element Models under Spaceflight Loading Conditions

    NASA Technical Reports Server (NTRS)

    Putnam, Jacob P.; Untaroiu, Costin; Somers. Jeffrey

    2014-01-01

    In an effort to develop occupant protection standards for future multipurpose crew vehicles, the National Aeronautics and Space Administration (NASA) has looked to evaluate the test device for human occupant restraint with the modification kit (THOR-K) anthropomorphic test device (ATD) in relevant impact test scenarios. With the allowance and support of the National Highway Traffic Safety Administration, NASA has performed a series of sled impact tests on the latest developed THOR-K ATD. These tests were performed to match test conditions from human volunteer data previously collected by the U.S. Air Force. The objective of this study was to evaluate the THOR-K finite element (FE) model and the Total HUman Model for Safety (THUMS) FE model with respect to the tests performed. These models were evaluated in spinal and frontal impacts against kinematic and kinetic data recorded in ATD and human testing. Methods: The FE simulations were developed based on recorded pretest ATD/human position and sled acceleration pulses measured during testing. Predicted responses by both human and ATD models were compared to test data recorded under the same impact conditions. The kinematic responses of the models were quantitatively evaluated using the ISO-metric curve rating system. In addition, ATD injury criteria and human stress/strain data were calculated to evaluate the risk of injury predicted by the ATD and human model, respectively. Results: Preliminary results show well-correlated response between both FE models and their physical counterparts. In addition, predicted ATD injury criteria and human model stress/strain values are shown to positively relate. Kinematic comparison between human and ATD models indicates promising biofidelic response, although a slightly stiffer response is observed within the ATD. Conclusion: As a compliment to ATD testing, numerical simulation provides efficient means to assess vehicle safety throughout the design process and further improve the design of physical ATDs. The assessment of the THOR-K and THUMS FE models in a spaceflight testing condition is an essential first step to implementing these models in the computational evaluation of spacecraft occupant safety. Promising results suggest future use of these models in the aerospace field.

  2. An Overview of the NASA Aviation Safety Program (AVSP) Systemwide Accident Prevention (SWAP) Human Performance Modeling (HPM) Element

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Goodman, Allen; Hooley, Becky L.

    2003-01-01

    An overview is provided of the Human Performance Modeling (HPM) element within the NASA Aviation Safety Program (AvSP). Two separate model development tracks for performance modeling of real-world aviation environments are described: the first focuses on the advancement of cognitive modeling tools for system design, while the second centers on a prescriptive engineering model of activity tracking for error detection and analysis. A progressive implementation strategy for both tracks is discussed in which increasingly more complex, safety-relevant applications are undertaken to extend the state-of-the-art, as well as to reveal potential human-system vulnerabilities in the aviation domain. Of particular interest is the ability to predict the precursors to error and to assess potential mitigation strategies associated with the operational use of future flight deck technologies.

  3. Complex Systems and Human Performance Modeling

    DTIC Science & Technology

    2013-12-01

    human communication patterns can be implemented in a task network modeling tool. Although queues are a basic feature in many task network modeling...time. MODELING COMMUNICATIVE BEHAVIOR Barabasi (2010) argues that human communication patterns are “bursty”; that is, the inter-event arrival...Having implemented the methods advocated by Clauset et al. in C3TRACE, we have grown more confident that the human communication data discussed above

  4. A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy.

    PubMed

    Kell, Alexander J E; Yamins, Daniel L K; Shook, Erica N; Norman-Haignere, Sam V; McDermott, Josh H

    2018-05-02

    A core goal of auditory neuroscience is to build quantitative models that predict cortical responses to natural sounds. Reasoning that a complete model of auditory cortex must solve ecologically relevant tasks, we optimized hierarchical neural networks for speech and music recognition. The best-performing network contained separate music and speech pathways following early shared processing, potentially replicating human cortical organization. The network performed both tasks as well as humans and exhibited human-like errors despite not being optimized to do so, suggesting common constraints on network and human performance. The network predicted fMRI voxel responses substantially better than traditional spectrotemporal filter models throughout auditory cortex. It also provided a quantitative signature of cortical representational hierarchy-primary and non-primary responses were best predicted by intermediate and late network layers, respectively. The results suggest that task optimization provides a powerful set of tools for modeling sensory systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Human task animation from performance models and natural language input

    NASA Technical Reports Server (NTRS)

    Esakov, Jeffrey; Badler, Norman I.; Jung, Moon

    1989-01-01

    Graphical manipulation of human figures is essential for certain types of human factors analyses such as reach, clearance, fit, and view. In many situations, however, the animation of simulated people performing various tasks may be based on more complicated functions involving multiple simultaneous reaches, critical timing, resource availability, and human performance capabilities. One rather effective means for creating such a simulation is through a natural language description of the tasks to be carried out. Given an anthropometrically-sized figure and a geometric workplace environment, various simple actions such as reach, turn, and view can be effectively controlled from language commands or standard NASA checklist procedures. The commands may also be generated by external simulation tools. Task timing is determined from actual performance models, if available, such as strength models or Fitts' Law. The resulting action specification are animated on a Silicon Graphics Iris workstation in real-time.

  6. Getting to the Heart of Performance.

    ERIC Educational Resources Information Center

    Stock, Byron

    1996-01-01

    Human performance technology (HPT) models are compared. One model groups performance factors by their relation to the performer (internal or external). A second model categorizes factors by which organizational level has the most control over them (executive, managerial, or individual). A third model considers rational and emotional intelligences;…

  7. Efficient Model Posing and Morphing Software

    DTIC Science & Technology

    2014-04-01

    disclosure of contents or reconstruction of this document. Air Force Research Laboratory 711th Human Performance Wing Human ...Command, Air Force Research Laboratory 711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, Radio Frequency...13. SUPPLEMENTARY NOTES 14. ABSTRACT The absorption of electromagnetic energy within human tissue depends upon anatomical posture and body

  8. Computational Modeling of Laser-Cell Biochemical Interactions

    DTIC Science & Technology

    2010-12-31

    San Antonio, TX 78228 Jeffrey W. Oliver. Ph.D. Human Effectiveness Directorate Directed Energy Bioeffects Division Optical Radiation Branch...Affairs Case No. 11-080 Air Force Research Laboratory 711 Human Performance Wing Human Effectiveness Directorate Directed Energy Bioeffects...Directed Energy Bioeffects Division Human Effectiveness Directorate 711 Human Performance Wing Air Force Research Laboratory This report is

  9. ANALYSIS OF HUMAN ACTIVITY DATA FOR USE IN MODELING ENVIRONMENTAL EXPOSURES

    EPA Science Inventory

    Human activity data are a critical part of exposure models being developed by the US EPA's National Exposure Research Laboratory (NERL). An analysis of human activity data within NERL's Consolidated Human Activity Database (CHAD) was performed in two areas relevant to exposure ...

  10. Telerobotic system performance measurement - Motivation and methods

    NASA Technical Reports Server (NTRS)

    Kondraske, George V.; Khoury, George J.

    1992-01-01

    A systems performance-based strategy for modeling and conducting experiments relevant to the design and performance characterization of telerobotic systems is described. A developmental testbed consisting of a distributed telerobotics network and initial efforts to implement the strategy described is presented. Consideration is given to the general systems performance theory (GSPT) to tackle human performance problems as a basis for: measurement of overall telerobotic system (TRS) performance; task decomposition; development of a generic TRS model; and the characterization of performance of subsystems comprising the generic model. GSPT employs a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented within the framework of a distributed telerobotics network as a testbed. Insight into the design of test protocols which elicit application-independent data is described.

  11. Mathematical Modeling and Evaluation of Human Motions in Physical Therapy Using Mixture Density Neural Networks

    PubMed Central

    Vakanski, A; Ferguson, JM; Lee, S

    2016-01-01

    Objective The objective of the proposed research is to develop a methodology for modeling and evaluation of human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient’s exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the analysis results to the patient’s physician with recommendations for improvement. Methods The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data using a mixture of Gaussian distributions. Results The proposed neural network architecture produced a model for sets of human motions represented with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in evaluating the consistency of a subject’s performance relative to the reference dataset of motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method. Conclusion The article presents a novel approach for modeling and evaluation of human motions with a potential application in home-based physical therapy and rehabilitation. The described approach employs the recent progress in the field of machine learning and neural networks in developing a parametric model of human motions, by exploiting the representational power of these algorithms to encode nonlinear input-output dependencies over long temporal horizons. PMID:28111643

  12. Mathematical Modeling and Evaluation of Human Motions in Physical Therapy Using Mixture Density Neural Networks.

    PubMed

    Vakanski, A; Ferguson, J M; Lee, S

    2016-12-01

    The objective of the proposed research is to develop a methodology for modeling and evaluation of human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient's exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the analysis results to the patient's physician with recommendations for improvement. The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data using a mixture of Gaussian distributions. The proposed neural network architecture produced a model for sets of human motions represented with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in evaluating the consistency of a subject's performance relative to the reference dataset of motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method. The article presents a novel approach for modeling and evaluation of human motions with a potential application in home-based physical therapy and rehabilitation. The described approach employs the recent progress in the field of machine learning and neural networks in developing a parametric model of human motions, by exploiting the representational power of these algorithms to encode nonlinear input-output dependencies over long temporal horizons.

  13. PROCRU: A model for analyzing flight crew procedures in approach to landing

    NASA Technical Reports Server (NTRS)

    Baron, S.; Zacharias, G.; Muraidharan, R.; Lancraft, R.

    1982-01-01

    A model for the human performance of approach and landing tasks that would provide a means for systematic exploration of questions concerning the impact of procedural and equipment design and the allocation of resources in the cockpit on performance and safety in approach-to-landing is discussed. A system model is needed that accounts for the interactions of crew, procedures, vehicle, approach geometry, and environment. The issues of interest revolve principally around allocation of tasks in the cockpit and crew performance with respect to the cognitive aspects of the tasks. The model must, therefore, deal effectively with information processing and decision-making aspects of human performance.

  14. Dynamical aspects of behavior generation under constraints

    PubMed Central

    Harter, Derek; Achunala, Srinivas

    2007-01-01

    Dynamic adaptation is a key feature of brains helping to maintain the quality of their performance in the face of increasingly difficult constraints. How to achieve high-quality performance under demanding real-time conditions is an important question in the study of cognitive behaviors. Animals and humans are embedded in and constrained by their environments. Our goal is to improve the understanding of the dynamics of the interacting brain–environment system by studying human behaviors when completing constrained tasks and by modeling the observed behavior. In this article we present results of experiments with humans performing tasks on the computer under variable time and resource constraints. We compare various models of behavior generation in order to describe the observed human performance. Finally we speculate on mechanisms how chaotic neurodynamics can contribute to the generation of flexible human behaviors under constraints. PMID:19003514

  15. NATO Human View Architecture and Human Networks

    NASA Technical Reports Server (NTRS)

    Handley, Holly A. H.; Houston, Nancy P.

    2010-01-01

    The NATO Human View is a system architectural viewpoint that focuses on the human as part of a system. Its purpose is to capture the human requirements and to inform on how the human impacts the system design. The viewpoint contains seven static models that include different aspects of the human element, such as roles, tasks, constraints, training and metrics. It also includes a Human Dynamics component to perform simulations of the human system under design. One of the static models, termed Human Networks, focuses on the human-to-human communication patterns that occur as a result of ad hoc or deliberate team formation, especially teams distributed across space and time. Parameters of human teams that effect system performance can be captured in this model. Human centered aspects of networks, such as differences in operational tempo (sense of urgency), priorities (common goal), and team history (knowledge of the other team members), can be incorporated. The information captured in the Human Network static model can then be included in the Human Dynamics component so that the impact of distributed teams is represented in the simulation. As the NATO militaries transform to a more networked force, the Human View architecture is an important tool that can be used to make recommendations on the proper mix of technological innovations and human interactions.

  16. Minimizing Human Risk: Human Performance Models in the Human Factors and Behavioral Performance Element

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2017-01-01

    Human space exploration has never been more exciting than it is today. Human presence to outer worlds is becoming a reality as humans are leveraging much of our prior knowledge to the new mission of going to Mars. Exploring the solar system at greater distances from Earth than ever before will possess some unique challenges, which can be overcome thanks to the advances in modeling and simulation technologies. The National Aeronautics and Space Administration (NASA) is at the forefront of exploring our solar system. NASA's Human Research Program (HRP) focuses on discovering the best methods and technologies that support safe and productive human space travel in the extreme and harsh space environment. HRP uses various methods and approaches to answer questions about the impact of long duration missions on the human in space including: gravitys impact on the human body, isolation and confinement on the human, hostile environments impact on the human, space radiation, and how the distance is likely to impact the human. Predictive models are included in the HRP research portfolio as these models provide valuable insights into human-system operations. This paper will provide an overview of NASA's HRP and will present a number of projects that have used modeling and simulation to provide insights into human-system issues (e.g. automation, habitat design, schedules) in anticipation of space exploration.

  17. Minimizing Human Risk: Human Performance Models in the Space Human Factors and Habitability and Behavioral Health and Performance Elements

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2016-01-01

    Human space exploration has never been more exciting than it is today. Human presence to outer worlds is becoming a reality as humans are leveraging much of our prior knowledge to the new mission of going to Mars. Exploring the solar system at greater distances from Earth than ever before will possess some unique challenges, which can be overcome thanks to the advances in modeling and simulation technologies. The National Aeronautics and Space Administration (NASA) is at the forefront of exploring our solar system. NASA's Human Research Program (HRP) focuses on discovering the best methods and technologies that support safe and productive human space travel in the extreme and harsh space environment. HRP uses various methods and approaches to answer questions about the impact of long duration missions on the human in space including: gravity's impact on the human body, isolation and confinement on the human, hostile environments impact on the human, space radiation, and how the distance is likely to impact the human. Predictive models are included in the HRP research portfolio as these models provide valuable insights into human-system operations. This paper will provide an overview of NASA's HRP and will present a number of projects that have used modeling and simulation to provide insights into human-system issues (e.g. automation, habitat design, schedules) in anticipation of space exploration.

  18. Task Equivalence for Model and Human-Observer Comparisons in SPECT Localization Studies

    NASA Astrophysics Data System (ADS)

    Sen, Anando; Kalantari, Faraz; Gifford, Howard C.

    2016-06-01

    While mathematical model observers are intended for efficient assessment of medical imaging systems, their findings should be relevant for human observers as the primary clinical end users. We have investigated whether pursuing equivalence between the model and human-observer tasks can help ensure this goal. A localization receiver operating characteristic (LROC) study tested prostate lesion detection in simulated In-111 SPECT imaging with anthropomorphic phantoms. The test images were 2D slices extracted from reconstructed volumes. The iterative ordered sets expectation-maximization (OSEM) reconstruction algorithm was used with Gaussian postsmoothing. Variations in the number of iterations and the level of postfiltering defined the test strategies in the study. Human-observer performance was compared with that of a visual-search (VS) observer, a scanning channelized Hotelling observer, and a scanning channelized nonprewhitening (CNPW) observer. These model observers were applied with precise information about the target regions of interest (ROIs). ROI knowledge was a study variable for the human observers. In one study format, the humans read the SPECT image alone. With a dual-modality format, the SPECT image was presented alongside an anatomical image slice extracted from the density map of the phantom. Performance was scored by area under the LROC curve. The human observers performed significantly better with the dual-modality format, and correlation with the model observers was also improved. Given the human-observer data from the SPECT study format, the Pearson correlation coefficients for the model observers were 0.58 (VS), -0.12 (CH), and -0.23 (CNPW). The respective coefficients based on the human-observer data from the dual-modality study were 0.72, 0.27, and -0.11. These results point towards the continued development of the VS observer for enhancing task equivalence in model-observer studies.

  19. Amplifying human ability through autonomics and machine learning in IMPACT

    NASA Astrophysics Data System (ADS)

    Dzieciuch, Iryna; Reeder, John; Gutzwiller, Robert; Gustafson, Eric; Coronado, Braulio; Martinez, Luis; Croft, Bryan; Lange, Douglas S.

    2017-05-01

    Amplifying human ability for controlling complex environments featuring autonomous units can be aided by learned models of human and system performance. In developing a command and control system that allows a small number of people to control a large number of autonomous teams, we employ an autonomics framework to manage the networks that represent mission plans and the networks that are composed of human controllers and their autonomous assistants. Machine learning allows us to build models of human and system performance useful for monitoring plans and managing human attention and task loads. Machine learning also aids in the development of tactics that human supervisors can successfully monitor through the command and control system.

  20. Computational Models of Human Performance: Validation of Memory and Procedural Representation in Advanced Air/Ground Simulation

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Labacqz, J. Victor (Technical Monitor)

    1997-01-01

    The Man-Machine Interaction Design and Analysis System (MIDAS) under joint U.S. Army and NASA cooperative is intended to assist designers of complex human/automation systems in successfully incorporating human performance capabilities and limitations into decision and action support systems. MIDAS is a computational representation of multiple human operators, selected perceptual, cognitive, and physical functions of those operators, and the physical/functional representation of the equipment with which they operate. MIDAS has been used as an integrated predictive framework for the investigation of human/machine systems, particularly in situations with high demands on the operators. We have extended the human performance models to include representation of both human operators and intelligent aiding systems in flight management, and air traffic service. The focus of this development is to predict human performance in response to aiding system developed to identify aircraft conflict and to assist in the shared authority for resolution. The demands of this application requires representation of many intelligent agents sharing world-models, coordinating action/intention, and cooperative scheduling of goals and action in an somewhat unpredictable world of operations. In recent applications to airborne systems development, MIDAS has demonstrated an ability to predict flight crew decision-making and procedural behavior when interacting with automated flight management systems and Air Traffic Control. In this paper, we describe two enhancements to MIDAS. The first involves the addition of working memory in the form of an articulatory buffer for verbal communication protocols and a visuo-spatial buffer for communications via digital datalink. The second enhancement is a representation of multiple operators working as a team. This enhanced model was used to predict the performance of human flight crews and their level of compliance with commercial aviation communication procedures. We show how the data produced by MIDAS compares with flight crew performance data from full mission simulations. Finally, we discuss the use of these features to study communication issues connected with aircraft-based separation assurance.

  1. Modelling Human Emotions for Tactical Decision-Making Games

    ERIC Educational Resources Information Center

    Visschedijk, Gillian C.; Lazonder, Ard W.; van der Hulst, Anja; Vink, Nathalie; Leemkuil, Henny

    2013-01-01

    The training of tactical decision making increasingly occurs through serious computer games. A challenging aspect of designing such games is the modelling of human emotions. Two studies were performed to investigate the relation between fidelity and human emotion recognition in virtual human characters. Study 1 compared five versions of a virtual…

  2. Development of an Implantable WBAN Path-Loss Model for Capsule Endoscopy

    NASA Astrophysics Data System (ADS)

    Aoyagi, Takahiro; Takizawa, Kenichi; Kobayashi, Takehiko; Takada, Jun-Ichi; Hamaguchi, Kiyoshi; Kohno, Ryuji

    An implantable WBAN path-loss model for a capsule endoscopy which is used for examining digestive organs, is developed by conducting simulations and experiments. First, we performed FDTD simulations on implant WBAN propagation by using a numerical human model. Second, we performed FDTD simulations on a vessel that represents the human body. Third, we performed experiments using a vessel of the same dimensions as that used in the simulations. On the basis of the results of these simulations and experiments, we proposed the gradient and intercept parameters of the simple path-loss in-body propagation model.

  3. Fuzzy logic application for modeling man-in-the-loop space shuttle proximity operations. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Brown, Robert B.

    1994-01-01

    A software pilot model for Space Shuttle proximity operations is developed, utilizing fuzzy logic. The model is designed to emulate a human pilot during the terminal phase of a Space Shuttle approach to the Space Station. The model uses the same sensory information available to a human pilot and is based upon existing piloting rules and techniques determined from analysis of human pilot performance. Such a model is needed to generate numerous rendezvous simulations to various Space Station assembly stages for analysis of current NASA procedures and plume impingement loads on the Space Station. The advantages of a fuzzy logic pilot model are demonstrated by comparing its performance with NASA's man-in-the-loop simulations and with a similar model based upon traditional Boolean logic. The fuzzy model is shown to respond well from a number of initial conditions, with results typical of an average human. In addition, the ability to model different individual piloting techniques and new piloting rules is demonstrated.

  4. Probability-based collaborative filtering model for predicting gene-disease associations.

    PubMed

    Zeng, Xiangxiang; Ding, Ningxiang; Rodríguez-Patón, Alfonso; Zou, Quan

    2017-12-28

    Accurately predicting pathogenic human genes has been challenging in recent research. Considering extensive gene-disease data verified by biological experiments, we can apply computational methods to perform accurate predictions with reduced time and expenses. We propose a probability-based collaborative filtering model (PCFM) to predict pathogenic human genes. Several kinds of data sets, containing data of humans and data of other nonhuman species, are integrated in our model. Firstly, on the basis of a typical latent factorization model, we propose model I with an average heterogeneous regularization. Secondly, we develop modified model II with personal heterogeneous regularization to enhance the accuracy of aforementioned models. In this model, vector space similarity or Pearson correlation coefficient metrics and data on related species are also used. We compared the results of PCFM with the results of four state-of-arts approaches. The results show that PCFM performs better than other advanced approaches. PCFM model can be leveraged for predictions of disease genes, especially for new human genes or diseases with no known relationships.

  5. Active imaging system performance model for target acquisition

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Teaney, Brian; Nguyen, Quang; Jacobs, Eddie L.; Halford, Carl E.; Tofsted, David H.

    2007-04-01

    The U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate has developed a laser-range-gated imaging system performance model for the detection, recognition, and identification of vehicle targets. The model is based on the established US Army RDECOM CERDEC NVESD sensor performance models of the human system response through an imaging system. The Java-based model, called NVLRG, accounts for the effect of active illumination, atmospheric attenuation, and turbulence effects relevant to LRG imagers, such as speckle and scintillation, and for the critical sensor and display components. This model can be used to assess the performance of recently proposed active SWIR systems through various trade studies. This paper will describe the NVLRG model in detail, discuss the validation of recent model components, present initial trade study results, and outline plans to validate and calibrate the end-to-end model with field data through human perception testing.

  6. Integrating Human Factors into Space Vehicle Processing for Risk Management

    NASA Technical Reports Server (NTRS)

    Woodbury, Sarah; Richards, Kimberly J.

    2008-01-01

    This presentation will discuss the multiple projects performed in United Space Alliance's Human Engineering Modeling and Performance (HEMAP) Lab, improvements that resulted from analysis, and the future applications of the HEMAP Lab for risk assessment by evaluating human/machine interaction and ergonomic designs.

  7. Information processing. [in human performance

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Flach, John M.

    1988-01-01

    Theoretical models of sensory-information processing by the human brain are reviewed from a human-factors perspective, with a focus on their implications for aircraft and avionics design. The topics addressed include perception (signal detection and selection), linguistic factors in perception (context provision, logical reversals, absence of cues, and order reversals), mental models, and working and long-term memory. Particular attention is given to decision-making problems such as situation assessment, decision formulation, decision quality, selection of action, the speed-accuracy tradeoff, stimulus-response compatibility, stimulus sequencing, dual-task performance, task difficulty and structure, and factors affecting multiple task performance (processing modalities, codes, and stages).

  8. A system performance throughput model applicable to advanced manned telescience systems

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1990-01-01

    As automated space systems become more complex, autonomous, and opaque to the flight crew, it becomes increasingly difficult to determine whether the total system is performing as it should. Some of the complex and interrelated human performance measurement issues are addressed that are related to total system validation. An evaluative throughput model is presented which can be used to generate a human operator-related benchmark or figure of merit for a given system which involves humans at the input and output ends as well as other automated intelligent agents. The concept of sustained and accurate command/control data information transfer is introduced. The first two input parameters of the model involve nominal and off-nominal predicted events. The first of these calls for a detailed task analysis while the second is for a contingency event assessment. The last two required input parameters involving actual (measured) events, namely human performance and continuous semi-automated system performance. An expression combining these four parameters was found using digital simulations and identical, representative, random data to yield the smallest variance.

  9. Continuous Human Action Recognition Using Depth-MHI-HOG and a Spotter Model

    PubMed Central

    Eum, Hyukmin; Yoon, Changyong; Lee, Heejin; Park, Mignon

    2015-01-01

    In this paper, we propose a new method for spotting and recognizing continuous human actions using a vision sensor. The method is comprised of depth-MHI-HOG (DMH), action modeling, action spotting, and recognition. First, to effectively separate the foreground from background, we propose a method called DMH. It includes a standard structure for segmenting images and extracting features by using depth information, MHI, and HOG. Second, action modeling is performed to model various actions using extracted features. The modeling of actions is performed by creating sequences of actions through k-means clustering; these sequences constitute HMM input. Third, a method of action spotting is proposed to filter meaningless actions from continuous actions and to identify precise start and end points of actions. By employing the spotter model, the proposed method improves action recognition performance. Finally, the proposed method recognizes actions based on start and end points. We evaluate recognition performance by employing the proposed method to obtain and compare probabilities by applying input sequences in action models and the spotter model. Through various experiments, we demonstrate that the proposed method is efficient for recognizing continuous human actions in real environments. PMID:25742172

  10. Comparing statistical and machine learning classifiers: alternatives for predictive modeling in human factors research.

    PubMed

    Carnahan, Brian; Meyer, Gérard; Kuntz, Lois-Ann

    2003-01-01

    Multivariate classification models play an increasingly important role in human factors research. In the past, these models have been based primarily on discriminant analysis and logistic regression. Models developed from machine learning research offer the human factors professional a viable alternative to these traditional statistical classification methods. To illustrate this point, two machine learning approaches--genetic programming and decision tree induction--were used to construct classification models designed to predict whether or not a student truck driver would pass his or her commercial driver license (CDL) examination. The models were developed and validated using the curriculum scores and CDL exam performances of 37 student truck drivers who had completed a 320-hr driver training course. Results indicated that the machine learning classification models were superior to discriminant analysis and logistic regression in terms of predictive accuracy. Actual or potential applications of this research include the creation of models that more accurately predict human performance outcomes.

  11. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.

    PubMed

    Ao, Di; Song, Rong; Gao, JinWu

    2017-08-01

    Although the merits of electromyography (EMG)-based control of powered assistive systems have been certified, the factors that affect the performance of EMG-based human-robot cooperation, which are very important, have received little attention. This study investigates whether a more physiologically appropriate model could improve the performance of human-robot cooperation control for an ankle power-assist exoskeleton robot. To achieve the goal, an EMG-driven Hill-type neuromusculoskeletal model (HNM) and a linear proportional model (LPM) were developed and calibrated through maximum isometric voluntary dorsiflexion (MIVD). The two control models could estimate the real-time ankle joint torque, and HNM is more accurate and can account for the change of the joint angle and muscle dynamics. Then, eight healthy volunteers were recruited to wear the ankle exoskeleton robot and complete a series of sinusoidal tracking tasks in the vertical plane. With the various levels of assist based on the two calibrated models, the subjects were instructed to track the target displayed on the screen as accurately as possible by performing ankle dorsiflexion and plantarflexion. Two measurements, the root mean square error (RMSE) and root mean square jerk (RMSJ), were derived from the assistant torque and kinematic signals to characterize the movement performances, whereas the amplitudes of the recorded EMG signals from the tibialis anterior (TA) and the gastrocnemius (GAS) were obtained to reflect the muscular efforts. The results demonstrated that the muscular effort and smoothness of tracking movements decreased with an increase in the assistant ratio. Compared with LPM, subjects made lower physical efforts and generated smoother movements when using HNM, which implied that a more physiologically appropriate model could enable more natural and human-like human-robot cooperation and has potential value for improvement of human-exoskeleton interaction in future applications.

  12. Optimization of a reversible hood for protecting a pedestrian's head during car collisions.

    PubMed

    Huang, Sunan; Yang, Jikuang

    2010-07-01

    This study evaluated and optimized the performance of a reversible hood (RH) for the prevention of the head injuries of an adult pedestrian from car collisions. The FE model of a production car front was introduced and validated. The baseline RH was developed from the original hood in the validated car front model. In order to evaluate the protective performance of the baseline RH, the FE models of an adult headform and a 50th percentile human head were used in parallel to impact the baseline RH. Based on the evaluation, the response surface method was applied to optimize the RH in terms of the material stiffness, lifting speed, and lifted height. Finally, the headform model and the human head model were again used to evaluate the protective performance of the optimized RH. It was found that the lifted baseline RH can obviously reduce the impact responses of the headform model and the human head model by comparing with the retracted and lifting baseline RH. When the optimized RH was lifted, the HIC values of the headform model and the human head model were further reduced to much lower than 1000. The risk of pedestrian head injuries can be prevented as required by EEVC WG17. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. The lawful imprecision of human surface tilt estimation in natural scenes

    PubMed Central

    2018-01-01

    Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. PMID:29384477

  14. The lawful imprecision of human surface tilt estimation in natural scenes.

    PubMed

    Kim, Seha; Burge, Johannes

    2018-01-31

    Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. © 2018, Kim et al.

  15. The Situation Awareness Weighted Network (SAWN) Model

    DTIC Science & Technology

    2014-06-01

    Administration Task Load Index (NASA- TLX ), a validated research instrument [Human Performance Research Group 1988]. The participants were asked to rate their...analysis”, Human Factors 40(2): 254–276. 17 Human Performance Research Group (1988) NASA- TLX , NASA Ames Research Center, Moffett Field, CA. Jin, Y. and

  16. Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Shuai; Yu, Lifeng; Zhang, Yi

    2013-08-15

    Purpose: The purpose of this study was to investigate the correlation between model observer and human observer performance in CT imaging for the task of lesion detection and localization when the lesion location is uncertain.Methods: Two cylindrical rods (3-mm and 5-mm diameters) were placed in a 35 × 26 cm torso-shaped water phantom to simulate lesions with −15 HU contrast at 120 kV. The phantom was scanned 100 times on a 128-slice CT scanner at each of four dose levels (CTDIvol = 5.7, 11.4, 17.1, and 22.8 mGy). Regions of interest (ROIs) around each lesion were extracted to generate imagesmore » with signal-present, with each ROI containing 128 × 128 pixels. Corresponding ROIs of signal-absent images were generated from images without lesion mimicking rods. The location of the lesion (rod) in each ROI was randomly distributed by moving the ROIs around each lesion. Human observer studies were performed by having three trained observers identify the presence or absence of lesions, indicating the lesion location in each image and scoring confidence for the detection task on a 6-point scale. The same image data were analyzed using a channelized Hotelling model observer (CHO) with Gabor channels. Internal noise was added to the decision variables for the model observer study. Area under the curve (AUC) of ROC and localization ROC (LROC) curves were calculated using a nonparametric approach. The Spearman's rank order correlation between the average performance of the human observers and the model observer performance was calculated for the AUC of both ROC and LROC curves for both the 3- and 5-mm diameter lesions.Results: In both ROC and LROC analyses, AUC values for the model observer agreed well with the average values across the three human observers. The Spearman's rank order correlation values for both ROC and LROC analyses for both the 3- and 5-mm diameter lesions were all 1.0, indicating perfect rank ordering agreement of the figures of merit (AUC) between the average performance of the human observers and the model observer performance.Conclusions: In CT imaging of different sizes of low-contrast lesions (−15 HU), the performance of CHO with Gabor channels was highly correlated with human observer performance for the detection and localization tasks with uncertain lesion location in CT imaging at four clinically relevant dose levels. This suggests the ability of Gabor CHO model observers to meaningfully assess CT image quality for the purpose of optimizing scan protocols and radiation dose levels in detection and localization tasks for low-contrast lesions.« less

  17. Simplified human thermoregulatory model for designing wearable thermoelectric devices

    NASA Astrophysics Data System (ADS)

    Wijethunge, Dimuthu; Kim, Donggyu; Kim, Woochul

    2018-02-01

    Research on wearable and implantable devices have become popular with the strong need in market. A precise understanding of the thermal properties of human skin, which are not constant values but vary depending on ambient condition, is required for the development of such devices. In this paper, we present simplified human thermoregulatory model for accurately estimating the thermal properties of the skin without applying rigorous calculations. The proposed model considers a variable blood flow rate through the skin, evaporation functions, and a variable convection heat transfer from the skin surface. In addition, wearable thermoelectric generation (TEG) and refrigeration devices were simulated. We found that deviations of 10-60% can be resulted in estimating TEG performance without considering human thermoregulatory model owing to the fact that thermal resistance of human skin is adapted to ambient condition. Simplicity of the modeling procedure presented in this work could be beneficial for optimizing and predicting the performance of any applications that are directly coupled with skin thermal properties.

  18. Formally verifying human–automation interaction as part of a system model: limitations and tradeoffs

    PubMed Central

    Bass, Ellen J.

    2011-01-01

    Both the human factors engineering (HFE) and formal methods communities are concerned with improving the design of safety-critical systems. This work discusses a modeling effort that leveraged methods from both fields to perform formal verification of human–automation interaction with a programmable device. This effort utilizes a system architecture composed of independent models of the human mission, human task behavior, human-device interface, device automation, and operational environment. The goals of this architecture were to allow HFE practitioners to perform formal verifications of realistic systems that depend on human–automation interaction in a reasonable amount of time using representative models, intuitive modeling constructs, and decoupled models of system components that could be easily changed to support multiple analyses. This framework was instantiated using a patient controlled analgesia pump in a two phased process where models in each phase were verified using a common set of specifications. The first phase focused on the mission, human-device interface, and device automation; and included a simple, unconstrained human task behavior model. The second phase replaced the unconstrained task model with one representing normative pump programming behavior. Because models produced in the first phase were too large for the model checker to verify, a number of model revisions were undertaken that affected the goals of the effort. While the use of human task behavior models in the second phase helped mitigate model complexity, verification time increased. Additional modeling tools and technological developments are necessary for model checking to become a more usable technique for HFE. PMID:21572930

  19. Formation of an internal model of environment dynamics during upper limb reaching movements: a fuzzy approach.

    PubMed

    MacDonald, Chad; Moussavi, Zahra; Sarkodie-Gyan, Thompson

    2007-01-01

    This paper presents the development and simulation of a fuzzy logic based learning mechanism to emulate human motor learning. In particular, fuzzy inference was used to develop an internal model of a novel dynamic environment experienced during planar reaching movements with the upper limb. A dynamic model of the human arm was developed and a fuzzy if-then rule base was created to relate trajectory movement and velocity errors to internal model update parameters. An experimental simulation was performed to compare the fuzzy system's performance with that of human subjects. It was found that the dynamic model behaved as expected, and the fuzzy learning mechanism created an internal model that was capable of opposing the environmental force field to regain a trajectory closely resembling the desired ideal.

  20. The Audience Performs: A Phenomenological Model for Criticism of Oral Interpretation Performance.

    ERIC Educational Resources Information Center

    Langellier, Kristin M.

    Richard Lanigan's phenomenology of human communication is applicable to the development of a model for critiquing oral interpretation performance. This phenomenological model takes conscious experience of the relationship of a person and the lived-world as its data base, and assumes a phenomenology of performance which creates text in the triadic…

  1. Human-centric predictive model of task difficulty for human-in-the-loop control tasks

    PubMed Central

    Majewicz Fey, Ann

    2018-01-01

    Quantitatively measuring the difficulty of a manipulation task in human-in-the-loop control systems is ill-defined. Currently, systems are typically evaluated through task-specific performance measures and post-experiment user surveys; however, these methods do not capture the real-time experience of human users. In this study, we propose to analyze and predict the difficulty of a bivariate pointing task, with a haptic device interface, using human-centric measurement data in terms of cognition, physical effort, and motion kinematics. Noninvasive sensors were used to record the multimodal response of human user for 14 subjects performing the task. A data-driven approach for predicting task difficulty was implemented based on several task-independent metrics. We compare four possible models for predicting task difficulty to evaluated the roles of the various types of metrics, including: (I) a movement time model, (II) a fusion model using both physiological and kinematic metrics, (III) a model only with kinematic metrics, and (IV) a model only with physiological metrics. The results show significant correlation between task difficulty and the user sensorimotor response. The fusion model, integrating user physiology and motion kinematics, provided the best estimate of task difficulty (R2 = 0.927), followed by a model using only kinematic metrics (R2 = 0.921). Both models were better predictors of task difficulty than the movement time model (R2 = 0.847), derived from Fitt’s law, a well studied difficulty model for human psychomotor control. PMID:29621301

  2. Closed loop models for analyzing the effects of simulator characteristics. [digital simulation of human operators

    NASA Technical Reports Server (NTRS)

    Baron, S.; Muralidharan, R.; Kleinman, D. L.

    1978-01-01

    The optimal control model of the human operator is used to develop closed loop models for analyzing the effects of (digital) simulator characteristics on predicted performance and/or workload. Two approaches are considered: the first utilizes a continuous approximation to the discrete simulation in conjunction with the standard optimal control model; the second involves a more exact discrete description of the simulator in a closed loop multirate simulation in which the optimal control model simulates the pilot. Both models predict that simulator characteristics can have significant effects on performance and workload.

  3. Development of biomechanical models for human factors evaluations

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara; Pandya, Abhilash; Maida, James

    1993-01-01

    Computer aided design (CAD) techniques are now well established and have become the norm in many aspects of aerospace engineering. They enable analytical studies, such as finite element analysis, to be performed to measure performance characteristics of the aircraft or spacecraft long before a physical model is built. However, because of the complexity of human performance, CAD systems for human factors are not in widespread use. The purpose of such a program would be to analyze the performance capability of a crew member given a particular environment and task. This requires the design capabilities to describe the environment's geometry and to describe the task's requirements, which may involve motion and strength. This in turn requires extensive data on human physical performance which can be generalized to many different physical configurations. PLAID is developing into such a program. Begun at Johnson Space Center in 1977, it was started to model only the geometry of the environment. The physical appearance of a human body was generated, and the tool took on a new meaning as fit, access, and reach could be checked. Specification of fields-of-view soon followed. This allowed PLAID to be used to predict what the Space Shuttle cameras or crew could see from a given point.

  4. POPEYE: A production rule-based model of multitask supervisory control (POPCORN)

    NASA Technical Reports Server (NTRS)

    Townsend, James T.; Kadlec, Helena; Kantowitz, Barry H.

    1988-01-01

    Recent studies of relationships between subjective ratings of mental workload, performance, and human operator and task characteristics have indicated that these relationships are quite complex. In order to study the various relationships and place subjective mental workload within a theoretical framework, we developed a production system model for the performance component of the complex supervisory task called POPCORN. The production system model is represented by a hierarchial structure of goals and subgoals, and the information flow is controlled by a set of condition-action rules. The implementation of this production system, called POPEYE, generates computer simulated data under different task difficulty conditions which are comparable to those of human operators performing the task. This model is the performance aspect of an overall dynamic psychological model which we are developing to examine and quantify relationships between performance and psychological aspects in a complex environment.

  5. Human activity discrimination for maritime application

    NASA Astrophysics Data System (ADS)

    Boettcher, Evelyn; Deaver, Dawne M.; Krapels, Keith

    2008-04-01

    The US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) is investigating how motion affects the target acquisition model (NVThermIP) sensor performance estimates. This paper looks specifically at estimating sensor performance for the task of discriminating human activities on watercraft, and was sponsored by the Office of Naval Research (ONR). Traditionally, sensor models were calibrated using still images. While that approach is sufficient for static targets, video allows one to use motion cues to aid in discerning the type of human activity more quickly and accurately. This, in turn, will affect estimated sensor performance and these effects are measured in order to calibrate current target acquisition models for this task. The study employed an eleven alternative forced choice (11AFC) human perception experiment to measure the task difficulty of discriminating unique human activities on watercrafts. A mid-wave infrared camera was used to collect video at night. A description of the construction of this experiment is given, including: the data collection, image processing, perception testing and how contrast was defined for video. These results are applicable to evaluate sensor field performance for Anti-Terrorism and Force Protection (AT/FP) tasks for the U.S. Navy.

  6. An Illumination Modeling System for Human Factors Analyses

    NASA Technical Reports Server (NTRS)

    Huynh, Thong; Maida, James C.; Bond, Robert L. (Technical Monitor)

    2002-01-01

    Seeing is critical to human performance. Lighting is critical for seeing. Therefore, lighting is critical to human performance. This is common sense, and here on earth, it is easily taken for granted. However, on orbit, because the sun will rise or set every 45 minutes on average, humans working in space must cope with extremely dynamic lighting conditions. Contrast conditions of harsh shadowing and glare is also severe. The prediction of lighting conditions for critical operations is essential. Crew training can factor lighting into the lesson plans when necessary. Mission planners can determine whether low-light video cameras are required or whether additional luminaires need to be flown. The optimization of the quantity and quality of light is needed because of the effects on crew safety, on electrical power and on equipment maintainability. To address all of these issues, an illumination modeling system has been developed by the Graphics Research and Analyses Facility (GRAF) and Lighting Environment Test Facility (LETF) in the Space Human Factors Laboratory at NASA Johnson Space Center. The system uses physically based ray tracing software (Radiance) developed at Lawrence Berkeley Laboratories, a human factors oriented geometric modeling system (PLAID) and an extensive database of humans and environments. Material reflectivity properties of major surfaces and critical surfaces are measured using a gonio-reflectometer. Luminaires (lights) are measured for beam spread distribution, color and intensity. Video camera performances are measured for color and light sensitivity. 3D geometric models of humans and the environment are combined with the material and light models to form a system capable of predicting lighting conditions and visibility conditions in space.

  7. The Development of a Modelling Solution to Address Manpower and Personnel Issues Using the IPME

    DTIC Science & Technology

    2010-11-01

    training for a military system. It deals with the number of personnel spaces and available people. One of the main concerns in this domain is to...are often addressed by examining existing solutions for similar systems and/or a trial-and-error method based on human-in- the -loop tests. Such an...significant effort and resources on the development of a human performance modelling software, the Integrated Performance Modelling Environment (IPME

  8. Software systems for modeling articulated figures

    NASA Technical Reports Server (NTRS)

    Phillips, Cary B.

    1989-01-01

    Research in computer animation and simulation of human task performance requires sophisticated geometric modeling and user interface tools. The software for a research environment should present the programmer with a powerful but flexible substrate of facilities for displaying and manipulating geometric objects, yet insure that future tools have a consistent and friendly user interface. Jack is a system which provides a flexible and extensible programmer and user interface for displaying and manipulating complex geometric figures, particularly human figures in a 3D working environment. It is a basic software framework for high-performance Silicon Graphics IRIS workstations for modeling and manipulating geometric objects in a general but powerful way. It provides a consistent and user-friendly interface across various applications in computer animation and simulation of human task performance. Currently, Jack provides input and control for applications including lighting specification and image rendering, anthropometric modeling, figure positioning, inverse kinematics, dynamic simulation, and keyframe animation.

  9. International Space Station Human Behavior and Performance Competency Model: Volume II

    NASA Technical Reports Server (NTRS)

    Schmidt, Lacey

    2008-01-01

    This document further defines the behavioral markers identified in the document "Human Behavior and Performance Competency Model" Vol. I. The Human Behavior and Performance (HBP) competencies were recommended as requirements to participate in international long duration missions, and form the basis for determining the HBP training curriculum for long duration crewmembers. This document provides details, examples, knowledge areas, and affective skills to support the use of the HBP competencies in training and evaluation. This document lists examples and details specific to HBP competencies required of astronauts/cosmonauts who participate in ISS expedition and other international long-duration missions. Please note that this model does not encompass all competencies required. While technical competencies are critical for crewmembers, they are beyond the scope of this document. Additionally, the competencies in this model (and subsequent objectives) are not intended to limit the internal activities or training programs of any international partner.

  10. A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning.

    PubMed

    Chung, Michael Jae-Yoon; Friesen, Abram L; Fox, Dieter; Meltzoff, Andrew N; Rao, Rajesh P N

    2015-01-01

    A fundamental challenge in robotics today is building robots that can learn new skills by observing humans and imitating human actions. We propose a new Bayesian approach to robotic learning by imitation inspired by the developmental hypothesis that children use self-experience to bootstrap the process of intention recognition and goal-based imitation. Our approach allows an autonomous agent to: (i) learn probabilistic models of actions through self-discovery and experience, (ii) utilize these learned models for inferring the goals of human actions, and (iii) perform goal-based imitation for robotic learning and human-robot collaboration. Such an approach allows a robot to leverage its increasing repertoire of learned behaviors to interpret increasingly complex human actions and use the inferred goals for imitation, even when the robot has very different actuators from humans. We demonstrate our approach using two different scenarios: (i) a simulated robot that learns human-like gaze following behavior, and (ii) a robot that learns to imitate human actions in a tabletop organization task. In both cases, the agent learns a probabilistic model of its own actions, and uses this model for goal inference and goal-based imitation. We also show that the robotic agent can use its probabilistic model to seek human assistance when it recognizes that its inferred actions are too uncertain, risky, or impossible to perform, thereby opening the door to human-robot collaboration.

  11. A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning

    PubMed Central

    Chung, Michael Jae-Yoon; Friesen, Abram L.; Fox, Dieter; Meltzoff, Andrew N.; Rao, Rajesh P. N.

    2015-01-01

    A fundamental challenge in robotics today is building robots that can learn new skills by observing humans and imitating human actions. We propose a new Bayesian approach to robotic learning by imitation inspired by the developmental hypothesis that children use self-experience to bootstrap the process of intention recognition and goal-based imitation. Our approach allows an autonomous agent to: (i) learn probabilistic models of actions through self-discovery and experience, (ii) utilize these learned models for inferring the goals of human actions, and (iii) perform goal-based imitation for robotic learning and human-robot collaboration. Such an approach allows a robot to leverage its increasing repertoire of learned behaviors to interpret increasingly complex human actions and use the inferred goals for imitation, even when the robot has very different actuators from humans. We demonstrate our approach using two different scenarios: (i) a simulated robot that learns human-like gaze following behavior, and (ii) a robot that learns to imitate human actions in a tabletop organization task. In both cases, the agent learns a probabilistic model of its own actions, and uses this model for goal inference and goal-based imitation. We also show that the robotic agent can use its probabilistic model to seek human assistance when it recognizes that its inferred actions are too uncertain, risky, or impossible to perform, thereby opening the door to human-robot collaboration. PMID:26536366

  12. Evaluation of Multiclass Model Observers in PET LROC Studies

    NASA Astrophysics Data System (ADS)

    Gifford, H. C.; Kinahan, P. E.; Lartizien, C.; King, M. A.

    2007-02-01

    A localization ROC (LROC) study was conducted to evaluate nonprewhitening matched-filter (NPW) and channelized NPW (CNPW) versions of a multiclass model observer as predictors of human tumor-detection performance with PET images. Target localization is explicitly performed by these model observers. Tumors were placed in the liver, lungs, and background soft tissue of a mathematical phantom, and the data simulation modeled a full-3D acquisition mode. Reconstructions were performed with the FORE+AWOSEM algorithm. The LROC study measured observer performance with 2D images consisting of either coronal, sagittal, or transverse views of the same set of cases. Versions of the CNPW observer based on two previously published difference-of-Gaussian channel models demonstrated good quantitative agreement with human observers. One interpretation of these results treats the CNPW observer as a channelized Hotelling observer with implicit internal noise

  13. An integrated environmental and health performance quantification model for pre-occupancy phase of buildings in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaodong, E-mail: eastdawn@tsinghua.edu.cn; Su, Shu, E-mail: sushuqh@163.com; Zhang, Zhihui, E-mail: zhzhg@tsinghua.edu.cn

    To comprehensively pre-evaluate the damages to both the environment and human health due to construction activities in China, this paper presents an integrated building environmental and health performance (EHP) assessment model based on the Building Environmental Performance Analysis System (BEPAS) and the Building Health Impact Analysis System (BHIAS) models and offers a new inventory data estimation method. The new model follows the life cycle assessment (LCA) framework and the inventory analysis step involves bill of quantity (BOQ) data collection, consumption data formation, and environmental profile transformation. The consumption data are derived from engineering drawings and quotas to conduct the assessmentmore » before construction for pre-evaluation. The new model classifies building impacts into three safeguard areas: ecosystems, natural resources and human health. Thus, this model considers environmental impacts as well as damage to human wellbeing. The monetization approach, distance-to-target method and panel method are considered as optional weighting approaches. Finally, nine residential buildings of different structural types are taken as case studies to test the operability of the integrated model through application. The results indicate that the new model can effectively pre-evaluate building EHP and the structure type significantly affects the performance of residential buildings.« less

  14. New Metacognitive Model for Human Performance Technology

    ERIC Educational Resources Information Center

    Turner, John R.

    2011-01-01

    Addressing metacognitive functions has been shown to improve performance at the individual, team, group, and organizational levels. Metacognition is beginning to surface as an added cognate discipline for the field of human performance technology (HPT). Advances from research in the fields of cognition and metacognition offer a place for HPT to…

  15. The Structure of Human Intelligence: It Is Verbal, Perceptual, and Image Rotation (VPR), Not Fluid and Crystallized

    ERIC Educational Resources Information Center

    Johnson, W.; Bouchard, T.J.

    2005-01-01

    In a heterogeneous sample of 436 adult individuals who completed 42 mental ability tests, we evaluated the relative statistical performance of three major psychometric models of human intelligence-the Cattell-Horn fluid-crystallized model, Vernon's verbal-perceptual model, and Carroll's three-strata model. The verbal-perceptual model fit…

  16. Target acquisition modeling over the exact optical path: extending the EOSTAR TDA with the TOD sensor performance model

    NASA Astrophysics Data System (ADS)

    Dijk, J.; Bijl, P.; Oppeneer, M.; ten Hove, R. J. M.; van Iersel, M.

    2017-10-01

    The Electro-Optical Signal Transmission and Ranging (EOSTAR) model is an image-based Tactical Decision Aid (TDA) for thermal imaging systems (MWIR/LWIR) developed for a sea environment with an extensive atmosphere model. The Triangle Orientation Discrimination (TOD) Target Acquisition model calculates the sensor and signal processing effects on a set of input triangle test pattern images, judges their orientation using humans or a Human Visual System (HVS) model and derives the system image quality and operational field performance from the correctness of the responses. Combination of the TOD model and EOSTAR, basically provides the possibility to model Target Acquisition (TA) performance over the exact path from scene to observer. In this method ship representative TOD test patterns are placed at the position of the real target, subsequently the combined effects of the environment (atmosphere, background, etc.), sensor and signal processing on the image are calculated using EOSTAR and finally the results are judged by humans. The thresholds are converted into Detection-Recognition-Identification (DRI) ranges of the real target. In experiments is shown that combination of the TOD model and the EOSTAR model is indeed possible. The resulting images look natural and provide insight in the possibilities of combining the two models. The TOD observation task can be done well by humans, and the measured TOD is consistent with analytical TOD predictions for the same camera that was modeled in the ECOMOS project.

  17. Human impact parameterization in global hydrological models improves estimates of monthly discharges and hydrological extremes: a multi-model validation study

    NASA Astrophysics Data System (ADS)

    Veldkamp, Ted; Ward, Philip; de Moel, Hans; Aerts, Jeroen; Muller Schmied, Hannes; Portmann, Felix; Zhao, Fang; Gerten, Dieter; Masaki, Yoshimitsu; Pokhrel, Yadu; Satoh, Yusuke; Gosling, Simon; Zaherpour, Jamal; Wada, Yoshihide

    2017-04-01

    Human impacts on freshwater resources and hydrological features form the core of present-day water related hazards, like flooding, droughts, water scarcity, and water quality issues. Driven by the societal and scientific needs to correctly model such water related hazards a fair amount of resources has been invested over the past decades to represent human activities and their interactions with the hydrological cycle in global hydrological models (GHMs). Use of these GHMs - including the human dimension - is widespread, especially in water resources research. Evaluation or comparative assessments of the ability of such GHMs to represent real-world hydrological conditions are, unfortunately, however often limited to (near-)natural river basins. Such studies are, therefore, not able to test the model representation of human activities and its associated impact on estimates of freshwater resources or assessments of hydrological extremes. Studies that did perform a validation exercise - including the human dimension and looking into managed catchments - either focused only on one hydrological model, and/or incorporated only a few data points (i.e. river basins) for validation. To date, a comprehensive comparative analysis that evaluates whether and where incorporating the human dimension actually improves the performance of different GHMs with respect to their representation of real-world hydrological conditions and extremes is missing. The absence of such study limits the potential benchmarking of GHMs and their outcomes in hydrological hazard and risk assessments significantly, potentially hampering incorporation of GHMs and their modelling results in actual policy making and decision support with respect to water resources management. To address this issue, we evaluate in this study the performance of five state-of-the-art GHMs that include anthropogenic activities in their modelling scheme, with respect to their representation of monthly discharges and hydrological extremes. To this end, we compared their monthly discharge simulations under a naturalized and a time-dependent human impact simulation, with monthly GRDC river discharge observations of 2,412 stations over the period 1971-2010. Evaluation metrics that were used to assess the performance of the GHMs included the modified Kling-Gupta Efficiency index, and its individual parameters describing the linear correlation coefficient, the bias ratio, and the variability ratio, as well as indicators for hydrological extremes (Q90, Q10). Our results show that inclusion of anthropogenic activities in the modelling framework generally enhances the overall performance of the GHMs studied, mainly driven by bias-improvements, and to a lesser extent due to changes in modelled hydrological variability. Whilst the inclusion of anthropogenic activities takes mainly effect in the managed catchments, a significant share of the (near-)natural catchments is influenced as well. To get estimates of hydrological extremes right, especially when looking at low-flows, inclusion of human activities is paramount. Whilst high-flow estimates are mainly decreased, impact of human activities on low-flows is ambiguous, i.e. due to the relative importance of the timing of return flows and reservoir operations. Even with inclusion of the human dimension we find, nevertheless, a persistent overestimation of hydrological extremes across all models, which should be accounted for in future assessments.

  18. Acquisition and production of skilled behavior in dynamic decision-making tasks: Modeling strategic behavior in human-automation interaction: Why and aid can (and should) go unused

    NASA Technical Reports Server (NTRS)

    Kirlik, Alex

    1991-01-01

    Advances in computer and control technology offer the opportunity for task-offload aiding in human-machine systems. A task-offload aid (e.g., an autopilot, an intelligent assistant) can be selectively engaged by the human operator to dynamically delegate tasks to an automated system. Successful design and performance prediction in such systems requires knowledge of the factors influencing the strategy the operator develops and uses for managing interaction with the task-offload aid. A model is presented that shows how such strategies can be predicted as a function of three task context properties (frequency and duration of secondary tasks and costs of delaying secondary tasks) and three aid design properties (aid engagement and disengagement times, aid performance relative to human performance). Sensitivity analysis indicates how each of these contextual and design factors affect the optimal aid aid usage strategy and attainable system performance. The model is applied to understanding human-automation interaction in laboratory experiments on human supervisory control behavior. The laboratory task allowed subjects freedom to determine strategies for using an autopilot in a dynamic, multi-task environment. Modeling results suggested that many subjects may indeed have been acting appropriately by not using the autopilot in the way its designers intended. Although autopilot function was technically sound, this aid was not designed with due regard to the overall task context in which it was placed. These results demonstrate the need for additional research on how people may strategically manage their own resources, as well as those provided by automation, in an effort to keep workload and performance at acceptable levels.

  19. Assessment of mass detection performance in contrast enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Carton, Ann-Katherine; de Carvalho, Pablo M.; Li, Zhijin; Dromain, Clarisse; Muller, Serge

    2015-03-01

    We address the detectability of contrast-agent enhancing masses for contrast-agent enhanced spectral mammography (CESM), a dual-energy technique providing functional projection images of breast tissue perfusion and vascularity using simulated CESM images. First, the realism of simulated CESM images from anthropomorphic breast software phantoms generated with a software X-ray imaging platform was validated. Breast texture was characterized by power-law coefficients calculated in data sets of real clinical and simulated images. We also performed a 2-alternative forced choice (2-AFC) psychophysical experiment whereby simulated and real images were presented side-by-side to an experienced radiologist to test if real images could be distinguished from the simulated images. It was found that texture in our simulated CESM images has a fairly realistic appearance. Next, the relative performance of human readers and previously developed mathematical observers was assessed for the detection of iodine-enhancing mass lesions containing different contrast agent concentrations. A four alternative-forced-choice (4 AFC) task was designed; the task for the model and human observer was to detect which one of the four simulated DE recombined images contained an iodineenhancing mass. Our results showed that the NPW and NPWE models largely outperform human performance. After introduction of an internal noise component, both observers approached human performance. The CHO observer performs slightly worse than the average human observer. There is still work to be done in improving model observers as predictors of human-observer performance. Larger trials could also improve our test statistics. We hope that in the future, this framework of software breast phantoms, virtual image acquisition and processing, and mathematical observers can be beneficial to optimize CESM imaging techniques.

  20. The Use of Behavior Models for Predicting Complex Operations

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2010-01-01

    Modeling and simulation (M&S) plays an important role when complex human-system notions are being proposed, developed and tested within the system design process. National Aeronautics and Space Administration (NASA) as an agency uses many different types of M&S approaches for predicting human-system interactions, especially when it is early in the development phase of a conceptual design. NASA Ames Research Center possesses a number of M&S capabilities ranging from airflow, flight path models, aircraft models, scheduling models, human performance models (HPMs), and bioinformatics models among a host of other kinds of M&S capabilities that are used for predicting whether the proposed designs will benefit the specific mission criteria. The Man-Machine Integration Design and Analysis System (MIDAS) is a NASA ARC HPM software tool that integrates many models of human behavior with environment models, equipment models, and procedural / task models. The challenge to model comprehensibility is heightened as the number of models that are integrated and the requisite fidelity of the procedural sets are increased. Model transparency is needed for some of the more complex HPMs to maintain comprehensibility of the integrated model performance. This will be exemplified in a recent MIDAS v5 application model and plans for future model refinements will be presented.

  1. 10 CFR 963.16 - Postclosure suitability evaluation method.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... radionuclide concentrations in the case where there is no human intrusion into the repository. DOE will model... where there is a human intrusion as specified by 10 CFR 63.322. DOE will model the performance of the... criteria in § 963.17. If required by applicable NRC regulations regarding a human intrusion standard, § 63...

  2. The Importance of HRA in Human Space Flight: Understanding the Risks

    NASA Technical Reports Server (NTRS)

    Hamlin, Teri

    2010-01-01

    Human performance is critical to crew safety during space missions. Humans interact with hardware and software during ground processing, normal flight, and in response to events. Human interactions with hardware and software can cause Loss of Crew and/or Vehicle (LOCV) through improper actions, or may prevent LOCV through recovery and control actions. Humans have the ability to deal with complex situations and system interactions beyond the capability of machines. Human Reliability Analysis (HRA) is a method used to qualitatively and quantitatively assess the occurrence of human failures that affect availability and reliability of complex systems. Modeling human actions with their corresponding failure probabilities in a Probabilistic Risk Assessment (PRA) provides a more complete picture of system risks and risk contributions. A high-quality HRA can provide valuable information on potential areas for improvement, including training, procedures, human interfaces design, and the need for automation. Modeling human error has always been a challenge in part because performance data is not always readily available. For spaceflight, the challenge is amplified not only because of the small number of participants and limited amount of performance data available, but also due to the lack of definition of the unique factors influencing human performance in space. These factors, called performance shaping factors in HRA terminology, are used in HRA techniques to modify basic human error probabilities in order to capture the context of an analyzed task. Many of the human error modeling techniques were developed within the context of nuclear power plants and therefore the methodologies do not address spaceflight factors such as the effects of microgravity and longer duration missions. This presentation will describe the types of human error risks which have shown up as risk drivers in the Shuttle PRA which may be applicable to commercial space flight. As with other large PRAs of complex machines, human error in the Shuttle PRA proved to be an important contributor (12 percent) to LOCV. An existing HRA technique was adapted for use in the Shuttle PRA, but additional guidance and improvements are needed to make the HRA task in space-related PRAs easier and more accurate. Therefore, this presentation will also outline plans for expanding current HRA methodology to more explicitly cover spaceflight performance shaping factors.

  3. A machine learning model with human cognitive biases capable of learning from small and biased datasets.

    PubMed

    Taniguchi, Hidetaka; Sato, Hiroshi; Shirakawa, Tomohiro

    2018-05-09

    Human learners can generalize a new concept from a small number of samples. In contrast, conventional machine learning methods require large amounts of data to address the same types of problems. Humans have cognitive biases that promote fast learning. Here, we developed a method to reduce the gap between human beings and machines in this type of inference by utilizing cognitive biases. We implemented a human cognitive model into machine learning algorithms and compared their performance with the currently most popular methods, naïve Bayes, support vector machine, neural networks, logistic regression and random forests. We focused on the task of spam classification, which has been studied for a long time in the field of machine learning and often requires a large amount of data to obtain high accuracy. Our models achieved superior performance with small and biased samples in comparison with other representative machine learning methods.

  4. Visual-search model observer for assessing mass detection in CT

    NASA Astrophysics Data System (ADS)

    Karbaschi, Zohreh; Gifford, Howard C.

    2017-03-01

    Our aim is to devise model observers (MOs) to evaluate acquisition protocols in medical imaging. To optimize protocols for human observers, an MO must reliably interpret images containing quantum and anatomical noise under aliasing conditions. In this study of sampling parameters for simulated lung CT, the lesion-detection performance of human observers was compared with that of visual-search (VS) observers, a channelized nonprewhitening (CNPW) observer, and a channelized Hoteling (CH) observer. Scans of a mathematical torso phantom modeled single-slice parallel-hole CT with varying numbers of detector pixels and angular projections. Circular lung lesions had a fixed radius. Twodimensional FBP reconstructions were performed. A localization ROC study was conducted with the VS, CNPW and human observers, while the CH observer was applied in a location-known ROC study. Changing the sampling parameters had negligible effect on the CNPW and CH observers, whereas several VS observers demonstrated a sensitivity to sampling artifacts that was in agreement with how the humans performed.

  5. Development of a Human Motor Model for the Evaluation of an Integrated Alerting and Notification Flight Deck System

    NASA Technical Reports Server (NTRS)

    Daiker, Ron; Schnell, Thomas

    2010-01-01

    A human motor model was developed on the basis of performance data that was collected in a flight simulator. The motor model is under consideration as one component of a virtual pilot model for the evaluation of NextGen crew alerting and notification systems in flight decks. This model may be used in a digital Monte Carlo simulation to compare flight deck layout design alternatives. The virtual pilot model is being developed as part of a NASA project to evaluate multiple crews alerting and notification flight deck configurations. Model parameters were derived from empirical distributions of pilot data collected in a flight simulator experiment. The goal of this model is to simulate pilot motor performance in the approach-to-landing task. The unique challenges associated with modeling the complex dynamics of humans interacting with the cockpit environment are discussed, along with the current state and future direction of the model.

  6. Performance Technology--Not a One-Size-Fits-All Profession

    ERIC Educational Resources Information Center

    Dierkes, Sunda V.

    2012-01-01

    The current debate over whether to choose just one universal human performance technology (HPT) model, in particular Langdon's language of work (LOW) model, promises a shared understanding among HPT professionals, credibility for the HPT profession, and a return on investment of time and effort in developing performance models over more than 70…

  7. The Application of the Human Engineering Modeling and Performance Laboratory for Space Vehicle Ground Processing Tasks at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Woodbury, Sarah K.

    2008-01-01

    The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation.

  8. Local spatio-temporal analysis in vision systems

    NASA Astrophysics Data System (ADS)

    Geisler, Wilson S.; Bovik, Alan; Cormack, Lawrence; Ghosh, Joydeep; Gildeen, David

    1994-07-01

    The aims of this project are the following: (1) develop a physiologically and psychophysically based model of low-level human visual processing (a key component of which are local frequency coding mechanisms); (2) develop image models and image-processing methods based upon local frequency coding; (3) develop algorithms for performing certain complex visual tasks based upon local frequency representations, (4) develop models of human performance in certain complex tasks based upon our understanding of low-level processing; and (5) develop a computational testbed for implementing, evaluating and visualizing the proposed models and algorithms, using a massively parallel computer. Progress has been substantial on all aims. The highlights include the following: (1) completion of a number of psychophysical and physiological experiments revealing new, systematic and exciting properties of the primate (human and monkey) visual system; (2) further development of image models that can accurately represent the local frequency structure in complex images; (3) near completion in the construction of the Texas Active Vision Testbed; (4) development and testing of several new computer vision algorithms dealing with shape-from-texture, shape-from-stereo, and depth-from-focus; (5) implementation and evaluation of several new models of human visual performance; and (6) evaluation, purchase and installation of a MasPar parallel computer.

  9. Theorizing Strategic Human Resource Development: Linking Financial Performance and Sustainable Competitive Advantage

    ERIC Educational Resources Information Center

    Hu, Po

    2007-01-01

    This paper is to explore potential new underlying theory of strategic human resource development based on critiques of current theoretical foundations of HRD. It offers a new definition and model of Strategic HRD based on resource-based view of firm and human resource, with linkage to financial performance and competitiveness. Proposed new model…

  10. Development of a computational model on the neural activity patterns of a visual working memory in a hierarchical feedforward Network

    NASA Astrophysics Data System (ADS)

    An, Soyoung; Choi, Woochul; Paik, Se-Bum

    2015-11-01

    Understanding the mechanism of information processing in the human brain remains a unique challenge because the nonlinear interactions between the neurons in the network are extremely complex and because controlling every relevant parameter during an experiment is difficult. Therefore, a simulation using simplified computational models may be an effective approach. In the present study, we developed a general model of neural networks that can simulate nonlinear activity patterns in the hierarchical structure of a neural network system. To test our model, we first examined whether our simulation could match the previously-observed nonlinear features of neural activity patterns. Next, we performed a psychophysics experiment for a simple visual working memory task to evaluate whether the model could predict the performance of human subjects. Our studies show that the model is capable of reproducing the relationship between memory load and performance and may contribute, in part, to our understanding of how the structure of neural circuits can determine the nonlinear neural activity patterns in the human brain.

  11. Cross-industry Performance Modeling: Toward Cooperative Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reece, Wendy Jane; Blackman, Harold Stabler

    One of the current unsolved problems in human factors is the difficulty in acquiring information from lessons learned and data collected among human performance analysts in different domains. There are several common concerns and generally accepted issues of importance for human factors, psychology and industry analysts of performance and safety. Among these are the need to incorporate lessons learned in design, to carefully consider implementation of new designs and automation, and the need to reduce human performance-based contributions to risk. In spite of shared concerns, there are several roadblocks to widespread sharing of data and lessons learned from operating experiencemore » and simulation, including the fact that very few publicly accessible data bases exist (Gertman & Blackman, 1994, and Kirwan, 1997). There is a need to draw together analysts and analytic methodologies to comprise a centralized source of data with sufficient detail to be meaningful while ensuring source anonymity. We propose that a generic source of performance data and a multi-domain data store may provide the first steps toward cooperative performance modeling and analysis across industries.« less

  12. Cross-Industry Performance Modeling: Toward Cooperative Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. S. Blackman; W. J. Reece

    One of the current unsolved problems in human factors is the difficulty in acquiring information from lessons learned and data collected among human performance analysts in different domains. There are several common concerns and generally accepted issues of importance for human factors, psychology and industry analysts of performance and safety. Among these are the need to incorporate lessons learned in design, to carefully consider implementation of new designs and automation, and the need to reduce human performance-based contributions to risk. In spite of shared concerns, there are several road blocks to widespread sharing of data and lessons learned from operatingmore » experience and simulation, including the fact that very few publicly accessible data bases exist(Gertman & Blackman, 1994, and Kirwan, 1997). There is a need to draw together analysts and analytic methodologies to comprise a centralized source of data with sufficient detail to be meaningful while ensuring source anonymity. We propose that a generic source of performance data and a multi-domain data store may provide the first steps toward cooperative performance modeling and analysis across industries.« less

  13. The Social Responsibility Performance Outcomes Model: Building Socially Responsible Companies through Performance Improvement Outcomes.

    ERIC Educational Resources Information Center

    Hatcher, Tim

    2000-01-01

    Considers the role of performance improvement professionals and human resources development professionals in helping organizations realize the ethical and financial power of corporate social responsibility. Explains the social responsibility performance outcomes model, which incorporates the concepts of societal needs and outcomes. (LRW)

  14. What Do HPT Consultants Do for Performance Analysis?

    ERIC Educational Resources Information Center

    Kang, Sung

    2017-01-01

    This study was conducted to contribute to the field of Human Performance Technology (HPT) through the validation of the performance analysis process of the International Society for Performance Improvement (ISPI) HPT model, the most representative and frequently utilized process model in the HPT field. The study was conducted using content…

  15. Leucine Modulation of the mTOR Pathway for Cognition Modulation: Kinetic and In Vitro Studies and Model Development

    DTIC Science & Technology

    2015-09-30

    isoleucine non-polar L1 131 Aromatic side chain phenylalanine non-polar L1 165 tyrosine polar L1 181 tryptophan slightly...Human Performance Wing Human Effectiveness Directorate Bioeffects Division Molecular Bioeffects Branch Wright-Patterson AFB OH 45433-5707 NOTICE...IV, DAF Chief, Bioeffects Division Human Effectiveness Directorate 711th Human Performance Wing Air Force Research Laboratory This report is

  16. Evaluating Nextgen Closely Spaced Parallel Operations Concepts with Validated Human Performance Models: Flight Deck Guidelines

    NASA Technical Reports Server (NTRS)

    Hooey, Becky Lee; Gore, Brian Francis; Mahlstedt, Eric; Foyle, David C.

    2013-01-01

    The objectives of the current research were to develop valid human performance models (HPMs) of approach and land operations; use these models to evaluate the impact of NextGen Closely Spaced Parallel Operations (CSPO) on pilot performance; and draw conclusions regarding flight deck display design and pilot-ATC roles and responsibilities for NextGen CSPO concepts. This document presents guidelines and implications for flight deck display designs and candidate roles and responsibilities. A companion document (Gore, Hooey, Mahlstedt, & Foyle, 2013) provides complete scenario descriptions and results including predictions of pilot workload, visual attention and time to detect off-nominal events.

  17. Evaluation of the channelized Hotelling observer with an internal-noise model in a train-test paradigm for cardiac SPECT defect detection.

    PubMed

    Brankov, Jovan G

    2013-10-21

    The channelized Hotelling observer (CHO) has become a widely used approach for evaluating medical image quality, acting as a surrogate for human observers in early-stage research on assessment and optimization of imaging devices and algorithms. The CHO is typically used to measure lesion detectability. Its popularity stems from experiments showing that the CHO's detection performance can correlate well with that of human observers. In some cases, CHO performance overestimates human performance; to counteract this effect, an internal-noise model is introduced, which allows the CHO to be tuned to match human-observer performance. Typically, this tuning is achieved using example data obtained from human observers. We argue that this internal-noise tuning step is essentially a model training exercise; therefore, just as in supervised learning, it is essential to test the CHO with an internal-noise model on a set of data that is distinct from that used to tune (train) the model. Furthermore, we argue that, if the CHO is to provide useful insights about new imaging algorithms or devices, the test data should reflect such potential differences from the training data; it is not sufficient simply to use new noise realizations of the same imaging method. Motivated by these considerations, the novelty of this paper is the use of new model selection criteria to evaluate ten established internal-noise models, utilizing four different channel models, in a train-test approach. Though not the focus of the paper, a new internal-noise model is also proposed that outperformed the ten established models in the cases tested. The results, using cardiac perfusion SPECT data, show that the proposed train-test approach is necessary, as judged by the newly proposed model selection criteria, to avoid spurious conclusions. The results also demonstrate that, in some models, the optimal internal-noise parameter is very sensitive to the choice of training data; therefore, these models are prone to overfitting, and will not likely generalize well to new data. In addition, we present an alternative interpretation of the CHO as a penalized linear regression wherein the penalization term is defined by the internal-noise model.

  18. SEIPS 2.0: a human factors framework for studying and improving the work of healthcare professionals and patients.

    PubMed

    Holden, Richard J; Carayon, Pascale; Gurses, Ayse P; Hoonakker, Peter; Hundt, Ann Schoofs; Ozok, A Ant; Rivera-Rodriguez, A Joy

    2013-01-01

    Healthcare practitioners, patient safety leaders, educators and researchers increasingly recognise the value of human factors/ergonomics and make use of the discipline's person-centred models of sociotechnical systems. This paper first reviews one of the most widely used healthcare human factors systems models, the Systems Engineering Initiative for Patient Safety (SEIPS) model, and then introduces an extended model, 'SEIPS 2.0'. SEIPS 2.0 incorporates three novel concepts into the original model: configuration, engagement and adaptation. The concept of configuration highlights the dynamic, hierarchical and interactive properties of sociotechnical systems, making it possible to depict how health-related performance is shaped at 'a moment in time'. Engagement conveys that various individuals and teams can perform health-related activities separately and collaboratively. Engaged individuals often include patients, family caregivers and other non-professionals. Adaptation is introduced as a feedback mechanism that explains how dynamic systems evolve in planned and unplanned ways. Key implications and future directions for human factors research in healthcare are discussed.

  19. Assessment of human epidermal model LabCyte EPI-MODEL for in vitro skin irritation testing according to European Centre for the Validation of Alternative Methods (ECVAM)-validated protocol.

    PubMed

    Katoh, Masakazu; Hamajima, Fumiyasu; Ogasawara, Takahiro; Hata, Ken-Ichiro

    2009-06-01

    A validation study of an in vitro skin irritation testing method using a reconstructed human skin model has been conducted by the European Centre for the Validation of Alternative Methods (ECVAM), and a protocol using EpiSkin (SkinEthic, France) has been approved. The structural and performance criteria of skin models for testing are defined in the ECVAM Performance Standards announced along with the approval. We have performed several evaluations of the new reconstructed human epidermal model LabCyte EPI-MODEL, and confirmed that it is applicable to skin irritation testing as defined in the ECVAM Performance Standards. We selected 19 materials (nine irritants and ten non-irritants) available in Japan as test chemicals among the 20 reference chemicals described in the ECVAM Performance Standard. A test chemical was applied to the surface of the LabCyte EPI-MODEL for 15 min, after which it was completely removed and the model then post-incubated for 42 hr. Cell v iability was measured by MTT assay and skin irritancy of the test chemical evaluated. In addition, interleukin-1 alpha (IL-1alpha) concentration in the culture supernatant after post-incubation was measured to provide a complementary evaluation of skin irritation. Evaluation of the 19 test chemicals resulted in 79% accuracy, 78% sensitivity and 80% specificity, confirming that the in vitro skin irritancy of the LabCyte EPI-MODEL correlates highly with in vivo skin irritation. These results suggest that LabCyte EPI-MODEL is applicable to the skin irritation testing protocol set out in the ECVAM Performance Standards.

  20. Modeling How, When, and What Is Learned in a Simple Fault-Finding Task

    ERIC Educational Resources Information Center

    Ritter, Frank E.; Bibby, Peter A.

    2008-01-01

    We have developed a process model that learns in multiple ways while finding faults in a simple control panel device. The model predicts human participants' learning through its own learning. The model's performance was systematically compared to human learning data, including the time course and specific sequence of learned behaviors. These…

  1. Using modeling to understand how athletes in different disciplines solve the same problem: swimming versus running versus speed skating.

    PubMed

    de Koning, Jos J; Foster, Carl; Lucia, Alejandro; Bobbert, Maarten F; Hettinga, Florentina J; Porcari, John P

    2011-06-01

    Every new competitive season offers excellent examples of human locomotor abilities, regardless of the sport. As a natural consequence of competitions, world records are broken every now and then. World record races not only offer spectators the pleasure of watching very talented and highly trained athletes performing muscular tasks with remarkable skill, but also represent natural models of the ultimate expression of human integrated muscle biology, through strength, speed, or endurance performances. Given that humans may be approaching our species limit for muscular power output, interest in how athletes improve on world records has led to interest in the strategy of how limited energetic resources are best expended over a race. World record performances may also shed light on how athletes in different events solve exactly the same problem-minimizing the time required to reach the finish line. We have previously applied mathematical modeling to the understanding of world record performances in terms of improvements in facilities/equipment and improvements in the athletes' physical capacities. In this commentary, we attempt to demonstrate that differences in world record performances in various sports can be explained using a very simple modeling process.

  2. Integrating the Advanced Human Eye Model (AHEM) and optical instrument models to model complete visual optical systems inclusive of the typical or atypical eye

    NASA Astrophysics Data System (ADS)

    Donnelly, William J., III

    2012-06-01

    PURPOSE: To present a commercially available optical modeling software tool to assist the development of optical instrumentation and systems that utilize and/or integrate with the human eye. METHODS: A commercially available flexible eye modeling system is presented, the Advanced Human Eye Model (AHEM). AHEM is a module that the engineer can use to perform rapid development and test scenarios on systems that integrate with the eye. Methods include merging modeled systems initially developed outside of AHEM and performing a series of wizard-type operations that relieve the user from requiring an optometric or ophthalmic background to produce a complete eye inclusive system. Scenarios consist of retinal imaging of targets and sources through integrated systems. Uses include, but are not limited to, optimization, telescopes, microscopes, spectacles, contact and intraocular lenses, ocular aberrations, cataract simulation and scattering, and twin eye model (binocular) systems. RESULTS: Metrics, graphical data, and exportable CAD geometry are generated from the various modeling scenarios.

  3. A Pilot Study of Biomedical Text Comprehension using an Attention-Based Deep Neural Reader: Design and Experimental Analysis

    PubMed Central

    Lee, Kyubum; Kim, Byounggun; Jeon, Minji; Kim, Jihye; Tan, Aik Choon

    2018-01-01

    Background With the development of artificial intelligence (AI) technology centered on deep-learning, the computer has evolved to a point where it can read a given text and answer a question based on the context of the text. Such a specific task is known as the task of machine comprehension. Existing machine comprehension tasks mostly use datasets of general texts, such as news articles or elementary school-level storybooks. However, no attempt has been made to determine whether an up-to-date deep learning-based machine comprehension model can also process scientific literature containing expert-level knowledge, especially in the biomedical domain. Objective This study aims to investigate whether a machine comprehension model can process biomedical articles as well as general texts. Since there is no dataset for the biomedical literature comprehension task, our work includes generating a large-scale question answering dataset using PubMed and manually evaluating the generated dataset. Methods We present an attention-based deep neural model tailored to the biomedical domain. To further enhance the performance of our model, we used a pretrained word vector and biomedical entity type embedding. We also developed an ensemble method of combining the results of several independent models to reduce the variance of the answers from the models. Results The experimental results showed that our proposed deep neural network model outperformed the baseline model by more than 7% on the new dataset. We also evaluated human performance on the new dataset. The human evaluation result showed that our deep neural model outperformed humans in comprehension by 22% on average. Conclusions In this work, we introduced a new task of machine comprehension in the biomedical domain using a deep neural model. Since there was no large-scale dataset for training deep neural models in the biomedical domain, we created the new cloze-style datasets Biomedical Knowledge Comprehension Title (BMKC_T) and Biomedical Knowledge Comprehension Last Sentence (BMKC_LS) (together referred to as BioMedical Knowledge Comprehension) using the PubMed corpus. The experimental results showed that the performance of our model is much higher than that of humans. We observed that our model performed consistently better regardless of the degree of difficulty of a text, whereas humans have difficulty when performing biomedical literature comprehension tasks that require expert level knowledge. PMID:29305341

  4. Discussion of Source Reconstruction Models Using 3D MCG Data

    NASA Astrophysics Data System (ADS)

    Melis, Massimo De; Uchikawa, Yoshinori

    In this study we performed the source reconstruction of magnetocardiographic signals generated by the human heart activity to localize the site of origin of the heart activation. The localizations were performed in a four compartment model of the human volume conductor. The analyses were conducted on normal subjects and on a subject affected by the Wolff-Parkinson-White syndrome. Different models of the source activation were used to evaluate whether a general model of the current source can be applied in the study of the cardiac inverse problem. The data analyses were repeated using normal and vector component data of the MCG. The results show that a distributed source model has the better accuracy in performing the source reconstructions, and that 3D MCG data allow finding smaller differences between the different source models.

  5. Human Brain Modeling with Its Anatomical Structure and Realistic Material Properties for Brain Injury Prediction.

    PubMed

    Atsumi, Noritoshi; Nakahira, Yuko; Tanaka, Eiichi; Iwamoto, Masami

    2018-05-01

    Impairments of executive brain function after traumatic brain injury (TBI) due to head impacts in traffic accidents need to be obviated. Finite element (FE) analyses with a human brain model facilitate understanding of the TBI mechanisms. However, conventional brain FE models do not suitably describe the anatomical structure in the deep brain, which is a critical region for executive brain function, and the material properties of brain parenchyma. In this study, for better TBI prediction, a novel brain FE model with anatomical structure in the deep brain was developed. The developed model comprises a constitutive model of brain parenchyma considering anisotropy and strain rate dependency. Validation was performed against postmortem human subject test data associated with brain deformation during head impact. Brain injury analyses were performed using head acceleration curves obtained from reconstruction analysis of rear-end collision with a human whole-body FE model. The difference in structure was found to affect the regions of strain concentration, while the difference in material model contributed to the peak strain value. The injury prediction result by the proposed model was consistent with the characteristics in the neuroimaging data of TBI patients due to traffic accidents.

  6. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  7. Comparison of model and human observer performance in FFDM, DBT, and synthetic mammography

    NASA Astrophysics Data System (ADS)

    Ikejimba, Lynda; Glick, Stephen J.; Samei, Ehsan; Lo, Joseph Y.

    2016-03-01

    Reader studies are important in assessing breast imaging systems. The purpose of this work was to assess task-based performance of full field digital mammography (FFDM), digital breast tomosynthesis (DBT), and synthetic mammography (SM) using different phantom types, and to determine an accurate observer model for human readers. Images were acquired on a Hologic Selenia Dimensions system with a uniform and anthropomorphic phantom. A contrast detail insert of small, low-contrast disks was created using an inkjet printer with iodine-doped ink and inserted in the phantoms. The disks varied in diameter from 210 to 630 μm, and in contrast from 1.1% contrast to 2.2% in regular increments. Human and model observers performed a 4-alternative forced choice experiment. The models were a non-prewhitening matched filter with eye model (NPWE) and a channelized Hotelling observer with either Gabor channels (Gabor-CHO) or Laguerre-Gauss channels (LG-CHO). With the given phantoms, reader scores were higher in FFDM and DBT than SM. The structure in the phantom background had a bigger impact on outcome for DBT than for FFDM or SM. All three model observers showed good correlation with humans in the uniform background, with ρ between 0.89 and 0.93. However, in the structured background, only the CHOs had high correlation, with ρ=0.92 for Gabor-CHO, 0.90 for LG-CHO, and 0.77 for NPWE. Because results of any analysis can depend on the phantom structure, conclusions of modality performance may need to be taken in the context of an appropriate model observer and a realistic phantom.

  8. Human performance on the temporal bisection task.

    PubMed

    Kopec, Charles D; Brody, Carlos D

    2010-12-01

    The perception and processing of temporal information are tasks the brain must continuously perform. These include measuring the duration of stimuli, storing duration information in memory, recalling such memories, and comparing two durations. How the brain accomplishes these tasks, however, is still open for debate. The temporal bisection task, which requires subjects to compare temporal stimuli to durations held in memory, is perfectly suited to address these questions. Here we perform a meta-analysis of human performance on the temporal bisection task collected from 148 experiments spread across 18 independent studies. With this expanded data set we are able to show that human performance on this task contains a number of significant peculiarities, which in total no single model yet proposed has been able to explain. Here we present a simple 2-step decision model that is capable of explaining all the idiosyncrasies seen in the data. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Metrics for Performance Evaluation of Patient Exercises during Physical Therapy.

    PubMed

    Vakanski, Aleksandar; Ferguson, Jake M; Lee, Stephen

    2017-06-01

    The article proposes a set of metrics for evaluation of patient performance in physical therapy exercises. Taxonomy is employed that classifies the metrics into quantitative and qualitative categories, based on the level of abstraction of the captured motion sequences. Further, the quantitative metrics are classified into model-less and model-based metrics, in reference to whether the evaluation employs the raw measurements of patient performed motions, or whether the evaluation is based on a mathematical model of the motions. The reviewed metrics include root-mean square distance, Kullback Leibler divergence, log-likelihood, heuristic consistency, Fugl-Meyer Assessment, and similar. The metrics are evaluated for a set of five human motions captured with a Kinect sensor. The metrics can potentially be integrated into a system that employs machine learning for modelling and assessment of the consistency of patient performance in home-based therapy setting. Automated performance evaluation can overcome the inherent subjectivity in human performed therapy assessment, and it can increase the adherence to prescribed therapy plans, and reduce healthcare costs.

  10. Situation awareness-based agent transparency for human-autonomy teaming effectiveness

    NASA Astrophysics Data System (ADS)

    Chen, Jessie Y. C.; Barnes, Michael J.; Wright, Julia L.; Stowers, Kimberly; Lakhmani, Shan G.

    2017-05-01

    We developed the Situation awareness-based Agent Transparency (SAT) model to support human operators' situation awareness of the mission environment through teaming with intelligent agents. The model includes the agent's current actions and plans (Level 1), its reasoning process (Level 2), and its projection of future outcomes (Level 3). Human-inthe-loop simulation experiments have been conducted (Autonomous Squad Member and IMPACT) to illustrate the utility of the model for human-autonomy team interface designs. Across studies, the results consistently showed that human operators' task performance improved as the agents became more transparent. They also perceived transparent agents as more trustworthy.

  11. Assessing the feasibility, cost, and utility of developing models of human performance in aviation

    NASA Technical Reports Server (NTRS)

    Stillwell, William

    1990-01-01

    The purpose of the effort outlined in this briefing was to determine whether models exist or can be developed that can be used to address aviation automation issues. A multidisciplinary team has been assembled to undertake this effort, including experts in human performance, team/crew, and aviation system modeling, and aviation data used as input to such models. The project consists of two phases, a requirements assessment phase that is designed to determine the feasibility and utility of alternative modeling efforts, and a model development and evaluation phase that will seek to implement the plan (if a feasible cost effective development effort is found) that results from the first phase. Viewgraphs are given.

  12. Validating Human Behavioral Models for Combat Simulations Using Techniques for the Evaluation of Human Performance

    DTIC Science & Technology

    2004-01-01

    Cognitive Task Analysis Abstract As Department of Defense (DoD) leaders rely more on modeling and simulation to provide information on which to base...capabilities and intent. Cognitive Task Analysis (CTA) Cognitive Task Analysis (CTA) is an extensive/detailed look at tasks and subtasks performed by a...Domain Analysis and Task Analysis: A Difference That Matters. In Cognitive Task Analysis , edited by J. M. Schraagen, S.

  13. Functional Imaging of Audio-Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    PubMed

    Rinne, Teemu; Muers, Ross S; Salo, Emma; Slater, Heather; Petkov, Christopher I

    2017-06-01

    The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio-visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio-visual selective attention modulates the primate brain, identify sources for "lost" attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. © The Author 2017. Published by Oxford University Press.

  14. Functional Imaging of Audio–Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    PubMed Central

    Muers, Ross S.; Salo, Emma; Slater, Heather; Petkov, Christopher I.

    2017-01-01

    Abstract The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio–visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio–visual selective attention modulates the primate brain, identify sources for “lost” attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. PMID:28419201

  15. Modeling Interval Temporal Dependencies for Complex Activities Understanding

    DTIC Science & Technology

    2013-10-11

    ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Human activity modeling...computer vision applications: human activity recognition and facial activity recognition. The results demonstrate the superior performance of the

  16. The importance of shared mental models and shared situation awareness for transforming robots from tools to teammates

    NASA Astrophysics Data System (ADS)

    Ososky, Scott; Schuster, David; Jentsch, Florian; Fiore, Stephen; Shumaker, Randall; Lebiere, Christian; Kurup, Unmesh; Oh, Jean; Stentz, Anthony

    2012-06-01

    Current ground robots are largely employed via tele-operation and provide their operators with useful tools to extend reach, improve sensing, and avoid dangers. To move from robots that are useful as tools to truly synergistic human-robot teaming, however, will require not only greater technical capabilities among robots, but also a better understanding of the ways in which the principles of teamwork can be applied from exclusively human teams to mixed teams of humans and robots. In this respect, a core characteristic that enables successful human teams to coordinate shared tasks is their ability to create, maintain, and act on a shared understanding of the world and the roles of the team and its members in it. The team performance literature clearly points towards two important cornerstones for shared understanding of team members: mental models and situation awareness. These constructs have been investigated as products of teams as well; amongst teams, they are shared mental models and shared situation awareness. Consequently, we are studying how these two constructs can be measured and instantiated in human-robot teams. In this paper, we report results from three related efforts that are investigating process and performance outcomes for human robot teams. Our investigations include: (a) how human mental models of tasks and teams change whether a teammate is human, a service animal, or an advanced automated system; (b) how computer modeling can lead to mental models being instantiated and used in robots; (c) how we can simulate the interactions between human and future robotic teammates on the basis of changes in shared mental models and situation assessment.

  17. Human responses to augmented virtual scaffolding models.

    PubMed

    Hsiao, Hongwei; Simeonov, Peter; Dotson, Brian; Ammons, Douglas; Kau, Tsui-Ying; Chiou, Sharon

    2005-08-15

    This study investigated the effect of adding real planks, in virtual scaffolding models of elevation, on human performance in a surround-screen virtual reality (SSVR) system. Twenty-four construction workers and 24 inexperienced controls performed walking tasks on real and virtual planks at three virtual heights (0, 6 m, 12 m) and two scaffolding-platform-width conditions (30, 60 cm). Gait patterns, walking instability measurements and cardiovascular reactivity were assessed. The results showed differences in human responses to real vs. virtual planks in walking patterns, instability score and heart-rate inter-beat intervals; it appeared that adding real planks in the SSVR virtual scaffolding model enhanced the quality of SSVR as a human - environment interface research tool. In addition, there were significant differences in performance between construction workers and the control group. The inexperienced participants were more unstable as compared to construction workers. Both groups increased their stride length with repetitions of the task, indicating a possibly confidence- or habit-related learning effect. The practical implications of this study are in the adoption of augmented virtual models of elevated construction environments for injury prevention research, and the development of programme for balance-control training to reduce the risk of falls at elevation before workers enter a construction job.

  18. Advances and perspectives in in vitro human gut fermentation modeling.

    PubMed

    Payne, Amanda N; Zihler, Annina; Chassard, Christophe; Lacroix, Christophe

    2012-01-01

    The gut microbiota is a highly specialized organ containing host-specific assemblages of microbes whereby metabolic activity directly impacts human health and disease. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently challenged in humans and animals owing to ethical concerns. Multidisciplinary systems biology analyses supported by '-omics' platforms remain widely neglected in the field of in vitro gut fermentation modeling but are key to advancing the significance of these models. Model-driven experimentation using a combination of in vitro gut fermentation and in vitro human cell models represent an advanced approach in identifying complex host-microbe interactions and niches central to gut fermentation processes. The aim of this review is to highlight the advances and challenges exhibited by in vitro human gut fermentation modeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Enhancing Interdisciplinary Human System Risk Research Through Modeling and Network Approaches

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark

    2015-01-01

    NASA's Human Research Program (HRP) supports research to reduce human health and performance risks inherent in future human space exploration missions. Understanding risk outcomes and contributing factors in an integrated manner allows HRP research to support development of efficient and effective mitigations from cross-disciplinary perspectives, and to enable resilient human and engineered systems for spaceflight. The purpose of this work is to support scientific collaborations and research portfolio management by utilizing modeling for analysis and visualization of current and potential future interdisciplinary efforts.

  20. Design of a Virtual Player for Joint Improvisation with Humans in the Mirror Game

    PubMed Central

    Zhai, Chao; Alderisio, Francesco; Tsaneva-Atanasova, Krasimira; di Bernardo, Mario

    2016-01-01

    Joint improvisation is often observed among humans performing joint action tasks. Exploring the underlying cognitive and neural mechanisms behind the emergence of joint improvisation is an open research challenge. This paper investigates jointly improvised movements between two participants in the mirror game, a paradigmatic joint task example. First, experiments involving movement coordination of different dyads of human players are performed in order to build a human benchmark. No designation of leader and follower is given beforehand. We find that joint improvisation is characterized by the lack of a leader and high levels of movement synchronization. Then, a theoretical model is proposed to capture some features of their interaction, and a set of experiments is carried out to test and validate the model ability to reproduce the experimental observations. Furthermore, the model is used to drive a computer avatar able to successfully improvise joint motion with a human participant in real time. Finally, a convergence analysis of the proposed model is carried out to confirm its ability to reproduce joint movements between the participants. PMID:27123927

  1. Design of a Virtual Player for Joint Improvisation with Humans in the Mirror Game.

    PubMed

    Zhai, Chao; Alderisio, Francesco; Słowiński, Piotr; Tsaneva-Atanasova, Krasimira; di Bernardo, Mario

    2016-01-01

    Joint improvisation is often observed among humans performing joint action tasks. Exploring the underlying cognitive and neural mechanisms behind the emergence of joint improvisation is an open research challenge. This paper investigates jointly improvised movements between two participants in the mirror game, a paradigmatic joint task example. First, experiments involving movement coordination of different dyads of human players are performed in order to build a human benchmark. No designation of leader and follower is given beforehand. We find that joint improvisation is characterized by the lack of a leader and high levels of movement synchronization. Then, a theoretical model is proposed to capture some features of their interaction, and a set of experiments is carried out to test and validate the model ability to reproduce the experimental observations. Furthermore, the model is used to drive a computer avatar able to successfully improvise joint motion with a human participant in real time. Finally, a convergence analysis of the proposed model is carried out to confirm its ability to reproduce joint movements between the participants.

  2. Spontaneous Speech Events in Two Speech Databases of Human-Computer and Human-Human Dialogs in Spanish

    ERIC Educational Resources Information Center

    Rodriguez, Luis J.; Torres, M. Ines

    2006-01-01

    Previous works in English have revealed that disfluencies follow regular patterns and that incorporating them into the language model of a speech recognizer leads to lower perplexities and sometimes to a better performance. Although work on disfluency modeling has been applied outside the English community (e.g., in Japanese), as far as we know…

  3. Editorial: Cognitive Architectures, Model Comparison and AGI

    NASA Astrophysics Data System (ADS)

    Lebiere, Christian; Gonzalez, Cleotilde; Warwick, Walter

    2010-12-01

    Cognitive Science and Artificial Intelligence share compatible goals of understanding and possibly generating broadly intelligent behavior. In order to determine if progress is made, it is essential to be able to evaluate the behavior of complex computational models, especially those built on general cognitive architectures, and compare it to benchmarks of intelligent behavior such as human performance. Significant methodological challenges arise, however, when trying to extend approaches used to compare model and human performance from tightly controlled laboratory tasks to complex tasks involving more open-ended behavior. This paper describes a model comparison challenge built around a dynamic control task, the Dynamic Stocks and Flows. We present and discuss distinct approaches to evaluating performance and comparing models. Lessons drawn from this challenge are discussed in light of the challenge of using cognitive architectures to achieve Artificial General Intelligence.

  4. Networks for image acquisition, processing and display

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.

    1990-01-01

    The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.

  5. The net benefits of human-ignited wildfire forecasting: the case of Tribal land units in the United States

    PubMed Central

    Prestemon, Jeffrey P.; Butry, David T.; Thomas, Douglas S.

    2017-01-01

    Research shows that some categories of human-ignited wildfires might be forecastable, due to their temporal clustering, with the possibility that resources could be pre-deployed to help reduce the incidence of such wildfires. We estimated several kinds of incendiary and other human-ignited wildfire forecast models at the weekly time step for tribal land units in the United States, evaluating their forecast skill out of sample. Analyses show that an Autoregressive Conditional Poisson (ACP) model of both incendiary and non-incendiary human-ignited wildfires is more accurate out of sample compared to alternatives, and the simplest of the ACP models performed the best. Additionally, an ensemble of these and simpler, less analytically intensive approaches performed even better. Wildfire hotspot forecast models using all model types were evaluated in a simulation mode to assess the net benefits of forecasts in the context of law enforcement resource reallocations. Our analyses show that such hotspot tools could yield large positive net benefits for the tribes in terms of suppression expenditures averted for incendiary wildfires but that the hotspot tools were less likely to be beneficial for addressing outbreaks of non-incendiary human-ignited wildfires. PMID:28769549

  6. The net benefits of human-ignited wildfire forecasting: the case of Tribal land units in the United States.

    PubMed

    Prestemon, Jeffrey P; Butry, David T; Thomas, Douglas S

    2016-01-01

    Research shows that some categories of human-ignited wildfires might be forecastable, due to their temporal clustering, with the possibility that resources could be pre-deployed to help reduce the incidence of such wildfires. We estimated several kinds of incendiary and other human-ignited wildfire forecast models at the weekly time step for tribal land units in the United States, evaluating their forecast skill out of sample. Analyses show that an Autoregressive Conditional Poisson (ACP) model of both incendiary and non-incendiary human-ignited wildfires is more accurate out of sample compared to alternatives, and the simplest of the ACP models performed the best. Additionally, an ensemble of these and simpler, less analytically intensive approaches performed even better. Wildfire hotspot forecast models using all model types were evaluated in a simulation mode to assess the net benefits of forecasts in the context of law enforcement resource reallocations. Our analyses show that such hotspot tools could yield large positive net benefits for the tribes in terms of suppression expenditures averted for incendiary wildfires but that the hotspot tools were less likely to be beneficial for addressing outbreaks of non-incendiary human-ignited wildfires.

  7. CPAS Parachute Testing, Model Development, & Verification

    NASA Technical Reports Server (NTRS)

    Romero, Leah M.

    2013-01-01

    Capsule Parachute Assembly System (CPAS) is the human rated parachute system for the Orion vehicle used during re-entry. Similar to Apollo parachute design. Human rating requires additional system redundancy. A Government Furnished Equipment (GFE) project responsible for: Design; Development testing; Performance modeling; Fabrication; Qualification; Delivery

  8. Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body.

    PubMed

    Psikuta, Agnes; Kuklane, Kalev; Bogdan, Anna; Havenith, George; Annaheim, Simon; Rossi, René M

    2016-03-01

    Combining the strengths of an advanced mathematical model of human physiology and a thermal manikin is a new paradigm for simulating thermal behaviour of humans. However, the forerunners of such adaptive manikins showed some substantial limitations. This project aimed to determine the opportunities and constraints of the existing thermal manikins when dynamically controlled by a mathematical model of human thermal physiology. Four thermal manikins were selected and evaluated for their heat flux measurement uncertainty including lateral heat flows between manikin body parts and the response of each sector to the frequent change of the set-point temperature typical when using a physiological model for control. In general, all evaluated manikins are suitable for coupling with a physiological model with some recommendations for further improvement of manikin dynamic performance. The proposed methodology is useful to improve the performance of the adaptive manikins and help to provide a reliable and versatile tool for the broad research and development domain of clothing, automotive and building engineering.

  9. Performance Improvement [in HRD].

    ERIC Educational Resources Information Center

    1995

    These four papers are from a symposium that was facilitated by Richard J. Torraco at the 1995 conference of the Academy of Human Resource Development (HRD). "Performance Technology--Isn't It Time We Found Some New Models?" (William J. Rothwell) reviews briefly two classic models, describes criteria for the high performance workplace…

  10. Streamlining Administrative Procedures at the Defense Language Institute: The Strategic Impact Model in Action

    ERIC Educational Resources Information Center

    Oded, Yaniv; Su, Bude

    2010-01-01

    Performance at the Defense Language Institute was examined through the prism of human performance technology and the strategic impact model. This examination revealed performance deficiencies in the administrative realm that required mainly a noninstructional intervention. A systematic analysis showed that digitizing administrative procedures…

  11. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin.

    PubMed

    Groves, Rachel B; Coulman, Sion A; Birchall, James C; Evans, Sam L

    2013-02-01

    The mechanical characteristics of skin are extremely complex and have not been satisfactorily simulated by conventional engineering models. The ability to predict human skin behaviour and to evaluate changes in the mechanical properties of the tissue would inform engineering design and would prove valuable in a diversity of disciplines, for example the pharmaceutical and cosmetic industries, which currently rely upon experiments performed in animal models. The aim of this study was to develop a predictive anisotropic, hyperelastic constitutive model of human skin and to validate this model using laboratory data. As a corollary, the mechanical characteristics of human and murine skin have been compared. A novel experimental design, using tensile tests on circular skin specimens, and an optimisation procedure were adopted for laboratory experiments to identify the material parameters of the tissue. Uniaxial tensile tests were performed along three load axes on excised murine and human skin samples, using a single set of material parameters for each skin sample. A finite element model was developed using the transversely isotropic, hyperelastic constitutive model of Weiss et al. (1996) and was embedded within a Veronda-Westmann isotropic material matrix, using three fibre families to create anisotropic behaviour. The model was able to represent the nonlinear, anisotropic behaviour of the skin well. Additionally, examination of the optimal material coefficients and the experimental data permitted quantification of the mechanical differences between human and murine skin. Differences between the skin types, most notably the extension of the skin at low load, have highlighted some of the limitations of murine skin as a biomechanical model of the human tissue. The development of accurate, predictive computational models of human tissue, such as skin, to reduce, refine or replace animal models and to inform developments in the medical, engineering and cosmetic fields, is a significant challenge but is highly desirable. Concurrent advances in computer technology and our understanding of human physiology must be utilised to produce more accurate and accessible predictive models, such as the finite element model described in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A Mid-Layer Model for Human Reliability Analysis: Understanding the Cognitive Causes of Human Failure Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey M. L. Hendrickson; April M. Whaley; Ronald L. Boring

    The Office of Nuclear Regulatory Research (RES) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method’s middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failuremore » mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.« less

  13. A mid-layer model for human reliability analysis : understanding the cognitive causes of human failure events.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Song-Hua; Chang, James Y. H.; Boring,Ronald L.

    2010-03-01

    The Office of Nuclear Regulatory Research (RES) at the US Nuclear Regulatory Commission (USNRC) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method's middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identifiedmore » human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.« less

  14. Intelligent Entity Behavior Within Synthetic Environments. Chapter 3

    NASA Technical Reports Server (NTRS)

    Kruk, R. V.; Howells, P. B.; Siksik, D. N.

    2007-01-01

    This paper describes some elements in the development of realistic performance and behavior in the synthetic entities (players) which support Modeling and Simulation (M&S) applications, particularly military training. Modern human-in-the-loop (virtual) training systems incorporate sophisticated synthetic environments, which provide: 1. The operational environment, including, for example, terrain databases; 2. Physical entity parameters which define performance in engineered systems, such as aircraft aerodynamics; 3. Platform/system characteristics such as acoustic, IR and radar signatures; 4. Behavioral entity parameters which define interactive performance, including knowledge/reasoning about terrain, tactics; and, 5. Doctrine, which combines knowledge and tactics into behavior rule sets. The resolution and fidelity of these model/database elements can vary substantially, but as synthetic environments are designed to be compose able, attributes may easily be added (e.g., adding a new radar to an aircraft) or enhanced (e.g. Amending or replacing missile seeker head/ Electronic Counter Measures (ECM) models to improve the realism of their interaction). To a human in the loop with synthetic entities, their observed veridicality is assessed via engagement responses (e.g. effect of countermeasures upon a closing missile), as seen on systems displays, and visual (image) behavior. The realism of visual models in a simulation (level of detail as well as motion fidelity) remains a challenge in realistic articulation of elements such as vehicle antennae and turrets, or, with human figures; posture, joint articulation, response to uneven ground. Currently the adequacy of visual representation is more dependant upon the quality and resolution of the physical models driving those entities than graphics processing power per Se. Synthetic entities in M&S applications traditionally have represented engineered systems (e.g. aircraft) with human-in-the-loop performance characteristics (e.g. visual acuity) included in the system behavioral specification. As well, performance affecting human parameters such as experience level, fatigue and stress are coming into wider use (via AI approaches) to incorporate more uncertainty as to response type as well as performance (e.g. Where an opposing entity might go and what it might do, as well as how well it might perform).

  15. Study of Adaptive Mathematical Models for Deriving Automated Pilot Performance Measurement Techniques. Volume I. Model Development.

    ERIC Educational Resources Information Center

    Connelly, Edward A.; And Others

    A new approach to deriving human performance measures and criteria for use in automatically evaluating trainee performance is documented in this report. The ultimate application of the research is to provide methods for automatically measuring pilot performance in a flight simulator or from recorded in-flight data. An efficient method of…

  16. Framework for Human-Automation Collaboration: Conclusions from Four Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxstrand, Johanna; Le Blanc, Katya L.; O'Hara, John

    The Human Automation Collaboration (HAC) research project is investigating how advanced technologies that are planned for Advanced Small Modular Reactors (AdvSMR) will affect the performance and the reliability of the plant from a human factors and human performance perspective. The HAC research effort investigates the consequences of allocating functions between the operators and automated systems. More specifically, the research team is addressing how to best design the collaboration between the operators and the automated systems in a manner that has the greatest positive impact on overall plant performance and reliability. Oxstrand et al. (2013 - March) describes the efforts conductedmore » by the researchers to identify the research needs for HAC. The research team reviewed the literature on HAC, developed a model of HAC, and identified gaps in the existing knowledge of human-automation collaboration. As described in Oxstrand et al. (2013 – June), the team then prioritized the research topics identified based on the specific needs in the context of AdvSMR. The prioritization was based on two sources of input: 1) The preliminary functions and tasks, and 2) The model of HAC. As a result, three analytical studies were planned and conduced; 1) Models of Teamwork, 2) Standardized HAC Performance Measurement Battery, and 3) Initiators and Triggering Conditions for Adaptive Automation. Additionally, one field study was also conducted at Idaho Falls Power.« less

  17. Validating Human Performance Models of the Future Orion Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.; Walters, Brett; Fairey, Lisa

    2010-01-01

    NASA's Orion Crew Exploration Vehicle (CEV) will provide transportation for crew and cargo to and from destinations in support of the Constellation Architecture Design Reference Missions. Discrete Event Simulation (DES) is one of the design methods NASA employs for crew performance of the CEV. During the early development of the CEV, NASA and its prime Orion contractor Lockheed Martin (LM) strived to seek an effective low-cost method for developing and validating human performance DES models. This paper focuses on the method developed while creating a DES model for the CEV Rendezvous, Proximity Operations, and Docking (RPOD) task to the International Space Station. Our approach to validation was to attack the problem from several fronts. First, we began the development of the model early in the CEV design stage. Second, we adhered strictly to M&S development standards. Third, we involved the stakeholders, NASA astronauts, subject matter experts, and NASA's modeling and simulation development community throughout. Fourth, we applied standard and easy-to-conduct methods to ensure the model's accuracy. Lastly, we reviewed the data from an earlier human-in-the-loop RPOD simulation that had different objectives, which provided us an additional means to estimate the model's confidence level. The results revealed that a majority of the DES model was a reasonable representation of the current CEV design.

  18. Implementing Lumberjacks and Black Swans Into Model-Based Tools to Support Human-Automation Interaction.

    PubMed

    Sebok, Angelia; Wickens, Christopher D

    2017-03-01

    The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.

  19. Comparison of Object Recognition Behavior in Human and Monkey

    PubMed Central

    Rajalingham, Rishi; Schmidt, Kailyn

    2015-01-01

    Although the rhesus monkey is used widely as an animal model of human visual processing, it is not known whether invariant visual object recognition behavior is quantitatively comparable across monkeys and humans. To address this question, we systematically compared the core object recognition behavior of two monkeys with that of human subjects. To test true object recognition behavior (rather than image matching), we generated several thousand naturalistic synthetic images of 24 basic-level objects with high variation in viewing parameters and image background. Monkeys were trained to perform binary object recognition tasks on a match-to-sample paradigm. Data from 605 human subjects performing the same tasks on Mechanical Turk were aggregated to characterize “pooled human” object recognition behavior, as well as 33 separate Mechanical Turk subjects to characterize individual human subject behavior. Our results show that monkeys learn each new object in a few days, after which they not only match mean human performance but show a pattern of object confusion that is highly correlated with pooled human confusion patterns and is statistically indistinguishable from individual human subjects. Importantly, this shared human and monkey pattern of 3D object confusion is not shared with low-level visual representations (pixels, V1+; models of the retina and primary visual cortex) but is shared with a state-of-the-art computer vision feature representation. Together, these results are consistent with the hypothesis that rhesus monkeys and humans share a common neural shape representation that directly supports object perception. SIGNIFICANCE STATEMENT To date, several mammalian species have shown promise as animal models for studying the neural mechanisms underlying high-level visual processing in humans. In light of this diversity, making tight comparisons between nonhuman and human primates is particularly critical in determining the best use of nonhuman primates to further the goal of the field of translating knowledge gained from animal models to humans. To the best of our knowledge, this study is the first systematic attempt at comparing a high-level visual behavior of humans and macaque monkeys. PMID:26338324

  20. Modeling and Quantification of Team Performance in Human Reliability Analysis for Probabilistic Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey C. JOe; Ronald L. Boring

    Probabilistic Risk Assessment (PRA) and Human Reliability Assessment (HRA) are important technical contributors to the United States (U.S.) Nuclear Regulatory Commission’s (NRC) risk-informed and performance based approach to regulating U.S. commercial nuclear activities. Furthermore, all currently operating commercial NPPs in the U.S. are required by federal regulation to be staffed with crews of operators. Yet, aspects of team performance are underspecified in most HRA methods that are widely used in the nuclear industry. There are a variety of "emergent" team cognition and teamwork errors (e.g., communication errors) that are 1) distinct from individual human errors, and 2) important to understandmore » from a PRA perspective. The lack of robust models or quantification of team performance is an issue that affects the accuracy and validity of HRA methods and models, leading to significant uncertainty in estimating HEPs. This paper describes research that has the objective to model and quantify team dynamics and teamwork within NPP control room crews for risk informed applications, thereby improving the technical basis of HRA, which improves the risk-informed approach the NRC uses to regulate the U.S. commercial nuclear industry.« less

  1. Assessment of mechanical properties of human head tissues for trauma modelling.

    PubMed

    Lozano-Mínguez, Estívaliz; Palomar, Marta; Infante-García, Diego; Rupérez, María José; Giner, Eugenio

    2018-05-01

    Many discrepancies are found in the literature regarding the damage and constitutive models for head tissues as well as the values of the constants involved in the constitutive equations. Their proper definition is required for consistent numerical model performance when predicting human head behaviour, and hence skull fracture and brain damage. The objective of this research is to perform a critical review of constitutive models and damage indicators describing human head tissue response under impact loading. A 3D finite element human head model has been generated by using computed tomography images, which has been validated through the comparison to experimental data in the literature. The threshold values of the skull and the scalp that lead to fracture have been analysed. We conclude that (1) compact bone properties are critical in skull fracture, (2) the elastic constants of the cerebrospinal fluid affect the intracranial pressure distribution, and (3) the consideration of brain tissue as a nearly incompressible solid with a high (but not complete) water content offers pressure responses consistent with the experimental data. Copyright © 2018 John Wiley & Sons, Ltd.

  2. SEIPS 2.0: A human factors framework for studying and improving the work of healthcare professionals and patients

    PubMed Central

    Holden, Richard J.; Carayon, Pascale; Gurses, Ayse P.; Hoonakker, Peter; Hundt, Ann Schoofs; Ozok, A. Ant; Rivera-Rodriguez, A. Joy

    2013-01-01

    Healthcare practitioners, patient safety leaders, educators, and researchers increasingly recognize the value of human factors/ergonomics and make use of the discipline’s person-centered models of sociotechnical systems. This paper first reviews one of the most widely used healthcare human factors systems models, the Systems Engineering Initiative for Patient Safety (SEIPS) model, and then introduces an extended model, “SEIPS 2.0.” SEIPS 2.0 incorporates three novel concepts into the original model: configuration, engagement, and adaptation. The concept of configuration highlights the dynamic, hierarchical, and interactive properties of sociotechnical systems, making it possible to depict how health-related performance is shaped at “a moment in time.” Engagement conveys that various individuals and teams can perform health-related activities separately and collaboratively. Engaged individuals often include patients, family caregivers, and other non-professionals. Adaptation is introduced as a feedback mechanism that explains how dynamic systems evolve in planned and unplanned ways. Key implications and future directions for human factors research in healthcare are discussed. PMID:24088063

  3. Reconstruction of Tissue-Specific Metabolic Networks Using CORDA

    PubMed Central

    Schultz, André; Qutub, Amina A.

    2016-01-01

    Human metabolism involves thousands of reactions and metabolites. To interpret this complexity, computational modeling becomes an essential experimental tool. One of the most popular techniques to study human metabolism as a whole is genome scale modeling. A key challenge to applying genome scale modeling is identifying critical metabolic reactions across diverse human tissues. Here we introduce a novel algorithm called Cost Optimization Reaction Dependency Assessment (CORDA) to build genome scale models in a tissue-specific manner. CORDA performs more efficiently computationally, shows better agreement to experimental data, and displays better model functionality and capacity when compared to previous algorithms. CORDA also returns reaction associations that can greatly assist in any manual curation to be performed following the automated reconstruction process. Using CORDA, we developed a library of 76 healthy and 20 cancer tissue-specific reconstructions. These reconstructions identified which metabolic pathways are shared across diverse human tissues. Moreover, we identified changes in reactions and pathways that are differentially included and present different capacity profiles in cancer compared to healthy tissues, including up-regulation of folate metabolism, the down-regulation of thiamine metabolism, and tight regulation of oxidative phosphorylation. PMID:26942765

  4. Alignment of Human Resource Practices and Teacher Performance Competency

    ERIC Educational Resources Information Center

    Heneman III, Herbert G.; Milanowski, Anthony T.

    2004-01-01

    In this article, we argue that human resource (HR) management practices are important components of strategies for improving student achievement in an accountability environment. We present a framework illustrating the alignment of educational HR management practices to a teacher performance competency model, which in turn is aligned with student…

  5. A holistic approach to movement education in sport and fitness: a systems based model.

    PubMed

    Polsgrove, Myles Jay

    2012-01-01

    The typical model used by movement professionals to enhance performance relies on the notion that a linear increase in load results in steady and progressive gains, whereby, the greater the effort, the greater the gains in performance. Traditional approaches to movement progression typically rely on the proper sequencing of extrinsically based activities to facilitate the individual in reaching performance objectives. However, physical rehabilitation or physical performance rarely progresses in such a linear fashion; instead they tend to evolve non-linearly and rather unpredictably. A dynamic system can be described as an entity that self-organizes into increasingly complex forms. Applying this view to the human body, practitioners could facilitate non-linear performance gains through a systems based programming approach. Utilizing a dynamic systems view, the Holistic Approach to Movement Education (HADME) is a model designed to optimize performance by accounting for non-linear and self-organizing traits associated with human movement. In this model, gains in performance occur through advancing individual perspectives and through optimizing sub-system performance. This inward shift of the focus of performance creates a sharper self-awareness and may lead to more optimal movements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Can a Humanoid Face be Expressive? A Psychophysiological Investigation

    PubMed Central

    Lazzeri, Nicole; Mazzei, Daniele; Greco, Alberto; Rotesi, Annalisa; Lanatà, Antonio; De Rossi, Danilo Emilio

    2015-01-01

    Non-verbal signals expressed through body language play a crucial role in multi-modal human communication during social relations. Indeed, in all cultures, facial expressions are the most universal and direct signs to express innate emotional cues. A human face conveys important information in social interactions and helps us to better understand our social partners and establish empathic links. Latest researches show that humanoid and social robots are becoming increasingly similar to humans, both esthetically and expressively. However, their visual expressiveness is a crucial issue that must be improved to make these robots more realistic and intuitively perceivable by humans as not different from them. This study concerns the capability of a humanoid robot to exhibit emotions through facial expressions. More specifically, emotional signs performed by a humanoid robot have been compared with corresponding human facial expressions in terms of recognition rate and response time. The set of stimuli included standardized human expressions taken from an Ekman-based database and the same facial expressions performed by the robot. Furthermore, participants’ psychophysiological responses have been explored to investigate whether there could be differences induced by interpreting robot or human emotional stimuli. Preliminary results show a trend to better recognize expressions performed by the robot than 2D photos or 3D models. Moreover, no significant differences in the subjects’ psychophysiological state have been found during the discrimination of facial expressions performed by the robot in comparison with the same task performed with 2D photos and 3D models. PMID:26075199

  7. NASA Human Health and Performance Center: Open Innovation Successes and Collaborative Projects

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2014-01-01

    In May 2007, what was then the Space Life Sciences Directorate published the 2007 Space Life Sciences Strategy for Human Space Exploration, which resulted in the development and implementation of new business models and significant advances in external collaboration over the next five years. The strategy was updated on the basis of these accomplishments and reissued as the NASA Human Health and Performance Strategy in 2012, and continues to drive new approaches to innovation for the directorate. This short paper describes the open innovation successes and collaborative projects developed over this timeframe, including the efforts of the NASA Human Health and Performance Center (NHHPC), which was established to advance human health and performance innovations for spaceflight and societal benefit via collaboration in new markets.

  8. KSC-08pd1901

    NASA Image and Video Library

    2008-07-02

    CAPE CANAVERAL, Fla. – Professor Peter Voci, NYIT MOCAP (Motion Capture) team director, (left) hands a component of the Orion Crew Module mockup to one of three technicians inside the mockup. The technicians wear motion capture suits. The motion tracking aims to improve efficiency of assembly processes and identify potential ergonomic risks for technicians assembling the mockup. The work is being performed in United Space Alliance's Human Engineering Modeling and Performance Lab in the RLV Hangar at NASA's Kennedy Space Center. The motion tracking aims to improve efficiency of assembly processes and identify potential ergonomic risks for technicians assembling the mockup. The work is being performed in United Space Alliance's Human Engineering Modeling and Performance Lab in the RLV Hangar at NASA's Kennedy Space Center. Part of NASA's Constellation Program, the Orion spacecraft will return humans to the moon and prepare for future voyages to Mars and other destinations in our solar system.

  9. A Qualitative Model of Human Interaction with Complex Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1987-01-01

    A qualitative model describing human interaction with complex dynamic systems is developed. The model is hierarchical in nature and consists of three parts: a behavior generator, an internal model, and a sensory information processor. The behavior generator is responsible for action decomposition, turning higher level goals or missions into physical action at the human-machine interface. The internal model is an internal representation of the environment which the human is assumed to possess and is divided into four submodel categories. The sensory information processor is responsible for sensory composition. All three parts of the model act in consort to allow anticipatory behavior on the part of the human in goal-directed interaction with dynamic systems. Human workload and error are interpreted in this framework, and the familiar example of an automobile commute is used to illustrate the nature of the activity in the three model elements. Finally, with the qualitative model as a guide, verbal protocols from a manned simulation study of a helicopter instrument landing task are analyzed with particular emphasis on the effect of automation on human-machine performance.

  10. A qualitative model of human interaction with complex dynamic systems

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1987-01-01

    A qualitative model describing human interaction with complex dynamic systems is developed. The model is hierarchical in nature and consists of three parts: a behavior generator, an internal model, and a sensory information processor. The behavior generator is responsible for action decomposition, turning higher level goals or missions into physical action at the human-machine interface. The internal model is an internal representation of the environment which the human is assumed to possess and is divided into four submodel categories. The sensory information processor is responsible for sensory composition. All three parts of the model act in consort to allow anticipatory behavior on the part of the human in goal-directed interaction with dynamic systems. Human workload and error are interpreted in this framework, and the familiar example of an automobile commute is used to illustrate the nature of the activity in the three model elements. Finally, with the qualitative model as a guide, verbal protocols from a manned simulation study of a helicopter instrument landing task are analyzed with particular emphasis on the effect of automation on human-machine performance.

  11. Using subject-specific three-dimensional (3D) anthropometry data in digital human modelling: case study in hand motion simulation.

    PubMed

    Tsao, Liuxing; Ma, Liang

    2016-11-01

    Digital human modelling enables ergonomists and designers to consider ergonomic concerns and design alternatives in a timely and cost-efficient manner in the early stages of design. However, the reliability of the simulation could be limited due to the percentile-based approach used in constructing the digital human model. To enhance the accuracy of the size and shape of the models, we proposed a framework to generate digital human models using three-dimensional (3D) anthropometric data. The 3D scan data from specific subjects' hands were segmented based on the estimated centres of rotation. The segments were then driven in forward kinematics to perform several functional postures. The constructed hand models were then verified, thereby validating the feasibility of the framework. The proposed framework helps generate accurate subject-specific digital human models, which can be utilised to guide product design and workspace arrangement. Practitioner Summary: Subject-specific digital human models can be constructed under the proposed framework based on three-dimensional (3D) anthropometry. This approach enables more reliable digital human simulation to guide product design and workspace arrangement.

  12. Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering

    NASA Technical Reports Server (NTRS)

    Bolton, Matthew L.; Bass, Ellen J.

    2009-01-01

    Both the human factors engineering (HFE) and formal methods communities are concerned with finding and eliminating problems with safety-critical systems. This work discusses a modeling effort that leveraged methods from both fields to use model checking with HFE practices to perform formal verification of a human-interactive system. Despite the use of a seemingly simple target system, a patient controlled analgesia pump, the initial model proved to be difficult for the model checker to verify in a reasonable amount of time. This resulted in a number of model revisions that affected the HFE architectural, representativeness, and understandability goals of the effort. If formal methods are to meet the needs of the HFE community, additional modeling tools and technological developments are necessary.

  13. Human Thermal Model Evaluation Using the JSC Human Thermal Database

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Makinen, Janice; Cognata, Thomas

    2012-01-01

    Human thermal modeling has considerable long term utility to human space flight. Such models provide a tool to predict crew survivability in support of vehicle design and to evaluate crew response in untested space environments. It is to the benefit of any such model not only to collect relevant experimental data to correlate it against, but also to maintain an experimental standard or benchmark for future development in a readily and rapidly searchable and software accessible format. The Human thermal database project is intended to do just so; to collect relevant data from literature and experimentation and to store the data in a database structure for immediate and future use as a benchmark to judge human thermal models against, in identifying model strengths and weakness, to support model development and improve correlation, and to statistically quantify a model s predictive quality. The human thermal database developed at the Johnson Space Center (JSC) is intended to evaluate a set of widely used human thermal models. This set includes the Wissler human thermal model, a model that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. These models are statistically compared to the current database, which contains experiments of human subjects primarily in air from a literature survey ranging between 1953 and 2004 and from a suited experiment recently performed by the authors, for a quantitative study of relative strength and predictive quality of the models.

  14. A Pilot Study of Biomedical Text Comprehension using an Attention-Based Deep Neural Reader: Design and Experimental Analysis.

    PubMed

    Kim, Seongsoon; Park, Donghyeon; Choi, Yonghwa; Lee, Kyubum; Kim, Byounggun; Jeon, Minji; Kim, Jihye; Tan, Aik Choon; Kang, Jaewoo

    2018-01-05

    With the development of artificial intelligence (AI) technology centered on deep-learning, the computer has evolved to a point where it can read a given text and answer a question based on the context of the text. Such a specific task is known as the task of machine comprehension. Existing machine comprehension tasks mostly use datasets of general texts, such as news articles or elementary school-level storybooks. However, no attempt has been made to determine whether an up-to-date deep learning-based machine comprehension model can also process scientific literature containing expert-level knowledge, especially in the biomedical domain. This study aims to investigate whether a machine comprehension model can process biomedical articles as well as general texts. Since there is no dataset for the biomedical literature comprehension task, our work includes generating a large-scale question answering dataset using PubMed and manually evaluating the generated dataset. We present an attention-based deep neural model tailored to the biomedical domain. To further enhance the performance of our model, we used a pretrained word vector and biomedical entity type embedding. We also developed an ensemble method of combining the results of several independent models to reduce the variance of the answers from the models. The experimental results showed that our proposed deep neural network model outperformed the baseline model by more than 7% on the new dataset. We also evaluated human performance on the new dataset. The human evaluation result showed that our deep neural model outperformed humans in comprehension by 22% on average. In this work, we introduced a new task of machine comprehension in the biomedical domain using a deep neural model. Since there was no large-scale dataset for training deep neural models in the biomedical domain, we created the new cloze-style datasets Biomedical Knowledge Comprehension Title (BMKC_T) and Biomedical Knowledge Comprehension Last Sentence (BMKC_LS) (together referred to as BioMedical Knowledge Comprehension) using the PubMed corpus. The experimental results showed that the performance of our model is much higher than that of humans. We observed that our model performed consistently better regardless of the degree of difficulty of a text, whereas humans have difficulty when performing biomedical literature comprehension tasks that require expert level knowledge. ©Seongsoon Kim, Donghyeon Park, Yonghwa Choi, Kyubum Lee, Byounggun Kim, Minji Jeon, Jihye Kim, Aik Choon Tan, Jaewoo Kang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 05.01.2018.

  15. 2015 Summer Series - Lee Stone - Brain Function Through the Eyes of the Beholder

    NASA Image and Video Library

    2015-06-09

    The Visuomotor Control Laboratory (VCL) at NASA Ames conducts neuroscience research on the link between eye movements and brain function to provide an efficient and quantitative means of monitoring human perceptual performance. The VCL aims to make dramatic improvements in mission success through analysis, experimentation, and modeling of human performance and human-automation interaction. Dr. Lee Stone elaborates on how this research is conducted and how it contributes to NASA's mission and advances human-centered design and operations of complex aerospace systems.

  16. The Effect of Part-simulation of Weightlessness on Human Control of Bilateral Teleoperation: Neuromotor Considerations

    NASA Technical Reports Server (NTRS)

    Corker, K.; Bejczy, A. K.

    1984-01-01

    The effect of weightlessness on the human operator's performance in force reflecting position control of remote manipulators was investigated. A gravity compensation system was developed to simulate the effect of weightlessness on the operator's arm. A universal force reflecting hand controller (FRHC) and task simulation software were employed. Two experiments were performed because of anticipated disturbances in neuromotor control specification on the human operator in an orbital control environment to investigate: (1) the effect of controller stiffness on the attainment of a learned terminal position in the three dimensional controller space, and (2) the effect of controller stiffness and damping on force tracking of the contour of a simulated three dimensional cube using the part simulation of weightless conditions. The results support the extension of neuromotor control models, which postulate a stiffness balance encoding of terminal position, to three dimensional motion of a multilink system, confirm the existence of a disturbance in human manual control performance under gravity compensated conditions, and suggest techniques for compensation of weightlessness induced performance decrement through appropriate specification of hand controller response characteristics. These techniques are based on the human control model.

  17. Microscopic prediction of speech recognition for listeners with normal hearing in noise using an auditory model.

    PubMed

    Jürgens, Tim; Brand, Thomas

    2009-11-01

    This study compares the phoneme recognition performance in speech-shaped noise of a microscopic model for speech recognition with the performance of normal-hearing listeners. "Microscopic" is defined in terms of this model twofold. First, the speech recognition rate is predicted on a phoneme-by-phoneme basis. Second, microscopic modeling means that the signal waveforms to be recognized are processed by mimicking elementary parts of human's auditory processing. The model is based on an approach by Holube and Kollmeier [J. Acoust. Soc. Am. 100, 1703-1716 (1996)] and consists of a psychoacoustically and physiologically motivated preprocessing and a simple dynamic-time-warp speech recognizer. The model is evaluated while presenting nonsense speech in a closed-set paradigm. Averaged phoneme recognition rates, specific phoneme recognition rates, and phoneme confusions are analyzed. The influence of different perceptual distance measures and of the model's a-priori knowledge is investigated. The results show that human performance can be predicted by this model using an optimal detector, i.e., identical speech waveforms for both training of the recognizer and testing. The best model performance is yielded by distance measures which focus mainly on small perceptual distances and neglect outliers.

  18. New VHP-Female v. 2.0 full-body computational phantom and its performance metrics using FEM simulator ANSYS HFSS.

    PubMed

    Yanamadala, Janakinadh; Noetscher, Gregory M; Rathi, Vishal K; Maliye, Saili; Win, Htay A; Tran, Anh L; Jackson, Xavier J; Htet, Aung T; Kozlov, Mikhail; Nazarian, Ara; Louie, Sara; Makarov, Sergey N

    2015-01-01

    Simulation of the electromagnetic response of the human body relies heavily upon efficient computational models or phantoms. The first objective of this paper is to present a new platform-independent full-body electromagnetic computational model (computational phantom), the Visible Human Project(®) (VHP)-Female v. 2.0 and to describe its distinct features. The second objective is to report phantom simulation performance metrics using the commercial FEM electromagnetic solver ANSYS HFSS.

  19. Open Innovation at NASA: A New Business Model for Advancing Human Health and Performance Innovations

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.; Keeton, Kathryn E.

    2014-01-01

    This paper describes a new business model for advancing NASA human health and performance innovations and demonstrates how open innovation shaped its development. A 45 percent research and technology development budget reduction drove formulation of a strategic plan grounded in collaboration. We describe the strategy execution, including adoption and results of open innovation initiatives, the challenges of cultural change, and the development of virtual centers and a knowledge management tool to educate and engage the workforce and promote cultural change.

  20. Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation

    PubMed Central

    Khaligh-Razavi, Seyed-Mahdi; Kriegeskorte, Nikolaus

    2014-01-01

    Inferior temporal (IT) cortex in human and nonhuman primates serves visual object recognition. Computational object-vision models, although continually improving, do not yet reach human performance. It is unclear to what extent the internal representations of computational models can explain the IT representation. Here we investigate a wide range of computational model representations (37 in total), testing their categorization performance and their ability to account for the IT representational geometry. The models include well-known neuroscientific object-recognition models (e.g. HMAX, VisNet) along with several models from computer vision (e.g. SIFT, GIST, self-similarity features, and a deep convolutional neural network). We compared the representational dissimilarity matrices (RDMs) of the model representations with the RDMs obtained from human IT (measured with fMRI) and monkey IT (measured with cell recording) for the same set of stimuli (not used in training the models). Better performing models were more similar to IT in that they showed greater clustering of representational patterns by category. In addition, better performing models also more strongly resembled IT in terms of their within-category representational dissimilarities. Representational geometries were significantly correlated between IT and many of the models. However, the categorical clustering observed in IT was largely unexplained by the unsupervised models. The deep convolutional network, which was trained by supervision with over a million category-labeled images, reached the highest categorization performance and also best explained IT, although it did not fully explain the IT data. Combining the features of this model with appropriate weights and adding linear combinations that maximize the margin between animate and inanimate objects and between faces and other objects yielded a representation that fully explained our IT data. Overall, our results suggest that explaining IT requires computational features trained through supervised learning to emphasize the behaviorally important categorical divisions prominently reflected in IT. PMID:25375136

  1. Multistep Lattice-Voxel method utilizing lattice function for Monte-Carlo treatment planning with pixel based voxel model.

    PubMed

    Kumada, H; Saito, K; Nakamura, T; Sakae, T; Sakurai, H; Matsumura, A; Ono, K

    2011-12-01

    Treatment planning for boron neutron capture therapy generally utilizes Monte-Carlo methods for calculation of the dose distribution. The new treatment planning system JCDS-FX employs the multi-purpose Monte-Carlo code PHITS to calculate the dose distribution. JCDS-FX allows to build a precise voxel model consisting of pixel based voxel cells in the scale of 0.4×0.4×2.0 mm(3) voxel in order to perform high-accuracy dose estimation, e.g. for the purpose of calculating the dose distribution in a human body. However, the miniaturization of the voxel size increases calculation time considerably. The aim of this study is to investigate sophisticated modeling methods which can perform Monte-Carlo calculations for human geometry efficiently. Thus, we devised a new voxel modeling method "Multistep Lattice-Voxel method," which can configure a voxel model that combines different voxel sizes by utilizing the lattice function over and over. To verify the performance of the calculation with the modeling method, several calculations for human geometry were carried out. The results demonstrated that the Multistep Lattice-Voxel method enabled the precise voxel model to reduce calculation time substantially while keeping the high-accuracy of dose estimation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Predicting Team Performance through Human Behavioral Sensing and Quantitative Workflow Instrumentation

    DTIC Science & Technology

    2016-07-27

    make risk-informed decisions during serious games . Statistical models of intra- game performance were developed to determine whether behaviors in...specific facets of the gameplay workflow were predictive of analytical performance and games outcomes. A study of over seventy instrumented teams revealed...more accurate game decisions. 2 Keywords: Humatics · Serious Games · Human-System Interaction · Instrumentation · Teamwork · Communication Analysis

  3. Modeling of 1.5 μm range gated imaging for small surface vessel identification

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Steinvall, Ove; Elmquist, Magnus; Karlsson, Kjell

    2010-10-01

    Within the framework of the NATO group (NATO SET-132/RTG-72) on imaging ladars, a test was performed to collect simultaneous multi-mode LADAR signatures of maritime objects entering and leaving San Diego Harbor. Beside ladars, passive sensors were also employed during the test which occurred during April 2009 from Point Loma and the harbor in San Diego. This paper will report on 1.5 μm gated imaging on a number of small civilian surface vessels with the aim to present human perception experimental results and comparisons with sensor performance models developed by US Army RDECOM CERDEC NVESD. We use controlled human perception tests to measure target identification performance and compare the experimental results with model predictions.

  4. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald L Boring; David I Gertman; Tuan Q Tran

    2008-09-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and riskmore » associated with human performance in next generation control rooms.« less

  5. Competency-Based Human Resource Development Strategy

    ERIC Educational Resources Information Center

    Gangani, Noordeen T.; McLean, Gary N.; Braden, Richard A.

    2004-01-01

    This paper explores issues in developing and implementing a competency-based human resource development strategy. The paper summarizes a literature review on how competency models can improve HR performance. A case study is presented of American Medical Systems (AMS), a mid-sized health-care and medical device company, where the model is being…

  6. NASA's Use of Human Behavior Models for Concept Development and Evaluation

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2012-01-01

    Overview of NASA's use of computational approaches and methods to support research goals, of human performance models, with a focus on examples of the methods used in Code TH and TI at NASA Ames, followed by an in depth review of MIDAS' current FAA work.

  7. Performance characteristics of a visual-search human-model observer with sparse PET image data

    NASA Astrophysics Data System (ADS)

    Gifford, Howard C.

    2012-02-01

    As predictors of human performance in detection-localization tasks, statistical model observers can have problems with tasks that are primarily limited by target contrast or structural noise. Model observers with a visual-search (VS) framework may provide a more reliable alternative. This framework provides for an initial holistic search that identifies suspicious locations for analysis by a statistical observer. A basic VS observer for emission tomography focuses on hot "blobs" in an image and uses a channelized nonprewhitening (CNPW) observer for analysis. In [1], we investigated this model for a contrast-limited task with SPECT images; herein, a statisticalnoise limited task involving PET images is considered. An LROC study used 2D image slices with liver, lung and soft-tissue tumors. Human and model observers read the images in coronal, sagittal and transverse display formats. The study thus measured the detectability of tumors in a given organ as a function of display format. The model observers were applied under several task variants that tested their response to structural noise both at the organ boundaries alone and over the organs as a whole. As measured by correlation with the human data, the VS observer outperformed the CNPW scanning observer.

  8. SU-E-I-46: Sample-Size Dependence of Model Observers for Estimating Low-Contrast Detection Performance From CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiser, I; Lu, Z

    2014-06-01

    Purpose: Recently, task-based assessment of diagnostic CT systems has attracted much attention. Detection task performance can be estimated using human observers, or mathematical observer models. While most models are well established, considerable bias can be introduced when performance is estimated from a limited number of image samples. Thus, the purpose of this work was to assess the effect of sample size on bias and uncertainty of two channelized Hotelling observers and a template-matching observer. Methods: The image data used for this study consisted of 100 signal-present and 100 signal-absent regions-of-interest, which were extracted from CT slices. The experimental conditions includedmore » two signal sizes and five different x-ray beam current settings (mAs). Human observer performance for these images was determined in 2-alternative forced choice experiments. These data were provided by the Mayo clinic in Rochester, MN. Detection performance was estimated from three observer models, including channelized Hotelling observers (CHO) with Gabor or Laguerre-Gauss (LG) channels, and a template-matching observer (TM). Different sample sizes were generated by randomly selecting a subset of image pairs, (N=20,40,60,80). Observer performance was quantified as proportion of correct responses (PC). Bias was quantified as the relative difference of PC for 20 and 80 image pairs. Results: For n=100, all observer models predicted human performance across mAs and signal sizes. Bias was 23% for CHO (Gabor), 7% for CHO (LG), and 3% for TM. The relative standard deviation, σ(PC)/PC at N=20 was highest for the TM observer (11%) and lowest for the CHO (Gabor) observer (5%). Conclusion: In order to make image quality assessment feasible in the clinical practice, a statistically efficient observer model, that can predict performance from few samples, is needed. Our results identified two observer models that may be suited for this task.« less

  9. Foveated model observers to predict human performance in 3D images

    NASA Astrophysics Data System (ADS)

    Lago, Miguel A.; Abbey, Craig K.; Eckstein, Miguel P.

    2017-03-01

    We evaluate 3D search requires model observers that take into account the peripheral human visual processing (foveated models) to predict human observer performance. We show that two different 3D tasks, free search and location-known detection, influence the relative human visual detectability of two signals of different sizes in synthetic backgrounds mimicking the noise found in 3D digital breast tomosynthesis. One of the signals resembled a microcalcification (a small and bright sphere), while the other one was designed to look like a mass (a larger Gaussian blob). We evaluated current standard models observers (Hotelling; Channelized Hotelling; non-prewhitening matched filter with eye filter, NPWE; and non-prewhitening matched filter model, NPW) and showed that they incorrectly predict the relative detectability of the two signals in 3D search. We propose a new model observer (3D Foveated Channelized Hotelling Observer) that incorporates the properties of the visual system over a large visual field (fovea and periphery). We show that the foveated model observer can accurately predict the rank order of detectability of the signals in 3D images for each task. Together, these results motivate the use of a new generation of foveated model observers for predicting image quality for search tasks in 3D imaging modalities such as digital breast tomosynthesis or computed tomography.

  10. Challenges in leveraging existing human performance data for quantifying the IDHEAS HRA method

    DOE PAGES

    Liao, Huafei N.; Groth, Katrina; Stevens-Adams, Susan

    2015-07-29

    Our article documents an exploratory study for collecting and using human performance data to inform human error probability (HEP) estimates for a new human reliability analysis (HRA) method, the IntegrateD Human Event Analysis System (IDHEAS). The method was based on cognitive models and mechanisms underlying human behaviour and employs a framework of 14 crew failure modes (CFMs) to represent human failures typical for human performance in nuclear power plant (NPP) internal, at-power events [1]. A decision tree (DT) was constructed for each CFM to assess the probability of the CFM occurring in different contexts. Data needs for IDHEAS quantification aremore » discussed. Then, the data collection framework and process is described and how the collected data were used to inform HEP estimation is illustrated with two examples. Next, five major technical challenges are identified for leveraging human performance data for IDHEAS quantification. Furthermore, these challenges reflect the data needs specific to IDHEAS. More importantly, they also represent the general issues with current human performance data and can provide insight for a path forward to support HRA data collection, use, and exchange for HRA method development, implementation, and validation.« less

  11. Investigation of the transmission of fore and aft vibration through the human body.

    PubMed

    Demić, Miroslav; Lukić, Jovanka

    2009-07-01

    Understanding the behavior of human body under the influence of vibration is of great importance for the optimal motor vehicle system design. Therefore, great efforts are being done in order to discover as many information about the influence of vibration on human body as possible. So far the references show that the major scientific attention has been paid to vertical vibration, although intensive research has been performed lately on the other sorts of excitation. In this paper, the results of the investigation of behavior of human body, in seated position, under the influence of random fore and aft vibration are shown. The investigation is performed by the use of an electro-hydraulic simulator, on a group of 30 healthy male occupants. Experiments are performed in order to give results to improve human body modeling in driving conditions. Excitation amplitudes (1.75 and 2.25 m/s(2) rms) and seat backrest conditions (with and without inclination) were varied. Data results are analyzed by partial coherence and transfer functions. Analyses have been performed and results are given in detail. The results obtained have shown that the human body under the influence of random excitations behaves as a non-linear system and its response depends on spatial position. Obtained results give necessary data to define structure and parameters of human biodynamic model with respect to different excitation and seat backrest position.

  12. Modelling the influence of sensory dynamics on linear and nonlinear driver steering control

    NASA Astrophysics Data System (ADS)

    Nash, C. J.; Cole, D. J.

    2018-05-01

    A recent review of the literature has indicated that sensory dynamics play an important role in the driver-vehicle steering task, motivating the design of a new driver model incorporating human sensory systems. This paper presents a full derivation of the linear driver model developed in previous work, and extends the model to control a vehicle with nonlinear tyres. Various nonlinear controllers and state estimators are compared with different approximations of the true system dynamics. The model simulation time is found to increase significantly with the complexity of the controller and state estimator. In general the more complex controllers perform best, although with certain vehicle and tyre models linearised controllers perform as well as a full nonlinear optimisation. Various extended Kalman filters give similar results, although the driver's sensory dynamics reduce control performance compared with full state feedback. The new model could be used to design vehicle systems which interact more naturally and safely with a human driver.

  13. Cortex Inspired Model for Inverse Kinematics Computation for a Humanoid Robotic Finger

    PubMed Central

    Gentili, Rodolphe J.; Oh, Hyuk; Molina, Javier; Reggia, James A.; Contreras-Vidal, José L.

    2013-01-01

    In order to approach human hand performance levels, artificial anthropomorphic hands/fingers have increasingly incorporated human biomechanical features. However, the performance of finger reaching movements to visual targets involving the complex kinematics of multi-jointed, anthropomorphic actuators is a difficult problem. This is because the relationship between sensory and motor coordinates is highly nonlinear, and also often includes mechanical coupling of the two last joints. Recently, we developed a cortical model that learns the inverse kinematics of a simulated anthropomorphic finger. Here, we expand this previous work by assessing if this cortical model is able to learn the inverse kinematics for an actual anthropomorphic humanoid finger having its two last joints coupled and controlled by pneumatic muscles. The findings revealed that single 3D reaching movements, as well as more complex patterns of motion of the humanoid finger, were accurately and robustly performed by this cortical model while producing kinematics comparable to those of humans. This work contributes to the development of a bioinspired controller providing adaptive, robust and flexible control of dexterous robotic and prosthetic hands. PMID:23366569

  14. EMU Suit Performance Simulation

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Benson, Elizabeth; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    Introduction: Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for research and development are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques that focus on a human-centric design paradigm. These new techniques make use of virtual prototype simulations and fully adjustable physical prototypes of suit hardware. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process. Objectives: The primary objective was to test modern simulation techniques for evaluating the human performance component of two EMU suit concepts, pivoted and planar style hard upper torso (HUT). Methods: This project simulated variations in EVA suit shoulder joint design and subject anthropometry and then measured the differences in shoulder mobility caused by the modifications. These estimations were compared to human-in-the-loop test data gathered during past suited testing using four subjects (two large males, two small females). Results: Results demonstrated that EVA suit modeling and simulation are feasible design tools for evaluating and optimizing suit design based on simulated performance. The suit simulation model was found to be advantageous in its ability to visually represent complex motions and volumetric reach zones in three dimensions, giving designers a faster and deeper comprehension of suit component performance vs. human performance. Suit models were able to discern differing movement capabilities between EMU HUT configurations, generic suit fit concerns, and specific suit fit concerns for crewmembers based on individual anthropometry

  15. Tactile orientation perception: an ideal observer analysis of human psychophysical performance in relation to macaque area 3b receptive fields

    PubMed Central

    Peters, Ryan M.; Staibano, Phillip

    2015-01-01

    The ability to resolve the orientation of edges is crucial to daily tactile and sensorimotor function, yet the means by which edge perception occurs is not well understood. Primate cortical area 3b neurons have diverse receptive field (RF) spatial structures that may participate in edge orientation perception. We evaluated five candidate RF models for macaque area 3b neurons, previously recorded while an oriented bar contacted the monkey's fingertip. We used a Bayesian classifier to assign each neuron a best-fit RF structure. We generated predictions for human performance by implementing an ideal observer that optimally decoded stimulus-evoked spike counts in the model neurons. The ideal observer predicted a saturating reduction in bar orientation discrimination threshold with increasing bar length. We tested 24 humans on an automated, precision-controlled bar orientation discrimination task and observed performance consistent with that predicted. We next queried the ideal observer to discover the RF structure and number of cortical neurons that best matched each participant's performance. Human perception was matched with a median of 24 model neurons firing throughout a 1-s period. The 10 lowest-performing participants were fit with RFs lacking inhibitory sidebands, whereas 12 of the 14 higher-performing participants were fit with RFs containing inhibitory sidebands. Participants whose discrimination improved as bar length increased to 10 mm were fit with longer RFs; those who performed well on the 2-mm bar, with narrower RFs. These results suggest plausible RF features and computational strategies underlying tactile spatial perception and may have implications for perceptual learning. PMID:26354318

  16. The Human Factor in System Reliability Is Human Performance Predictable? (les Facteurs humains et la fiabilite des systemes - Les performances humaines, sont-elles previsibles?)

    DTIC Science & Technology

    2001-01-01

    by Peter Wright, University of York, UK and Colin Drury , University of Buffalo. Session 3 was chaired by Reiner Onken, University of Bundeswehr, GE...proper inspection intervals; too few inspections may give rise to accidents whilst too many can increase costs . Drury has reviewed human factors studies on...thus search, whilst the cost of a miss or false rejection affects the decision stage. To furnish this model of aircraft inspection, Drury performed a

  17. Human-robot interaction modeling and simulation of supervisory control and situational awareness during field experimentation with military manned and unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Johnson, Tony; Metcalfe, Jason; Brewster, Benjamin; Manteuffel, Christopher; Jaswa, Matthew; Tierney, Terrance

    2010-04-01

    The proliferation of intelligent systems in today's military demands increased focus on the optimization of human-robot interactions. Traditional studies in this domain involve large-scale field tests that require humans to operate semiautomated systems under varying conditions within military-relevant scenarios. However, provided that adequate constraints are employed, modeling and simulation can be a cost-effective alternative and supplement. The current presentation discusses a simulation effort that was executed in parallel with a field test with Soldiers operating military vehicles in an environment that represented key elements of the true operational context. In this study, "constructive" human operators were designed to represent average Soldiers executing supervisory control over an intelligent ground system. The constructive Soldiers were simulated performing the same tasks as those performed by real Soldiers during a directly analogous field test. Exercising the models in a high-fidelity virtual environment provided predictive results that represented actual performance in certain aspects, such as situational awareness, but diverged in others. These findings largely reflected the quality of modeling assumptions used to design behaviors and the quality of information available on which to articulate principles of operation. Ultimately, predictive analyses partially supported expectations, with deficiencies explicable via Soldier surveys, experimenter observations, and previously-identified knowledge gaps.

  18. Culture Representation in Human Reliability Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Gertman; Julie Marble; Steven Novack

    Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991)more » cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.« less

  19. Solving the optimal attention allocation problem in manual control

    NASA Technical Reports Server (NTRS)

    Kleinman, D. L.

    1976-01-01

    Within the context of the optimal control model of human response, analytic expressions for the gradients of closed-loop performance metrics with respect to human operator attention allocation are derived. These derivatives serve as the basis for a gradient algorithm that determines the optimal attention that a human should allocate among several display indicators in a steady-state manual control task. Application of the human modeling techniques are made to study the hover control task for a CH-46 VTOL flight tested by NASA.

  20. Probabilistic image modeling with an extended chain graph for human activity recognition and image segmentation.

    PubMed

    Zhang, Lei; Zeng, Zhi; Ji, Qiang

    2011-09-01

    Chain graph (CG) is a hybrid probabilistic graphical model (PGM) capable of modeling heterogeneous relationships among random variables. So far, however, its application in image and video analysis is very limited due to lack of principled learning and inference methods for a CG of general topology. To overcome this limitation, we introduce methods to extend the conventional chain-like CG model to CG model with more general topology and the associated methods for learning and inference in such a general CG model. Specifically, we propose techniques to systematically construct a generally structured CG, to parameterize this model, to derive its joint probability distribution, to perform joint parameter learning, and to perform probabilistic inference in this model. To demonstrate the utility of such an extended CG, we apply it to two challenging image and video analysis problems: human activity recognition and image segmentation. The experimental results show improved performance of the extended CG model over the conventional directed or undirected PGMs. This study demonstrates the promise of the extended CG for effective modeling and inference of complex real-world problems.

  1. OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange.

    PubMed

    Seth, Ajay; Sherman, Michael; Reinbolt, Jeffrey A; Delp, Scott L

    Movement science is driven by observation, but observation alone cannot elucidate principles of human and animal movement. Biomechanical modeling and computer simulation complement observations and inform experimental design. Biological models are complex and specialized software is required for building, validating, and studying them. Furthermore, common access is needed so that investigators can contribute models to a broader community and leverage past work. We are developing OpenSim, a freely available musculoskeletal modeling and simulation application and libraries specialized for these purposes, by providing: musculoskeletal modeling elements, such as biomechanical joints, muscle actuators, ligament forces, compliant contact, and controllers; and tools for fitting generic models to subject-specific data, performing inverse kinematics and forward dynamic simulations. OpenSim performs an array of physics-based analyses to delve into the behavior of musculoskeletal models by employing Simbody, an efficient and accurate multibody system dynamics code. Models are publicly available and are often reused for multiple investigations because they provide a rich set of behaviors that enables different lines of inquiry. This report will discuss one model developed to study walking and applied to gain deeper insights into muscle function in pathological gait and during running. We then illustrate how simulations can test fundamental hypotheses and focus the aims of in vivo experiments, with a postural stability platform and human model that provide a research environment for performing human posture experiments in silico . We encourage wide adoption of OpenSim for community exchange of biomechanical models and methods and welcome new contributors.

  2. Cognition and procedure representational requirements for predictive human performance models

    NASA Technical Reports Server (NTRS)

    Corker, K.

    1992-01-01

    Models and modeling environments for human performance are becoming significant contributors to early system design and analysis procedures. Issues of levels of automation, physical environment, informational environment, and manning requirements are being addressed by such man/machine analysis systems. The research reported here investigates the close interaction between models of human cognition and models that described procedural performance. We describe a methodology for the decomposition of aircrew procedures that supports interaction with models of cognition on the basis of procedures observed; that serves to identify cockpit/avionics information sources and crew information requirements; and that provides the structure to support methods for function allocation among crew and aiding systems. Our approach is to develop an object-oriented, modular, executable software representation of the aircrew, the aircraft, and the procedures necessary to satisfy flight-phase goals. We then encode in a time-based language, taxonomies of the conceptual, relational, and procedural constraints among the cockpit avionics and control system and the aircrew. We have designed and implemented a goals/procedures hierarchic representation sufficient to describe procedural flow in the cockpit. We then execute the procedural representation in simulation software and calculate the values of the flight instruments, aircraft state variables and crew resources using the constraints available from the relationship taxonomies. The system provides a flexible, extensible, manipulative and executable representation of aircrew and procedures that is generally applicable to crew/procedure task-analysis. The representation supports developed methods of intent inference, and is extensible to include issues of information requirements and functional allocation. We are attempting to link the procedural representation to models of cognitive functions to establish several intent inference methods including procedural backtracking with concurrent search, temporal reasoning, and constraint checking for partial ordering of procedures. Finally, the representation is being linked to models of human decision making processes that include heuristic, propositional and prescriptive judgement models that are sensitive to the procedural content in which the valuative functions are being performed.

  3. A Selected Review of the Underpinnings of Ethics for Human Performance Technology Professionals--Part One: Key Ethical Theories and Research.

    ERIC Educational Resources Information Center

    Dean, Peter J.

    1993-01-01

    Provides a review of the key ethical theories and relevant empirical research relating to the practice of human performance technology. Topics addressed include ethics, morals, business ethics, ethics officers, empiricism versus normative ethical theory, consequentialism, utilitarianism, nonconsequentialism, Kohlberg model of cognitive moral…

  4. Driving Performance Improvements by Integrating Competencies with Human Resource Practices

    ERIC Educational Resources Information Center

    Lee, Jin Gu; Park, Yongho; Yang, Gi Hun

    2010-01-01

    This study explores the issues in the development and application of a competency model and provides implications for more precise integration of competencies into human resource (HR) functions driving performance improvement. This research is based on a case study from a Korean consumer corporation. This study employed document reviews,…

  5. Analyzing thresholds and efficiency with hierarchical Bayesian logistic regression.

    PubMed

    Houpt, Joseph W; Bittner, Jennifer L

    2018-07-01

    Ideal observer analysis is a fundamental tool used widely in vision science for analyzing the efficiency with which a cognitive or perceptual system uses available information. The performance of an ideal observer provides a formal measure of the amount of information in a given experiment. The ratio of human to ideal performance is then used to compute efficiency, a construct that can be directly compared across experimental conditions while controlling for the differences due to the stimuli and/or task specific demands. In previous research using ideal observer analysis, the effects of varying experimental conditions on efficiency have been tested using ANOVAs and pairwise comparisons. In this work, we present a model that combines Bayesian estimates of psychometric functions with hierarchical logistic regression for inference about both unadjusted human performance metrics and efficiencies. Our approach improves upon the existing methods by constraining the statistical analysis using a standard model connecting stimulus intensity to human observer accuracy and by accounting for variability in the estimates of human and ideal observer performance scores. This allows for both individual and group level inferences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Development of induced glioblastoma by implantation of a human xenograft in Yucatan minipig as a large animal model.

    PubMed

    Khoshnevis, Mehrdad; Carozzo, Claude; Bonnefont-Rebeix, Catherine; Belluco, Sara; Leveneur, Olivia; Chuzel, Thomas; Pillet-Michelland, Elodie; Dreyfus, Matthieu; Roger, Thierry; Berger, François; Ponce, Frédérique

    2017-04-15

    Glioblastoma is the most common and deadliest primary brain tumor for humans. Despite many efforts toward the improvement of therapeutic methods, prognosis is poor and the disease remains incurable with a median survival of 12-14.5 months after an optimal treatment. To develop novel treatment modalities for this fatal disease, new devices must be tested on an ideal animal model before performing clinical trials in humans. A new model of induced glioblastoma in Yucatan minipigs was developed. Nine immunosuppressed minipigs were implanted with the U87 human glioblastoma cell line in both the left and right hemispheres. Computed tomography (CT) acquisitions were performed once a week to monitor tumor growth. Among the 9 implanted animals, 8 minipigs showed significant macroscopic tumors on CT acquisitions. Histological examination of the brain after euthanasia confirmed the CT imaging findings with the presence of an undifferentiated glioma. Yucatan minipig, given its brain size and anatomy (gyrencephalic structure) which are comparable to humans, provides a reliable brain tumor model for preclinical studies of different therapeutic METHODS: in realistic conditions. Moreover, the short development time, the lower cyclosporine and caring cost and the compatibility with the size of commercialized stereotactic frames make it an affordable and practical animal model, especially in comparison with large breed pigs. This reproducible glioma model could simulate human anatomical conditions in preclinical studies and facilitate the improvement of novel therapeutic devices, designed at the human scale from the outset. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Kennard-Stone combined with least square support vector machine method for noncontact discriminating human blood species

    NASA Astrophysics Data System (ADS)

    Zhang, Linna; Li, Gang; Sun, Meixiu; Li, Hongxiao; Wang, Zhennan; Li, Yingxin; Lin, Ling

    2017-11-01

    Identifying whole bloods to be either human or nonhuman is an important responsibility for import-export ports and inspection and quarantine departments. Analytical methods and DNA testing methods are usually destructive. Previous studies demonstrated that visible diffuse reflectance spectroscopy method can realize noncontact human and nonhuman blood discrimination. An appropriate method for calibration set selection was very important for a robust quantitative model. In this paper, Random Selection (RS) method and Kennard-Stone (KS) method was applied in selecting samples for calibration set. Moreover, proper stoichiometry method can be greatly beneficial for improving the performance of classification model or quantification model. Partial Least Square Discrimination Analysis (PLSDA) method was commonly used in identification of blood species with spectroscopy methods. Least Square Support Vector Machine (LSSVM) was proved to be perfect for discrimination analysis. In this research, PLSDA method and LSSVM method was used for human blood discrimination. Compared with the results of PLSDA method, this method could enhance the performance of identified models. The overall results convinced that LSSVM method was more feasible for identifying human and animal blood species, and sufficiently demonstrated LSSVM method was a reliable and robust method for human blood identification, and can be more effective and accurate.

  8. Functional structure and dynamics of the human nervous system

    NASA Technical Reports Server (NTRS)

    Lawrence, J. A.

    1981-01-01

    The status of an effort to define the directions needed to take in extending pilot models is reported. These models are needed to perform closed-loop (man-in-the-loop) feedback flight control system designs and to develop cockpit display requirements. The approach taken is to develop a hypothetical working model of the human nervous system by reviewing the current literature in neurology and psychology and to develop a computer model of this hypothetical working model.

  9. SAR in human head model due to resonant wireless power transfer system.

    PubMed

    Zhang, Chao; Liu, Guoqiang; Li, Yanhong; Song, Xianjin

    2016-04-29

    Efficient mid-range wireless power transfer between transmitter and the receiver has been achieved based on the magnetic resonant coupling method. The influence of electromagnetic field on the human body due to resonant wireless power transfer system (RWPT) should be taken into account during the design process of the system. To analyze the transfer performance of the RWPT system and the change rules of the specific absorption rate (SAR) in the human head model due to the RWPT system. The circuit-field coupling method for a RWPT system with consideration of the displacement current was presented. The relationship between the spiral coil parameters and transfer performance was studied. The SAR in the human head model was calculated under two different exposure conditions. A system with output power higher than 10 W at 0.2 m distance operating at a frequency of approximately 1 MHz was designed. The FEM simulation results show the peak SAR value is below the safety limit which appeared when the human head model is in front of the transmitter. The simulation results agreed well with the experimental results, which verified the validity of the analysis and design.

  10. An Investigation of the Factors which Affect the Career Selection Process of Air Force Systems Command Company Grade Officers.

    DTIC Science & Technology

    1979-12-01

    faction, occupational preference, or the desirability of good performance . Proposition 2, as formulated by Vroom , predicts the force to act in a...Human Performance , 9: 482-503 (1973). Lewis, Logan M. "Expectancy Theory as a Predictive Model of Career Intent, Job Satisfaction , and Institution... Satisfaction , Effort, Performance , and Retention of Naval Aviation Officers," Organizational Behavior and Human Performance , 8: 1-20 (1972). 102 and Lee Roy

  11. Learning dictionaries of sparse codes of 3D movements of body joints for real-time human activity understanding.

    PubMed

    Qi, Jin; Yang, Zhiyong

    2014-01-01

    Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D) videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications.

  12. Predictive performance models and multiple task performance

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Larish, Inge; Contorer, Aaron

    1989-01-01

    Five models that predict how performance of multiple tasks will interact in complex task scenarios are discussed. The models are shown in terms of the assumptions they make about human operator divided attention. The different assumptions about attention are then empirically validated in a multitask helicopter flight simulation. It is concluded from this simulation that the most important assumption relates to the coding of demand level of different component tasks.

  13. Comparison of computational to human observer detection for evaluation of CT low dose iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Eck, Brendan; Fahmi, Rachid; Brown, Kevin M.; Raihani, Nilgoun; Wilson, David L.

    2014-03-01

    Model observers were created and compared to human observers for the detection of low contrast targets in computed tomography (CT) images reconstructed with an advanced, knowledge-based, iterative image reconstruction method for low x-ray dose imaging. A 5-channel Laguerre-Gauss Hotelling Observer (CHO) was used with internal noise added to the decision variable (DV) and/or channel outputs (CO). Models were defined by parameters: (k1) DV-noise with standard deviation (std) proportional to DV std; (k2) DV-noise with constant std; (k3) CO-noise with constant std across channels; and (k4) CO-noise in each channel with std proportional to CO variance. Four-alternative forced choice (4AFC) human observer studies were performed on sub-images extracted from phantom images with and without a "pin" target. Model parameters were estimated using maximum likelihood comparison to human probability correct (PC) data. PC in human and all model observers increased with dose, contrast, and size, and was much higher for advanced iterative reconstruction (IMR) as compared to filtered back projection (FBP). Detection in IMR was better than FPB at 1/3 dose, suggesting significant dose savings. Model(k1,k2,k3,k4) gave the best overall fit to humans across independent variables (dose, size, contrast, and reconstruction) at fixed display window. However Model(k1) performed better when considering model complexity using the Akaike information criterion. Model(k1) fit the extraordinary detectability difference between IMR and FBP, despite the different noise quality. It is anticipated that the model observer will predict results from iterative reconstruction methods having similar noise characteristics, enabling rapid comparison of methods.

  14. Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

    DOE PAGES

    Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.; ...

    2017-08-29

    Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene havemore » visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.« less

  15. Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.

    Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene havemore » visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.« less

  16. A physiologically based model for temporal envelope encoding in human primary auditory cortex.

    PubMed

    Dugué, Pierre; Le Bouquin-Jeannès, Régine; Edeline, Jean-Marc; Faucon, Gérard

    2010-09-01

    Communication sounds exhibit temporal envelope fluctuations in the low frequency range (<70 Hz) and human speech has prominent 2-16 Hz modulations with a maximum at 3-4 Hz. Here, we propose a new phenomenological model of the human auditory pathway (from cochlea to primary auditory cortex) to simulate responses to amplitude-modulated white noise. To validate the model, performance was estimated by quantifying temporal modulation transfer functions (TMTFs). Previous models considered either the lower stages of the auditory system (up to the inferior colliculus) or only the thalamocortical loop. The present model, divided in two stages, is based on anatomical and physiological findings and includes the entire auditory pathway. The first stage, from the outer ear to the colliculus, incorporates inhibitory interneurons in the cochlear nucleus to increase performance at high stimuli levels. The second stage takes into account the anatomical connections of the thalamocortical system and includes the fast and slow excitatory and inhibitory currents. After optimizing the parameters of the model to reproduce the diversity of TMTFs obtained from human subjects, a patient-specific model was derived and the parameters were optimized to effectively reproduce both spontaneous activity and the oscillatory part of the evoked response. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models.

    PubMed

    Uno, Narumi; Abe, Satoshi; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2018-02-01

    Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.

  18. Human factors of in-vehicle driver information systems : an executive summary

    DOT National Transportation Integrated Search

    1997-01-01

    This report summarizes a multiyear program concerning driver interfaces for future cars. The goals were to develop (1) human Factors guidelines, (2) methods for testing safety and ease of use, and (3) a model that predicts human performance with thes...

  19. Modeling Visual, Vestibular and Oculomotor Interactions in Self-Motion Estimation

    NASA Technical Reports Server (NTRS)

    Perrone, John

    1997-01-01

    A computational model of human self-motion perception has been developed in collaboration with Dr. Leland S. Stone at NASA Ames Research Center. The research included in the grant proposal sought to extend the utility of this model so that it could be used for explaining and predicting human performance in a greater variety of aerospace applications. This extension has been achieved along with physiological validation of the basic operation of the model.

  20. Methodological Issues in the Study of Air Force Organizational Structures,

    DTIC Science & Technology

    MOTIVATION, MORALE, PERFORMANCE(HUMAN), LEADERSHIP , SKILLS, MANAGEMENT PLANNING AND CONTROL, MODEL THEORY , SYMPOSIA...RESOURCE MANAGEMENT , *HUMAN RESOURCES, *MANPOWER UTILIZATION, *JOB ANALYSIS, *ORGANIZATIONS, STRUCTURES, PERSONNEL MANAGEMENT , DECISION MAKING

  1. Insights into the O-Acetylation Reaction of Hydroxylated Heterocyclic Amines by Human Arylamine N-Acetyltransferases: A Computational Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, E Y; Felton, J S; Lightstone, F C

    2006-06-06

    A computational study was performed to better understand the differences between human arylamine N-acetyltransferase (NAT) 1 and 2. Homology models were constructed from available crystal structures and comparisons of the active site residues 125, 127, and 129 for these two enzymes provide insight into observed substrate differences. The NAT2 model provided a basis for understanding how some of the common mutations may affect the structure of the protein. Molecular dynamics simulations of the human NAT models and the template structure (NAT from Mycobacterium smegmatis) were performed and showed the models to be stable and reasonable. Docking studies of hydroxylated heterocyclicmore » amines in the models of NAT1 and NAT2 probed the differences exhibited by these two proteins with mutagenic agents. The hydroxylated heterocyclic amines were only able to fit into the NAT2 active site, and an alternative binding site by the P-loop was found using our models and will be discussed. Additionally, quantum mechanical calculations were performed to study the O-acetylation reaction of the hydroxylated heterocyclic amines N-OH MeIQx and N-OH PhIP. This study has given us insight into why there are substrate differences among isoenzymes and explains some of the polymorphic activity differences.« less

  2. Multilingual Twitter Sentiment Classification: The Role of Human Annotators

    PubMed Central

    Mozetič, Igor; Grčar, Miha; Smailović, Jasmina

    2016-01-01

    What are the limits of automated Twitter sentiment classification? We analyze a large set of manually labeled tweets in different languages, use them as training data, and construct automated classification models. It turns out that the quality of classification models depends much more on the quality and size of training data than on the type of the model trained. Experimental results indicate that there is no statistically significant difference between the performance of the top classification models. We quantify the quality of training data by applying various annotator agreement measures, and identify the weakest points of different datasets. We show that the model performance approaches the inter-annotator agreement when the size of the training set is sufficiently large. However, it is crucial to regularly monitor the self- and inter-annotator agreements since this improves the training datasets and consequently the model performance. Finally, we show that there is strong evidence that humans perceive the sentiment classes (negative, neutral, and positive) as ordered. PMID:27149621

  3. Discrete-time pilot model. [human dynamics and digital simulation

    NASA Technical Reports Server (NTRS)

    Cavalli, D.

    1978-01-01

    Pilot behavior is considered as a discrete-time process where the decision making has a sequential nature. This model differs from both the quasilinear model which follows from classical control theory and from the optimal control model which considers the human operator as a Kalman estimator-predictor. An additional factor considered is that the pilot's objective may not be adequately formulated as a quadratic cost functional to be minimized, but rather as a more fuzzy measure of the closeness with which the aircraft follows a reference trajectory. All model parameters, in the digital program simulating the pilot's behavior, were successfully compared in terms of standard-deviation and performance with those of professional pilots in IFR configuration. The first practical application of the model was in the study of its performance degradation when the aircraft model static margin decreases.

  4. Climate Science Performance, Data and Productivity on Titan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Benjamin W; Worley, Patrick H; Gaddis, Abigail L

    2015-01-01

    Climate Science models are flagship codes for the largest of high performance computing (HPC) resources, both in visibility, with the newly launched Department of Energy (DOE) Accelerated Climate Model for Energy (ACME) effort, and in terms of significant fractions of system usage. The performance of the DOE ACME model is captured with application level timers and examined through a sizeable run archive. Performance and variability of compute, queue time and ancillary services are examined. As Climate Science advances in the use of HPC resources there has been an increase in the required human and data systems to achieve programs goals.more » A description of current workflow processes (hardware, software, human) and planned automation of the workflow, along with historical and projected data in motion and at rest data usage, are detailed. The combination of these two topics motivates a description of future systems requirements for DOE Climate Modeling efforts, focusing on the growth of data storage and network and disk bandwidth required to handle data at an acceptable rate.« less

  5. A HUMAN FACTORS META MODEL FOR U.S. NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe, Jeffrey C.

    Over the last several years, the United States (U.S.) Department of Energy (DOE) has sponsored human factors research and development (R&D) and human factors engineering (HFE) activities through its Light Water Reactor Sustainability (LWRS) program to modernize the main control rooms (MCR) of commercial nuclear power plants (NPP). Idaho National Laboratory (INL), in partnership with numerous commercial nuclear utilities, has conducted some of this R&D to enable the life extension of NPPs (i.e., provide the technical basis for the long-term reliability, productivity, safety, and security of U.S. NPPs). From these activities performed to date, a human factors meta model formore » U.S. NPP control room modernization can now be formulated. This paper discusses this emergent HFE meta model for NPP control room modernization, with the goal of providing an integrated high level roadmap and guidance on how to perform human factors R&D and HFE for those in the U.S. nuclear industry that are engaging in the process of upgrading their MCRs.« less

  6. System parameters for erythropoiesis control model: Comparison of normal values in human and mouse model

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.

  7. Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments.

    PubMed

    Ionescu, Catalin; Papava, Dragos; Olaru, Vlad; Sminchisescu, Cristian

    2014-07-01

    We introduce a new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance of 5 female and 6 male subjects, under 4 different viewpoints, for training realistic human sensing systems and for evaluating the next generation of human pose estimation models and algorithms. Besides increasing the size of the datasets in the current state-of-the-art by several orders of magnitude, we also aim to complement such datasets with a diverse set of motions and poses encountered as part of typical human activities (taking photos, talking on the phone, posing, greeting, eating, etc.), with additional synchronized image, human motion capture, and time of flight (depth) data, and with accurate 3D body scans of all the subject actors involved. We also provide controlled mixed reality evaluation scenarios where 3D human models are animated using motion capture and inserted using correct 3D geometry, in complex real environments, viewed with moving cameras, and under occlusion. Finally, we provide a set of large-scale statistical models and detailed evaluation baselines for the dataset illustrating its diversity and the scope for improvement by future work in the research community. Our experiments show that our best large-scale model can leverage our full training set to obtain a 20% improvement in performance compared to a training set of the scale of the largest existing public dataset for this problem. Yet the potential for improvement by leveraging higher capacity, more complex models with our large dataset, is substantially vaster and should stimulate future research. The dataset together with code for the associated large-scale learning models, features, visualization tools, as well as the evaluation server, is available online at http://vision.imar.ro/human3.6m.

  8. A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit

    NASA Technical Reports Server (NTRS)

    Young, Karen; Kim, Han; Bernal, Yaritza; Vu, Linh; Boppana, Adhi; Benson, Elizabeth; Jarvis, Sarah; Rajulu, Sudhakar

    2016-01-01

    Goal of space human factors analyses: Place the highly variable human body within these restrictive physical environments to ensure that the entire anticipated population can live, work, and interact. Space suits are a very restrictive space and if not properly sized can result in pain or injury. The highly dynamic motions performed while wearing a space suit often make it difficult to model. Limited human body models do not have much allowance for customization of anthropometry and representation of the population that may wear a space suit.

  9. Relationship between human resource ability and market access capacity on business performance. (case study of wood craft micro- and small-scale industries in Gianyar Regency, Bali)

    NASA Astrophysics Data System (ADS)

    Sukartini, N. W.; Sudarmini, N. M.; Lasmini, N. K.

    2018-01-01

    The aims of this research are to: (1) analyze the influence of Human Resource Ability on market access capacity in Wood Craft Micro and Small Industry; (2) to analyze the effect of market access capacity on business performance; (3) analyze the influence of Human Resources ability on business performance. Data were collected using questionnaires, interviews, observations, and literature studies. The resulting data were analyzed using Struture Equation Modeling (SEM). The results of the analysis show that (1) there is a positive and significant influence of the ability of Human Resources on market access capacity in Wood Craft Micro-and Small-Scale Industries in Gianyar; (2) there is a positive and significant influence of market access capacity on business performance; and (3) there is a positive and significant influence of Human Resource ability on business performance. To improve the ability to access the market and business performance, it is recommended that human resource ability need to be improved through training; government and higher education institutions are expected to play a role in improving the ability of human resources (craftsmen) through provision of training programs

  10. Singularity now: using the ventricular assist device as a model for future human-robotic physiology.

    PubMed

    Martin, Archer K

    2016-04-01

    In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.

  11. Singularity now: using the ventricular assist device as a model for future human-robotic physiology

    PubMed Central

    Martin, Archer K.

    2016-01-01

    In our 21st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today’s world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named “IshBot”) can best be studied in ventricular assist devices – VAD. PMID:28913480

  12. Human Thermal Model Evaluation Using the JSC Human Thermal Database

    NASA Technical Reports Server (NTRS)

    Cognata, T.; Bue, G.; Makinen, J.

    2011-01-01

    The human thermal database developed at the Johnson Space Center (JSC) is used to evaluate a set of widely used human thermal models. This database will facilitate a more accurate evaluation of human thermoregulatory response using in a variety of situations, including those situations that might otherwise prove too dangerous for actual testing--such as extreme hot or cold splashdown conditions. This set includes the Wissler human thermal model, a model that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. These models are statistically compared to the current database, which contains experiments of human subjects primarily in air from a literature survey ranging between 1953 and 2004 and from a suited experiment recently performed by the authors, for a quantitative study of relative strength and predictive quality of the models. Human thermal modeling has considerable long term utility to human space flight. Such models provide a tool to predict crew survivability in support of vehicle design and to evaluate crew response in untested environments. It is to the benefit of any such model not only to collect relevant experimental data to correlate it against, but also to maintain an experimental standard or benchmark for future development in a readily and rapidly searchable and software accessible format. The Human thermal database project is intended to do just so; to collect relevant data from literature and experimentation and to store the data in a database structure for immediate and future use as a benchmark to judge human thermal models against, in identifying model strengths and weakness, to support model development and improve correlation, and to statistically quantify a model s predictive quality.

  13. NASA: Model development for human factors interfacing

    NASA Technical Reports Server (NTRS)

    Smith, L. L.

    1984-01-01

    The results of an intensive literature review in the general topics of human error analysis, stress and job performance, and accident and safety analysis revealed no usable techniques or approaches for analyzing human error in ground or space operations tasks. A task review model is described and proposed to be developed in order to reduce the degree of labor intensiveness in ground and space operations tasks. An extensive number of annotated references are provided.

  14. Animal models: an important tool in mycology.

    PubMed

    Capilla, Javier; Clemons, Karl V; Stevens, David A

    2007-12-01

    Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.

  15. Toward Realism in Human Performance Simulation

    DTIC Science & Technology

    2004-01-01

    toward the development of improved human-like performance of synthetic agents. However, several serious problems continue to challenge researchers and... developers . Developers have insufficient behavioral knowledge. To date, models of emotivity and behavior that have been commercialized still tend...Bindiganavale, 1999). There has even been significant development of architectures to produce animated characters that react appropriately to a small

  16. Effects of Cluster Location on Human Performance on the Traveling Salesperson Problem

    ERIC Educational Resources Information Center

    MacGregor, James N.

    2013-01-01

    Most models of human performance on the traveling salesperson problem involve clustering of nodes, but few empirical studies have examined effects of clustering in the stimulus array. A recent exception varied degree of clustering and concluded that the more clustered a stimulus array, the easier a TSP is to solve (Dry, Preiss, & Wagemans,…

  17. Synthesizing Soft Systems Methodology and Human Performance Technology

    ERIC Educational Resources Information Center

    Scott, Glen; Winiecki, Donald J.

    2012-01-01

    Human performance technology (HPT), like other concepts, models, and frameworks that we use to describe the world in which we live and the way we organize ourselves to accomplish valuable activities, is built from paradigms that were fresh and relevant at the time it was conceived and from the fields of study from which it grew. However, when the…

  18. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance

    PubMed Central

    Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.

    2015-01-01

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887

  19. From Here to Autonomy.

    PubMed

    Endsley, Mica R

    2017-02-01

    As autonomous and semiautonomous systems are developed for automotive, aviation, cyber, robotics and other applications, the ability of human operators to effectively oversee and interact with them when needed poses a significant challenge. An automation conundrum exists in which as more autonomy is added to a system, and its reliability and robustness increase, the lower the situation awareness of human operators and the less likely that they will be able to take over manual control when needed. The human-autonomy systems oversight model integrates several decades of relevant autonomy research on operator situation awareness, out-of-the-loop performance problems, monitoring, and trust, which are all major challenges underlying the automation conundrum. Key design interventions for improving human performance in interacting with autonomous systems are integrated in the model, including human-automation interface features and central automation interaction paradigms comprising levels of automation, adaptive automation, and granularity of control approaches. Recommendations for the design of human-autonomy interfaces are presented and directions for future research discussed.

  20. A gunner model for an AAA tracking task with interrupted observations

    NASA Technical Reports Server (NTRS)

    Yu, C. F.; Wei, K. C.; Vikmanis, M.

    1982-01-01

    The problem of modeling a trained human operator's tracking performance in an anti-aircraft system under various display blanking conditions is discussed. The input to the gunner is the observable tracking error subjected to repeated interruptions (blanking). A simple and effective gunner model was developed. The effect of blanking on the gunner's tracking performance is approached via modeling the observer and controller gains.

  1. An evaluative model of system performance in manned teleoperational systems

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1989-01-01

    Manned teleoperational systems are used in aerospace operations in which humans must interact with machines remotely. Manual guidance of remotely piloted vehicles, controling a wind tunnel, carrying out a scientific procedure remotely are examples of teleoperations. A four input parameter throughput (Tp) model is presented which can be used to evaluate complex, manned, teleoperations-based systems and make critical comparisons among candidate control systems. The first two parameters of this model deal with nominal (A) and off-nominal (B) predicted events while the last two focus on measured events of two types, human performance (C) and system performance (D). Digital simulations showed that the expression A(1-B)/C+D) produced the greatest homogeneity of variance and distribution symmetry. Results from a recently completed manned life science telescience experiment will be used to further validate the model. Complex, interacting teleoperational systems may be systematically evaluated using this expression much like a computer benchmark is used.

  2. Effective Team Support: From Modeling to Software Agents

    NASA Technical Reports Server (NTRS)

    Remington, Roger W. (Technical Monitor); John, Bonnie; Sycara, Katia

    2003-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and engineers and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in modeling infrastructure and task infrastructure. Work is continuing under a different contract to complete empirical data collection, cognitive modeling, and the building of software agents to support the teams task.

  3. Experimental characterization of post rigor mortis human muscle subjected to small tensile strains and application of a simple hyper-viscoelastic model.

    PubMed

    Gras, Laure-Lise; Laporte, Sébastien; Viot, Philippe; Mitton, David

    2014-10-01

    In models developed for impact biomechanics, muscles are usually represented with one-dimensional elements having active and passive properties. The passive properties of muscles are most often obtained from experiments performed on animal muscles, because limited data on human muscle are available. The aim of this study is thus to characterize the passive response of a human muscle in tension. Tensile tests at different strain rates (0.0045, 0.045, and 0.45 s⁻¹) were performed on 10 extensor carpi ulnaris muscles. A model composed of a nonlinear element defined with an exponential law in parallel with one or two Maxwell elements and considering basic geometrical features was proposed. The experimental results were used to identify the parameters of the model. The results for the first- and second-order model were similar. For the first-order model, the mean parameters of the exponential law are as follows: Young's modulus E (6.8 MPa) and curvature parameter α (31.6). The Maxwell element mean values are as follows: viscosity parameter η (1.2 MPa s) and relaxation time τ (0.25 s). Our results provide new data on a human muscle tested in vitro and a simple model with basic geometrical features that represent its behavior in tension under three different strain rates. This approach could be used to assess the behavior of other human muscles. © IMechE 2014.

  4. Modeling Niemann Pick type C1 using human embryonic and induced pluripotent stem cells.

    PubMed

    Ordoñez, M Paulina; Steele, John W

    2017-02-01

    Data generated in Niemann Pick type C1 (NPC1) human embryonic and human induced pluripotent stem cell derived neurons complement on-going studies in animal models and provide the first example, in disease-relevant human cells, of processes that underlie preferential neuronal defects in a NPC1. Our work and that of other investigators in human neurons derived from stem cells highlight the importance of performing rigorous mechanistic studies in relevant cell types to guide drug discovery and therapeutic development, alongside of existing animal models. Through the use of human stem cell-derived models of disease, we can identify and discover or repurpose drugs that revert early events that lead to neuronal failure in NPC1. Together with the study of disease pathogenesis and efficacy of therapies in animal models, these strategies will fulfill the promise of stem cell technology in the development of new treatments for human diseases. This article is part of a Special Issue entitled SI: Exploiting human neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Dynamic Human Body Modeling Using a Single RGB Camera.

    PubMed

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-03-18

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.

  6. Dynamic Human Body Modeling Using a Single RGB Camera

    PubMed Central

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-01-01

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones. PMID:26999159

  7. The Model Human Processor and the Older Adult: Parameter Estimation and Validation Within a Mobile Phone Task

    PubMed Central

    Jastrzembski, Tiffany S.; Charness, Neil

    2009-01-01

    The authors estimate weighted mean values for nine information processing parameters for older adults using the Card, Moran, and Newell (1983) Model Human Processor model. The authors validate a subset of these parameters by modeling two mobile phone tasks using two different phones and comparing model predictions to a sample of younger (N = 20; Mage = 20) and older (N = 20; Mage = 69) adults. Older adult models fit keystroke-level performance at the aggregate grain of analysis extremely well (R = 0.99) and produced equivalent fits to previously validated younger adult models. Critical path analyses highlighted points of poor design as a function of cognitive workload, hardware/software design, and user characteristics. The findings demonstrate that estimated older adult information processing parameters are valid for modeling purposes, can help designers understand age-related performance using existing interfaces, and may support the development of age-sensitive technologies. PMID:18194048

  8. The Model Human Processor and the older adult: parameter estimation and validation within a mobile phone task.

    PubMed

    Jastrzembski, Tiffany S; Charness, Neil

    2007-12-01

    The authors estimate weighted mean values for nine information processing parameters for older adults using the Card, Moran, and Newell (1983) Model Human Processor model. The authors validate a subset of these parameters by modeling two mobile phone tasks using two different phones and comparing model predictions to a sample of younger (N = 20; M-sub(age) = 20) and older (N = 20; M-sub(age) = 69) adults. Older adult models fit keystroke-level performance at the aggregate grain of analysis extremely well (R = 0.99) and produced equivalent fits to previously validated younger adult models. Critical path analyses highlighted points of poor design as a function of cognitive workload, hardware/software design, and user characteristics. The findings demonstrate that estimated older adult information processing parameters are valid for modeling purposes, can help designers understand age-related performance using existing interfaces, and may support the development of age-sensitive technologies.

  9. NASA Human Health and Performance Center: Open innovation successes and collaborative projects

    NASA Astrophysics Data System (ADS)

    Richard, Elizabeth E.; Davis, Jeffrey R.

    2014-11-01

    In May 2007, what was then the Space Life Sciences Directorate published the 2007 Space Life Sciences Strategy for Human Space Exploration, setting the course for development and implementation of new business models and significant advances in external collaboration over the next five years. The strategy was updated on the basis of these accomplishments and reissued as the NASA Human Health and Performance Strategy in 2012, and continues to drive new approaches to innovation for the directorate. This short paper describes the successful execution of the strategy, driving organizational change through open innovation efforts and collaborative projects, including efforts of the NASA Human Health and Performance Center (NHHPC).

  10. Modeling Human Performance: Effects of Personal Traits and Transitory States

    DTIC Science & Technology

    2002-06-01

    Self Confidence High Self Confidence Extroversion Introversion External Locus of Control Internal Locus of Control Positive Personality Case In the...levels, emotions may not have any effect on performance whatsoever. The current model does not recognize that there may be emotion thresholds that must be

  11. A Dynamic Model of Human and Livestock Tuberculosis Spread and Control in Urumqi, Xinjiang, China

    PubMed Central

    Liu, Shan; Li, Aiqiao; Feng, Xiaomei; Zhang, Xueliang

    2016-01-01

    We establish a dynamical model for tuberculosis of humans and cows. For the model, we firstly give the basic reproduction number R 0. Furthermore, we discuss the dynamical behaviors of the model. By epidemiological investigation of tuberculosis among humans and livestock from 2007 to 2014 in Urumqi, Xinjiang, China, we estimate the parameters of the model and study the transmission trend of the disease in Urumqi, Xinjiang, China. The reproduction number in Urumqi for the model is estimated to be 0.1811 (95% confidence interval: 0.123–0.281). Finally, we perform some sensitivity analysis of several model parameters and give some useful comments on controlling the transmission of tuberculosis. PMID:27525034

  12. A predictive model of nuclear power plant crew decision-making and performance in a dynamic simulation environment

    NASA Astrophysics Data System (ADS)

    Coyne, Kevin Anthony

    The safe operation of complex systems such as nuclear power plants requires close coordination between the human operators and plant systems. In order to maintain an adequate level of safety following an accident or other off-normal event, the operators often are called upon to perform complex tasks during dynamic situations with incomplete information. The safety of such complex systems can be greatly improved if the conditions that could lead operators to make poor decisions and commit erroneous actions during these situations can be predicted and mitigated. The primary goal of this research project was the development and validation of a cognitive model capable of simulating nuclear plant operator decision-making during accident conditions. Dynamic probabilistic risk assessment methods can improve the prediction of human error events by providing rich contextual information and an explicit consideration of feedback arising from man-machine interactions. The Accident Dynamics Simulator paired with the Information, Decision, and Action in a Crew context cognitive model (ADS-IDAC) shows promise for predicting situational contexts that might lead to human error events, particularly knowledge driven errors of commission. ADS-IDAC generates a discrete dynamic event tree (DDET) by applying simple branching rules that reflect variations in crew responses to plant events and system status changes. Branches can be generated to simulate slow or fast procedure execution speed, skipping of procedure steps, reliance on memorized information, activation of mental beliefs, variations in control inputs, and equipment failures. Complex operator mental models of plant behavior that guide crew actions can be represented within the ADS-IDAC mental belief framework and used to identify situational contexts that may lead to human error events. This research increased the capabilities of ADS-IDAC in several key areas. The ADS-IDAC computer code was improved to support additional branching events and provide a better representation of the IDAC cognitive model. An operator decision-making engine capable of responding to dynamic changes in situational context was implemented. The IDAC human performance model was fully integrated with a detailed nuclear plant model in order to realistically simulate plant accident scenarios. Finally, the improved ADS-IDAC model was calibrated, validated, and updated using actual nuclear plant crew performance data. This research led to the following general conclusions: (1) A relatively small number of branching rules are capable of efficiently capturing a wide spectrum of crew-to-crew variabilities. (2) Compared to traditional static risk assessment methods, ADS-IDAC can provide a more realistic and integrated assessment of human error events by directly determining the effect of operator behaviors on plant thermal hydraulic parameters. (3) The ADS-IDAC approach provides an efficient framework for capturing actual operator performance data such as timing of operator actions, mental models, and decision-making activities.

  13. Human performance measurement: Validation procedures applicable to advanced manned telescience systems

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1990-01-01

    As telescience systems become more and more complex, autonomous, and opaque to their operators it becomes increasingly difficult to determine whether the total system is performing as it should. Some of the complex and interrelated human performance measurement issues are addressed as they relate to total system validation. The assumption is made that human interaction with the automated system will be required well into the Space Station Freedom era. Candidate human performance measurement-validation techniques are discussed for selected ground-to-space-to-ground and space-to-space situations. Most of these measures may be used in conjunction with an information throughput model presented elsewhere (Haines, 1990). Teleoperations, teleanalysis, teleplanning, teledesign, and teledocumentation are considered, as are selected illustrative examples of space related telescience activities.

  14. A computational language approach to modeling prose recall in schizophrenia

    PubMed Central

    Rosenstein, Mark; Diaz-Asper, Catherine; Foltz, Peter W.; Elvevåg, Brita

    2014-01-01

    Many cortical disorders are associated with memory problems. In schizophrenia, verbal memory deficits are a hallmark feature. However, the exact nature of this deficit remains elusive. Modeling aspects of language features used in memory recall have the potential to provide means for measuring these verbal processes. We employ computational language approaches to assess time-varying semantic and sequential properties of prose recall at various retrieval intervals (immediate, 30 min and 24 h later) in patients with schizophrenia, unaffected siblings and healthy unrelated control participants. First, we model the recall data to quantify the degradation of performance with increasing retrieval interval and the effect of diagnosis (i.e., group membership) on performance. Next we model the human scoring of recall performance using an n-gram language sequence technique, and then with a semantic feature based on Latent Semantic Analysis. These models show that automated analyses of the recalls can produce scores that accurately mimic human scoring. The final analysis addresses the validity of this approach by ascertaining the ability to predict group membership from models built on the two classes of language features. Taken individually, the semantic feature is most predictive, while a model combining the features improves accuracy of group membership prediction slightly above the semantic feature alone as well as over the human rating approach. We discuss the implications for cognitive neuroscience of such a computational approach in exploring the mechanisms of prose recall. PMID:24709122

  15. Cognitive performance modeling based on general systems performance theory.

    PubMed

    Kondraske, George V

    2010-01-01

    General Systems Performance Theory (GSPT) was initially motivated by problems associated with quantifying different aspects of human performance. It has proved to be invaluable for measurement development and understanding quantitative relationships between human subsystem capacities and performance in complex tasks. It is now desired to bring focus to the application of GSPT to modeling of cognitive system performance. Previous studies involving two complex tasks (i.e., driving and performing laparoscopic surgery) and incorporating measures that are clearly related to cognitive performance (information processing speed and short-term memory capacity) were revisited. A GSPT-derived method of task analysis and performance prediction termed Nonlinear Causal Resource Analysis (NCRA) was employed to determine the demand on basic cognitive performance resources required to support different levels of complex task performance. This approach is presented as a means to determine a cognitive workload profile and the subsequent computation of a single number measure of cognitive workload (CW). Computation of CW may be a viable alternative to measuring it. Various possible "more basic" performance resources that contribute to cognitive system performance are discussed. It is concluded from this preliminary exploration that a GSPT-based approach can contribute to defining cognitive performance models that are useful for both individual subjects and specific groups (e.g., military pilots).

  16. A Bayesian network approach to predicting nest presence of thefederally-threatened piping plover (Charadrius melodus) using barrier island features

    USGS Publications Warehouse

    Gieder, Katherina D.; Karpanty, Sarah M.; Fraser, James D.; Catlin, Daniel H.; Gutierrez, Benjamin T.; Plant, Nathaniel G.; Turecek, Aaron M.; Thieler, E. Robert

    2014-01-01

    Sea-level rise and human development pose significant threats to shorebirds, particularly for species that utilize barrier island habitat. The piping plover (Charadrius melodus) is a federally-listed shorebird that nests on barrier islands and rapidly responds to changes in its physical environment, making it an excellent species with which to model how shorebird species may respond to habitat change related to sea-level rise and human development. The uncertainty and complexity in predicting sea-level rise, the responses of barrier island habitats to sea-level rise, and the responses of species to sea-level rise and human development necessitate a modelling approach that can link species to the physical habitat features that will be altered by changes in sea level and human development. We used a Bayesian network framework to develop a model that links piping plover nest presence to the physical features of their nesting habitat on a barrier island that is impacted by sea-level rise and human development, using three years of data (1999, 2002, and 2008) from Assateague Island National Seashore in Maryland. Our model performance results showed that we were able to successfully predict nest presence given a wide range of physical conditions within the model’s dataset. We found that model predictions were more successful when the range of physical conditions included in model development was varied rather than when those physical conditions were narrow. We also found that all model predictions had fewer false negatives (nests predicted to be absent when they were actually present in the dataset) than false positives (nests predicted to be present when they were actually absent in the dataset), indicating that our model correctly predicted nest presence better than nest absence. These results indicated that our approach of using a Bayesian network to link specific physical features to nest presence will be useful for modelling impacts of sea-level rise- or human-related habitat change on barrier islands. We recommend that potential users of this method utilize multiple years of data that represent a wide range of physical conditions in model development, because the model performed less well when constructed using a narrow range of physical conditions. Further, given that there will always be some uncertainty in predictions of future physical habitat conditions related to sea-level rise and/or human development, predictive models will perform best when developed using multiple, varied years of data input.

  17. Automatic Human Movement Assessment With Switching Linear Dynamic System: Motion Segmentation and Motor Performance.

    PubMed

    de Souza Baptista, Roberto; Bo, Antonio P L; Hayashibe, Mitsuhiro

    2017-06-01

    Performance assessment of human movement is critical in diagnosis and motor-control rehabilitation. Recent developments in portable sensor technology enable clinicians to measure spatiotemporal aspects to aid in the neurological assessment. However, the extraction of quantitative information from such measurements is usually done manually through visual inspection. This paper presents a novel framework for automatic human movement assessment that executes segmentation and motor performance parameter extraction in time-series of measurements from a sequence of human movements. We use the elements of a Switching Linear Dynamic System model as building blocks to translate formal definitions and procedures from human movement analysis. Our approach provides a method for users with no expertise in signal processing to create models for movements using labeled dataset and later use it for automatic assessment. We validated our framework on preliminary tests involving six healthy adult subjects that executed common movements in functional tests and rehabilitation exercise sessions, such as sit-to-stand and lateral elevation of the arms and five elderly subjects, two of which with limited mobility, that executed the sit-to-stand movement. The proposed method worked on random motion sequences for the dual purpose of movement segmentation (accuracy of 72%-100%) and motor performance assessment (mean error of 0%-12%).

  18. Drosophila Melanogaster as an Emerging Translational Model of Human Nephrolithiasis

    PubMed Central

    Miller, Joe; Chi, Thomas; Kapahi, Pankaj; Kahn, Arnold J.; Kim, Man Su; Hirata, Taku; Romero, Michael F.; Dow, Julian A.T.; Stoller, Marshall L.

    2013-01-01

    Purpose The limitations imposed by human clinical studies and mammalian models of nephrolithiasis have hampered the development of effective medical treatments and preventative measures for decades. The simple but elegant Drosophila melanogaster is emerging as a powerful translational model of human disease, including nephrolithiasis and may provide important information essential to our understanding of stone formation. We present the current state of research using D. melanogaster as a model of human nephrolithiasis. Materials and Methods A comprehensive review of the English language literature was performed using PUBMED. When necessary, authoritative texts on relevant subtopics were consulted. Results The genetic composition, anatomic structure and physiologic function of Drosophila Malpighian tubules are remarkably similar to those of the human nephron. The direct effects of dietary manipulation, environmental alteration, and genetic variation on stone formation can be observed and quantified in a matter of days. Several Drosophila models of human nephrolithiasis, including genetically linked and environmentally induced stones, have been developed. A model of calcium oxalate stone formation is among the most recent fly models of human nephrolithiasis. Conclusions The ability to readily manipulate and quantify stone formation in D. melanogaster models of human nephrolithiasis presents the urologic community with a unique opportunity to increase our understanding of this enigmatic disease. PMID:23500641

  19. Using Modeling and Simulation to Predict Operator Performance and Automation-Induced Complacency With Robotic Automation: A Case Study and Empirical Validation.

    PubMed

    Wickens, Christopher D; Sebok, Angelia; Li, Huiyang; Sarter, Nadine; Gacy, Andrew M

    2015-09-01

    The aim of this study was to develop and validate a computational model of the automation complacency effect, as operators work on a robotic arm task, supported by three different degrees of automation. Some computational models of complacency in human-automation interaction exist, but those are formed and validated within the context of fairly simplified monitoring failures. This research extends model validation to a much more complex task, so that system designers can establish, without need for human-in-the-loop (HITL) experimentation, merits and shortcomings of different automation degrees. We developed a realistic simulation of a space-based robotic arm task that could be carried out with three different levels of trajectory visualization and execution automation support. Using this simulation, we performed HITL testing. Complacency was induced via several trials of correctly performing automation and then was assessed on trials when automation failed. Following a cognitive task analysis of the robotic arm operation, we developed a multicomponent model of the robotic operator and his or her reliance on automation, based in part on visual scanning. The comparison of model predictions with empirical results revealed that the model accurately predicted routine performance and predicted the responses to these failures after complacency developed. However, the scanning models do not account for the entire attention allocation effects of complacency. Complacency modeling can provide a useful tool for predicting the effects of different types of imperfect automation. The results from this research suggest that focus should be given to supporting situation awareness in automation development. © 2015, Human Factors and Ergonomics Society.

  20. Experimental investigation of biodynamic human body models subjected to whole-body vibration during a vehicle ride.

    PubMed

    Taskin, Yener; Hacioglu, Yuksel; Ortes, Faruk; Karabulut, Derya; Arslan, Yunus Ziya

    2018-02-06

    In this study, responses of biodynamic human body models to whole-body vibration during a vehicle ride were investigated. Accelerations were acquired from three different body parts, such as the head, upper torso and lower torso, of 10 seated passengers during a car ride while two different road conditions were considered. The same multipurpose vehicle was used during all experiments. Additionally, by two widely used biodynamic models in the literature, a set of simulations were run to obtain theoretical accelerations of the models and were compared with those obtained experimentally. To sustain a quantified comparison between experimental and theoretical approaches, the root mean square acceleration and acceleration spectral density were calculated. Time and frequency responses of the models demonstrated that neither of the models showed the best prediction performance of the human body behaviour in all cases, indicating that further models are required for better prediction of the human body responses.

  1. Working Memory, Age, Crew Downsizing, System Design and Training

    DTIC Science & Technology

    2000-08-01

    Radvansky and Zacks, 1997). As authors have noted perceived demand. Accurate "Situation Models " (Johnson- when attempting to make sense of a... models of cognitive function and workload (cf. Baddeley bodies of information to be processed or multiple results and Gathercole, 1993). The ability to...major bottleneck in human performance. Some models of multiple traces from different headings and the human information processing (Pashler, 1998) place

  2. Extracting heading and temporal range from optic flow: Human performance issues

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Perrone, John A.; Stone, Leland; Banks, Martin S.; Crowell, James A.

    1993-01-01

    Pilots are able to extract information about their vehicle motion and environmental structure from dynamic transformations in the out-the-window scene. In this presentation, we focus on the information in the optic flow which specifies vehicle heading and distance to objects in the environment, scaled to a temporal metric. In particular, we are concerned with modeling how the human operators extract the necessary information, and what factors impact their ability to utilize the critical information. In general, the psychophysical data suggest that the human visual system is fairly robust to degradations in the visual display, e.g., reduced contrast and resolution or restricted field of view. However, extraneous motion flow, i.e., introduced by sensor rotation, greatly compromises human performance. The implications of these models and data for enhanced/synthetic vision systems are discussed.

  3. Task-based lens design with application to digital mammography

    NASA Astrophysics Data System (ADS)

    Chen, Liying; Barrett, Harrison H.

    2005-01-01

    Recent advances in model observers that predict human perceptual performance now make it possible to optimize medical imaging systems for human task performance. We illustrate the procedure by considering the design of a lens for use in an optically coupled digital mammography system. The channelized Hotelling observer is used to model human performance, and the channels chosen are differences of Gaussians. The task performed by the model observer is detection of a lesion at a random but known location in a clustered lumpy background mimicking breast tissue. The entire system is simulated with a Monte Carlo application according to physics principles, and the main system component under study is the imaging lens that couples a fluorescent screen to a CCD detector. The signal-to-noise ratio (SNR) of the channelized Hotelling observer is used to quantify this detectability of the simulated lesion (signal) on the simulated mammographic background. Plots of channelized Hotelling SNR versus signal location for various lens apertures, various working distances, and various focusing places are presented. These plots thus illustrate the trade-off between coupling efficiency and blur in a task-based manner. In this way, the channelized Hotelling SNR is used as a merit function for lens design.

  4. Task-based lens design, with application to digital mammography

    NASA Astrophysics Data System (ADS)

    Chen, Liying

    Recent advances in model observers that predict human perceptual performance now make it possible to optimize medical imaging systems for human task performance. We illustrate the procedure by considering the design of a lens for use in an optically coupled digital mammography system. The channelized Hotelling observer is used to model human performance, and the channels chosen are differences of Gaussians (DOGs). The task performed by the model observer is detection of a lesion at a random but known location in a clustered lumpy background mimicking breast tissue. The entire system is simulated with a Monte Carlo application according to the physics principles, and the main system component under study is the imaging lens that couples a fluorescent screen to a CCD detector. The SNR of the channelized Hotelling observer is used to quantify the detectability of the simulated lesion (signal) upon the simulated mammographic background. In this work, plots of channelized Hotelling SNR vs. signal location for various lens apertures, various working distances, and various focusing places are shown. These plots thus illustrate the trade-off between coupling efficiency and blur in a task-based manner. In this way, the channelized Hotelling SNR is used as a merit function for lens design.

  5. HuMOVE: a low-invasive wearable monitoring platform in sexual medicine.

    PubMed

    Ciuti, Gastone; Nardi, Matteo; Valdastri, Pietro; Menciassi, Arianna; Basile Fasolo, Ciro; Dario, Paolo

    2014-10-01

    To investigate an accelerometer-based wearable system, named Human Movement (HuMOVE) platform, designed to enable quantitative and continuous measurement of sexual performance with minimal invasiveness and inconvenience for users. Design, implementation, and development of HuMOVE, a wearable platform equipped with an accelerometer sensor for monitoring inertial parameters for sexual performance assessment and diagnosis, were performed. The system enables quantitative measurement of movement parameters during sexual intercourse, meeting the requirements of wearability, data storage, sampling rate, and interfacing methods, which are fundamental for human sexual intercourse performance analysis. HuMOVE was validated through characterization using a controlled experimental test bench and evaluated in a human model during simulated sexual intercourse conditions. HuMOVE demonstrated to be a robust and quantitative monitoring platform and a reliable candidate for sexual performance evaluation and diagnosis. Characterization analysis on the controlled experimental test bench demonstrated an accurate correlation between the HuMOVE system and data from a reference displacement sensor. Experimental tests in the human model during simulated intercourse conditions confirmed the accuracy of the sexual performance evaluation platform and the effectiveness of the selected and derived parameters. The obtained outcomes also established the project expectations in terms of usability and comfort, evidenced by the questionnaires that highlighted the low invasiveness and acceptance of the device. To the best of our knowledge, HuMOVE platform is the first device for human sexual performance analysis compatible with sexual intercourse; the system has the potential to be a helpful tool for physicians to accurately classify sexual disorders, such as premature or delayed ejaculation. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange

    PubMed Central

    Seth, Ajay; Sherman, Michael; Reinbolt, Jeffrey A.; Delp, Scott L.

    2015-01-01

    Movement science is driven by observation, but observation alone cannot elucidate principles of human and animal movement. Biomechanical modeling and computer simulation complement observations and inform experimental design. Biological models are complex and specialized software is required for building, validating, and studying them. Furthermore, common access is needed so that investigators can contribute models to a broader community and leverage past work. We are developing OpenSim, a freely available musculoskeletal modeling and simulation application and libraries specialized for these purposes, by providing: musculoskeletal modeling elements, such as biomechanical joints, muscle actuators, ligament forces, compliant contact, and controllers; and tools for fitting generic models to subject-specific data, performing inverse kinematics and forward dynamic simulations. OpenSim performs an array of physics-based analyses to delve into the behavior of musculoskeletal models by employing Simbody, an efficient and accurate multibody system dynamics code. Models are publicly available and are often reused for multiple investigations because they provide a rich set of behaviors that enables different lines of inquiry. This report will discuss one model developed to study walking and applied to gain deeper insights into muscle function in pathological gait and during running. We then illustrate how simulations can test fundamental hypotheses and focus the aims of in vivo experiments, with a postural stability platform and human model that provide a research environment for performing human posture experiments in silico. We encourage wide adoption of OpenSim for community exchange of biomechanical models and methods and welcome new contributors. PMID:25893160

  7. Lateral specialization in unilateral spatial neglect: a cognitive robotics model.

    PubMed

    Conti, Daniela; Di Nuovo, Santo; Cangelosi, Angelo; Di Nuovo, Alessandro

    2016-08-01

    In this paper, we present the experimental results of an embodied cognitive robotic approach for modelling the human cognitive deficit known as unilateral spatial neglect (USN). To this end, we introduce an artificial neural network architecture designed and trained to control the spatial attentional focus of the iCub robotic platform. Like the human brain, the architecture is divided into two hemispheres and it incorporates bio-inspired plasticity mechanisms, which allow the development of the phenomenon of the specialization of the right hemisphere for spatial attention. In this study, we validate the model by replicating a previous experiment with human patients affected by the USN and numerical results show that the robot mimics the behaviours previously exhibited by humans. We also simulated recovery after the damage to compare the performance of each of the two hemispheres as additional validation of the model. Finally, we highlight some possible advantages of modelling cognitive dysfunctions of the human brain by means of robotic platforms, which can supplement traditional approaches for studying spatial impairments in humans.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. A. Wasiolek

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the referencemore » biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).« less

  9. 20180312 - Profiling the ToxCast library with a pluripotent human (H9) embryonic stem cell assay (SOT)

    EPA Science Inventory

    The Stemina devTOX quickPredict platform (STM) is a human pluripotent H9 stem cell-based assay that predicts developmental toxicants. Using the STM model, we screened 1065 ToxCast chemicals and entered the data into the ToxCast data analysis pipeline. Model performance was 83.3% ...

  10. Detection of whale calls in noise: performance comparison between a beluga whale, human listeners, and a neural network.

    PubMed

    Erbe, C

    2000-07-01

    This article examines the masking by anthropogenic noise of beluga whale calls. Results from human masking experiments and a software backpropagation neural network are compared to the performance of a trained beluga whale. The goal was to find an accurate, reliable, and fast model to replace lengthy and expensive animal experiments. A beluga call was masked by three types of noise, an icebreaker's bubbler system and propeller noise, and ambient arctic ice-cracking noise. Both the human experiment and the neural network successfully modeled the beluga data in the sense that they classified the noises in the same order from strongest to weakest masking as the whale and with similar call-detection thresholds. The neural network slightly outperformed the humans. Both models were then used to predict the masking of a fourth type of noise, Gaussian white noise. Their prediction ability was judged by returning to the aquarium to measure masked-hearing thresholds of a beluga in white noise. Both models and the whale identified bubbler noise as the strongest masker, followed by ramming, then white noise. Natural ice-cracking noise masked the least. However, the humans and the neural network slightly overpredicted the amount of masking for white noise. This is neglecting individual variation in belugas, because only one animal could be trained. Comparing the human model to the neural network model, the latter has the advantage of objectivity, reproducibility of results, and efficiency, particularly if the interference of a large number of signals and noise is to be examined.

  11. Invariant recognition drives neural representations of action sequences

    PubMed Central

    Poggio, Tomaso

    2017-01-01

    Recognizing the actions of others from visual stimuli is a crucial aspect of human perception that allows individuals to respond to social cues. Humans are able to discriminate between similar actions despite transformations, like changes in viewpoint or actor, that substantially alter the visual appearance of a scene. This ability to generalize across complex transformations is a hallmark of human visual intelligence. Advances in understanding action recognition at the neural level have not always translated into precise accounts of the computational principles underlying what representations of action sequences are constructed by human visual cortex. Here we test the hypothesis that invariant action discrimination might fill this gap. Recently, the study of artificial systems for static object perception has produced models, Convolutional Neural Networks (CNNs), that achieve human level performance in complex discriminative tasks. Within this class, architectures that better support invariant object recognition also produce image representations that better match those implied by human and primate neural data. However, whether these models produce representations of action sequences that support recognition across complex transformations and closely follow neural representations of actions remains unknown. Here we show that spatiotemporal CNNs accurately categorize video stimuli into action classes, and that deliberate model modifications that improve performance on an invariant action recognition task lead to data representations that better match human neural recordings. Our results support our hypothesis that performance on invariant discrimination dictates the neural representations of actions computed in the brain. These results broaden the scope of the invariant recognition framework for understanding visual intelligence from perception of inanimate objects and faces in static images to the study of human perception of action sequences. PMID:29253864

  12. Physiologically based Pharmacokinetic Modeling of 1,4-Dioxane in Rats, Mice, and Humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, Lisa M.; Thrall, Karla D.; Poet, Torka S.

    2008-01-01

    ABSTRACT 1,4-Dioxane (CAS No. 123-91-1) is used primarily as a solvent or as a solvent stabilizer. It can cause lung, liver and kidney damage at sufficiently high exposure levels. Two physiologically-based pharmacokinetic (PBPK) models of 1,4-dioxane and its major metabolite, hydroxyethoxyacetic acid (HEAA), were published in 1990. These models have uncertainties and deficiencies that could be addressed and the model strengthened for use in a contemporary cancer risk assessment for 1,4-dioxane. Studies were performed to fill data gaps and reduce uncertainties pertaining to the pharmacokinetics of 1,4-dioxane and HEAA in rats, mice, and humans. Three types of studies were performed:partitionmore » coefficient measurements, blood time course in mice, and in vitro pharmacokinetics using rat, mouse, and human hepatocytes. Updated PBPK models were developed based on these new data and previously available data. The optimized rate of metabolism for the mouse was significantly higher than the value previously estimated. The optimized rat kinetic parameters were similar to those in the 1990 models. Only two human studies were identified. Model predictions were consistent with one study, but did not fit the second as well. In addition, a rat nasal exposure was completed. The results confirmed water directly contacts rat nasal tissues during drinking water under bioassays. Consistent with previous PBPK models, nasal tissues were not specifically included in the model. Use of these models will reduce the uncertainty in future 1,4-dioxane risk assessments.« less

  13. Investigation of automated task learning, decomposition and scheduling

    NASA Technical Reports Server (NTRS)

    Livingston, David L.; Serpen, Gursel; Masti, Chandrashekar L.

    1990-01-01

    The details and results of research conducted in the application of neural networks to task planning and decomposition are presented. Task planning and decomposition are operations that humans perform in a reasonably efficient manner. Without the use of good heuristics and usually much human interaction, automatic planners and decomposers generally do not perform well due to the intractable nature of the problems under consideration. The human-like performance of neural networks has shown promise for generating acceptable solutions to intractable problems such as planning and decomposition. This was the primary reasoning behind attempting the study. The basis for the work is the use of state machines to model tasks. State machine models provide a useful means for examining the structure of tasks since many formal techniques have been developed for their analysis and synthesis. It is the approach to integrate the strong algebraic foundations of state machines with the heretofore trial-and-error approach to neural network synthesis.

  14. FRamework Assessing Notorious Contributing Influences for Error (FRANCIE): Perspective on Taxonomy Development to Support Error Reporting and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lon N. Haney; David I. Gertman

    2003-04-01

    Beginning in the 1980s a primary focus of human reliability analysis was estimation of human error probabilities. However, detailed qualitative modeling with comprehensive representation of contextual variables often was lacking. This was likely due to the lack of comprehensive error and performance shaping factor taxonomies, and the limited data available on observed error rates and their relationship to specific contextual variables. In the mid 90s Boeing, America West Airlines, NASA Ames Research Center and INEEL partnered in a NASA sponsored Advanced Concepts grant to: assess the state of the art in human error analysis, identify future needs for human errormore » analysis, and develop an approach addressing these needs. Identified needs included the need for a method to identify and prioritize task and contextual characteristics affecting human reliability. Other needs identified included developing comprehensive taxonomies to support detailed qualitative modeling and to structure meaningful data collection efforts across domains. A result was the development of the FRamework Assessing Notorious Contributing Influences for Error (FRANCIE) with a taxonomy for airline maintenance tasks. The assignment of performance shaping factors to generic errors by experts proved to be valuable to qualitative modeling. Performance shaping factors and error types from such detailed approaches can be used to structure error reporting schemes. In a recent NASA Advanced Human Support Technology grant FRANCIE was refined, and two new taxonomies for use on space missions were developed. The development, sharing, and use of error taxonomies, and the refinement of approaches for increased fidelity of qualitative modeling is offered as a means to help direct useful data collection strategies.« less

  15. Numerical Investigation of a Chip Printed Antenna Performances for Wireless Implantable Body Area Network Applications

    NASA Astrophysics Data System (ADS)

    Ramli, N. H.; Jaafar, H.; Lee, Y. S.

    2018-03-01

    Recently, wireless implantable body area network (WiBAN) system become an active area of research due to their various applications such as healthcare, support systems for specialized occupations and personal communications. Biomedical sensors networks mounted in the human body have drawn greater attention for health care monitoring systems. The implantable chip printed antenna for WiBAN applications is designed and the antenna performances is investigated in term of gain, efficiency, return loss, operating bandwidth and radiation pattern at different environments. This paper is presents the performances of implantable chip printed antenna in selected part of human body (hand, chest, leg, heart and skull). The numerical investigation is done by using human voxel model in built in the CST Microwave Studio Software. Results proved that the chip printed antenna is suitable to implant in the human hand model. The human hand model has less complex structure as it consists of skin, fat, muscle, blood and bone. Moreover, the antenna is implanted under the skin. Therefore the signal propagation path length to the base station at free space environment is considerably short. The antenna’s gain, efficiency and Specific Absorption Rate (SAR) are - 13.62dBi, 1.50 % and 0.12 W/kg respectively; which confirms the safety of the antenna usage. The results of the investigations can be used as guidance while designing chip implantable antenna in future.

  16. Three-dimensional anthropometric techniques applied to the fabrication of burn masks and the quantification of wound healing

    NASA Astrophysics Data System (ADS)

    Whitestone, Jennifer J.; Geisen, Glen R.; McQuiston, Barbara K.

    1997-03-01

    Anthropometric surveys conducted by the military provide comprehensive human body measurement data that are human interface requirements for successful mission performance of weapon systems, including cockpits, protective equipment, and clothing. The application of human body dimensions to model humans and human-machine performance begins with engineering anthropometry. There are two critical elements to engineering anthropometry: data acquisition and data analysis. First, the human body is captured dimensionally with either traditional anthropometric tools, such as calipers and tape measures, or with advanced image acquisition systems, such as a laser scanner. Next, numerous statistical analysis tools, such as multivariate modeling and feature envelopes, are used to effectively transition these data for design and evaluation of equipment and work environments. Recently, Air Force technology transfer allowed researchers at the Computerized Anthropometric Research and Design (CARD) Laboratory at Wright-Patterson Air Force Base to work with the Dayton, Ohio area medical community in assessing the rate of wound healing and improving the fit of total contract burn masks. This paper describes the successful application of CARD Lab engineering anthropometry to two medically oriented human interface problems.

  17. Integrating Learning and Performance.

    ERIC Educational Resources Information Center

    1998

    This document contains four papers from a symposium on integrating learning and performance in human resource development (HRD). "Action Imperatives that Impact Knowledge Performance and Financial Performance in the Learning Organization: An Exploratory Model" (Gary L. Selden, Karen E. Watkins, Thomas Valentine, Victoria J. Marsick)…

  18. Accounting for regional variation in both natural environment and human disturbance to improve performance of multimetric indices of lotic benthic diatoms.

    PubMed

    Tang, Tao; Stevenson, R Jan; Infante, Dana M

    2016-10-15

    Regional variation in both natural environment and human disturbance can influence performance of ecological assessments. In this study we calculated 5 types of benthic diatom multimetric indices (MMIs) with 3 different approaches to account for variation in ecological assessments. We used: site groups defined by ecoregions or diatom typologies; the same or different sets of metrics among site groups; and unmodeled or modeled MMIs, where models accounted for natural variation in metrics within site groups by calculating an expected reference condition for each metric and each site. We used data from the USEPA's National Rivers and Streams Assessment to calculate the MMIs and evaluate changes in MMI performance. MMI performance was evaluated with indices of precision, bias, responsiveness, sensitivity and relevancy which were respectively measured as MMI variation among reference sites, effects of natural variables on MMIs, difference between MMIs at reference and highly disturbed sites, percent of highly disturbed sites properly classified, and relation of MMIs to human disturbance and stressors. All 5 types of MMIs showed considerable discrimination ability. Using different metrics among ecoregions sometimes reduced precision, but it consistently increased responsiveness, sensitivity, and relevancy. Site specific metric modeling reduced bias and increased responsiveness. Combined use of different metrics among site groups and site specific modeling significantly improved MMI performance irrespective of site grouping approach. Compared to ecoregion site classification, grouping sites based on diatom typologies improved precision, but did not improve overall performance of MMIs if we accounted for natural variation in metrics with site specific models. We conclude that using different metrics among ecoregions and site specific metric modeling improve MMI performance, particularly when used together. Applications of these MMI approaches in ecological assessments introduced a tradeoff with assessment consistency when metrics differed across site groups, but they justified the convenient and consistent use of ecoregions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. EVA Performance Prediction

    NASA Technical Reports Server (NTRS)

    Peacock, Brian; Maida, James; Rajulu, Sudhakar

    2004-01-01

    Astronaut physical performance capabilities in micro gravity EV A or on planetary surfaces when encumbered by a life support suit and debilitated by a long exposure to micro gravity will be less than unencumbered pre flight capabilities. The big question addressed by human factors engineers is: what can the astronaut be expected to do on EVA or when we arrive at a planetary surface? A second question is: what aids to performance will be needed to enhance the human physical capability? These questions are important for a number of reasons. First it is necessary to carry out accurate planning of human physical demands to ensure that time and energy critical tasks can be carried out with confidence. Second it is important that the crew members (and their ground or planetary base monitors) have a realistic picture of their own capabilities, as excessive fatigue can lead to catastrophic failure. Third it is important to design appropriate equipment to enhance human sensory capabilities, locomotion, materials handling and manipulation. The evidence from physiological research points to musculoskeletal, cardiovascular and neurovestibular degradation during long duration exposure to micro gravity . The evidence from the biomechanics laboratory (and the Neutral Buoyancy Laboratory) points to a reduction in range of motion, strength and stamina when encumbered by a pressurized suit. The evidence from a long history of EVAs is that crewmembers are indeed restricted in their physical capabilities. There is a wealth of evidence in the literature on the causes and effects of degraded human performance in the laboratory, in sports and athletics, in industry and in other physically demanding jobs. One approach to this challenge is through biomechanical and performance modeling. Such models must be based on thorough task analysis, reliable human performance data from controlled studies, and functional extrapolations validated in analog contexts. The task analyses currently carried out for EVA activities are based more on extensive domain experience than any formal analytic structure. Conversely, physical task analysis for industrial and structured evidence from training and EV A contexts. Again on earth there is considerable evidence of human performance degradation due to encumbrance and fatigue. These industrial models generally take the form of a discounting equation. The development of performance estimates for space operations, such as timeline predictions for EVA is generally based on specific input from training activity, for example in the NBL or KC135. uniformed services tasks on earth are much more formalized. Human performance data in the space context has two sources: first there is the micro analysis of performance in structured tasks by the space physiology community and second there is the less structured evidence from training and EV A contexts.

  20. Application of advection-diffusion routing model to flood wave propagation: A case study on Big Piney River, Missouri USA

    Treesearch

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2016-01-01

    Flood wave propagation modeling is of critical importance to advancing water resources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model performed in flood wave propagation on a 16 km long downstream section of the Big Piney River, MO. Model performance was based on gaging station data at the...

  1. Investigation of the Impedance Characteristic of Human Arm for Development of Robots to Cooperate with Humans

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Mozasser; Ikeura, Ryojun; Mizutani, Kazuki

    In the near future many aspects of our lives will be encompassed by tasks performed in cooperation with robots. The application of robots in home automation, agricultural production and medical operations etc. will be indispensable. As a result robots need to be made human-friendly and to execute tasks in cooperation with humans. Control systems for such robots should be designed to work imitating human characteristics. In this study, we have tried to achieve these goals by means of controlling a simple one degree-of-freedom cooperative robot. Firstly, the impedance characteristic of the human arm in a cooperative task is investigated. Then, this characteristic is implemented to control a robot in order to perform cooperative task with humans. A human followed the motion of an object, which is moved through desired trajectories. The motion is actuated by the linear motor of the one degree-of-freedom robot system. Trajectories used in the experiments of this method were minimum jerk (the rate of change of acceleration) trajectory, which was found during human and human cooperative task and optimum for muscle movement. As the muscle is mechanically analogous to a spring-damper system, a simple second-order equation is used as models for the arm dynamics. In the model, we considered mass, stiffness and damping factor. Impedance parameter is calculated from the position and force data obtained from the experiments and based on the “Estimation of Parametric Model”. Investigated impedance characteristic of human arm is then implemented to control a robot, which performed cooperative task with human. It is observed that the proposed control methodology has given human like movements to the robot for cooperating with human.

  2. Human Machine Interfaces for Teleoperators and Virtual Environments

    NASA Technical Reports Server (NTRS)

    Durlach, Nathaniel I. (Compiler); Sheridan, Thomas B. (Compiler); Ellis, Stephen R. (Compiler)

    1991-01-01

    In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models.

  3. Images of Leadership and their Effect Upon School Principals' Performance

    NASA Astrophysics Data System (ADS)

    Gaziel, Haim

    2003-09-01

    The purpose of the present study is to identify how school principals perceive their world and how their perceptions influence their effectiveness as managers and leaders. The principals' views of their world were categorised into four different metaphorical ways of describing the workings of organisations: (1) the structural model (organisations as machines); (2) the human-resource model (organisations as organisms); (3) the political model (organisations as political systems); (4) the symbolic model (organisations as cultural patterns and clusters of myths and symbols). The results reveal that the best predictors of school principals' effectiveness as managers, according to their own assessments and teachers' reports, are the structural and human resource models, while the best predictors of effective leadership are the political and human-resource models.

  4. A control-theory model for human decision-making

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Tanner, R. B.

    1971-01-01

    A model for human decision making is an adaptation of an optimal control model for pilot/vehicle systems. The models for decision and control both contain concepts of time delay, observation noise, optimal prediction, and optimal estimation. The decision making model was intended for situations in which the human bases his decision on his estimate of the state of a linear plant. Experiments are described for the following task situations: (a) single decision tasks, (b) two-decision tasks, and (c) simultaneous manual control and decision making. Using fixed values for model parameters, single-task and two-task decision performance can be predicted to within an accuracy of 10 percent. Agreement is less good for the simultaneous decision and control situation.

  5. Mathematical models for predicting human mobility in the context of infectious disease spread: introducing the impedance model.

    PubMed

    Sallah, Kankoé; Giorgi, Roch; Bengtsson, Linus; Lu, Xin; Wetter, Erik; Adrien, Paul; Rebaudet, Stanislas; Piarroux, Renaud; Gaudart, Jean

    2017-11-22

    Mathematical models of human mobility have demonstrated a great potential for infectious disease epidemiology in contexts of data scarcity. While the commonly used gravity model involves parameter tuning and is thus difficult to implement without reference data, the more recent radiation model based on population densities is parameter-free, but biased. In this study we introduce the new impedance model, by analogy with electricity. Previous research has compared models on the basis of a few specific available spatial patterns. In this study, we use a systematic simulation-based approach to assess the performances. Five hundred spatial patterns were generated using various area sizes and location coordinates. Model performances were evaluated based on these patterns. For simulated data, comparison measures were average root mean square error (aRMSE) and bias criteria. Modeling of the 2010 Haiti cholera epidemic with a basic susceptible-infected-recovered (SIR) framework allowed an empirical evaluation through assessing the goodness-of-fit of the observed epidemic curve. The new, parameter-free impedance model outperformed previous models on simulated data according to average aRMSE and bias criteria. The impedance model achieved better performances with heterogeneous population densities and small destination populations. As a proof of concept, the basic compartmental SIR framework was used to confirm the results obtained with the impedance model in predicting the spread of cholera in Haiti in 2010. The proposed new impedance model provides accurate estimations of human mobility, especially when the population distribution is highly heterogeneous. This model can therefore help to achieve more accurate predictions of disease spread in the context of an epidemic.

  6. Voice tracking and spoken word recognition in the presence of other voices

    NASA Astrophysics Data System (ADS)

    Litong-Palima, Marisciel; Violanda, Renante; Saloma, Caesar

    2004-12-01

    We study the human hearing process by modeling the hair cell as a thresholded Hopf bifurcator and compare our calculations with experimental results involving human subjects in two different multi-source listening tasks of voice tracking and spoken-word recognition. In the model, we observed noise suppression by destructive interference between noise sources which weakens the effective noise strength acting on the hair cell. Different success rate characteristics were observed for the two tasks. Hair cell performance at low threshold levels agree well with results from voice-tracking experiments while those of word-recognition experiments are consistent with a linear model of the hearing process. The ability of humans to track a target voice is robust against cross-talk interference unlike word-recognition performance which deteriorates quickly with the number of uncorrelated noise sources in the environment which is a response behavior that is associated with linear systems.

  7. Prediction of biodiversity hotspots in the Anthropocene: The case of veteran oaks.

    PubMed

    Skarpaas, Olav; Blumentrath, Stefan; Evju, Marianne; Sverdrup-Thygeson, Anne

    2017-10-01

    Over the past centuries, humans have transformed large parts of the biosphere, and there is a growing need to understand and predict the distribution of biodiversity hotspots influenced by the presence of humans. Our basic hypothesis is that human influence in the Anthropocene is ubiquitous, and we predict that biodiversity hot spot modeling can be improved by addressing three challenges raised by the increasing ecological influence of humans: (i) anthropogenically modified responses to individual ecological factors, (ii) fundamentally different processes and predictors in landscape types shaped by different land use histories and (iii) a multitude and complexity of natural and anthropogenic processes that may require many predictors and even multiple models in different landscape types. We modeled the occurrence of veteran oaks in Norway, and found, in accordance with our basic hypothesis and predictions, that humans influence the distribution of veteran oaks throughout its range, but in different ways in forests and open landscapes. In forests, geographical and topographic variables related to the oak niche are still important, but the occurrence of veteran oaks is shifted toward steeper slopes, where logging is difficult. In open landscapes, land cover variables are more important, and veteran oaks are more common toward the north than expected from the fundamental oak niche. In both landscape types, multiple predictor variables representing ecological and human-influenced processes were needed to build a good model, and several models performed almost equally well. Models accounting for the different anthropogenic influences on landscape structure and processes consistently performed better than models based exclusively on natural biogeographical and ecological predictors. Thus, our results for veteran oaks clearly illustrate the challenges to distribution modeling raised by the ubiquitous influence of humans, even in a moderately populated region, but also show that predictions can be improved by explicitly addressing these anthropogenic complexities.

  8. Predicting the Impacts of Intravehicular Displays on Driving Performance with Human Performance Modeling

    NASA Technical Reports Server (NTRS)

    Mitchell, Diane Kuhl; Wojciechowski, Josephine; Samms, Charneta

    2012-01-01

    A challenge facing the U.S. National Highway Traffic Safety Administration (NHTSA), as well as international safety experts, is the need to educate car drivers about the dangers associated with performing distraction tasks while driving. Researchers working for the U.S. Army Research Laboratory have developed a technique for predicting the increase in mental workload that results when distraction tasks are combined with driving. They implement this technique using human performance modeling. They have predicted workload associated with driving combined with cell phone use. In addition, they have predicted the workload associated with driving military vehicles combined with threat detection. Their technique can be used by safety personnel internationally to demonstrate the dangers of combining distracter tasks with driving and to mitigate the safety risks.

  9. Characterizing Perceptual Performance at Multiple Discrimination Precisions in External Noise

    PubMed Central

    Jeon, Seong-Taek; Lu, Zhong-Lin; Dosher, Barbara Anne

    2010-01-01

    Existing observer models developed for studies with the external noise paradigm are strictly only applicable to target detection or identification/discrimination of orthogonal target(s). We elaborated the perceptual template model (PTM) to account for contrast thresholds in identifying non-orthogonal targets. Full contrast psychometric functions were measured in an orientation identification task with four orientation differences across a wide range of external noise levels. We showed that observer performance can be modeled by the elaborated PTM with two templates that correspond to the two stimulus categories. Sampling efficiencies of the human observers were also estimated. The elaborated PTM provides a theoretical framework to characterize joint feature and contrast sensitivity of human observers. PMID:19884915

  10. Philosophy of ATHEANA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bley, D.C.; Cooper, S.E.; Forester, J.A.

    ATHEANA, a second-generation Human Reliability Analysis (HRA) method integrates advances in psychology with engineering, human factors, and Probabilistic Risk Analysis (PRA) disciplines to provide an HRA quantification process and PRA modeling interface that can accommodate and represent human performance in real nuclear power plant events. The method uses the characteristics of serious accidents identified through retrospective analysis of serious operational events to set priorities in a search process for significant human failure events, unsafe acts, and error-forcing context (unfavorable plant conditions combined with negative performance-shaping factors). ATHEANA has been tested in a demonstration project at an operating pressurized water reactor.

  11. Coupling internal cerebellar models enhances online adaptation and supports offline consolidation in sensorimotor tasks

    PubMed Central

    Passot, Jean-Baptiste; Luque, Niceto R.; Arleo, Angelo

    2013-01-01

    The cerebellum is thought to mediate sensorimotor adaptation through the acquisition of internal models of the body-environment interaction. These representations can be of two types, identified as forward and inverse models. The first predicts the sensory consequences of actions, while the second provides the correct commands to achieve desired state transitions. In this paper, we propose a composite architecture consisting of multiple cerebellar internal models to account for the adaptation performance of humans during sensorimotor learning. The proposed model takes inspiration from the cerebellar microcomplex circuit, and employs spiking neurons to process information. We investigate the intrinsic properties of the cerebellar circuitry subserving efficient adaptation properties, and we assess the complementary contributions of internal representations by simulating our model in a procedural adaptation task. Our simulation results suggest that the coupling of internal models enhances learning performance significantly (compared with independent forward and inverse models), and it allows for the reproduction of human adaptation capabilities. Furthermore, we provide a computational explanation for the performance improvement observed after one night of sleep in a wide range of sensorimotor tasks. We predict that internal model coupling is a necessary condition for the offline consolidation of procedural memories. PMID:23874289

  12. Biomechanical modeling and load-carrying simulation of lower limb exoskeleton.

    PubMed

    Zhu, Yanhe; Zhang, Guoan; Zhang, Chao; Liu, Gangfeng; Zhao, Jie

    2015-01-01

    This paper introduces novel modern equipment-a lower extremity exoskeleton, which can implement the mutual complement and the interaction between human intelligence and the robot's mechanical strength. In order to provide a reference for the exoskeleton structure and the drive unit, the human biomechanics were modeled and analyzed by LifeModeler and Adams software to derive each joint kinematic parameter. The control was designed to implement the zero-force interaction between human and exoskeleton. Furthermore, simulations were performed to verify the control and assist effect. In conclusion, the system scheme of lower extremity exoskeleton is demonstrated to be feasible.

  13. Channelized relevance vector machine as a numerical observer for cardiac perfusion defect detection task

    NASA Astrophysics Data System (ADS)

    Kalayeh, Mahdi M.; Marin, Thibault; Pretorius, P. Hendrik; Wernick, Miles N.; Yang, Yongyi; Brankov, Jovan G.

    2011-03-01

    In this paper, we present a numerical observer for image quality assessment, aiming to predict human observer accuracy in a cardiac perfusion defect detection task for single-photon emission computed tomography (SPECT). In medical imaging, image quality should be assessed by evaluating the human observer accuracy for a specific diagnostic task. This approach is known as task-based assessment. Such evaluations are important for optimizing and testing imaging devices and algorithms. Unfortunately, human observer studies with expert readers are costly and time-demanding. To address this problem, numerical observers have been developed as a surrogate for human readers to predict human diagnostic performance. The channelized Hotelling observer (CHO) with internal noise model has been found to predict human performance well in some situations, but does not always generalize well to unseen data. We have argued in the past that finding a model to predict human observers could be viewed as a machine learning problem. Following this approach, in this paper we propose a channelized relevance vector machine (CRVM) to predict human diagnostic scores in a detection task. We have previously used channelized support vector machines (CSVM) to predict human scores and have shown that this approach offers better and more robust predictions than the classical CHO method. The comparison of the proposed CRVM with our previously introduced CSVM method suggests that CRVM can achieve similar generalization accuracy, while dramatically reducing model complexity and computation time.

  14. Some Tours Are More Equal than Others: The Convex-Hull Model Revisited with Lessons for Testing Models of the Traveling Salesperson Problem

    ERIC Educational Resources Information Center

    Tak, Susanne; Plaisier, Marco; van Rooij, Iris

    2008-01-01

    To explain human performance on the "Traveling Salesperson" problem (TSP), MacGregor, Ormerod, and Chronicle (2000) proposed that humans construct solutions according to the steps described by their convex-hull algorithm. Focusing on tour length as the dependent variable, and using only random or semirandom point sets, the authors…

  15. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.

    PubMed

    Kriegeskorte, Nikolaus

    2015-11-24

    Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.

  16. Cognitive Architecture with Evolutionary Dynamics Solves Insight Problem.

    PubMed

    Fedor, Anna; Zachar, István; Szilágyi, András; Öllinger, Michael; de Vladar, Harold P; Szathmáry, Eörs

    2017-01-01

    In this paper, we show that a neurally implemented a cognitive architecture with evolutionary dynamics can solve the four-tree problem. Our model, called Darwinian Neurodynamics, assumes that the unconscious mechanism of problem solving during insight tasks is a Darwinian process. It is based on the evolution of patterns that represent candidate solutions to a problem, and are stored and reproduced by a population of attractor networks. In our first experiment, we used human data as a benchmark and showed that the model behaves comparably to humans: it shows an improvement in performance if it is pretrained and primed appropriately, just like human participants in Kershaw et al. (2013)'s experiment. In the second experiment, we further investigated the effects of pretraining and priming in a two-by-two design and found a beginner's luck type of effect: solution rate was highest in the condition that was primed, but not pretrained with patterns relevant for the task. In the third experiment, we showed that deficits in computational capacity and learning abilities decreased the performance of the model, as expected. We conclude that Darwinian Neurodynamics is a promising model of human problem solving that deserves further investigation.

  17. Cognitive Architecture with Evolutionary Dynamics Solves Insight Problem

    PubMed Central

    Fedor, Anna; Zachar, István; Szilágyi, András; Öllinger, Michael; de Vladar, Harold P.; Szathmáry, Eörs

    2017-01-01

    In this paper, we show that a neurally implemented a cognitive architecture with evolutionary dynamics can solve the four-tree problem. Our model, called Darwinian Neurodynamics, assumes that the unconscious mechanism of problem solving during insight tasks is a Darwinian process. It is based on the evolution of patterns that represent candidate solutions to a problem, and are stored and reproduced by a population of attractor networks. In our first experiment, we used human data as a benchmark and showed that the model behaves comparably to humans: it shows an improvement in performance if it is pretrained and primed appropriately, just like human participants in Kershaw et al. (2013)'s experiment. In the second experiment, we further investigated the effects of pretraining and priming in a two-by-two design and found a beginner's luck type of effect: solution rate was highest in the condition that was primed, but not pretrained with patterns relevant for the task. In the third experiment, we showed that deficits in computational capacity and learning abilities decreased the performance of the model, as expected. We conclude that Darwinian Neurodynamics is a promising model of human problem solving that deserves further investigation. PMID:28405191

  18. Cognition in Space Workshop. 1; Metrics and Models

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara; Fielder, Edna

    2005-01-01

    "Cognition in Space Workshop I: Metrics and Models" was the first in a series of workshops sponsored by NASA to develop an integrated research and development plan supporting human cognition in space exploration. The workshop was held in Chandler, Arizona, October 25-27, 2004. The participants represented academia, government agencies, and medical centers. This workshop addressed the following goal of the NASA Human System Integration Program for Exploration: to develop a program to manage risks due to human performance and human error, specifically ones tied to cognition. Risks range from catastrophic error to degradation of efficiency and failure to accomplish mission goals. Cognition itself includes memory, decision making, initiation of motor responses, sensation, and perception. Four subgoals were also defined at the workshop as follows: (1) NASA needs to develop a human-centered design process that incorporates standards for human cognition, human performance, and assessment of human interfaces; (2) NASA needs to identify and assess factors that increase risks associated with cognition; (3) NASA needs to predict risks associated with cognition; and (4) NASA needs to mitigate risk, both prior to actual missions and in real time. This report develops the material relating to these four subgoals.

  19. Circadian rhythms of performance: new trends

    NASA Technical Reports Server (NTRS)

    Carrier, J.; Monk, T. H.

    2000-01-01

    This brief review is concerned with how human performance efficiency changes as a function of time of day. It presents an overview of some of the research paradigms and conceptual models that have been used to investigate circadian performance rhythms. The influence of homeostatic and circadian processes on performance regulation is discussed. The review also briefly presents recent mathematical models of alertness that have been used to predict cognitive performance. Related topics such as interindividual differences and the postlunch dip are presented.

  20. Augmenting team cognition in human-automation teams performing in complex operational environments.

    PubMed

    Cuevas, Haydee M; Fiore, Stephen M; Caldwell, Barrett S; Strater, Laura

    2007-05-01

    There is a growing reliance on automation (e.g., intelligent agents, semi-autonomous robotic systems) to effectively execute increasingly cognitively complex tasks. Successful team performance for such tasks has become even more dependent on team cognition, addressing both human-human and human-automation teams. Team cognition can be viewed as the binding mechanism that produces coordinated behavior within experienced teams, emerging from the interplay between each team member's individual cognition and team process behaviors (e.g., coordination, communication). In order to better understand team cognition in human-automation teams, team performance models need to address issues surrounding the effect of human-agent and human-robot interaction on critical team processes such as coordination and communication. Toward this end, we present a preliminary theoretical framework illustrating how the design and implementation of automation technology may influence team cognition and team coordination in complex operational environments. Integrating constructs from organizational and cognitive science, our proposed framework outlines how information exchange and updating between humans and automation technology may affect lower-level (e.g., working memory) and higher-level (e.g., sense making) cognitive processes as well as teams' higher-order "metacognitive" processes (e.g., performance monitoring). Issues surrounding human-automation interaction are discussed and implications are presented within the context of designing automation technology to improve task performance in human-automation teams.

  1. Automation effects in a multiloop manual control system

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Mcnally, B. D.

    1986-01-01

    An experimental and analytical study was undertaken to investigate human interaction with a simple multiloop manual control system in which the human's activity was systematically varied by changing the level of automation. The system simulated was the longitudinal dynamics of a hovering helicopter. The automation-systems-stabilized vehicle responses from attitude to velocity to position and also provided for display automation in the form of a flight director. The control-loop structure resulting from the task definition can be considered a simple stereotype of a hierarchical control system. The experimental study was complemented by an analytical modeling effort which utilized simple crossover models of the human operator. It was shown that such models can be extended to the description of multiloop tasks involving preview and precognitive human operator behavior. The existence of time optimal manual control behavior was established for these tasks and the role which internal models may play in establishing human-machine performance was discussed.

  2. Investigation of crew restraint system biomechanics. Report for May 79-Mar 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.S.; Thomson, R.A.; Fiscus, I.B.

    1982-05-01

    Experimental data were collected and analyses were performed to study the influence of the dynamic mechanical properties of restraint system components on human response to impact and restraint system haulback. Tests were accomplished to isolate the characteristics of the restraint system and the human body. Three restraint webbing materials were studied at varied strain rates. A pyrotechnically powered inertia reel was tested, but could not be analytically modeled successfully. Analytical models of the human and restraint system were used to study the influence of restraint material properties changes on human response parameters. An analytical model of a rhesus monkey wasmore » also used to study the efficacy of animal tests and scaling techniques to evaluate restraint systems for human use applications.« less

  3. Palm: Easing the Burden of Analytical Performance Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tallent, Nathan R.; Hoisie, Adolfy

    2014-06-01

    Analytical (predictive) application performance models are critical for diagnosing performance-limiting resources, optimizing systems, and designing machines. Creating models, however, is difficult because they must be both accurate and concise. To ease the burden of performance modeling, we developed Palm, a modeling tool that combines top-down (human-provided) semantic insight with bottom-up static and dynamic analysis. To express insight, Palm defines a source code modeling annotation language. By coordinating models and source code, Palm's models are `first-class' and reproducible. Unlike prior work, Palm formally links models, functions, and measurements. As a result, Palm (a) uses functions to either abstract or express complexitymore » (b) generates hierarchical models (representing an application's static and dynamic structure); and (c) automatically incorporates measurements to focus attention, represent constant behavior, and validate models. We discuss generating models for three different applications.« less

  4. Complexity and dynamics of switched human balance control during quiet standing.

    PubMed

    Nema, Salam; Kowalczyk, Piotr; Loram, Ian

    2015-10-01

    In this paper, we use a combination of numerical simulations, time series analysis, and complexity measures to investigate the dynamics of switched systems with noise, which are often used as models of human balance control during quiet standing. We link the results with complexity measures found in experimental data of human sway motion during quiet standing. The control model ensuring balance, which we use, is based on an act-and-wait control concept, that is, a human controller is switched on when a certain sway angle is reached. Otherwise, there is no active control present. Given a time series data, we determine how does it look a typical pattern of control strategy in our model system. We detect the switched nonlinearity in the system using a frequency analysis method in the absence of noise. We also analyse the effect of time delay on the existence of limit cycles in the system in the absence of noise. We perform the entropy and detrended fluctuation analyses in view of linking the switchings (and the dead zone) with the occurrences of complexity in the model system in the presence of noise. Finally, we perform the entropy and detrended fluctuation analyses on experimental data and link the results with numerical findings in our model example.

  5. Faecal microbiota transplantation: Where did it start? What have studies taught us? Where is it going?

    PubMed

    Chanyi, Ryan M; Craven, Laura; Harvey, Brandon; Reid, Gregor; Silverman, Michael J; Burton, Jeremy P

    2017-01-01

    The composition and activity of microorganisms in the gut, the microbiome, is emerging as an important factor to consider with regard to the treatment of many diseases. Dysbiosis of the normal community has been implicated in inflammatory bowel disease, Crohn's disease, diabetes and, most notoriously, Clostridium difficile infection. In Canada, the leading treatment strategy for recalcitrant C. difficile infection is to receive faecal material which by nature is filled with microorganisms and their metabolites, from a healthy individual, known as a faecal microbiota transplantation. This influx of bacteria into the gut helps to restore the microbiota to a healthy state, preventing C. difficile from causing further disease. Much of what is known with respect to the microbiota and faecal microbiota transplantation comes from animal studies simulating the human disease. Although these models allow researchers to perform studies that would be difficult in humans, they do not always recapitulate the human microbiome. This makes the translation of these results to humans somewhat questionable. The purpose of this review is to analyse these animal models and discuss the advantages and the disadvantages of them in relation to human translation. By understanding some of the limitation of animal models, we will be better able to design and perform experiments of most relevance to human applications.

  6. Operator Performance Measures for Assessing Voice Communication Effectiveness

    DTIC Science & Technology

    1989-07-01

    performance and work- load assessment techniques have been based.I Broadbent (1958) described a limited capacity filter model of human information...INFORMATION PROCESSING 20 3.1.1. Auditory Attention 20 3.1.2. Auditory Memory 24 3.2. MODELS OF INFORMATION PROCESSING 24 3.2.1. Capacity Theories 25...Learning 0 Attention * Language Specialization • Decision Making• Problem Solving Auditory Information Processing Models of Processing Ooemtor

  7. Development of a Navy Job-Specific Vocational Interest Model

    DTIC Science & Technology

    2006-12-01

    The role of job satisfaction in absence behavior. Organizational Behavior and Human Performance , 19, 148-161. Jackofsky, E. F., & Peters, L. H. (1983...Guidance Quarterly, (December), 160-165. Spencer, D. G., & Steers, R. M. (1981). Performance as a moderator of the job- satisfaction -turnover relationship...Application of Process Model to Measurement of Career Choice Satisfaction .............. 9 Content Model of Vocational Interests: Constructs and Structures

  8. Using NASA's GRACE and SMAP satellites to measure human impacts on the water cycle

    NASA Astrophysics Data System (ADS)

    Reager, J. T., II; Castle, S.; Turmon, M.; Famiglietti, J. S.; Fournier, S.

    2017-12-01

    Two satellite missions, the Gravity Recovery and Climate Experiment (GRACE) mission and the Soil Moisture Active Passive (SMAP) mission are enabling the measurement of the dynamic state of the water cycle globally, offering a unique opportunity for the study of human impacts on terrestrial hydrology and an opportunity to quantify the direct augmentation of natural cycles by human activities. While many model-data fusion studies aim to apply observations to improve model performance, we present recent studies on measuring the multi-scale impacts of human activities by differencing or contrasting model simulations and observations. Results that will be presented include studies on: the measurement of human impacts on evapotranspiration in the Colorado River Basin; the estimation of the human portion of groundwater depletion in the Southwestern U.S.; and the influence of irrigation on runoff generation in the Mississippi River basin. Each of these cases has a unique implications for the sustainable use of natural resources by humans, and indicate the relevant extent and magnitude of human influence on natural processes, suggesting their importance for inclusion in hydrology and land-surface models.

  9. Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts

    NASA Astrophysics Data System (ADS)

    Zaherpour, Jamal; Gosling, Simon N.; Mount, Nick; Müller Schmied, Hannes; Veldkamp, Ted I. E.; Dankers, Rutger; Eisner, Stephanie; Gerten, Dieter; Gudmundsson, Lukas; Haddeland, Ingjerd; Hanasaki, Naota; Kim, Hyungjun; Leng, Guoyong; Liu, Junguo; Masaki, Yoshimitsu; Oki, Taikan; Pokhrel, Yadu; Satoh, Yusuke; Schewe, Jacob; Wada, Yoshihide

    2018-06-01

    Global-scale hydrological models are routinely used to assess water scarcity, flood hazards and droughts worldwide. Recent efforts to incorporate anthropogenic activities in these models have enabled more realistic comparisons with observations. Here we evaluate simulations from an ensemble of six models participating in the second phase of the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP2a). We simulate monthly runoff in 40 catchments, spatially distributed across eight global hydrobelts. The performance of each model and the ensemble mean is examined with respect to their ability to replicate observed mean and extreme runoff under human-influenced conditions. Application of a novel integrated evaluation metric to quantify the models’ ability to simulate timeseries of monthly runoff suggests that the models generally perform better in the wetter equatorial and northern hydrobelts than in drier southern hydrobelts. When model outputs are temporally aggregated to assess mean annual and extreme runoff, the models perform better. Nevertheless, we find a general trend in the majority of models towards the overestimation of mean annual runoff and all indicators of upper and lower extreme runoff. The models struggle to capture the timing of the seasonal cycle, particularly in northern hydrobelts, while in southern hydrobelts the models struggle to reproduce the magnitude of the seasonal cycle. It is noteworthy that over all hydrological indicators, the ensemble mean fails to perform better than any individual model—a finding that challenges the commonly held perception that model ensemble estimates deliver superior performance over individual models. The study highlights the need for continued model development and improvement. It also suggests that caution should be taken when summarising the simulations from a model ensemble based upon its mean output.

  10. Towards Assessing the Human Trajectory Planning Horizon

    PubMed Central

    Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk

    2016-01-01

    Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models. PMID:27936015

  11. Towards Assessing the Human Trajectory Planning Horizon.

    PubMed

    Carton, Daniel; Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk

    2016-01-01

    Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models.

  12. Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties.

    PubMed

    Zhang, Jing; Tian, Jiabin; Ta, Na; Huang, Xinsheng; Rao, Zhushi

    2016-08-01

    Finite element method was employed in this study to analyze the change in performance of implantable hearing devices due to the consideration of soft tissues' viscoelasticity. An integrated finite element model of human ear including the external ear, middle ear and inner ear was first developed via reverse engineering and analyzed by acoustic-structure-fluid coupling. Viscoelastic properties of soft tissues in the middle ear were taken into consideration in this model. The model-derived dynamic responses including middle ear and cochlea functions showed a better agreement with experimental data at high frequencies above 3000 Hz than the Rayleigh-type damping. On this basis, a coupled finite element model consisting of the human ear and a piezoelectric actuator attached to the long process of incus was further constructed. Based on the electromechanical coupling analysis, equivalent sound pressure and power consumption of the actuator corresponding to viscoelasticity and Rayleigh damping were calculated using this model. The analytical results showed that the implant performance of the actuator evaluated using a finite element model considering viscoelastic properties gives a lower output above about 3 kHz than does Rayleigh damping model. Finite element model considering viscoelastic properties was more accurate to numerically evaluate implantable hearing devices. © IMechE 2016.

  13. Interrelationship of Knowledge, Interest, and Recall: Assessing a Model of Domain Learning.

    ERIC Educational Resources Information Center

    Alexander, Patricia A.; And Others

    1995-01-01

    Two experiments involving 125 college and graduate students examined the interrelationship of subject-matter knowledge, interest, and recall in the field of human immunology and biology and assessed cross-domain performance in physics. Patterns of knowledge, interest, and performance fit well with the premises of the Model of Domain Learning. (SLD)

  14. The SACADA database for human reliability and human performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. James Chang; Dennis Bley; Lawrence Criscione

    2014-05-01

    Lack of appropriate and sufficient human performance data has been identified as a key factor affecting human reliability analysis (HRA) quality especially in the estimation of human error probability (HEP). The Scenario Authoring, Characterization, and Debriefing Application (SACADA) database was developed by the U.S. Nuclear Regulatory Commission (NRC) to address this data need. An agreement between NRC and the South Texas Project Nuclear Operating Company (STPNOC) was established to support the SACADA development with aims to make the SACADA tool suitable for implementation in the nuclear power plants' operator training program to collect operator performance information. The collected data wouldmore » support the STPNOC's operator training program and be shared with the NRC for improving HRA quality. This paper discusses the SACADA data taxonomy, the theoretical foundation, the prospective data to be generated from the SACADA raw data to inform human reliability and human performance, and the considerations on the use of simulator data for HRA. Each SACADA data point consists of two information segments: context and performance results. Context is a characterization of the performance challenges to task success. The performance results are the results of performing the task. The data taxonomy uses a macrocognitive functions model for the framework. At a high level, information is classified according to the macrocognitive functions of detecting the plant abnormality, understanding the abnormality, deciding the response plan, executing the response plan, and team related aspects (i.e., communication, teamwork, and supervision). The data are expected to be useful for analyzing the relations between context, error modes and error causes in human performance.« less

  15. Dual learning processes underlying human decision-making in reversal learning tasks: functional significance and evidence from the model fit to human behavior

    PubMed Central

    Bai, Yu; Katahira, Kentaro; Ohira, Hideki

    2014-01-01

    Humans are capable of correcting their actions based on actions performed in the past, and this ability enables them to adapt to a changing environment. The computational field of reinforcement learning (RL) has provided a powerful explanation for understanding such processes. Recently, the dual learning system, modeled as a hybrid model that incorporates value update based on reward-prediction error and learning rate modulation based on the surprise signal, has gained attention as a model for explaining various neural signals. However, the functional significance of the hybrid model has not been established. In the present study, we used computer simulation in a reversal learning task to address functional significance in a probabilistic reversal learning task. The hybrid model was found to perform better than the standard RL model in a large parameter setting. These results suggest that the hybrid model is more robust against the mistuning of parameters compared with the standard RL model when decision-makers continue to learn stimulus-reward contingencies, which can create abrupt changes. The parameter fitting results also indicated that the hybrid model fit better than the standard RL model for more than 50% of the participants, which suggests that the hybrid model has more explanatory power for the behavioral data than the standard RL model. PMID:25161635

  16. Human perception testing methodology for evaluating EO/IR imaging systems

    NASA Astrophysics Data System (ADS)

    Graybeal, John J.; Monfort, Samuel S.; Du Bosq, Todd W.; Familoni, Babajide O.

    2018-04-01

    The U.S. Army's RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) Perception Lab is tasked with supporting the development of sensor systems for the U.S. Army by evaluating human performance of emerging technologies. Typical research questions involve detection, recognition and identification as a function of range, blur, noise, spectral band, image processing techniques, image characteristics, and human factors. NVESD's Perception Lab provides an essential bridge between the physics of the imaging systems and the performance of the human operator. In addition to quantifying sensor performance, perception test results can also be used to generate models of human performance and to drive future sensor requirements. The Perception Lab seeks to develop and employ scientifically valid and efficient perception testing procedures within the practical constraints of Army research, including rapid development timelines for critical technologies, unique guidelines for ethical testing of Army personnel, and limited resources. The purpose of this paper is to describe NVESD Perception Lab capabilities, recent methodological improvements designed to align our methodology more closely with scientific best practice, and to discuss goals for future improvements and expanded capabilities. Specifically, we discuss modifying our methodology to improve training, to account for human fatigue, to improve assessments of human performance, and to increase experimental design consultation provided by research psychologists. Ultimately, this paper outlines a template for assessing human perception and overall system performance related to EO/IR imaging systems.

  17. Computational Modeling of Emotions and Affect in Social-Cultural Interaction

    DTIC Science & Technology

    2013-10-02

    acoustic and textual information sources. Second, a cross-lingual study was performed that shed light on how human perception and automatic recognition...speech is produced, a speaker’s pitch and intonational pattern, and word usage. Better feature representation and advanced approaches were used to...recognition performance, and improved our understanding of language/cultural impact on human perception of emotion and automatic classification. • Units

  18. Improving Team Performance: Proceedings of the Rand Team Performance Workshop.

    DTIC Science & Technology

    1980-08-01

    organization theory, small group processes, cognitive psychologi training and instruction , decision theory, artificial intelligence, and human engineering...theory, small group processes, cognitive psy- chology, training and instruction , heuristic modeling, decision theory, and human engineering. Within...interact with. The operators are taught about the equipment and how it works; the actual job is left to be learned aboard ship. The cognitive processes the

  19. Minimum resolvable power contrast model

    NASA Astrophysics Data System (ADS)

    Qian, Shuai; Wang, Xia; Zhou, Jingjing

    2018-01-01

    Signal-to-noise ratio and MTF are important indexs to evaluate the performance of optical systems. However,whether they are used alone or joint assessment cannot intuitively describe the overall performance of the system. Therefore, an index is proposed to reflect the comprehensive system performance-Minimum Resolvable Radiation Performance Contrast (MRP) model. MRP is an evaluation model without human eyes. It starts from the radiance of the target and the background, transforms the target and background into the equivalent strips,and considers attenuation of the atmosphere, the optical imaging system, and the detector. Combining with the signal-to-noise ratio and the MTF, the Minimum Resolvable Radiation Performance Contrast is obtained. Finally the detection probability model of MRP is given.

  20. Recent technology products from Space Human Factors research

    NASA Technical Reports Server (NTRS)

    Jenkins, James P.

    1991-01-01

    The goals of the NASA Space Human Factors program and the research carried out concerning human factors are discussed with emphasis given to the development of human performance models, data, and tools. The major products from this program are described, which include the Laser Anthropometric Mapping System; a model of the human body for evaluating the kinematics and dynamics of human motion and strength in microgravity environment; an operational experience data base for verifying and validating the data repository of manned space flights; the Operational Experience Database Taxonomy; and a human-computer interaction laboratory whose products are the display softaware and requirements and the guideline documents and standards for applications on human-computer interaction. Special attention is given to the 'Convoltron', a prototype version of a signal processor for synthesizing the head-related transfer functions.

  1. Deep ART Neural Model for Biologically Inspired Episodic Memory and Its Application to Task Performance of Robots.

    PubMed

    Park, Gyeong-Moon; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan; Gyeong-Moon Park; Yong-Ho Yoo; Deok-Hwa Kim; Jong-Hwan Kim; Yoo, Yong-Ho; Park, Gyeong-Moon; Kim, Jong-Hwan; Kim, Deok-Hwa

    2018-06-01

    Robots are expected to perform smart services and to undertake various troublesome or difficult tasks in the place of humans. Since these human-scale tasks consist of a temporal sequence of events, robots need episodic memory to store and retrieve the sequences to perform the tasks autonomously in similar situations. As episodic memory, in this paper we propose a novel Deep adaptive resonance theory (ART) neural model and apply it to the task performance of the humanoid robot, Mybot, developed in the Robot Intelligence Technology Laboratory at KAIST. Deep ART has a deep structure to learn events, episodes, and even more like daily episodes. Moreover, it can retrieve the correct episode from partial input cues robustly. To demonstrate the effectiveness and applicability of the proposed Deep ART, experiments are conducted with the humanoid robot, Mybot, for performing the three tasks of arranging toys, making cereal, and disposing of garbage.

  2. Attributing runoff changes to climate variability and human activities: uncertainty analysis using four monthly water balance models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuai; Xiong, Lihua; Li, Hong-Yi

    2015-05-26

    Hydrological simulations to delineate the impacts of climate variability and human activities are subjected to uncertainties related to both parameter and structure of the hydrological models. To analyze the impact of these uncertainties on the model performance and to yield more reliable simulation results, a global calibration and multimodel combination method that integrates the Shuffled Complex Evolution Metropolis (SCEM) and Bayesian Model Averaging (BMA) of four monthly water balance models was proposed. The method was applied to the Weihe River Basin (WRB), the largest tributary of the Yellow River, to determine the contribution of climate variability and human activities tomore » runoff changes. The change point, which was used to determine the baseline period (1956-1990) and human-impacted period (1991-2009), was derived using both cumulative curve and Pettitt’s test. Results show that the combination method from SCEM provides more skillful deterministic predictions than the best calibrated individual model, resulting in the smallest uncertainty interval of runoff changes attributed to climate variability and human activities. This combination methodology provides a practical and flexible tool for attribution of runoff changes to climate variability and human activities by hydrological models.« less

  3. Opening the black box in nursing work and management practice: the role of ward managers.

    PubMed

    Townsend, Keith; Wilkinson, Adrian; Kellner, Ashlea

    2015-03-01

    This paper aims to identify and explore key obstacles preventing ward managers from effectively performing the human resource management (HRM) responsibilities required in their role. In the context of increasing costs and the decentralisation of responsibility to ward level, the relevance of the ward manager role within the 'black box' between human resource management and firm performance is becoming increasingly pertinent. This paper presents an intensive case study including 37 interviews across all levels of a hospital where senior management attempted to shift to a high performance model of human resource management. The findings indicated that ward managers played a critical role in maintaining and improving employee performance, although they were restricted from effectively performing their responsibilities due to budget pressure and limited managerial skill development. Our findings support the contention that hospitals would benefit from focusing on the critical role of the ward manager as the central locus of influence in high performance human resource management (HPHRM) systems. Investment into high performance human resource management is discouraged if the hospital cannot adequately enable ward managers who are responsible for implementation. Introduction of managerial skills training to potential and existing ward managers is critical. © 2013 John Wiley & Sons Ltd.

  4. Simulation-Based Design for Wearable Robotic Systems: An Optimization Framework for Enhancing a Standing Long Jump.

    PubMed

    Ong, Carmichael F; Hicks, Jennifer L; Delp, Scott L

    2016-05-01

    Technologies that augment human performance are the focus of intensive research and development, driven by advances in wearable robotic systems. Success has been limited by the challenge of understanding human-robot interaction. To address this challenge, we developed an optimization framework to synthesize a realistic human standing long jump and used the framework to explore how simulated wearable robotic devices might enhance jump performance. A planar, five-segment, seven-degree-of-freedom model with physiological torque actuators, which have variable torque capacity depending on joint position and velocity, was used to represent human musculoskeletal dynamics. An active augmentation device was modeled as a torque actuator that could apply a single pulse of up to 100 Nm of extension torque. A passive design was modeled as rotational springs about each lower limb joint. Dynamic optimization searched for physiological and device actuation patterns to maximize jump distance. Optimization of the nominal case yielded a 2.27 m jump that captured salient kinematic and kinetic features of human jumps. When the active device was added to the ankle, knee, or hip, jump distance increased to between 2.49 and 2.52 m. Active augmentation of all three joints increased the jump distance to 3.10 m. The passive design increased jump distance to 3.32 m by adding torques of 135, 365, and 297 Nm to the ankle, knee, and hip, respectively. Dynamic optimization can be used to simulate a standing long jump and investigate human-robot interaction. Simulation can aid in the design of performance-enhancing technologies.

  5. Human sleep and circadian rhythms: a simple model based on two coupled oscillators.

    PubMed

    Strogatz, S H

    1987-01-01

    We propose a model of the human circadian system. The sleep-wake and body temperature rhythms are assumed to be driven by a pair of coupled nonlinear oscillators described by phase variables alone. The novel aspect of the model is that its equations may be solved analytically. Computer simulations are used to test the model against sleep-wake data pooled from 15 studies of subjects living for weeks in unscheduled, time-free environments. On these tests the model performs about as well as the existing models, although its mathematical structure is far simpler.

  6. MANAGEMENT AND DISSEMINATION OF HUMAN EXPOSURE DATABASES AND OTHER DATABASES NEEDED FOR HUMAN EXPOSURE MODELING AND ANALYSIS

    EPA Science Inventory

    Researchers in the National Exposure Research Laboratory (NERL) have performed a number of large human exposure measurement studies during the past decade. It is the goal of the NERL to make the data available to other researchers for analysis in order to further the scientific ...

  7. Human resources management and firm performance: The differential role of managerial affective and continuance commitment.

    PubMed

    Gong, Yaping; Law, Kenneth S; Chang, Song; Xin, Katherine R

    2009-01-01

    In this study, the authors developed a dual-concern (i.e., maintenance and performance) model of human resources (HR) management. The authors identified commonly examined HR practices that apply to the middle manager level and classified them into the maintenance- and performance-oriented HR subsystems. The authors found support for the 2-factor model on the basis of responses from 2,148 managers from 463 firms operating in China. Regression results indicate that the performance-oriented HR subsystems had a positive relationship with firm performance and that the relationship was mediated by middle managers' affective commitment to the firm. The maintenance-oriented HR subsystems had a positive relationship with middle managers' continuance commitment but not with their affective commitment and firm performance. This study contributes to the understanding of how HR practices relate to firm performance and offers an improved test of the argument that valuable and firm-specific HR provide a source of competitive advantage. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  8. Modeling agent's preferences by its designer's social value orientation

    NASA Astrophysics Data System (ADS)

    Zuckerman, Inon; Cheng, Kan-Leung; Nau, Dana S.

    2018-03-01

    Human social preferences have been shown to play an important role in many areas of decision-making. There is evidence from the social science literature that human preferences in interpersonal interactions depend partly on a measurable personality trait called, Social Value Orientation (SVO). Automated agents are often written by humans to serve as their delegates when interacting with other agents. Thus, one might expect an agent's behaviour to be influenced by the SVO of its human designer. With that in mind, we present the following: first, we explore, discuss and provide a solution to the question of how SVO tests that were designed for humans can be used to evaluate agents' social preferences. Second, we show that in our example domain there is a medium-high positive correlation between the social preferences of agents and their human designers. Third, we exemplify how the SVO information of the designer can be used to improve the performance of some other agents playing against those agents, and lastly, we develop and exemplify the behavioural signature SVO model which allows us to better predict performances when interactions are repeated and behaviour is adapted.

  9. Analysis of Endothelial Adherence of Bartonella henselae and Acinetobacter baumannii Using a Dynamic Human Ex Vivo Infection Model

    PubMed Central

    Weidensdorfer, Marko; Chae, Ju Ik; Makobe, Celestine; Stahl, Julia; Averhoff, Beate; Müller, Volker; Schürmann, Christoph; Brandes, Ralf P.; Wilharm, Gottfried; Ballhorn, Wibke; Christ, Sara; Linke, Dirk; Fischer, Doris; Göttig, Stephan

    2015-01-01

    Bacterial adherence determines the virulence of many human-pathogenic bacteria. Experimental approaches elucidating this early infection event in greater detail have been performed using mainly methods of cellular microbiology. However, in vitro infections of cell monolayers reflect the in vivo situation only partially, and animal infection models are not available for many human-pathogenic bacteria. Therefore, ex vivo infection of human organs might represent an attractive method to overcome these limitations. We infected whole human umbilical cords ex vivo with Bartonella henselae or Acinetobacter baumannii under dynamic flow conditions mimicking the in vivo infection situation of human endothelium. For this purpose, methods for quantifying endothelium-adherent wild-type and trimeric autotransporter adhesin (TAA)-deficient bacteria were set up. Data revealed that (i) A. baumannii binds in a TAA-dependent manner to endothelial cells, (ii) this organ infection model led to highly reproducible adherence rates, and furthermore, (iii) this model allowed to dissect the biological function of TAAs in the natural course of human infections. These findings indicate that infection models using ex vivo human tissue samples (“organ microbiology”) might be a valuable tool in analyzing bacterial pathogenicity with the capacity to replace animal infection models at least partially. PMID:26712205

  10. Quasi-supervised scoring of human sleep in polysomnograms using augmented input variables.

    PubMed

    Yaghouby, Farid; Sunderam, Sridhar

    2015-04-01

    The limitations of manual sleep scoring make computerized methods highly desirable. Scoring errors can arise from human rater uncertainty or inter-rater variability. Sleep scoring algorithms either come as supervised classifiers that need scored samples of each state to be trained, or as unsupervised classifiers that use heuristics or structural clues in unscored data to define states. We propose a quasi-supervised classifier that models observations in an unsupervised manner but mimics a human rater wherever training scores are available. EEG, EMG, and EOG features were extracted in 30s epochs from human-scored polysomnograms recorded from 42 healthy human subjects (18-79 years) and archived in an anonymized, publicly accessible database. Hypnograms were modified so that: 1. Some states are scored but not others; 2. Samples of all states are scored but not for transitional epochs; and 3. Two raters with 67% agreement are simulated. A framework for quasi-supervised classification was devised in which unsupervised statistical models-specifically Gaussian mixtures and hidden Markov models--are estimated from unlabeled training data, but the training samples are augmented with variables whose values depend on available scores. Classifiers were fitted to signal features incorporating partial scores, and used to predict scores for complete recordings. Performance was assessed using Cohen's Κ statistic. The quasi-supervised classifier performed significantly better than an unsupervised model and sometimes as well as a completely supervised model despite receiving only partial scores. The quasi-supervised algorithm addresses the need for classifiers that mimic scoring patterns of human raters while compensating for their limitations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Stereo chromatic contrast sensitivity model to blue-yellow gratings.

    PubMed

    Yang, Jiachen; Lin, Yancong; Liu, Yun

    2016-03-07

    As a fundamental metric of human visual system (HVS), contrast sensitivity function (CSF) is typically measured by sinusoidal gratings at the detection of thresholds for psychophysically defined cardinal channels: luminance, red-green, and blue-yellow. Chromatic CSF, which is a quick and valid index to measure human visual performance and various retinal diseases in two-dimensional (2D) space, can not be directly applied into the measurement of human stereo visual performance. And no existing perception model considers the influence of chromatic CSF of inclined planes on depth perception in three-dimensional (3D) space. The main aim of this research is to extend traditional chromatic contrast sensitivity characteristics to 3D space and build a model applicable in 3D space, for example, strengthening stereo quality of 3D images. This research also attempts to build a vision model or method to check human visual characteristics of stereo blindness. In this paper, CRT screen was clockwise and anti-clockwise rotated respectively to form the inclined planes. Four inclined planes were selected to investigate human chromatic vision in 3D space and contrast threshold of each inclined plane was measured with 18 observers. Stimuli were isoluminant blue-yellow sinusoidal gratings. Horizontal spatial frequencies ranged from 0.05 to 5 c/d. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. According to the relationship between spatial frequency of inclined plane and horizontal spatial frequency, the chromatic contrast sensitivity characteristics in 3D space have been modeled based on the experimental data. The results show that the proposed model can well predicted human chromatic contrast sensitivity characteristics in 3D space.

  12. Human Factors and Their Effects on Human-Centred Assembly Systems - A Literature Review-Based Study

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Abubakar, M. I.

    2017-09-01

    If a product has more than one component, then it must be assembled. Assembly of products relies on assembly systems or lines in which assembly of each product is often carried out manually by human workers following assembly sequences in various forms. It is widely understood that efficiency of assembling a product by reducing assembly times (therefore costs) is vital particularly for small and medium-sized manufacturing companies to survive in an increasingly competitive market. Ideally, it is helpful for pre-determining efficiency or productivity of a human-centred assembly system at the early design stage. To date, most research on performance of an assembly system using modelling simulation methods is focused on its “operational functions”. The term used in a narrow sense always indicates the performance of the “operational system”, which does not incorporate the effect of human factors that may also affect the system performance. This paper presents a research outcome of findings through a literature review-based study by identifying possible human factors that mostly affect the performance on human-centred manufacturing systems as part of the research project incorporating parameters of human factors into a DES (discrete event simulation) tool.

  13. Teaching Human Genetics with Mustard: Rapid Cycling Brassica rapa (Fast Plants Type) as a Model for Human Genetics in the Classroom Laboratory

    PubMed Central

    Pickard, Dawn

    2007-01-01

    We have developed experiments and materials to model human genetics using rapid cycling Brassica rapa, also known as Fast Plants. Because of their self-incompatibility for pollination and the genetic diversity within strains, B. rapa can serve as a relevant model for human genetics in teaching laboratory experiments. The experiment presented here is a paternity exclusion project in which a child is born with a known mother but two possible alleged fathers. Students use DNA markers (microsatellites) to perform paternity exclusion on these subjects. Realistic DNA marker analysis can be challenging to implement within the limitations of an instructional lab, but we have optimized the experimental methods to work in a teaching lab environment and to maximize the “hands-on” experience for the students. The genetic individuality of each B. rapa plant, revealed by analysis of polymorphic microsatellite markers, means that each time students perform this project, they obtain unique results that foster independent thinking in the process of data interpretation. PMID:17548880

  14. Expression analysis of MDR1, BCRP and MRP3 transporter proteins in different in vitro and ex vivo cornea models for drug absorption studies.

    PubMed

    Verstraelen, Jessica; Reichl, Stephan

    2013-01-30

    Ocular drug absorption studies are required for the development of new drugs or drug delivery systems for eye treatment. Such preclinical investigations on transcorneal drug absorption are performed ex vivo with the excised corneas of experimental animals or in vitro using corneal cell culture models. The data currently available on the expression of ABC transporter proteins in corneal tissue is limited or contradictory. This study describes, for the first time, the comparison of the expression of ABC transporters, in particular, MDR1, BCRP and MRP3, between human cornea cell culture models and the most commonly used ex vivo models, namely, rabbit and porcine corneas, conducted in the same laboratory. The expression levels and functionality were determined by means of PCR, western blot, immunohistochemistry and bidirectional permeation studies using specific substrates and inhibitors. The results clearly indicate species-dependent expression of the studied efflux transporters. In the rabbit cornea, the expression and activity of MDR1 transporter was confirmed, whereas human cell culture models and porcine corneas did not show MDR1 expression. However, human cornea models possessed MRP3 and BCRP expression, whereas no functional expression was found in rabbit and porcine corneas. Therefore, the translation of transcorneal permeation data from animal experiments to humans should be performed with caution. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Modeling Physiological Systems in the Human Body as Networks of Quasi-1D Fluid Flows

    NASA Astrophysics Data System (ADS)

    Staples, Anne

    2008-11-01

    Extensive research has been done on modeling human physiology. Most of this work has been aimed at developing detailed, three-dimensional models of specific components of physiological systems, such as a cell, a vein, a molecule, or a heart valve. While efforts such as these are invaluable to our understanding of human biology, if we were to construct a global model of human physiology with this level of detail, computing even a nanosecond in this computational being's life would certainly be prohibitively expensive. With this in mind, we derive the Pulsed Flow Equations, a set of coupled one-dimensional partial differential equations, specifically designed to capture two-dimensional viscous, transport, and other effects, and aimed at providing accurate and fast-to-compute global models for physiological systems represented as networks of quasi one-dimensional fluid flows. Our goal is to be able to perform faster-than-real time simulations of global processes in the human body on desktop computers.

  16. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. Copyright © 2015 the authors 0270-6474/15/3513402-17$15.00/0.

  17. Modeling and control of operator functional state in a unified framework of fuzzy inference petri nets.

    PubMed

    Zhang, Jian-Hua; Xia, Jia-Jun; Garibaldi, Jonathan M; Groumpos, Petros P; Wang, Ru-Bin

    2017-06-01

    In human-machine (HM) hybrid control systems, human operator and machine cooperate to achieve the control objectives. To enhance the overall HM system performance, the discrete manual control task-load by the operator must be dynamically allocated in accordance with continuous-time fluctuation of psychophysiological functional status of the operator, so-called operator functional state (OFS). The behavior of the HM system is hybrid in nature due to the co-existence of discrete task-load (control) variable and continuous operator performance (system output) variable. Petri net is an effective tool for modeling discrete event systems, but for hybrid system involving discrete dynamics, generally Petri net model has to be extended. Instead of using different tools to represent continuous and discrete components of a hybrid system, this paper proposed a method of fuzzy inference Petri nets (FIPN) to represent the HM hybrid system comprising a Mamdani-type fuzzy model of OFS and a logical switching controller in a unified framework, in which the task-load level is dynamically reallocated between the operator and machine based on the model-predicted OFS. Furthermore, this paper used a multi-model approach to predict the operator performance based on three electroencephalographic (EEG) input variables (features) via the Wang-Mendel (WM) fuzzy modeling method. The membership function parameters of fuzzy OFS model for each experimental participant were optimized using artificial bee colony (ABC) evolutionary algorithm. Three performance indices, RMSE, MRE, and EPR, were computed to evaluate the overall modeling accuracy. Experiment data from six participants are analyzed. The results show that the proposed method (FIPN with adaptive task allocation) yields lower breakdown rate (from 14.8% to 3.27%) and higher human performance (from 90.30% to 91.99%). The simulation results of the FIPN-based adaptive HM (AHM) system on six experimental participants demonstrate that the FIPN framework provides an effective way to model and regulate/optimize the OFS in HM hybrid systems composed of continuous-time OFS model and discrete-event switching controller. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A human body model for efficient numerical characterization of UWB signal propagation in wireless body area networks.

    PubMed

    Lim, Hooi Been; Baumann, Dirk; Li, Er-Ping

    2011-03-01

    Wireless body area network (WBAN) is a new enabling system with promising applications in areas such as remote health monitoring and interpersonal communication. Reliable and optimum design of a WBAN system relies on a good understanding and in-depth studies of the wave propagation around a human body. However, the human body is a very complex structure and is computationally demanding to model. This paper aims to investigate the effects of the numerical model's structure complexity and feature details on the simulation results. Depending on the application, a simplified numerical model that meets desired simulation accuracy can be employed for efficient simulations. Measurements of ultra wideband (UWB) signal propagation along a human arm are performed and compared to the simulation results obtained with numerical arm models of different complexity levels. The influence of the arm shape and size, as well as tissue composition and complexity is investigated.

  19. A rationale for human operator pulsive control behavior

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1979-01-01

    When performing tracking tasks which involve demanding controlled elements such as those with K/s-squared dynamics, the human operator often develops discrete or pulsive control outputs. A dual-loop model of the human operator is discussed, the dominant adaptive feature of which is the explicit appearance of an internal model of the manipulator-controlled element dynamics in an inner feedback loop. Using this model, a rationale for pulsive control behavior is offered which is based upon the assumption that the human attempts to reduce the computational burden associated with time integration of sensory inputs. It is shown that such time integration is a natural consequence of having an internal representation of the K/s-squared-controlled element dynamics in the dual-loop model. A digital simulation is discussed in which a modified form of the dual-loop model is shown to be capable of producing pulsive control behavior qualitively comparable to that obtained in experiment.

  20. Effective Team Support: From Task and Cognitive Modeling to Software Agents for Time-Critical Complex Work Environments

    NASA Technical Reports Server (NTRS)

    Remington, Roger W. (Technical Monitor); John, Bonnie E.; Sycara, Katia

    2005-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in completing a system for empirical data collection, cognitive modeling, and the building of software agents to support a team's tasks, and in running experiments for the collection of baseline data.

  1. Information Presentation

    NASA Technical Reports Server (NTRS)

    Holden, Kritina L.; Thompson, Shelby G.; Sandor, Aniko; McCann, Robert S.; Kaiser, Mary K.; Adelstein, Barnard D.; Begault, Durand R.; Beutter, Brent R.; Stone, Leland S.; Godfroy, Martine

    2009-01-01

    The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew. In addition to addressing display design issues associated with information formatting, style, layout, and interaction, the Information Presentation DRP is also working toward understanding the effects of extreme environments encountered in space travel on information processing. Work is also in progress to refine human factors-based design tools, such as human performance modeling, that will supplement traditional design techniques and help ensure that optimal information design is accomplished in the most cost-efficient manner. The major areas of work, or subtasks, within the Information Presentation DRP for FY10 are: 1) Displays, 2) Controls, 3) Procedures and Fault Management, and 4) Human Performance Modeling. The poster will highlight completed and planned work for each subtask.

  2. Learning from Video Modeling Examples: Does Gender Matter?

    ERIC Educational Resources Information Center

    Hoogerheide, Vincent; Loyens, Sofie M. M.; van Gog, Tamara

    2016-01-01

    Online learning from video modeling examples, in which a human model demonstrates and explains how to perform a learning task, is an effective instructional method that is increasingly used nowadays. However, model characteristics such as gender tend to differ across videos, and the model-observer similarity hypothesis suggests that such…

  3. Human performance modeling for system of systems analytics: combat performance-shaping factors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, Craig R.; Miller, Dwight Peter

    The US military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives. To support this goal, Sandia National Laboratories (SNL) has undertaken a program of HPM as an integral augmentation to its system-of-system (SoS) analytics capabilities. The previous effort, reported in SAND2005-6569, evaluated the effects of soldier cognitive fatigue on SoS performance. The current effort began with a very broad survey of any performance-shaping factors (PSFs) that also might affect soldiers performance in combat situations. The work included consideration of three different approaches to cognition modeling and how appropriate theymore » would be for application to SoS analytics. This bulk of this report categorizes 47 PSFs into three groups (internal, external, and task-related) and provides brief descriptions of how each affects combat performance, according to the literature. The PSFs were then assembled into a matrix with 22 representative military tasks and assigned one of four levels of estimated negative impact on task performance, based on the literature. Blank versions of the matrix were then sent to two ex-military subject-matter experts to be filled out based on their personal experiences. Data analysis was performed to identify the consensus most influential PSFs. Results indicate that combat-related injury, cognitive fatigue, inadequate training, physical fatigue, thirst, stress, poor perceptual processing, and presence of chemical agents are among the PSFs with the most negative impact on combat performance.« less

  4. Human Activity Recognition by Combining a Small Number of Classifiers.

    PubMed

    Nazabal, Alfredo; Garcia-Moreno, Pablo; Artes-Rodriguez, Antonio; Ghahramani, Zoubin

    2016-09-01

    We consider the problem of daily human activity recognition (HAR) using multiple wireless inertial sensors, and specifically, HAR systems with a very low number of sensors, each one providing an estimation of the performed activities. We propose new Bayesian models to combine the output of the sensors. The models are based on a soft outputs combination of individual classifiers to deal with the small number of sensors. We also incorporate the dynamic nature of human activities as a first-order homogeneous Markov chain. We develop both inductive and transductive inference methods for each model to be employed in supervised and semisupervised situations, respectively. Using different real HAR databases, we compare our classifiers combination models against a single classifier that employs all the signals from the sensors. Our models exhibit consistently a reduction of the error rate and an increase of robustness against sensor failures. Our models also outperform other classifiers combination models that do not consider soft outputs and an Markovian structure of the human activities.

  5. Man-Machine Integration Design and Analysis System (MIDAS) v5: Augmentations, Motivations, and Directions for Aeronautics Applications

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2011-01-01

    As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.

  6. HPT: The Culture Factor.

    ERIC Educational Resources Information Center

    Addison, Roger M.; Wittkuhn, Klaus D.

    2001-01-01

    Discusses the challenges in managing performance across national cultures and within changing corporate cultures. Describes two human performance technology tools that can help performance consultants understand different cultures and provide the basis for successful management action: the culture audit and the systems model that can be adapted…

  7. Recent trends in digital human modeling and the concurrent issues that face human modeling approach

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Gonzalez, L. Javier; Margerum, Sarah; Clowers, Kurt; Moreny, Richard; Abercomby, Andrew; Velasquez, Luis

    2006-01-01

    Tremendous strides have been made in the recent years to digitally represent human beings in computer simulation models ranging from assembly plant maintenance operations to occupants getting in and out of vehicles to action movie scenarios. While some of these tools are being actively pursued by the engineering communities, there is still a lot of work that remains to be done for the newly planned planetary exploration missions. For example, certain unique and several common challenges are seen in developing computer generated suited human models for designing the next generation space vehicle. The purpose of this presentation is to discuss NASA s potential needs for better human models and to show also many of the inherent yet not too obvious pitfalls that still are left unresolved in this new arena of digital human modeling. As part of NASA s Habitability and Human Factors Branch, the Anthropometry and Biomechanics Facility has been engaged in studying the various facets of computer generated human physical performance models; for instance, it has been engaged in utilizing three-dimensional laser scan data along with three dimensional video based motion and reach data to gather suited anthropometric and shape and size information that are not available yet in the form of computer mannequins. Our goal is to bring in new approaches to deal with heavily clothed humans (such as, suited astronauts) and to overcome the current limitations of wrongly identifying humans (either real or virtual) as univariate percentiles. We are looking at whole-body posture based anthropometric models as a means to identify humans of significantly different shapes and sizes to arrive at mathematically sound computer models for analytical purposes.

  8. Analysis of joint force and torque for the human and non-human ape foot during bipedal walking with implications for the evolution of the foot.

    PubMed

    Wang, Weijie; Abboud, Rami J; Günther, Michael M; Crompton, Robin H

    2014-08-01

    The feet of apes have a different morphology from those of humans. Until now, it has merely been assumed that the morphology seen in humans must be adaptive for habitual bipedal walking, as the habitual use of bipedal walking is generally regarded as one of the most clear-cut differences between humans and apes. This study asks simply whether human skeletal proportions do actually enhance foot performance during human-like bipedalism, by examining the influence of foot proportions on force, torque and work in the foot joints during simulated bipedal walking. Skeletons of the common chimpanzee, orangutan, gorilla and human were represented by multi-rigid-body models, where the components of the foot make external contact via finite element surfaces. The models were driven by identical joint motion functions collected from experiments on human walking. Simulated contact forces between the ground and the foot were found to be reasonably comparable with measurements made during human walking using pressure- and force-platforms. Joint force, torque and work in the foot were then predicted. Within the limitations of our model, the results show that during simulated human-like bipedal walking, (1) the human and non-human ape (NHA) feet carry similar joint forces, although the distributions of the forces differ; (2) the NHA foot incurs larger joint torques than does the human foot, although the human foot has higher values in the first tarso-metatarsal and metatarso-phalangeal joints, whereas the NHA foot incurs higher values in the lateral digits; and (3) total work in the metatarso-phalangeal joints is lower in the human foot than in the NHA foot. The results indicate that human foot proportions are indeed well suited to performance in normal human walking. © 2014 Anatomical Society.

  9. Analysis of joint force and torque for the human and non-human ape foot during bipedal walking with implications for the evolution of the foot

    PubMed Central

    Wang, Weijie; Abboud, Rami J; Günther, Michael M; Crompton, Robin H

    2014-01-01

    The feet of apes have a different morphology from those of humans. Until now, it has merely been assumed that the morphology seen in humans must be adaptive for habitual bipedal walking, as the habitual use of bipedal walking is generally regarded as one of the most clear-cut differences between humans and apes. This study asks simply whether human skeletal proportions do actually enhance foot performance during human-like bipedalism, by examining the influence of foot proportions on force, torque and work in the foot joints during simulated bipedal walking. Skeletons of the common chimpanzee, orangutan, gorilla and human were represented by multi-rigid-body models, where the components of the foot make external contact via finite element surfaces. The models were driven by identical joint motion functions collected from experiments on human walking. Simulated contact forces between the ground and the foot were found to be reasonably comparable with measurements made during human walking using pressure- and force-platforms. Joint force, torque and work in the foot were then predicted. Within the limitations of our model, the results show that during simulated human-like bipedal walking, (1) the human and non-human ape (NHA) feet carry similar joint forces, although the distributions of the forces differ; (2) the NHA foot incurs larger joint torques than does the human foot, although the human foot has higher values in the first tarso-metatarsal and metatarso-phalangeal joints, whereas the NHA foot incurs higher values in the lateral digits; and (3) total work in the metatarso-phalangeal joints is lower in the human foot than in the NHA foot. The results indicate that human foot proportions are indeed well suited to performance in normal human walking. PMID:24925580

  10. Beat Keeping in a Sea Lion As Coupled Oscillation: Implications for Comparative Understanding of Human Rhythm.

    PubMed

    Rouse, Andrew A; Cook, Peter F; Large, Edward W; Reichmuth, Colleen

    2016-01-01

    Human capacity for entraining movement to external rhythms-i.e., beat keeping-is ubiquitous, but its evolutionary history and neural underpinnings remain a mystery. Recent findings of entrainment to simple and complex rhythms in non-human animals pave the way for a novel comparative approach to assess the origins and mechanisms of rhythmic behavior. The most reliable non-human beat keeper to date is a California sea lion, Ronan, who was trained to match head movements to isochronous repeating stimuli and showed spontaneous generalization of this ability to novel tempos and to the complex rhythms of music. Does Ronan's performance rely on the same neural mechanisms as human rhythmic behavior? In the current study, we presented Ronan with simple rhythmic stimuli at novel tempos. On some trials, we introduced "perturbations," altering either tempo or phase in the middle of a presentation. Ronan quickly adjusted her behavior following all perturbations, recovering her consistent phase and tempo relationships to the stimulus within a few beats. Ronan's performance was consistent with predictions of mathematical models describing coupled oscillation: a model relying solely on phase coupling strongly matched her behavior, and the model was further improved with the addition of period coupling. These findings are the clearest evidence yet for parity in human and non-human beat keeping and support the view that the human ability to perceive and move in time to rhythm may be rooted in broadly conserved neural mechanisms.

  11. Perceptual precision of passive body tilt is consistent with statistically optimal cue integration

    PubMed Central

    Karmali, Faisal; Nicoucar, Keyvan; Merfeld, Daniel M.

    2017-01-01

    When making perceptual decisions, humans have been shown to optimally integrate independent noisy multisensory information, matching maximum-likelihood (ML) limits. Such ML estimators provide a theoretic limit to perceptual precision (i.e., minimal thresholds). However, how the brain combines two interacting (i.e., not independent) sensory cues remains an open question. To study the precision achieved when combining interacting sensory signals, we measured perceptual roll tilt and roll rotation thresholds between 0 and 5 Hz in six normal human subjects. Primary results show that roll tilt thresholds between 0.2 and 0.5 Hz were significantly lower than predicted by a ML estimator that includes only vestibular contributions that do not interact. In this paper, we show how other cues (e.g., somatosensation) and an internal representation of sensory and body dynamics might independently contribute to the observed performance enhancement. In short, a Kalman filter was combined with an ML estimator to match human performance, whereas the potential contribution of nonvestibular cues was assessed using published bilateral loss patient data. Our results show that a Kalman filter model including previously proven canal-otolith interactions alone (without nonvestibular cues) can explain the observed performance enhancements as can a model that includes nonvestibular contributions. NEW & NOTEWORTHY We found that human whole body self-motion direction-recognition thresholds measured during dynamic roll tilts were significantly lower than those predicted by a conventional maximum-likelihood weighting of the roll angular velocity and quasistatic roll tilt cues. Here, we show that two models can each match this “apparent” better-than-optimal performance: 1) inclusion of a somatosensory contribution and 2) inclusion of a dynamic sensory interaction between canal and otolith cues via a Kalman filter model. PMID:28179477

  12. Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition

    PubMed Central

    Kheradpisheh, Saeed Reza; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée

    2016-01-01

    Deep convolutional neural networks (DCNNs) have attracted much attention recently, and have shown to be able to recognize thousands of object categories in natural image databases. Their architecture is somewhat similar to that of the human visual system: both use restricted receptive fields, and a hierarchy of layers which progressively extract more and more abstracted features. Yet it is unknown whether DCNNs match human performance at the task of view-invariant object recognition, whether they make similar errors and use similar representations for this task, and whether the answers depend on the magnitude of the viewpoint variations. To investigate these issues, we benchmarked eight state-of-the-art DCNNs, the HMAX model, and a baseline shallow model and compared their results to those of humans with backward masking. Unlike in all previous DCNN studies, we carefully controlled the magnitude of the viewpoint variations to demonstrate that shallow nets can outperform deep nets and humans when variations are weak. When facing larger variations, however, more layers were needed to match human performance and error distributions, and to have representations that are consistent with human behavior. A very deep net with 18 layers even outperformed humans at the highest variation level, using the most human-like representations. PMID:27601096

  13. Web-ware bioinformatical analysis and structure modelling of N-terminus of human multisynthetase complex auxiliary component protein p43.

    PubMed

    Deineko, Viktor

    2006-01-01

    Human multisynthetase complex auxiliary component, protein p43 is an endothelial monocyte-activating polypeptide II precursor. In this study, comprehensive sequence analysis of N-terminus has been performed to identify structural domains, motifs, sites of post-translation modification and other functionally important parameters. The spatial structure model of full-chain protein p43 is obtained.

  14. Human Factors in the Design and Evaluation of Air Traffic Control Systems

    DTIC Science & Technology

    1995-04-01

    the controller must filter through and decipher. Fortunately, some of this is done without the need for conscious attention ; fcr example, a clear...components of an information-processing model ? ...................... 166 5.3 ATTENTION ......................................... 172 0 5.3.1 What is...processing? support of our performance of daily activities, including our (,) job tasks. Two models of attention currently in use assume that human infor

  15. A linear goal programming model for human resource allocation in a health-care organization.

    PubMed

    Kwak, N K; Lee, C

    1997-06-01

    This paper presents the development of a goal programming (GP) model as an aid to strategic planning and allocation for limited human resources in a health-care organization. The purpose of this study is to assign the personnel to the proper shift hours that enable management to meet the objective of minimizing the total payroll costs while patients are satisfied. A GP model is illustrated using the data provided by a health-care organization in the midwest area. The goals are identified and prioritized. The model result is examined and a sensitivity analysis is performed to improve the model applicability. The GP model application adds insight to the planning functions of resource allocation in the health-care organizations. The proposed model is easily applicable to other human resource planning process.

  16. Long-term regulation in the cardiovascular system - Cornerstone in the development of a composite physiological model

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    The present work discusses a model of the cardiovascular system and related subsystems capable of long-term simulations of the type desired for in-space hypogravic human physiological performance prediction. The discussion centers around the model of Guyton and modifications of it. In order to draw attention to the fluid handling capabilities of the model, one of several transfusion simulations performed is presented, namely, the isotonic saline transfusion simulation.

  17. Combining photorealistic immersive geovisualization and high-resolution geospatial data to enhance human-scale viewshed modelling

    NASA Astrophysics Data System (ADS)

    Tabrizian, P.; Petrasova, A.; Baran, P.; Petras, V.; Mitasova, H.; Meentemeyer, R. K.

    2017-12-01

    Viewshed modelling- a process of defining, parsing and analysis of landscape visual space's structure within GIS- has been commonly used in applications ranging from landscape planning and ecosystem services assessment to geography and archaeology. However, less effort has been made to understand whether and to what extent these objective analyses predict actual on-the-ground perception of human observer. Moreover, viewshed modelling at the human-scale level require incorporation of fine-grained landscape structure (eg., vegetation) and patterns (e.g, landcover) that are typically omitted from visibility calculations or unrealistically simulated leading to significant error in predicting visual attributes. This poster illustrates how photorealistic Immersive Virtual Environments and high-resolution geospatial data can be used to integrate objective and subjective assessments of visual characteristics at the human-scale level. We performed viewshed modelling for a systematically sampled set of viewpoints (N=340) across an urban park using open-source GIS (GRASS GIS). For each point a binary viewshed was computed on a 3D surface model derived from high-density leaf-off LIDAR (QL2) points. Viewshed map was combined with high-resolution landcover (.5m) derived through fusion of orthoimagery, lidar vegetation, and vector data. Geo-statistics and landscape structure analysis was performed to compute topological and compositional metrics for visual-scale (e.g., openness), complexity (pattern, shape and object diversity), and naturalness. Based on the viewshed model output, a sample of 24 viewpoints representing the variation of visual characteristics were selected and geolocated. For each location, 360o imagery were captured using a DSL camera mounted on a GIGA PAN robot. We programmed a virtual reality application through which human subjects (N=100) immersively experienced a random representation of selected environments via a head-mounted display (Oculus Rift CV1), and rated each location on perceived openness, naturalness and complexity. Regression models were performed to correlate model outputs with participants' responses. The results indicated strong, significant correlations for openness, and naturalness and moderate correlation for complexity estimations.

  18. Role of dopamine D2 receptors in human reinforcement learning.

    PubMed

    Eisenegger, Christoph; Naef, Michael; Linssen, Anke; Clark, Luke; Gandamaneni, Praveen K; Müller, Ulrich; Robbins, Trevor W

    2014-09-01

    Influential neurocomputational models emphasize dopamine (DA) as an electrophysiological and neurochemical correlate of reinforcement learning. However, evidence of a specific causal role of DA receptors in learning has been less forthcoming, especially in humans. Here we combine, in a between-subjects design, administration of a high dose of the selective DA D2/3-receptor antagonist sulpiride with genetic analysis of the DA D2 receptor in a behavioral study of reinforcement learning in a sample of 78 healthy male volunteers. In contrast to predictions of prevailing models emphasizing DA's pivotal role in learning via prediction errors, we found that sulpiride did not disrupt learning, but rather induced profound impairments in choice performance. The disruption was selective for stimuli indicating reward, whereas loss avoidance performance was unaffected. Effects were driven by volunteers with higher serum levels of the drug, and in those with genetically determined lower density of striatal DA D2 receptors. This is the clearest demonstration to date for a causal modulatory role of the DA D2 receptor in choice performance that might be distinct from learning. Our findings challenge current reward prediction error models of reinforcement learning, and suggest that classical animal models emphasizing a role of postsynaptic DA D2 receptors in motivational aspects of reinforcement learning may apply to humans as well.

  19. Role of Dopamine D2 Receptors in Human Reinforcement Learning

    PubMed Central

    Eisenegger, Christoph; Naef, Michael; Linssen, Anke; Clark, Luke; Gandamaneni, Praveen K; Müller, Ulrich; Robbins, Trevor W

    2014-01-01

    Influential neurocomputational models emphasize dopamine (DA) as an electrophysiological and neurochemical correlate of reinforcement learning. However, evidence of a specific causal role of DA receptors in learning has been less forthcoming, especially in humans. Here we combine, in a between-subjects design, administration of a high dose of the selective DA D2/3-receptor antagonist sulpiride with genetic analysis of the DA D2 receptor in a behavioral study of reinforcement learning in a sample of 78 healthy male volunteers. In contrast to predictions of prevailing models emphasizing DA's pivotal role in learning via prediction errors, we found that sulpiride did not disrupt learning, but rather induced profound impairments in choice performance. The disruption was selective for stimuli indicating reward, whereas loss avoidance performance was unaffected. Effects were driven by volunteers with higher serum levels of the drug, and in those with genetically determined lower density of striatal DA D2 receptors. This is the clearest demonstration to date for a causal modulatory role of the DA D2 receptor in choice performance that might be distinct from learning. Our findings challenge current reward prediction error models of reinforcement learning, and suggest that classical animal models emphasizing a role of postsynaptic DA D2 receptors in motivational aspects of reinforcement learning may apply to humans as well. PMID:24713613

  20. Multivariate Modelling of the Career Intent of Air Force Personnel.

    DTIC Science & Technology

    1980-09-01

    index (HOPP) was used as a measure of current job satisfaction . As with the Vroom and Fishbein/Graen models, two separate validations were accom...34 Organizational Behavior and Human Performance , 23: 251-267, 1979. Lewis, Logan M. "Expectancy Theory as a Predictive Model of Career Intent, Job Satisfaction ...W. Albright. "Expectancy Theory Predictions of the Satisfaction , Effort, Performance , and Retention of Naval Aviation Officers," Organizational

  1. Comparisons of Auricular Cartilage Tissues from Different Species.

    PubMed

    Chiu, Loraine L Y; Giardini-Rosa, Renata; Weber, Joanna F; Cushing, Sharon L; Waldman, Stephen D

    2017-12-01

    Tissue engineering of auricular cartilage has great potential in providing readily available materials for reconstructive surgeries. As the field of tissue engineering moves forward to developing human tissues, there needs to be an interspecies comparison of the native auricular cartilage in order to determine a suitable animal model to assess the performance of engineered auricular cartilage in vivo. Here, we performed interspecies comparisons of auricular cartilage by comparing tissue microstructure, protein localization, biochemical composition, and mechanical properties of auricular cartilage tissues from rat, rabbit, pig, cow, and human. Human, pig, and cow auricular cartilage have smaller lacunae compared to rat and rabbit cartilage ( P < .05). Despite differences in tissue microstructure, human auricular cartilage has similar biochemical composition to both rat and rabbit. Auricular cartilage from pig and cow, alternatively, display significantly higher glycosaminoglycan and collagen contents compared to human, rat, and rabbit ( P < .05). The mechanical properties of human auricular cartilage were comparable to that of all 4 animal species. This is the first study that compares the microstructural, biochemical, and mechanical properties of auricular cartilage from different species. This study showed that different experimental animal models of human auricular cartilage may be suitable in different cases.

  2. Aquatic models, genomics and chemical risk management.

    PubMed

    Cheng, Keith C; Hinton, David E; Mattingly, Carolyn J; Planchart, Antonio

    2012-01-01

    The 5th Aquatic Animal Models for Human Disease meeting follows four previous meetings (Nairn et al., 2001; Schmale, 2004; Schmale et al., 2007; Hinton et al., 2009) in which advances in aquatic animal models for human disease research were reported, and community discussion of future direction was pursued. At this meeting, discussion at a workshop entitled Bioinformatics and Computational Biology with Web-based Resources (20 September 2010) led to an important conclusion: Aquatic model research using feral and experimental fish, in combination with web-based access to annotated anatomical atlases and toxicological databases, yields data that advance our understanding of human gene function, and can be used to facilitate environmental management and drug development. We propose here that the effects of genes and environment are best appreciated within an anatomical context - the specifically affected cells and organs in the whole animal. We envision the use of automated, whole-animal imaging at cellular resolution and computational morphometry facilitated by high-performance computing and automated entry into toxicological databases, as anchors for genetic and toxicological data, and as connectors between human and model system data. These principles should be applied to both laboratory and feral fish populations, which have been virtually irreplaceable sentinals for environmental contamination that results in human morbidity and mortality. We conclude that automation, database generation, and web-based accessibility, facilitated by genomic/transcriptomic data and high-performance and cloud computing, will potentiate the unique and potentially key roles that aquatic models play in advancing systems biology, drug development, and environmental risk management. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. A predictive model of human performance.

    NASA Technical Reports Server (NTRS)

    Walters, R. F.; Carlson, L. D.

    1971-01-01

    An attempt is made to develop a model describing the overall responses of humans to exercise and environmental stresses for prediction of exhaustion vs an individual's physical characteristics. The principal components of the model are a steady state description of circulation and a dynamic description of thermal regulation. The circulatory portion of the system accepts changes in work load and oxygen pressure, while the thermal portion is influenced by external factors of ambient temperature, humidity and air movement, affecting skin blood flow. The operation of the model is discussed and its structural details are given.

  4. Application of simple mathematical expressions to relate the half-lives of xenobiotics in rats to values in humans.

    PubMed

    Ward, Keith W; Erhardt, Paul; Bachmann, Kenneth

    2005-01-01

    Previous publications from GlaxoSmithKline and University of Toledo laboratories convey our independent attempts to predict the half-lives of xenobiotics in humans using data obtained from rats. The present investigation was conducted to compare the performance of our published models against a common dataset obtained by merging the two sets of rat versus human half-life (hHL) data previously used by each laboratory. After combining data, mathematical analyses were undertaken by deploying both of our previous models, namely the use of an empirical algorithm based on a best-fit model and the use of rat-to-human liver blood flow ratios as a half-life correction factor. Both qualitative and quantitative analyses were performed, as well as evaluation of the impact of molecular properties on predictability. The merged dataset was remarkably diverse with respect to physiochemical and pharmacokinetic (PK) properties. Application of both models revealed similar predictability, depending upon the measure of stipulated accuracy. Certain molecular features, particularly rotatable bond count and pK(a), appeared to influence the accuracy of prediction. This collaborative effort has resulted in an improved understanding and appreciation of the value of rats to serve as a surrogate for the prediction of xenobiotic half-lives in humans when clinical pharmacokinetic studies are not possible or practicable.

  5. Cognitive engineering models in space systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1992-01-01

    NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed.

  6. Using GOMS and Bayesian plan recognition to develop recognition models of operator behavior

    NASA Astrophysics Data System (ADS)

    Zaientz, Jack D.; DeKoven, Elyon; Piegdon, Nicholas; Wood, Scott D.; Huber, Marcus J.

    2006-05-01

    Trends in combat technology research point to an increasing role for uninhabited vehicles in modern warfare tactics. To support increased span of control over these vehicles human responsibilities need to be transformed from tedious, error-prone and cognition intensive operations into tasks that are more supervisory and manageable, even under intensely stressful conditions. The goal is to move away from only supporting human command of low-level system functions to intention-level human-system dialogue about the operator's tasks and situation. A critical element of this process is developing the means to identify when human operators need automated assistance and to identify what assistance they need. Toward this goal, we are developing an unmanned vehicle operator task recognition system that combines work in human behavior modeling and Bayesian plan recognition. Traditionally, human behavior models have been considered generative, meaning they describe all possible valid behaviors. Basing behavior recognition on models designed for behavior generation can offers advantages in improved model fidelity and reuse. It is not clear, however, how to reconcile the structural differences between behavior recognition and behavior modeling approaches. Our current work demonstrates that by pairing a cognitive psychology derived human behavior modeling approach, GOMS, with a Bayesian plan recognition engine, ASPRN, we can translate a behavior generation model into a recognition model. We will discuss the implications for using human performance models in this manner as well as suggest how this kind of modeling may be used to support the real-time control of multiple, uninhabited battlefield vehicles and other semi-autonomous systems.

  7. Evaluating Effectiveness of Modeling Motion System Feedback in the Enhanced Hess Structural Model of the Human Operator

    NASA Technical Reports Server (NTRS)

    Zaychik, Kirill; Cardullo, Frank; George, Gary; Kelly, Lon C.

    2009-01-01

    In order to use the Hess Structural Model to predict the need for certain cueing systems, George and Cardullo significantly expanded it by adding motion feedback to the model and incorporating models of the motion system dynamics, motion cueing algorithm and a vestibular system. This paper proposes a methodology to evaluate effectiveness of these innovations by performing a comparison analysis of the model performance with and without the expanded motion feedback. The proposed methodology is composed of two stages. The first stage involves fine-tuning parameters of the original Hess structural model in order to match the actual control behavior recorded during the experiments at NASA Visual Motion Simulator (VMS) facility. The parameter tuning procedure utilizes a new automated parameter identification technique, which was developed at the Man-Machine Systems Lab at SUNY Binghamton. In the second stage of the proposed methodology, an expanded motion feedback is added to the structural model. The resulting performance of the model is then compared to that of the original one. As proposed by Hess, metrics to evaluate the performance of the models include comparison against the crossover models standards imposed on the crossover frequency and phase margin of the overall man-machine system. Preliminary results indicate the advantage of having the model of the motion system and motion cueing incorporated into the model of the human operator. It is also demonstrated that the crossover frequency and the phase margin of the expanded model are well within the limits imposed by the crossover model.

  8. A Model for the Transfer of Perceptual-Motor Skill Learning in Human Behaviors

    ERIC Educational Resources Information Center

    Rosalie, Simon M.; Muller, Sean

    2012-01-01

    This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event…

  9. A Human Resource Development Performance Improvement Model for Workers with Mental Retardation in Supported Employment

    ERIC Educational Resources Information Center

    Fornes, Sandra; Rosenberg, Howard; Rocco, Tonette S.; Gallagher, Jo

    2006-01-01

    This literature review discusses the factors for successful job retention of adult workers with mental retardation (MR) including external factors related to work environments and internal issues of the individual worker. Through the synthesis of the literature, a performance improvement model for supported employment (SE) is discussed based on…

  10. Airline Maintenance Manpower Optimization from the De Novo Perspective

    NASA Astrophysics Data System (ADS)

    Liou, James J. H.; Tzeng, Gwo-Hshiung

    Human resource management (HRM) is an important issue for today’s competitive airline marketing. In this paper, we discuss a multi-objective model designed from the De Novo perspective to help airlines optimize their maintenance manpower portfolio. The effectiveness of the model and solution algorithm is demonstrated in an empirical study of the optimization of the human resources needed for airline line maintenance. Both De Novo and traditional multiple objective programming (MOP) methods are analyzed. A comparison of the results with those of traditional MOP indicates that the proposed model and solution algorithm does provide better performance and an improved human resource portfolio.

  11. Kalman filter estimation of human pilot-model parameters

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.

    1975-01-01

    The parameters of a human pilot-model transfer function are estimated by applying the extended Kalman filter to the corresponding retarded differential-difference equations in the time domain. Use of computer-generated data indicates that most of the parameters, including the implicit time delay, may be reasonably estimated in this way. When applied to two sets of experimental data obtained from a closed-loop tracking task performed by a human, the Kalman filter generated diverging residuals for one of the measurement types, apparently because of model assumption errors. Application of a modified adaptive technique was found to overcome the divergence and to produce reasonable estimates of most of the parameters.

  12. Modeling human decision making behavior in supervisory control

    NASA Technical Reports Server (NTRS)

    Tulga, M. K.; Sheridan, T. B.

    1977-01-01

    An optimal decision control model was developed, which is based primarily on a dynamic programming algorithm which looks at all the available task possibilities, charts an optimal trajectory, and commits itself to do the first step (i.e., follow the optimal trajectory during the next time period), and then iterates the calculation. A Bayesian estimator was included which estimates the tasks which might occur in the immediate future and provides this information to the dynamic programming routine. Preliminary trials comparing the human subject's performance to that of the optimal model show a great similarity, but indicate that the human skips certain movements which require quick change in strategy.

  13. Human performance across decision making, selective attention, and working memory tasks: Experimental data and computer simulations.

    PubMed

    Stocco, Andrea; Yamasaki, Brianna L; Prat, Chantel S

    2018-04-01

    This article describes the data analyzed in the paper "Individual differences in the Simon effect are underpinned by differences in the competitive dynamics in the basal ganglia: An experimental verification and a computational model" (Stocco et al., 2017) [1]. The data includes behavioral results from participants performing three cognitive tasks (Probabilistic Stimulus Selection (Frank et al., 2004) [2], Simon task (Craft and Simon, 1970) [3], and Automated Operation Span (Unsworth et al., 2005) [4]), as well as simulationed traces generated by a computational neurocognitive model that accounts for individual variations in human performance across the tasks. The experimental data encompasses individual data files (in both preprocessed and native output format) as well as group-level summary files. The simulation data includes the entire model code, the results of a full-grid search of the model's parameter space, and the code used to partition the model space and parallelize the simulations. Finally, the repository includes the R scripts used to carry out the statistical analyses reported in the original paper.

  14. Safety in the operating theatre--part 1: interpersonal relationships and team performance

    NASA Technical Reports Server (NTRS)

    Schaefer, H. G.; Helmreich, R. L.; Scheidegger, D.

    1995-01-01

    The authors examine the application of interpersonal human factors training on operating room (OR) personnel. Mortality studies of OR deaths and critical incident studies of anesthesia are examined to determine the role of human error in OR incidents. Theoretical models of system vulnerability to accidents are presented with emphasis on a systems approach to OR performance. Input, process, and outcome factors are discussed in detail.

  15. The effect of music on cognitive performance: insight from neurobiological and animal studies.

    PubMed

    Rickard, Nikki S; Toukhsati, Samia R; Field, Simone E

    2005-12-01

    The past 50 years have seen numerous claims that music exposure enhances human cognitive performance. Critical evaluation of studies across a variety of contexts, however, reveals important methodological weaknesses. The current article argues that an interdisciplinary approach is required to advance this research. A case is made for the use of appropriate animal models to avoid many confounds associated with human music research. Although such research has validity limitations for humans, reductionist methodology enables a more controlled exploration of music's elementary effects. This article also explores candidate mechanisms for this putative effect. A review of neurobiological evidence from human and comparative animal studies confirms that musical stimuli modify autonomic and neurochemical arousal indices, and may also modify synaptic plasticity. It is proposed that understanding how music affects animals provides a valuable conjunct to human research and may be vital in uncovering how music might be used to enhance cognitive performance.

  16. Performance and strategy comparisons of human listeners and logistic regression in discriminating underwater targets.

    PubMed

    Yang, Lixue; Chen, Kean

    2015-11-01

    To improve the design of underwater target recognition systems based on auditory perception, this study compared human listeners with automatic classifiers. Performances measures and strategies in three discrimination experiments, including discriminations between man-made and natural targets, between ships and submarines, and among three types of ships, were used. In the experiments, the subjects were asked to assign a score to each sound based on how confident they were about the category to which it belonged, and logistic regression, which represents linear discriminative models, also completed three similar tasks by utilizing many auditory features. The results indicated that the performances of logistic regression improved as the ratio between inter- and intra-class differences became larger, whereas the performances of the human subjects were limited by their unfamiliarity with the targets. Logistic regression performed better than the human subjects in all tasks but the discrimination between man-made and natural targets, and the strategies employed by excellent human subjects were similar to that of logistic regression. Logistic regression and several human subjects demonstrated similar performances when discriminating man-made and natural targets, but in this case, their strategies were not similar. An appropriate fusion of their strategies led to further improvement in recognition accuracy.

  17. Control system software, simulation, and robotic applications

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1991-01-01

    All essential existing capabilities needed to create a man-machine interaction dynamics and performance (MMIDAP) capability are reviewed. The multibody system dynamics software program Order N DISCOS will be used for machine and musculo-skeletal dynamics modeling. The program JACK will be used for estimating and animating whole body human response to given loading situations and motion constraints. The basic elements of performance (BEP) task decomposition methodologies associated with the Human Performance Institute database will be used for performance assessment. Techniques for resolving the statically indeterminant muscular load sharing problem will be used for a detailed understanding of potential musculotendon or ligamentous fatigue, pain, discomfort, and trauma. The envisioned capacity is to be used for mechanical system design, human performance assessment, extrapolation of man/machine interaction test data, biomedical engineering, and soft prototyping within a concurrent engineering (CE) system.

  18. Optimal control model predictions of system performance and attention allocation and their experimental validation in a display design study

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Govindaraj, T.

    1980-01-01

    The influence of different types of predictor displays in a longitudinal vertical takeoff and landing (VTOL) hover task is analyzed in a theoretical study. Several cases with differing amounts of predictive and rate information are compared. The optimal control model of the human operator is used to estimate human and system performance in terms of root-mean-square (rms) values and to compute optimized attention allocation. The only part of the model which is varied to predict these data is the observation matrix. Typical cases are selected for a subsequent experimental validation. The rms values as well as eye-movement data are recorded. The results agree favorably with those of the theoretical study in terms of relative differences. Better matching is achieved by revised model input data.

  19. Hand gesture recognition in confined spaces with partial observability and occultation constraints

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2016-05-01

    Human activity detection and recognition capabilities have broad applications for military and homeland security. These tasks are very complicated, however, especially when multiple persons are performing concurrent activities in confined spaces that impose significant obstruction, occultation, and observability uncertainty. In this paper, our primary contribution is to present a dedicated taxonomy and kinematic ontology that are developed for in-vehicle group human activities (IVGA). Secondly, we describe a set of hand-observable patterns that represents certain IVGA examples. Thirdly, we propose two classifiers for hand gesture recognition and compare their performance individually and jointly. Finally, we present a variant of Hidden Markov Model for Bayesian tracking, recognition, and annotation of hand motions, which enables spatiotemporal inference to human group activity perception and understanding. To validate our approach, synthetic (graphical data from virtual environment) and real physical environment video imagery are employed to verify the performance of these hand gesture classifiers, while measuring their efficiency and effectiveness based on the proposed Hidden Markov Model for tracking and interpreting dynamic spatiotemporal IVGA scenarios.

  20. Human Clay Models versus Cat Dissection: How the Similarity between the Classroom and the Exam Affects Student Performance

    ERIC Educational Resources Information Center

    Waters, John R.; Van Meter, Peggy; Perrotti, William; Drogo, Salvatore; Cyr, Richard J.

    2011-01-01

    This study examined the effect of different anatomic representations on student learning in a human anatomy class studying the muscular system. Specifically, we examined the efficacy of using dissected cats (with and without handouts) compared with clay sculpting of human structures. Ten undergraduate laboratory sections were assigned to three…

  1. Human Systems Integration (HSI) Tradeoff Model

    DTIC Science & Technology

    2014-03-01

    Distribution A: Approved for public release; distribution is unlimited. AIR FORCE RESEARCH LABORATORY 711TH HUMAN PERFORMANCE WING HUMAN SYSTEMS...This report was cleared for public release by the 88th Air Base Wing Public Affairs Office and is available to the general public , including...BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. //SIGNATURE// ANTHONY P

  2. A Model Human Sexuality--HIV/AIDS Prevention and Intervention Service-Learning Program

    ERIC Educational Resources Information Center

    Stewart, Clarence, M., Jr.

    2005-01-01

    This article deals with a service-learning program focused on human sexuality and HIV/AIDS prevention and intervention at the Howard University Department of Health, Human Performance and Leisure Studies. Topics discussed include how this program was created, an overview of peer education, HIV/AIDS peer education training, and services provided to…

  3. Study to design and develop remote manipulator system. [computer simulation of human performance

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Mcgovern, D. E.; Sword, A. J.

    1974-01-01

    Modeling of human performance in remote manipulation tasks is reported by automated procedures using computers to analyze and count motions during a manipulation task. Performance is monitored by an on-line computer capable of measuring the joint angles of both master and slave and in some cases the trajectory and velocity of the hand itself. In this way the operator's strategies with different transmission delays, displays, tasks, and manipulators can be analyzed in detail for comparison. Some progress is described in obtaining a set of standard tasks and difficulty measures for evaluating manipulator performance.

  4. A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization

    NASA Astrophysics Data System (ADS)

    Fanchiang, Christine

    Crew performance, including both accommodation and utilization factors, is an integral part of every human spaceflight mission from commercial space tourism, to the demanding journey to Mars and beyond. Spacecraft were historically built by engineers and technologists trying to adapt the vehicle into cutting edge rocketry with the assumption that the astronauts could be trained and will adapt to the design. By and large, that is still the current state of the art. It is recognized, however, that poor human-machine design integration can lead to catastrophic and deadly mishaps. The premise of this work relies on the idea that if an accurate predictive model exists to forecast crew performance issues as a result of spacecraft design and operations, it can help designers and managers make better decisions throughout the design process, and ensure that the crewmembers are well-integrated with the system from the very start. The result should be a high-quality, user-friendly spacecraft that optimizes the utilization of the crew while keeping them alive, healthy, and happy during the course of the mission. Therefore, the goal of this work was to develop an integrative framework to quantitatively evaluate a spacecraft design from the crew performance perspective. The approach presented here is done at a very fundamental level starting with identifying and defining basic terminology, and then builds up important axioms of human spaceflight that lay the foundation for how such a framework can be developed. With the framework established, a methodology for characterizing the outcome using a mathematical model was developed by pulling from existing metrics and data collected on human performance in space. Representative test scenarios were run to show what information could be garnered and how it could be applied as a useful, understandable metric for future spacecraft design. While the model is the primary tangible product from this research, the more interesting outcome of this work is the structure of the framework and what it tells future researchers in terms of where the gaps and limitations exist for developing a better framework. It also identifies metrics that can now be collected as part of future validation efforts for the model.

  5. A stochastic visco-hyperelastic model of human placenta tissue for finite element crash simulations.

    PubMed

    Hu, Jingwen; Klinich, Kathleen D; Miller, Carl S; Rupp, Jonathan D; Nazmi, Giseli; Pearlman, Mark D; Schneider, Lawrence W

    2011-03-01

    Placental abruption is the most common cause of fetal deaths in motor-vehicle crashes, but studies on the mechanical properties of human placenta are rare. This study presents a new method of developing a stochastic visco-hyperelastic material model of human placenta tissue using a combination of uniaxial tensile testing, specimen-specific finite element (FE) modeling, and stochastic optimization techniques. In our previous study, uniaxial tensile tests of 21 placenta specimens have been performed using a strain rate of 12/s. In this study, additional uniaxial tensile tests were performed using strain rates of 1/s and 0.1/s on 25 placenta specimens. Response corridors for the three loading rates were developed based on the normalized data achieved by test reconstructions of each specimen using specimen-specific FE models. Material parameters of a visco-hyperelastic model and their associated standard deviations were tuned to match both the means and standard deviations of all three response corridors using a stochastic optimization method. The results show a very good agreement between the tested and simulated response corridors, indicating that stochastic analysis can improve estimation of variability in material model parameters. The proposed method can be applied to develop stochastic material models of other biological soft tissues.

  6. Dynamic motion planning of 3D human locomotion using gradient-based optimization.

    PubMed

    Kim, Hyung Joo; Wang, Qian; Rahmatalla, Salam; Swan, Colby C; Arora, Jasbir S; Abdel-Malek, Karim; Assouline, Jose G

    2008-06-01

    Since humans can walk with an infinite variety of postures and limb movements, there is no unique solution to the modeling problem to predict human gait motions. Accordingly, we test herein the hypothesis that the redundancy of human walking mechanisms makes solving for human joint profiles and force time histories an indeterminate problem best solved by inverse dynamics and optimization methods. A new optimization-based human-modeling framework is thus described for predicting three-dimensional human gait motions on level and inclined planes. The basic unknowns in the framework are the joint motion time histories of a 25-degree-of-freedom human model and its six global degrees of freedom. The joint motion histories are calculated by minimizing an objective function such as deviation of the trunk from upright posture that relates to the human model's performance. A variety of important constraints are imposed on the optimization problem, including (1) satisfaction of dynamic equilibrium equations by requiring the model's zero moment point (ZMP) to lie within the instantaneous geometrical base of support, (2) foot collision avoidance, (3) limits on ground-foot friction, and (4) vanishing yawing moment. Analytical forms of objective and constraint functions are presented and discussed for the proposed human-modeling framework in which the resulting optimization problems are solved using gradient-based mathematical programming techniques. When the framework is applied to the modeling of bipedal locomotion on level and inclined planes, acyclic human walking motions that are smooth and realistic as opposed to less natural robotic motions are obtained. The aspects of the modeling framework requiring further investigation and refinement, as well as potential applications of the framework in biomechanics, are discussed.

  7. Integrating Occupational Characteristics into Human Performance Models: IPME Versus ISMAT Approach

    DTIC Science & Technology

    2009-08-01

    modélisation générique de la performance humaine appelé Integrated Performance Modelling Environment (IPME). Ce projet a permis d’explorer l’utilisation de la...groupes professionnels dans des modèles de performance humaine : l’approche IPME et l’approche ISMAT Par Christy Lorenzen; RDDC RC 2009-059; R & D...application de simulation d’événements discrets disponible sur le marché et servant à développer des modèles qui simulent la performance humaine et de

  8. Study of Adaptive Mathematical Models for Deriving Automated Pilot Performance Measurement Techniques. Volume II. Appendices. Final Report.

    ERIC Educational Resources Information Center

    Connelly, E. M.; And Others

    A new approach to deriving human performance measures and criteria for use in automatically evaluating trainee performance is described. Ultimately, this approach will allow automatic measurement of pilot performance in a flight simulator or from recorded in-flight data. An efficient method of representing performance data within a computer is…

  9. Is a Swine Model of Arteriovenous Malformation Suitable for Human Extracranial Arteriovenous Malformation? A Preliminary Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Ming-ming, E-mail: lvmingming001@163.com; Fan, Xin-dong, E-mail: fanxindong@yahoo.com.cn; Su, Li-xin, E-mail: sulixin1975@126.com

    Objective: A chronic arteriovenous malformation (AVM) model using the swine retia mirabilia (RMB) was developed and compared with the human extracranial AVM (EAVM) both in hemodynamics and pathology, to see if this brain AVM model can be used as an EAVM model. Methods: We created an arteriovenous fistula between the common carotid artery and the external jugular vein in eight animals by using end-to-end anastomosis. All animals were sacrificed 1 month after surgery, and the bilateral retia were obtained at autopsy and performed hematoxylin and eosin staining and immunohistochemistry. Pre- and postsurgical hemodynamic evaluations also were conducted. Then, the bloodmore » flow and histological changes of the animal model were compared with human EAVM. Results: The angiography after operation showed that the blood flow, like human EAVM, flowed from the feeding artery, via the nidus, drained to the draining vein. Microscopic examination showed dilated lumina and disrupted internal elastic lamina in both RMB of model and nidus of human EAVM, but the thickness of vessel wall had significant difference. Immunohistochemical reactivity for smooth muscle actin, angiopoietin 1, and angiopoietin 2 were similar in chronic model nidus microvessels and human EAVM, whereas vascular endothelial growth factor was significant difference between human EAVM and RMB of model. Conclusions: The AVM model described here is similar to human EAVM in hemodynamics and immunohistochemical features, but there are still some differences in anatomy and pathogenetic mechanism. Further study is needed to evaluate the applicability and efficacy of this model.« less

  10. 1-D blood flow modelling in a running human body.

    PubMed

    Szabó, Viktor; Halász, Gábor

    2017-07-01

    In this paper an attempt was made to simulate blood flow in a mobile human arterial network, specifically, in a running human subject. In order to simulate the effect of motion, a previously published immobile 1-D model was modified by including an inertial force term into the momentum equation. To calculate inertial force, gait analysis was performed at different levels of speed. Our results show that motion has a significant effect on the amplitudes of the blood pressure and flow rate but the average values are not effected significantly.

  11. Rangewide determinants of population performance in Prunus lusitanica: Lessons for the contemporary conservation of a Tertiary relict tree

    NASA Astrophysics Data System (ADS)

    Pardo, Adara; Cáceres, Yonatan; Pulido, Fernando

    2018-01-01

    Relict species are an extremely important part of biodiversity and as such studies on the factors that allow their current persistence are required. The aim of this study was to assess the determinants of the distribution and range-wide population performance of the Tertiary relict tree Prunus lusitanica L. This threatened species is confined to Iberia, Northern Morocco and Macaronesia with a fragmented and scattered distribution. Using ecological niche modelling, we calculated the level of range filling across the range and tested its relationship with human impact. We then assessed the relative importance of climatic suitability as obtained through niche modelling, topographic factors and contemporary human impact on range-wide population performance. Results showed that the species occupies only 2.4% of the overall area predicted to be climatically suitable for its presence and the level of range filling varied across regions. A weak negative relationship among range filling and human impact was found. Overall climatic suitability was the strongest predictor of population performance. However, it showed high variability across regions: the effect was positive in Iberia whereas negative but not significant in Macaronesia and Morocco. Human impact showed a significant negative effect and finally topographic factors such as altitude had a minor negative effect. Our results highlight that both climate and human impact play a major role in the current limited range filling and performance of the species. Management plans to minimize anthropogenic disturbances together with reforestation measures are urgently needed in order to conserve this unique species.

  12. T-tubule disease: Relationship between t-tubule organization and regional contractile performance in human dilated cardiomyopathy.

    PubMed

    Crossman, David J; Young, Alistair A; Ruygrok, Peter N; Nason, Guy P; Baddelely, David; Soeller, Christian; Cannell, Mark B

    2015-07-01

    Evidence from animal models suggest that t-tubule changes may play an important role in the contractile deficit associated with heart failure. However samples are usually taken at random with no regard as to regional variability present in failing hearts which leads to uncertainty in the relationship between contractile performance and possible t-tubule derangement. Regional contraction in human hearts was measured by tagged cine MRI and model fitting. At transplant, failing hearts were biopsy sampled in identified regions and immunocytochemistry was used to label t-tubules and sarcomeric z-lines. Computer image analysis was used to assess 5 different unbiased measures of t-tubule structure/organization. In regions of failing hearts that showed good contractile performance, t-tubule organization was similar to that seen in normal hearts, with worsening structure correlating with the loss of regional contractile performance. Statistical analysis showed that t-tubule direction was most highly correlated with local contractile performance, followed by the amplitude of the sarcomeric peak in the Fourier transform of the t-tubule image. Other area based measures were less well correlated. We conclude that regional contractile performance in failing human hearts is strongly correlated with the local t-tubule organization. Cluster tree analysis with a functional definition of failing contraction strength allowed a pathological definition of 't-tubule disease'. The regional variability in contractile performance and cellular structure is a confounding issue for analysis of samples taken from failing human hearts, although this may be overcome with regional analysis by using tagged cMRI and biopsy mapping. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A human performance modelling approach to intelligent decision support systems

    NASA Technical Reports Server (NTRS)

    Mccoy, Michael S.; Boys, Randy M.

    1987-01-01

    Manned space operations require that the many automated subsystems of a space platform be controllable by a limited number of personnel. To minimize the interaction required of these operators, artificial intelligence techniques may be applied to embed a human performance model within the automated, or semi-automated, systems, thereby allowing the derivation of operator intent. A similar application has previously been proposed in the domain of fighter piloting, where the demand for pilot intent derivation is primarily a function of limited time and high workload rather than limited operators. The derivation and propagation of pilot intent is presented as it might be applied to some programs.

  14. Impact of Spatial Scales on the Intercomparison of Climate Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wei; Steptoe, Michael; Chang, Zheng

    2017-01-01

    Scenario analysis has been widely applied in climate science to understand the impact of climate change on the future human environment, but intercomparison and similarity analysis of different climate scenarios based on multiple simulation runs remain challenging. Although spatial heterogeneity plays a key role in modeling climate and human systems, little research has been performed to understand the impact of spatial variations and scales on similarity analysis of climate scenarios. To address this issue, the authors developed a geovisual analytics framework that lets users perform similarity analysis of climate scenarios from the Global Change Assessment Model (GCAM) using a hierarchicalmore » clustering approach.« less

  15. Spatial memory in foraging games.

    PubMed

    Kerster, Bryan E; Rhodes, Theo; Kello, Christopher T

    2016-03-01

    Foraging and foraging-like processes are found in spatial navigation, memory, visual search, and many other search functions in human cognition and behavior. Foraging is commonly theorized using either random or correlated movements based on Lévy walks, or a series of decisions to remain or leave proximal areas known as "patches". Neither class of model makes use of spatial memory, but search performance may be enhanced when information about searched and unsearched locations is encoded. A video game was developed to test the role of human spatial memory in a canonical foraging task. Analyses of search trajectories from over 2000 human players yielded evidence that foraging movements were inherently clustered, and that clustering was facilitated by spatial memory cues and influenced by memory for spatial locations of targets found. A simple foraging model is presented in which spatial memory is used to integrate aspects of Lévy-based and patch-based foraging theories to perform a kind of area-restricted search, and thereby enhance performance as search unfolds. Using only two free parameters, the model accounts for a variety of findings that individually support competing theories, but together they argue for the integration of spatial memory into theories of foraging. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Comparing masked target transform volume (MTTV) clutter metric to human observer evaluation of visual clutter

    NASA Astrophysics Data System (ADS)

    Camp, H. A.; Moyer, Steven; Moore, Richard K.

    2010-04-01

    The Night Vision and Electronic Sensors Directorate's current time-limited search (TLS) model, which makes use of the targeting task performance (TTP) metric to describe image quality, does not explicitly account for the effects of visual clutter on observer performance. The TLS model is currently based on empirical fits to describe human performance for a time of day, spectrum and environment. Incorporating a clutter metric into the TLS model may reduce the number of these empirical fits needed. The masked target transform volume (MTTV) clutter metric has been previously presented and compared to other clutter metrics. Using real infrared imagery of rural images with varying levels of clutter, NVESD is currently evaluating the appropriateness of the MTTV metric. NVESD had twenty subject matter experts (SME) rank the amount of clutter in each scene in a series of pair-wise comparisons. MTTV metric values were calculated and then compared to the SME observers rankings. The MTTV metric ranked the clutter in a similar manner to the SME evaluation, suggesting that the MTTV metric may emulate SME response. This paper is a first step in quantifying clutter and measuring the agreement to subjective human evaluation.

  17. Robotic Billiards: Understanding Humans in Order to Counter Them.

    PubMed

    Nierhoff, Thomas; Leibrandt, Konrad; Lorenz, Tamara; Hirche, Sandra

    2016-08-01

    Ongoing technological advances in the areas of computation, sensing, and mechatronics enable robotic-based systems to interact with humans in the real world. To succeed against a human in a competitive scenario, a robot must anticipate the human behavior and include it in its own planning framework. Then it can predict the next human move and counter it accordingly, thus not only achieving overall better performance but also systematically exploiting the opponent's weak spots. Pool is used as a representative scenario to derive a model-based planning and control framework where not only the physics of the environment but also a model of the opponent is considered. By representing the game of pool as a Markov decision process and incorporating a model of the human decision-making based on studies, an optimized policy is derived. This enables the robot to include the opponent's typical game style into its tactical considerations when planning a stroke. The results are validated in simulations and real-life experiments with an anthropomorphic robot playing pool against a human.

  18. Coupling of three-dimensional field and human thermoregulatory models in a crowded enclosure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, H.; Kang, Z.J.; Bong, T.Y.

    1999-11-12

    Health, comfort, and energy conservation are important factors to consider in the design of a building and its HVAC systems. Advanced tools are required to evaluate parameters regarding airflow, temperature, and humidity ratio in buildings, with the end results being better indoor air quality and thermal environment as well as increased confidence in the performance of buildings. A numerical model coupling the three-dimensional field and human thermoregulatory models is proposed and developed. A high-Re {kappa}-{epsilon} turbulence model is used for the field simulation. A modified 25-mode model of human thermoregulation is adopted to predict human thermal response in physiological parameters,more » such as body temperature and body heat loss. Distributions of air velocity, temperature, and moisture content are demonstrated in a crowded enclosure with mechanical ventilation under two ventilation rates. The results are analyzed and discussed. The coupling model is useful in assisting and verifying ventilation and air-conditioning system designs.« less

  19. Persistence: A Key Factor in Human Performance at Work.

    ERIC Educational Resources Information Center

    Blair, Daniel V.; Price, Donna J.

    1998-01-01

    Reviews the construct of persistence as it relates to achievement motivation at work. Topics include foundational concepts of persistence; achievement motivation theory; a human motivation model; goal-setting theory; self-efficacy theory; expectancy theory; task assignments; confidence; and perceived value. (LRW)

  20. System Models and Aging: A Driving Example.

    ERIC Educational Resources Information Center

    Melichar, Joseph F.

    Chronological age is a marker in time but it fails to measure accurately the performance or behavioral characteristics of individuals. This paper models the complexity of aging by using a system model and a human function paradigm. These models help facilitate representation of older adults, integrate research agendas, and enhance remediative…

  1. Adaptive Automation Design and Implementation

    DTIC Science & Technology

    2015-09-17

    Study : Space Navigator This section demonstrates the player modeling paradigm, focusing specifically on the response generation section of the player ...human-machine system, a real-time player modeling framework for imitating a specific person’s task performance, and the Adaptive Automation System...Model . . . . . . . . . . . . . . . . . . . . . . . 13 Clustering-Based Real-Time Player Modeling . . . . . . . . . . . . . . . . . . . . . . 15 An

  2. A mathematical model of Chagas disease transmission

    NASA Astrophysics Data System (ADS)

    Hidayat, Dayat; Nugraha, Edwin Setiawan; Nuraini, Nuning

    2018-03-01

    Chagas disease is a parasitic infection caused by protozoan Trypanosoma cruzi which is transmitted to human by insects of the subfamily Triatominae, including Rhodnius prolixus. This disease is a major problem in several countries of Latin America. A mathematical model of Chagas disease with separate vector reservoir and a neighboring human resident is constructed. The basic reproductive ratio is obtained and stability analysis of the equilibria is shown. We also performed sensitivity populations dynamics of infected humans and infected insects based on migration rate, carrying capacity, and infection rate parameters. Our findings showed that the dynamics of the infected human and insect is mostly affected by carrying capacity insect in the settlement.

  3. Performances of the PIPER scalable child human body model in accident reconstruction

    PubMed Central

    Giordano, Chiara; Kleiven, Svein

    2017-01-01

    Human body models (HBMs) have the potential to provide significant insights into the pediatric response to impact. This study describes a scalable/posable approach to perform child accident reconstructions using the Position and Personalize Advanced Human Body Models for Injury Prediction (PIPER) scalable child HBM of different ages and in different positions obtained by the PIPER tool. Overall, the PIPER scalable child HBM managed reasonably well to predict the injury severity and location of the children involved in real-life crash scenarios documented in the medical records. The developed methodology and workflow is essential for future work to determine child injury tolerances based on the full Child Advanced Safety Project for European Roads (CASPER) accident reconstruction database. With the workflow presented in this study, the open-source PIPER scalable HBM combined with the PIPER tool is also foreseen to have implications for improved safety designs for a better protection of children in traffic accidents. PMID:29135997

  4. Individual Markers of Resilience in Train Traffic Control: The Role of Operators' Goals and Strategic Mental Models and Implications for Variation, Expertise, and Performance.

    PubMed

    Lo, Julia C; Pluyter, Kari R; Meijer, Sebastiaan A

    2016-02-01

    The aim of this study was to examine individual markers of resilience and obtain quantitative insights into the understanding and the implications of variation and expertise levels in train traffic operators' goals and strategic mental models and their impact on performance. The Dutch railways are one of the world's most heavy utilized railway networks and have been identified to be weak in system and organizational resilience. Twenty-two train traffic controllers enacted two scenarios in a human-in-the-loop simulator. Their experience, goals, strategic mental models, and performance were assessed through questionnaires and simulator logs. Goals were operationalized through performance indicators and strategic mental models through train completion strategies. A variation was found between operators for both self-reported primary performance indicators and completion strategies. Further, the primary goal of only 14% of the operators reflected the primary organizational goal (i.e., arrival punctuality). An incongruence was also found between train traffic controllers' self-reported performance indicators and objective performance in a more disrupted condition. The level of experience tends to affect performance differently. There is a gap between primary organizational goals and preferred individual goals. Further, the relative strong diversity in primary operator goals and strategic mental models indicates weak resilience at the individual level. With recent and upcoming large-scale changes throughout the sociotechnical space of the railway infrastructure organization, the findings are useful to facilitate future railway traffic control and the development of a resilient system. © 2015, Human Factors and Ergonomics Society.

  5. Optimization of digital breast tomosynthesis (DBT) acquisition parameters for human observers: effect of reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Zeng, Rongping; Badano, Aldo; Myers, Kyle J.

    2017-04-01

    We showed in our earlier work that the choice of reconstruction methods does not affect the optimization of DBT acquisition parameters (angular span and number of views) using simulated breast phantom images in detecting lesions with a channelized Hotelling observer (CHO). In this work we investigate whether the model-observer based conclusion is valid when using humans to interpret images. We used previously generated DBT breast phantom images and recruited human readers to find the optimal geometry settings associated with two reconstruction algorithms, filtered back projection (FBP) and simultaneous algebraic reconstruction technique (SART). The human reader results show that image quality trends as a function of the acquisition parameters are consistent between FBP and SART reconstructions. The consistent trends confirm that the optimization of DBT system geometry is insensitive to the choice of reconstruction algorithm. The results also show that humans perform better in SART reconstructed images than in FBP reconstructed images. In addition, we applied CHOs with three commonly used channel models, Laguerre-Gauss (LG) channels, square (SQR) channels and sparse difference-of-Gaussian (sDOG) channels. We found that LG channels predict human performance trends better than SQR and sDOG channel models for the task of detecting lesions in tomosynthesis backgrounds. Overall, this work confirms that the choice of reconstruction algorithm is not critical for optimizing DBT system acquisition parameters.

  6. Preclinical Mouse Models of Neurofibromatosis

    DTIC Science & Technology

    2005-11-01

    and NF2-deficient human cells and in cells from Nf1 and Nf2 mutant mice. Genetic analysis of human and murine tumors has provided compelling...lethal myeloproliferative disorder (MPD) characterized by over-production of infiltrative myeloid cells (13). JMML has been modeled in mice by...tumor development for 18 months after exposure. Pathologic analysis was performed on 91% of the Shannon, K.M. 11 study cohort, including 95 of 104

  7. Dynamic Decision Making in Complex Task Environments: Principles and Neural Mechanisms

    DTIC Science & Technology

    2013-03-01

    Dynamical models of cognition . Mathematical models of mental processes. Human performance optimization. U U U U Dr. Jay Myung 703-696-8487 Reset 1...we have continued to develop a neurodynamic theory of decision making, using a combination of computational and experimental approaches, to address...a long history in the field of human cognitive psychology. The theoretical foundations of this research can be traced back to signal detection

  8. Design and experimental analysis of a new malleovestibulopexy prosthesis using a finite element model of the human middle ear.

    PubMed

    Vallejo Valdezate, Luis A; Hidalgo Otamendi, Antonio; Hernández, Alberto; Lobo, Fernando; Gil-Carcedo Sañudo, Elisa; Gil-Carcedo García, Luis M

    2015-01-01

    Many designs of prostheses are available for middle ear surgery. In this study we propose a design for a new prosthesis, which optimises mechanical performance in the human middle ear and improves some deficiencies in the prostheses currently available. Our objective was to design and assess the theoretical acoustic-mechanical behaviour of this new total ossicular replacement prosthesis. The design of this new prosthesis was based on an animal model (an iguana). For the modelling and mechanical analysis of the new prosthesis, we used a dynamic 3D computer model of the human middle ear, based on the finite elements method (FEM). The new malleovestibulopexy prosthesis design demonstrates an acoustical-mechanical performance similar to that of the healthy human middle ear. This new design also has additional advantages, such as ease of implantation and stability in the middle ear. This study shows that computer simulation can be used to design and optimise the vibroacoustic characteristics of middle ear implants and demonstrates the effectiveness of a new malleovestibulopexy prosthesis in reconstructing the ossicular chain. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  9. Assessment of prostate cancer detection with a visual-search human model observer

    NASA Astrophysics Data System (ADS)

    Sen, Anando; Kalantari, Faraz; Gifford, Howard C.

    2014-03-01

    Early staging of prostate cancer (PC) is a significant challenge, in part because of the small tumor sizes in- volved. Our long-term goal is to determine realistic diagnostic task performance benchmarks for standard PC imaging with single photon emission computed tomography (SPECT). This paper reports on a localization receiver operator characteristic (LROC) validation study comparing human and model observers. The study made use of a digital anthropomorphic phantom and one-cm tumors within the prostate and pelvic lymph nodes. Uptake values were consistent with data obtained from clinical In-111 ProstaScint scans. The SPECT simulation modeled a parallel-hole imaging geometry with medium-energy collimators. Nonuniform attenua- tion and distance-dependent detector response were accounted for both in the imaging and the ordered-subset expectation-maximization (OSEM) iterative reconstruction. The observer study made use of 2D slices extracted from reconstructed volumes. All observers were informed about the prostate and nodal locations in an image. Iteration number and the level of postreconstruction smoothing were study parameters. The results show that a visual-search (VS) model observer correlates better with the average detection performance of human observers than does a scanning channelized nonprewhitening (CNPW) model observer.

  10. Human Resource Scheduling in Performing a Sequence of Discrete Responses

    DTIC Science & Technology

    2009-02-28

    each is a graph comparing simulated results of each respective model with data from Experiment 3b. As described below the parameters of the model...initiated in parallel with ongoing Central operations on another. To fix model parameters we estimated the range of times to perform the sum of the...standard deviation for each parameter was set to 50% of mean value. Initial simulations found no meaningful differences between setting the standard

  11. The Use Of Computational Human Performance Modeling As Task Analysis Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacuqes Hugo; David Gertman

    2012-07-01

    During a review of the Advanced Test Reactor safety basis at the Idaho National Laboratory, human factors engineers identified ergonomic and human reliability risks involving the inadvertent exposure of a fuel element to the air during manual fuel movement and inspection in the canal. There were clear indications that these risks increased the probability of human error and possible severe physical outcomes to the operator. In response to this concern, a detailed study was conducted to determine the probability of the inadvertent exposure of a fuel element. Due to practical and safety constraints, the task network analysis technique was employedmore » to study the work procedures at the canal. Discrete-event simulation software was used to model the entire procedure as well as the salient physical attributes of the task environment, such as distances walked, the effect of dropped tools, the effect of hazardous body postures, and physical exertion due to strenuous tool handling. The model also allowed analysis of the effect of cognitive processes such as visual perception demands, auditory information and verbal communication. The model made it possible to obtain reliable predictions of operator performance and workload estimates. It was also found that operator workload as well as the probability of human error in the fuel inspection and transfer task were influenced by the concurrent nature of certain phases of the task and the associated demand on cognitive and physical resources. More importantly, it was possible to determine with reasonable accuracy the stages as well as physical locations in the fuel handling task where operators would be most at risk of losing their balance and falling into the canal. The model also provided sufficient information for a human reliability analysis that indicated that the postulated fuel exposure accident was less than credible.« less

  12. From Birdsong to Human Speech Recognition: Bayesian Inference on a Hierarchy of Nonlinear Dynamical Systems

    PubMed Central

    Yildiz, Izzet B.; von Kriegstein, Katharina; Kiebel, Stefan J.

    2013-01-01

    Our knowledge about the computational mechanisms underlying human learning and recognition of sound sequences, especially speech, is still very limited. One difficulty in deciphering the exact means by which humans recognize speech is that there are scarce experimental findings at a neuronal, microscopic level. Here, we show that our neuronal-computational understanding of speech learning and recognition may be vastly improved by looking at an animal model, i.e., the songbird, which faces the same challenge as humans: to learn and decode complex auditory input, in an online fashion. Motivated by striking similarities between the human and songbird neural recognition systems at the macroscopic level, we assumed that the human brain uses the same computational principles at a microscopic level and translated a birdsong model into a novel human sound learning and recognition model with an emphasis on speech. We show that the resulting Bayesian model with a hierarchy of nonlinear dynamical systems can learn speech samples such as words rapidly and recognize them robustly, even in adverse conditions. In addition, we show that recognition can be performed even when words are spoken by different speakers and with different accents—an everyday situation in which current state-of-the-art speech recognition models often fail. The model can also be used to qualitatively explain behavioral data on human speech learning and derive predictions for future experiments. PMID:24068902

  13. From birdsong to human speech recognition: bayesian inference on a hierarchy of nonlinear dynamical systems.

    PubMed

    Yildiz, Izzet B; von Kriegstein, Katharina; Kiebel, Stefan J

    2013-01-01

    Our knowledge about the computational mechanisms underlying human learning and recognition of sound sequences, especially speech, is still very limited. One difficulty in deciphering the exact means by which humans recognize speech is that there are scarce experimental findings at a neuronal, microscopic level. Here, we show that our neuronal-computational understanding of speech learning and recognition may be vastly improved by looking at an animal model, i.e., the songbird, which faces the same challenge as humans: to learn and decode complex auditory input, in an online fashion. Motivated by striking similarities between the human and songbird neural recognition systems at the macroscopic level, we assumed that the human brain uses the same computational principles at a microscopic level and translated a birdsong model into a novel human sound learning and recognition model with an emphasis on speech. We show that the resulting Bayesian model with a hierarchy of nonlinear dynamical systems can learn speech samples such as words rapidly and recognize them robustly, even in adverse conditions. In addition, we show that recognition can be performed even when words are spoken by different speakers and with different accents-an everyday situation in which current state-of-the-art speech recognition models often fail. The model can also be used to qualitatively explain behavioral data on human speech learning and derive predictions for future experiments.

  14. CBR-D Tactical Decision Aid (DECAID) Identification and Analysis of Predictive Human Performance Models and Data Bases for Use in a Commander’s CBR-D Decision Aid (DECAID)

    DTIC Science & Technology

    1988-10-15

    the activities required before, during and after chemical/conventional combat situations. m The objective of this study is to assist in the development...Ainsworth, 1., July 1971. Effects of a 48 hour period of sustained activity on tank crew performance. Human Resources Research Organization, Alexandria, Va...This report gives the results of a 48 hour field experiment conducted to determine the effects of sustained activity on the performance of a tank

  15. A non-invasive method for studying an index of pupil diameter and visual performance in the rhesus monkey.

    PubMed

    Fairhall, Sarah J; Dickson, Carol A; Scott, Leah; Pearce, Peter C

    2006-04-01

    A non-invasive model has been developed to estimate gaze direction and relative pupil diameter, in minimally restrained rhesus monkeys, to investigate the effects of low doses of ocularly administered cholinergic compounds on visual performance. Animals were trained to co-operate with a novel device, which enabled eye movements to be recorded using modified human eye-tracking equipment, and to perform a task which determined visual threshold contrast. Responses were made by gaze transfer under twilight conditions. 4% w/v pilocarpine nitrate was studied to demonstrate the suitability of the model. Pilocarpine induced marked miosis for >3 h which was accompanied by a decrement in task performance. The method obviates the need for invasive surgery and, as the position of point of gaze can be approximately defined, the approach may have utility in other areas of research involving non-human primates.

  16. Multimodality Inferring of Human Cognitive States Based on Integration of Neuro-Fuzzy Network and Information Fusion Techniques

    NASA Astrophysics Data System (ADS)

    Yang, G.; Lin, Y.; Bhattacharya, P.

    2007-12-01

    To achieve an effective and safe operation on the machine system where the human interacts with the machine mutually, there is a need for the machine to understand the human state, especially cognitive state, when the human's operation task demands an intensive cognitive activity. Due to a well-known fact with the human being, a highly uncertain cognitive state and behavior as well as expressions or cues, the recent trend to infer the human state is to consider multimodality features of the human operator. In this paper, we present a method for multimodality inferring of human cognitive states by integrating neuro-fuzzy network and information fusion techniques. To demonstrate the effectiveness of this method, we take the driver fatigue detection as an example. The proposed method has, in particular, the following new features. First, human expressions are classified into four categories: (i) casual or contextual feature, (ii) contact feature, (iii) contactless feature, and (iv) performance feature. Second, the fuzzy neural network technique, in particular Takagi-Sugeno-Kang (TSK) model, is employed to cope with uncertain behaviors. Third, the sensor fusion technique, in particular ordered weighted aggregation (OWA), is integrated with the TSK model in such a way that cues are taken as inputs to the TSK model, and then the outputs of the TSK are fused by the OWA which gives outputs corresponding to particular cognitive states under interest (e.g., fatigue). We call this method TSK-OWA. Validation of the TSK-OWA, performed in the Northeastern University vehicle drive simulator, has shown that the proposed method is promising to be a general tool for human cognitive state inferring and a special tool for the driver fatigue detection.

  17. Modelling temporal networks of human face-to-face contacts with public activity and individual reachability

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Qing; Cui, Jing; Zhang, Shu-Min; Zhang, Qi; Li, Xiang

    2016-02-01

    Modelling temporal networks of human face-to-face contacts is vital both for understanding the spread of airborne pathogens and word-of-mouth spreading of information. Although many efforts have been devoted to model these temporal networks, there are still two important social features, public activity and individual reachability, have been ignored in these models. Here we present a simple model that captures these two features and other typical properties of empirical face-to-face contact networks. The model describes agents which are characterized by an attractiveness to slow down the motion of nearby people, have event-triggered active probability and perform an activity-dependent biased random walk in a square box with periodic boundary. The model quantitatively reproduces two empirical temporal networks of human face-to-face contacts which are testified by their network properties and the epidemic spread dynamics on them.

  18. Reliability Analysis and Standardization of Spacecraft Command Generation Processes

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Grenander, Sven; Evensen, Ken

    2011-01-01

    center dot In order to reduce commanding errors that are caused by humans, we create an approach and corresponding artifacts for standardizing the command generation process and conducting risk management during the design and assurance of such processes. center dot The literature review conducted during the standardization process revealed that very few atomic level human activities are associated with even a broad set of missions. center dot Applicable human reliability metrics for performing these atomic level tasks are available. center dot The process for building a "Periodic Table" of Command and Control Functions as well as Probabilistic Risk Assessment (PRA) models is demonstrated. center dot The PRA models are executed using data from human reliability data banks. center dot The Periodic Table is related to the PRA models via Fault Links.

  19. 3D engineered cardiac tissue models of human heart disease: learning more from our mice.

    PubMed

    Ralphe, J Carter; de Lange, Willem J

    2013-02-01

    Mouse engineered cardiac tissue constructs (mECTs) are a new tool available to study human forms of genetic heart disease within the laboratory. The cultured strips of cardiac cells generate physiologic calcium transients and twitch force, and respond to electrical pacing and adrenergic stimulation. The mECT can be made using cells from existing mouse models of cardiac disease, providing a robust readout of contractile performance and allowing a rapid assessment of genotype-phenotype correlations and responses to therapies. mECT represents an efficient and economical extension to the existing tools for studying cardiac physiology. Human ECTs generated from iPSCMs represent the next logical step for this technology and offer significant promise of an integrated, fully human, cardiac tissue model. Copyright © 2013. Published by Elsevier Inc.

  20. Stochastic queueing-theory approach to human dynamics

    NASA Astrophysics Data System (ADS)

    Walraevens, Joris; Demoor, Thomas; Maertens, Tom; Bruneel, Herwig

    2012-02-01

    Recently, numerous studies have shown that human dynamics cannot be described accurately by exponential laws. For instance, Barabási [Nature (London)NATUAS0028-083610.1038/nature03459 435, 207 (2005)] demonstrates that waiting times of tasks to be performed by a human are more suitably modeled by power laws. He presumes that these power laws are caused by a priority selection mechanism among the tasks. Priority models are well-developed in queueing theory (e.g., for telecommunication applications), and this paper demonstrates the (quasi-)immediate applicability of such a stochastic priority model to human dynamics. By calculating generating functions and by studying them in their dominant singularity, we prove that nonexponential tails result naturally. Contrary to popular belief, however, these are not necessarily triggered by the priority selection mechanism.

  1. Simulations in Cyber-Security: A Review of Cognitive Modeling of Network Attackers, Defenders, and Users.

    PubMed

    Veksler, Vladislav D; Buchler, Norbou; Hoffman, Blaine E; Cassenti, Daniel N; Sample, Char; Sugrim, Shridat

    2018-01-01

    Computational models of cognitive processes may be employed in cyber-security tools, experiments, and simulations to address human agency and effective decision-making in keeping computational networks secure. Cognitive modeling can addresses multi-disciplinary cyber-security challenges requiring cross-cutting approaches over the human and computational sciences such as the following: (a) adversarial reasoning and behavioral game theory to predict attacker subjective utilities and decision likelihood distributions, (b) human factors of cyber tools to address human system integration challenges, estimation of defender cognitive states, and opportunities for automation, (c) dynamic simulations involving attacker, defender, and user models to enhance studies of cyber epidemiology and cyber hygiene, and (d) training effectiveness research and training scenarios to address human cyber-security performance, maturation of cyber-security skill sets, and effective decision-making. Models may be initially constructed at the group-level based on mean tendencies of each subject's subgroup, based on known statistics such as specific skill proficiencies, demographic characteristics, and cultural factors. For more precise and accurate predictions, cognitive models may be fine-tuned to each individual attacker, defender, or user profile, and updated over time (based on recorded behavior) via techniques such as model tracing and dynamic parameter fitting.

  2. Influence of the model's degree of freedom on human body dynamics identification.

    PubMed

    Maita, Daichi; Venture, Gentiane

    2013-01-01

    In fields of sports and rehabilitation, opportunities of using motion analysis of the human body have dramatically increased. To analyze the motion dynamics, a number of subject specific parameters and measurements are required. For example the contact forces measurement and the inertial parameters of each segment of the human body are necessary to compute the joint torques. In this study, in order to perform accurate dynamic analysis we propose to identify the inertial parameters of the human body and to evaluate the influence of the model's number of degrees of freedom (DoF) on the results. We use a method to estimate the inertial parameters without torque sensor, using generalized coordinates of the base link, joint angles and external forces information. We consider a 34DoF model, a 58DoF model, as well as the case when the human is manipulating a tool (here a tennis racket). We compare the obtained in results in terms of contact force estimation.

  3. Development of a human eye model incorporated with intraocular scattering for visual performance assessment

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chun; Jiang, Chong-Jhih; Yang, Tsung-Hsun; Sun, Ching-Cherng

    2012-07-01

    A biometry-based human eye model was developed by using the empirical anatomic and optical data of ocular parameters. The gradient refractive index of the crystalline lens was modeled by concentric conicoid isoindical surfaces and was adaptive to accommodation and age. The chromatic dispersion of ocular media was described by Cauchy equations. The intraocular scattering model was composed of volumetric Mie scattering in the cornea and the crystalline lens, and a diffusive-surface model at the retina fundus. The retina was regarded as a Lambertian surface and was assigned its corresponding reflectance at each wavelength. The optical performance of the eye model was evaluated in CodeV and ASAP and presented by the modulation transfer functions at single and multiple wavelengths. The chromatic optical powers obtained from this model resembled that of the average physiological eyes. The scattering property was assessed by means of glare veiling luminance and compared with the CIE general disability glare equation. By replacing the transparent lens with a cataractous lens, the disability glare curve of cataracts was generated to compare with the normal disability glare curve. This model has high potential for investigating visual performance in ordinary lighting and display conditions and under the influence of glare sources.

  4. Relative cue encoding in the context of sophisticated models of categorization: Separating information from categorization.

    PubMed

    Apfelbaum, Keith S; McMurray, Bob

    2015-08-01

    Traditional studies of human categorization often treat the processes of encoding features and cues as peripheral to the question of how stimuli are categorized. However, in domains where the features and cues are less transparent, how information is encoded prior to categorization may constrain our understanding of the architecture of categorization. This is particularly true in speech perception, where acoustic cues to phonological categories are ambiguous and influenced by multiple factors. Here, it is crucial to consider the joint contributions of the information in the input and the categorization architecture. We contrasted accounts that argue for raw acoustic information encoding with accounts that posit that cues are encoded relative to expectations, and investigated how two categorization architectures-exemplar models and back-propagation parallel distributed processing models-deal with each kind of information. Relative encoding, akin to predictive coding, is a form of noise reduction, so it can be expected to improve model accuracy; however, like predictive coding, the use of relative encoding in speech perception by humans is controversial, so results are compared to patterns of human performance, rather than on the basis of overall accuracy. We found that, for both classes of models, in the vast majority of parameter settings, relative cues greatly helped the models approximate human performance. This suggests that expectation-relative processing is a crucial precursor step in phoneme categorization, and that understanding the information content is essential to understanding categorization processes.

  5. Modeling and Design of an Electro-Rheological Fluid Based Haptic System for Tele-Operation of Space Robots

    NASA Technical Reports Server (NTRS)

    Mavroidis, Constantinos; Pfeiffer, Charles; Paljic, Alex; Celestino, James; Lennon, Jamie; Bar-Cohen, Yoseph

    2000-01-01

    For many years, the robotic community sought to develop robots that can eventually operate autonomously and eliminate the need for human operators. However, there is an increasing realization that there are some tasks that human can perform significantly better but, due to associated hazards, distance, physical limitations and other causes, only robot can be employed to perform these tasks. Remotely performing these types of tasks requires operating robots as human surrogates. While current "hand master" haptic systems are able to reproduce the feeling of rigid objects, they present great difficulties in emulating the feeling of remote/virtual stiffness. In addition, they tend to be heavy, cumbersome and usually they only allow limited operator workspace. In this paper a novel haptic interface is presented to enable human-operators to "feel" and intuitively mirror the stiffness/forces at remote/virtual sites enabling control of robots as human-surrogates. This haptic interface is intended to provide human operators intuitive feeling of the stiffness and forces at remote or virtual sites in support of space robots performing dexterous manipulation tasks (such as operating a wrench or a drill). Remote applications are referred to the control of actual robots whereas virtual applications are referred to simulated operations. The developed haptic interface will be applicable to IVA operated robotic EVA tasks to enhance human performance, extend crew capability and assure crew safety. The electrically controlled stiffness is obtained using constrained ElectroRheological Fluids (ERF), which changes its viscosity under electrical stimulation. Forces applied at the robot end-effector due to a compliant environment will be reflected to the user using this ERF device where a change in the system viscosity will occur proportionally to the force to be transmitted. In this paper, we will present the results of our modeling, simulation, and initial testing of such an electrorheological fluid (ERF) based haptic device.

  6. Judgment in crossing a road between objects coming in the opposite lane

    NASA Astrophysics Data System (ADS)

    Matsumiya, Kazumichi; Kaneko, Hirohiko

    2008-05-01

    When cars are oncoming in the opposite lane of a road, a driver is able to judge whether his/her car can cross the road at an intersection without a collision with the oncoming cars. We developed a model for the human judgment used to cross a road between oncoming objects. In the model, in order to make the judgment to cross the road, the human visual system compares the time interval it takes for an oncoming object to pass the observer with the time interval it takes for the observer to cross the road. We conducted a psychophysical experiment to test the model prediction. The result showed that human performance is in good agreement with the theoretical consequence provided by the model, suggesting that the human visual system uses not only the visually timed information of the approaching object but also the timed information of self-action for the judgment about crossing the road.

  7. Active muscle response using feedback control of a finite element human arm model.

    PubMed

    Östh, Jonas; Brolin, Karin; Happee, Riender

    2012-01-01

    Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM.

  8. Modeling Human Dynamics of Face-to-Face Interaction Networks

    NASA Astrophysics Data System (ADS)

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2013-04-01

    Face-to-face interaction networks describe social interactions in human gatherings, and are the substrate for processes such as epidemic spreading and gossip propagation. The bursty nature of human behavior characterizes many aspects of empirical data, such as the distribution of conversation lengths, of conversations per person, or of interconversation times. Despite several recent attempts, a general theoretical understanding of the global picture emerging from data is still lacking. Here we present a simple model that reproduces quantitatively most of the relevant features of empirical face-to-face interaction networks. The model describes agents that perform a random walk in a two-dimensional space and are characterized by an attractiveness whose effect is to slow down the motion of people around them. The proposed framework sheds light on the dynamics of human interactions and can improve the modeling of dynamical processes taking place on the ensuing dynamical social networks.

  9. Partitioning of polar and non-polar neutral organic chemicals into human and cow milk.

    PubMed

    Geisler, Anett; Endo, Satoshi; Goss, Kai-Uwe

    2011-10-01

    The aim of this work was to develop a predictive model for milk/water partition coefficients of neutral organic compounds. Batch experiments were performed for 119 diverse organic chemicals in human milk and raw and processed cow milk at 37°C. No differences (<0.3 log units) in the partition coefficients of these types of milk were observed. The polyparameter linear free energy relationship model fit the calibration data well (SD=0.22 log units). An experimental validation data set including hormones and hormone active compounds was predicted satisfactorily by the model. An alternative modelling approach based on log K(ow) revealed a poorer performance. The model presented here provides a significant improvement in predicting enrichment of potentially hazardous chemicals in milk. In combination with physiologically based pharmacokinetic modelling this improvement in the estimation of milk/water partitioning coefficients may allow a better risk assessment for a wide range of neutral organic chemicals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Animal models of disease shed light on Nipah virus pathogenesis and transmission

    PubMed Central

    de Wit, Emmie; Munster, Vincent J.

    2014-01-01

    Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans. PMID:25229234

  11. Sorting Through the Safety Data Haystack: Using Machine Learning to Identify Individual Case Safety Reports in Social-Digital Media.

    PubMed

    Comfort, Shaun; Perera, Sujan; Hudson, Zoe; Dorrell, Darren; Meireis, Shawman; Nagarajan, Meenakshi; Ramakrishnan, Cartic; Fine, Jennifer

    2018-06-01

    There is increasing interest in social digital media (SDM) as a data source for pharmacovigilance activities; however, SDM is considered a low information content data source for safety data. Given that pharmacovigilance itself operates in a high-noise, lower-validity environment without objective 'gold standards' beyond process definitions, the introduction of large volumes of SDM into the pharmacovigilance workflow has the potential to exacerbate issues with limited manual resources to perform adverse event identification and processing. Recent advances in medical informatics have resulted in methods for developing programs which can assist human experts in the detection of valid individual case safety reports (ICSRs) within SDM. In this study, we developed rule-based and machine learning (ML) models for classifying ICSRs from SDM and compared their performance with that of human pharmacovigilance experts. We used a random sampling from a collection of 311,189 SDM posts that mentioned Roche products and brands in combination with common medical and scientific terms sourced from Twitter, Tumblr, Facebook, and a spectrum of news media blogs to develop and evaluate three iterations of an automated ICSR classifier. The ICSR classifier models consisted of sub-components to annotate the relevant ICSR elements and a component to make the final decision on the validity of the ICSR. Agreement with human pharmacovigilance experts was chosen as the preferred performance metric and was evaluated by calculating the Gwet AC1 statistic (gKappa). The best performing model was tested against the Roche global pharmacovigilance expert using a blind dataset and put through a time test of the full 311,189-post dataset. During this effort, the initial strict rule-based approach to ICSR classification resulted in a model with an accuracy of 65% and a gKappa of 46%. Adding an ML-based adverse event annotator improved the accuracy to 74% and gKappa to 60%. This was further improved by the addition of an additional ML ICSR detector. On a blind test set of 2500 posts, the final model demonstrated a gKappa of 78% and an accuracy of 83%. In the time test, it took the final model 48 h to complete a task that would have taken an estimated 44,000 h for human experts to perform. The results of this study indicate that an effective and scalable solution to the challenge of ICSR detection in SDM includes a workflow using an automated ML classifier to identify likely ICSRs for further human SME review.

  12. Development of a novel ex vivo porcine laparoscopic Heller myotomy and Nissen fundoplication training model (Toronto lap-Nissen simulator).

    PubMed

    Ujiie, Hideki; Kato, Tatsuya; Hu, Hsin-Pei; Bauer, Patrycja; Patel, Priya; Wada, Hironobu; Lee, Daiyoon; Fujino, Kosuke; Schieman, Colin; Pierre, Andrew; Waddell, Thomas K; Keshavjee, Shaf; Darling, Gail E; Yasufuku, Kazuhiro

    2017-06-01

    Surgical trainees are required to develop competency in a variety of laparoscopic operations. Developing laparoscopic technical skills can be difficult as there has been a decrease in the number of procedures performed. This study aims to develop an inexpensive and anatomically relevant model for training in laparoscopic foregut procedures. An ex vivo , anatomic model of the human upper abdomen was developed using intact porcine esophagus, stomach, diaphragm and spleen. The Toronto lap-Nissen simulator was contained in a laparoscopic box-trainer and included an arch system to simulate the normal radial shape and tension of the diaphragm. We integrated the use of this training model as a part of our laparoscopic skills laboratory-training curriculum. Afterwards, we surveyed trainees to evaluate the observed benefit of the learning session. Twenty-five trainees and five faculty members completed a survey regarding the use of this model. Among the trainees, only 4 (16%) had experience with laparoscopic Heller myotomy and Nissen fundoplication. They reported that practicing with the model was a valuable use of their limited time, repeating the exercise would be of additional benefit, and that the exercise improved their ability to perform or assist in an actual case in the operating room. Significant improvements were found in the following subjective measures comparing pre- vs. post-training: (I) knowledge level (5.6 vs. 8.0, P<0.001); (II) comfort level in assisting (6.3 vs. 7.6, P<0.001); and (III) comfort level in performing as the primary surgeon (4.9 vs. 7.1, P<0.001). The trainees and faculty members agreed that this model was of adequate fidelity and was a representative simulation of actual human anatomy. We developed an easily reproducible training model for laparoscopic procedures. This simulator reproduces human anatomy and increases the trainees' comfort level in performing and assisting with myotomy and fundoplication.

  13. Development of a novel ex vivo porcine laparoscopic Heller myotomy and Nissen fundoplication training model (Toronto lap-Nissen simulator)

    PubMed Central

    Ujiie, Hideki; Kato, Tatsuya; Hu, Hsin-Pei; Bauer, Patrycja; Patel, Priya; Wada, Hironobu; Lee, Daiyoon; Fujino, Kosuke; Schieman, Colin; Pierre, Andrew; Waddell, Thomas K.; Keshavjee, Shaf; Darling, Gail E.

    2017-01-01

    Background Surgical trainees are required to develop competency in a variety of laparoscopic operations. Developing laparoscopic technical skills can be difficult as there has been a decrease in the number of procedures performed. This study aims to develop an inexpensive and anatomically relevant model for training in laparoscopic foregut procedures. Methods An ex vivo, anatomic model of the human upper abdomen was developed using intact porcine esophagus, stomach, diaphragm and spleen. The Toronto lap-Nissen simulator was contained in a laparoscopic box-trainer and included an arch system to simulate the normal radial shape and tension of the diaphragm. We integrated the use of this training model as a part of our laparoscopic skills laboratory-training curriculum. Afterwards, we surveyed trainees to evaluate the observed benefit of the learning session. Results Twenty-five trainees and five faculty members completed a survey regarding the use of this model. Among the trainees, only 4 (16%) had experience with laparoscopic Heller myotomy and Nissen fundoplication. They reported that practicing with the model was a valuable use of their limited time, repeating the exercise would be of additional benefit, and that the exercise improved their ability to perform or assist in an actual case in the operating room. Significant improvements were found in the following subjective measures comparing pre- vs. post-training: (I) knowledge level (5.6 vs. 8.0, P<0.001); (II) comfort level in assisting (6.3 vs. 7.6, P<0.001); and (III) comfort level in performing as the primary surgeon (4.9 vs. 7.1, P<0.001). The trainees and faculty members agreed that this model was of adequate fidelity and was a representative simulation of actual human anatomy. Conclusions We developed an easily reproducible training model for laparoscopic procedures. This simulator reproduces human anatomy and increases the trainees’ comfort level in performing and assisting with myotomy and fundoplication. PMID:28740664

  14. The ultimate intrinsic signal-to-noise ratio of loop- and dipole-like current patterns in a realistic human head model.

    PubMed

    Pfrommer, Andreas; Henning, Anke

    2018-03-13

    The ultimate intrinsic signal-to-noise ratio (UISNR) represents an upper bound for the achievable SNR of any receive coil. To reach this threshold a complete basis set of equivalent surface currents is required. This study systematically investigated to what extent either loop- or dipole-like current patterns are able to reach the UISNR threshold in a realistic human head model between 1.5 T and 11.7 T. Based on this analysis, we derived guidelines for coil designers to choose the best array element at a given field strength. Moreover, we present ideal current patterns yielding the UISNR in a realistic body model. We distributed generic current patterns on a cylindrical and helmet-shaped surface around a realistic human head model. We excited electromagnetic fields in the human head by using eigenfunctions of the spherical and cylindrical Helmholtz operator. The electromagnetic field problem was solved by a fast volume integral equation solver. At 7 T and above, adding curl-free current patterns to divergence-free current patterns substantially increased the SNR in the human head (locally >20%). This was true for the helmet-shaped and the cylindrical surface. On the cylindrical surface, dipole-like current patterns had high SNR performance in central regions at ultra-high field strength. The UISNR increased superlinearly with B0 in most parts of the cerebrum but only sublinearly in the periphery of the human head. The combination of loop and dipole elements could enhance the SNR performance in the human head at ultra-high field strength. © 2018 International Society for Magnetic Resonance in Medicine.

  15. Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury.

    PubMed

    Sweeney, Timothy E; Lofgren, Shane; Khatri, Purvesh; Rogers, Angela J

    2017-08-01

    The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P < 1E -16 ). Neutrophil signatures are enriched in both animal and human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.

  16. Holistic Modeling for Human-Autonomous System Interaction

    DTIC Science & Technology

    2015-01-01

    piloting ...2012).  18X   Pilots  Learn  RPAs  First.      Retrieved  April  7,  2013,  from   http://www.holloman.af.mil/news/story.asp...human  processor  (QN-­‐ MHP):  a  computational  architecture  for   multitask  performance  in  human-­‐machine  

  17. Application of postured human model for SAR measurements

    NASA Astrophysics Data System (ADS)

    Vuchkovikj, M.; Munteanu, I.; Weiland, T.

    2013-07-01

    In the last two decades, the increasing number of electronic devices used in day-to-day life led to a growing interest in the study of the electromagnetic field interaction with biological tissues. The design of medical devices and wireless communication devices such as mobile phones benefits a lot from the bio-electromagnetic simulations in which digital human models are used. The digital human models currently available have an upright position which limits the research activities in realistic scenarios, where postured human bodies must be considered. For this reason, a software application called "BodyFlex for CST STUDIO SUITE" was developed. In its current version, this application can deform the voxel-based human model named HUGO (Dipp GmbH, 2010) to allow the generation of common postures that people use in normal life, ensuring the continuity of tissues and conserving the mass to an acceptable level. This paper describes the enhancement of the "BodyFlex" application, which is related to the movements of the forearm and the wrist of a digital human model. One of the electromagnetic applications in which the forearm and the wrist movement of a voxel based human model has a significant meaning is the measurement of the specific absorption rate (SAR) when a model is exposed to a radio frequency electromagnetic field produced by a mobile phone. Current SAR measurements of the exposure from mobile phones are performed with the SAM (Specific Anthropomorphic Mannequin) phantom which is filled with a dispersive but homogeneous material. We are interested what happens with the SAR values if a realistic inhomogeneous human model is used. To this aim, two human models, a homogeneous and an inhomogeneous one, in two simulation scenarios are used, in order to examine and observe the differences in the results for the SAR values.

  18. Human gastric cancer modelling using organoids.

    PubMed

    Seidlitz, Therese; Merker, Sebastian R; Rothe, Alexander; Zakrzewski, Falk; von Neubeck, Cläre; Grützmann, Konrad; Sommer, Ulrich; Schweitzer, Christine; Schölch, Sebastian; Uhlemann, Heike; Gaebler, Anne-Marlene; Werner, Kristin; Krause, Mechthild; Baretton, Gustavo B; Welsch, Thilo; Koo, Bon-Kyoung; Aust, Daniela E; Klink, Barbara; Weitz, Jürgen; Stange, Daniel E

    2018-04-27

    Gastric cancer is the second leading cause of cancer-related deaths and the fifth most common malignancy worldwide. In this study, human and mouse gastric cancer organoids were generated to model the disease and perform drug testing to delineate treatment strategies. Human gastric cancer organoid cultures were established, samples classified according to their molecular profile and their response to conventional chemotherapeutics tested. Targeted treatment was performed according to specific druggable mutations. Mouse gastric cancer organoid cultures were generated carrying molecular subtype-specific alterations. Twenty human gastric cancer organoid cultures were established and four selected for a comprehensive in-depth analysis. Organoids demonstrated divergent growth characteristics and morphologies. Immunohistochemistry showed similar characteristics to the corresponding primary tissue. A divergent response to 5-fluoruracil, oxaliplatin, irinotecan, epirubicin and docetaxel treatment was observed. Whole genome sequencing revealed a mutational spectrum that corresponded to the previously identified microsatellite instable, genomic stable and chromosomal instable subtypes of gastric cancer. The mutational landscape allowed targeted therapy with trastuzumab for ERBB2 alterations and palbociclib for CDKN2A loss. Mouse cancer organoids carrying Kras and Tp53 or Apc and Cdh1 mutations were characterised and serve as model system to study the signalling of induced pathways. We generated human and mouse gastric cancer organoids modelling typical characteristics and altered pathways of human gastric cancer. Successful interference with activated pathways demonstrates their potential usefulness as living biomarkers for therapy response testing. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Conserving analyst attention units: use of multi-agent software and CEP methods to assist information analysis

    NASA Astrophysics Data System (ADS)

    Rimland, Jeffrey; McNeese, Michael; Hall, David

    2013-05-01

    Although the capability of computer-based artificial intelligence techniques for decision-making and situational awareness has seen notable improvement over the last several decades, the current state-of-the-art still falls short of creating computer systems capable of autonomously making complex decisions and judgments in many domains where data is nuanced and accountability is high. However, there is a great deal of potential for hybrid systems in which software applications augment human capabilities by focusing the analyst's attention to relevant information elements based on both a priori knowledge of the analyst's goals and the processing/correlation of a series of data streams too numerous and heterogeneous for the analyst to digest without assistance. Researchers at Penn State University are exploring ways in which an information framework influenced by Klein's (Recognition Primed Decision) RPD model, Endsley's model of situational awareness, and the Joint Directors of Laboratories (JDL) data fusion process model can be implemented through a novel combination of Complex Event Processing (CEP) and Multi-Agent Software (MAS). Though originally designed for stock market and financial applications, the high performance data-driven nature of CEP techniques provide a natural compliment to the proven capabilities of MAS systems for modeling naturalistic decision-making, performing process adjudication, and optimizing networked processing and cognition via the use of "mobile agents." This paper addresses the challenges and opportunities of such a framework for augmenting human observational capability as well as enabling the ability to perform collaborative context-aware reasoning in both human teams and hybrid human / software agent teams.

  20. Integrating a human thermoregulatory model with a clothing model to predict core and skin temperatures.

    PubMed

    Yang, Jie; Weng, Wenguo; Wang, Faming; Song, Guowen

    2017-05-01

    This paper aims to integrate a human thermoregulatory model with a clothing model to predict core and skin temperatures. The human thermoregulatory model, consisting of an active system and a passive system, was used to determine the thermoregulation and heat exchanges within the body. The clothing model simulated heat and moisture transfer from the human skin to the environment through the microenvironment and fabric. In this clothing model, the air gap between skin and clothing, as well as clothing properties such as thickness, thermal conductivity, density, porosity, and tortuosity were taken into consideration. The simulated core and mean skin temperatures were compared to the published experimental results of subject tests at three levels of ambient temperatures of 20 °C, 30 °C, and 40 °C. Although lower signal-to-noise-ratio was observed, the developed model demonstrated positive performance at predicting core temperatures with a maximum difference between the simulations and measurements of no more than 0.43 °C. Generally, the current model predicted the mean skin temperatures with reasonable accuracy. It could be applied to predict human physiological responses and assess thermal comfort and heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Convergence and stress analysis of the homogeneous structure of human femur bone during standing up condition

    NASA Astrophysics Data System (ADS)

    Izzawati, B.; Daud, R.; Afendi, M.; Majid, M. S. Abdul; Zain, N. A. M.

    2017-09-01

    Finite element models have been widely used to quantify the stress analysis and to predict the bone fractures of the human body. The present study highlights on the stress analysis of the homogeneous structure of human femur bone during standing up condition. The main objective of this study is to evaluate and understand the biomechanics for human femur bone and to prepare orthotropic homogeneous material models used for FE analysis of the global proximal femur. Thus, it is necessary to investigate critical stress on the human femur bone for future study on implantation of internal fixator and external fixator. The implication possibility to create a valid FE model by simply comparing the FE results with the actual biomechanics structures. Thus, a convergence test was performed by FE model of the femur and the stress analysis based on the actual biomechanics of the human femur bone. An increment of critical stress shows in the femur shaft as the increasing of load on the femoral head and decreasing the pulling force at greater trochanter.

  2. Modeling for intra-body communication with bone effect.

    PubMed

    Pun, S H; Gao, Y M; Mak, P U; Du, M; Vai, M I

    2009-01-01

    Intra-body communication (IBC) is a new, different "wireless" communication technique based on the human tissue. This short range "wireless" communication technology provides an alternative solution to wearable sensors, home health system, telemedicine and implanted devices. The development of the IBC enables the possibilities of providing less complexity and convenient communication methodologies for these devices. By regarding human tissue as communication channel, IBC making use of the conductivities properties of human tissue to send electrical signal from transmitter to receiver. In this paper, the authors proposed a new mathematical model for galvanic coupling type IBC based on a human limb. Starting from the electromagnetic theory, the authors treat human tissue as volume conductor, which is in analogous with the bioelectric phenomena analysis. In order to explain the mechanism of galvanic coupling type technique of IBC, applying the quasi-static approximation, the governing equation can be reduced to Laplace Equation. Finally, the analytical model is evaluated with on-body measurement for testing its performance. The comparison result shows that the developed mathematical model can provide good approximation for galvanic coupling type IBC on human limb under low operating frequencies.

  3. How good are indirect tests at detecting recombination in human mtDNA?

    PubMed

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-07-08

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D' and r(2), Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ(2)) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7-70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed.

  4. Scopolamine disrupts place navigation in rats and humans: a translational validation of the Hidden Goal Task in the Morris water maze and a real maze for humans.

    PubMed

    Laczó, Jan; Markova, Hana; Lobellova, Veronika; Gazova, Ivana; Parizkova, Martina; Cerman, Jiri; Nekovarova, Tereza; Vales, Karel; Klovrzova, Sylva; Harrison, John; Windisch, Manfred; Vlcek, Kamil; Svoboda, Jan; Hort, Jakub; Stuchlik, Ales

    2017-02-01

    Development of new drugs for treatment of Alzheimer's disease (AD) requires valid paradigms for testing their efficacy and sensitive tests validated in translational research. We present validation of a place-navigation task, a Hidden Goal Task (HGT) based on the Morris water maze (MWM), in comparable animal and human protocols. We used scopolamine to model cognitive dysfunction similar to that seen in AD and donepezil, a symptomatic medication for AD, to assess its potential reversible effect on this scopolamine-induced cognitive dysfunction. We tested the effects of scopolamine and the combination of scopolamine and donepezil on place navigation and compared their effects in human and rat versions of the HGT. Place navigation testing consisted of 4 sessions of HGT performed at baseline, 2, 4, and 8 h after dosing in humans or 1, 2.5, and 5 h in rats. Scopolamine worsened performance in both animals and humans. In the animal experiment, co-administration of donepezil alleviated the negative effect of scopolamine. In the human experiment, subjects co-administered with scopolamine and donepezil performed similarly to subjects on placebo and scopolamine, indicating a partial ameliorative effect of donepezil. In the task based on the MWM, scopolamine impaired place navigation, while co-administration of donepezil alleviated this effect in comparable animal and human protocols. Using scopolamine and donepezil to challenge place navigation testing can be studied concurrently in animals and humans and may be a valid and reliable model for translational research, as well as for preclinical and clinical phases of drug trials.

  5. How Good Are Indirect Tests at Detecting Recombination in Human mtDNA?

    PubMed Central

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-01-01

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D′ and r2, Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ2) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7−70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed. PMID:23665874

  6. Bayesian Modeling for Identification and Estimation of the Learning Effects of Pointing Tasks

    NASA Astrophysics Data System (ADS)

    Kyo, Koki

    Recently, in the field of human-computer interaction, a model containing the systematic factor and human factor has been proposed to evaluate the performance of the input devices of a computer. This is called the SH-model. In this paper, in order to extend the range of application of the SH-model, we propose some new models based on the Box-Cox transformation and apply a Bayesian modeling method for identification and estimation of the learning effects of pointing tasks. We consider the parameters describing the learning effect as random variables and introduce smoothness priors for them. Illustrative results show that the newly-proposed models work well.

  7. Assessment of the human epidermal model LabCyte EPI-MODEL for In vitro skin corrosion testing according to the OECD test guideline 431.

    PubMed

    Katoh, Masakazu; Hamajima, Fumiyasu; Ogasawara, Takahiro; Hata, Ken-Ichiro

    2010-06-01

    A new OECD test guideline 431 (TG431) for in vitro skin corrosion tests using human reconstructed skin models was adopted by OECD in 2004. TG431 defines the criteria for the general function and performance of applicable skin models. In order to confirm that the new reconstructed human epidermal model, LabCyte EPI-MODEL is applicable for the skin corrosion test according to TG431, the predictability and repeatability of the model for the skin corrosion test was evaluated. The test was performed according to the test protocol described in TG431. Based on the knowledge that LabCyte EPI-MODEL is an epidermal model as well as EpiDerm, we decided to adopt the the Epiderm prediction model of skin corrosion for the LabCyte EPI-MODEL, using twenty test chemicals (10 corrosive chemicals and 10 non-corrosive chemicals) in the 1(st) stage. The prediction model results showed that the distinction of non-corrosion to corrosion corresponded perfectly. Therefore, it was judged that the prediction model of EpiDerm could be applied to the LabCyte EPI-MODEL. In the 2(nd) stage, the repeatability of this test protocol with the LabCyte EPI-MODEL was examined using twelve chemicals (6 corrosive chemicals and 6 non-corrosive chemicals) that are described in TG431, and these results recognized a high repeatability and accurate predictability. It was concluded that LabCyte EPI-MODEL is applicable for the skin corrosive test protocol according to TG431.

  8. A comparative study of theoretical graph models for characterizing structural networks of human brain.

    PubMed

    Li, Xiaojin; Hu, Xintao; Jin, Changfeng; Han, Junwei; Liu, Tianming; Guo, Lei; Hao, Wei; Li, Lingjiang

    2013-01-01

    Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  9. Use of a spread sheet to calculate the current-density distribution produced in human and rat models by low-frequency electric fields.

    PubMed

    Hart, F X

    1990-01-01

    The current-density distribution produced inside irregularly shaped, homogeneous human and rat models by low-frequency electric fields is obtained by a two-stage finite-difference procedure. In the first stage the model is assumed to be equipotential. Laplace's equation is solved by iteration in the external region to obtain the capacitive-current densities at the model's surface elements. These values then provide the boundary conditions for the second-stage relaxation solution, which yields the internal current-density distribution. Calculations were performed with the Excel spread-sheet program on a Macintosh-II microcomputer. A spread sheet is a two-dimensional array of cells. Each cell of the sheet can represent a square element of space. Equations relating the values of the cells can represent the relationships between the potentials in the corresponding spatial elements. Extension to three dimensions is readily made. Good agreement was obtained with current densities measured on human models with both, one, or no legs grounded and on rat models in four different grounding configurations. The results also compared well with predictions of more sophisticated numerical analyses. Spread sheets can provide an inexpensive and relatively simple means to perform good, approximate dosimetric calculations on irregularly shaped objects.

  10. A Completely Blind Video Integrity Oracle.

    PubMed

    Mittal, Anish; Saad, Michele A; Bovik, Alan C

    2016-01-01

    Considerable progress has been made toward developing still picture perceptual quality analyzers that do not require any reference picture and that are not trained on human opinion scores of distorted images. However, there do not yet exist any such completely blind video quality assessment (VQA) models. Here, we attempt to bridge this gap by developing a new VQA model called the video intrinsic integrity and distortion evaluation oracle (VIIDEO). The new model does not require the use of any additional information other than the video being quality evaluated. VIIDEO embodies models of intrinsic statistical regularities that are observed in natural vidoes, which are used to quantify disturbances introduced due to distortions. An algorithm derived from the VIIDEO model is thereby able to predict the quality of distorted videos without any external knowledge about the pristine source, anticipated distortions, or human judgments of video quality. Even with such a paucity of information, we are able to show that the VIIDEO algorithm performs much better than the legacy full reference quality measure MSE on the LIVE VQA database and delivers performance comparable with a leading human judgment trained blind VQA model. We believe that the VIIDEO algorithm is a significant step toward making real-time monitoring of completely blind video quality possible.

  11. Human-Robot Interaction in High Vulnerability Domains

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2016-01-01

    Future NASA missions will require successful integration of the human with highly complex systems. Highly complex systems are likely to involve humans, automation, and some level of robotic assistance. The complex environments will require successful integration of the human with automation, with robots, and with human-automation-robot teams to accomplish mission critical goals. Many challenges exist for the human performing in these types of operational environments with these kinds of systems. Systems must be designed to optimally integrate various levels of inputs and outputs based on the roles and responsibilities of the human, the automation, and the robots; from direct manual control, shared human-robotic control, or no active human control (i.e. human supervisory control). It is assumed that the human will remain involved at some level. Technologies that vary based on contextual demands and on operator characteristics (workload, situation awareness) will be needed when the human integrates into these systems. Predictive models that estimate the impact of the technologies on the system performance and the on the human operator are also needed to meet the challenges associated with such future complex human-automation-robot systems in extreme environments.

  12. Optimal race strategy for a 200-m flying sprint in a human-powered vehicle: A case study of a world-record attempt.

    PubMed

    de Koning, Jos J; van der Zweep, Cees-Jan; Cornelissen, Jesper; Kuiper, Bouke

    2013-03-01

    Optimal pacing strategy was determined for breaking the world speed record on a human-powered vehicle (HPV) using an energy-flow model in which the rider's physical capacities, the vehicle's properties, and the environmental conditions were included. Power data from world-record attempts were compared with data from the model, and race protocols were adjusted to the results from the model. HPV performance can be improved by using an energy-flow model for optimizing race strategy. A biphased in-run followed by a sprint gave best results.

  13. A model-based analysis of a display for helicopter landing approach. [control theoretical model of human pilot

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Wheat, L. W.

    1975-01-01

    A control theoretic model of the human pilot was used to analyze a baseline electronic cockpit display in a helicopter landing approach task. The head down display was created on a stroke written cathode ray tube and the vehicle was a UH-1H helicopter. The landing approach task consisted of maintaining prescribed groundspeed and glideslope in the presence of random vertical and horizontal turbulence. The pilot model was also used to generate and evaluate display quickening laws designed to improve pilot vehicle performance. A simple fixed base simulation provided comparative tracking data.

  14. Information Presentation: Human Research Program - Space Human Factors and Habitability, Space Human Factors Engineering Project

    NASA Technical Reports Server (NTRS)

    Holden, Kristina L.; Sandor, Aniko; Thompson, Shelby G.; Kaiser, Mary K.; McCann, Robert S.; Begault, D. R.; Adelstein, B. D.; Beutter, B. R.; Wenzel, E. M.; Godfroy, M.; hide

    2010-01-01

    The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew. The major areas of work, or subtasks, within this DRP are: 1) Displays, 2) Controls, 3) Electronic Procedures and Fault Management, and 4) Human Performance Modeling. This DRP is a collaborative effort between researchers atJohnson Space Center and Ames Research Center. T

  15. Biological Networks for Predicting Chemical Hepatocarcinogenicity Using Gene Expression Data from Treated Mice and Relevance across Human and Rat Species

    PubMed Central

    Thomas, Reuben; Thomas, Russell S.; Auerbach, Scott S.; Portier, Christopher J.

    2013-01-01

    Background Several groups have employed genomic data from subchronic chemical toxicity studies in rodents (90 days) to derive gene-centric predictors of chronic toxicity and carcinogenicity. Genes are annotated to belong to biological processes or molecular pathways that are mechanistically well understood and are described in public databases. Objectives To develop a molecular pathway-based prediction model of long term hepatocarcinogenicity using 90-day gene expression data and to evaluate the performance of this model with respect to both intra-species, dose-dependent and cross-species predictions. Methods Genome-wide hepatic mRNA expression was retrospectively measured in B6C3F1 mice following subchronic exposure to twenty-six (26) chemicals (10 were positive, 2 equivocal and 14 negative for liver tumors) previously studied by the US National Toxicology Program. Using these data, a pathway-based predictor model for long-term liver cancer risk was derived using random forests. The prediction model was independently validated on test sets associated with liver cancer risk obtained from mice, rats and humans. Results Using 5-fold cross validation, the developed prediction model had reasonable predictive performance with the area under receiver-operator curve (AUC) equal to 0.66. The developed prediction model was then used to extrapolate the results to data associated with rat and human liver cancer. The extrapolated model worked well for both extrapolated species (AUC value of 0.74 for rats and 0.91 for humans). The prediction models implied a balanced interplay between all pathway responses leading to carcinogenicity predictions. Conclusions Pathway-based prediction models estimated from sub-chronic data hold promise for predicting long-term carcinogenicity and also for its ability to extrapolate results across multiple species. PMID:23737943

  16. Biological networks for predicting chemical hepatocarcinogenicity using gene expression data from treated mice and relevance across human and rat species.

    PubMed

    Thomas, Reuben; Thomas, Russell S; Auerbach, Scott S; Portier, Christopher J

    2013-01-01

    Several groups have employed genomic data from subchronic chemical toxicity studies in rodents (90 days) to derive gene-centric predictors of chronic toxicity and carcinogenicity. Genes are annotated to belong to biological processes or molecular pathways that are mechanistically well understood and are described in public databases. To develop a molecular pathway-based prediction model of long term hepatocarcinogenicity using 90-day gene expression data and to evaluate the performance of this model with respect to both intra-species, dose-dependent and cross-species predictions. Genome-wide hepatic mRNA expression was retrospectively measured in B6C3F1 mice following subchronic exposure to twenty-six (26) chemicals (10 were positive, 2 equivocal and 14 negative for liver tumors) previously studied by the US National Toxicology Program. Using these data, a pathway-based predictor model for long-term liver cancer risk was derived using random forests. The prediction model was independently validated on test sets associated with liver cancer risk obtained from mice, rats and humans. Using 5-fold cross validation, the developed prediction model had reasonable predictive performance with the area under receiver-operator curve (AUC) equal to 0.66. The developed prediction model was then used to extrapolate the results to data associated with rat and human liver cancer. The extrapolated model worked well for both extrapolated species (AUC value of 0.74 for rats and 0.91 for humans). The prediction models implied a balanced interplay between all pathway responses leading to carcinogenicity predictions. Pathway-based prediction models estimated from sub-chronic data hold promise for predicting long-term carcinogenicity and also for its ability to extrapolate results across multiple species.

  17. Dynamic Socialized Gaussian Process Models for Human Behavior Prediction in a Health Social Network

    PubMed Central

    Shen, Yelong; Phan, NhatHai; Xiao, Xiao; Jin, Ruoming; Sun, Junfeng; Piniewski, Brigitte; Kil, David; Dou, Dejing

    2016-01-01

    Modeling and predicting human behaviors, such as the level and intensity of physical activity, is a key to preventing the cascade of obesity and helping spread healthy behaviors in a social network. In our conference paper, we have developed a social influence model, named Socialized Gaussian Process (SGP), for socialized human behavior modeling. Instead of explicitly modeling social influence as individuals' behaviors influenced by their friends' previous behaviors, SGP models the dynamic social correlation as the result of social influence. The SGP model naturally incorporates personal behavior factor and social correlation factor (i.e., the homophily principle: Friends tend to perform similar behaviors) into a unified model. And it models the social influence factor (i.e., an individual's behavior can be affected by his/her friends) implicitly in dynamic social correlation schemes. The detailed experimental evaluation has shown the SGP model achieves better prediction accuracy compared with most of baseline methods. However, a Socialized Random Forest model may perform better at the beginning compared with the SGP model. One of the main reasons is the dynamic social correlation function is purely based on the users' sequential behaviors without considering other physical activity-related features. To address this issue, we further propose a novel “multi-feature SGP model” (mfSGP) which improves the SGP model by using multiple physical activity-related features in the dynamic social correlation learning. Extensive experimental results illustrate that the mfSGP model clearly outperforms all other models in terms of prediction accuracy and running time. PMID:27746515

  18. A detailed analysis of the erythropoietic control system in the human, squirrel, monkey, rat and mouse

    NASA Technical Reports Server (NTRS)

    Nordheim, A. W.

    1985-01-01

    The erythropoiesis modeling performed in support of the Body Fluid and Blood Volume Regulation tasks is described. The mathematical formulation of the species independent model, the solutions to the steady state and dynamic versions of the model, and the individual species specific models for the human, squirrel monkey, rat and mouse are outlined. A detailed sensitivity analysis of the species independent model response to parameter changes and how those responses change from species to species is presented. The species to species response to a series of simulated stresses directly related to blood volume regulation during space flight is analyzed.

  19. [Computer optical topography: a study of the repeatability of the results of human body model examination].

    PubMed

    Sarnadskiĭ, V N

    2007-01-01

    The problem of repeatability of the results of examination of a plastic human body model is considered. The model was examined in 7 positions using an optical topograph for kyphosis diagnosis. The examination was performed under television camera monitoring. It was shown that variation of the model position in the camera view affected the repeatability of the results of topographic examination, especially if the model-to-camera distance was changed. A study of the repeatability of the results of optical topographic examination can help to increase the reliability of the topographic method, which is widely used for medical screening of children and adolescents.

  20. 77 FR 56581 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... HEC, in this model helicopter that now meets the Category A performance standard. DATES: We must... airworthiness directive (AD) for the Sikorsky Aircraft Corporation (Sikorsky) Model S-92A helicopter, which... external load operations, including human external cargo (HEC), because this model helicopter was not...

  1. Investigation and Modeling of Capacitive Human Body Communication.

    PubMed

    Zhu, Xiao-Qi; Guo, Yong-Xin; Wu, Wen

    2017-04-01

    This paper presents a systematic investigation of the capacitive human body communication (HBC). The measurement of HBC channels is performed using a novel battery-powered system to eliminate the effects of baluns, cables and instruments. To verify the measured results, a numerical model incorporating the entire HBC system is established. Besides, it is demonstrated that both the impedance and path gain bandwidths of HBC channels is affected by the electrode configuration. Based on the analysis of the simulated electric field distribution, an equivalent circuit model is proposed and the circuit parameters are extracted using the finite element method. The transmission capability along the human body is also studied. The simulated results using the numerical and circuit models coincide very well with the measurement, which demonstrates that the proposed circuit model can effectively interpret the operation mechanism of the capacitive HBC.

  2. A video, text, and speech-driven realistic 3-d virtual head for human-machine interface.

    PubMed

    Yu, Jun; Wang, Zeng-Fu

    2015-05-01

    A multiple inputs-driven realistic facial animation system based on 3-D virtual head for human-machine interface is proposed. The system can be driven independently by video, text, and speech, thus can interact with humans through diverse interfaces. The combination of parameterized model and muscular model is used to obtain a tradeoff between computational efficiency and high realism of 3-D facial animation. The online appearance model is used to track 3-D facial motion from video in the framework of particle filtering, and multiple measurements, i.e., pixel color value of input image and Gabor wavelet coefficient of illumination ratio image, are infused to reduce the influence of lighting and person dependence for the construction of online appearance model. The tri-phone model is used to reduce the computational consumption of visual co-articulation in speech synchronized viseme synthesis without sacrificing any performance. The objective and subjective experiments show that the system is suitable for human-machine interaction.

  3. Construct Validity of Fresh Frozen Human Cadaver as a Training Model in Minimal Access Surgery

    PubMed Central

    Macafee, David; Pranesh, Nagarajan; Horgan, Alan F.

    2012-01-01

    Background: The construct validity of fresh human cadaver as a training tool has not been established previously. The aims of this study were to investigate the construct validity of fresh frozen human cadaver as a method of training in minimal access surgery and determine if novices can be rapidly trained using this model to a safe level of performance. Methods: Junior surgical trainees, novices (<3 laparoscopic procedure performed) in laparoscopic surgery, performed 10 repetitions of a set of structured laparoscopic tasks on fresh frozen cadavers. Expert laparoscopists (>100 laparoscopic procedures) performed 3 repetitions of identical tasks. Performances were scored using a validated, objective Global Operative Assessment of Laparoscopic Skills scale. Scores for 3 consecutive repetitions were compared between experts and novices to determine construct validity. Furthermore, to determine if the novices reached a safe level, a trimmed mean of the experts score was used to define a benchmark. Mann-Whitney U test was used for construct validity analysis and 1-sample t test to compare performances of the novice group with the benchmark safe score. Results: Ten novices and 2 experts were recruited. Four out of 5 tasks (nondominant to dominant hand transfer; simulated appendicectomy; intracorporeal and extracorporeal knot tying) showed construct validity. Novices’ scores became comparable to benchmark scores between the eighth and tenth repetition. Conclusion: Minimal access surgical training using fresh frozen human cadavers appears to have construct validity. The laparoscopic skills of novices can be accelerated through to a safe level within 8 to 10 repetitions. PMID:23318058

  4. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.

    PubMed

    Asgharpour, Zahra; Zioupos, Peter; Graw, Matthias; Peldschus, Steffen

    2014-03-01

    Computer-aided methods such as finite-element simulation offer a great potential in the forensic reconstruction of injury mechanisms. Numerous studies have been performed on understanding and analysing the mechanical properties of bone and the mechanism of its fracture. Determination of the mechanical properties of bones is made on the same basis used for other structural materials. The mechanical behaviour of bones is affected by the mechanical properties of the bone material, the geometry, the loading direction and mode and of course the loading rate. Strain rate dependency of mechanical properties of cortical bone has been well demonstrated in literature studies, but as many of these were performed on animal bones and at non-physiological strain rates it is questionable how these will apply in the human situations. High strain-rates dominate in a lot of forensic applications in automotive crashes and assault scenarios. There is an overwhelming need to a model which can describe the complex behaviour of bone at lower strain rates as well as higher ones. Some attempts have been made to model the viscoelastic and viscoplastic properties of the bone at high strain rates using constitutive mathematical models with little demonstrated success. The main objective of the present study is to model the rate dependent behaviour of the bones based on experimental data. An isotropic material model of human cortical bone with strain rate dependency effects is implemented using the LS-DYNA material library. We employed a human finite element model called THUMS (Total Human Model for Safety), developed by Toyota R&D Labs and the Wayne State University, USA. The finite element model of the human femur is extracted from the THUMS model. Different methods have been employed to develop a strain rate dependent material model for the femur bone. Results of one the recent experimental studies on human femur have been employed to obtain the numerical model for cortical femur. A forensic application of the model is explained in which impacts to the arm have been reconstructed using the finite element model of THUMS. The advantage of the numerical method is that a wide range of impact conditions can be easily reconstructed. Impact velocity has been changed as a parameter to find the tolerance levels of injuries to the lower arm. The method can be further developed to study the assaults and the injury mechanism which can lead to severe traumatic injuries in forensic cases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Examination of the gamma equilibrium point hypothesis when applied to single degree of freedom movements performed with different inertial loads.

    PubMed

    Bellomo, A; Inbar, G

    1997-01-01

    One of the theories of human motor control is the gamma Equilibrium Point Hypothesis. It is an attractive theory since it offers an easy control scheme where the planned trajectory shifts monotionically from an initial to a final equilibrium state. The feasibility of this model was tested by reconstructing the virtual trajectory and the stiffness profiles for movements performed with different inertial loads and examining them. Three types of movements were tested: passive movements, targeted movements, and repetitive movements. Each of the movements was performed with five different inertial loads. Plausible virtual trajectories and stiffness profiles were reconstructed based on the gamma Equilibrium Point Hypothesis for the three different types of movements performed with different inertial loads. However, the simple control strategy supported by the model, where the planned trajectory shifts monotonically from an initial to a final equilibrium state, could not be supported for targeted movements performed with added inertial load. To test the feasibility of the model further we must examine the probability that the human motor control system would choose a trajectory more complicated than the actual trajectory to control.

  6. Transforming Biology Assessment with Machine Learning: Automated Scoring of Written Evolutionary Explanations

    NASA Astrophysics Data System (ADS)

    Nehm, Ross H.; Ha, Minsu; Mayfield, Elijah

    2012-02-01

    This study explored the use of machine learning to automatically evaluate the accuracy of students' written explanations of evolutionary change. Performance of the Summarization Integrated Development Environment (SIDE) program was compared to human expert scoring using a corpus of 2,260 evolutionary explanations written by 565 undergraduate students in response to two different evolution instruments (the EGALT-F and EGALT-P) that contained prompts that differed in various surface features (such as species and traits). We tested human-SIDE scoring correspondence under a series of different training and testing conditions, using Kappa inter-rater agreement values of greater than 0.80 as a performance benchmark. In addition, we examined the effects of response length on scoring success; that is, whether SIDE scoring models functioned with comparable success on short and long responses. We found that SIDE performance was most effective when scoring models were built and tested at the individual item level and that performance degraded when suites of items or entire instruments were used to build and test scoring models. Overall, SIDE was found to be a powerful and cost-effective tool for assessing student knowledge and performance in a complex science domain.

  7. The Modeling and Application of Small Arms Wound Ballistics

    DTIC Science & Technology

    1991-08-01

    charts of the human anatomy and cross-referencing the projectile performance data and tactical effect estimates. By considering literally thousands of...trajectory through the human anatomy in a standing position). The weighted EKE deposit is then calculated from the following: 45 EKE M.. (v _)-v

  8. An integrated environmental modeling framework for performing quantitative microbial risk assessments

    USDA-ARS?s Scientific Manuscript database

    Standardized methods are often used to assess the likelihood of a human-health effect from exposure to a specified hazard, and inform opinions and decisions about risk management and communication. A Quantitative Microbial Risk Assessment (QMRA) is specifically adapted to detail potential human-heal...

  9. International Space Station Human Behavior and Performance Competency Model: Volume I

    NASA Technical Reports Server (NTRS)

    Schmidt, Lacey

    2008-01-01

    This document defines Human Behavior and Performance (HBP) competencies that are recommended to be included as requirements to participate in international long duration missions. They were developed in response to the Multilateral Crew Operations Panel (MMOP) request to develop HBP training requirements for the International Space Station (ISS). The competency model presented here was developed by the ITCB HBPT WG and forms the basis for determining the HBP training curriculum for long duration crewmembers. This document lists specific HBP competencies and behaviors required of astronauts/cosmonauts who participate in ISS expedition and other international longduration missions. Please note that this model does not encompass all competencies required. For example, outside the scope of this document are cognitive skills and abilities, including but not limited to concentration, memorization, perception, imagination, and thinking. It is assumed that these skills, which are crucial in terms of human behavior and performance, are considered during selection phase since such professionally significant qualities of the operator should be taken into consideration in order to ensure sufficient baseline levels that can be further improved during general astronaut training. Also, technical competencies, even though critical for crewmembers, are beyond the scope of this document. It should also be noted that the competencies in this model (and subsequent objectives) are not intended to limit the internal activities or training programs of any international partner.

  10. Using model order tests to determine sensory inputs in a motion study

    NASA Technical Reports Server (NTRS)

    Repperger, D. W.; Junker, A. M.

    1977-01-01

    In the study of motion effects on tracking performance, a problem of interest is the determination of what sensory inputs a human uses in controlling his tracking task. In the approach presented here a simple canonical model (FID or a proportional, integral, derivative structure) is used to model the human's input-output time series. A study of significant changes in reduction of the output error loss functional is conducted as different permutations of parameters are considered. Since this canonical model includes parameters which are related to inputs to the human (such as the error signal, its derivatives and integration), the study of model order is equivalent to the study of which sensory inputs are being used by the tracker. The parameters are obtained which have the greatest effect on reducing the loss function significantly. In this manner the identification procedure converts the problem of testing for model order into the problem of determining sensory inputs.

  11. Performance impact of stop lists and morphological decomposition on word-word corpus-based semantic space models.

    PubMed

    Keith, Jeff; Westbury, Chris; Goldman, James

    2015-09-01

    Corpus-based semantic space models, which primarily rely on lexical co-occurrence statistics, have proven effective in modeling and predicting human behavior in a number of experimental paradigms that explore semantic memory representation. The most widely studied extant models, however, are strongly influenced by orthographic word frequency (e.g., Shaoul & Westbury, Behavior Research Methods, 38, 190-195, 2006). This has the implication that high-frequency closed-class words can potentially bias co-occurrence statistics. Because these closed-class words are purported to carry primarily syntactic, rather than semantic, information, the performance of corpus-based semantic space models may be improved by excluding closed-class words (using stop lists) from co-occurrence statistics, while retaining their syntactic information through other means (e.g., part-of-speech tagging and/or affixes from inflected word forms). Additionally, very little work has been done to explore the effect of employing morphological decomposition on the inflected forms of words in corpora prior to compiling co-occurrence statistics, despite (controversial) evidence that humans perform early morphological decomposition in semantic processing. In this study, we explored the impact of these factors on corpus-based semantic space models. From this study, morphological decomposition appears to significantly improve performance in word-word co-occurrence semantic space models, providing some support for the claim that sublexical information-specifically, word morphology-plays a role in lexical semantic processing. An overall decrease in performance was observed in models employing stop lists (e.g., excluding closed-class words). Furthermore, we found some evidence that weakens the claim that closed-class words supply primarily syntactic information in word-word co-occurrence semantic space models.

  12. A human visual model-based approach of the visual attention and performance evaluation

    NASA Astrophysics Data System (ADS)

    Le Meur, Olivier; Barba, Dominique; Le Callet, Patrick; Thoreau, Dominique

    2005-03-01

    In this paper, a coherent computational model of visual selective attention for color pictures is described and its performances are precisely evaluated. The model based on some important behaviours of the human visual system is composed of four parts: visibility, perception, perceptual grouping and saliency map construction. This paper focuses mainly on its performances assessment by achieving extended subjective and objective comparisons with real fixation points captured by an eye-tracking system used by the observers in a task-free viewing mode. From the knowledge of the ground truth, qualitatively and quantitatively comparisons have been made in terms of the measurement of the linear correlation coefficient (CC) and of the Kulback Liebler divergence (KL). On a set of 10 natural color images, the results show that the linear correlation coefficient and the Kullback Leibler divergence are of about 0.71 and 0.46, respectively. CC and Kl measures with this model are respectively improved by about 4% and 7% compared to the best model proposed by L.Itti. Moreover, by comparing the ability of our model to predict eye movements produced by an average observer, we can conclude that our model succeeds quite well in predicting the spatial locations of the most important areas of the image content.

  13. Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response

    NASA Astrophysics Data System (ADS)

    Psikuta, Agnes; Mert, Emel; Annaheim, Simon; Rossi, René M.

    2018-02-01

    To evaluate the quality of new energy-saving and performance-supporting building and urban settings, the thermal sensation and comfort models are often used. The accuracy of these models is related to accurate prediction of the human thermo-physiological response that, in turn, is highly sensitive to the local effect of clothing. This study aimed at the development of an empirical regression model of the air gap thickness and the contact area in clothing to accurately simulate human thermal and perceptual response. The statistical model predicted reliably both parameters for 14 body regions based on the clothing ease allowances. The effect of the standard error in air gap prediction on the thermo-physiological response was lower than the differences between healthy humans. It was demonstrated that currently used assumptions and methods for determination of the air gap thickness can produce a substantial error for all global, mean, and local physiological parameters, and hence, lead to false estimation of the resultant physiological state of the human body, thermal sensation, and comfort. Thus, this model may help researchers to strive for improvement of human thermal comfort, health, productivity, safety, and overall sense of well-being with simultaneous reduction of energy consumption and costs in built environment.

  14. Block randomization versus complete randomization of human perception stimuli: is there a difference?

    NASA Astrophysics Data System (ADS)

    Moyer, Steve; Uhl, Elizabeth R.

    2015-05-01

    For more than 50 years, the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) has been studying and modeling the human visual discrimination process as it pertains to military imaging systems. In order to develop sensor performance models, human observers are trained to expert levels in the identification of military vehicles. From 1998 until 2006, the experimental stimuli were block randomized, meaning that stimuli with similar difficulty levels (for example, in terms of distance from target, blur, noise, etc.) were presented together in blocks of approximately 24 images but the order of images within the block was random. Starting in 2006, complete randomization came into vogue, meaning that difficulty could change image to image. It was thought that this would provide a more statistically robust result. In this study we investigated the impact of the two types of randomization on performance in two groups of observers matched for skill to create equivalent groups. It is hypothesized that Soldiers in the Complete Randomized condition will have to shift their decision criterion more frequently than Soldiers in the Block Randomization group and this shifting is expected to impede performance so that Soldiers in the Block Randomized group perform better.

  15. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2014-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date

  16. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2012-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at the NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date.

  17. HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy.

    PubMed

    Hu, Huan; Zhang, Li; Ai, Haixin; Zhang, Hui; Fan, Yetian; Zhao, Qi; Liu, Hongsheng

    2018-03-27

    LncRNA plays an important role in many biological and disease progression by binding to related proteins. However, the experimental methods for studying lncRNA-protein interactions are time-consuming and expensive. Although there are a few models designed to predict the interactions of ncRNA-protein, they all have some common drawbacks that limit their predictive performance. In this study, we present a model called HLPI-Ensemble designed specifically for human lncRNA-protein interactions. HLPI-Ensemble adopts the ensemble strategy based on three mainstream machine learning algorithms of Support Vector Machines (SVM), Random Forests (RF) and Extreme Gradient Boosting (XGB) to generate HLPI-SVM Ensemble, HLPI-RF Ensemble and HLPI-XGB Ensemble, respectively. The results of 10-fold cross-validation show that HLPI-SVM Ensemble, HLPI-RF Ensemble and HLPI-XGB Ensemble achieved AUCs of 0.95, 0.96 and 0.96, respectively, in the test dataset. Furthermore, we compared the performance of the HLPI-Ensemble models with the previous models through external validation dataset. The results show that the false positives (FPs) of HLPI-Ensemble models are much lower than that of the previous models, and other evaluation indicators of HLPI-Ensemble models are also higher than those of the previous models. It is further showed that HLPI-Ensemble models are superior in predicting human lncRNA-protein interaction compared with previous models. The HLPI-Ensemble is publicly available at: http://ccsipb.lnu.edu.cn/hlpiensemble/ .

  18. The Use of Empirical Data Sources in HRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce Hallbert; David Gertman; Julie Marble

    This paper presents a review of available information related to human performance to support Human Reliability Analysis (HRA) performed for nuclear power plants (NPPs). A number of data sources are identified as potentially useful. These include NPP licensee event reports (LERs), augmented inspection team (AIT) reports, operator requalification data, results from the literature in experimental psychology, and the Aviation Safety Reporting System (ASRSs). The paper discusses how utilizing such information improves our capability to model and quantify human performance. In particular the paper discusses how information related to performance shaping factors (PSFs) can be extracted from empirical data to determinemore » their size effect, their relative effects, as well as their interactions. The paper concludes that appropriate use of existing sources can help addressing some of the important issues we are currently facing in HRA.« less

  19. [The methods of assessment of health risk from exposure to radon and radon daughters].

    PubMed

    Demin, V F; Zhukovskiy, M V; Kiselev, S M

    2014-01-01

    The critical analysis of existing models of the relationship dose-effect (RDE) for radon exposure on human health has been performed. Conclusion about the necessity and possibility of improving these models has been made. A new improved version ofthe RDE has been developed. A technique for assessing the human health risk of exposure to radon, including the method for estimating of exposure doses of radon, an improved model of RDE, proper methodology risk assessment has been described. Methodology is proposed for the use in the territory of Russia.

  20. Detection and recognition of simple spatial forms

    NASA Technical Reports Server (NTRS)

    Watson, A. B.

    1983-01-01

    A model of human visual sensitivity to spatial patterns is constructed. The model predicts the visibility and discriminability of arbitrary two-dimensional monochrome images. The image is analyzed by a large array of linear feature sensors, which differ in spatial frequency, phase, orientation, and position in the visual field. All sensors have one octave frequency bandwidths, and increase in size linearly with eccentricity. Sensor responses are processed by an ideal Bayesian classifier, subject to uncertainty. The performance of the model is compared to that of the human observer in detecting and discriminating some simple images.

Top