Science.gov

Sample records for human periodontal ligament

  1. Differentiation of Human Embryonic Stem Cells on Periodontal Ligament Fibroblasts.

    PubMed

    Elçin, Y Murat; İnanç, Bülend; Elçin, A Eser

    2016-01-01

    Human embryonic stem cells' (hESCs) unlimited proliferative potential and differentiation capability to all somatic cell types makes them one of the potential cell sources in cell-based tissue engineering strategies as well as various experimental applications in fields such as developmental biology, pharmacokinetics, toxicology, and genetics. Periodontal tissue engineering is an approach to reconstitute the ectomesenchymally derived alveolar bone, periodontal ligament apparatus, and cementum tissues lost as a result of periodontal diseases. Cell-based therapies may offer potential advantage in overcoming the inherent limitations associated with contemporary regenerative procedures, such as dependency on defect type and size and the pool and capacity of progenitor cells resident in the wound area. Further elucidation of developmental mechanisms associated with tooth formation may also contribute to valuable knowledge based upon which the future therapies can be designed. Protocols for the differentiation of pluripotent hESCs into periodontal ligament fibroblastic cells (PDLF) as common progenitors for ligament, cementum, and alveolar bone tissue represent an initial step in developing hESC-based experimental and tissue engineering strategies. The present protocol describes methods associated with the guided differentiation of hESCs by the use of coculture with adult PDLFs and the resulting change of morphotype and phenotype of the pluripotent embryonic stem cells toward fibroblastic and osteoblastic lineages.

  2. Periodontitis promotes the proliferation and suppresses the differentiation potential of human periodontal ligament stem cells.

    PubMed

    Zheng, Wei; Wang, Shi; Wang, Jianguo; Jin, Fang

    2015-10-01

    The aim of the present study was to investigate the periodontitis-associated changes in the number, proliferation and differentiation potential of human periodontal ligament stem cells (PDLSCs). Cultures of human periodontal ligament cells (PDLCs) were established from healthy donors and donors with periodontitis. The numbers of stem cell were characterized using flow cytometry. PDLSCs were isolated from the PDLCs by immunomagnetic bead selection. Colony‑forming abilities, osteogenic and adipogenic potential, gene expression of cementoblast phenotype, alkaline phosphatase activity and in vivo differentiation capacities were then evaluated. Periodontitis caused an increase in the proliferation of PDLSCs and a decrease in the commitment to the osteoblast lineage. This is reflected by changes in the expression of osteoblast markers. When transplanted into immunocompromised mice, PDLSCs from the healthy donors exhibited the capacity to produce cementum PDL‑like structures, whereas, the inflammatory PDLSCs transplants predominantly formed connective tissues. In conclusion, the data from the present study suggest that periodontitis affects the proliferation and differentiation potential of human PDLSCs in vitro and in vivo.

  3. Expression of heat stress proteins by human periodontal ligament cells.

    PubMed

    Sauk, J J; Norris, K; Foster, R; Moehring, J; Somerman, M J

    1988-11-01

    The purpose of the present report was to document the stress response produced by physical and chemical abuses to human periodontal ligament cells, and to review some of the known functions of stress response proteins produced as a result of such treatments. For these studies human PDL cells were exposed to sublethal challenges of 43 degrees C heat, sodium arsenite and the amino acid analog L-azetidine-2-carboxylic acid (AZC). The cells were labelled with [35S]-methionine and the proteins produced were examined by autofluorography of SDS-PAGE gels. Heat challenges were shown to induce hsps with an apparent mol. wts. of 90K, 68-72K, 41-47K, and 36 K. Arsenite-treated cells produced similar hsps including a 30k protein not produced by other forms of stress. AZC treatment resulted in the production of apparent functionless hsps with apparent molecular weights of 90,000, 72,000, 68,000 and 36,000. The function of these proteins and their possible role in periodontal disease is discussed.

  4. Effect of F-spondin on cementoblastic differentiation of human periodontal ligament cells

    SciTech Connect

    Kitagawa, Masae; Kudo, Yasusei; Iizuka, Shinji; Ogawa, Ikuko; Abiko, Yoshimitsu; Miyauchi, Mutsumi; Takata, Takashi . E-mail: ttakata@hiroshima-u.ac.jp

    2006-10-27

    Cementum is a mineralized tissue produced by cementoblasts covering the roots of teeth that provides for the attachment of periodontal ligament to roots and surrounding alveolar bone. To study the mechanism of proliferation and differentiation of cementoblasts is important for understanding periodontal physiology and pathology including periodontal tissue regeneration. However, the detailed mechanism of the proliferation and differentiation of human cementoblasts is still unclear. We previously established human cementoblast-like (HCEM) cell lines. We thought that comparing the transcriptional profiles of HCEM cells and human periodontal ligament (HPL) cells derived from the same teeth could be a good approach to identify genes that influence the nature of cementoblasts. We identified F-spondin as the gene demonstrating the high fold change expression in HCEM cells. Interestingly, F-spondin highly expressing HPL cells showed similar phenotype of cementoblasts, such as up-regulation of mineralized-related genes. Overall, we identified F-spondin as a promoting factor for cementoblastic differentiation.

  5. Various methods for isolation of multipotent human periodontal ligament cells for regenerative medicine.

    PubMed

    Tran, Ha Le Bao; Doan, Vu Nguyen; Le, Huong Thi Ngoc; Ngo, Lan Thi Quynh

    2014-08-01

    Periodontal ligament (PDL) is a specialized connective tissue that connects cementum and alveolar bone to maintain and support the teeth in situ and preserve tissue homeostasis. Recent studies have revealed the existence of stem cells in human dental tissues including periodontal ligament that play an important role, not only in the maintenance of the periodontium but also in promoting periodontal regeneration. In this study, human periodontal ligament cells (hPDLCs) were isolated by outgrowth and enzymatic dissociation methods. Expression of surface markers on PDLCs as human mesenchymal stem cells (MSCs) was identified by flow cytometry. In addition, proliferation and differentiation capacity of cultured cells to osteoblasts, adipocytes were evaluated. As a result, we successfully cultured cells from the human periodontal ligament tissues. PDLCs express mesenchymal stem cell (MSC) markers such as CD44, CD73, and CD90 and do not express CD34, CD45, and HLA-DR. PDLCs also possess the multipotential to differentiate into various types of cells, such as osteoblast and adipocytes, in vitro. Therefore, these cells have high potential to serve as materials for tissue engineering, especially dental tissue engineering.

  6. Development of tissue-engineered human periodontal ligament constructs with intrinsic angiogenic potential.

    PubMed

    Nagai, Nobuhiro; Hirakawa, Ayumi; Otani, Nao; Munekata, Masanobu

    2009-01-01

    One approach to treat periodontal diseases is grafting of tissue-engineered periodontal ligaments. Therefore, periodontal ligaments were constructed by layering cell sheets. A cell sheet was prepared by enzymatic digestion of salmon collagen gel on which human periodontal ligament fibroblasts (HPLFs) were co-cultured with or without human umbilical vein endothelial cells (HUVECs). Three cell sheets were layered and then cultured in angiogenic media, in which the HUVECs were found to form capillary-like structures when co-cultured on the HPLFs. The layered HPLFs sheets with HUVEC co-culture (PL-EC construct) demonstrated longer survival, higher alkaline phosphatase activities and lower osteocalcin production than layered HPLFs sheets without HUVEC co-culture (PL construct). Hematoxylin-eosin and Masson's trichrome staining of histological sections showed that cell density, mass and extracellular matrix deposition of the PL-EC construct were higher than those of the PL construct. Furthermore, CD31 immunostaining revealed the formation of capillary-like structures throughout the PL-EC construct. In conclusion, we successfully developed tissue-engineered periodontal ligament constructs with intrinsic angiogenic potential using cell sheet engineering and HUVEC co-culture.

  7. Nitric oxide production during the osteogenic differentiation of human periodontal ligament mesenchymal stem cells.

    PubMed

    Orciani, Monia; Trubiani, Oriana; Vignini, Arianna; Mattioli-Belmonte, Monica; Di Primio, R; Salvolini, Eleonora

    2009-01-01

    The critical tissues that require regeneration in the periodontium are of mesenchymal origin; therefore, the ability to identify, characterize and manipulate mesenchymal stem cells within the periodontium is of considerable clinical significance. In particular, recent findings suggest that periodontal ligament cells may possess many osteoblast-like properties. In the present study, periodontal ligament mesenchymal stem cells obtained from healthy volunteers were maintained in culture until confluence and then induced to osteogenic differentiation. Intracellular calcium ([Ca2+](i)) concentration and nitric oxide, important signalling molecules in the bone, were measured along with cell differentiation. Alkaline phosphatase activity was assayed and bone nodule-like structures were evaluated by means of morphological and histochemical analysis. Our results showed that the periodontal ligament mesenchymal stem cells underwent an in vitro osteogenic differentiation, resulting in the appearance of active osteoblast-like cells together with the formation of calcified deposits. Differentiating cells were also characterized by an increase of [Ca2+](i) and nitric oxide production. In conclusion, our data show a link between nitric oxide and the osteogenic differentiation of human periodontal ligament mesenchymal stem cells, thus suggesting that local reimplantation of expanded cells in conjugation with a nitric oxide donor could represent a promising method for treatment of periodontal defects.

  8. Cytotoxicity evaluation of root repair materials in human-cultured periodontal ligament fibroblasts

    PubMed Central

    Samyuktha, Voruganti; Ravikumar, Pabbati; Nagesh, Bolla; Ranganathan, K.; Jayaprakash, Thumu; Sayesh, Vemuri

    2014-01-01

    Aim: To evaluate the cytotoxicity of three root repair materials, mineral trioxide aggregate (MTA), Endosequence Root Repair Material and Biodentine in human periodontal ligament fibroblasts. Materials and Methods: Periodontal ligament fibroblasts were cultured from healthy premolar extracted for orthodontic purpose. Cells in the third passage were used in the study. The cultured fibroblast cells were placed in contact with root repair materials: (a) Biodentine, (b) MTA, (c) Endosequence, (d) control. The effects of these three materials on the viability of Periodontal ligament (PDL) fibroblasts were determined by trypan blue dye assay after 24 hours and 48-hour time period. Cell viability was determined using inverted phase contrast microscope. Statistical Analysis: Cell viability was compared for all the experimental groups with Wilcoxons matched pair test. Results: At the 24-hour examination period, all the materials showed increased cell viability. At 48-hour time period, there is slight decrease in cell viability. Mineral trioxide aggregate showed statistically significant increase in the cell viability when compared to other root repair materials. Conclusion: Mineral trioxide aggregate was shown to be less toxic to periodontal ligament fibroblasts than Endosequence Root Repair Material and Biodentine. PMID:25298650

  9. Gomisin N Decreases Inflammatory Cytokine Production in Human Periodontal Ligament Cells.

    PubMed

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Shindo, Satoru; Ozaki, Kazumi; Matsuo, Takashi

    2017-04-01

    Gomisin N, which is a lignan isolated from Schisandra chinensis, has some pharmacological effects. However, the anti-inflammatory effects of gomisin N on periodontal disease are uncertain. The aim of this study was to examine the effect of gomisin N on inflammatory mediator production in tumor necrosis factor (TNF)-α-stimulated human periodontal ligament cells (HPDLC). Gomisin N inhibited interleukin (IL)-6, IL-8, CC chemokine ligand (CCL) 2, and CCL20 production in TNF-α-stimulated HPDLC in a dose-dependent manner. Moreover, we revealed that gomisin N could suppress extracellular signal-regulated kinase (ERK) and c-Jun N terminal kinase (JNK) phosphorylation in TNF-α-stimulated HPDLC though protein kinase B (Akt) phosphorylation was not suppressed by gomisin N treatment. In summary, gomisin N might exert anti-inflammatory effects by attenuating cytokine production in periodontal ligament cells via inhibiting the TNF-α-stimulated ERK and JNK pathways activation.

  10. Assessment of cell sheets derived from human periodontal ligament cells: a pre-clinical study.

    PubMed

    Washio, Kaoru; Iwata, Takanori; Mizutani, Manabu; Ando, Tomohiro; Yamato, Masayuki; Okano, Teruo; Ishikawa, Isao

    2010-09-01

    Periodontal-ligament-derived cells (PDL cells) have stem-cell-like properties and, when implanted into periodontal defects in vivo, can induce periodontal regeneration including the formation of new bone, cementum, and periodontal ligament. We have previously demonstrated that PDL cell sheets, harvested from temperature-responsive cell culture dishes, have a great potential for periodontal regeneration. The purpose of this study has been to validate the safety and efficacy of human PDL (hPDL) cell sheets for use in clinical trials. hPDL tissues from three donors were enzymatically digested, and the obtained cells were cultured with media containing autologous serum in a cell-processing center (CPC). The safety and efficacy of hPDL cell sheets were evaluated both in vitro and in vivo. In vitro studies showed that the hPDL cell sheets had high alkaline phosphatase activity and periostin expression (known PDL markers) and no contamination with microorganisms. In vivo studies revealed that hPDL cell sheets, implanted with dentin blocks, induced the formation of cementum and PDL-like tissue in immunodeficient mice. The hPDL cells presented no evidence of malignant transformation. Thus, hPDL cell sheets created in CPCs are safe products and possess the potential to regenerate periodontal tissues.

  11. Impact of nicotine on the interplay between human periodontal ligament cells and CD4+ T cells.

    PubMed

    Ge, Xin; Liu, Ying-Feng; Wong, Yong; Wu, Li-Zheng; Tan, Ling; Liu, Fen; Wang, Xiao-Jing

    2016-09-01

    Periodontitis is a common infectious disease associated with destruction of periodontal ligaments and alveolar bones. CD4(+) T cell-mediated immune response is involved in the progression of periodontitis. Tobacco consumption increases the risk of periodontal disease. However, the impact of nicotine on the interaction between human periodontal ligament (PDL) cells and CD4(+) T cells remains unrevealed. Our study aims to investigate the effect of nicotine on PDL cells and the cocultured CD4(+) T cells. The PDL cell cultures were established by explants from healthy individuals, exposed to nicotine or α-bungarotoxin (α-BTX), and incubated solely or in combination with CD4(+) T cells. Afterwards, cell viability, secreted cytokines, and matrix metalloproteinases (MMPs) were evaluated. In monoculture of PDL cells, nicotine dramatically repressed cell viability and increased apoptosis. Meanwhile, α-BTX largely reversed the nicotine-induced apoptosis and increased viability of PDL cells. Compared with the monoculture, MMP-1, MMP-3, interleukin (IL)-1β, IL-6, IL-17, and IL-21 in supernatant of cocultures were markedly elevated after treatment with nicotine. Moreover, α-BTX significantly attenuated nicotine-triggered production of these components either in mono- or co-cultures. In addition, PDL cell-derived CXCL12 following nicotine treatment recruited CD4(+) T cells. Above all, nicotine deteriorated periodontitis partially by promoting PDL cell-CD4(+) T cell-mediated inflammatory response and matrix degradation.

  12. Recombinant Human Plasminogen Activator Inhibitor-1 Promotes Cementogenic Differentiation of Human Periodontal Ligament Stem Cells.

    PubMed

    Jin, Hexiu; Choung, Han-Wool; Lim, Ki-Taek; Jin, Bin; Jin, Chengbiao; Chung, Jong-Hoon; Choung, Pill-Hoon

    2015-12-01

    The periodontium, consisting of gingiva, periodontal ligament (PDL), cementum, and alveolar bone, is necessary for the maintenance of tooth function. Specifically, the regenerative abilities of cementum with inserted PDL are important for the prevention of tooth loss. Periodontal ligament stem cells (PDLSCs), which are located in the connective tissue PDL between the cementum and alveolar bone, are an attractive candidate for hard tissue formation. We investigated the effects of recombinant human plasminogen activator inhibitor-1 (rhPAI-1) on cementogenic differentiation of human PDLSCs (hPDLSCs) in vitro and in vivo. Untreated and rhPAI-1-treated hPDLSCs mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) and dentin matrix were transplanted subcutaneously into the dorsal surface of immunocompromised mice to assess their capacity for hard tissue formation at 8 and 10 weeks posttransplantation. rhPAI-1 accelerated mineral nodule formation and increased the mRNA expression of cementoblast-associated markers in hPDLSCs. We also observed that rhPAI-1 upregulated the levels of osterix (OSX) and cementum protein 1 (CEMP1) through Smad2/3 and p38 pathways, whereas specific inhibitors of Smad3 and p38 inhibited the enhancement of mineralization of hPDLSCs by rhPAI-1. Furthermore, transplantation of hPDLSCs with rhPAI-1 showed a great ability to promote cementogenic differentiation. Notably, rhPAI-1 induced hPDLSCs to regenerate cementum-like tissue with PDL fibers inserted into newly formed cementum-like tissue. These results suggest that rhPAI-1 may play a key role in cementogenic differentiation of hPDLSCs. rhPAI-1 with hPDLSCs may be a good candidate for future clinical applications in periodontal tissue regeneration and possibly in tooth root bioengineering.

  13. Recombinant Human Plasminogen Activator Inhibitor-1 Promotes Cementogenic Differentiation of Human Periodontal Ligament Stem Cells

    PubMed Central

    Jin, Hexiu; Choung, Han-Wool; Lim, Ki-Taek; Jin, Bin; Jin, Chengbiao; Chung, Jong-Hoon

    2015-01-01

    The periodontium, consisting of gingiva, periodontal ligament (PDL), cementum, and alveolar bone, is necessary for the maintenance of tooth function. Specifically, the regenerative abilities of cementum with inserted PDL are important for the prevention of tooth loss. Periodontal ligament stem cells (PDLSCs), which are located in the connective tissue PDL between the cementum and alveolar bone, are an attractive candidate for hard tissue formation. We investigated the effects of recombinant human plasminogen activator inhibitor-1 (rhPAI-1) on cementogenic differentiation of human PDLSCs (hPDLSCs) in vitro and in vivo. Untreated and rhPAI-1-treated hPDLSCs mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) and dentin matrix were transplanted subcutaneously into the dorsal surface of immunocompromised mice to assess their capacity for hard tissue formation at 8 and 10 weeks posttransplantation. rhPAI-1 accelerated mineral nodule formation and increased the mRNA expression of cementoblast-associated markers in hPDLSCs. We also observed that rhPAI-1 upregulated the levels of osterix (OSX) and cementum protein 1 (CEMP1) through Smad2/3 and p38 pathways, whereas specific inhibitors of Smad3 and p38 inhibited the enhancement of mineralization of hPDLSCs by rhPAI-1. Furthermore, transplantation of hPDLSCs with rhPAI-1 showed a great ability to promote cementogenic differentiation. Notably, rhPAI-1 induced hPDLSCs to regenerate cementum-like tissue with PDL fibers inserted into newly formed cementum-like tissue. These results suggest that rhPAI-1 may play a key role in cementogenic differentiation of hPDLSCs. rhPAI-1 with hPDLSCs may be a good candidate for future clinical applications in periodontal tissue regeneration and possibly in tooth root bioengineering. PMID:25808697

  14. Semaphorin 3A Induces Mesenchymal-Stem-Like Properties in Human Periodontal Ligament Cells

    PubMed Central

    Maeda, Hidefumi; Hasegawa, Daigaku; Gronthos, Stan; Bartold, Peter Mark; Menicanin, Danijela; Fujii, Shinsuke; Yoshida, Shinichiro; Tomokiyo, Atsushi; Monnouchi, Satoshi; Akamine, Akifumi

    2014-01-01

    Periodontal ligament stem cells (PDLSCs) have recently been proposed as a novel option in periodontal regenerative therapy. However, one of the issues is the difficulty of stably generating PDLSCs because of the variation of stem cell potential between donors. Here, we show that Semaphorin 3A (Sema3A) can induce mesenchymal-stem-like properties in human periodontal ligament (PDL) cells. Sema3A expression was specifically observed in the dental follicle during tooth development and in parts of mature PDL tissue in rodent tooth and periodontal tissue. Sema3A expression levels were found to be higher in multipotential human PDL cell clones compared with low-differentiation potential clones. Sema3A-overexpressing PDL cells exhibited an enhanced capacity to differentiate into both functional osteoblasts and adipocytes. Moreover, PDL cells treated with Sema3A only at the initiation of culture stimulated osteogenesis, while Sema3A treatment throughout the culture had no effect on osteogenic differentiation. Finally, Sema3A-overexpressing PDL cells upregulated the expression of embryonic stem cell markers (NANOG, OCT4, and E-cadherin) and mesenchymal stem cell markers (CD73, CD90, CD105, CD146, and CD166), and Sema3A promoted cell division activity of PDL cells. These results suggest that Sema3A may possess the function to convert PDL cells into mesenchymal-stem-like cells. PMID:24380401

  15. Generation of functional hepatocyte-like cells from human deciduous periodontal ligament stem cells.

    PubMed

    Vasanthan, Punitha; Jayaraman, Pukana; Kunasekaran, Wijenthiran; Lawrence, Anthony; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Musa, Sabri; Kasim, Noor Hayaty Abu

    2016-08-01

    Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases.

  16. Generation of functional hepatocyte-like cells from human deciduous periodontal ligament stem cells

    NASA Astrophysics Data System (ADS)

    Vasanthan, Punitha; Jayaraman, Pukana; Kunasekaran, Wijenthiran; Lawrence, Anthony; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Musa, Sabri; Kasim, Noor Hayaty Abu

    2016-08-01

    Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases.

  17. Prevotella intermedia induces matrix metalloproteinase-9 expression in human periodontal ligament cells.

    PubMed

    Guan, Su-Min; Shu, Lei; Fu, Shan-Min; Liu, Bin; Xu, Xiu-Li; Wu, Jun-Zheng

    2008-06-01

    Matrix metalloproteinases (MMPs) play pivotal roles in inflammatory diseases including chronic periodontitis. The effects of Prevotella intermedia, a major periodontal pathogen, on MMP-9 production in primary human periodontal ligament (hPDL) cells were examined in the present study. MMP-9 mRNA expression was measured by semiquantitative reverse transcriptase PCR and its protein secretion was assayed by gelatin zymography. Prevotella intermedia ATCC 25611 supernatant time and dose-dependently induced MMP-9 expression. In contrast, Porphyromanas gingivalis ATCC 33277 supernatants, Escherichia coli lipopolysacchride and IL-1beta exhibited no stimulatory effects on MMP-9 production in hPDL cells. Mitogen-activated protein kinases [MAPK, including extracellular signal-related kinases (ERK), c-jun N-terminal kinases (JNK) and p38] inhibitors exerted no effect on the P. intermedia-induced MMP-9 production, indicating that P. intermedia induced MMP-9 production through an MAPK-independent pathway. Our results demonstrated that P. intermedia may contribute to periodontal tissue destruction during chronic periodontitis by inducing MMP-9 production in hPDL cells.

  18. Tissue engineering of cementum/periodontal-ligament complex using a novel three-dimensional pellet cultivation system for human periodontal ligament stem cells.

    PubMed

    Yang, Zhenhua; Jin, Fang; Zhang, Xiaojun; Ma, Dandan; Han, Chun; Huo, Na; Wang, Yinxiong; Zhang, Yunfei; Lin, Zhu; Jin, Yan

    2009-12-01

    Limitations of conventional regeneration modalities underscore the necessity of recapitulating development for periodontal tissue engineering. In this study, we proposed a novel three-dimensional pellet cultivation system for periodontal ligament stem cells (PDLSCs) to recreate the biological microenvironment similar to those of a regenerative milieu. Monodispersed human PDLSCs were cultured in medium with ascorbic acid and conditioned medium from developing apical tooth germ cells and were subsequently harvested from culture plate as a contiguous cell sheet with abundant extracellular matrix. The detached cell-matrix membrane spontaneously contracted to produce a single-cell pellet. The PDLSCs embedded within this cell-matrix complex exhibited several phenotypic characteristics of cementoblast lineages, as indicated by upregulated alkaline phosphatase activity, accelerated mineralization, and the expression of bone sialoprotein and osteocalcin genes. When this PDLSC pellets were transplanted into immunocompromised mice, a regular aligned cementum/PDL-like complex was formed. These results suggest that the combination of apical tooth germ cell-conditioned medium and endogenous extracellular matrix could maximally mimic the microenvironment of root/periodontal tissue development and enhance the reconstruction of physiological architecture of a cementum/PDL-like complex in a tissue-mimicking way; on the other hand, such PDLSC pellet may also be a promising alternative to promote periodontal defect repair for future clinical applications.

  19. Osteogenic induction of human periodontal ligament fibroblasts under two- and three-dimensional culture conditions.

    PubMed

    Inanc, Bülend; Elcin, A Eser; Elcin, Y Murat

    2006-02-01

    Human periodontal ligament fibroblasts (hPDLF) play a key role in the regeneration of periodontal compartment during guided tissue regeneration procedures. This property is attributed to the progenitor cell subsets residing in the area. The aim of this study was to investigate whether hPDLFs could undergo an osteogenic differentiation under two- and three-dimensional (2D and 3D) culture conditions upon osteogenic induction. hPDLFs were isolated from six healthy donors, cultured, and expanded according to standard protocols. Then, three osteogenic culture conditions (dexamethasone, ascorbic acid, and beta-glycerophosphate) were established: 1) 2D culture as single-cell monolayer, 2) 3D-static culture on mineralized poly(DL-lactic-co-glycolic acid) (PLGA) scaffold, and 3) 3D culture on mineralized PLGA scaffold inside the NASA-approved bioreactor stimulating microgravity conditions. After 21 days of osteogenic induction, the majority of monolayer cultures had undergone differentiation toward osteogenic lineage, as indicated by morphological changes, mineralization assay, and some phenotypical properties. However, immunohistochemistry revealed that the scaffold cultures expressed higher levels of osteogenic marker proteins compared with that of the monolayers. Secondly, hPDLF-PLGA constructs in bioreactor showed an increased expression of osteopontin and osteocalcin compared with that of static 3D culture after 21 days. Results indicate that human periodontal ligament contains a subpopulation of cells capable of undergoing osteogenic differentiation and presumably contributing to regeneration of bone defects in the adjacent area. Human PDLF-seeded mineralized PLGA scaffold in microgravity bioreactor may be used to support osteogenic differentiation in vitro. Thus, this system may offer new potential benefits as a tool for periodontal tissue engineering.

  20. Prevotella intermedia upregulates MMP-1 and MMP-8 expression in human periodontal ligament cells.

    PubMed

    Guan, Su-Min; Shu, Lei; Fu, Shan-Min; Liu, Bin; Xu, Xiu-Li; Wu, Jun-Zheng

    2009-10-01

    Prevotella intermedia, a major periodontal pathogen, plays important roles in the initiation and development of periodontitis by stimulating the release of proinflammatory cytokines, proteinases and matrix metalloproteinases (MMPs). Our previous study demonstrated that P. intermedia induced MMP-9 expression in human periodontal ligament (hPDL) cells. In this study, we examined the effects of P. intermedia on other MMPs' expression. Semi-quantitative reverse transcriptase (RT)-PCR analysis revealed that P. intermedia ATCC 25611 supernatant increased MMP-1 and MMP-8 mRNA expression in a concentration- and time-dependent manner. Enzyme-linked immunosorbent assay and Western blot results confirmed the RT-PCR results at the protein level. Cyclooxygenase inhibitor indomethacin significantly attenuated the upregulatory effects of P. intermedia on MMP-1 and MMP-8 expression. Extracellular signal-related kinase inhibitor PD98059 and c-Jun N-terminal kinase inhibitor SP600125 considerably decreased the upregulated level of MMP-1, whereas p38 inhibitor SB203580 markedly inhibited MMP-8 expression, suggesting that prostaglandin E(2) and mitogen-activated protein kinase signaling pathways are involved in P. intermedia-induced MMP-1 and MMP-8 upregulation. Our results indicate that P. intermedia might contribute to periodontal connective tissue and bone matrix destruction through upregulating MMP production.

  1. Intermittent Compressive Stress Enhanced Insulin-Like Growth Factor-1 Expression in Human Periodontal Ligament Cells

    PubMed Central

    Pumklin, Jittima; Manokawinchoke, Jeeranan; Bhalang, Kanokporn; Pavasant, Prasit

    2015-01-01

    Mechanical force was shown to promote IGF-1 expression in periodontal ligament both in vitro and in vivo. Though the mechanism of this effect has not yet been proved, here we investigated the molecular mechanism of intermittent mechanical stress on IGF-1 expression. In addition, the role of hypoxia on the intermittent compressive stress on IGF-1 expression was also examined. In this study, human periodontal ligament cells (HPDLs) were stimulated with intermittent mechanical stress for 24 hours. IGF-1 expression was examined by real-time polymerase chain reaction. Chemical inhibitors were used to determine molecular mechanisms of these effects. For hypoxic mimic condition, the CoCl2 supplementation was employed. The results showed that intermittent mechanical stress dramatically increased IGF-1 expression at 24 h. The pretreatment with TGF-β receptor I or TGF-β1 antibody could inhibit the intermittent mechanical stress-induced IGF-1 expression. Moreover, the upregulation of TGF-β1 proteins was detected in intermittent mechanical stress treated group. Correspondingly, the IGF-1 expression was upregulated upon being treated with recombinant human TGF-β1. Further, the hypoxic mimic condition attenuated the intermittent mechanical stress and rhTGF-β1-induced IGF-1 expression. In summary, this study suggests intermittent mechanical stress-induced IGF-1 expression in HPDLs through TGF-β1 and this phenomenon could be inhibited in hypoxic mimic condition. PMID:26106417

  2. Biomechanical force induces the growth factor production in human periodontal ligament-derived cells.

    PubMed

    Ichioka, Hiroaki; Yamamoto, Toshiro; Yamamoto, Kenta; Honjo, Ken-Ichi; Adachi, Tetsuya; Oseko, Fumishige; Mazda, Osam; Kanamura, Narisato; Kita, Masakazu

    2016-01-01

    Although many reports have been published on the functional roles of periodontal ligament (PDL) cells, the mechanisms involved in the maintenance and homeostasis of PDL have not been determined. We investigated the effects of biomechanical force on growth factor production, phosphorylation of MAPKs, and intracellular transduction pathways for growth factor production in human periodontal ligament (hPDL) cells using MAPK inhibitors. hPDL cells were exposed to mechanical force (6 MPa) using a hydrostatic pressure apparatus. The levels of growth factor mRNA and protein were examined by real-time RT-PCR and ELISA. The phosphorylation of MAPKs was measured using BD™ CBA Flex Set. In addition, MAPKs inhibitors were used to identify specific signal transduction pathways. Application of biomechanical force (equivalent to occlusal force) increased the synthesis of VEGF-A, FGF-2, and NGF. The application of biomechanical force increased the expression levels of phosphorylated ERK and p38, but not of JNK. Furthermore, the levels of VEGF-A and NGF expression were suppressed by ERK or p38 inhibitor. The growth factors induced by biomechanical force may play a role in the mechanisms of homeostasis of PDL.

  3. The pro-apoptotic and pro-inflammatory effects of calprotectin on human periodontal ligament cells.

    PubMed

    Zheng, Yunfei; Hou, Jianxia; Peng, Lei; Zhang, Xin; Jia, Lingfei; Wang, Xian'e; Wei, Shicheng; Meng, Huanxin

    2014-01-01

    Calprotectin, a heterodimer of S100A8 and S100A9 subunits, is associated with inflammatory disorders such as rheumatoid arthritis and cystic fibrosis. Although calprotectin levels are increased significantly in the gingival crevicular fluid (GCF) of periodontitis patients, its effects on periodontal ligament cells (PDLCs) remain largely unknown. The aim of this study was to evaluate calprotectin levels in the GCF of generalized aggressive periodontitis (AgP) patients and to investigate the effects of recombinant human calprotectin (rhS100A8/A9) and its subunits (rhS100A8 and rhS100A9) in PDLCs. Both the concentration and amount of crevicular calprotectin were significantly higher in the AgP group compared with healthy controls. In addition, the GCF calprotectin levels were correlated positively with clinical periodontal parameters including bleeding index, probing depth, and clinical attachment loss. rhS100A8/A9 promoted cell apoptosis, whereas rhS100A8 and rhS100A9 individually exerted little effect on apoptosis in PDLCs. rhS100A9 and rhS100A8/A9 increased the activation of nuclear factor-κB (NF-κB) by promoting the nuclear translocation of p65 in PDLCs, subsequently inducing expression of the pro-inflammatory cytokines IL-6, IL-8, TNFα, and COX2. Treatment with an NF-κB inhibitor partially reversed the rhS100A9- and rhS100A8/A9-induced upregulation of the pro-inflammatory cytokines. rhS100A9, and not rhS100A8, was mainly responsible for the pro-inflammatory role of calprotectin. Collectively, our results suggest that calprotectin promotes apoptosis and the inflammatory response in PDLCs via rhS100A9. These findings might help identify novel treatments for periodontitis.

  4. Calcitriol Suppressed Inflammatory Reactions in IL-1β-Stimulated Human Periodontal Ligament Cells.

    PubMed

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Shindo, Satoru; Ozaki, Kazumi; Matsuo, Takashi

    2015-12-01

    Vitamin D has important roles on control of calcium and phosphate levels in the body. However, the role of vitamin D on the pathogenesis of periodontal disease is still uncertain. Therefore, we examined the effect of the hormonal form of vitamin D, calcitriol, on inflammatory responses of human periodontal ligament cells (HPDLC). We detected vitamin D receptor expression in non-stimulated HPDLC. Calcitriol inhibited interleukin (IL)-6, IL-8, CC chemokine ligand (CCL) 20, CXC chemokine ligand (CXCL) 10, and matrix metalloproteinase (MMP)-3 release from IL-1β-stimulated HPDLC. Tissue inhibitor of metalloproteinase (TIMP)-1 production did not change by calcitriol. Moreover, we found c-jun N-terminal kinase (JNK) phosphorylation and IκB-α degradation in IL-1β-stimulated HPDLC were inhibited by calcitriol, and JNK and nuclear factor (NF)-κB inhibitors could decrease IL-6, IL-8, CCL20, CXCL10, and MMP-3 productions in IL-1β-treated HPDLC. These findings suggest that vitamin D could modulate inflammatory response in periodontal tissues.

  5. Allogenic human serum, a clinical grade serum supplement for promoting human periodontal ligament stem cell expansion.

    PubMed

    Arpornmaeklong, Premjit; Sutthitrairong, Chotika; Jantaramanant, Piyathida; Pripatnanont, Prisana

    2016-12-13

    Exposing human periodontal ligament stem cells (hPDLSCs) to animal proteins during cell expansion would compromise quality and safety of the hPDLSCs for clinical applications. The current study aimed to evaluate the replacement of animal based serum by human serum for the expansion of hPDLSCs. Human PDLSCs were cultured in culture media supplemented with 4 types of serums, Group A: fetal bovine serum (FBS), Group B: allogeneic human male AB serum (HS) and Group C in-house autologous (Auto-HS) and Group D: in-house allogeneic human serums (Allo-HS). Exhibitions of mesenchymal stem cell (MSC) characteristics of hPDLSCs were examined. Then growth and osteogenic differentiation potential of hPDLSCs in FBS and HS at passages 5 and 15 were compared to investigate effects of serum supplements on growth and expansion stability of the expanded hPDLSCs. After that, growth and osteogenic differentiation of hPDLSCs in Auto- and Allo-HS were investigated. Flow cytometrical analyses, functional differentiations, cell growth kinetic, cytogenetic analysis, alkaline phosphatase (ALP) and calcium content assays and oil red O and von Kossa staining were performed. Results showed that at passage 5, HS promoted growth and osteogenic differentiation of hPDLSCs and extensive cell expansion, decreased growth and differentiation potential of the expanded hPDLSCs, particularly in HS. Growth and osteogenic differentiation of hPDLSCs in Auto-HS and Allo-HS were not different. In summary, allogeneic human serum could be a replacement to FBS for hPDLSC expansion. In vitro cell expansion of hPDLSCs should be minimal to ensure optimal cell quality. This article is protected by copyright. All rights reserved.

  6. GGsTOP increases migration of human periodontal ligament cells in vitro via reactive oxygen species pathway

    PubMed Central

    JIANG, YING; WANG, XIANG; LI, YING; MU, SEN; ZHOU, SHUANG; LIU, YI; ZHANG, BIN

    2016-01-01

    GGsTOP is a novel and selective inhibitor of gamma-glutamyl transferase (GGT), a cell-surface enzyme that has a key role in glutathione homeostasis and the maintenance of cellular reactive oxygen species (ROS). ROS are essential for wound healing. However, little is known about the molecular mechanisms underlying the inhibition of GGT by GGsTOP in human periodontal ligament cells (hPLCs). The present study assessed GGT expression in mouse periodontal ligament tissues, GGT activity in hPLCs, and the potential physiological effect of GGsTOP on hPLC migration. Immunohistochemical analysis confirmed that GGT was widely expressed in mouse periodontal ligament tissue. Treatment with GGsTOP was associated with greater proliferation and migration of hPLCs, and higher levels of cellular ROS compared with untreated hPLCs. However, the increase in intracellular ROS was attenuated in hPLCs co-cultured with the anti-oxidant N-acetylcysteine (NAC), a precursor of glutathione. The higher ROS levels associated with GGsTOP treatment were in parallel with increases in the levels of type I collagen and alpha smooth muscle actin, which was inhibited in hPLCs co-cultured with NAC. Thus, GGsTOP may promote hPLC migration and participate in the maintenance of the periodontal ligament apparatus via the ROS pathway. PMID:27035100

  7. GGsTOP increases migration of human periodontal ligament cells in vitro via reactive oxygen species pathway.

    PubMed

    Jiang, Ying; Wang, Xiang; Li, Ying; Mu, Sen; Zhou, Shuang; Liu, Yi; Zhang, Bin

    2016-05-01

    GGsTOP is a novel and selective inhibitor of gamma-glutamyl transferase (GGT), a cell-surface enzyme that has a key role in glutathione homeostasis and the maintenance of cellular reactive oxygen species (ROS). ROS are essential for wound healing. However, little is known about the molecular mechanisms underlying the inhibition of GGT by GGsTOP in human periodontal ligament cells (hPLCs). The present study assessed GGT expression in mouse periodontal ligament tissues, GGT activity in hPLCs, and the potential physiological effect of GGsTOP on hPLC migration. Immunohistochemical analysis confirmed that GGT was widely expressed in mouse periodontal ligament tissue. Treatment with GGsTOP was associated with greater proliferation and migration of hPLCs, and higher levels of cellular ROS compared with untreated hPLCs. However, the increase in intracellular ROS was attenuated in hPLCs co‑cultured with the anti‑oxidant N‑acetylcysteine (NAC), a precursor of glutathione. The higher ROS levels associated with GGsTOP treatment were in parallel with increases in the levels of type I collagen and alpha smooth muscle actin, which was inhibited in hPLCs co‑cultured with NAC. Thus, GGsTOP may promote hPLC migration and participate in the maintenance of the periodontal ligament apparatus via the ROS pathway.

  8. Effect of chlorophyllin on normothermic storage of human periodontal ligament cells.

    PubMed

    Chung, Won-Gyun; Lee, Eun Ju; Lee, Seung-Jong; Lee, Seung-Ae; Kim, Jin

    2004-06-01

    The purpose of the present study was to evaluate whether chlorophyllin could serve as an effective constituent of a storage medium to enhance the human periodontal ligament (PDL) cell viability. Freshly isolated PDL cells from premolars extracted from healthy people were stored at 37 degrees C for 6 h in various solutions: F-medium and Hank's balanced salt solution (HBSS), supplemented with chlorophyllin. From MTT viability assays, the highest cell viability was found in the PDL cells stored in HBSS supplemented with 500 nM chlorophyllin, and the chlorophyllin-treated cells showed a dose-dependent response to concentration. Additionally, the results from flow cytometry showed that 77 to 80% of the PDL cells were in the G0/G1 phases of the cell cycle, which suggested that most were in a stable stage. These result showed that HBSS, supplemented with chlorophyllin, may be a useful solution for preserving the viability of PDL cells.

  9. The presence of arachidonic acid-activated K+ channel, TREK-1, in human periodontal ligament fibroblasts.

    PubMed

    Saeki, Yukikazu; Ohara, Akito; Nishikawa, Masanori; Yamamoto, Takahiro; Yamamoto, Gaku

    2007-01-01

    Human periodontal ligament (PDL) fibroblasts expressed following two-pore-domain K(+) channels, TWIK-2 > TREK-1 > TWIK-1 > TASK-1 > TRAAK > TASK-2. TREK-2 message was not detectable. We found the presence of arachidonic acid-activated and mechanical stress-sensitive K(+) channel, TREK-1, in the PDL fibroblasts by patch-clamp technique. It was also found the significant increase of intracellular concentration of arachidonic acid upon the application of cyclic stretch. Therefore, we suppose that the mechanical stretch due to the mastication activates phospholipase A(2) to release arachidonic acid (AA) from membrane, then, the released AA activates TREK-1. Thus, TREK-1 K(+) channels may play a protective role to maintain the negative membrane potential of PDL fibroblasts against the environmental stimuli.

  10. Influence of E-smoking liquids on human periodontal ligament fibroblasts

    PubMed Central

    2014-01-01

    Introduction Over the last years, electronic cigarettes (ECs) have become more popular, particularly in individuals who want to give up smoking tobacco. The aim of the present study was to assess the influence of the different e-smoking liquids on the viability and proliferation of human periodontal ligament fibroblasts. Method and materials For this study six test solutions with components from ECs were selected: lime-, hazelnut- and menthol-flavored liquids, nicotine, propylene glycol, and PBS as control group. The fibroblasts were incubated up to 96 h with the different liquids, and cell viability was measured by using the PrestoBlue® reagent, the ATP detection and the migration assay. Fluorescence staining was carried out to visualize cell growth and morphology. Data were statistically analyzed by two-tailed one-way ANOVA. Results The cell viability assay showed that the proliferation rates of the cells incubated with nicotine or the various flavored liquids of the e-cigarettes were reduced in comparison to the controls, though not all reductions were statistically significant. After an incubation of 96 h with the menthol-flavored liquid the fibroblasts were statistically significant reduced (p < 0.001). Similar results were found for the detection of ATP in fibroblasts; the incubation with menthol-flavored liquids (p < 0.001) led to a statistically significant reduction. The cell visualization tests confirmed these findings. Conclusion Within its limits, the present in vitro study demonstrated that menthol additives of e-smoking have a harmful effect on human periodontal ligament fibroblasts. This might indicate that menthol additives should be avoided for e-cigarettes. PMID:25224853

  11. Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells.

    PubMed

    Chen, Yinghua; Mohammed, Arshad; Oubaidin, Maysaa; Evans, Carla A; Zhou, Xiaofeng; Luan, Xianghong; Diekwisch, Thomas G H; Atsawasuwan, Phimon

    2015-07-15

    MicroRNAs (miRs) play an important role in the development and remodeling of tissues through the regulation of large cohorts of extracellular matrix (ECM) genes. The purpose of the present study was to determine the response of miR-29 family expression to loading forces and their effects on ECM gene expression in periodontal ligament cells, the key effector cell population during orthodontic tooth movement. In a comparison between miRs from human periodontal ligament cells (PDLCs) and alveolar bone cells (ABCs) from healthy human subjects, the ABC cohort of miRs was substantially greater than the corresponding PDLC cohort. Cyclic mechanical stretch forces at 12% deformation at 0.1Hz for 24h decreased expression of miR-29 family member miRs about 0.5 fold while 2g/cm(2) compression force for 24h increased miR-29 family member expression in PDLCs 1.8-4 folds. Cyclic stretch up-regulated major ECM genes in PDLCs, such as COL1A1, COL3A1 and COL5A1, while the compression force resulted in a down-regulation of these ECM genes. Direct interactions of miR-29 and Col1a1, Col3a1 and Col5a1 were confirmed using a dual luciferase reporter gene assay. In addition, transient transfection of a miR-29b mimic in mouse PDLCs down-regulated Col1a1, Col3a1 and Col5a1 while the transfection of miR-29b inhibitor up-regulated these genes compared to control transfection indicating that these target ECM genes directly responded to the altered level of miR-29b. These results provided a possible explanation for the effects of the miR-29 family on loaded PDLCS and their roles in extracellular matrix gene expression.

  12. Combined effects of proinflammatory cytokines and intermittent cyclic mechanical strain in inhibiting osteogenicity in human periodontal ligament cells.

    PubMed

    Sun, Chaofan; Chen, Lijiao; Shi, Xinlian; Cao, Zhensheng; Hu, Bibo; Yu, Wenbin; Ren, Manman; Hu, Rongdang; Deng, Hui

    2016-09-01

    Mechanical strain plays an important role in bone formation and resorption during orthodontic tooth movement. The mechanism has not been fully studied, and the process becomes complex with increased amounts of periodontal patients seeking orthodontic care. Our aims were to elucidate the combined effects of proinflammatory cytokines and intermittent cyclic strain (ICS) on the osteogenic capacity of human periodontal ligament cells. Cultured human periodontal ligament cells were exposed to proinflammatory cytokines (interleukin-1β 5 ng/mL and tumor necrosis factor-α 10 ng/mL) for 1 and 5 days, and ICS (0.5 Hz, 12% elongation) was applied for 4 h per day. The autocrine of inflammatory cytokines was measured by enzyme-linked immunosorbent assay. The expression of osteoblast markers runt-related transcription factor 2 and rabbit collagen type I was determined using real-time polymerase chain reaction and Western blot. The osteogenic capacity was also detected by alkaline phosphatase (ALP) staining, ALP activity, and alizarin red staining. We demonstrated that ICS impaired the osteogenic capacity of human periodontal ligament cells when incubated with proinflammatory cytokines, as evidenced by the low expression of ALP staining, low ALP activity, reduced alizarin red staining, and reduced osteoblast markers. These data, for the first time, suggest that ICS has a negative effect on the inductive inhibition of osteogenicity in human PDL cells mediated by proinflammatory cytokines.

  13. In vitro viability of human periodontal ligament cells in green tea extract

    PubMed Central

    Ghasempour, Maryam; Moghadamnia, Ali Akbar; Abedian, Zeynab; Amir, Mahdi Pour; Feizi, Farideh; Gharekhani, Samane

    2015-01-01

    Context: Delayed replantation of avulsed teeth may be successful if the majority of periodontal ligament cells (PDL) survive. A proper transport medium is required when immediate replantation is not possible. Green tea extract (GTE) may be effective in preserving the cells because of its special properties. Aims: This study was done to evaluate the potential of GTE in periodontal ligament cells preservation. Materials and Methods: Fifty-four extracted human teeth with closed apices were randomly divided into three groups each with 18 teeth as follow: GTE, water (negative control), and Hank's balanced salt solution (HBSS) (positive control). The specimens were immersed in the media for 1, 3, and 15 hours at 4°C (n = 6) and treated with collagenase 1A for 45 minutes. Cell viability was determined using the trypan blue exclusion technique. Statistical Analysis: Data were analyzed by one-way analysis of variance (ANOVA), post hoc Tukey and paired t-test at significance level of P < 0.05. Results: Means (standard deviation, SD) of viable cells in HBSS, water, and GTE were estimated 348.33 ± 88.49, 101 ± 14.18, and 310.56 ± 56.97 at 1 hours; 273.4 ± 44.80, 64.16 ± 16.44, and 310.2 ± 11.21 at 3 hours; and 373.72 ± 67.81, 14.41 ± 2.88 and 315.24 ± 34.48 at 15 hours; respectively. No significant differences were found between HBSS and GTE at all the time intervals. Both these solutions could preserve the cells more than water significantly. Conclusion: GTE and HBSS were equally effective in preserving the cells and were significantly superior to water. PMID:25657527

  14. Comparative study of human dental follicle cell sheets and periodontal ligament cell sheets for periodontal tissue regeneration.

    PubMed

    Guo, Shujuan; Guo, Weihua; Ding, Yi; Gong, Jian; Zou, Qing; Xie, Dan; Chen, Yali; Wu, Yafei; Tian, Weidong

    2013-01-01

    Periodontal ligament cell (PDLC) sheets have been shown to contribute to periodontal tissue regeneration. Dental follicle cells (DFCs), acknowledged as the precursor cells of PDLCs, have demonstrated stemness, embryonic features, heterogeneity, and pluripotency. Therefore, we hypothesized that DFC sheets might be more effective and suitable for periodontal tissue regeneration than PDLC sheets. In this study, we compared the biological characteristics of DFC sheets and PDLC sheets in vitro. To investigate the potential for periodontal tissue regeneration in vivo, complexes composed of two types of cell sheets combined with dentin matrix were implanted subcutaneously into nude mice for 6 weeks. Our results showed that, when forming cell sheets, DFCs secreted richer extracellular matrix than PDLCs. And compared to DFCs, DFC sheets expressed high levels of calcification-related genes, including alkaline phosphatase (alp), bone sialoprotein (bsp), osteopontin (opn), runt-related transcription factor (runx2), as well as the periodontal ligament-specific genes collagen III (col III) and periostin, while the gene expression of bsp, osteocalcin (ocn), and opn were greatly increased in PDLC sheets, when compared to PDLCs. col I expression did not change significantly. However, cementum protein 23 (cp-23) expression increased several fold in PDLC sheets compared to PDLCs but decreased in DFC sheets compared to DFCs. DFC and PDLC sheets were both positive for Collagen I (Col I), cementum attachment protein (CAP), ALP, BSP, OCN, and OPN protein expression, and Col I, ALP, BSP, and OPN expression were increased after cell sheets were formed. Furthermore, the levels of laminin and fibronectin were higher in DFCs and DFC sheets than that of PDLCs and PDLC sheets, respectively. In vivo, DFC and PDLC sheets could both regenerate periodontal tissue-like structures, but DFC sheets demonstrated stronger periodontal regeneration potential than PDLC sheets. Therefore, DFC sheets derived

  15. Cyclic tension promotes osteogenic differentiation in human periodontal ligament stem cells.

    PubMed

    Shen, Tao; Qiu, Lin; Chang, Huijun; Yang, Yanchun; Jian, Congxiang; Xiong, Jian; Zhou, Jixiang; Dong, Shiwu

    2014-01-01

    Orthodontic forces result in alveolar bone resorption and formation predominantly on the pressure and tension sides of the tooth roots, respectively. Human periodontal ligament stem cells (PDLSCs) have demonstrated the capacity to differentiate into osteoblasts, and they play important roles in maintaining homeostasis and regenerating periodontal tissues. However, little is known about how PDLSCs contribute to osteoblastogenesis during orthodontic tooth movement on the tension side. In this study, we applied a 12% cyclic tension force to PDLSCs cultured in osteoinductive medium. The osteogenic markers Runx2, ALP, and OCN were detected at the mRNA and protein levels at different time points using real-time PCR and western blot analyses. We discovered that the mRNA and protein levels of Runx2, ALP and OCN were significantly up-regulated after 6, 12 and 24 hours of mechanical loading on PDLSCs compared to levels in unstimulated PDLSCs (P < 0.05). This study demonstrates, for the first time, the effects of mechanical tensile strain on the osteogenic differentiation of PDLSCs, as examined with a Flexcell FX-4000T Tension Plus System. Our findings suggested that cyclic tension could promote the osteogenic differentiation of PDLSCs. Furthermore, the effects of orthodontic force on alveolar bone remodeling might be achieved by PDLSCs.

  16. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells

    PubMed Central

    Xiong, Jimin; Menicanin, Danijela; Marino, Victor

    2016-01-01

    The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043

  17. In vitro cytotoxicity of white MTA, MTA Fillapex® and Portland cement on human periodontal ligament fibroblasts.

    PubMed

    Yoshino, Patrícia; Nishiyama, Celso Kenji; Modena, Karin Cristina da Silva; Santos, Carlos Ferreira; Sipert, Carla Renata

    2013-01-01

    The aim of this study was to compare the in vitro cytotoxicity of white mineral trioxide aggregate (MTA), MTA Fillapex® and Portland cement (PC) on human cultured periodontal ligament fibroblasts. Periodontal ligament fibroblast culture was established and the cells were used for cytotoxic tests after the fourth passage. Cell density was set at 1.25 X10 4 cells/well in 96-well plates. Endodontic material extracts were prepared by placing sealer/cement specimens (5x3mm) in 1mL of culture medium for 72 h. The extracts were then serially two-fold diluted and inserted into the cell-seeded wells for 24, 48 and 72 h. MTT assay was employed for analysis of cell viability. Cell supernatants were tested for nitric oxide using the Griess reagent system. MTA presented cytotoxic effect in undiluted extracts at 24 and 72 h. MTA Fillapex® presented the highest cytotoxic levels with important cell viability reduction for pure extracts and at ½ and ¼ dilutions. In this study, PC did not induce alterations in fibroblast viability. Nitric oxide was detected in extract-treated cell supernatants and also in the extracts only, suggesting presence of nitrite in the soluble content of the tested materials. In the present study, MTA Fillapex displayed the highest cytotoxic effect on periodontal ligament fibroblasts followed by white MTA and PC.

  18. HtrA1 may regulate the osteogenic differentiation of human periodontal ligament cells by TGF-β1.

    PubMed

    Li, Ran; Zhang, Qi

    2015-04-01

    Periodontal ligament cells (PDLCs) in periodontal ligament (PDL) can differentiate into osteoblasts, while physiologically PDL remains non-mineralized space although located two hard tissues. But the exact mechanism of which is still unclear. High-temperature requirement protein A1 (HtrA1) is a key mineralization regulator and could inhibit the osteogenesis by transforming growth factor-β (TGF-β) signaling. However, the role of HtrA1 in PDLCs osteogenic differentiation has yet to be clarified. We assume HtrA1 may play an important role in maintaining the balance of PDL mineralization, and may regulate human periodontal ligament cells (hPDLCs) osteogenic differentiation by TGF-β1. Firstly we confirmed the mRNA expression of HtrA1 and TGF-β1 in hPDLCs by RT-PCR, then QDs-based immunofluorescence demonstrated the co-localization of them in the cytoplasm, and co-immunoprecipitation further confirmed the interaction between them. Lentivirus-mediated HtrA1 overexpression enhanced the osteogenic differentiation of hPDLCs, as well as up-regulation of TGF-β1. In contrast, knockdown of HtrA1 suppressed the osteogenic differentiation with down-regulation of TGF-β1. These findings suggested that HtrA1 plays a positive role in hPDLCs osteogenic differentiation and may regulate this process by TGF-β1.

  19. Experiment and hydro-mechanical coupling simulation study on the human periodontal ligament.

    PubMed

    Wei, Zhigang; Yu, Xiaoliu; Xu, Xiangrong; Chen, Xinyuan

    2014-03-01

    In this paper, a new method involving an experiment in vivo and hydro-mechanical coupling simulations was proposed to investigate the biomechanical property of human periodontal ligament (PDL). Teeth were loaded and their displacements were measured in vivo. The finite element model of the experiment was built and hydro-mechanical coupling simulations were conducted to test some PDL's constitutive models. In the simulations, the linear elastic model, the hyperfoam model, and the Ogden model were assumed for the solid phase of the PDL coupled with a model of the fluid phase of the PDL. The displacements of the teeth derived from the simulations were compared with the experimental data to validate these constitutive models. The study shows that a proposed constitutive model of the PDL can be reliably tested by this method. Furthermore, the influence of species, areas, and the fluid volume ratio on PDL's mechanical property should be considered in the modeling and simulation of the mechanical property of the PDL.

  20. Low-Intensity Pulsed Ultrasound Stimulation Facilitates Osteogenic Differentiation of Human Periodontal Ligament Cells

    PubMed Central

    Hu, Bo; Zhang, Yuanyuan; Zhou, Jie; Li, Jing; Deng, Feng; Wang, Zhibiao; Song, Jinlin

    2014-01-01

    Human periodontal ligament cells (hPDLCs) possess stem cell properties, which play a key role in periodontal regeneration. Physical stimulation at appropriate intensities such as low-intensity pulsed ultrasound (LIPUS) enhances cell proliferation and osteogenic differentiation of mesechymal stem cells. However, the impacts of LIPUS on osteogenic differentiation of hPDLCs in vitro and its molecular mechanism are unknown. This study was undertaken to investigate the effects of LIPUS on osteogenic differentiation of hPDLCs. HPDLCs were isolated from premolars of adolescents for orthodontic reasons, and exposed to LIPUS at different intensities to determine an optimal LIPUS treatment dosage. Dynamic changes of alkaline phosphatase (ALP) activities in the cultured cells and supernatants, and osteocalcin production in the supernatants after treatment were analyzed. Runx2 and integrin β1 mRNA levels were assessed by reverse transcription polymerase chain reaction analysis after LIPUS stimulation. Blocking antibody against integrinβ1 was used to assess the effects of integrinβ1 inhibitor on LIPUS-induced ALP activity, osteocalcin production as well as calcium deposition. Our data showed that LIPUS at the intensity of 90 mW/cm2 with 20 min/day was more effective. The ALP activities in lysates and supernatants of LIPUS-treated cells started to increase at days 3 and 7, respectively, and peaked at day 11. LIPUS treatment significantly augmented the production of osteocalcin after day 5. LIPUS caused a significant increase in the mRNA expression of Runx2 and integrin β1, while a significant decline when the integrinβ1 inhibitor was used. Moreover, ALP activity, osteocalcin production as well as calcium nodules of cells treated with both daily LIPUS stimulation and integrinβ1 antibody were less than those in the LIPUS-treated group. In conclusion, LIPUS promotes osteogenic differentiation of hPDLCs, which is associated with upregulation of Runx2 and integrin β1, which

  1. Decellularized Periodontal Ligament Cell Sheets with Recellularization Potential

    PubMed Central

    Farag, A.; Vaquette, C.; Theodoropoulos, C.; Hamlet, S.M.; Hutmacher, D.W.; Ivanovski, S.

    2014-01-01

    The periodontal ligament is the key tissue facilitating periodontal regeneration. This study aimed to fabricate decellularized human periodontal ligament cell sheets for subsequent periodontal tissue engineering applications. The decellularization protocol involved the transfer of intact human periodontal ligament cell sheets onto melt electrospun polycaprolactone membranes and subsequent bi-directional perfusion with NH4OH/Triton X-100 and DNase solutions. The protocol was shown to remove 92% of DNA content. The structural integrity of the decellularized cell sheets was confirmed by a collagen quantification assay, immunostaining of human collagen type I and fibronectin, and scanning electron microscopy. ELISA was used to demonstrate the presence of residual basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) in the decellularized cell sheet constructs. The decellularized cell sheets were shown to have the ability to support recellularization by allogenic human periodontal ligament cells. This study describes the fabrication of decellularized periodontal ligament cell sheets that retain an intact extracellular matrix and resident growth factors and can support repopulation by allogenic cells. The decellularized hPDL cell sheet concept has the potential to be utilized in future “off-the-shelf” periodontal tissue engineering strategies. PMID:25270757

  2. Periodontal ligament stem cells: an update and perspectives.

    PubMed

    Chamila Prageeth Pandula, P K; Samaranayake, L P; Jin, L J; Zhang, Chengfei

    2014-05-01

    Chronic periodontitis is a serious infectious and inflammatory oral disease of humans worldwide. Conventional treatment modalities are effective for controlling periodontal disease. However, the regeneration of damaged periodontal tissues remains a major challenge in clinical practice due to the complex structure of the periodontium. Stem cell-based regenerative approaches combined with the usage of emerging biomaterials are entering a new era in periodontal regeneration. The present review updates the current knowledge of periodontal ligament stem cell-based approaches for periodontal regeneration, and elaborates on the potentials for clinical application.

  3. [The expression of transcription factor Osterix in human periodontal ligament cells].

    PubMed

    Ueda-Maeda, Mamiko

    2006-03-01

    Periodontal ligament (PDL) has a heterogeneous cell population, where some of the cells may be capable of differentiating into either cementoblasts or osteoblasts. Recently, C 2 H 2 zinc finger transcription factor Osterix has been reported. Osterix is one of the master regulators of bone cell differentiation and it has two different isoforms. According to a recent report, osteogenic differentiation of murine embryonic stem cells can be induced by overexpression of Osterix. The purpose of this study was to investigate about the expression of Osterix on human PDL (hPDL), and whether the osteogenic differentiation of hPDL cells can be induced by overexpression of Osterix. hPDL cells were obtained from healthy human teeth indicated for extraction for orthodontic treatment. All procedure used in this study was approved by the local ethical committee of Tokyo Medical and Dental University. To investigate expression of Osterix mRNA in hPDL tissues and cells, RT-PCR experiments were performed. Two different isoform Osterix expression vectors were made and transiently transfected into hPDL cells. Osteogenic differentiation was assessed by RT-PCR for genes associated with the osteoblast lineage such as Osteopontin, Osteocalcin, and Bone Sialoprotein. RT-PCR analyses showed that osterix mRNA was expressed in both hPDL tissue and cells. The expression of Osterix short isoform was higher than that of the long isoform. Overexpression of Osterix induced upregulated expression of Bone Sialoprotein mRNA. In expression levels of Osteopontin and Osteocalcin mRNA, compared to the control, no difference was observed. In conclusion, Osterix plays important roles in the osteoblastic differentiation in hPDL cells and modulates the mineralization.

  4. Proteome of Human Stem Cells from Periodontal Ligament and Dental Pulp

    PubMed Central

    Sulpizio, Marilisa; Di Giuseppe, Fabrizio; Pierdomenico, Laura; Marchisio, Marco; Giancola, Raffaella; Giammaria, Gianluigi; Miscia, Sebastiano; Caputi, Sergio; Di Ilio, Carmine; Angelucci, Stefania

    2013-01-01

    Background Many adult tissues contain a population of stem cells with the ability to regenerate structures similar to the microenvironments from which they are derived in vivo and represent a promising therapy for the regeneration of complex tissues in the clinical disorder. Human adult stem cells (SCs) including bone marrow stem cells (BMSCs), dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) have been characterized for their high proliferative potential, expression of characteristic SC-associated markers and for the plasticity to differentiate in different lineage in vitro. Methodology/Principal Findings The aim of this study is to define the molecular features of stem cells from oral tissue by comparing the proteomic profiles obtained with 2-DE followed by MALDI-TOF/TOF of ex-vivo cultured human PDLSCs, DPSCs and BMSCs. Our results showed qualitative similarities in the proteome profiles among the SCs examined including some significant quantitative differences. To enrich the knowledge of oral SCs proteome we performed an analysis in narrow range pH 4–7 and 6–9, and we found that DPSCs vs PDLSCs express differentially regulated proteins that are potentially related to growth, regulation and genesis of neuronal cells, suggesting that SCs derived from oral tissue source populations may possess the potential ability of neuronal differentiation which is very consistent with their neural crest origin. Conclusion/Significance This study identifies some differentially expressed proteins by using comparative analysis between DPSCs and PDLSCs and BMSCs and suggests that stem cells from oral tissue could have a different cell lineage potency compared to BMSCs. PMID:23940696

  5. Expression and effects of epidermal growth factor on human periodontal ligament cells.

    PubMed

    Teramatsu, Yoko; Maeda, Hidefumi; Sugii, Hideki; Tomokiyo, Atsushi; Hamano, Sayuri; Wada, Naohisa; Yuda, Asuka; Yamamoto, Naohide; Koori, Katsuaki; Akamine, Akifumi

    2014-09-01

    Repair of damaged periodontal ligament (PDL) tissue is an essential challenge in tooth preservation. Various researchers have attempted to develop efficient therapies for healing and regenerating PDL tissue based on tissue engineering methods focused on targeting signaling molecules in PDL stem cells and other mesenchymal stem cells. In this context, we investigated the expression of epidermal growth factor (EGF) in normal and surgically wounded PDL tissues and its effect on chemotaxis and expression of osteoinductive and angiogenic factors in human PDL cells (HPDLCs). EGF as well as EGF receptor (EGFR) expression was observed in HPDLCs and entire PDL tissue. In a PDL tissue-injured model of rat, EGF and IL-1β were found to be upregulated in a perilesional pattern. Interleukin-1β induced EGF expression in HPDLCs but not EGFR. It also increased transforming growth factor-α (TGF-α) and heparin-binding EGF-like growth factor (HB-EGF) expression. Transwell assays demonstrated the chemotactic activity of EGF on HPDLCs. In addition, EGF treatment significantly induced secretion of bone morphogenetic protein 2 and vascular endothelial growth factor, and gene expression of interleukin-8 (IL-8), and early growth response-1 and -2 (EGR-1/2). Human umbilical vein endothelial cells developed well-formed tube networks when cultured with the supernatant of EGF-treated HPDLCs. These results indicated that EGF upregulated under inflammatory conditions plays roles in the repair of wounded PDL tissue, suggesting its function as a prospective agent to allow the healing and regeneration of this tissue.

  6. Genipin inhibits MMP-1 and MMP-3 release from TNF-a-stimulated human periodontal ligament cells.

    PubMed

    Shindo, Satoru; Hosokawa, Yoshitaka; Hosokawa, Ikuko; Ozaki, Kazumi; Matsuo, Takashi

    2014-12-01

    Genipin, the aglycon of geniposide found in gardenia fruit has long been considered for treatment of inflammatory diseases in traditional oriental medicine. Genipin has recently been reported to have some pharmacological functions, such as antimicrobial, antitumor, and anti-inflammatory effects. The aim of this study was to examine whether genipin could modify matrix metalloproteinase (MMP)-1 and MMP-3, which are related to the destruction of periodontal tissues in periodontal lesion, expression in tumor necrosis factor (TNF)-α-stimulated human periodontal ligament cells (HPDLCs). Genipin prevented TNF-α-mediated MMP-1 and MMP-3 productions in HPDLCs. Moreover, genipin could suppress not only extracellular signal-regulated kinase (ERK) and Jun-N-terminal kinase (JNK) phosphorylations but also AMP-activated protein kinase (AMPK) phosphorylation in TNF-α-stimulated HPDLCs. Inhibitors of ERK and AMPK could inhibit both MMP-1 and MMP-3 productions. Moreover, we revealed the ERK inhibitor suppressed AMPK phosphorylation in TNF-α-stimulated HPDLCs. These data provide a new mechanism through which genipin could be used for the treatment of periodontal disease to prevent MMPs expression in periodontal lesion.

  7. Human periodontal ligament cells facilitate leukocyte recruitment and are influenced in their immunomodulatory function by Th17 cytokine release.

    PubMed

    Konermann, A; Beyer, M; Deschner, J; Allam, J P; Novak, N; Winter, J; Jepsen, S; Jäger, A

    2012-01-01

    The objective of this in vitro study was to examine the immunomodulatory impact of human periodontal ligament (PDL) cells on the nature and magnitude of the leukocyte infiltrate in periodontal inflammation, particularly with regard to Th17 cells. PDL cells were challenged with pro-inflammatory cytokines (IL-1ß, IL-17A, and IFN-γ) and analyzed for the expression of cytokines involved in periodontal immunoinflammatory processes (IL-6, MIP-3 alpha, IL-23A, TGFß1, IDO, and CD274). In order to further investigate a direct involvement of PDL cells in leukocyte function, co-culture experiments were conducted. The expression of the immunomodulatory cytokines studied was significantly increased under pro-inflammatory conditions in PDL cells. Although PDL cells did not stimulate leukocyte proliferation or Th17 differentiation, these cells induced the recruitment of leukocytes. The results of our study suggest that PDL cells might be involved in chronic inflammatory mechanisms in periodontal tissues and thus in the transition to an adaptive immune response in periodontitis.

  8. Effects of cathepsin K on Emdogain-induced hard tissue formation by human periodontal ligament stem cells.

    PubMed

    Liu, Fen; Zhou, Zhi-Fei; An, Ying; Yu, Yang; Wu, Rui-Xin; Yin, Yuan; Xue, Yang; Chen, Fa-Ming

    2016-07-12

    Recent studies have shown that patients with pycnodysostosis caused by cathepsin K (CTSK) genetic mutations exhibit significantly abnormal periodontal hard tissue structure. This finding suggests that CTSK may play a role in regulating the development of alveolar bone and cementum. However, the source of CTSK in the periodontal environment and the role of CTSK in periodontal regeneration, particularly hard tissue regeneration and development, remain unclear. After the isolation, cultivation, identification, and multi-lineage induction of human periodontal ligament stem cells (hPDLSCs), the present study used light and scanning electron microscopy, reverse-transcription quantitative polymerase chain reaction, western blotting, micro-computed tomography, immunohistochemical assays and ectopic hard tissue formation experiments to examine CTSK expression in hPDLSCs. The results indicated that CTSK expression was significantly upregulated in hPDLSCs during Emdogain induction but underwent minimal change during osteogenic or adipogenic induction. The present study also showed that the downregulation of CTSK expression inhibited osteogenic/cementogenic differentiation and ectopic hard tissue formation of hPDLSCs. It is therefore concluded that hPDLSCs expressed CTSK and that CTSK levels were significantly upregulated during Emdogain induction. Furthermore, CTSK promoted not only the osteogenic/cementogenic differentiation of hPDLSCs but also their ability to form ectopic hard tissue. These new findings may enhance the understanding of periodontal hard tissue development and functional regeneration. However, the specific underlying mechanisms require further investigation. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Effects of Activin A on the phenotypic properties of human periodontal ligament cells.

    PubMed

    Sugii, Hideki; Maeda, Hidefumi; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Koori, Katsuaki; Hasegawa, Daigaku; Hamano, Sayuri; Yuda, Asuka; Monnouchi, Satoshi; Akamine, Akifumi

    2014-09-01

    Periodontal ligament (PDL) tissue plays an important role in tooth preservation by structurally maintaining the connection between the tooth root and the bone. The mechanisms involved in the healing and regeneration of damaged PDL tissue, caused by bacterial infection, caries and trauma, have been explored. Accumulating evidence suggests that Activin A, a member of the transforming growth factor-β (TGF-β) superfamily and a dimer of inhibinβa, contributes to tissue healing through cell proliferation, migration, and differentiation of various target cells. In bone, Activin A has been shown to exert an inhibitory effect on osteoblast maturation and mineralization. However, there have been no reports examining the expression and function of Activin A in human PDL cells (HPDLCs). Thus, we aimed to investigate the biological effects of Activin A on HPDLCs. Activin A was observed to be localized in HPDLCs and rat PDL tissue. When PDL tissue was surgically damaged, Activin A and IL-1β expression increased and the two proteins were shown to be co-localized around the lesion. HPDLCs treated with IL-1β or TNF-α also up-regulated the expression of the gene encoding inhibinβa. Activin A promoted chemotaxis, migration and proliferation of HPDLCs, and caused an increase in fibroblastic differentiation of these cells while down-regulating their osteoblastic differentiation. These osteoblastic inhibitory effects of Activin A, however, were only noted during the early phase of HPDLC osteoblastic differentiation, with later exposures having no effect on differentiation. Collectively, our results suggest that Activin A could be used as a therapeutic agent for healing and regenerating PDL tissue in response to disease, trauma or surgical reconstruction.

  10. The plastic nature of the human bone-periodontal ligament-tooth fibrous joint.

    PubMed

    Ho, Sunita P; Kurylo, Michael P; Grandfield, Kathryn; Hurng, Jonathan; Herber, Ralf-Peter; Ryder, Mark I; Altoe, Virginia; Aloni, Shaul; Feng, Jian Q; Webb, Samuel; Marshall, Grayson W; Curtis, Donald; Andrews, Joy C; Pianetta, Piero

    2013-12-01

    This study investigates bony protrusions within a narrowed periodontal ligament space (PDL-space) of a human bone-PDL-tooth fibrous joint by mapping structural, biochemical, and mechanical heterogeneity. Higher resolution structural characterization was achieved via complementary atomic force microscopy (AFM), nano-transmission X-ray microscopy (nano-TXM), and microtomography (MicroXCT™). Structural heterogeneity was correlated to biochemical and elemental composition, illustrated via histochemistry and microprobe X-ray fluorescence analysis (μ-XRF), and mechanical heterogeneity evaluated by AFM-based nanoindentation. Results demonstrated that the narrowed PDL-space was due to invasion of bundle bone (BB) into PDL-space. Protruded BB had a wider range with higher elastic modulus values (2-8GPa) compared to lamellar bone (0.8-6GPa), and increased quantities of Ca, P and Zn as revealed by μ-XRF. Interestingly, the hygroscopic 10-30μm interface between protruded BB and lamellar bone exhibited higher X-ray attenuation similar to cement lines and lamellae within bone. Localization of the small leucine rich proteoglycan biglycan (BGN) responsible for mineralization was observed at the PDL-bone interface and around the osteocyte lacunae. Based on these results, it can be argued that the LB-BB interface was the original site of PDL attachment, and that the genesis of protruded BB identified as protrusions occurred as a result of shift in strain. We emphasize the importance of bony protrusions within the context of organ function and that additional study is warranted.

  11. The Plastic Nature of the Human Bone-Periodontal Ligament-Tooth Fibrous Joint

    PubMed Central

    Ho, Sunita P.; Kurylo, Michael P.; Grandfield, Kathryn; Hurng, Jonathan; Herber, Ralf-Peter; Ryder, Mark I.; Altoe, Virginia; Aloni, Shaul; Feng, Jian Q. (Jerry); Webb, Samuel; Marshall, Grayson W.; Curtis, Donald; Andrews, Joy C.; Pianetta, Piero

    2014-01-01

    This study investigates bony protrusions within a narrowed periodontal ligament space (PDL-space) of a human bone-PDL-tooth fibrous joint by mapping structural, biochemical, and mechanical heterogeneity. Higher resolution structural characterization was achieved via complementary atomic force microscopy (AFM), nano transmission X-ray microscopy (nano-TXM), and micro tomography (Micro XCT™). Structural heterogeneity was correlated to biochemical and elemental composition, illustrated via histochemistry and microprobe X-ray fluorescence analysis (μ-XRF), and mechanical heterogeneity evaluated by AFM-based nanoindentation. Results demonstrated that the narrowed PDL-space was due to invasion of bundle bone (BB) into PDL-space. Protruded BB had a wider range with higher elastic modulus values (2-8 GPa) compared to lamellar bone (0.8-6 GPa), and increased quantities of Ca, P and Zn as revealed by μ-XRF. Interestingly, the hygroscopic 10-30 μm interface between protruded BB and lamellar bone exhibited higher X-ray attenuation similar to cement lines and lamellae within bone. Localization of the small leucine rich proteoglycan biglycan (BGN) responsible for mineralization was observed at the PDL-bone interface and around the osteocyte lacunae. Based on these results, it can be argued that the LB-BB interface was the original site of PDL attachment, and that the genesis of protruded BB identified as protrusions occurred as a result of shift in strain. We emphasize the importance of bony protrusions within the context of organ function and that additional study is warranted. PMID:24063947

  12. Comparative Gene Expression Analysis of the Human Periodontal Ligament in Deciduous and Permanent Teeth

    PubMed Central

    Kim, Seong-Oh; Jeon, Mijeong; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; Park, Wonse; Choi, Hyung-Jun

    2013-01-01

    There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL) tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38) and anterior deciduous teeth (n = 31) extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription–polymerase chain reaction) analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP), tissue development (IGF2BP, MAB21L2, and PAX3), and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18). The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18), myocontraction (PDE3B, CASQ2, and MYH10), and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21). The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level. PMID:23593441

  13. Assessment of Surface Markers Derived from Human Periodontal Ligament Stem Cells: An In Vitro Study

    PubMed Central

    Kadkhoda, Zainab; Rafiei, Sahar Chokami; Azizi, Bahare; Khoshzaban, Ahad

    2016-01-01

    Objectives: Periodontal tissue regeneration for treatment of periodontal disease has not yet been mastered in tissue engineering. Stem cells, scaffold, and growth factors are the three main basic components of tissue engineering. Periodontal ligament (PDL) contains stem cells; however, the number, potency and features of these cells have not yet been understood. This study aimed to isolate and characterize the properties of PDL stem cells. Materials and Methods: In this experimental study, samples were isolated from the PDL of extracted teeth of five patients and then stained immunohistochemically for detection of cell surface markers. Cells were then examined by immuno-flow cytometry for mesenchymal markers as well as for osteogenic and adipogenic differentiation. Results: The isolated cell population had fibroblast-like morphology and flow cytometry revealed that the mesenchymal surface markers were (means): CD90 (84.55), CD31 (39.97), CD166 (33.77), CD105 (31.19), CD45 (32/44), CD44 (462.11), CD34 (227.33), CD38 (86.94), CD13 (34.52) and CD73 (50.39). The PDL stem cells also differentiated into osteoblasts and adipocytes in osteogenic and adipogenic media, respectively. Conclusions: PDL stem cells expressed mesenchymal stem cell (MSC) markers and differentiated into osteoblasts and adipocytes in osteogenic and adipogenic media, respectively. PMID:28127326

  14. Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells

    PubMed Central

    Wu, Xiaonan; Miao, Leiying; Yao, Yingfang; Wu, Wenlei; Liu, Yu; Chen, Xiaofeng; Sun, Weibin

    2014-01-01

    Periodontal repair is a complex process in which regeneration of alveolar bone is a vital component. The aim of this study was to develop a biodegradable scaffold with good biocompatibility and osteoinductive ability. Two types of composite fibrous scaffolds were produced by electrospinning, ie, type I collagen/poly(ε-caprolactone) (COL/PCL) and type I collagen/poly(ε-caprolactone)/nanoscale hydroxyapatite (COL/PCL/nHA) with an average fiber diameter of about 377 nm. After a simulated body fluid (SBF) immersion test, the COL/PCL/nHA-SBF scaffold developed a rough surface because of the calcium phosphate deposited on the fibers, suggesting that the presence of nHA promoted the mineralization potential of the scaffold. Energy dispersive X-ray spectroscopy clearly showed the calcium and phosphorus content in the COL/PCL/nHA and COL/PCL/nHA-SBF scaffolds, confirming the findings of nHA and calcium phosphate precipitation on scanning electron micrographs. Water contact analysis revealed that nHA could improve the hydrophilic nature of the COL/PCL/nHA-SBF scaffold. The morphology of periodontal ligament cells cultured on COL/PCL-SBF and COL/PCL/nHA-SBF was evaluated by scanning electron microscopy. The results showed that cells adhered to either type of scaffold and were slightly spindle-shaped in the beginning, then extended gradually with stretched filopodia, indicating an ability to fill the fiber pores. A Cell Counting Kit-8 assay showed that both scaffolds supported cell proliferation. However, real-time quantitative polymerase chain reaction analysis showed that expression of the bone-related markers, alkaline phosphatase and osteocalcin, was upregulated only on the COL/PCL/nHA-SBF scaffold, indicating that this scaffold had the ability to induce osteogenic differentiation of periodontal ligament cells. In this study, COL/PCL/nHA-SBF produced by electrospinning followed by biomimetic mineralization had combined electrospun fibers with nHA in it. This scaffold has

  15. Effects of human relaxin on orthodontic tooth movement and periodontal ligaments in rats

    PubMed Central

    Madan, Monica S.; Liu, Zee J.; Gu, Gao M.; King, Gregory J.

    2010-01-01

    Introduction The rate-limiting step in orthodontic treatment is often the rapidity with which teeth move. Using biological agents to modify the rate of tooth movement has been shown to be effective in animals. Relaxin is a hormone present in both males and females. Its main action is to increase the turnover of fibrous connective tissues. Thus, relaxin might increase the amount and rate of tooth movement through its effect on the periodontal ligament (PDL). The purpose of this study was to measure the effect of relaxin on orthodontic tooth movement and PDL structures. Methods Bilateral orthodontic appliances designed to tip maxillary molars mesially with a force of 40 cN were placed in 96 rats. At day 0, the animals were randomized to either relaxin or vehicle treatment. Twelve rats in each group were killed at 2, 4, 7, and 9 days after appliance activation. Cephalograms were taken at appliance placement and when the rats were killed. Tooth movement was measured cephalometrically in relation to palatal implants. Fractal analysis and visual analog scale assessments were used to evaluate the effect of relaxin on PDL fiber organization at the tension sites in histologic sections. The in-vitro testing for PDL mechanical strength and tooth mobility was performed by using tissue from an additional 20 rats that had previously received the same relaxin or vehicle treatments for 1 or 3 days (n = 5). Results Both groups had statistically significant tooth movement as functions of time. However, relaxin did not stimulate significantly greater or more rapid tooth movement. Fractal and visual analog scale analyses implied that relaxin reduced PDL fiber organization. In-vitro mechanical testing and tooth mobility assessments indicated that the PDL of the mandibular incisors in the relaxin-treated rats had reduced yield load, strain, and stiffness. Moreover, the range of tooth mobility of the maxillary first molars increased to 130% to 170%, over vehicle-treated rats at day 1

  16. Effect of icariin on cell proliferation and the expression of bone resorption/formation-related markers in human periodontal ligament cells.

    PubMed

    Pei, Zhenhua; Zhang, Fengqiu; Niu, Zhongying; Shi, Shenggen

    2013-11-01

    Periodontitis is a common destructive inflammatory disease that leads to changes in the tooth-supporting tissues. Human periodontal ligament cells are essential in periodontal tissue regeneration. The traditional Chinese medicine icariin promoted bone formation, stimulated the osteogenic differentiation of preosteoblastic cells and inhibited osteoclast differentiation and bone resorption. Thus, in the present study, the effect of icariin on cell proliferation and the expression of osteoprotegerin (OPG), receptor activator of nuclear factor-κB ligand (RANKL), core binding factor α1 (Cbfa1) and osteocalcin (OC) was investigated in human periodontal ligament cells, by an MTT assay, qPCR and western blot analysis. The results demonstrated that icariin promoted cell proliferation in a dose- and time-dependent manner, upregulated OPG, Cbfa1 and OC expression, and downregulated RANKL production and the RANKL/OPG expression ratio. This suggested the potential value of icariin in treating alveolar bone resorption and promoting periodontal tissue regeneration, due to its ability to stimulate the proliferation and osteogenic differentiation of human periodontal ligament cells and inhibit osteoclast differentiation.

  17. DNA Demethylation Rescues the Impaired Osteogenic Differentiation Ability of Human Periodontal Ligament Stem Cells in High Glucose

    PubMed Central

    Liu, Zhi; Chen, Tian; Sun, Wenhua; Yuan, Zongyi; Yu, Mei; Chen, Guoqing; Guo, Weihua; Xiao, Jingang; Tian, Weidong

    2016-01-01

    Diabetes mellitus, characterized by abnormally high blood glucose levels, gives rise to impaired bone remodeling. In response to high glucose (HG), the attenuated osteogenic differentiation capacity of human periodontal ligament stem cells (hPDLSCs) is associated with the loss of alveolar bone. Recently, DNA methylation was reported to affect osteogenic differentiation of stem cells in pathological states. However, the intrinsic mechanism linking DNA methylation to osteogenic differentiation ability in the presence of HG is still unclear. In this study, we found that diabetic rats with increased DNA methylation levels in periodontal ligaments exhibited reduced bone mass and density. In vitro application of 5-aza-2′-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, to decrease DNA methylation levels in hPDLSCs, rescued the osteogenic differentiation capacity of hPDLSCs under HG conditions. Moreover, we demonstrated that the canonical Wnt signaling pathway was activated during this process and, under HG circumstances, the 5-aza-dC-rescued osteogenic differentiation capacity was blocked by Dickkopf-1, an effective antagonist of the canonical Wnt signaling pathway. Taken together, these results demonstrate for the first time that suppression of DNA methylation is able to facilitate the osteogenic differentiation capacity of hPDLSCs exposed to HG, through activation of the canonical Wnt signaling pathway. PMID:27273319

  18. Identification of multipotent stem cells from adult dog periodontal ligament.

    PubMed

    Wang, Wen-Jun; Zhao, Yu-Ming; Lin, Bi-Chen; Yang, Jie; Ge, Li-Hong

    2012-08-01

    Periodontal diseases, which are characterized by destruction of the connective tissues responsible for restraining the teeth within the jaw, are the main cause of tooth loss. Periodontal regeneration mediated by human periodontal ligament stem cells (hPDLSCs) may offer an alternative strategy for the treatment of periodontal disease. Dogs are a widely used large-animal model for the study of periodontal-disease progression, tissue regeneration, and dental implants, but little attention has been paid to the identification of the cells involved in this species. This study aimed to characterize stem cells isolated from canine periodontal ligament (cPDLSCs). The cPDLSCs, like hPDLSCs, showed clonogenic capability and expressed the mesenchymal stem cell markers STRO-1, CD146, and CD105, but not CD34. After induction of osteogenesis, cPDLSCs showed calcium accumulation in vitro. Moreover, cPDLSCs also showed both adipogenic and chondrogenic potential. Compared with cell-free controls, more cementum/periodontal ligament-like structures were observed in CB-17/SCID mice into which cPDLSCs had been transplanted. These results suggest that cPDLSCs are clonogenic, highly proliferative, and have multidifferentiation potential, and that they could be used as a new cellular therapeutic approach to facilitate successful and more predictable regeneration of periodontal tissue using a canine model of periodontal disease.

  19. Rho plays a key role in TGF-β1-induced proliferation and cytoskeleton rearrangement of human periodontal ligament cells.

    PubMed

    Wang, Li; Wang, Tingle; Song, Meng; Pan, Jinsong

    2014-02-01

    Human periodontal ligament cells (hPDLCs) form specialised connective tissues that influence the lifespan of the tooth. Periodontal disease is a chronic infectious disease of the periodontal supporting tissues caused by a variety of factors, particularly the loss of hPDLCs. Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine known to play an important role in periodontal disease, but little is known about the effects of TGF-β1 on human PDL cells. To determine how TGF-β1 mediates the changes in hPDLCs, we characterised the effects of TGF-β1 treatment on hPDLCs. We then elucidated the signalling pathway that mediates these effects. Serum-starved hPDLCs were incubated with 10ng/mL TGF-β1, and their proliferation was examined using the Cell Counting Kit-8, while their morphological changes were examined by phase-contrast microscopy. F-actin reorganisation was visualised by phalloidin staining and confocal microscopy. Protein expression was analysed by western blotting. We found that TGF-β1 treatment induced proliferation and cytoskeletal reorganisation, decreased Rho-GDIa protein expression, activated ROCK protein expression, and increased the phosphorylation of LIM kinase and cofilin. Proliferation and cytoskeletal rearrangement were suppressed by pre-treatment with the ROCK inhibitor Y-27632; additionally, expression of ROCK protein and phosphorylation of LIM kinase and cofilin were decreased by Y-27632, while Rho-GDIa knockdown by targeted siRNA transfection causes opposite effects. Therefore, we propose that TGF-β1 induces proliferation and cytoskeletal rearrangement in hPDLCs via Rho GTPase-dependent pathways that modulate ROCK, LIM kinase, and cofilin activity.

  20. Bone morphogenetic protein-2, -6, and -7 differently regulate osteogenic differentiation of human periodontal ligament stem cells.

    PubMed

    Hakki, Sema S; Bozkurt, Buket; Hakki, Erdogan E; Kayis, Seyit Ali; Turac, Gizem; Yilmaz, Irem; Karaoz, Erdal

    2014-01-01

    The utility of adult stem cells for bone regeneration may be an attractive alternative in the treatment of extensive injury, congenital malformations, or diseases causing large bone defects. To create an environment that is supportive of bone formation, signals from molecules such as the bone morphogenetic proteins (BMPs) are required to engineer fully viable and functional bone. We therefore determined whether BMP-2, -6, and -7 differentially regulate the (1) proliferation, (2) mineralization, and (3) mRNA expression of bone/mineralized tissue associated genes of human periodontal ligament stem cells (hPDLSCs), which were obtained from periodontal ligament tissue of human impacted third molars. hPDLSCs from six participants were isolated and characterized using histochemical and immunohistochemical methods. A real-time cell analyzer was used to evaluate the effects of BMP-2, -6, and -7 on the proliferation of hPDLSCs. hPDLSCs were treated with Dulbecco's modified Eagle's medium containing different concentrations of BMP-2, -6, and -7 (10, 25, 50, 100 ng/mL) and monitored for 264 hours. After dose-response experiments, 50 and 100 ng/mL concentrations of BMPs were used to measure bone/mineralized tissue-associated gene expression. Type I collagen, bone sialoprotein, osteocalcin, osteopontin, and osteoblastic transcription factor Runx2 mRNA expression of hPDLSCs treated with BMP-2, -6, and -7, were evaluated using quantitative RT-PCR. Biomineralization of hPDLSCs was assessed using von Kossa staining. This study demonstrated that BMPs at various concentrations differently regulate the proliferation, mineralization, and mRNA expression of bone/mineralized tissue associated genes in hPDLSCs. BMPs regulate hPDLSC proliferation in a time and dose-dependent manner when compared to an untreated control group. BMPs induced bone/mineralized tissue-associated gene mRNA expression and biomineralization of hPDLSCs. The most pronounced induction occurred in the BMP-6 group in

  1. The potential role of transient receptor potential type A1 as a mechanoreceptor in human periodontal ligament cells.

    PubMed

    Tsutsumi, Takashi; Kajiya, Hiroshi; Fukawa, Teruhisa; Sasaki, Mina; Nemoto, Tetsuomi; Tsuzuki, Takashi; Takahashi, Yutaka; Fujii, Shinsuke; Maeda, Hidefumi; Okabe, Koji

    2013-12-01

    Transient receptor potential type A1 (TRPA1) is reported to be a Ca(2+) -permeable channel and is activated by cold temperatures and mechanical stimuli in the hair cells and in dorsal root ganglion. Using a DNA microarray, we found that TRPA1 was significantly up-regulated in human periodontal ligament (hPDL) cells 2 d after intermittent mechanical stimulation (iMS) loading compared with unloaded cells. Although hPDL cells are known to respond to mechanical stimulation induced by occlusal force, little is known about the expression and functional role of TRPA1 in these cells. Therefore, we investigated the effects of iMS on TRPA1 expression and its signaling pathway in hPDL cells. Intermittent mechanical stimulation loading up-regulated TRPA1 expression in hPDL cells in a time-dependent manner, but had no effect on other mechanoreceptors. Furthermore, iMS significantly increased the phosphorylation of mitogen-activated protein kinases (MAPKs), especially extracellular signal-regulated kinase 1/2 (ERK1/2) and p38, and the expression of C-C chemokine ligand 2 (CCL2). Transient receptor potential type A1 agonists also increased MAPK phosphorylation and the intracellular Ca(2+) concentration. By contrast, inhibition or silencing of TRPA1 partially suppressed iMS-induced MAPK phosphorylation. In summary, iMS during occlusion activates TRPA1 and MAPK signaling in periodontal ligament tissues, suggesting that TRPA1 regulates the mechanosensitivity of occlusal force via activation of MAPKs in hPDL cells.

  2. Loss of proliferation and differentiation capacity of aged human periodontal ligament stem cells and rejuvenation by exposure to the young extrinsic environment.

    PubMed

    Zheng, Wei; Wang, Shi; Ma, Dandan; Tang, Liang; Duan, Yinzhong; Jin, Yan

    2009-09-01

    The application of periodontal ligament stem cells (PDLSCs) may be effective for periodontal regenerative therapy. As tissue regenerative potential may be negatively regulated by aging, whether aging and its microenvironment modify human PDLSCs remains a question. In this study, we compared the proliferation and differentiation capacity of PDLSCs obtained from young and aged donors. Then, we exposed aged PDLSCs to young periodontal ligament cell-conditioned medium (PLC-CM), and young PDLSCs were exposed to aged PLC-CM. Morphological appearance, colony-forming assay, cell cycle analysis, osteogenic and adipogenic induction media, gene expression of cementoblast phenotype, and in vivo differentiation capacities of PDLSCs were evaluated. PDLSCs obtained from aged donors exhibited decreased proliferation and differentiation capacity when compared with those from young donors. Young PLC-CM enhanced the proliferation and differentiation capacity of PDLSCs from aged donors. Aged PDLSCs induced by young PLC-CM showed enhanced tissue-regenerative capacity to produce cementum/periodontal ligament-like structures, whereas young PDLSCs induced by aged PLC-CM transplants mainly formed connective tissues. To our knowledge, this is the first study to mimic the developmental microenvironment of PDLSCs in vitro, and our data suggest that age influences the proliferation and differentiation potential of human PDLSCs, and that the activity of human PDLSCs can be modulated by the extrinsic microenvironment.

  3. Enterococcus faecalis lipoteichoic acid suppresses Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced IL-8 expression in human periodontal ligament cells.

    PubMed

    Im, Jintaek; Baik, Jung Eun; Kim, Kyoung Whun; Kang, Seok-Seong; Jeon, Jun Ho; Park, Ok-Jin; Kim, Hyun Young; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun

    2015-08-01

    Periodontitis is caused by multi-bacterial infection and Aggregatibacter actinomycetemcomitans and Enterococcus faecalis are closely associated with inflammatory periodontal diseases. Although lipopolysaccharide (LPS) of A. actinomycetemcomitans (Aa.LPS) and lipoteichoic acid of E. faecalis (Ef.LTA) are considered to be major virulence factors evoking inflammatory responses, their combinatorial effect on the induction of chemokines has not been investigated. In this study, we investigated the interaction between Aa.LPS and Ef.LTA on IL-8 expression in human periodontal ligament (PDL) cells. Aa.LPS, but not Ef.LTA, substantially induced IL-8 expression at the protein and mRNA levels. Interestingly, Ef.LTA suppressed Aa.LPS-induced IL-8 expression without affecting the binding of Aa.LPS to Toll-like receptor (TLR) 4. Ef.LTA reduced Aa.LPS-induced phosphorylation of mitogen-activated protein kinases, including ERK, JNK and p38 kinase. Furthermore, Ef.LTA inhibited the Aa.LPS-induced transcriptional activities of the activating protein 1, CCAAT/enhancer-binding protein and nuclear factor-kappa B transcription factors, all of which are known to regulate IL-8 gene expression. Ef.LTA augmented the expression of IL-1 receptor-associated kinase-M (IRAK-M), a negative regulator of TLR intracellular signaling pathways, in the presence of Aa.LPS at both the mRNA and protein levels. Small interfering RNA silencing IRAK-M reversed the attenuation of Aa.LPS-induced IL-8 expression by Ef.LTA. Collectively, these results suggest that Ef.LTA down-regulates Aa.LPS-induced IL-8 expression in human PDL cells through up-regulation of the negative regulator IRAK-M.

  4. Bone Morphogenetic Protein-9 Enhances Osteogenic Differentiation of Human Periodontal Ligament Stem Cells via the JNK Pathway

    PubMed Central

    Wang, Xingxing; Pang, Yanan; Yang, Su; Wei, Yibo; Gao, Haochen; Wang, Dalin; Cao, Zhizhong

    2017-01-01

    Bone morphogenetic protein-9 (BMP9) shows great osteoinductive potential in bone regeneration. Periodontal ligament stem cells (PDLSCs) with multi-differentiation capability and low immunogenicity are increasingly used as seed cells for periodontal regenerative therapies. In the present study, we investigated the potent osteogenic activity of BMP9 on human PDLSCs (hPDLSCs), in which the c-Jun N-terminal kinase (JNK) pathway is possibly involved. Our results showed that JNK inhibition by the specific inhibitor SP600125 or adenovirus expressing small interfering RNA (siRNA) targeting JNK (AdR-si-JNK) significantly decreased BMP9-induced gene and protein expression of early and late osteogenic markers, such as runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN), in hPDLSCs. We also confirmed the in-vivo positive effect of JNKs on ectopic bone formation induced by hPDLSCs injected into the musculature of athymic nude mice and BMP9 ex vivo gene delivery. For the cellular mechanism, we found that BMP9 activated the phosphorylation of JNKs and Smad2/3, and that JNKs may engage in cross-talk with the Smad2/3 pathway in BMP9-mediated osteogenesis. PMID:28052093

  5. Effects of IL-10 and glucose on expression of OPG and RANKL in human periodontal ligament fibroblasts

    PubMed Central

    Zhang, L.; Ding, Y.; Rao, G.Z.; Miao, D.

    2016-01-01

    The effects of interleukin-10 (IL-10) and glucose on mRNA and protein expression of osteoprotegerin (OPG), and its ligand, receptor activator of nuclear factor-κB ligand (RANKL), were investigated in human periodontal ligament fibroblasts (HPDLFs). Primary HPDLFs were treated with different concentrations of IL-10 (0, 1, 10, 25, 50, and 100 ng/mL) or glucose (0, 5.5, 10, 20, 30, and 40 mmol/L). Changes in mRNA and protein expression were examined using the reverse-transcription polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. After IL-10 treatment, mRNA and protein levels of OPG were increased, while mRNA and protein levels of RANKL were decreased (P<0.05), both in a concentration-dependent manner. Glucose stimulation had the opposite concentration-dependent effect to that of IL-10 on OPG and RANKL expression. IL-10 upregulated OPG expression and downregulated RANKL expression, whereas high glucose upregulated RANKL and downregulated OPG in HDPLFs. Abnormal levels of IL-10 and glucose may contribute to the pathogenesis of periodontal disease. PMID:27074164

  6. Functional differences in mesenchymal stromal cells from human dental pulp and periodontal ligament.

    PubMed

    Vasandan, Anoop Babu; Shankar, Shilpa Rani; Prasad, Priya; Sowmya Jahnavi, Vulugundam; Bhonde, Ramesh Ramachandra; Jyothi Prasanna, Susarla

    2014-02-01

    Clinically reported reparative benefits of mesenchymal stromal cells (MSCs) are majorly attributed to strong immune-modulatory abilities not exactly shared by fibroblasts. However, MSCs remain heterogeneous populations, with unique tissue-specific subsets, and lack of clear-cut assays defining therapeutic stromal subsets adds further ambiguity to the field. In this context, in-depth evaluation of cellular characteristics of MSCs from proximal oro-facial tissues: dental pulp (DPSCs) and periodontal ligament (PDLSCs) from identical donors provides an opportunity to evaluate exclusive niche-specific influences on multipotency and immune-modulation. Exhaustive cell surface profiling of DPSCs and PDLSCs indicated key differences in expression of mesenchymal (CD105) and pluripotent/multipotent stem cell-associated cell surface antigens: SSEA4, CD117, CD123 and CD29. DPSCs and PDLSCs exhibited strong chondrogenic potential, but only DPSCs exhibited adipogenic and osteogenic propensities. PDLSCs expressed immuno-stimulatory/immune-adhesive ligands like HLA-DR and CD50, upon priming with IFNγ, unlike DPSCs, indicating differential response patterns to pro-inflammatory cytokines. Both DPSCs and PDLSCs were hypo-immunogenic and did not elicit robust allogeneic responses despite exposure to IFNγ or TNFα. Interestingly, only DPSCs attenuated mitogen-induced lympho-proliferative responses and priming with either IFNγ or TNFα enhanced immuno-modulation capacity. In contrast, primed or unprimed PDLSCs lacked the ability to suppress polyclonal T cell blast responses. This study indicates that stromal cells from even topographically related tissues do not necessarily share identical MSC properties and emphasizes the need for a thorough functional testing of MSCs from diverse sources with respect to multipotency, immune parameters and response to pro-inflammatory cytokines before translational usage.

  7. Matrix metalloproteinases regulate extracellular levels of SDF-1/CXCL12, IL-6 and VEGF in hydrogen peroxide-stimulated human periodontal ligament fibroblasts.

    PubMed

    Cavalla, Franco; Osorio, Constanza; Paredes, Rodolfo; Valenzuela, María Antonieta; García-Sesnich, Jocelyn; Sorsa, Timo; Tervahartiala, Taina; Hernández, Marcela

    2015-05-01

    Periodontitis is a highly prevalent infectious disease characterized by the progressive inflammatory destruction of tooth-supporting structures, leading to tooth loss. The underling molecular mechanisms of the disease are incompletely understood, precluding the development of more efficient screening, diagnostic and therapeutic approaches. We investigated the interrelation of three known effector mechanisms of the cellular response to periodontal infection, namely reactive oxygen species (ROS), matrix metalloproteinases (MMPs) and cytokines in primary cell cultures of human periodontal ligament fibroblast (hPDLF). We demonstrated that ROS increase the activity/levels of gelatinolytic MMPs, and stimulate cytokine secretion in hPDLF. Additionally, we proved that MMPs possesses immune modulatory capacity, regulating the secreted levels of cytokines in ROS-stimulated hPDLF cultures. This evidence provides further insight in the molecular pathogenesis of periodontitis, contributing to the future development of more effective therapies.

  8. Vitamin D reduces the inflammatory response by Porphyromonas gingivalis infection by modulating human β-defensin-3 in human gingival epithelium and periodontal ligament cells.

    PubMed

    De Filippis, Anna; Fiorentino, Margherita; Guida, Luigi; Annunziata, Marco; Nastri, Livia; Rizzo, Antonietta

    2017-04-03

    Periodontitis is a multifactorial polymicrobial infection characterized by a destructive inflammatory process. Porphyromonas gingivalis, a Gram-negative black-pigmented anaerobe, is a major pathogen in the initiation and progression of periodontitis; it produces several virulence factors that stimulate human gingival epithelium (HGE) cells and human periodontal ligament (HPL) cells to produce various inflammatory mediators. A variety of substances, such as vitamin D, have growth-inhibitory effects on some bacterial pathogens and have shown chemo-preventive and anti-inflammatory activity. We used a model with HGE and HPL cells infected with P. gingivalis to determine the influence of vitamin D on P. gingivalis growth and adhesion and the immunomodulatory effect on TNF-α, IL-8, IL-12 and human-β-defensin 3 production. Our results demonstrated, firstly, the lack of any cytotoxic effect on the HGE and HPL cells when treated with vitamin D; in addition, vitamin D inhibited P. gingivalis adhesion and infectivity in HGE and HPL cells. Our study then showed that vitamin D reduced TNF-α, IL-8, IL-12 production in P. gingivalis-infected HGE and HPL cells. In contrast, a significant upregulation of the human-β-defensin 3 expression in HGE and HPL cells induced by P. gingivalis was demonstrated. Our results indicate that vitamin D specifically enhances the production of the human-β-defensin 3 antimicrobial peptide and exerts an inhibitory effect on the pro-inflammatory cytokines, thus suggesting that vitamin D may offer possible therapeutic applications for periodontitis.

  9. Development of a novel intraoral measurement device to determine the biomechanical characteristics of the human periodontal ligament.

    PubMed

    Drolshagen, M; Keilig, L; Hasan, I; Reimann, S; Deschner, J; Brinkmann, K T; Krause, R; Favino, M; Bourauel, C

    2011-07-28

    Periodontal diseases like gingivitis and periodontitis have damaging effects on the periodontium and commonly affect the mechanical properties of the periodontal ligament (PDL), which in the end might lead to loss of teeth. Monitoring tooth mobility and changes of the material properties of the PDL might help in early diagnosis of periodontal diseases and improve their prognosis. It was the aim of this study to develop a novel intraoral device to determine the biomechanical characteristics of the periodontal ligament. This includes the measurement of applied forces and resulting tooth displacement in order to investigate the biomechanical behaviour of the periodontium with varying loading protocols with respect to velocity and tooth displacement. The developed device uses a piezoelectric actuator to apply a displacement to a tooth's crown, and the resulting force is measured by an integrated force sensor. To measure the tooth displacement independently and non-invasively, two magnets are fixed on the teeth. The change in the magnetic field caused by the movement of the magnets is measured by a total of 16 Hall sensors. The displacement of the tooth is calculated from the movement of the magnets. The device was tested in vitro on premolars of four porcine mandibular segments and in vivo on two volunteers. The teeth were loaded with varying activation curves. Comparing the force progression of different activation velocities, the forces decreased with decreasing velocity. Intensive testing demonstrated that the device fulfils all requirements. After acceptance of the ethical committee, further testing in clinical measurements is planned.

  10. Periodontal regeneration using periodontal ligament stem cell-transferred amnion.

    PubMed

    Iwasaki, Kengo; Komaki, Motohiro; Yokoyama, Naoki; Tanaka, Yuichi; Taki, Atsuko; Honda, Izumi; Kimura, Yasuyuki; Takeda, Masaki; Akazawa, Keiko; Oda, Shigeru; Izumi, Yuichi; Morita, Ikuo

    2014-02-01

    Periodontal disease is characterized by the destruction of tooth supporting tissues. Regeneration of periodontal tissues using ex vivo expanded cells has been introduced and studied, although appropriate methodology has not yet been established. We developed a novel cell transplant method for periodontal regeneration using periodontal ligament stem cell (PDLSC)-transferred amniotic membrane (PDLSC-amnion). The aim of this study was to investigate the regenerative potential of PDLSC-amnion in a rat periodontal defect model. Cultured PDLSCs were transferred onto amniotic membranes using a glass substrate treated with polyethylene glycol and photolithography. The properties of PDLSCs were investigated by flow cytometry and in vitro differentiation. PDLSC-amnion was transplanted into surgically created periodontal defects in rat maxillary molars. Periodontal regeneration was evaluated by microcomputed tomography (micro-CT) and histological analysis. PDLSCs showed mesenchymal stem cell-like characteristics such as cell surface marker expression (CD90, CD44, CD73, CD105, CD146, and STRO-1) and trilineage differentiation ability (i.e., into osteoblasts, adipocytes, and chondrocytes). PDLSC-amnion exhibited a single layer of PDLSCs on the amniotic membrane and stability of the sheet even with movement and deformation caused by surgical instruments. We observed that the PDLSC-amnion enhanced periodontal tissue regeneration as determined by micro-CT and histology by 4 weeks after transplantation. These data suggest that PDLSC-amnion has therapeutic potential as a novel cell-based regenerative periodontal therapy.

  11. Physiological features of periodontal regeneration and approaches for periodontal tissue engineering utilizing periodontal ligament cells.

    PubMed

    Benatti, Bruno Braga; Silvério, Karina Gonzales; Casati, Márcio Zaffalon; Sallum, Enílson Antônio; Nociti, Francisco Humberto

    2007-01-01

    Experimental studies have shown that the potential of periodontal regeneration seems to be limited by the regenerative capacity of the cells involved. The regeneration of damaged periodontal tissues is mediated by various periodontal cells and is regulated by a vast array of extracellular matrix informational molecules that induce both selective and nonselective responses in different cell lineages and their precursors. In this paper, we first review periodontal ligament tissue and its different cell subpopulations including fibroblasts and paravascular stem cells, and their functions during the development and homeostasis of periodontal tissues. Because conventional periodontal regeneration methods remain insufficient to obtain a complete and reliable periodontal regeneration, the concept of periodontal tissue engineering has been based on the generation of the conditions necessary to improve the healing of periodontal tissues. Additionally, the potential of periodontal ligament cells for use in periodontal tissue engineering to overcome the limitations of conventional periodontal regenerative therapies is discussed, followed by an update of the recent progress and future directions of research utilizing periodontal ligament cells for predictable periodontal regeneration.

  12. In vitro cytotoxicity of hydrothermally synthesized ZnO nanoparticles on human periodontal ligament fibroblast and mouse dermal fibroblast cells.

    PubMed

    Seker, Sükran; Elçin, A Eser; Yumak, Tuğrul; Sınağ, Ali; Elçin, Y Murat

    2014-12-01

    The use of metal oxide nanoparticles (NPs) in industrial applications has been expanding, as a consequence, risk of human exposure increases. In this study, the potential toxic effects of zinc oxide (ZnO) NPs on human periodontal ligament fibroblast cells (hPDLFs) and on mouse dermal fibroblast cells (mDFs) were evaluated in vitro. We synthesized ZnO NPs (particle size; 7-8 nm) by the hydrothermal method. Characterization assays were performed with atomic force microscopy, Braun-Emmet-Teller analysis, and dynamic light scattering. The hPDLFs and mDFs were incubated with the NPs with concentrations of 0.1, 1, 10, 50 and 100 μg/mL for 6, 24 and 48h. Under the control and NP-exposed conditions, we have made different types of measurements for cell viability and morphology, membrane leakage and intracellular reactive oxygen species generation. Also, we monitored cell responses to ZnO NPs using an impedance measurement system in real-time. While the morphological changes were visualized using scanning electron microscopy, the subcellular localization of NPs was investigated by transmission electron microscopy. Results indicated that ZnO NPs have significant toxic effects on both of the primary fibroblastic cells at concentrations of ∼50-100 μg/mL. The cytotoxicity of ZnO NPs on fibroblasts depended on concentration and duration of exposure.

  13. Sodium hydrogen sulfide inhibits nicotine and lipopolysaccharide-induced osteoclastic differentiation and reversed osteoblastic differentiation in human periodontal ligament cells.

    PubMed

    Lee, Sun-Kyung; Chung, Jong-Hyuk; Choi, Sung-Chul; Auh, Q-Schick; Lee, Young-Man; Lee, Sang-Im; Kim, Eun-Cheol

    2013-05-01

    Although previous studies have demonstrated that hydrogen sulfide (H(2)S) stimulated or inhibited osteoclastic differentiation, little is known about the effects of H(2)S on the differentiation of osteoblasts and osteoclasts. To determine the possible bioactivities of H(2)S on bone metabolism, we investigated the in vitro effects of H(2)S on cytotoxicity, osteoblastic, and osteoclastic differentiation as well as the underlying mechanism in lipopolysaccharide (LPS) and nicotine-stimulated human periodontal ligament cells (hPDLCs). The H(2)S donor, NaHS, protected hPDLCs from nicotine and LPS-induced cytotoxicity and recovered nicotine- and LPS-downregulated osteoblastic differentiation, such as alkaline phosphatase (ALP) activity, mRNA expression of osteoblasts, including ALP, osteopontin (OPN), and osteocalcin (OCN), and mineralized nodule formation. Concomitantly, NaHS inhibited the differentiation of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in mouse bone marrow cells and blocked nicotine- and LPS-induced osteoclastogenesis regulatory molecules, such as RANKL, OPG, M-CSF, MMP-9, TRAP, and cathepsin K mRNA. NaHS blocked nicotine and LPS-induced activation of p38, ERK, MKP-1, PI3K, PKC, and PKC isoenzymes, and NF-κB. The effects of H(2)S on nicotine- and LPS-induced osteoblastic and osteoclastic differentiation were remarkably reversed by MKP-1 enzyme inhibitor (vanadate) and expression inhibitor (triptolide). Taken together, we report for the first time that H(2)S inhibited cytotoxicity and osteoclastic differentiation and recovered osteoblastic differentiation in a nicotine- and periodontopathogen-stimulated hPDLCs model, which has potential therapeutic value for treatment of periodontal and inflammatory bone diseases.

  14. The impact of Wnt signalling and hypoxia on osteogenic and cementogenic differentiation in human periodontal ligament cells

    PubMed Central

    Li, Shuigen; Shao, Jin; Zhou, Yinghong; Friis, Thor; Yao, Jiangwu; Shi, Bin; Xiao, Yin

    2016-01-01

    Cementum is a periodontal support tissue that is directly connected to the periodontal ligament. It shares common traits with bone tissues, however, unlike bone, the cementum has a limited capacity for regeneration. As a result, following damage the cementum rarely, if ever, regenerates. Periodontal ligament cells (PDLCs) are able to differentiate into osteoblastic and cementogenic lineages according to specific local environmental conditions, including hypoxia, which is induced by inflammation or activation of the Wnt signalling pathway by local loading. The interactions between the Wnt signalling pathway and hypoxia during cementogenesis are of particular interest to improve the understanding of periodontal tissue regeneration. In the present study, osteogenic and cementogenic differentiation of PDLCs was investigated under hypoxic conditions in the presence and absence of Wnt pathway activation. Protein and gene expression of the osteogenic markers type 1 collagen (COL1) and runt-related transcription factor 2 (RUNX2), and cementum protein 1 (CEMP1) were used as markers for osteogenic and cementogenic differentiation, respectively. Wnt signalling activation inhibited cementogenesis, whereas hypoxia alone did not affect PDLC differentiation. However, hypoxia reversed the inhibition of cementogenesis that resulted from overexpression of Wnt signalling. Cross-talk between hypoxia and Wnt signalling pathways was, therefore, demonstrated to be involved in the differentiation of PDLCs to the osteogenic and cementogenic lineages. In summary, the present study suggests that the differentiation of PDLCs into osteogenic and cementogenic lineages is partially regulated by the Wnt signalling pathway and that hypoxia is also involved in this process. PMID:27840938

  15. Expression and Presence of OPG and RANKL mRNA and Protein in Human Periodontal Ligament with Orthodontic Force

    PubMed Central

    Otero, Liliana; García, Dabeiba Adriana; Wilches-Buitrago, Liseth

    2016-01-01

    OBJECTIVE The objective of this study is to investigate the expression and concentration of ligand receptor activator of NFkB (RANKL) and osteoprotegerin (OPG) in human periodontal ligament (hPDL) with orthodontic forces of different magnitudes. METHODS Right premolars in 32 patients were loaded with 4oz or 7oz of orthodontic force for 7 days. Left first premolars were not loaded. After 7 days, premolars were extracted for treatment as indicated. OPG and RANKL mRNA expressions were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR), and ELISA was used to assess OPG and RANKL protein concentration in compression and tension sides of PDL. Data were subjected to analysis of variance and Tukey tests. RESULTS There was statistically significant difference in RANKL concentration on comparing control teeth with tension and compression sides of the experimental teeth (P < 0.0001). The expression of mRNA RANKL was increased in the tension and compression sides with 4oz (P < 0.0001). OPG did not show statistically significant association with any group. Changes in RANKL/OPG protein ratio in experimental and control groups showed statistically significant difference (P < 0.0001). CONCLUSIONS RANKL protein levels are elevated in hPDL loaded with orthodontic forces, suggesting that RANKL protein contributes to bone modeling in response to the initial placement of orthodontic force. PMID:26823650

  16. Osteogenesis differentiation of human periodontal ligament cells by CO2 laser-treatment stimulating macrophages via BMP2 signalling pathway

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Hui; Chen, Yi-Jyun; Hung, Chi-Jr; Huang, Tsui-Hsien; Kao, Chia-Tze; Shie, Ming-You

    2014-11-01

    Immune reactions play an important role in determining the biostimulation of bone formation, either in new bone formation or inflammatory fibrous tissue encapsulation. Macrophage cell, the important effector cells in the immune reaction, which are indispensable for osteogenesis and their heterogeneity and plasticity, render macrophages a primer target for immune system modulation. However, there are very few studies about the effects of macrophage cells on laser treatment-regulated osteogenesis. In this study, we used CO2 laser as a model biostimulation to investigate the role of macrophage cells on the CO2 laser stimulated osteogenesis. Bone morphogenetic protein 2 (BMP2) was also significantly up regulated by the CO2 laser stimulation, indicating that macrophage may participate in the CO2 laser stimulated osteogenesis. Interestingly, when laser treatment macrophage-conditioned medium were applied to human periodontal ligament cells (hPDLs), the osteogenesis differentiation of hPDLs was significantly enhanced, indicating the important role of macrophages in CO2 laser-induced osteogenesis. These findings provided valuable insights into the mechanism of CO2 laser-stimulated osteogenic differentiation, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of laser treatment.

  17. Cementum and Periodontal Ligament Regeneration.

    PubMed

    Menicanin, Danijela; Hynes, K; Han, J; Gronthos, S; Bartold, P M

    2015-01-01

    The unique anatomy and composition of the periodontium make periodontal tissue healing and regeneration a complex process. Periodontal regeneration aims to recapitulate the crucial stages of wound healing associated with periodontal development in order to restore lost tissues to their original form and function and for regeneration to occur, healing events must progress in an ordered and programmed sequence both temporally and spatially, replicating key developmental events. A number of procedures have been employed to promote true and predictable regeneration of the periodontium. Principally, the approaches are based on the use of graft materials to compensate for the bone loss incurred as a result of periodontal disease, use of barrier membranes for guided tissue regeneration and use of bioactive molecules. More recently, the concept of tissue engineering has been integrated into research and applications of regenerative dentistry, including periodontics, to aim to manage damaged and lost oral tissues, through reconstruction and regeneration of the periodontium and alleviate the shortcomings of more conventional therapeutic options. The essential components for generating effective cellular based therapeutic strategies include a population of multi-potential progenitor cells, presence of signalling molecules/inductive morphogenic signals and a conductive extracellular matrix scaffold or appropriate delivery system. Mesenchymal stem cells are considered suitable candidates for cell-based tissue engineering strategies owing to their extensive expansion rate and potential to differentiate into cells of multiple organs and systems. Mesenchymal stem cells derived from multiple tissue sources have been investigated in pre-clinical animal studies and clinical settings for the treatment and regeneration of the periodontium.

  18. Effect of micro-nano-hybrid structured hydroxyapatite bioceramics on osteogenic and cementogenic differentiation of human periodontal ligament stem cell via Wnt signaling pathway.

    PubMed

    Mao, Lixia; Liu, Jiaqiang; Zhao, Jinglei; Chang, Jiang; Xia, Lunguo; Jiang, Lingyong; Wang, Xiuhui; Lin, Kaili; Fang, Bing

    2015-01-01

    The surface structure of bioceramic scaffolds is crucial for its bioactivity and osteoinductive ability, and in recent years, human periodontal ligament stem cells have been certified to possess high osteogenic and cementogenic differential ability. In the present study, hydroxyapatite (HA) bioceramics with micro-nano-hybrid surface (mnHA [the hybrid of nanorods and microrods]) were fabricated via hydrothermal reaction of the α-tricalcium phosphate granules as precursors in aqueous solution, and the effects of mnHA on the attachment, proliferation, osteogenic and cementogenic differentiations of human periodontal ligament stem cells as well as the related mechanisms were systematically investigated. The results showed that mnHA bioceramics could promote cell adhesion, proliferation, alkaline phosphatase (ALP) activity, and expression of osteogenic/cementogenic-related markers including runt-related transcription factor 2 (Runx2), ALP, osteocalcin (OCN), cementum attachment protein (CAP), and cementum protein (CEMP) as compared to the HA bioceramics with flat and dense surface. Moreover, mnHA bioceramics stimulated gene expression of low-density lipoprotein receptor-related protein 5 (LRP5) and β-catenin, which are the key genes of canonical Wnt signaling. Moreover, the stimulatory effect on ALP activity and osteogenic and cementogenic gene expression, including that of ALP, OCN, CAP, CEMP, and Runx2 of mnHA bioceramics could be repressed by canonical Wnt signaling inhibitor dickkopf1 (Dkk1). The results suggested that the HA bioceramics with mnHA could act as promising grafts for periodontal tissue regeneration.

  19. Effect of micro-nano-hybrid structured hydroxyapatite bioceramics on osteogenic and cementogenic differentiation of human periodontal ligament stem cell via Wnt signaling pathway

    PubMed Central

    Mao, Lixia; Liu, Jiaqiang; Zhao, Jinglei; Chang, Jiang; Xia, Lunguo; Jiang, Lingyong; Wang, Xiuhui; Lin, Kaili; Fang, Bing

    2015-01-01

    The surface structure of bioceramic scaffolds is crucial for its bioactivity and osteoinductive ability, and in recent years, human periodontal ligament stem cells have been certified to possess high osteogenic and cementogenic differential ability. In the present study, hydroxyapatite (HA) bioceramics with micro-nano-hybrid surface (mnHA [the hybrid of nanorods and microrods]) were fabricated via hydrothermal reaction of the α-tricalcium phosphate granules as precursors in aqueous solution, and the effects of mnHA on the attachment, proliferation, osteogenic and cementogenic differentiations of human periodontal ligament stem cells as well as the related mechanisms were systematically investigated. The results showed that mnHA bioceramics could promote cell adhesion, proliferation, alkaline phosphatase (ALP) activity, and expression of osteogenic/cementogenic-related markers including runt-related transcription factor 2 (Runx2), ALP, osteocalcin (OCN), cementum attachment protein (CAP), and cementum protein (CEMP) as compared to the HA bioceramics with flat and dense surface. Moreover, mnHA bioceramics stimulated gene expression of low-density lipoprotein receptor-related protein 5 (LRP5) and β-catenin, which are the key genes of canonical Wnt signaling. Moreover, the stimulatory effect on ALP activity and osteogenic and cementogenic gene expression, including that of ALP, OCN, CAP, CEMP, and Runx2 of mnHA bioceramics could be repressed by canonical Wnt signaling inhibitor dickkopf1 (Dkk1). The results suggested that the HA bioceramics with mnHA could act as promising grafts for periodontal tissue regeneration. PMID:26648716

  20. Wnt signaling regulates homeostasis of the periodontal ligament

    PubMed Central

    Lim, W.H.; Liu, B.; Cheng, D.; Williams, B.O.; Mah, S.J.; Helms, J.A.

    2014-01-01

    Background and Objective In health, the periodontal ligament maintains a constant width throughout an organism’s lifetime. The molecular signals responsible for maintaining homeostatic control over the periodontal ligament are unknown. The purpose of this study was to investigate the role of Wnt signaling in this process by removing an essential chaperone protein, Wntless (Wls) from odontoblasts and cementoblasts, and observing the effects of Wnt depletion on cells of the periodontal complex. Material and Methods The Wnt responsive status of the periodontal complex was assessed using two strains of Wnt reporter mice, Axin2LacZ/+ mice and Lgr5LacZ/+. The function of this endogenous Wnt signal was evaluated by conditionally eliminating the Wntless (Wls) gene using an Osteocalcin Cre driver. The resulting OCN-Cre;Wlsfl/fl mice were examined using micro-CT and histology, immunohistochemical analyses for Osteopontin, Runx2 and Fibromodulin, in situ hybridization for Osterix, and alkaline phosphatase activity. Results The adult periodontal ligament is Wnt responsive. Elimination of Wnt signaling in the periodontal complex of OCN-Cre;Wlsfl/fl mice results in a wider periodontal ligament space. This pathologically increased periodontal width is due to a reduction in the expression of osteogenic genes and proteins, which results in thinner alveolar bone. A concomitant increase in fibrous tissue occupying the periodontal space was observed along with a disruption in the orientation of the periodontal ligament. Conclusion The periodontal ligament is a Wnt dependent tissue. Cells in the periodontal complex are Wnt responsive and eliminating an essential component of the Wnt signaling network leads to a pathological widening of the periodontal ligament space. Osteogenic stimuli are reduced and a disorganized fibrillary matrix results from depletion of Wnt signaling. Collectively, these data underscore the importance of Wnt signaling in homeostasis of the periodontal ligament

  1. Genistein regulates the IL-1 beta induced activation of MAPKs in human periodontal ligament cells through G protein-coupled receptor 30.

    PubMed

    Luo, Li-Jun; Liu, Feng; Lin, Zhi-Kai; Xie, Yu-Feng; Xu, Jia-Li; Tong, Qing-Chun; Shu, Rong

    2012-06-01

    Periodontal ligament (PDL) cells are fibroblasts that play key roles in tissue integrity, periodontal inflammation and tissue regeneration in the periodontium. The periodontal tissue destruction in periodontitis is mediated by host tissue-produced inflammatory cytokines, including interleukin-1β (IL-1β). Here, we report the expression of G protein-coupled receptor 30 (GPR30, also known as G protein-coupled estrogen receptor 1 GPER) in human PDL cells and its regulation by IL-1β. IL-1β-induced GPR30 expression in human PDL cells leads to the activation of multiple signaling pathways, including MAPK, NF-κB and PI3K. In contrast, genistein, an estrogen receptor ligand, postpones the activation of MAPKs induced by IL-1β. Moreover, the inhibition of GPR30 by G15, a GPR30-specific antagonist, eliminates this delay. Thus, genistein plays a role in the regulation of MAPK activation via GPR30, and GPR30 represents a novel target regulated by steroid hormones in PDL cells.

  2. Electrospun scaffold development for periodontal ligament regeneration

    NASA Astrophysics Data System (ADS)

    Pourattar, Parisa

    Periodontitis is a major chronic inflammatory disorder that can lead to the destruction of the periodontal tissues and, ultimately, tooth loss. It is a major cause of tooth loss in adults and a substantial public-health burden worldwide. There is thus a significant need for periodontal ligament (PDL) regeneration to enable functional mechanical support of tooth prostheses and prevent occlusal overloading. The goal of stem cell-based dental tissue engineering, is to create tooth-like structures using scaffold materials to guide the dental stem cells. Current resorbable membranes act as an epithelial tissue down-growth into the defect, favoring the regeneration of periodontal tissues. In order to develop synthetic grafts for these applications, different biocompatible materials have been used to fabricate fibers with different structures and morphologies. This study demonstrated the feasibility of using a composite material that combines the advantage of multiple materials to synthesize polyvinyl alcohol/ chitosan blend fiber scaffolds to promote PDL regeneration and to achieve a synthetic composite that match the native PDL modulus. Morphology, dispersibility, and mechanical properties of blend nanofibrous mats were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and tensile test.

  3. Effects of Intermittent Administration of Parathyroid Hormone (1-34) on Bone Differentiation in Stromal Precursor Antigen-1 Positive Human Periodontal Ligament Stem Cells

    PubMed Central

    Wang, Xiaoxiao; Wang, Yanlan; Dai, Xubin; Chen, Tianyu; Yang, Fanqiao; Dai, Shuangye; Ou, Qianmin; Wang, Yan; Lin, Xuefeng

    2016-01-01

    Periodontitis is the most common cause of tooth loss and bone destruction in adults worldwide. Human periodontal ligament stem cells (hPDLSCs) may represent promising new therapeutic biomaterials for tissue engineering applications. Stromal precursor antigen-1 (STRO-1) has been shown to have roles in adherence, proliferation, and multipotency. Parathyroid hormone (PTH) has been shown to enhance proliferation in osteoblasts. Therefore, in this study, we aimed to compare the functions of STRO-1(+) and STRO-1(−) hPDLSCs and to investigate the effects of PTH on the osteogenic capacity of STRO-1(+) hPDLSCs in order to evaluate their potential applications in the treatment of periodontitis. Our data showed that STRO-1(+) hPDLSCs expressed higher levels of the PTH-1 receptor (PTH1R) than STRO-1(−) hPDLSCs. In addition, intermittent PTH treatment enhanced the expression of PTH1R and osteogenesis-related genes in STRO-1(+) hPDLSCs. PTH-treated cells also exhibited increased alkaline phosphatase activity and mineralization ability. Therefore, STRO-1(+) hPDLSCs represented a more promising cell resource for biomaterials and tissue engineering applications. Intermittent PTH treatment improved the capacity for STRO-1(+) hPDLSCs to repair damaged tissue and ameliorate the symptoms of periodontitis. PMID:27069479

  4. Mitogen-activated protein kinases and phosphatidylinositol 3-kinase are involved in Prevotella intermedia-induced proinflammatory cytokines expression in human periodontal ligament cells.

    PubMed

    Guan, Su-Min; Zhang, Ming; He, Jian-Jun; Wu, Jun-Zheng

    2009-08-28

    Chronic periodontitis is an inflammatory disease affecting periodontal connective tissues and alveolar bone. Proinflammatory mediators induced by periodontal pathogens play vital roles in the initiation and progression of the disease. In this study, we examined whether Prevotella intermedia induces proinflammatory cytokines expression in human periodontal ligament cells (hPDLs). The mRNA expression and protein production were determined by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbant assay (ELISA) respectively. P. intermedia treatment dose- and time-dependently increased IL-6, IL-8 and M-CSF, but not IL-1beta and TNF-alpha mRNA expression and protein secretion. Preincubation of hPDLs with extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 kinase and phosphatidylinositol 3-kinase (PI3K) inhibitors PD98059, SP600125, SB203580 and LY294002 resulted in significant reduction in P. intermedia-induced IL-6, IL-8 and M-CSF expression. Blocking the synthesis of prostaglandin E(2) (PGE(2)) by indomethacin also abolished the stimulatory effects of P. intermedia on cytokines expression. Our results indicate that P. intermedia induces proinflammatory cytokines through MAPKs and PI3K signaling pathways, and PGE(2) is involved in the P. intermedia-induced proinflammatory cytokines upregulation.

  5. Silk-Fibroin and Graphene Oxide Composites Promote Human Periodontal Ligament Stem Cell Spontaneous Differentiation into Osteo/Cementoblast-Like Cells.

    PubMed

    Vera-Sánchez, Mar; Aznar-Cervantes, Salvador; Jover, Eva; García-Bernal, David; Oñate-Sánchez, Ricardo E; Hernández-Romero, Diana; Moraleda, Jose M; Collado-González, Mar; Rodríguez-Lozano, Francisco Javier; Cenis, Jose Luis

    2016-11-15

    Graphene represents one of the most interesting additions to the tissue engineering toolbox. Novel graphene-based composites are required to improve the beneficial graphene properties in terms of tridimensional polymeric structure, conferring a higher mechanical strength and favoring the differentiation of human mesenchymal stem cells. Here, we have demonstrated in a wide range of composite combinations, the successful use of graphene and silk-fibroin constructs for future bioengineering applications in the field of clinical regenerative dentistry using human periodontal ligament stem cells. Our results provide exciting new data for the development of suitable scaffolds that allow good cell engrafting, preservation of cell viability and proliferation, promotion of spontaneous osteoblastic differentiation, and importantly, stimulation of a higher cementum physiological synthesis than using other different available biomaterials.

  6. Tenomodulin Expression in the Periodontal Ligament Enhances Cellular Adhesion

    PubMed Central

    Komiyama, Yuske; Ohba, Shinsuke; Shimohata, Nobuyuki; Nakajima, Keiji; Hojo, Hironori; Yano, Fumiko; Takato, Tsuyoshi; Docheva, Denitsa; Shukunami, Chisa; Hiraki, Yuji; Chung, Ung-il

    2013-01-01

    Tenomodulin (Tnmd) is a type II transmembrane protein characteristically expressed in dense connective tissues such as tendons and ligaments. Its expression in the periodontal ligament (PDL) has also been demonstrated, though the timing and function remain unclear. We investigated the expression of Tnmd during murine tooth eruption and explored its biological functions in vitro. Tnmd expression was related to the time of eruption when occlusal force was transferred to the teeth and surrounding tissues. Tnmd overexpression enhanced cell adhesion in NIH3T3 and human PDL cells. In addition, Tnmd-knockout fibroblasts showed decreased cell adhesion. In the extracellular portions of Tnmd, the BRICHOS domain or CS region was found to be responsible for Tnmd-mediated enhancement of cell adhesion. These results suggest that Tnmd acts on the maturation or maintenance of the PDL by positively regulating cell adhesion via its BRICHOS domain. PMID:23593173

  7. An in vitro evaluation of the growth of human periodontal ligament fibroblasts after exposure to a methacrylate-based endodontic sealer.

    PubMed

    Heitman, Erich P; Joyce, Anthony P; McPherson, James C; Roberts, Steven; Chuang, Augustine

    2008-02-01

    The cytotoxicity of Epiphany root canal sealer at various concentrations from 25-800 microg/mL on human periodontal ligament (HPDL) fibroblasts was evaluated at 1, 3, and 7 days. Controls included untreated cells and cells treated with the vehicle for Epiphany suspension. Fibroblast viability was assessed by 2 methods, crystal violet staining in 24-well plates and the fluorescence-based CyQUANT Cell Proliferation Assay in 96-well plates. Significant cytotoxicity against HPDL fibroblast growth by Epiphany was both time- and concentration-dependent. On day 1, 800 microg/mL, the highest concentration of Epiphany, showed significant cytotoxicity (P < or = .001). By day 7, all concentrations greater than 25 microg/mL showed significant (P < or = .05) loss of viability. This study demonstrated increased Epiphany cytotoxicity with an increase in concentration or exposure time.

  8. Periodontal ligament stem cells modulate root resorption of human primary teeth via Runx2 regulating RANKL/OPG system.

    PubMed

    Li, Bei; Zhang, Yu; Wang, Qingchao; Dong, Zhiwei; Shang, Linjuan; Wu, Lizheng; Wang, Xiaojing; Jin, Yan

    2014-10-15

    Physiological primary teeth exfoliation is a normal phenomenon during teeth development. However, retained primary teeth can often be observed in the patients with cleidocranial dysplasia (CCD) caused by mutation of Runx2. The potential regulative mechanism is still unknown. In the present study, periodontal ligament stem cells (PDLSCs) were derived from different resorbed stages of primary teeth and permanent teeth from normal patients and primary teeth from CCD patient. The proliferative, osteogenic and osteoclast-inductive capacities of PDLSCs from each group were detected. We demonstrated here that the proliferative ability of PDLSCs was reduced while the osteogenic and the osteoclast-inductive capacity of PDLSCs were enhanced during root resorption. The results also showed that PDLSCs from permanent teeth and CCD patient expressed low level of Runx2 and RANKL while high level of OPG. However, expression of Runx2 and RANKL were increased while expression of OPG was decreased in PDLSCs derived from resorbed teeth. Furthermore, Runx2 regulating the expression of RANKL and OPG and the osteoclast-inductive capacity of PDLSCs were confirmed by gain or loss of function assay. These data suggest that PDLSCs promote osteoclast differentiation via Runx2 upregulating RANKL and downregulating OPG, leading to enhanced root resorption that results in physiological exfoliation of primary teeth.

  9. Differential effects of TGF-β1 and FGF-2 on SDF-1α expression in human periodontal ligament cells derived from deciduous teeth in vitro.

    PubMed

    Hasegawa, Tomokazu; Chosa, Naoyuki; Asakawa, Takeyoshi; Yoshimura, Yoshitaka; Fujihara, Yuri; Kitamura, Takamasa; Tanaka, Mitsuro; Ishisaki, Akira; Mitome, Masato

    2012-07-01

    Stromal cell-derived factor (SDF)-1α has been reported to play a crucial role in stem cell homing and recruitment to injured sites. However, no information is available about its role in periodontal tissues. The aim of this in vitro study was to investigate the effects of basic fibroblast growth factor (FGF-2) and transforming growth factor (TGF)-β1 on SDF-1α expression in immortalized periodontal ligament (PDL) cells derived from deciduous teeth (SH9 cells). Real-time PCR and western blot analyses showed that SDF-1α mRNA expression in SH9 cells was markedly inhibited by FGF-2 treatment for 48 h. SU5402, which directly interacts with the catalytic domain of the FGF receptor 1 (FGFR1) and suppresses its phosphorylation, inhibited the FGF-2-related decrease in SDF-1α expression. These results suggest that FGF-2 signaling via the FGFR1 pathway inhibits SDF-1α expression. Conversely, SDF-1α expression in SH9 cells was increased by TGF-β1 treatment for 12 h. Western blot analysis showed that this treatment induced Smad2/3 phosphorylation. A time-course experiment showed that SDF-1α expression levels reached a maximum 12 h after the TGF-β1 treatment and returned to basal levels by 48 h. Real-time PCR analysis showed that Smad7 mRNA expression peaked by 6 h after TGF-β1 treatment. Since Smad7 siRNA downregulated Smad7 expression by approximately 2.5-fold compared with the negative control siRNA, the induction of SDF-1α expression was prolonged. Furthermore, treatment of SH9 cells with TGF-β1 for 12 h induced transwell migration of UE7T-13 cells, which are mesenchymal stem cells derived from human bone marrow. Therefore, SDF-1α may play an important role in stem and progenitor cell recruitment and homing to injured sites in the periodontal ligament, and regulation of SDF-1α expression may be a useful tool in cell-based therapy for periodontal tissue regeneration.

  10. The immunomodulatory properties of periodontal ligament stem cells isolated from inflamed periodontal granulation.

    PubMed

    Li, Chenghua; Wang, Xinwen; Tan, Jun; Wang, Tao; Wang, Qintao

    2014-01-01

    Periodontitis is currently the main cause of tooth loss and as yet there is no appropriate method for establishing a functional and predictable periodontal regeneration. Tissue engineering involving seed cells provides a new prospect for periodontal regeneration. While periodontal ligament stem cells (PDLSCs) are a good choice for seed cells, it is not always possible to obtain the patients' own PDLSCs. We and others have found a type of stromal cells from inflamed periodontal granulation. These cells displayed similar differentiation properties to PDLSCs. Inflammation has a profound influence on the immunomodulatory properties of mesenchymal stem cells, which may affect therapeutic outcome. In this study, we assessed the immunomodulatory characteristics of these inflamed human (ih)PDLSCs. Along with the similarity in cell surface marker expressions, they also displayed immunomodulatory properties comparable to those in healthy human (hh)PDLSCs. Both hhPDLSCs and ihPDLSCs can suppress the proliferation and secretion of IFN-γ in peripheral blood mononuclear cells by indirect soluble mediators and direct cell-cell contact. Albeit with some quantitative variances, the gene expressions of inducible nitric oxide synthases, indoleamine 2,3 dioxygenase, cyclooxygenase-2, TNF-α-induced protein 6 and IL-10 in ihPDLSCs displayed similar patterns as those in hhPDLSCs. Taken together, our results suggest that ihPDLSCs can provide a promising alternative to hhPDLSCs in terms of evident similarities in immunomodulatory properties as well as their easier accessibility and availability.

  11. Role of Cortico-Cancellous Heterologous Bone in Human Periodontal Ligament Stem Cell Xeno-Free Culture Studied by Synchrotron Radiation Phase-Contrast Microtomography.

    PubMed

    Mazzoni, Serena; Mohammadi, Sara; Tromba, Giuliana; Diomede, Francesca; Piattelli, Adriano; Trubiani, Oriana; Giuliani, Alessandra

    2017-02-10

    This study was designed to quantitatively demonstrate via three-dimensional (3D) images, through the Synchrotron Radiation Phase-Contrast Microtomography (SR-PhC-MicroCT), the osteoinductive properties of a cortico-cancellous scaffold (Osteobiol Dual Block-DB) cultured with human Periodontal Ligament Stem Cells (hPDLSCs) in xeno-free media. In vitro cultures of hPDLSCs, obtained from alveolar crest and horizontal fibers of the periodontal ligament, were seeded onto DB scaffolds and cultured in xeno-free media for three weeks. 3D images were obtained by SR-PhC-microCT after one and three weeks from culture beginning. MicroCT data were successively processed with a phase-retrieval algorithm based on the Transport of Intensity Equation (TIE). The chosen experimental method, previously demonstratively applied for the 3D characterization of the same constructs in not xeno-free media, quantitatively monitored also in this case the early stages of bone formation in basal and differentiating conditions. Interestingly, it quantitatively showed in the xeno-free environment a significant acceleration of the mineralization process, regardless of the culture (basal/differentiating) medium. This work showed in 3D that the DB guides the osteogenic differentiation of hPDLSCs in xeno-free cultures, in agreement with 2D observations and functional studies previously performed by some of the authors. Indeed, here we fully proved in 3D that expanded hPDLSCs, using xeno-free media formulation, not only provide the basis for Good Manufacturing Practice (preserving the stem cells' morphological features and their ability to differentiate into mesenchymal lineage) but have to be considered, combined to DB scaffolds, as interesting candidates for potential clinical use in new custom made tissue-engineered constructs.

  12. Role of Cortico-Cancellous Heterologous Bone in Human Periodontal Ligament Stem Cell Xeno-Free Culture Studied by Synchrotron Radiation Phase-Contrast Microtomography

    PubMed Central

    Mazzoni, Serena; Mohammadi, Sara; Tromba, Giuliana; Diomede, Francesca; Piattelli, Adriano; Trubiani, Oriana; Giuliani, Alessandra

    2017-01-01

    This study was designed to quantitatively demonstrate via three-dimensional (3D) images, through the Synchrotron Radiation Phase-Contrast Microtomography (SR-PhC-MicroCT), the osteoinductive properties of a cortico-cancellous scaffold (Osteobiol Dual Block—DB) cultured with human Periodontal Ligament Stem Cells (hPDLSCs) in xeno-free media. In vitro cultures of hPDLSCs, obtained from alveolar crest and horizontal fibers of the periodontal ligament, were seeded onto DB scaffolds and cultured in xeno-free media for three weeks. 3D images were obtained by SR-PhC-microCT after one and three weeks from culture beginning. MicroCT data were successively processed with a phase-retrieval algorithm based on the Transport of Intensity Equation (TIE). The chosen experimental method, previously demonstratively applied for the 3D characterization of the same constructs in not xeno-free media, quantitatively monitored also in this case the early stages of bone formation in basal and differentiating conditions. Interestingly, it quantitatively showed in the xeno-free environment a significant acceleration of the mineralization process, regardless of the culture (basal/differentiating) medium. This work showed in 3D that the DB guides the osteogenic differentiation of hPDLSCs in xeno-free cultures, in agreement with 2D observations and functional studies previously performed by some of the authors. Indeed, here we fully proved in 3D that expanded hPDLSCs, using xeno-free media formulation, not only provide the basis for Good Manufacturing Practice (preserving the stem cells’ morphological features and their ability to differentiate into mesenchymal lineage) but have to be considered, combined to DB scaffolds, as interesting candidates for potential clinical use in new custom made tissue-engineered constructs. PMID:28208578

  13. Cyclic Tensile Stress During Physiological Occlusal Force Enhances Osteogenic Differentiation of Human Periodontal Ligament Cells via ERK1/2-Elk1 MAPK Pathway

    PubMed Central

    Li, Lu; Han, Minxuan; Li, Sheng

    2013-01-01

    Physiological occlusal force constitutively exists in the oral environment and is important for periodontal homeostasis and remodeling. Cyclic tensile stress (CTS) triggers the biological response of periodontal ligament (PDL). However, a few reports have studied the correlation between CTS during physiological occlusal force and PDL cell activities such as osteogenic differentiation. In the present study, human PDL cells (hPDLCs) were subjected to 10% elongation CTS loading at 0.5 Hz for 24 h, which represents the physiological conditions of occlusal force. Gene expression microarray was used to investigate the mechano-induced differential gene profile and pathway analysis in vitro. The osteogenic relative factors, that is, SPP1, RUNX2, and SP7, were assessed by real-time PCR and Western blot. The involvement of mitogen-activated protein kinase (MAPK) signaling pathways was investigated by Western blot with a specific inhibitor. The expressions of SPP1, RUNX2, SP7, p-ERK1/2, and p-Elk1 were up-regulated after 10% CTS exposure. However, these up-regulated expressions were prevented by ERK1/2 inhibitor U0126 in the physiological occlusal force-applied hPDLCs. These results showed that 10% CTS could enhance osteogenic differentiation of hPDLCs via ERK1/2-Elk1 MAPK pathway, indicating that CTS during physiological occlusal force is a potent agent for PDL remodeling. PMID:23781879

  14. A low-level diode laser therapy reduces the lipopolysaccharide (LPS)-induced periodontal ligament cell inflammation

    NASA Astrophysics Data System (ADS)

    Huang, T. H.; Chen, C. C.; Liu, S. L.; Lu, Y. C.; Kao, C. T.

    2014-07-01

    The purpose of this study was to investigate the cytologic effects of inflammatory periodontal ligament cells in vitro after low-level laser therapy. Human periodontal ligament cells were cultured, exposed to lipopolysaccharide and subjected to low-level laser treatment of 5 J cm-2 or 10 J cm-2 using a 920 nm diode laser. A periodontal ligament cell attachment was observed under a microscope, and the cell viability was quantified by a mitochondrial colorimetric assay. Lipopolysaccharide-treated periodontal ligament cells were irradiated with the low-level laser, and the expression levels of several inflammatory markers, iNOS, TNF-α and IL-1, and pErk kinase, were analyzed by reverse transcription polymerase chain reaction and western blot. The data were collected and analyzed by one-way analysis of variance; p < 0.05 indicated a statistically significant difference. The low-level laser treatment of periodontal ligament cells increased their ability to attach and survive. After irradiation, the expression levels of iNOS, TNF-α and IL-1 in lipopolysaccharide-exposed periodontal ligament cells decreased over time (p < 0.05). In periodontal ligament cells, low-level diode laser treatment increased the cells’ proliferative ability and decreased the expression of the examined inflammatory mediators.

  15. Luteolin and apigenin activate the Oct-4/Sox2 signal via NFATc1 in human periodontal ligament cells.

    PubMed

    Liu, Lu; Peng, Zhengjun; Huang, Haoquan; Xu, Zhezhen; Wei, Xi

    2016-10-01

    Identifying small molecules to activate the Oct-4/Sox2-derived pluripotency network represents a hopeful and safe method to pluripotency without genetic manipulation. Luteolin and apigenin, two major bioactive flavonoids, enhance reprogramming efficiency and increase expression of Oct-4/Sox2/c-Myc, albeit the detailed mechanism regulating pluripotency in dental-derived cells remains unknown. In the present study, to elucidate the effect of luteolin/apigenin on pluripotency of periodontal ligament cells (PDLCs) through interaction with downstream signals, we examined cell cycle, proliferation, apoptosis, expression of Oct-4/Sox2/c-Myc, and multilineage differentiation of PDLCs with luteolin/apigenin treatment. Moreover, we profiled the differentially expressed pluripotency genes by PCR arrays. Our results demonstrated that luteolin/apigenin restrained cell proliferation, increased apoptosis, and arrested PDLCs in G2/M and S phase. Luteolin and apigenin activated expression of Oct-4, Sox2, and c-Myc in a time- and dose-dependent pattern, and repressed lineage-specific differentiation. PCR arrays profiled multiple signals in PDLCs with luteolin/apigenin treatment, among which NFATc1 was the major upregulated gene. Notably, blocking of the NFATc1 signal with INCA-6 significantly decreased mRNA and protein expression of Oct-4, Sox2, and c-Myc in PDLCs with luteolin/apigenin treatment, indicating that NFATc1 may act as an upstream modulator of Oct-4/Sox2 signal. Taken together, this study showed that luteolin and apigenin effectively maintain pluripotency of PDLCs through activation of Oct-4/Sox2 signal via NFATc1.

  16. Generation of Neural Crest-Like Cells From Human Periodontal Ligament Cell-Derived Induced Pluripotent Stem Cells.

    PubMed

    Tomokiyo, Atsushi; Hynes, Kim; Ng, Jia; Menicanin, Danijela; Camp, Esther; Arthur, Agnes; Gronthos, Stan; Mark Bartold, Peter

    2017-02-01

    Neural crest cells (NCC) hold great promise for tissue engineering, however the inability to easily obtain large numbers of NCC is a major factor limiting their use in studies of regenerative medicine. Induced pluripotent stem cells (iPSC) are emerging as a novel candidate that could provide an unlimited source of NCC. In the present study, we examined the potential of neural crest tissue-derived periodontal ligament (PDL) iPSC to differentiate into neural crest-like cells (NCLC) relative to iPSC generated from a non-neural crest derived tissue, foreskin fibroblasts (FF). We detected high HNK1 expression during the differentiation of PDL and FF iPSC into NCLC as a marker for enriching for a population of cells with NCC characteristics. We isolated PDL iPSC- and FF iPSC-derived NCLC, which highly expressed HNK1. A high proportion of the HNK1-positive cell populations generated, expressed the MSC markers, whilst very few cells expressed the pluripotency markers or the hematopoietic markers. The PDL and FF HNK1-positive populations gave rise to smooth muscle, neural, glial, osteoblastic and adipocytic like cells and exhibited higher expression of smooth muscle, neural, and glial cell-associated markers than the PDL and FF HNK1-negative populations. Interestingly, the HNK1-positive cells derived from the PDL-iPSC exhibited a greater ability to differentiate into smooth muscle, neural, glial cells and adipocytes, than the HNK1-positive cells derived from the FF-iPSC. Our work suggests that HNK1-enriched NCLC from neural crest tissue-derived iPSC more closely resemble the phenotypic and functional hallmarks of NCC compared to the HNK1-low population and non-neural crest iPSC-derived NCLC. J. Cell. Physiol. 232: 402-416, 2017. © 2016 Wiley Periodicals, Inc.

  17. Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers.

    PubMed

    Alvarez, Ruth; Lee, Hye-Lim; Wang, Cun-Yu; Hong, Christine

    2015-12-18

    Mesenchymal stem cell (MSC)-mediated therapy has been shown to be clinically effective in regenerating tissue defects. For improved regenerative therapy, it is critical to isolate homogenous populations of MSCs with high capacity to differentiate into appropriate tissues. The utilization of stem cell surface antigens provides a means to identify MSCs from various tissues. However, few surface markers that consistently isolate highly regenerative MSCs have been validated, making it challenging for routine clinical applications and making it all the more imperative to identify reliable surface markers. In this study, we used three surface marker combinations: CD51/CD140α, CD271, and STRO-1/CD146 for the isolation of homogenous populations of dental mesenchymal stem cells (DMSCs) from heterogeneous periodontal ligament cells (PDLCs). Fluorescence-activated cell sorting analysis revealed that 24% of PDLCs were CD51(+)/CD140α(+), 0.8% were CD271(+), and 2.4% were STRO-1(+)/CD146(+). Sorted cell populations were further assessed for their multipotent properties by inducing osteogenic and chondrogenic differentiation. All three subsets of isolated DMSCs exhibited differentiation capacity into osteogenic and chondrogenic lineages but with varying degrees. CD271(+) DMSCs demonstrated the greatest osteogenic potential with strong induction of osteogenic markers such as DLX5, RUNX2, and BGLAP. Our study provides evidence that surface marker combinations used in this study are sufficient markers for the isolation of DMSCs from PDLCs. These results provide important insight into using specific surface markers for identifying homogenous populations of DMSCs for their improved utilization in regenerative medicine.

  18. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments

    PubMed Central

    Ashrafi, H.; Shariyat, M.

    2016-01-01

    Introduction Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. Methods In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant–rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Results Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. Conclusion To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments. PMID:27672630

  19. Prevotella intermedia stimulates tissue-type plasminogen activator and plasminogen activator inhibitor-2 expression via multiple signaling pathways in human periodontal ligament cells.

    PubMed

    Guan, Su-Min; He, Jian-Jun; Zhang, Ming; Shu, Lei

    2011-06-01

    Prevotella intermedia is an important periodontal pathogen that induces various inflammatory and immune responses. In this study, we investigated the effects of P. intermedia on the plasminogen system in human periodontal ligament (hPDL) cells and explored the signaling pathways involved. Using semi-quantitative reverse transcription (RT)-PCR and quantitative real-time RT-qPCR, we demonstrated that P. intermedia challenge increased tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor (PAI)-2 expression in a concentration- and time-dependent manner, but exerted no influence on urokinase-type plasminogen activator and PAI-1mRNA expression in hPDL cells. Prevotella intermedia stimulation also enhanced tPA protein secretion as confirmed by enzyme-linked immunosorbent assay. Western blot results revealed that P. intermedia treatment increased phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase (p38). ERK, JNK and protein kinase C inhibitors significantly attenuated the P. intermedia-induced tPA and PAI-2 expression. Furthermore, p38 and phosphatidylinositol 3-kinase inhibitors markedly decreased PAI-2 expression, whereas they showed no or little inhibition on tPA expression. In contrast, inhibition of protein kinase A greatly enhanced the upregulatory effect of P. intermedia on tPA and PAI-2 expression. Our results suggest that P. intermedia may contribute to periodontal tissue destruction by upregulating tPA and PAI-2 expression in hPDL cells via multiple signaling pathways.

  20. Mechanoresponsive Properties of the Periodontal Ligament.

    PubMed

    Huang, L; Liu, B; Cha, J Y; Yuan, G; Kelly, M; Singh, G; Hyman, S; Brunski, J B; Li, J; Helms, J A

    2016-04-01

    The periodontal ligament (PDL) functions as an enthesis, a connective tissue attachment that dissipates strains created by mechanical loading. Entheses are mechanoresponsive structures that rapidly adapt to changes in their mechanical loading; here we asked which features of the PDL are sensitive to such in vivo loading. We evaluated the PDL in 4 physiologically relevant mechanical environments, focusing on mitotic activity, cell density, collagen content, osteogenic protein expression, and organization of the tissue. In addition to examining PDLs that supported teeth under masticatory loading and eruptive forces, 2 additional mechanical conditions were created and analyzed: hypoloading and experimental tooth movement. Collectively, these data revealed that the adult PDL is a remarkably quiescent tissue and that only when it is subjected to increased loads--such as those associated with mastication, eruption, and orthodontic tooth movement-does the tissue increase its rate of cell proliferation and collagen production. These data have relevance in clinical scenarios where PDL acclimatization can be exploited to optimize tooth movement.

  1. Characterization of a novel periodontal ligament-specific periostin isoform.

    PubMed

    Yamada, S; Tauchi, T; Awata, T; Maeda, K; Kajikawa, T; Yanagita, M; Murakami, S

    2014-09-01

    Periostin is a mesenchymal cell marker predominantly expressed in collagen-rich fibrous connective tissues, including heart valves, tendons, perichondrium, periosteum, and periodontal ligament (PDL). Knockdown of periostin expression in mice results in early-onset periodontitis and failure of cardiac healing after acute myocardial infarction, suggesting that periostin is essential for connective tissue homeostasis and regeneration. However, its role(s) in periodontal tissues has not yet been fully defined. In this study, we describe a novel human isoform of periostin (PDL-POSTN). Isoform-specific analysis by reverse-transcription polymerase chain-reaction (RT-PCR) revealed that PDL-POSTN was predominantly expressed in the PDL, with much lower expression in other tissues and organs. A PDL cell line transfected with PDL-POSTN showed enhanced alkaline phosphatase (ALPase) activity and calcified nodule formation, compared with cells transfected with the full-length periostin isoform. A neutralizing antibody against integrin-αv inhibited both ALPase activity and calcified nodule formation in cells transfected with PDL-POSTN. Furthermore, co-immunoprecipitation assays revealed that PDL-POSTN bound to integrin αvβ3 more strongly than the common isoform of periostin, resulting in strong activation of the integrin αvβ3-focal adhesion kinase (FAK) signaling pathway. These results suggest that PDL-POSTN positively regulates cytodifferentiation and mineralization in PDL cells through integrin αvβ3.

  2. Effects of fluoride on proliferation and mineralization in periodontal ligament cells in vitro

    PubMed Central

    Li, K.Q.; Jia, S.S.; Ma, M.; Shen, H.Z.; Xu, L.; Liu, G.P.; Huang, S.Y.; Zhang, D.S.

    2016-01-01

    Fluoride, which is often added to toothpaste or mouthwash in order to protect teeth from decay, may be a novel therapeutic approach for acceleration of periodontal regeneration. Therefore, we investigated the effects of fluoride on proliferation and mineralization in human periodontal ligament cells in vitro. The periodontal ligament cells were stimulated with various concentrations of NaF added into osteogenic inductive medium. Immunohistochemistry of cell identification, cell proliferation, alkaline phosphatase (ALP) activity assay, Alizarin red S staining and quantitative real-time-polymerase chain reaction (RT-PCR) were performed. Moderate concentrations of NaF (50-500 μmol/L) had pro-proliferation effects, while 500 μmol/L had the best effects. ALP activity and calcium content were significantly enhanced by 10 μmol/L NaF with osteogenic inductive medium. Quantitative RT-PCR data varied in genes as a result of different NaF concentrations and treatment periods. We conclude that moderate concentrations of NaF can stimulate proliferation and mineralization in periodontal ligament cells. These in vitro findings may provide a novel therapeutic approach for acceleration of periodontal regeneration by addition of suitable concentrations of NaF into the medication for periodontitis treatment, i.e., into periodontal packs and tissue patches. PMID:27409336

  3. Review of common conditions associated with periodontal ligament widening

    PubMed Central

    Mortazavi, Hamed

    2016-01-01

    Purpose The aim of this article is to review a group of lesions associated with periodontal ligament (PDL) widening. Materials and Methods An electronic search was performed using specialized databases such as Google Scholar, PubMed, PubMed Central, Science Direct, and Scopus to find relevant studies by using keywords such as “periodontium”, “periodontal ligament”, “periodontal ligament space”, “widened periodontal ligament”, and “periodontal ligament widening”. Results Out of nearly 200 articles, about 60 were broadly relevant to the topic. Ultimately, 47 articles closely related to the topic of interest were reviewed. When the relevant data were compiled, the following 10 entities were identified: occlusal/orthodontic trauma, periodontal disease/periodontitis, pulpo-periapical lesions, osteosarcoma, chondrosarcoma, non-Hodgkin lymphoma, progressive systemic sclerosis, radiation-induced bone defect, bisphosphonate-related osteonecrosis, and osteomyelitis. Conclusion Although PDL widening may be encountered by many dentists during their routine daily procedures, the clinician should consider some serious related conditions as well. PMID:28035300

  4. C/EBP β Mediates Endoplasmic Reticulum Stress Regulated Inflammatory Response and Extracellular Matrix Degradation in LPS-Stimulated Human Periodontal Ligament Cells.

    PubMed

    Bai, Yudi; Wei, Yi; Wu, Lian; Wei, Jianhua; Wang, Xiaojing; Bai, Yuxiang

    2016-03-22

    Periodontitis is an oral inflammatory disease that not only affects the integrity of local tooth-supporting tissues but also impacts systemic health. A compositional shift in oral microbiota has been considered as the main cause of periodontitis; however, the potential mechanism has not been fully defined. Herein, we investigated the role of CCAAT/enhancer-binding protein β (C/EBP β), a member of the C/EBP family of transcription factors, in human periodontal ligament cells (hPDLCs) exposed to Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). RT-PCR and Western blotting analysis showed that the expression of C/EBP β was significantly increased in hPDLCs stimulated with LPS stimuli. Overexpression of C/EBP β by the recombinant adenoviral vector pAd/C/EBP β markedly increased the expression of the pro-inflammatory cytokines IL-6 and IL-8, and matrix metalloproteinases (MMP)-8 and -9 in hPDLCs in response to LPS. Furthermore, the activation of endoplasmic reticulum (ER) stress was confirmed in LPS-stimulated hPDLCs by measuring the expression of the ER stress marker molecules protein kinase-like ER kinase (PERK), eIF2α, GRP78/Bip, and C/EBP homologous protein (CHOP). The ER stress inhibitor salubrinal repressed, but inducer tunicamycin enhanced, the production of IL-6, IL-8, MMP-8, and MMP-9 in hPDLCs. Additionally, ER stress inducer tunicamycin significantly increased the expression level of C/EBP β in hPDLCs. Blocking of C/EBP β by siRNA resulted in a significant decrease in the secretion of IL-6 and IL-8 and expression of MMP-8 and MMP-9 induced by tunicamycin treatment in hPDLCs. Taken together, ER stress appears to play a regulatory role in the inflammatory response and extracellular matrix (ECM) degradation in hPDLCs in response to LPS stimuli by activating C/EBP β expression. This enhances our understanding of human periodontitis pathology.

  5. Hypoxia augments lipopolysaccharide-induced cytokine expression in periodontal ligament cells.

    PubMed

    Jian, Congxiang; Li, Chenjun; Ren, Yu; He, Yong; Li, Yunming; Feng, Xiaodan; Zhang, Gang; Tan, Yinghui

    2014-10-01

    Periodontitis is a chronic inflammatory disease characterized by the destruction of tooth supporting tissues. Hypoxia, the mainly changes of the plateau environment, can induce severe periodontitis by animal experiments. There is, however, very little information on hypoxia and lipopolysaccharide (LPS) induced cytokine expression in periodontal ligament (PDL) cells. In this article, we characterized hypoxia or P. gingivalis lipopolysaccharide (Pg LPS) induced tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 expression by human periodontal ligament (hPDL) cells. We found that hypoxia augmented Pg LPS induced TNF-α, IL-1β, and IL-6 expression in hPDL cells. We also demonstrated that nuclear factor kappa B pathway was involved in hypoxia augmenting Pg LPS induced cytokine expression in hPDL cells. Thus, our results suggest that the hypoxic environment may enhance the immune function of hPDL cells that is induced by Pg LPS.

  6. Collagen implants do not preserve periodontal ligament homeostasis in periodontal wounds.

    PubMed

    Nguyen, L; Lekic, P; McCulloch, C A

    1997-07-01

    An improved understanding of the differentiation of periodontal ligament cells could facilitate the development of new treatment approaches for overcoming the loss of specialized cell types caused by periodontitis. To study healing of wounded periodontal tissues and the differentiation of mineralizing connective tissue cells in periodontal ligament, we have examined the influence of wound size and collagen implantation on the regeneration of periodontium and on immunohistochemical staining for osteopontin and bone sialoprotein. Four groups of Wistar rats were wounded by drilling through the alveolar bone and by extirpation of the periodontal ligament. Wounds were 0.6 or 1.8 mm in diameter and defects were either implanted with collagen gels or were treated without implants. Rats were killed at 1 wk or 2 months after wounding and tissue sections were stained with monoclonal antibodies against rat osteopontin and bone sialoprotein. Collagen implants strongly increased staining for osteopontin and bone sialoprotein in defects at 1 wk. By 2 months alveolar bone healed completely regardless of the wound size but in large defects, periodontal ligament width was significantly reduced with or without implants. In large wounds at 2 months, collagen implants inhibited bone regeneration and there was stronger staining for osteopontin and bone sialoprotein in the bone replacing the implant, indicating that collagen prolonged bone remodelling. We conclude that implantation of exogenous collagen affects alveolar bone healing but does not preserve the width of the regenerated periodontal ligament. Therefore collagen does not appear to contribute to homeostasis in the periodontium following wounding.

  7. Periodontal Ligament Stem Cell-Mediated Treatment for Periodontitis in Miniature Swine

    PubMed Central

    Liu, Yi; Zheng, Ying; Ding, Gang; Fang, Dianji; Zhang, Chunmei; Bartold, Peter Mark; Gronthos, Stan; Shi, Songtao; Wang, Songlin

    2009-01-01

    Periodontitis is a periodontal tissue infectious disease and the most common cause for tooth loss in adults. It has been linked to many systemic disorders, such as coronary artery disease, stroke, and diabetes. At present, there is no ideal therapeutic approach to cure periodontitis and achieve optimal periodontal tissue regeneration. In this study, we explored the potential of using autologous periodontal ligament stem cells (PDLSCs) to treat periodontal defects in a porcine model of periodontitis. The periodontal lesion was generated in the first molars area of miniature pigs by the surgical removal of bone and subsequent silk ligament suture around the cervical portion of the tooth. Autologous PDLSCs were obtained from extracted teeth of the miniature pigs and then expanded ex vivo to enrich PDLSC numbers. When transplanted into the surgically created periodontal defect areas, PDLSCs were capable of regenerating periodontal tissues, leading to a favorable treatment for periodontitis. This study demonstrates the feasibility of using stem cell-mediated tissue engineering to treat periodontal diseases. PMID:18238856

  8. Caspase-8 and Caspase-9 Functioned Differently at Different Stages of the Cyclic Stretch-Induced Apoptosis in Human Periodontal Ligament Cells

    PubMed Central

    Zhuang, Jiabao; Zhang, Fuqiang; Xu, Chun

    2016-01-01

    Background Human periodontal ligament (PDL) cells underwent apoptosis after mechanical stretch loading. However, the exact signalling pathway remains unknown. This study aimed to elucidate how the apoptotic caspases functioned in the cyclic stretch-induced apoptosis in human PDL cells. Materials and Methods In the present study, 20% cyclic stretch was selected to load the cells for 6 or 24 h. The following parameters were analyzed: apoptotic rates, the protein levels of caspase-3, -7, -8 and -9 and the activities of caspase-8 and -9. Subsequently, the influences of caspase-8 and caspase-9 inhibitors on the apoptotic rate and the protein level of the activated caspase-3 were assessed as well. Results The apoptotic rates increased in response to cyclic stretch, but the cells entered different apoptotic stages after 6 and 24 h stretches. Caspase-3, -7, -8 and -9 were all activated after stretch loading. The stretch-induced apoptosis and the protein level of the activated caspase-3 were inhibited after inhibiting both caspase-8 and caspase-9 in both 6 and 24 h stretched cells and after inhibiting caspase-9 in 24 h stretched cells. Conclusion Caspase-8 and -9 functioned differently at different apoptotic stages in human PDL cells after cyclic stretch. PMID:27942018

  9. Expression of integrins by human periodontal ligament and gingival fibroblasts and their involvement in fibroblast adhesion to enamel matrix-derived proteins.

    PubMed

    van der Pauw, M T M; Everts, V; Beertsen, W

    2002-10-01

    We showed recently that human periodontal ligament (PDL) and gingival fibroblasts adhere and spread on enamel matrix protein (EMP) coatings. In the present study, we investigated whether this interaction can be attributed to integrin expression. Human PDL and gingival fibroblasts were cultured for periods up to 24 h on EMP coatings, in the presence of synthetic RGD-containing peptide or an antibody against the beta1 integrin subunit. The cells were first cultured for 24 h under serum-free conditions and then cultured on EMP coatings for 48 h. Integrin expression levels were assessed by flow cytometry analysis. It was found that attachment and spreading on EMP was inhibited by the synthetic RGD-containing peptide, but not by a synthetic RGE-peptide. Both PDL and gingival fibroblasts showed expression of the integrin subunits, alpha2, alpha5, beta1, and the integrin, alphavbeta3. Incubation with an antibody against the beta1 subunit significantly inhibited the attachment and spreading of PDL and gingival fibroblasts on EMP coatings. We conclude that integrins are involved in the interaction of PDL and gingival fibroblasts with EMP.

  10. Characterization and Cytotoxicity Analysis of a Ciprofloxacin Loaded Chitosan/Bioglass Scaffold on Cultured Human Periodontal Ligament Stem Cells: a Preliminary Report

    PubMed Central

    Abdelfattah, Maha I.; Nasry, Sherine A.; Mostafa, Amani A.

    2016-01-01

    AIM: The aim of this study was to analyze the cytotoxicity of ciprofloxacin (CIP) loaded on chitosan bioactive glass scaffold on human periodontal ligament stem cells (PLSCs) in vitro. MATERIALS AND METHODS: PLSCs obtained from human third molars, cultures treated with medium containing 15 x 15 mm chitosan/bioactive glass scaffolds without/with different concentration 0, 5, 10, and 20 % of CIP. A total of 15 x 10^3 cells were plated in 6 well plates. The attached cells of each group were harvested from the plates after 1, 4 and 8 days of culture to detect the viability of cells. The cell number was determined using a hemocytometer and the trypan blue dye-exclusion assay. Data was analyzed using normality using Shapiro-Wilk test. Comparisons between groups were made using One-way ANOVA complemented by Tukey’s test. RESULTS: When comparing the proliferation rate of cells in the four groups, no statistically significant difference was found (P = 0.633). With regards to cell viability, no statistical difference was found between the 0, 5, and 10 % CIP concentrations, while the 20 % CIP concentration demonstrated the least viability with a high statistically significant difference (P = 0.003). CONCLUSION: Twenty percentages CIP demonstrated the least proliferation rate and viability. PMID:27703576

  11. Differential effect of water-soluble chitin on collagen synthesis of human bone marrow stem cells and human periodontal ligament stem cells.

    PubMed

    Park, So-Yon; Park, Jung-Chul; Kim, Min-Soo; Lee, Sung-Eun; Kim, Ki-Joon; Jung, Byung-Joo; Park, Wonse; Jeon, Dong-Won; Cho, Kyoo-Sung; Kim, Chang-Sung

    2015-02-01

    Human bone marrow stem cells (hBMSCs) represent a promising regenerative material because of their mutipotency, including their ability to regenerate collagenous soft tissues. We previously found that water-soluble chitin (WSC) enhances the ability of human periodontal ligament stem cells (hPDLSCs) to synthesize collagen tissue. The aim of this study was to determine the effects of WSC on hBMSCs and hPDLSCs for the collagen synthesis both in vitro and in vivo. hBMSCs and hPDLSCs were isolated and expanded with or without 0.3 mg/mL WSC. A series of in vitro and in vivo analyses were performed to evaluate their characteristics as stem cell populations. Then, collagen and hydroxyproline assays were conducted using both in vitro and in vivo assay models, and the real-time polymerase chain reaction was performed to analyze the expression of collagen-related markers. WSC-treated and nontreated hBMSCs and hPDLSCs were transplanted into immunocompromised mice, and histology and immunohistochemistry analyses were conducted after 8 weeks. The in vitro results showed that those cells possessed the characteristics of mesenchymal stem cells. The amount of soluble collagen synthesized was significantly greater in WSC-treated hBMSCs than in the nontreated group; conversely, treatment of hPDLSCs with WSC decreased the formation of soluble collagen. The amount of insoluble collagen synthesized was greater in the WSC-treated groups than in the nontreated groups for both hBMSCs and hPDLSCs. The hydroxyproline contents of the regenerated soluble and insoluble collagens were similar. The expressions of mRNA for collagen types I-V, hyaluronic acid synthase 1 (HAS1), HAS2, and HAS3, and the LOX family were higher in WSC-treated hPDLSCs than in the nontreated group, whereas WSC increased the expression of collagen type III and decreased that of collagen type I in hBMSCs. The histology and immunohistochemistry results revealed that WSC significantly increased the amount of collagen

  12. Effects of decellularized matrices derived from periodontal ligament stem cells and SHED on the adhesion, proliferation and osteogenic differentiation of human dental pulp stem cells in vitro.

    PubMed

    Heng, Boon Chin; Zhu, Shaoyue; Xu, Jianguang; Yuan, Changyong; Gong, Ting; Zhang, Chengfei

    2016-04-01

    A major bottleneck to the therapeutic applications of dental pulp stem cells (DPSC) are their limited proliferative capacity ex vivo and tendency to undergo senescence. This may be partly due to the sub-optimal in vitro culture milieu, which could be improved by an appropriate extracellular matrix substratum. This study therefore examined decellularized matrix (DECM) from stem cells derived from human exfoliated deciduous teeth (SHED) and periodontal ligament stem cells (PDLSC), as potential substrata for DPSC culture. Both SHED-DECM and PDLSC-DECM promoted rapid adhesion and spreading of newly-seeded DPSC compared to bare polystyrene (TCPS), with vinculin immunocytochemistry showing expression of more focal adhesions by newly-adherent DPSC cultured on DECM versus TCPS. Culture of DPSC on SHED-DECM and PDLSC-DECM yielded higher proliferation of cell numbers compared to TCPS. The qRT-PCR data showed significantly higher expression of nestin by DPSC cultured on DECM versus the TCPS control. Osteogenic differentiation of DPSC was enhanced by culturing on PDLSC-DECM and SHED-DECM versus TCPS, as demonstrated by alizarin red S staining for mineralized calcium deposition, alkaline phosphatase assay and qRT-PCR analysis of key osteogenic marker expression. Hence, both SHED-DECM and PDLSC-DECM could enhance the ex vivo culture of DPSC under both non-inducing and osteogenic-inducing conditions.

  13. Matrix metalloproteinase-2 degrades fibrillin-1 and fibrillin-2 of oxytalan fibers in the human eye and periodontal ligaments in vitro.

    PubMed

    Kawagoe, Megumi; Tsuruga, Eichi; Oka, Kyoko; Sawa, Yoshihiko; Ishikawa, Hiroyuki

    2013-10-30

    Oxytalan fibers are distributed in the eye and periodontal ligaments (PDL). The ciliary zonule, known as Zinn's zonule, in the eye is composed of oxytalan fibers, which are bundles of microfibrils consisting mainly of fibrillin-1 and fibrillin-2. As turnover of oxytalan fibers is slow during life, their degradation mechanism remains unclarified. This study was performed to examine degradation pattern of fibrillin-1 and fibrillin-2 by experimental MMP activation. We cultured human non-pigmented ciliary epithelial cells (HNPCEC) and PDL fibroblasts for 7 days, then treated them with concanavalin A to activate matrix metalloproteinase (MMP)-2, and examined the degradation of fibrillin-1 and fibrillin-2 for 72 hr using immunofluorescence. At 7 days of HNPCEC culture, fibrillin-1-positive fibers were observed, some of which merged with fibrillin-2. After MMP-2 activation, fibrillin-1-positive fibers became thin and disappeared by 72 hr, while fibrillin-2-positive fibers disappeared almost completely within 24 hr. At 7 days of PDL fibroblast culture, fibrillin-1-positive fibers were mostly merged with fibrillin-2. After MMP-2 activation, fibrillin-1-positive fibers became thin by 24 hr and had almost disappeared by 48 hr, while fibrillin-2-positive fibers decreased constantly after 24 hr. A MMP-2 inhibitor completely suppressed these degradations. These results suggest that the patterns of fibrillin-1 and fibrillin-2 degradation differ between the eye and the PDL, possibly reflecting the sensitivity of fibrillin-1 and fibrillin-2 of each type of oxytalan fiber against MMP-2.

  14. The effects of retinoic acid on alkaline phosphatase activity and tissue-non-specific alkaline phosphatase gene expression in human periodontal ligament cells and gingival fibroblasts.

    PubMed

    San Miguel, S M; Goseki-Sone, M; Sugiyama, E; Watanabe, H; Yanagishita, M; Ishikawa, I

    1998-10-01

    Alkaline phosphatase (ALP) in human periodontal ligament (HPDL) cells is classified as a tissue-non-specific alkaline phosphatase (TNSALP) by its enzymatic and immunological properties. Since retinoic acid (RA) has been shown as a potent inducer of TNSALP expression in various osteoblastic and fibroblastic cells, we investigated the effects of RA on the level of ALP activity and expression of TNSALP mRNAs in HPDL cells. Cultured cells were treated with desired RA concentrations (0, 10(-7), 10(-6), 10(-5) M) in medium containing 1% bovine serum albumin without serum. ALP activity was determined by the rate of hydrolysis of p-nitrophenyl phosphate and was also assayed in the presence of specific inhibitors. In order to identify the TNSALP mRNA type expressed by HPDL, a set of oligonucleotide primers corresponding to 2 types of human TNSALP mRNA (i.e. bone-type and liver-type) were designed, and mRNA isolated from HPDL was amplified by means of reverse transcription-polymerase chain reaction (RT-PCR). After treatment with RA (10(-6) M) for 4 d, there was a significant increase in the ALP activity of HPDL cells. The use of inhibitors and thermal inactivation experiments showed that the increased ALP activity had properties of the TNSALP type. RT-PCR analysis revealed that bone-type mRNA was highly stimulated in HPDL cells by RA treatment, but the expression of liver-type mRNA was not detected. These results indicated that the upregulation of ALP activity in HPDL cells by RA was due to the increased transcription of bone-type mRNA of the TNSALP gene.

  15. Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines.

    PubMed

    Kono, Kiyomi; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Monnouchi, Satoshi; Teramatsu, Yoko; Hamano, Sayuri; Koori, Katsuaki; Akamine, Akifumi

    2013-05-01

    Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.

  16. Biochemical markers of the periodontal ligament.

    PubMed

    Castro, Cecilia Estela; Koss, Myriam Adriana; López, María Elena

    2003-01-01

    For many years the diagnosis of Periodontal Disease has been based on clinical and radiographic methods. Other more recent methods have the objective of studying the inflammatory response of the host. That way, immunologic and biological methods determine the free mediators in the periodontal infection. The components of the gingivo-crevicular liquid or fluid are used to identify or to diagnose the active disease, to anticipate the risk of acquiring the disease and to determine its progress. For it to be clinically useful important changes should be registered the way a specific site turns active or that a previously disease affected site improves its conditions as a result of periodontal therapy. The response of the neutrophillic granulocytes play an important role in the detection of Periodontal Disease. The unspecific defense system in the gingivo-crevicular fluid can be determined through cytokines and/or interleukines that serve to identify sites at risk on the patient. In Periodontal Disease, the cytokines are not only defense mediators of the gingival sulcus fluid, but are also an indicator of tissue destruction. The liberation of high levels of lysosomal enzymes by neutrophils, proteolytic enzymes as the collagenases, or intercytoplasmatic enzymes as dehydrogenase lactate and aspartate amino transferase can equally help monitor the progress of the Periodontal Disease.

  17. Effects of enamel matrix proteins on multi-lineage differentiation of periodontal ligament cells in vitro.

    PubMed

    Amin, Harsh D; Olsen, Irwin; Knowles, Jonathan C; Dard, Michel; Donos, Nikolaos

    2013-01-01

    The adult periodontal ligament (PDL) is considered to contain progenitor cells that are involved in the healing of periodontal wounds. Treatment with enamel matrix derivative (EMD), a heat-treated preparation derived from enamel matrix proteins (EMPs), has been shown to be of some clinical benefit in eliciting periodontal regeneration in vivo. Although there is extensive information available about the effects of EMD on periodontal regeneration, the precise influence of this material on alveolar bone and the formation of blood vessels and proprioceptive sensory nerves, prominent features of functionally active periodontal tissue, remain unclear. The aim of the present study was therefore to examine the effects of EMD on the ability of human periodontal ligament cells (HPCs) to undergo multi-lineage differentiation in vitro. Our results showed that HPCs treated with EMD under non-selective growth conditions did not show any evidence of osteogenic, adipogenic, chondrogenic, neovasculogenic, neurogenic and gliogenic "terminal" differentiation. In contrast, under selective lineage-specific culture conditions, EMD up-regulated osteogenic, chondrogenic and neovasculogenic genes and "terminal" differentiation, but suppressed adipogenesis, neurogenesis and gliogenesis. These findings thus demonstrate for the first time that EMD can differentially modulate the multi-lineage differentiation of HPCs in vitro.

  18. Endocannabinoids and inflammatory response in periodontal ligament cells.

    PubMed

    Özdemir, Burcu; Shi, Bin; Bantleon, Hans Peter; Moritz, Andreas; Rausch-Fan, Xiaohui; Andrukhov, Oleh

    2014-01-01

    Endocannabinoids are associated with multiple regulatory functions in several tissues. The main endocannabinoids, anandamide (AEA) and 2-arachidonylglycerol (2-AG), have been detected in the gingival crevicular fluid of periodontitis patients, but the association between periodontal disease or human periodontal ligament cells (hPdLCs) and endocannabinoids still remain unclear. The aim of the present study was to examine the effects of AEA and 2-AG on the proliferation/viability and cytokine/chemokine production of hPdLCs in the presence/absence of Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS). The proliferation/viability of hPdLCs was measured using 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT)-assay. Interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein-1 (MCP-1) levels were examined at gene expression and protein level by real-time PCR and ELISA, respectively. AEA and 2-AG did not reveal any significant effects on proliferation/viability of hPdLCs in the absence of P. gingivalis LPS. However, hPdLCs viability was significantly increased by 10-20 µM AEA in the presence of P. gingivalis LPS (1 µg/ml). In the absence of P. gingivalis LPS, AEA and 2-AG did not exhibit any significant effect on the expression of IL-8 and MCP-1 expression in hPdLCs, whereas IL-6 expression was slightly enhanced by 10 µM 2-AG and not affected by AEA. In P.gingivalis LPS stimulated hPdLCs, 10 µM AEA down-regulated gene-expression and protein production of IL-6, IL-8, and MCP-1. In contrast, 10 µM 2-AG had an opposite effect and induced a significant up-regulation of gene and protein expression of IL-6 and IL-8 (P<0.05) as well as gene-expression of MCP-1 in P. gingivalis LPS stimulated hPdLCs. Our data suggest that AEA appears to have an anti-inflammatory and immune suppressive effect on hPdLCs' host response to P.gingivalis LPS, whereas 2-AG appears to promote detrimental inflammatory processes. In conclusion, AEA and 2

  19. Preparation of the fast setting and degrading Ca-Si-Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells.

    PubMed

    Chen, Yi-Wen; Hsu, Tuan-Ti; Wang, Kan; Shie, Ming-You

    2016-03-01

    Develop a fast setting and controllable degrading magnesium-calcium silicate cement (Mg-CS) by sol-gel, and establish a mechanism using Mg ions to stimulate human periodontal ligament cells (hPDLs) are two purposes of this study. We have used the diametral tensile strength measurement to obtain the mechanical strength and stability of Mg-CS cement; in addition, the cement degradation properties is realized by measuring the releasing amount of Si and Mg ions in the simulated body fluid. The other cell characteristics of hPDLs, such as proliferation, differentiation and mineralization were examined while hPDLs were cultured on specimen surfaces. This study found out the degradation rate of Mg-CS cements depends on the Mg content in CS. Regarding in vitro bioactivity; the CS cements were covered with abundant clusters of apatite spherulites after immersion of 24h, while less apatite spherulites were formatted on the Mg-rich cement surfaces. In addition, the authors also explored the effects of Mg ions on the odontogenesis and angiogenesis differentiation of hPDLs in comparison with CS cement. The proliferation, alkaline phosphatase, odontogenesis-related genes (DSPP and DMP-1), and angiogenesis-related protein (vWF and ang-1) secretion of hPDLs were significantly stimulated when the Mg content of the specimen was increased. The results in this study suggest that Mg-CS materials with this modified composition could stimulate hPDLs behavior and can be good bioceramics for bone substitutes and hard tissue regeneration applications as they stimulate odontogenesis/angiogenesis.

  20. Periodontal Ligament Stem Cells in the Periodontitis Microenvironment Are Sensitive to Static Mechanical Strain

    PubMed Central

    Liu, Jia; Liu, Shiyu; Gao, Jie; Qin, Wen; Song, Yang

    2017-01-01

    During orthodontic treatment, periodontium remodeling of periodontitis patients under mechanical force was abnormal. We have previously confirmed the function impairment of periodontal ligament stem cells (PDLSCs) in the periodontitis microenvironment which might be involved in this pathological process. However, the response of PDLSCs in periodontitis microenvironment to mechanical force remains unclear. Therefore, in the present study, we introduced a Flexcell tension apparatus and investigated the response of PDLSCs obtained from periodontal tissues of periodontitis patients (PPDLSCs) and of those obtained from healthy periodontal tissues (HPDLSCs) to different magnitudes of static mechanical strain (SMS). PPDLSCs showed increased proliferation, decreased osteogenic activity, activated osteoclastogenesis, and greater secretion of inflammatory cytokines. Different magnitudes of SMS exerted distinct effects on HPDLSCs and PPDLSCs. An SMS of 12% induced optimal effects in HPDLSCs, including the highest proliferation, the best osteogenic ability, the lowest osteoclastogenesis, and the lowest secretion of inflammatory cytokines, while the optimal SMS for PPDLSCs was 8%. Excessive SMS damaged PPDLSCs function, including decreased proliferation, an imbalance between osteogenesis and osteoclastogenesis, and an activated inflammatory response. Our data suggest that PPDLSCs are more sensitive and less tolerant to SMS, and this may explain why mechanical force results in undesirable effects in periodontitis patients. PMID:28316629

  1. Effects of Shock Waves on Expression of IL-6, IL-8, MCP-1, and TNF-α Expression by Human Periodontal Ligament Fibroblasts: An In Vitro Study

    PubMed Central

    Cai, Zhiyu; Falkensammer, Frank; Andrukhov, Oleh; Chen, Jiang; Mittermayr, Rainer; Rausch-Fan, Xiaohui

    2016-01-01

    Background Extracorporeal shock wave therapy (ESWT) can modulate cell behavior through mechanical information transduction. Human periodontal ligament fibroblasts (hPDLF) are sensible to mechanical stimulus and can express pro-inflammatory molecules in response. The aim of this study was to evaluate the impacts of shock waves on interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemotactic protein 1 (MCP-1), and tumor necrosis factor-alpha (TNF-α) expression by hPDLF. Material/Methods After being treated by shock waves with different parameters (100–500 times, 0.05–0.19 mJ/mm2), cell viability was tested using CCK-8. IL-6, IL-8, MCP-1, and TNF-α gene expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and IL-6 and IL-8 protein was measured by enzyme-linked immunosorbent assay (ELISA) at different time points. Results Shock waves with the parameters used in this study had no significant effects on the viability of hPDLF. A statistical inhibition of IL-6, IL-8, MCP-1, and TNF-α expression during the first few hours was observed (P<0.05). Expression of IL-8 was significantly elevated in the group receiving the most pulses of shock wave (500 times) after 4 h (P<0.05). At 8 h and 24 h, all treated groups demonstrated significantly enhanced IL-6 expression (P<0.05). TNF-α expression in the groups receiving more shock pulses (300, 500 times) or the highest energy shock treatment (0.19 mJ/mm2) was statistically decreased (P<0.05) at 24 h. Conclusions Under the condition of this study, a shock wave with energy density no higher than 0.19 mJ/mm2 and pulses no more than 500 times elicited no negative effects on cell viability of hPDLF. After a uniform initial inhibition impact on expression of inflammatory mediators, a shock wave could cause dose-related up-regulation of IL-6 and IL-8 and down-regulation of TNF-α. PMID:26994898

  2. A nonlinear poroelastic model for the periodontal ligament

    NASA Astrophysics Data System (ADS)

    Favino, Marco; Bourauel, Christoph; Krause, Rolf

    2016-05-01

    A coupled elastic-poroelastic model for the simulation of the PDL and the adjacent tooth is presented. A poroelastic constitutive material model for the periodontal ligament (PDL) is derived. The solid phase is modeled by means of a Fung material law, accounting for large displacements and strains. Numerical solutions are performed by means of a multigrid Newton method to solve the arising large nonlinear system. Finally, by means of numerical experiments, the biomechanical response of the PDL is studied. In particular, the effect of the hydraulic conductivity and of the mechanical parameters of a Fung potential is investigated in two realistic applications.

  3. Periodontal Ligament Stem Cells Regulate Apoptosis of Neutrophils

    PubMed Central

    Wang, Qing; Ding, Gang; Xu, Xin

    2017-01-01

    Abstract Periodontal ligament stem cells (PDLSCs) are promising cell resource for the cell-based therapy for periodontitis and regeneration of bio-root. In this study, we investigated the effect of PDLSCs on neutrophil, a critical constituent of innate immunity, and the underlying mechanisms. The effect of PDLSCs on the proliferation and apoptosis of resting neutrophils and IL-8 activated neutrophils was tested under cell-cell contact culture and Transwell culture, with or without anti-IL-6 neutralizing antibody. We found that PDLSCs could promote the proliferation and reduce the apoptosis of neutrophils whether under cell-cell contact or Transwell culture. Anti-IL-6 antibody reduced PDLSCs-mediated inhibition of neutrophil apoptosis. IL-6 at the concentration of 10ng/ml and 20ng/ml could inhibit neutrophil apoptosis statistically. Collectively, PDLSCs could reduce the apoptosis of neutrophils via IL-6.

  4. Biomaterials in periodontal regenerative surgery: effects of cryopreserved bone, commercially available coral, demineralized freeze-dried dentin, and cementum on periodontal ligament fibroblasts and osteoblasts.

    PubMed

    Devecioğlu, Didem; Tözüm, Tolga F; Sengün, Dilek; Nohutcu, Rahime M

    2004-10-01

    The ultimate goal of periodontal therapy is to achieve successful periodontal regeneration. The effects of different biomaterials, allogenic and alloplastic, used in periodontal surgeries to achieve regeneration have been studied in vitro on periodontal ligament (PDL) cells and MC3T3-E1 cells. The materials tested included cryopreserved bone allograft (CBA), coralline hydroxyapatite (CH), demineralized freeze-dried dentin (DFDD), and cementum. CBA and CH revealed an increase in initial PDL cell attachment, whereas CH resulted in an increase in long-term PDL cell attachment. Mineral-like nodule formation was observed significantly higher in DFDD compared to other materials tested for osteoblasts. Based on the results of this in vitro study, we conclude that the materials used are all biocompatible with human PDL cells and osteoblasts, which have pivotal importance in periodontal regeneration.

  5. Promise of periodontal ligament stem cells in regeneration of periodontium.

    PubMed

    Maeda, Hidefumi; Tomokiyo, Atsushi; Fujii, Shinsuke; Wada, Naohisa; Akamine, Akifumi

    2011-07-28

    A great number of patients around the world experience tooth loss that is attributed to irretrievable damage of the periodontium caused by deep caries, severe periodontal diseases or irreversible trauma. The periodontium is a complex tissue composed mainly of two soft tissues and two hard tissues; the former includes the periodontal ligament (PDL) tissue and gingival tissue, and the latter includes alveolar bone and cementum covering the tooth root. Tissue engineering techniques are therefore required for regeneration of these tissues. In particular, PDL is a dynamic connective tissue that is subjected to continual adaptation to maintain tissue size and width, as well as structural integrity, including ligament fibers and bone modeling. PDL tissue is central in the periodontium to retain the tooth in the bone socket, and is currently recognized to include somatic mesenchymal stem cells that could reconstruct the periodontium. However, successful treatment using these stem cells to regenerate the periodontium efficiently has not yet been developed. In the present article, we discuss the contemporary standpoints and approaches for these stem cells in the field of regenerative medicine in dentistry.

  6. Human periodontal ligament fibroblasts stimulated by nanocrystalline hydroxyapatite paste or enamel matrix derivative. An in vitro assessment of PDL attachment, migration, and proliferation.

    PubMed

    Kasaj, Adrian; Willershausen, Brita; Junker, Rüdiger; Stratul, Stefan-Ioan; Schmidt, Mirko

    2012-06-01

    We determined the effects of soluble or coated nanocrystalline hydroxyapatite paste (nano-HA) and enamel matrix derivative (EMD) on proliferation, adhesion, and migration of periodontal ligament fibroblasts (PDLs). Cultured PDLs were stimulated with nano-HA paste or EMD in a soluble form or were coated to the surface of cell culture dishes. Proliferation of PDLs on coated nano-HA and EMD was quantified by various methods including bromodeoxyuridine (BrdU) incorporation and Western blot. Cell migration was investigated in a modified Boyden chamber. The surface integrin profile of PDLs was determined using an integrin-specific ELISA, and integrin-specific signaling was measured by immunoblotting of phosphorylated focal adhesion kinase (FAK). Coated nano-HA stimulated PDL proliferation to a larger extent as compared with coated EMD. PDL migration towards a nano-HA or EMD gradient was more efficiently mediated by soluble EMD as compared with nano-HA but vice versa, adhesion of PDLs to compound-coated dishes was more effectively mediated by nano-HA as compared with EMD. Mechanistically, majorly integrin α5β1-mediated adhesion of PDL and both coated compounds mediated a significant increase in FAK activation though to a different extent. Current findings offer two different modes of action for EMD and nano-HA paste. EMD efficiently acts as a chemoattractant in its soluble form, while nano-HA paste effectively serves as a synthetic extracellular matrix component in its coated form. Our findings suggest that EMD and nano-HA paste display different molecular characteristics and apply alternative routes to mediate their beneficial effects on periodontal tissues.

  7. Biological Events in Periodontal Ligament and Alveolar Bone Associated with Application of Orthodontic Forces

    PubMed Central

    Feller, L.; Khammissa, R. A. G.; Schechter, I.; Thomadakis, G.; Fourie, J.; Lemmer, J.

    2015-01-01

    Orthodontic force-induced stresses cause dynamic alterations within the extracellular matrix and within the cytoskeleton of cells in the periodontal ligament and alveolar bone, mediating bone remodelling, ultimately enabling orthodontic tooth movement. In the periodontal ligament and alveolar bone, the mechanically induced tensile strains upregulate the expression of osteogenic genes resulting in bone formation, while mechanically induced compressive strains mediate predominantly catabolic tissue changes and bone resorption. In this review article we summarize some of the currently known biological events occurring in the periodontal ligament and in the alveolar bone in response to application of orthodontic forces and how these facilitate tooth movement. PMID:26421314

  8. Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration

    PubMed Central

    Gao, Hui; Li, Bei; Zhao, Lingzhou; Jin, Yan

    2015-01-01

    Periodontal regeneration is an important part of regenerative medicine, with great clinical significance; however, the effects of nanotopography on the functions of periodontal ligament (PDL) stem cells (PDLSCs) and on PDLSC sheet based periodontal regeneration have never been explored. Titania nanotubes (NTs) layered on titanium (Ti) provide a good platform to study this. In the current study, the influence of NTs of different tube size on the functions of PDLSCs was observed. Afterward, an ectopic implantation model using a Ti/cell sheets/hydroxyapatite (HA) complex was applied to study the effect of the NTs on cell sheet based periodontal regeneration. The NTs were able to enhance the initial PDLSC adhesion and spread, as well as collagen secretion. With the Ti/cell sheets/HA complex model, it was demonstrated that the PDLSC sheets were capable of regenerating the PDL tissue, when combined with bone marrow mesenchymal stem cell (BMSC) sheets and HA, without the need for extra soluble chemical cues. Simultaneously, the NTs improved the periodontal regeneration result of the ectopically implanted Ti/cell sheets/HA complex, giving rise to functionally aligned collagen fiber bundles. Specifically, much denser collagen fibers, with abundant blood vessels as well as cementum-like tissue on the Ti surface, which well-resembled the structure of natural PDL, were observed in the NT5 and NT10 sample groups. Our study provides the first evidence that the nanotopographical cues obviously influence the functions of PDLSCs and improve the PDLSC sheet based periodontal regeneration size dependently, which provides new insight to the periodontal regeneration. The Ti/cell sheets/HA complex may constitute a good model to predict the effect of biomaterials on periodontal regeneration. PMID:26150714

  9. Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration.

    PubMed

    Gao, Hui; Li, Bei; Zhao, Lingzhou; Jin, Yan

    2015-01-01

    Periodontal regeneration is an important part of regenerative medicine, with great clinical significance; however, the effects of nanotopography on the functions of periodontal ligament (PDL) stem cells (PDLSCs) and on PDLSC sheet based periodontal regeneration have never been explored. Titania nanotubes (NTs) layered on titanium (Ti) provide a good platform to study this. In the current study, the influence of NTs of different tube size on the functions of PDLSCs was observed. Afterward, an ectopic implantation model using a Ti/cell sheets/hydroxyapatite (HA) complex was applied to study the effect of the NTs on cell sheet based periodontal regeneration. The NTs were able to enhance the initial PDLSC adhesion and spread, as well as collagen secretion. With the Ti/cell sheets/HA complex model, it was demonstrated that the PDLSC sheets were capable of regenerating the PDL tissue, when combined with bone marrow mesenchymal stem cell (BMSC) sheets and HA, without the need for extra soluble chemical cues. Simultaneously, the NTs improved the periodontal regeneration result of the ectopically implanted Ti/cell sheets/HA complex, giving rise to functionally aligned collagen fiber bundles. Specifically, much denser collagen fibers, with abundant blood vessels as well as cementum-like tissue on the Ti surface, which well-resembled the structure of natural PDL, were observed in the NT5 and NT10 sample groups. Our study provides the first evidence that the nanotopographical cues obviously influence the functions of PDLSCs and improve the PDLSC sheet based periodontal regeneration size dependently, which provides new insight to the periodontal regeneration. The Ti/cell sheets/HA complex may constitute a good model to predict the effect of biomaterials on periodontal regeneration.

  10. A comparative study of the proliferation and osteogenic differentiation of human periodontal ligament cells cultured on β-TCP ceramics and demineralized bone matrix with or without osteogenic inducers in vitro.

    PubMed

    An, Shaofeng; Gao, Yan; Huang, Xiangya; Ling, Junqi; Liu, Zhaohui; Xiao, Yin

    2015-05-01

    The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell-Counting kit-8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects

  11. Addition of BMP-2 or BMP-6 to dexamethasone, ascorbic acid, and β-glycerophosphate may not enhance osteogenic differentiation of human periodontal ligament cells.

    PubMed

    Khanna-Jain, Rashi; Agata, Hideki; Vuorinen, Annukka; Sándor, George K B; Suuronen, Riitta; Miettinen, Susanna

    2010-12-01

    This study was designed to investigate the potential merits of the combined use of bone morphogenetic protein (BMP)-2 or BMP-6 and osteogenic supplements (OS) [dexamethasone, ascorbic acid (AA), and β-glycerophosphate] on osteogenic differentiation of periodontal ligament cells (PDLCs). Osteogenic differentiation was evaluated by quantitative alkaline phosphatase (ALP) assay, alizarin red staining, quantitative calcium assay, and the qRT-PCR analysis for the expression of collagen type I, runt-related transcription factor-2, osteopontin (OPN), and osteocalcin in PDLCs. Culture with BMP-2 or BMP-6+AA increased ALP activity of PDLCs, suggesting their osteo-inductive effects. However, longer duration of culture showed neither of the BMPs induced in vitro mineralization. In contrast, OS were able to increase ALP activity and OPN expressions, and also induced in vitro mineralization. The mineralization ability was not enhanced by the addition of BMP-2 or BMP-6. These findings suggest that the addition of BMP-2 or BMP-6 to OS may not enhance an osteogenic differentiation of hPDLCs.

  12. The influence of root surface distance to alveolar bone and periodontal ligament on periodontal wound healing

    PubMed Central

    2016-01-01

    Purpose The purpose of this animal study was to perform a 3-dimensional micro-computed tomography (micro-CT) analysis in order to investigate the influence of root surface distance to the alveolar bone and the periodontal ligament on periodontal wound healing after a guided tissue regeneration (GTR) procedure. Methods Three adult Sus scrofa domesticus specimens were used. The study sample included 6 teeth, corresponding to 2 third mandibular incisors from each animal. After coronectomy, a circumferential bone defect was created in each tooth by means of calibrated piezoelectric inserts. The experimental defects had depths of 3 mm, 5 mm, 7 mm, 9 mm, and 11 mm, with a constant width of 2 mm. One tooth with no defect was used as a control. The defects were covered with a bioresorbable membrane and protected with a flap. After 6 months, the animals were euthanised and tissue blocks were harvested and preserved for micro-CT analysis. Results New alveolar bone was consistently present in all experimental defects. Signs of root resorption were observed in all samples, with the extent of resorption directly correlated to the vertical extent of the defect; the medial third of the root was the most commonly affected area. Signs of ankylosis were recorded in the defects that were 3 mm and 7 mm in depth. Density and other indicators of bone quality decreased with increasing defect depth. Conclusions After a GTR procedure, the periodontal ligament and the alveolar bone appeared to compete in periodontal wound healing. Moreover, the observed decrease in bone quality indicators suggests that intrabony defects beyond a critical size cannot be regenerated. This finding may be relevant for the clinical application of periodontal regeneration, since it implies that GTR has a dimensional limit. PMID:27800213

  13. Effects of Plants on Osteogenic Differentiation and Mineralization of Periodontal Ligament Cells: A Systematic Review.

    PubMed

    Costa, Cláudio Rodrigues Rezende; Amorim, Bruna Rabelo; de Magalhães, Pérola; De Luca Canto, Graziela; Acevedo, Ana Carolina; Guerra, Eliete Neves Silva

    2016-04-01

    This systematic review aimed to evaluate the effects of plants on osteogenic differentiation and mineralization of human periodontal ligament cells. The included studies were selected using five different electronic databases. The reference list of the included studies was crosschecked, and a partial gray literature search was undertaken using Google Scholar and ProQuest. The methodology of the selected studies was evaluated using GRADE. After a two-step selection process, eight studies were identified. Six different types of plants were reported in the selected studies, which were Morinda citrifolia, Aloe vera, Fructus cnidii, Zanthoxylum schinifolium, Centella asiatica, and Epimedium species. They included five types of isolated plant components: acemannan, osthole, hesperetin, asiaticoside, and icariin. In addition, some active substances of these components were identified as polysaccharides, coumarins, flavonoids, and triterpenes. The studies demonstrated the potential effects of plants on osteogenic differentiation, cell proliferation, mineral deposition, and gene and protein expression. Four studies showed that periodontal ligament cells induce mineral deposition after plant treatment. Although there are few studies on the subject, current evidence suggests that plants are potentially useful for the treatment of periodontal diseases. However, further investigations are required to confirm the promising effect of these plants in regenerative treatments.

  14. Cytological Kinetics of Periodontal Ligament in an Experimental Occlusal Trauma Model

    PubMed Central

    Takaya, Tatsuo; Mimura, Hiroaki; Matsuda, Saeka; Nakano, Keisuke; Tsujigiwa, Hidetsugu; Tomida, Mihoko; Okafuji, Norimasa; Fujii, Takeo; Kawakami, Toshiyuki

    2015-01-01

    Using a model of experimental occlusal trauma in mice, we investigated cytological kinetics of periodontal ligament by means of histopathological, immunohistochemical, and photographical analysis methods. Periodontal ligament cells at furcation areas of molar teeth in the experimental group on day 4 showed a proliferation tendency of periodontal ligament cells. The cells with a round-shaped nucleus deeply stained the hematoxylin and increased within the day 4 specimens. Ki67 positive nuclei showed a prominent increase in the group on days 4 and 7. Green Fluorescent Protein (GFP) positivity also revealed cell movement but was slightly slow compared to Ki67. It indicated that restoration of mechanism seemed conspicuous by osteoclasts and macrophages from bone-marrow-derived cells for the periodontal ligament at the furcation area. It was suggested that the remodeling of periodontal ligament with cell acceleration was evoked from the experiment for the group on day 4 and after day 7. Periodontal ligament at the furcation area of the molar teeth in this experimental model recovered using the cells in situ and the bone-marrow-derived cells. PMID:26180510

  15. Practical methods for handling human periodontal ligament stem cells in serum-free and serum-containing culture conditions under hypoxia: implications for regenerative medicine.

    PubMed

    Murabayashi, Dai; Mochizuki, Mai; Tamaki, Yuichi; Nakahara, Taka

    2017-02-06

    Stem cell-based therapies depend on the reliable expansion of patient-derived mesenchymal stem cells (MSCs) in vitro. The supplementation of cell culture media with serum is associated with several risks; accordingly, serum-free media are commercially available for cell culture. Furthermore, hypoxia is known to accelerate the expansion of MSCs. The present study aimed to characterize the properties of periodontal ligament-derived MSCs (PDLSCs) cultivated in serum-free and serum-containing media, under hypoxic and normoxic conditions. Cell growth, gene and protein expression, cytodifferentiation potential, genomic stability, cytotoxic response, and in vivo hard tissue generation of PDLSCs were examined. Our findings indicated that cultivation in serum-free medium does not affect the MSC phenotype or chromosomal stability of PDLSCs. PDLSCs expanded in serum-free medium exhibited more active growth than in fetal bovine serum-containing medium. We found that hypoxia does not alter the cell growth of PDLSCs under serum-free conditions, but inhibits their osteogenic and adipogenic cytodifferentiation while enabling maintenance of their multidifferentiation potential regardless of the presence of serum. PDLSCs expanded in serum-free medium were found to retain common MSC characteristics, including the capacity for hard tissue formation in vivo. However, PDLSCs cultured in serum-free culture conditions were more susceptible to damage following exposure to extrinsic cytotoxic stimuli than those cultured in medium supplemented with serum, suggesting that serum-free culture conditions do not exert protective effects against cytotoxicity on PDLSC cultures. The present work provides a comparative evaluation of cell culture in serum-free and serum-containing media, under hypoxic and normoxic conditions, for applications in regenerative medicine.

  16. Osteogenic differentiation regulated by Rho-kinase in periodontal ligament cells.

    PubMed

    Yamamoto, Tadashi; Ugawa, Yuki; Yamashiro, Keisuke; Shimoe, Masayuki; Tomikawa, Kazuya; Hongo, Shoichi; Kochi, Shinsuke; Ideguchi, Hidetaka; Maeda, Hiroshi; Takashiba, Shogo

    2014-01-01

    The periodontal ligament is a multifunctional soft connective tissue, which functions not only as a cushion supporting the teeth against occlusal force, but is also a source of osteogenic cells that can regenerate neighboring hard tissues. Periodontal ligament cells (PDL cells) contain heterogeneous cell populations, including osteogenic cell progenitors. However, the precise mechanism underlying the differentiation process remains elusive. Cell differentiation is regulated by the local biochemical and mechanical microenvironment that can modulate gene expression and cell morphology by altering actin cytoskeletal organization mediated by Rho-associated, coiled-coil containing protein kinase (ROCK). To determine its role in PDL cell differentiation, we examined the effects of ROCK on cytoskeletal changes and kinetics of gene expression during osteogenic differentiation. PDL cells were isolated from human periodontal ligament on extracted teeth and cultured in osteogenic medium for 14 days. Y-27632 was used for ROCK inhibition assay. Osteogenic phenotype was determined by monitoring alkaline phosphatase (ALP) activity and calcium deposition by Alizarin Red staining. ROCK-induced cytoskeletal changes were examined by immunofluorescence analysis of F-actin and myosin light chain 2 (MLC2) expression. Real-time PCR was performed to examine the kinetics of osteogenic gene expression. F-actin and phospho-MLC2 were markedly induced during osteogenic differentiation, which coincided with upregulation of ALP activity and mineralization. Subsequent inhibition assay indicated that Y-27632 significantly inhibited F-actin and phospho-MLC2 expression in a dose-dependent manner with concomitant partial reversal of the PDL cell osteogenic phenotype. PCR array analysis of osteogenic gene expression indicated that extracellular matrix genes, such as fibronectin 1, collagen type I and III, and biglycan, were significantly downregulated by Y27632. These findings indicated crucial

  17. LPS from P. gingivalis and Hypoxia Increases Oxidative Stress in Periodontal Ligament Fibroblasts and Contributes to Periodontitis

    PubMed Central

    Gölz, L.; Memmert, S.; Rath-Deschner, B.; Jäger, A.; Appel, T.; Baumgarten, G.; Götz, W.; Frede, S.

    2014-01-01

    Oxidative stress is characterized by an accumulation of reactive oxygen species (ROS) and plays a key role in the progression of inflammatory diseases. We hypothesize that hypoxic and inflammatory events induce oxidative stress in the periodontal ligament (PDL) by activating NOX4. Human primary PDL fibroblasts were stimulated with lipopolysaccharide from Porphyromonas gingivalis (LPS-PG), a periodontal pathogen bacterium under normoxic and hypoxic conditions. By quantitative PCR, immunoblot, immunostaining, and a specific ROS assay we determined the amount of NOX4, ROS, and several redox systems. Healthy and inflamed periodontal tissues were collected to evaluate NOX4 and redox systems by immunohistochemistry. We found significantly increased NOX4 levels after hypoxic or inflammatory stimulation in PDL cells (P < 0.001) which was even more pronounced after combination of the stimuli. This was accompanied by a significant upregulation of ROS and catalase (P < 0.001). However, prolonged incubation with both stimuli induced a reduction of catalase indicating a collapse of the protective machinery favoring ROS increase and the progression of inflammatory oral diseases. Analysis of inflamed tissues confirmed our hypothesis. In conclusion, we demonstrated that the interplay of NOX4 and redox systems is crucial for ROS formation which plays a pivotal role during oral diseases. PMID:25374447

  18. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts.

    PubMed

    Li, D X; Deng, T Z; Lv, J; Ke, J

    2014-12-01

    Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80 ± 5.50%, P<0.01) and increased apoptosis (11.31 ± 1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction.

  19. Response of periodontal ligament fibroblasts and gingival fibroblasts to pulsating fluid flow: nitric oxide and prostaglandin E2 release and expression of tissue non-specific alkaline phosphatase activity.

    PubMed

    van der Pauw, M T; Klein-Nulend, J; van den Bos, T; Burger, E H; Everts, V; Beertsen, W

    2000-12-01

    The capacity of the periodontal ligament to alter its structure and mass in response to mechanical loading has long been recognized. However, the mechanism by which periodontal cells can detect physical forces and respond to them is largely unknown. Besides transmission of forces via cell-matrix or cell-cell interactions, the strain-derived flow of interstitial fluid through the periodontal ligament may mechanically activate the periodontal cells, as well as ensure transport of cell signaling molecules, nutrients and waste products. Mechanosensory cells, such as endothelial and bone cells, are reported to respond to a flow of fluid with stimulated prostaglandin E2 (PGE2) and nitric oxide production. Therefore, we examined the PGE2 and nitric oxide response of human periodontal ligament and gingival fibroblasts to pulsating fluid flow and assessed the expression of tissue non-specific alkaline phosphatase activity. Periodontal ligament and gingival fibroblasts were subjected to a pulsating fluid flow (0.7 +/- 0.02 Pa, 5 Hz) for 60 min. PGE2 and nitric oxide concentrations were determined in the conditioned medium after 5, 10, 30 and 60 min of flowing. After fluid flow the cells were cultured for another 60 min without mechanical stress. Periodontal ligament fibroblasts, but not gingival fibroblasts, responded to fluid flow with significantly elevated release of nitric oxide and decreased expression of tissue non-specific alkaline phosphatase activity. In both periodontal ligament and gingival fibroblasts, PGE2 production was significantly increased after 60 min of flowing. Periodontal ligament fibroblasts, but not gingival fibroblasts, produced significantly higher levels of PGE2 during the postflow culture period. We conclude that human periodontal ligament fibroblasts are more responsive to pulsating fluid flow than gingival fibroblasts. The similarity of the early nitric oxide and PGE2 responses to fluid flow in periodontal fibroblasts with bone cells and

  20. Effect of storage media on the proliferation of periodontal ligament fibroblasts

    SciTech Connect

    Lauer, H.C.; Mueller, J.G.; Gross, J.; Horster, M.F.

    1987-07-01

    The effect of storage media, which are routinely used in replantation, upon the proliferative capacity of periodontal ligament fibroblasts, was compared with the effect of a tissue culture medium. The periodontal tissue was obtained from mandibular central incisors of White New Zealand rabbits. The experiments were performed in fibroblasts derived during second subculture. The storage media were physiologic salt solution, Ringer's solution and Rivanol; the tissue culture medium was alpha-minimum essential medium without nucleosides. The incubation period was 1 hour. (/sup 3/H)-thymidine incorporation and cell counts were taken to indicate changes in the proliferative capacity of the fibroblasts. The tissue culture experiments showed that the proliferative ability of the periodontal ligament fibroblasts was dependent upon the composition of the storage medium. Physiologic salt solution, Ringer's solution and Rivanol were unable to maintain the metabolism of the fibroblasts. alpha-MEM medium, however, was capable of stimulating proliferation of the periodontal ligament fibroblasts.

  1. The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering

    PubMed Central

    Wang, Zhong-Shan; Feng, Zhi-Hong; Wu, Guo-Feng; Bai, Shi-Zhu; Dong, Yan; Chen, Fa-Ming; Zhao, Yi-Min

    2016-01-01

    Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration. PMID:27324079

  2. Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo.

    PubMed

    Yokoi, T; Saito, M; Kiyono, T; Iseki, S; Kosaka, K; Nishida, E; Tsubakimoto, T; Harada, H; Eto, K; Noguchi, T; Teranaka, T

    2007-02-01

    The dental follicle is a mesenchymal tissue that surrounds the developing tooth germ. During tooth root formation, periodontal components, viz., cementum, periodontal ligament (PDL), and alveolar bone, are created by dental follicle progenitors. Here, we report the presence of PDL progenitors in mouse dental follicle (MDF) cells. MDF cells were obtained from mouse incisor tooth germs and immortalized by the expression of a mutant human papilloma virus type 16 E6 gene lacking the PDZ-domain-binding motif. MDF cells expressing the mutant E6 gene (MDF( E6-EGFP ) cells) had an extended life span, beyond 150 population doublings (PD). In contrast, normal MDF cells failed to proliferate beyond 10 PD. MDF( E6-EGFP ) cells expressed tendon/ligament phenotype-related genes such as Scleraxis (Scx), growth and differentiation factor-5, EphA4, Six-1, and type I collagen. In addition, the expression of periostin was observed. To elucidate the differentiation capacity of MDF( E6-EGFP ) cells in vivo, the cells were transplanted into severe combined immunodeficiency mice. At 4 weeks, MDF( E6-EGFP ) cell transplants had the capacity to generate a PDL-like tissue that expressed periostin, Scx, and type XII collagen and the fibrillar assembly of type I collagen. Our findings suggest that MDF( E6-EGFP ) cells can act as PDL progenitors, and that these cells may be a useful research tool for studying PDL formation and for developing regeneration therapies.

  3. Comparison of Periodontal Ligament Stem Cells Isolated from the Periodontium of Healthy Teeth and Periodontitis-Affected Teeth

    PubMed Central

    Soheilifar, Sara; Amiri, Iraj; Bidgoli, Mohsen; Hedayatipanah, Morad

    2016-01-01

    Objectives: Stem cell (SC) therapy is a promising technique for tissue regeneration. This study aimed to compare the viability and proliferation ability of periodontal ligament stem cells (PDLSCs) isolated from the periodontium of healthy and periodontitis-affected teeth to obtain an autologous, easily accessible source of SCs for tissue regeneration in periodontitis patients. Materials and Methods: The PDLSCs were isolated from the roots of clinically healthy premolars extracted for orthodontic purposes and periodontally involved teeth with hopeless prognosis (with and without phase I periodontal treatment). Cells were cultured and viability and proliferation ability of third passage cells in each group were evaluated using the methyl thiazol tetrazolium assay. The results were statistically analyzed using t-test. Results: No SCs could be obtained from periodontitis-affected teeth without phase I periodontal treatment. The viability of cells was 0.86±0.13 OD/540 in healthy group and 0.4±0.25 OD/540 in periodontitis-affected group (P=0.035). The proliferation ability (population doubling time) of cells obtained from healthy teeth was 4.22±1.23 hours. This value was 2.3±0.35 hours for those obtained from periodontitis-affected teeth (P=0.02). Conclusions: Viability and proliferation ability of cells isolated from the periodontium of healthy teeth were significantly greater than those of cells isolated from the periodontitis-affected teeth. PMID:28127319

  4. Mechano-regulation of Collagen Biosynthesis in Periodontal Ligament

    PubMed Central

    Kaku, Masaru; Yamauchi, Mitsuo

    2014-01-01

    Purpose Periodontal ligament (PDL) plays critical roles in the development and maintenance of periodontium such as tooth eruption and dissipation of masticatory force. The mechanical properties of PDL are mainly derived from fibrillar type I collagen, the most abundant extracellular component. Study selection The biosynthesis of type I collagen is a long, complex process including a number of intra- and extracellular post-translational modifications. The final modification step is the formation of covalent intra- and intermolecular cross-links that provide collagen fibrils with stability and connectivity. Results It is now clear that collagen post-translational modifications are regulated by groups of specific enzymes and associated molecules in a tissue-specific manner; and these modifications appear to change in response to mechanical force. Conclusions This review focuses on the effect of mechanical loading on collagen biosynthesis and fibrillogenesis in PDL with emphasis on the post-translational modifications of collagens, which is an important molecular aspect to understand in the field of prosthetic dentistry. PMID:25311991

  5. Micro-Raman Spectroscopy for Monitoring Changes in Periodontal Ligaments and Gingival Crevicular Fluid

    PubMed Central

    Camerlingo, Carlo; d'Apuzzo, Fabrizia; Grassia, Vincenzo; Perillo, Letizia; Lepore, Maria

    2014-01-01

    Micro-Raman Spectroscopy is an efficient method for analyzing biological specimens due to its sensitivity to subtle chemical and structural changes. The aim of this study was to use micro-Raman spectroscopy to analyze chemical and structural changes in periodontal ligament after orthodontic force application and in gingival crevicular fluid in presence of periodontal disease. The biopsy of periodontal ligament samples of premolars extracted for orthodontic reasons and the gingival crevicular fluid samples collected by using absorbent paper cones; were analyzed by micro-Raman spectroscopy. Changes of the secondary protein structure related to different times of orthodontic force application were reported; whereas an increase of carotene was revealed in patients affected by periodontal inflammation. PMID:25436655

  6. Micro-Raman spectroscopy for monitoring changes in periodontal ligaments and gingival crevicular fluid.

    PubMed

    Camerlingo, Carlo; d'Apuzzo, Fabrizia; Grassia, Vincenzo; Perillo, Letizia; Lepore, Maria

    2014-11-27

    Micro-Raman Spectroscopy is an efficient method for analyzing biological specimens due to its sensitivity to subtle chemical and structural changes. The aim of this study was to use micro-Raman spectroscopy to analyze chemical and structural changes in periodontal ligament after orthodontic force application and in gingival crevicular fluid in presence of periodontal disease. The biopsy of periodontal ligament samples of premolars extracted for orthodontic reasons and the gingival crevicular fluid samples collected by using absorbent paper cones; were analyzed by micro-Raman spectroscopy. Changes of the secondary protein structure related to different times of orthodontic force application were reported; whereas an increase of carotene was revealed in patients affected by periodontal inflammation.

  7. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    SciTech Connect

    Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  8. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells.

    PubMed

    Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration.

  9. Combination of platelet-rich plasma within periodontal ligament stem cell sheets enhances cell differentiation and matrix production.

    PubMed

    Xu, Qiu; Li, Bei; Yuan, Lin; Dong, Zhiwei; Zhang, Hao; Wang, Han; Sun, Jin; Ge, Song; Jin, Yan

    2017-03-01

    The longstanding goal of periodontal therapy is to regenerate periodontal tissues. Although platelet-rich plasma (PRP) has been gaining increasing popularity for use in the orofacial region, whether PRP is useful for periodontal regeneration is still unknown. The purpose of this study was to determine whether a mixture of periodontal ligament stem cell (PDLSC) sheets and PRP promoted bone regeneration, one of the most important measurement indices of periodontal tissue regenerative capability in vitro and in vivo. In this study, we evaluated the effects of different doses of PRP on the differentiation of human PDLSCs. Then cell sheet formation, extracellular matrix deposition and osteogenic gene expression in response to different doses of PRP treatment during sheet grafting was investigated. Furthermore, we implanted PDLSC sheets treated with 1% PRP subcutaneously into immunocompromised mice to evaluate their bone-regenerative capability. The results revealed that 1% PRP significantly enhanced the osteogenic differentiation of PDLSCs. Based on the production of extracellular matrix proteins, the results of scanning electron microscopy and the expression of the osteogenic genes ALP, Runx2, Col-1 and OCN, the provision of 1% PRP for PDLSC sheets was the most effective PRP administration mode for cell sheet formation. The results of in vivo transplantation showed that 1% PRP-mediated PDLSC sheets exhibited better periodontal tissue regenerative capability than those obtained without PRP intervention. These data suggest that a suitable concentration of PRP stimulation may enhance extracellular matrix production and positively affect cell behaviour in PDLSC sheets. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Evaluation of In Vivo Osteogenic Potential of Bone Morphogenetic Protein 2-Overexpressing Human Periodontal Ligament Stem Cells Combined with Biphasic Calcium Phosphate Block Scaffolds in a Critical-Size Bone Defect Model.

    PubMed

    Yi, TacGhee; Jun, Choong-Man; Kim, Su Jin; Yun, Jeong-Ho

    2016-03-01

    Human periodontal ligament stem cells (hPDLSCs) are considered potential cellular carriers for gene delivery in the field of tissue regeneration. This study tested the osseoregenerative potential of hPDLSCs transduced with replication-deficient recombinant adenovirus (rAd) containing the gene encoding bone morphogenetic protein-2 (BMP2; hPDLSCs/rAd-BMP2) in both in vivo and in vitro osteogenic environments. After the optimal condition for rAd-mediated transduction was determined, hPDLSCs were transduced to express BMP2. In vivo bone formation was evaluated in a critical-size rat calvarial bone defect model that more closely mimics the harsher in vivo milieu for bone regeneration than subcutaneous transplantation model. As support materials for bone regeneration, block-type biphasic calcium phosphate (BCP) scaffolds were combined with hPDLSCs and/or BMP2 and transplanted into critical-size bone defects in rats. Experimental groups were as follows: BCP scaffold control (group 1 [Gr1]), scaffold containing recombinant human BMP2 (rhBMP2; group 2 [Gr2]), scaffold loaded with normal hPDLSCs (group 3 [Gr3]), scaffold combined with both normal hPDLSCs and rhBMP2 (group 4 [Gr4]), and scaffold loaded with hPDLSCs transduced with rAd-BMP2 (hPDLSCs/rAd-BMP2; group 5 [Gr5]). Our data showed that new bone formation was highest in Gr2. Less mineralization was observed in Gr3, Gr4, and Gr5 in which hPDLSCs were transplanted. In vitro transwell assay demonstrated that hPDLSCs exert an inhibitory activity on BMP2-induced osteogenic differentiation. Our findings suggest that the in vivo bone regenerative potential of BMP2-overexpressing hPDLSCs could be compromised in a critical-size rat calvarial bone defect model. Thus, further investigations are required to elucidate the underlying mechanisms and to develop efficient techniques for improved tissue regeneration.

  11. Single-channel recordings of TREK-1 K+ channels in periodontal ligament fibroblasts.

    PubMed

    Ohara, A; Saeki, Y; Nishikawa, M; Yamamoto, Y; Yamamoto, G

    2006-07-01

    The periodontal ligament (PDL) works as a suspensory ligament when external mechanical stress is placed on the teeth. PDL fibroblasts, the principal cells in the PDL, are responsible for many PDL functions. We hypothesized that mechanosensitive ion channels are present in human PDL fibroblasts, which are capable of responding to mechanical stress during normal function of the tissue. Using patch-clamp techniques, we detected mechanosensitive TREK-1 K+ channels (a member of the two-pore-domain K+ channel family), whose single-channel conductance was 104 pS in symmetrical K+-rich solutions. The open probability of the channel was low in the quiescent state, but it was strongly increased by the induction of membrane stretch. Arachidonic acid also enhanced the channel activity. RT-PCR and immunocytochemical observations showed the expression of TREK-1 K+ channels in PDL fibroblasts. The results suggest that the activation of TREK-1 K+ channels by masticatory stress contributes to the hyperpolarization of PDL fibroblasts.

  12. Proapoptotic fibronectin fragment induces the degradation of ubiquitinated p53 via proteasomes in periodontal ligament cells

    PubMed Central

    Ghosh, Abhijit; Joo, Nam Eok; Chen, Tina Chunyuan; Kapila, Yvonne L.

    2009-01-01

    Background and Objective The extracellular matrix (ECM) plays a key role in signaling necessary for tissue remodeling and cell survival. However, signals from disease-altered ECMs, as that present in inflammatory diseases like periodontitis and arthritis, may lead to apoptosis or programmed cell death of resident cells. Previously, we found that a disease-associated fibronectin fragment triggers apoptosis of primary human periodontal ligament (PDL) cells via a novel apoptotic pathway in which the tumor suppressor, p53, is transcriptionally downregulated. Materials and Methods We used immunofluorescence, transfection assays, western blotting and ELISAs to show that p53 is degraded by a proteasomal pathway in response to a proapoptotic disease-associated fibronectin fragment. Results We now show that under these same apoptotic conditions p53 is further downregulated by post-translational ubiquitination and subsequent targeting to the proteasome for degradation. Pretreatment of cells with the proteasomal inhibitors MG132 and lactacystin rescued the cells from apoptosis. p53 levels in cells transfected with ubiquitin siRNA were resistant to degradation induced by the proapoptotic fibronectin fragment, showing that ubiquitination is important for the proapoptotic fibronectin fragment-induced degradation of p53. Conclusions These data show that a proapoptotic fibronectin matrix induces ubiquitination and degradation of p53 in the proteasome as part of a novel mechanism of apoptosis associated with inflammatory diseases. PMID:20337881

  13. Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament.

    PubMed

    Nivedhitha Sundaram, M; Sowmya, S; Deepthi, S; Bumgardener, Joel D; Jayakumar, R

    2016-05-01

    Periodontitis is an inflammatory disease that causes destruction of tooth-supporting tissues and if left untreated leads to tooth loss. Current treatments have shown limited potential for simultaneous regeneration of the tooth-supporting tissues. To recreate the complex architecture of the periodontium, we developed a bilayered construct consisting of poly(caprolactone) (PCL) multiscale electrospun membrane (to mimic and regenerate periodontal ligament, PDL) and a chitosan/2wt % CaSO4 scaffold (to mimic and regenerate alveolar bone). Scanning electron microscopy results showed the porous nature of the scaffold and formation of beadless electrospun multiscale fibers. The fiber diameter of microfiber and nanofibers was in the range of 10 ± 3 µm and 377 ± 3 nm, respectively. The bilayered construct showed better protein adsorption compared to the control. Osteoblastic differentiation of human dental follicle stem cells (hDFCs) on chitosan/2wt % CaSO4 scaffold showed maximum alkaline phosphatase at seventh day followed by a decline thereafter when compared to chitosan control scaffold. Fibroblastic differentiation of hDFCs was confirmed by the expression of PLAP-1 and COL-1 proteins which were more prominent on PCL multiscale membrane in comparison to control membranes. Overall these results show that the developed bilayered construct might serve as a good candidate for the simultaneous regeneration of the alveolar bone and PDL.

  14. Role of the epithelial cell rests of Malassez in the development, maintenance and regeneration of periodontal ligament tissues.

    PubMed

    Xiong, Jimin; Gronthos, Stan; Bartold, P Mark

    2013-10-01

    Periodontitis is a highly prevalent inflammatory disease that results in damage to the tooth-supporting tissues, potentially leading to tooth loss. Periodontal tissue regeneration is a complex process that involves the collaboration of two hard tissues (cementum and alveolar bone) and two soft tissues (gingiva and periodontal ligament). To date, no periodontal-regenerative procedures provide predictable clinical outcomes. To understand the rational basis of regenerative procedures, a better understanding of the events associated with the formation of periodontal components will help to establish reliable strategies for clinical practice. An important aspect of this is the role of the Hertwig's epithelial root sheath in periodontal development and that of its descendants, the epithelial cell rests of Malassez, in the maintenance of the periodontium. An important structure during tooth root development, the Hertwig's epithelial root sheath is not only a barrier between the dental follicle and dental papilla cells but is also involved in determining the shape, size and number of roots and in the development of dentin and cementum, and may act as a source of mesenchymal progenitor cells for cementoblasts. In adulthood, the epithelial cell rests of Malassez are the only odontogenic epithelial population in the periodontal ligament. Although there is no general agreement on the functions of the epithelial cell rests of Malassez, accumulating evidence suggests that the putative roles of the epithelial cell rests of Malassez in adult periodontal ligament include maintaining periodontal ligament homeostasis to prevent ankylosis and maintain periodontal ligament space, to prevent root resorption, to serve as a target during periodontal ligament innervation and to contribute to cementum repair. Recently, ovine epithelial cell rests of Malassez cells have been shown to harbor clonogenic epithelial stem-cell populations that demonstrate similar properties to mesenchymal stromal

  15. Characterization of human periodontal ligament cells cultured on three-dimensional biphasic calcium phosphate scaffolds in the presence and absence of L-ascorbic acid, dexamethasone and β-glycerophosphate in vitro

    PubMed Central

    AN, SHAOFENG; GAO, YAN; LING, JUNQI

    2015-01-01

    The aim of this study was to evaluate the effect of porous biphasic calcium phosphate (BCP) scaffolds on the proliferation and osteoblastic differentiation of human periodontal ligament cells (hPDLCs) in the presence and absence of osteogenic inducer (L-ascorbic acid, dexamethasone and β-glycerophosphate). The cell growth within the scaffolds in the absence of osteogenic inducers was studied by cell counting kit-8 (CCK-8) assay and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and osteoblastic differentiation markers of hPDLCs in BCP scaffolds were examined in the presence and absence of osteogenic inducers. The cell number of hPDLCs in the BCP scaffolds was less than that of hPDLCs cultured in microplates (control). SEM images showed that cells successfully adhered to the BCP scaffolds and spread amongst the pores; they also produced abundant extracellular cell matrix. In the presence and absence of osteogenic inducers, the ALP activity of hPDLCs within BCP scaffolds was suppressed in varying degrees at all time-points. In the absence of osteogenic inducers, hPDLCs in BCP scaffolds express significant higher levels of osteopontin (OPN) mRNA than the control, and there were no significant differences for Runx2 and osteocalcin (OCN) mRNA levels compared with those cultured in microplates. In the presence of osteogenic inducers, Runx2 expression levels were significantly higher than those in control. OPN and OCN mRNA levels were downregulated slightly. Three-dimensional porous BCP scaffolds are able to stimulate the osteoblastic differentiation of hPDLCs in the presence and absence of osteogenic inducer and may be capable of supporting hPDLC-mediated bone formation. PMID:26622495

  16. DKK1 rescues osteogenic differentiation of mesenchymal stem cells isolated from periodontal ligaments of patients with diabetes mellitus induced periodontitis.

    PubMed

    Liu, Qi; Hu, Cheng-Hu; Zhou, Cui-Hong; Cui, Xiao-Xia; Yang, Kun; Deng, Chao; Xia, Jia-Jia; Wu, Yan; Liu, Lu-Chuan; Jin, Yan

    2015-08-17

    Multiple studies have shown that diabetes mellitus is an established risk factor for periodontitis. Recently mesenchymal stem cells derived from periodontal ligament (PDLSCs) have been utilized to reconstruct tissues destroyed by chronic inflammation. However, impact of periodontitis with diabetes mellitus on PDLSCs and mechanisms mediating effects of complex microenvironments remain poorly understood. In this study, we found multiple differentiation potential of PDLSCs from chronic periodontitis with diabetes mellitus donors (D-PDLSCs) was damaged significantly. Inhibition of NF-κB signaling could rescue osteogenic potential of PDLSCs from simple chronic periodontitis patients (P-PDLSCs), whereas did not promote D-PDLSCs osteogenesis. In addition, we found expression of DKK1 in D-PDLSCs did not respond to osteogenic signal and decreased osteogenic potential of D-PDLSCs treated with DKK1 could be reversed. To further elucidate different character between P-PDLSCs and D-PDLSCs, we treated PDLSCs with TNF-α and advanced glycation end products (AGEs), and find out AGEs which enhance effect of TNF-α in PDLSCs might mediate special personality of D-PDLSCs. The adverse effect of AGEs in PDLSCs could be reversed when PDLSCs were treated with DKK1. These results suggested DKK1 mediating WNT signaling might be a therapy target to rescue potential of PDLSCs in periodontitis with diabetes mellitus.

  17. The biomechanical characteristics of the bone-periodontal ligament-cementum complex

    PubMed Central

    Ho, Sunita P.; Kurylo, Michael P.; Fong, Tiffany; Lee, Stephen; Wagner, Hanoch D.; Ryder, Mark; Marshall, G. W.

    2010-01-01

    The relative motion between the tooth and alveolar bone is facilitated by the soft-hard tissue interfaces which include periodontal ligament-bone (PDL-bone) and periodontal ligament-cementum (PDL-cementum). The soft-hard tissue interfaces are responsible for attachment and are critical to the overall biomechanical efficiency of the bone-tooth complex. In this study, the PDL-bone and PDL-cementum attachment sites in human molars were investigated to identify the structural orientation and integration of the PDL with bone and cementum. These attachment sites were characterized from a combined materials and mechanics perspective and were related to macro-scale function. High resolution complimentary imaging techniques including atomic force microscopy, scanning electron microscopy and micro-scale X-ray computed tomography (Micro XCT™) illustrated two distinct orientations of PDL; circumferential-PDL (cir-PDL) and radial-PDL (rad-PDL). Within the PDL-space, the primary orientation of the ligament was radial (rad-PDL) as is well known. Interestingly, circumferential orientation of PDL continuous with rad-PDL was observed adjacent to alveolar bone and cementum. The integration of the cir-PDL was identified by 1 to 2 μm diameter PDL-inserts or Sharpey’s fibers in alveolar bone and cementum. Chemically and biochemically the cir-PDL adjacent to bone and cementum was identified by relatively higher carbon and lower calcium including the localization of small leucine rich proteins responsible for maintaining soft-hard tissue cohesion, stiffness and hygroscopic nature of PDL-bone and PDL-cementum attachment sites. The combined structural and chemical properties provided graded stiffness characteristics of PDL-bone (Er range for PDL: 10 – 50 MPa; bone: 0.2 – 9.6 GPa) and PDL-cementum (Er range for cementum: 1.1 – 8.3 GPa), which was related to the macro-scale function of the bone-tooth complex. PMID:20541802

  18. Distribution of mesencephalic nucleus and trigeminal ganglion mechanoreceptors in the periodontal ligament of the cat.

    PubMed Central

    Linden, R W; Scott, B J

    1989-01-01

    1. In anaesthetized cats recordings have been made in the mesencephalic nucleus of the fifth cranial nerve and the trigeminal ganglion from neurones that respond when forces are applied to the mandibular canine tooth. The site of the mechanoreceptors in the periodontal ligament and their distribution around the tooth root have been determined. 2. Receptors with their cell bodies in the mesencephalic nucleus were found to be situated in the periodontal ligament in a discrete area intermediate between the fulcrum and apex of the tooth, while those in the trigeminal ganglion were situated in the whole area of the periodontal ligament between the fulcrum and apex of the tooth. 3. All of the located mechanoreceptors responded maximally when that part of the ligament in which they lay was put under tension. 4. The directional sensitivities of the mechanoreceptors suggested that there was an uneven distribution around the tooth root of receptors with cell bodies in the mesencephalic nucleus. In contrast mechanoreceptors with cell bodies in the trigeminal ganglion were distributed more equally around the tooth root. The rationale for the differences requires further investigation. PMID:2795482

  19. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    NASA Astrophysics Data System (ADS)

    Kado, T.; Hidaka, T.; Aita, H.; Endo, K.; Furuichi, Y.

    2012-12-01

    A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully immobilized on the titanium surface and improved the compatibility of the surface with HPDLCs. The Col-immobilized titanium surface could be used for forming ligament-like tissues around titanium dental implants.

  20. The periodontal ligament (PDL) injection: an alternative to inferior alveolar nerve block.

    PubMed

    Malamed, S F

    1982-02-01

    The periodontal ligament (PDL) injection for mandibular anesthesia in isolated regions was evaluated, using both a conventional syringe and two devices designed for this procedure. A high success rate was achieved, with a low incidence of adverse reaction and highly favorable comment from both patients and administrators. Duration of pulpal anesthesia following the technique described proved adequate for most dental procedures. The newer devices appear to have some advantage over the conventional syringe technique. However, the PDL injection technique can readily be used with any conventional syringe. Further study is recommended to determine the response of periodontal and pulpal tissues.

  1. Effect of vitamin C administration on hydrogen peroxide-induced cytotoxicity in periodontal ligament cells.

    PubMed

    Wu, Wenlei; Yang, Nanfei; Feng, Xiujing; Sun, Tingzhe; Shen, Pingping; Sun, Weibin

    2015-01-01

    Periodontitis is a disease, which is associated with chronic inflammation and leads to significant destruction of periodontal tissues. Periodontal ligament cells (PDLCs) constitute the largest cell population in PDL tissues and a considerable body of evidence has demonstrated an association between oxidative stress and the progression of periodontitis. However, the effects on PDLCs exposed to hydrogen peroxide (H2O2) and the molecular mechanisms by which H2O2 affects periodontitis remain to be elucidated. In the present study, the potential cytotoxic effect of H2O2 and the antioxidative function of vitamin C (Vc) in PDLCs were investigated. The results demonstrated that H2O2 treatment decreased the viability of PDLCs. The decreased PDLC viability was primarily induced by apoptosis, which was evidenced by cleaved caspases-3, caspases-9 and poly (ADP-ribose) polymerase. Following optimal Vc addition, the proapoptotic effects of H2O2 were partially antagonized. Taken together, the present study demonstrated that H2O2 primarily induced the apoptosis of PDLCs and that these adverse effects were partially rescued following treatment with Vc. These results revealed how H2O2 promotes the progression of periodontitis and provide an improved understanding of the reversal effect of antioxidant treatment. Therefore, optimal Vc administration may provide a potentially effective technique in periodontal therapy.

  2. Soluble CD14 Enhances the Response of Periodontal Ligament Stem Cells to P. gingivalis Lipopolysaccharide

    PubMed Central

    Andrukhov, Oleh; Andrukhova, Olena; Özdemir, Burcu; Haririan, Hady; Müller-Kern, Michael; Moritz, Andreas; Rausch-Fan, Xiaohui

    2016-01-01

    Periodontal ligament stem cells (PDLSCs) are lacking membrane CD14, which is an important component of lipopolysaccharide (LPS) signaling through toll-like receptor (TLR) 4. In the present study we investigated the effect of soluble CD14 on the response of human PDLSCs to LPS of Porphyromonas (P.) gingivalis. Human PDLSCs (hPDLSCs) were stimulated with P. gingivalis LPS in the presence or in the absence of soluble CD14 (sCD14) and the production of interleukin (IL)-6, chemokine C-X-C motif ligand 8 (CXCL8), and chemokine C-C motif ligand 2 (CCL2) was measured. The response to P. gingivalis LPS was compared with that to TLR4 agonist Escherichia coli LPS and TLR2-agonist Pam3CSK4. The response of hPDLSCs to both P. gingivalis LPS and E. coli LPS was significantly enhanced by sCD14. In the absence of sCD14, no significant difference in the hPDLSCs response to two kinds of LPS was observed. These responses were significantly lower compared to that to Pam3CSK4. In the presence of sCD14, the response of hPdLSCs to P. gingivalis LPS was markedly higher than that to E. coli LPS and comparable with that to Pam3CSK4. The response of hPdLSCs to bacterial LPS is strongly augmented by sCD14. Local levels of sCD14 could be an important factor for modulation of the host response against periodontal pathogens. PMID:27504628

  3. Jawbone microenvironment promotes periodontium regeneration by regulating the function of periodontal ligament stem cells

    PubMed Central

    Zhu, Bin; Liu, Wenjia; Liu, Yihan; Zhao, Xicong; Zhang, Hao; Luo, Zhuojing; Jin, Yan

    2017-01-01

    During tooth development, the jawbone interacts with dental germ and provides the development microenvironment. Jawbone-derived mesenchymal stem cells (JBMSCs) maintain this microenvironment for root and periodontium development. However, the effect of the jawbone microenvironment on periodontium tissue regeneration is largely elusive. Our previous study showed that cell aggregates (CAs) of bone marrow mesenchymal stem cells promoted periodontium regeneration on the treated dentin scaffold. Here, we found that JBMSCs enhanced not only the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) but also their adhesion to titanium (Ti) material surface. Importantly, the compound CAs of PDLSCs and JBMSCs regenerated periodontal ligament-like fibers and mineralized matrix on the Ti scaffold surface, both in nude mice ectopic and minipig orthotopic transplantations. Our data revealed that an effective regenerative microenvironment, reconstructed by JBMSCs, promoted periodontium regeneration by regulating PDLSCs function on the Ti material. PMID:28053317

  4. Periodontal Ligament and Alveolar Bone in Health and Adaptation: Tooth Movement.

    PubMed

    Jiang, Nan; Guo, Weihua; Chen, Mo; Zheng, Ying; Zhou, Jian; Kim, Sahng Gyoon; Embree, Mildred C; Songhee Song, Karen; Marao, Heloisa F; Mao, Jeremy J

    2016-01-01

    The periodontal ligament (PDL) and alveolar bone are two critical tissues for understanding orthodontic tooth movement. The current literature is replete with descriptive studies of multiple cell types and their matrices in the PDL and alveolar bone, but is deficient with how stem/progenitor cells differentiate into PDL and alveolar bone cells. Can one type of orthodontic force with a specific magnitude and frequency activate osteoblasts, whereas another force type activates osteoclasts? This chapter will discuss the biology of not only mature cells and their matrices in the periodontal ligament and alveolar bone, but also stem/progenitor cells that differentiate into fibroblasts, osteoblasts and osteoclasts. Key advances in tooth movement rely on further understanding of osteoblast and fibroblast differentiation from mesenchymal stem/progenitor cells, and osteoclastogenesis from the hematopoietic/monocyte lineage.

  5. Periodontal Ligament and Alveolar Bone in Health and Adaptation: Tooth Movement

    PubMed Central

    Jiang, Nan; Guo, Weihua; Chen, Mo; Zheng, Ying; Zhou, Jian; Kim, Sahng Gyoon; Embree, Mildred C.; Song, Karen Songhee; Marao, Heloisa F.; Mao, Jeremy J.

    2015-01-01

    The periodontal ligament (PDL) and alveolar bone are two critical tissues for understanding orthodontic tooth movement. The current literature is replete with descriptive studies of multiple cell types and their matrices in the PDL and alveolar bone, but is deficient with how stem/progenitor cells differentiate into PDL and alveolar bone cells. Can one type of orthodontic force with a specific magnitude and frequency preferably activate osteoblasts, whereas another force type activates osteoclasts? This chapter will discuss the biology of not only mature cells and their matrices in the periodontal ligament and alveolar bone, but also stem/progenitor cells that differentiate into fibroblasts, osteoblasts and osteoclasts. Key advances in tooth movement rely on further understanding of osteoblast and fibroblast differentiation from mesenchymal stem/progenitor cells, and osteoclastogenesis from the hematopoietic/monocyte lineage. PMID:26599112

  6. Expression of osteoblastic phenotype in periodontal ligament fibroblasts cultured in three-dimensional collagen gel

    PubMed Central

    ALVES, Luciana Bastos; MARIGUELA, Viviane Casagrande; GRISI, Márcio Fernando de Moraes; de SOUZA, Sérgio Luiz Scaombatti; NOVAES, Arthur Belém; TABA, Mário; de OLIVEIRA, Paulo Tambasco; PALIOTO, Daniela Bazan

    2015-01-01

    Objective : To investigate the influence of a three-dimensional cell culture model on the expression of osteoblastic phenotype in human periodontal ligament fibroblast (hPDLF) cultures. Material and Methods : hPDLF were seeded on bi-dimensional (2D) and three-dimensional (3D) collagen type I (experimental groups) and and on a plastic coverslip (control) for up to 14 days. Cell viability and alkaline phosphatase (ALP) activity were performed. Also, cell morphology and immunolabeling for alkaline phosphatase (ALP) and osteopontin (OPN) were assessed by epifluorescence and confocal microscopy. The expression of osteogenic markers, including alkaline phosphatase, osteopontin, osteocalcin (OC), collagen I (COL I) and runt-related transcription factor 2 (RUNX2), were analyzed using real-time polymerase chain reaction (RT-PCR). Mineralized bone-like nodule formation was visualized by microscopy and calcium content was assessed quantitatively by alizarin red assay. Results : Experimental cultures produced an increase in cell proliferation. Immunolabeling for OPN and ALP in hPDLF were increased and ALP activity was inhibited by three-dimensional conditions. OPN and RUNX2 gene expression was significantly higher on 3D culture when compared with control surface. Moreover, ALP and COL I gene expression were significantly higher in three-dimensional collagen than in 2D cultures at 7 days. However, at 14 days, 3D cultures exhibited ALP and COL I gene expression significantly lower than the control, and the COL I gene expression was also significantly lower in 3D than in 2D cultures. Significant calcium mineralization was detected and quantified by alizarin red assay, and calcified nodule formation was not affected by tridimensionality. Conclusion : This study suggests that the 3D cultures are able to support hPDLF proliferation and favor the differentiation and mineralized matrix formation, which may be a potential periodontal regenerative therapy. PMID:26018313

  7. Beneficial effects of adiponectin on periodontal ligament cells under normal and regenerative conditions.

    PubMed

    Nokhbehsaim, Marjan; Keser, Sema; Nogueira, Andressa Vilas Boas; Cirelli, Joni Augusto; Jepsen, Søren; Jäger, Andreas; Eick, Sigrun; Deschner, James

    2014-01-01

    Type 2 diabetes and obesity are increasing worldwide and linked to periodontitis, a chronic disease which is characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium. The mechanisms underlying the association of diabetes mellitus and obesity with periodontal destruction and compromised periodontal healing are not well understood, but decreased plasma levels of adiponectin, as found in diabetic and obese individuals, might be a critical mechanistic link. The aim of this in vitro study was to examine the effects of adiponectin on periodontal ligament (PDL) cells under normal and regenerative conditions, and to study the regulation of adiponectin and its receptors in these cells. Adiponectin stimulated significantly the expression of growth factors and extracellular matrix, proliferation, and in vitro wound healing, reduced significantly the constitutive tumor necrosis factor-α expression, and caused a significant upregulation of its own expression. The beneficial actions of enamel matrix derivative on a number of PDL cell functions critical for periodontal regeneration were partially enhanced by adiponectin. The periodontopathogen Porphyromonas gingivalis inhibited the adiponectin expression and stimulated the expression of its receptors. In conclusion, reduced levels of adiponectin, as found in type 2 diabetes and obesity, may compromise periodontal health and healing.

  8. Influence of periodontal ligament simulation on bond strength and fracture resistance of roots restored with fiber posts

    PubMed Central

    MARCHIONATTI, Ana Maria Estivalete; WANDSCHER, Vinícius Felipe; BROCH, Juliana; BERGOLI, César Dalmolin; MAIER, Juliana; VALANDRO, Luiz Felipe; KAIZER, Osvaldo Bazzan

    2014-01-01

    Objective Considering that periodontal ligament simulation may influence the stress distribution over teeth restored with intraradicular retainers, this study aimed to assess the combined effect of mechanical cycling and periodontal ligament simulation on both the bond strength between fiber posts and root dentin and the fracture resistance of teeth restored using glass fiber posts. Material and Methods Ninety roots were randomly distributed into 3 groups (n=10) (C-MC: control; P-MC: polyether; AS-MC: addition silicone) to test bond strength and 6 groups (n=10) (C: control; P: polyether; AS: addition silicone, without mechanical cycling, and C-MC, P-MC and AS-MC with mechanical cycling) to test fracture strength, according to the material used to simulate the periodontal ligament. For the bond strength test, fiber posts were cemented, cores were built, mechanical cycling was applied (2×106 cycles, 88 N, 2.2 Hz, and 45º incline), and the teeth cut into 3 slices (2 mm), which were then subjected to the push-out test at 1 mm/min. For the fracture strength test, fiber posts were cemented, cores were built, and half of the groups received mechanical cycling, followed by the compressive strength (45° to the long axis and 1 mm/min) performed on all groups. Results Periodontal ligament simulation did not affect the bond strength (p=0.244) between post and dentin. Simulation of periodontal ligament (p=0.153) and application of mechanical cycling (p=0.97) did not affect fracture resistance. Conclusions The materials used to simulate the periodontal ligament did not affect fracture or bond strength, therefore periodontal ligament simulation using the tested materials could be considered optional in the conditions of the study. PMID:25466478

  9. Cooperative effects of FGF-2 and VEGF-A in periodontal ligament cells.

    PubMed

    Yanagita, M; Kojima, Y; Kubota, M; Mori, K; Yamashita, M; Yamada, S; Kitamura, M; Murakami, S

    2014-01-01

    We previously demonstrated that topical application of fibroblast growth factor (FGF)-2 enhanced periodontal tissue regeneration. Although angiogenesis is a crucial event for tissue regeneration, the mechanism(s) by which topically applied FGF-2 induces angiogenesis in periodontal tissues has not been fully clarified. In this study, we investigated whether FGF-2 could induce vascular endothelial growth factor (VEGF)-A expression in periodontal ligament (PDL) cells and whether cell-to-cell interactions between PDL cells and endothelial cells could stimulate angiogenesis. FGF-2 induced VEGF-A secretion from MPDL22 cells (mouse periodontal ligament cell line) in a dose-dependent manner. Transwell and wound-healing assays revealed that co-stimulation with FGF-2 plus VEGF-A synergistically stimulated the migration of MPDL22 cells. Interestingly, co-culture of MPDL22 cells with bEnd5 cells (mouse endothelial cell line) also stimulated VEGF-A production from MPDL22 cells and tube formation by bEnd5 cells. Furthermore, time-lapse analysis revealed that MPDL22 cells migrated close to the tube-forming bEnd5 cells, mimicking pericytes. Thus, FGF-2 induces VEGF-A expression in PDL cells and induces angiogenesis in combination with VEGF-A. Cell-to-cell interactions with PDL cells also facilitate angiogenesis.

  10. The secretome of periodontal ligament stem cells from MS patients protects against EAE

    PubMed Central

    Rajan, Thangavelu Soundara; Giacoppo, Sabrina; Diomede, Francesca; Ballerini, Patrizia; Paolantonio, Michele; Marchisio, Marco; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2016-01-01

    Manipulation of stem cells or stem cells-derived secretome has emerged as a novel alternative therapeutic option for multiple sclerosis (MS). Here we show that human periodontal ligament stem cells (hPDLSCs)-derived conditioned medium (hPDLSCs-CM) and purified exosomes/microvesicles (hPDLSCs-EMVs) obtained from Relapsing Remitting (RR)-MS patients and healthy donors block experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by inducing anti-inflammatory and immunosuppressive effects in spinal cord and spleen, and reverse disease progression by restoring tissue integrity via remyelination in the spinal cord. We show that hPDLSCs-CM and hPDLSCs-EMVs reduce pro-inflammatory cytokines IL-17, IFN-γ, IL-1β, IL-6, TNF-α, and induce anti-inflammatory IL-10. In addition, apoptosis related STAT1, p53, Caspase 3, and Bax expressions were attenuated. Our findings unravel the immunosuppressive effects of hPDLSCs-CM and hPDLSCs-EMVs in EAE mice, and suggest simple alternative autologous source for patient-customized cell-free targeting treatment in MS patients. PMID:27924938

  11. The secretome of periodontal ligament stem cells from MS patients protects against EAE.

    PubMed

    Rajan, Thangavelu Soundara; Giacoppo, Sabrina; Diomede, Francesca; Ballerini, Patrizia; Paolantonio, Michele; Marchisio, Marco; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2016-12-07

    Manipulation of stem cells or stem cells-derived secretome has emerged as a novel alternative therapeutic option for multiple sclerosis (MS). Here we show that human periodontal ligament stem cells (hPDLSCs)-derived conditioned medium (hPDLSCs-CM) and purified exosomes/microvesicles (hPDLSCs-EMVs) obtained from Relapsing Remitting (RR)-MS patients and healthy donors block experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by inducing anti-inflammatory and immunosuppressive effects in spinal cord and spleen, and reverse disease progression by restoring tissue integrity via remyelination in the spinal cord. We show that hPDLSCs-CM and hPDLSCs-EMVs reduce pro-inflammatory cytokines IL-17, IFN-γ, IL-1β, IL-6, TNF-α, and induce anti-inflammatory IL-10. In addition, apoptosis related STAT1, p53, Caspase 3, and Bax expressions were attenuated. Our findings unravel the immunosuppressive effects of hPDLSCs-CM and hPDLSCs-EMVs in EAE mice, and suggest simple alternative autologous source for patient-customized cell-free targeting treatment in MS patients.

  12. Mechanical Strength and Viscoelastic Response of the Periodontal Ligament in Relation to Structure

    PubMed Central

    Komatsu, Koichiro

    2010-01-01

    The mechanical strength of the periodontal ligament (PDL) was first measured as force required to extract a tooth from its socket using human specimens. Thereafter, tooth-PDL-bone preparations have extensively been used for measurement of the mechanical response of the PDL. In vitro treatments of such specimens with specific enzymes allowed one to investigate into the roles of the structural components in the mechanical support of the PDL. The viscoelastic responses of the PDL may be examined by analysis of the stress-relaxation. Video polarised microscopy suggested that the collagen molecules and fibrils in the stretched fibre bundles progressively align along the deformation direction during the relaxation. The stress-relaxation process of the PDL can be well expressed by a function with three exponential decay terms. Analysis after in vitro digestion of the collagen fibres by collagenase revealed that the collagen fibre components may play an important role in the long-term relaxation component of the stress-relaxation process of the PDL. The dynamic measurements of the viscoelastic properties of the PDL have recently suggested that the PDL can absorb more energy in compression than in shear and tension. These viscoelastic mechanisms of the PDL tissue could reduce the risk of injury to the PDL. PMID:20948569

  13. Bioactivity of periodontal ligament stem cells on sodium titanate coated with graphene oxide

    PubMed Central

    Zhou, Qi; Yang, Pishan; Li, Xianlei; Liu, Hong; Ge, Shaohua

    2016-01-01

    As a biocompatible and low cytotoxic nanomaterial, graphene oxide (GO) has captured tremendous interests in tissue engineering. However, little is known about the behavior of dental stem cells on GO. This study was to evaluate the bioactivity of human periodontal ligament stem cells (PDLSCs) on GO coated titanium (GO-Ti) substrate in vitro as compared to sodium titanate (Na-Ti) substrate. By scanning electron microscope (SEM), confocal laser scanning microscope (CLSM), methylthiazol tetrazolium (MTT) assay, alkaline phosphatase (ALP) activity, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, we investigated the attachment, morphology, proliferation and osteogenic differentiation of PDLSCs on these two substrates. When seeded on GO-Ti substrate, PDLSCs exhibited significantly higher proliferation rate, ALP activity and up-regulated gene expression level of osteogenesis-related markers of collagen type I (COL-I), ALP, bone sialoprotein (BSP), runt related transcription factor 2 (Runx2) and osteocalcin (OCN) compared with those on Na-Ti substrate. Moreover, GO promoted the protein expression of BSP, Runx2 and OCN. These findings suggest that the combination of GO and PDLSCs provides a promising construct for regenerative dentistry. PMID:26763307

  14. ET-1 Promotes Differentiation of Periodontal Ligament Stem Cells into Osteoblasts through ETR, MAPK, and Wnt/β-Catenin Signaling Pathways under Inflammatory Microenvironment.

    PubMed

    Liang, Li; Zhou, Wei; Yang, Nan; Yu, Jifeng; Liu, Hongchen

    2016-01-01

    Periodontitis is a kind of chronic inflammatory disease that affects the tooth-supporting tissues. ET-1 is related to periodontitis and involved in the regulation of cytokines, but the mechanisms remain unclear. The aim of this study is to investigate how ET-1 affects proinflammatory cytokine expression and differentiation in human periodontal ligament stem cells (PDLSCs). PDLSCs were isolated from the periodontal ligament tissues of periodontitis patients and then treated with ET-1 (1, 10, or 100 nM) for 12 h, 24 h, or 72 h. The osteogenic potential of PDLSCs was tested using ALP staining. TNF-α, IL-1β, and IL-6 levels were evaluated by ELISA and western blot. Runx2, OCN, and COL1 mRNA and western levels were detected by RT-PCR and western blot, respectively. To examine the signaling pathways and molecular mechanisms involved in ET-1-mediated cytokine expression and osteogenic differentiation, ETR pathway, MAPKs pathway, Wnt/β-catenin pathway, and Wnt/Ca(2+) pathway were detected by RT-PCR and western blot, respectively. ET-1 promoted differentiation of PDLSCs into osteoblasts by increasing secretion of TNF-α, IL-1β, and IL-6 in a dose- and time-dependent manner. ET-1 also increased expression of Runx2, OCN, and COL1. ET-1 promotes differentiation of PDLSCs into osteoblasts through ETR, MAPK, and Wnt/β-catenin signaling pathways under inflammatory microenvironment.

  15. The difference on the osteogenic differentiation between periodontal ligament stem cells and bone marrow mesenchymal stem cells under inflammatory microenviroments.

    PubMed

    Zhang, Jing; Li, Zhi-Gang; Si, Ya-Meng; Chen, Bin; Meng, Jian

    2014-01-01

    Periodontitis is a major cause of tooth loss in adults and periodontal ligament stem cells (PDLSCs) is the most favorable candidate for the reconstruction of tissues destroyed by periodontal diseases. However, pathological alterations caused by inflammatory insults might impact the regenerative capacities of these cells. Bone-marrow-derived human mesenchymal stem cells (hBMSCs) would accelerate alveolar bone regeneration by transplantation, compared to PDLSCs. Therefore, a better understanding of the osteogenic differentiation between PDLSCs and BMSCs in inflammatory microenviroments is therefore warranted. In this study, human PDLSCs were investigated for their stem cell characteristics via analysis of cell surface marker expression, colony forming unit efficiency, osteogenic differentiation and adipogenic differentiation, and compared to BMSCs. To determine the impact of both inflammation and the NF-κβ signal pathway on osteogenic differentiation, cells were challenged with TNF-α under osteogenic induction conditions and investigated for mineralization, alkaline phosphatase (ALP) activity, cell proliferation and relative genes expression. Results showed that PDLSCs exhibit weaker mineralization and ALP activity compared to BMSCs. TNF-α inhibited genes expression of osteogenic differentiation in PDLSCs, while, it stimulates gene expressions (BSP and Runx2) in BMSCs. Enhanced NF-κβ activity in PDLSCs decreases expression of Runx2 but it does not impede the osteogenic differentiation of BMSCs. Taken together, these results may suggest that the BMSCs owned the stronger immunomodulation in local microenvironment via anti-inflammatory functions, compared to PDLSCs.

  16. Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions.

    PubMed

    Yang, Hao; Gao, Li-Na; An, Ying; Hu, Cheng-Hu; Jin, Fang; Zhou, Jun; Jin, Yan; Chen, Fa-Ming

    2013-09-01

    Gingival tissue-derived mesenchymal stem cells (MSCs) were recently identified and characterized as having multipotential differentiation and immunomodulatory properties in vitro and in vivo, and they represent new postnatal stem cell types for cytotherapy and regenerative medicine. However, the utility of gingival MSCs (GMSCs) as alternatives to periodontal ligament stem cells (PDLSCs), which have been demonstrated to be effective but with limited cell availability and reduced clinical feasibility, for periodontal regeneration in a previously diseased/inflamed environment remains obscure. In this study, patient-matched human GMSCs and PDLSCs were evaluated in terms of their colony-forming ability, proliferative capacity, cell surface epitopes, multi-lineage differentiation potentials, and related gene expression when incubated in different designed culture conditions, with or without the presence of inflammatory cytokines. An in vivo ectopic transplantation model using transplants from inflammatory cytokine-treated or untreated cells was applied to assess bone formation. We found that cells derived from both tissues expressed MSC markers, including CD146, CD105, CD90, CD29, and STRO-1. Both cells successfully differentiated under osteogenic, adipogenic, and chondrogenic microenvironments; PDLSCs displayed a more effective differentiation potential in all of the incubation conditions compared to GMSCs (P < 0.01). Although inflammatory cytokine-treated GMSCs and PDLSCs are inferior to normally cultured, patient and tissue-matched cells in terms of their osteogenic capacity and regenerative potential (P < 0.05), they retain the capacity for osteoblastic and adipose differentiation, as well as ectopic bone formation, similar to what has been demonstrated for other MSCs. Interestingly, GMSCs exhibited fewer inflammation-related changes in terms of osteogenic potential in vitro and bone formation in vivo compared to PDLSCs (P < 0.01). These results suggest

  17. Conditioned media from differentiating craniofacial bone marrow stromal cells influence mineralization and proliferation in periodontal ligament stem cells.

    PubMed

    Jin, Zhenyu; Feng, Yuan; Liu, Hongwei

    2016-10-01

    Previous reports have mainly focused on the behavioral responses of human periodontal ligament stem cells (hPDLSCs) in interaction with tibia bone marrow stromal cells (BMSCs). However, there is little study on the biologic features of hPDLSCs under the induction of maxilla BMSCs (M-BMSCs) at different phases of osteogenic differentiation. We hypothesized that M-BMSCs undergoing osteogenic differentiation acted on the proliferation, differentiation, and bone-forming capacity of hPDLSCs. In this paper, primary hPDLSCs and human M-BMSCs (hM-BMSCs) were expanded in vitro. After screening of surface markers for characterization, hPDLSCs were cocultured with different phases of differentiating hM-BMSCs. Cell proliferation and alkaline phosphatase activity were examined, and mineralization-associated markers such as osteocalcin and runt-related transcription factor 2 of hPDLSCs in coculture with uninduced/osteoinduced hM-BMSCs were evaluated. hPDLSCs in hM-BMSCs-conditioned medium (hM-BMSCs-CM) group showed a reduction in proliferation compared with untreated hPDLSCs, while osteoinduced hM-BMSCs for 10 day-conditioned medium (hM-BMSCs-CM-10ds) and osteoinduced hM-BMSCs for 15 day-conditioned medium (hM-BMSCs-CM-15ds) enhance the proliferation of hPDLSCs. hM-BMSCs of separate differentiation stages temporarily inhibited osteogenesis of hPDLSCs in the early days. Upon extending time periods, uninduced/osteoinduced hM-BMSCs markedly enhanced osteogenesis of hPDLSCs to different degrees. The transplantation results showed hM-BMSCs-CM-15ds treatment promoted tissue regeneration to generate cementum/periodontal ligament-like structure characterized by hard-tissue formation. This research supported the notion that hM-BMSCs triggered osteogenesis of hPDLSCs suggesting important implications for periodontal engineering.

  18. Stimulation of Periodontal Ligament Stem Cells by Dentin Matrix Protein 1 Activates Mitogen-Activated Protein Kinase and Osteoblast Differentiation

    PubMed Central

    Chandrasekaran, Sangeetha; Ramachandran, Amsaveni; Eapen, Asha; George, Anne

    2013-01-01

    Background Periodontitis can ultimately result in tooth loss. Many natural and synthetic materials have been tried to achieve periodontal regeneration, but the results remain variable and unpredictable. We hypothesized that exogenous treatment with dentin matrix protein 1 (DMP1) activates specific genes and results in phenotypic and functional changes in human periodontal ligament stem cells (hPDLSCs). Methods hPDLSCs were isolated from extracted teeth and cultured in the presence or absence of DMP1. Quantitative polymerase chain reactions were performed to analyze the expression of several genes involved in periodontal regeneration. hPDLSCs were also processed for immunocytochemical and Western blot analysis using phosphorylated extracellular signal-regulated kinase (pERK) and ERK antibodies. Alkaline phosphatase and von Kossa staining were performed to characterize the differentiation of hPDLSCs into osteoblasts. Field emission scanning electron microscopic analysis of the treated and control cell cultures were also performed. Results Treatment with DMP1 resulted in the upregulation of genes, such as matrix metalloproteinase-2, alkaline phosphatase, and transforming growth factor β1. Activation of ERK mitogen-activated protein kinase signaling pathway and translocation of pERK from the cytoplasm to the nucleus was observed. Overall, DMP1-treated cells showed increased expression of alkaline phosphatase, increased matrix, and mineralized nodule formation when compared with untreated controls. Conclusion DMP1 can orchestrate a coordinated expression of genes and phenotypic changes in hPDLSCs by activation of the ERK signaling pathway, which may provide a valuable strategy for tissue engineering approaches in periodontal regeneration. PMID:22612367

  19. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation.

    PubMed

    Lei, Ming; Li, Kun; Li, Bei; Gao, Li-Na; Chen, Fa-Ming; Jin, Yan

    2014-08-01

    Mesenchymal stem cells (MSCs) isolated from human postnatal dental pulp and periodontal ligament (PDL) tissues can give rise to multilineage differentiation in vitro and generate related dental tissues in vivo. However, the cell properties of human dental pulp stem cells (DPSCs) and PDL stem cells (PDLSCs) after in vivo implantation remain largely unidentified. In this study, cells were re-isolated from in vivo-generated dental pulp-like and PDL-like tissues (termed re-DPCs and re-PDLCs, respectively) as a result of ectopic transplantation of human DPSC and PDLSC sheets. The cell characteristics in terms of colony-forming ability, cell surface antigens and multi-differentiation potentials were all evaluated before and after implantation. It was found that re-DPCs and re-PDLCs were of human and mesenchymal origin and positive for MSC markers such as STRO-1, CD146, CD29, CD90 and CD105; and, to some extent, re-DPCs could maintain their colony forming abilities. Moreover, both cell types were able to form mineral deposits and differentiate into adipocytes and chondrocytes; however, quantitative analysis and related gene expression determination showed that the osteo-/chondro-differentiation capabilities of re-DPCs and re-PDLCs were significantly reduced compared to those of DPSCs and PDLSCs, respectively (P < 0.05); re-PDLCs showed a greater reduction potential than re-DPCs. We conclude that DPSCs and PDLSCs may maintain their MSC characteristics after in vivo implantation and, compared to PDLSCs, DPSCs appear much more stable under in vivo conditions. These findings provide additional cellular and molecular evidence that supports expanding the use of dental tissue-derived stem cells in cell therapy and tissue engineering.

  20. Differentiation and characteristics of undifferentiated mesenchymal stem cells originating from adult premolar periodontal ligaments

    PubMed Central

    Kwon, Dae-Woo; Im, Insook; Kim, Yong-Deok; Hwang, Dae-Seok; Holliday, L Shannon; Donatelli, Richard E; Son, Woo-Sung; Jun, Eun-Sook

    2012-01-01

    Objective The purpose of this study was to investigate the isolation and characterization of multipotent human periodontal ligament (PDL) stem cells and to assess their ability to differentiate into bone, cartilage, and adipose tissue. Methods PDL stem cells were isolated from 7 extracted human premolar teeth. Human PDL cells were expanded in culture, stained using anti-CD29, -CD34, -CD44, and -STRO-1 antibodies, and sorted by fluorescent activated cell sorting (FACS). Gingival fibroblasts (GFs) served as a positive control. PDL stem cells and GFs were cultured using standard conditions conducive for osteogenic, chondrogenic, or adipogenic differentiation. Results An average of 152.8 ± 27.6 colony-forming units was present at day 7 in cultures of PDL stem cells. At day 4, PDL stem cells exhibited a significant increase in proliferation (p < 0.05), reaching nearly double the proliferation rate of GFs. About 5.6 ± 4.5% of cells in human PDL tissues were strongly STRO-1-positive. In osteogenic cultures, calcium nodules were observed by day 21 in PDL stem cells, which showed more intense calcium staining than GF cultures. In adipogenic cultures, both cell populations showed positive Oil Red O staining by day 21. Additionally, in chondrogenic cultures, PDL stem cells expressed collagen type II by day 21. Conclusions The PDL contains multipotent stem cells that have the potential to differentiate into osteoblasts, chondrocytes, and adipocytes. This adult PDL stem cell population can be utilized as potential sources of PDL in tissue engineering applications. PMID:23323245

  1. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering.

    PubMed

    Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won

    2016-01-01

    Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration-culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch.

  2. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering

    PubMed Central

    Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won

    2016-01-01

    Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration—culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch. PMID:26989897

  3. The Effect of Tumour Necrosis Factor-α on Periodontal Ligament Stem Cell Differentiation and the Related Signaling Pathways.

    PubMed

    Liu, Xiaochen; Tan, Guang-Rong; Yu, Mengfei; Cai, Xia; Zhou, Yi; Ding, Huifen; Xie, Han; Qu, Fan; Zhang, Runju; Lam, Carolina Un; Cui, Peng; Fu, Baiping

    2016-01-01

    Periodontal regeneration plays an integral role in the treatment of periodontal diseases, with important clinical significance for the preservation and functional recovery of affected teeth. Periodontal ligament stem cells (PDLSCs), which were found in the periodontal ligament tissues possessing properties of pluripotency and self-renewing, could repair damaged periodontium with great promise. However, in a chronic inflammatory micro-environment, these cells suffered from reduced capacity to differentiate and regenerate. There has been a growing appreciation that tumour necrosis factor-α (TNF-α) in periodontal tissues drives cellular responses to chronic periodontitis. Several new advances, including an increased understanding of the mechanism of interaction between TNF-α and PDLSCs provides insight into inflamed cell regeneration, which in turn reveal strategies to improve the effectiveness of therapy. Here we gave a comprehensive review on the role of TNF-α in chronic periodontitis, its effect on PDLSCs differentiation and periodontal regeneration, related signaling pathways and concluded with future perspectives of research on PDLSCs-based periodontal tissue regeneration.

  4. [Changes in the microvascular pattern of the periodontal ligament in an experimental tooth extrusion].

    PubMed

    Kobayashi, K

    1989-08-01

    Forty eight adult cats were employed to investigate the serial changes of vascular patterns of the periodontal ligament on tooth extrusion. The right upper canines have been successively extruded (initial load 40 gr) with a open coil spring. The experimental periods were set on 1, 2, 3, 4 and 6 weeks respectively. On each experimental period, the microvascular casts of the periodontal ligament and alveolar bone around the experimental tooth were prepared for the scanning electron microscopy, utilizing the acrylic plastic injection method (Taniguchi and Ohta, et al. 1952 and 1955). And the serial sections of the surrounding tissues of the experimental tooth were made. In order to elucidate the mode of the tooth movement, the load of applied force and the distance of extrusion were measured. Results obtained were as follows: 1. The experimental tooth was extruded rapidly during first two weeks. The speed reduced gradually afterwards. 2. The new vascularization was seen around the apex first, then widely spread in the periodontal ligament. And the remarkable trabecula-shaped bone formation were observed around the venous networks of the root apex after two week period. 3. The tissue reactions after the tooth extrusion delayed in comparison with the movement of the tooth. 4. Although the tissue reactions of the root apex of the extruded tooth were originally similar to the one in the transverse tooth movement, slight differences were found in timing of the tissue change and shape of the capillary network. The findings of the tissue change showed that the light force was indicated in extrusion of the tooth. And the range of action of the force applied should be limited in orthodontic clinic.

  5. Comparison of soymilk, powdered milk, Hank's balanced salt solution and tap water on periodontal ligament cell survival.

    PubMed

    Moazami, Fariborz; Mirhadi, Hosein; Geramizadeh, Bita; Sahebi, Safoura

    2012-04-01

    The purpose of this study was to evaluate the ability of soymilk, powdered milk, and Hank's balanced salt solution (HBSS) to maintain human periodontal ligament (PDL) cell viability in vitro. PDL cells were obtained from extracted healthy third molars and cultured in Dulbecco's modified Eagles medium (DMEM). The cultures were exposed for 1, 2, 4, and 8 h to experimental solutions (tap water served as negative control and DMEM as positive control) at 37°C. The viable cells were then counted using the trypan blue exclusion technique. Data were analyzed by using one-way anova, post hoc Scheffe and two-way anova test. Statistical analysis showed that HBSS, powdered baby formula, and soymilk maintain cell viability equally well in different periods of times. Tap water cannot keep cells viable as well as other solutions. Soymilk and powdered baby formula can be recommended as suitable storage media for avulsed teeth for up to 8 h.

  6. Policaprolactone/polyvinylpyrrolidone/siloxane hybrid materials: Synthesis and in vitro delivery of diclofenac and biocompatibility with periodontal ligament fibroblasts.

    PubMed

    Peña, José A; Gutiérrez, Sandra J; Villamil, Jean C; Agudelo, Natalia A; Pérez, León D

    2016-01-01

    In this paper, we report the synthesis of polycaprolactone (PCL) based hybrid materials containing hydrophilic domains composed of N-vinylpyrrolidone (VP), and γ-methacryloxypropyltrimethoxysilane (MPS). The hybrid materials were obtained by RAFT copolymerization of N-vinylpyrrolidone and MPS using a pre-formed dixanthate-end-functionalized PCL as macro-chain transfer agent, followed by a post-reaction crosslinking step. The composition of the samples was determined by elemental and thermogravimetric analyses. Differential scanning calorimetry and X-ray diffraction indicated that the crystallinity of PCL decreases in the presence of the hydrophilic domains. Scanning electron microscopy images revealed that the samples present an interconnected porous structure on the swelling. Compared to PCL, the hybrid materials presented low water contact angle values and higher elastic modulus. These materials showed controlled release of diclofenac, and biocompatibility with human periodontal ligament fibroblasts.

  7. Effects ofrhBMP-2gene transfectionto periodontal ligament cells on osteogenesis.

    PubMed

    Jian, Cong-Xiang; Fan, Quan-Shui; Hu, Yong-He; He, Yong; Li, Ming-Zhe; Zheng, Wei-Yin; Ren, Yu; Li, Chen-Jun

    2017-04-10

    Objective: This study aims to investigate the effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the osteogenesis of periodontal ligament (PDL) cells. Method: The expression vector of rhBMP-2 (pcDNA3.1-rhBMP-2) was established. PDL cells were obtained through the enzymatic digestion and tissue explant methods and verified by immunohistochemistry. Cells were classified into an experimental (cells were transfected with pcDNA3.1/rhBMP-2-EGFP), blank (cells with no transfection) and control group (cells were transfected with empty plasmid). rhBMP-2 expression was assessed via western blotting analysis. The mineralization ability, alkaline phosphatase activity and level of related osteogenic biomarkers were detected to evaluate the osteogenic characteristics of PDL cells. Results: The rhBMP-2 expression vector (pcDNA3.1-rhBMP-2) was successfully established. Primary PDL cells displayed a star or long spindle shape. The cultured cells were long spindle shaped, had a plump cell body and homogeneous cytoplasm and the ellipse nucleus contained two or three nucleoli. Cells displayed a radial, sheaf-like or eddy-like arrangement after adherence growth. Immunohistochemical staining confirmed that cells originated from mesenchymal opposed to epithelium. The experimental group exhibited an enhanced mineralization ability, higher alkaline phosphatase activity and increased expression of rhBMP-2 and osteogenic biomarkers (runx2, collagen type I and osteocalcin) than the blank and control group. Conclusion: This study demonstrated that rhBMP-2 transfection enhances the osteogenesis of PDL cells and provides a possibility for the application of rhBMP-2 expression products in dental disease treatment.

  8. Cardiomyogenesis of periodontal ligament-derived stem cells by dynamic tensile strain.

    PubMed

    Pelaez, Daniel; Acosta Torres, Zenith; Ng, Tsz Kin; Choy, Kwong Wai; Pang, Chi Pui; Cheung, Herman S

    2017-02-01

    Cellular therapies for the treatment of myocardial infarction have proven to be an invaluable tool in recent years and provide encouraging evidence for the possibility to restore normal heart function. However, questions still remain as to the optimal cell source, pre-conditioning methods and delivery techniques for such an application. This study explores the use of a population of stem cells arising from the neural crest and isolated from adult human periodontal ligament along with short-term mechanical strain as an inducer of cardiomyogenesis and possibly pre-conditioning stimulus for cellular cardiomyoplasty. Cells were subjected to a short-term dynamic mechanical tension in our custom-built bioreactor and analyzed for cardiomyogenic commitment. Mechanical strain elicited a cardiomyogenic response from the cells following just 2 h of stimulation. Mechanical strain activated and translocated cardiac-specific transcription factors GATA4, MEF2C and Nkx2.5, and induced expression of the sarcomeric actin and cardiac troponin T proteins. Mechanical strain induced production of significantly higher levels of nitric oxide when compared to static controls. Elimination of elevated ROS levels by free radical scavengers completely abolished the cardiomyogenic response of the cells. MicroRNA profile changes in stretched cells were detected for 39 miRNAs with 16 of the differentially expressed miRNAs related to heart development. The use of stem cells in combination with mechanical strain prior to their delivery in vivo may pose a valuable alternative for the treatment of myocardial infarction and merits further exploration for its capacity to augment the already observed beneficial effects of cellular therapies.

  9. Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration

    PubMed Central

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Ansari, Sahar; Zadeh, Homayoun H.; Snead, Malcolm L.; Shi, Songtao

    2014-01-01

    Tendon injuries are often associated with significant dysfunction and disability due to tendinous tissue’s very limited self-repair capacity and propensity for scar formation. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material present an alternative therapeutic option for tendon repair/regeneration that may be advantageous compared to other current treatment modalities. The MSC delivery vehicle is the principal determinant for successful implementation of MSC-mediated regenerative therapies. In the current study, a co-delivery system based on TGF-β3-loaded RGD-coupled alginate microspheres was developed for encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs). The capacity of encapsulated dental MSCs to differentiate into tendon tissue was investigated in vitro and in vivo. Encapsulated dental-derived MSCs were transplanted subcutaneously into immunocompromised mice. Our results revealed that after 4 weeks of differentiation in vitro, PDLSCs and GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited high levels of mRNA expression for gene markers related to tendon regeneration (Scx, DCn, Tnmd, and Bgy) via qPCR measurement. In a corresponding in vivo animal model, ectopic neo-tendon regeneration was observed in subcutaneous transplanted MSC-alginate constructs, as confirmed by histological and immunohistochemical staining for protein markers specific for tendons. Interestingly, in our quantitative PCR and in vivo histomorphometric analyses, PDLSCs showed significantly greater capacity for tendon regeneration than GMSCs or hBMMSCs (P<0.05). Altogether, these findings indicate that periodontal ligament and gingival tissues can be considered as suitable stem cell sources for tendon engineering. PDLSCs and GMSCs encapsulated in TGF-β3-loaded RGD-modified alginate microspheres are promising candidates for tendon regeneration. PMID

  10. Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration.

    PubMed

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Ansari, Sahar; Zadeh, Homayoun H; Snead, Malcolm L; Shi, Songtao

    2014-03-01

    Tendon injuries are often associated with significant dysfunction and disability due to tendinous tissue's very limited self-repair capacity and propensity for scar formation. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material present an alternative therapeutic option for tendon repair/regeneration that may be advantageous compared to other current treatment modalities. The MSC delivery vehicle is the principal determinant for successful implementation of MSC-mediated regenerative therapies. In the current study, a co-delivery system based on TGF-β3-loaded RGD-coupled alginate microspheres was developed for encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs). The capacity of encapsulated dental MSCs to differentiate into tendon tissue was investigated in vitro and in vivo. Encapsulated dental-derived MSCs were transplanted subcutaneously into immunocompromised mice. Our results revealed that after 4 weeks of differentiation in vitro, PDLSCs and GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited high levels of mRNA expression for gene markers related to tendon regeneration (Scx, DCn, Tnmd, and Bgy) via qPCR measurement. In a corresponding in vivo animal model, ectopic neo-tendon regeneration was observed in subcutaneous transplanted MSC-alginate constructs, as confirmed by histological and immunohistochemical staining for protein markers specific for tendons. Interestingly, in our quantitative PCR and in vivo histomorphometric analyses, PDLSCs showed significantly greater capacity for tendon regeneration than GMSCs or hBMMSCs (P < 0.05). Altogether, these findings indicate that periodontal ligament and gingival tissues can be considered as suitable stem cell sources for tendon engineering. PDLSCs and GMSCs encapsulated in TGF-β3-loaded RGD-modified alginate microspheres are promising candidates for tendon regeneration.

  11. Nonuniform distribution of collagen density in human knee ligaments.

    PubMed

    Mommersteeg, T J; Blankevoort, L; Kooloos, J G; Hendriks, J C; Kauer, J M; Huiskes, R

    1994-03-01

    It is generally recognized that the mechanical properties of soft connective tissues are affected by their structural components. We documented collagen density distributions in human knee ligaments to quantify differences in density within and between these ligaments. In order to explain the variations in mechanical properties within and between different knee ligaments as described in the literature, the distributions of collagen density were correlated with these biomechanical findings. Human knee ligaments were shown to be nonhomogeneous structures with regard to collagen density. The anterior bundles of all ligaments contained significantly more collagen mass per unit of volume than the posterior bundles did. The percentage differences between the anterior and posterior bundles, in relation to the posterior bundles, were about 25% for the anterior cruciate ligament (ACL) and the collateral ligaments and about 10% for the posterior cruciate ligament (PCL). Along the cruciate ligaments, the central segments had higher collagen densities than did segments adjacent to the ligament insertions (ACL 9%, PCL 24%). The collagen density in the ACL was significantly lower than that in the other ligaments. These variations within and between the ligaments correlate well with the variations in mechanical properties described in the literature; however, other structural differences have to be taken into account to fully explain the variations in mechanical properties from the structural components.

  12. Leptin effects on the regenerative capacity of human periodontal cells.

    PubMed

    Nokhbehsaim, Marjan; Keser, Sema; Nogueira, Andressa Vilas Boas; Jäger, Andreas; Jepsen, Søren; Cirelli, Joni Augusto; Bourauel, Christoph; Eick, Sigrun; Deschner, James

    2014-01-01

    Obesity is increasing throughout the globe and characterized by excess adipose tissue, which represents a complex endocrine organ. Adipose tissue secrets bioactive molecules called adipokines, which act at endocrine, paracrine, and autocrine levels. Obesity has recently been shown to be associated with periodontitis, a disease characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium, and also with compromised periodontal healing. Although the underlying mechanisms for these associations are not clear yet, increased levels of proinflammatory adipokines, such as leptin, as found in obese individuals, might be a critical pathomechanistic link. The objective of this study was to examine the impact of leptin on the regenerative capacity of human periodontal ligament (PDL) cells and also to study the local leptin production by these cells. Leptin caused a significant downregulation of growth (TGFβ1, and VEGFA) and transcription (RUNX2) factors as well as matrix molecules (collagen, and periostin) and inhibited SMAD signaling under regenerative conditions. Moreover, the local expression of leptin and its full-length receptor was significantly downregulated by inflammatory, microbial, and biomechanical signals. This study demonstrates that the hormone leptin negatively interferes with the regenerative capacity of PDL cells, suggesting leptin as a pathomechanistic link between obesity and compromised periodontal healing.

  13. Verification of γ-Amino-Butyric Acid (GABA) Signaling System Components in Periodontal Ligament Cells In Vivo and In Vitro.

    PubMed

    Konermann, Anna; Kantarci, Alpdogan; Wilbert, Steven; Van Dyke, Thomas; Jäger, Andreas

    2016-11-01

    CNS key neurotransmitter γ-amino-butyric acid (GABA) and its signaling components are likewise detectable in non-neuronal tissues displaying inter alia immunomodulatory functions. This study aimed at identifying potential glutamate decarboxylase (GAD)65 and GABA receptor expression in periodontal ligament (PDL) cells in vivo and in vitro, with particular regard to inflammation and mechanical loading. Gene expression was analyzed in human PDL cells at rest or in response to IL-1ß (5 ng/ml) or TNFα (5 ng/ml) challenge via qRT-PCR. Western blot determined constitutive receptor expression, and confocal laser scanning fluorescence microscopy visualized expression changes induced by inflammation. ELISA quantified GAD65 release. Immunocytochemistry was performed for GABA component detection in vitro on mechanically loaded PDL cells, and in vivo on rat upper jaw biopsies with mechanically induced root resorptions. Statistical significance was set at p < 0.05. GABAB1, GABAB2, GABAA1, and GABAA3 were ubiquitously expressed both on gene and protein level. GABAA2 and GAD65 were undetectable in resting cells, but induced by inflammation. GABAB1 exhibited the highest basal gene expression (6.97 % ± 0.16). IL-1ß markedly increased GABAB2 on a transcriptional (57.28-fold ± 12.40) and protein level seen via fluorescence microscopy. TNFα-stimulated PDL cells released GAD65 (3.68 pg/ml ± 0.17 after 24 h, 5.77 pg/ml ± 0.65 after 48 h). Immunocytochemistry revealed GAD65 expression in mechanically loaded PDL cells. In vivo, GABA components were varyingly expressed in an inflammatory periodontal environment. PDL cells differentially express GABA signaling components and secrete GAD65. Inflammation and mechanical loading regulate these neurotransmitter molecules, which are also detectable in vivo and are potentially involved in periodontal pathophysiology.

  14. A Biofilm Pocket Model to Evaluate Different Non-Surgical Periodontal Treatment Modalities in Terms of Biofilm Removal and Reformation, Surface Alterations and Attachment of Periodontal Ligament Fibroblasts

    PubMed Central

    Hägi, Tobias T.; Klemensberger, Sabrina; Bereiter, Riccarda; Nietzsche, Sandor; Cosgarea, Raluca; Flury, Simon; Lussi, Adrian; Sculean, Anton; Eick, Sigrun

    2015-01-01

    Background and Aim There is a lack of suitable in vitro models to evaluate various treatment modalities intending to remove subgingival bacterial biofilm. Consequently, the aims of this in vitro-study were: a) to establish a pocket model enabling mechanical removal of biofilm and b) to evaluate repeated non-surgical periodontal treatment with respect to biofilm removal and reformation, surface alterations, tooth hard-substance-loss, and attachment of periodontal ligament (PDL) fibroblasts. Material and Methods Standardized human dentin specimens were colonized by multi-species biofilms for 3.5 days and subsequently placed into artificially created pockets. Non-surgical periodontal treatment was performed as follows: a) hand-instrumentation with curettes (CUR), b) ultrasonication (US), c) subgingival air-polishing using erythritol (EAP) and d) subgingival air-polishing using erythritol combined with chlorhexidine digluconate (EAP-CHX). The reduction and recolonization of bacterial counts, surface roughness (Ra and Rz), the caused tooth substance-loss (thickness) as well as the attachment of PDL fibroblasts were evaluated and statistically analyzed by means of ANOVA with Post-Hoc LSD. Results After 5 treatments, bacterial reduction in biofilms was highest when applying EAP-CHX (4 log10). The lowest reduction was found after CUR (2 log10). Additionally, substance-loss was the highest when using CUR (128±40 µm) in comparison with US (14±12 µm), EAP (6±7 µm) and EAP-CHX (11±10) µm). Surface was roughened when using CUR and US. Surfaces exposed to US and to EAP attracted the highest numbers of PDL fibroblasts. Conclusion The established biofilm model simulating a periodontal pocket combined with interchangeable placements of test specimens with multi-species biofilms enables the evaluation of different non-surgical treatment modalities on biofilm removal and surface alterations. Compared to hand instrumentation the application of ultrasonication and of air

  15. Allogeneic Transplantation of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets in Canine Critical-Size Supra-Alveolar Periodontal Defect Model

    PubMed Central

    Tsumanuma, Yuka; Iwata, Takanori; Kinoshita, Atsuhiro; Washio, Kaoru; Yoshida, Toshiyuki; Yamada, Azusa; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi

    2016-01-01

    Abstract Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal cell (PDL-MSC) sheets regenerates periodontal tissue in canine models. However, the indications for autologous cell transplantation in clinical situations are limited. Therefore, this study evaluated the safety and efficacy of allogeneic transplantation of PDL-MSC sheets using a canine horizontal periodontal defect model. Canine PDL-MSCs were labeled with enhanced green fluorescent protein (EGFP) and were cultured on temperature-responsive dishes. Three-layered cell sheets were transplanted around denuded root surfaces either autologously or allogeneically. A mixture of β-tricalcium phosphate and collagen gel was placed on the bone defects. Eight weeks after transplantation, dogs were euthanized and subjected to microcomputed tomography and histological analyses. RNA and DNA were extracted from the paraffin sections to verify the presence of EGFP at the transplantation site. Inflammatory markers from peripheral blood sera were quantified using an enzyme-linked immunosorbent assay. Periodontal regeneration was observed in both the autologous and the allogeneic transplantation groups. The allogeneic transplantation group showed particularly significant regeneration of newly formed cementum, which is critical for the periodontal regeneration. Serum levels of inflammatory markers from peripheral blood sera showed little difference between the autologous and allogeneic groups. EGFP amplicons were detectable in the paraffin sections of the allogeneic group. These results suggest

  16. Healing of sites within the dog periodontal ligament after application of cold to the periodontal attachment apparatus.

    PubMed

    Tal, H; Kozlovsky, A; Pitaru, S

    1991-08-01

    The potential of periodontal ligament-derived tissues to regenerate periodontal attachment after cryosurgical trauma to the PDL in dogs was evaluated. The buccal alveolar plate of each canine tooth was exposed by a semi-lunar excision. A 3 mm thick cryoprobe, cooled to -81 degrees C, was placed on the bone 5 mm apical to the crest for 10 s. This induced cellular devitalization in the bone directly in contact with the probe and the PDL under it. The freezing-thawing cycle was repeated 3 times. Control sites were sham-operated at room temperature. Histologic sections from the center of the lesions were obtained from 1 h, 48 h and 30 d specimens. 1-h control and experimental histologic sections were similar. At 48 h post-surgery, the cellular component of the frozen PDL could not be identified and inflammatory response was minimal. The collagenous framework, however, appeared to form a continuum between the alveolar bone and cementum. Lacunae in the bone at the frozen segment were empty. The injured PDL was surrounded by normal PDL. Control specimens appeared normal. At 30 d, the PDL space in the frozen segments was populated by PDL-like tissue which did not differ significantly from the PDL coronal or apical to it. Collagen fibers appeared to be attached to the cementum on one side and to the alveolar bone on the other. Bone resorption or ankylosis was not observed in the experimental sites. It is suggested that the extracellular matrix in the devitalized area was preserved, supporting regeneration of the cryolesion.

  17. Role of Mechanical Stress-induced Glutamate Signaling-associated Molecules in Cytodifferentiation of Periodontal Ligament Cells*

    PubMed Central

    Fujihara, Chiharu; Yamada, Satoru; Ozaki, Nobuhiro; Takeshita, Nobuo; Kawaki, Harumi; Takano-Yamamoto, Teruko; Murakami, Shinya

    2010-01-01

    In this study, we analyzed the effects of tensile mechanical stress on the gene expression profile of in vitro-maintained human periodontal ligament (PDL) cells. A DNA chip analysis identified 17 up-regulated genes in human PDL cells under the mechanical stress, including HOMER1 (homer homolog 1) and GRIN3A (glutamate receptor ionotropic N-methyl-d-aspartate 3A), which are related to glutamate signaling. RT-PCR and real-time PCR analyses revealed that human PDL cells constitutively expressed glutamate signaling-associated genes and that mechanical stress increased the expression of these mRNAs, leading to release of glutamate from human PDL cells and intracellular glutamate signal transduction. Interestingly, exogenous glutamate increased the mRNAs of cytodifferentiation and mineralization-related genes as well as the ALP (alkaline phosphatase) activities during the cytodifferentiation of the PDL cells. On the other hand, the glutamate signaling inhibitors riluzole and (+)-MK801 maleate suppressed the alkaline phosphatase activities and mineralized nodule formation during the cytodifferentiation and mineralization. Riluzole inhibited the mechanical stress-induced glutamate signaling-associated gene expressions in human PDL cells. Moreover, in situ hybridization analyses showed up-regulation of glutamate signaling-associated gene expressions at tension sites in the PDL under orthodontic tooth movement in a mouse model. The present data demonstrate that the glutamate signaling induced by mechanical stress positively regulates the cytodifferentiation and mineralization of PDL cells. PMID:20576613

  18. Development and parameter identification of a visco-hyperelastic model for the periodontal ligament.

    PubMed

    Huang, Huixiang; Tang, Wencheng; Tan, Qiyan; Yan, Bin

    2017-01-31

    The present study developed and implemented a new visco-hyperelastic model that is capable of predicting the time-dependent biomechanical behavior of the periodontal ligament. The constitutive model has been implemented into the finite element package ABAQUS by means of a user-defined material subroutine (UMAT). The stress response is decomposed into two constitutive parts in parallel which are a hyperelastic and a time-dependent viscoelastic stress response. In order to identify the model parameters, the indentation equation based on V-W hyperelastic model and the indentation creep model are developed. Then the parameters are determined by fitting them to the corresponding nanoindentation experimental data of the PDL. The nanoindentation experiment was simulated by finite element analysis to validate the visco-hyperelastic model. The simulated results are in good agreement with the experimental data, which demonstrates that the visco-hyperelastic model developed is able to accurately predict the time-dependent mechanical behavior of the PDL.

  19. Experimentally Determined Mechanical Properties of, and Models for, the Periodontal Ligament: Critical Review of Current Literature

    PubMed Central

    Fill, Ted S.; Carey, Jason P.; Toogood, Roger W.; Major, Paul W.

    2011-01-01

    Introduction. This review is intended to highlight and discuss discrepancies in the literature of the periodontal ligament's (PDL) mechanical properties and the various experimental approaches used to measure them. Methods. Searches were performed on biomechanical and orthodontic publications (in databases: Compendex, EMBASE, MEDLINE, PubMed, ScienceDirect, and Scopus). Results. The review revealed that significant variations exist, some on the order of six orders of magnitude, in the PDL's elastic constants and mechanical properties. Possible explanations may be attributable to different experimental approaches and assumptions. Conclusions. The discrepancies highlight the need for further research into PDL properties under various clinical and experimental loading conditions. Better understanding of the PDL's biomechanical behavior under physiologic and traumatic loading conditions might enhance the understanding of the PDL's biologic reaction in health and disease. Providing a greater insight into the response of the PDL would be instrumental to orthodontists and engineers for designing more predictable, and therefore more efficacious, orthodontic appliances. PMID:21772924

  20. Stem Cells Derived from Tooth Periodontal Ligament Enhance Functional Angiogenesis by Endothelial Cells

    PubMed Central

    Yeasmin, Shamima; Ceccarelli, Jacob; Vigen, Marina; Carrion, Bita; Putnam, Andrew J.; Tarle, Susan A.

    2014-01-01

    In regenerative medicine approaches involving cell therapy, selection of the appropriate cell type is important in that the cells must directly (differentiation) or indirectly (trophic effects) participate in the regenerative response. Regardless of the mode of action of the cells, angiogenesis underlies the success of these approaches. Stem cells derived from tooth tissues, specifically the periodontal ligament of teeth (periodontal ligament stem cells [PDLSCs]), have recently been identified as a good source of multipotent cells for cell therapies. PDLSCs have demonstrated properties similar to mesenchymal stem cells (MSCs), yet, unlike MSCs, their vascular potential has not been previously demonstrated. Thus, the aim of this study was to determine if PDLSCs could modulate angiogenesis. In comparison to MSCs and stem cells derived from tooth pulp tissues (SHEDs), we first determined if PDLSCs released soluble proangiogenic factors with the capacity to induce vessel formation by endothelial cells (ECs). Next, the ability of PDLSCs to modulate angiogenesis was examined through their cotransplantation with ECs in subcutaneous sites of immunocompromised mice. Finally, the stability of the PDLSC-mediated vasculature was determined through evaluation of the maturity and functionality of the vessels formed following PDLSC transplantation. It was determined that PDLSCs produced appreciable levels of vascular endothelial growth factor and basic fibroblast growth factor-2, and additionally, were able to initiate in vitro angiogenesis of ECs comparable to MSC- and SHED-mediated angiogenesis. In vivo cotransplantation of ECs with PDLSCs significantly (>50% increase) enhanced the number of blood vessels formed relative to transplantation of ECs alone. Finally, vessels formed following PDLSC cotransplantation were more mature and less permeable than those formed after transplantation of EC alone. These data demonstrate for the first time that PDLSCs have vascular potential

  1. Stem cells derived from tooth periodontal ligament enhance functional angiogenesis by endothelial cells.

    PubMed

    Yeasmin, Shamima; Ceccarelli, Jacob; Vigen, Marina; Carrion, Bita; Putnam, Andrew J; Tarle, Susan A; Kaigler, Darnell

    2014-04-01

    In regenerative medicine approaches involving cell therapy, selection of the appropriate cell type is important in that the cells must directly (differentiation) or indirectly (trophic effects) participate in the regenerative response. Regardless of the mode of action of the cells, angiogenesis underlies the success of these approaches. Stem cells derived from tooth tissues, specifically the periodontal ligament of teeth (periodontal ligament stem cells [PDLSCs]), have recently been identified as a good source of multipotent cells for cell therapies. PDLSCs have demonstrated properties similar to mesenchymal stem cells (MSCs), yet, unlike MSCs, their vascular potential has not been previously demonstrated. Thus, the aim of this study was to determine if PDLSCs could modulate angiogenesis. In comparison to MSCs and stem cells derived from tooth pulp tissues (SHEDs), we first determined if PDLSCs released soluble proangiogenic factors with the capacity to induce vessel formation by endothelial cells (ECs). Next, the ability of PDLSCs to modulate angiogenesis was examined through their cotransplantation with ECs in subcutaneous sites of immunocompromised mice. Finally, the stability of the PDLSC-mediated vasculature was determined through evaluation of the maturity and functionality of the vessels formed following PDLSC transplantation. It was determined that PDLSCs produced appreciable levels of vascular endothelial growth factor and basic fibroblast growth factor-2, and additionally, were able to initiate in vitro angiogenesis of ECs comparable to MSC- and SHED-mediated angiogenesis. In vivo cotransplantation of ECs with PDLSCs significantly (>50% increase) enhanced the number of blood vessels formed relative to transplantation of ECs alone. Finally, vessels formed following PDLSC cotransplantation were more mature and less permeable than those formed after transplantation of EC alone. These data demonstrate for the first time that PDLSCs have vascular potential

  2. PERK-eIF2α-ATF4 pathway mediated by endoplasmic reticulum stress response is involved in osteodifferentiation of human periodontal ligament cells under cyclic mechanical force.

    PubMed

    Yang, Shuang-Yan; Wei, Fu-Lan; Hu, Li-Hua; Wang, Chun-Ling

    2016-08-01

    To prevent excess accumulation of unfolded proteins in endoplasmic reticulum (ER), eukaryotic cells have signaling pathways from the ER to the cytosol or nucleus. These processes are known as the endoplasmic reticulum stress (ERS) response. Protein kinase R like endoplasmic reticulum kinase (PERK) is a major transducer of the ERS response and it directly phosphorylate α-subunit of eukaryotic initiation factor 2 (eIF2α), resulting in translational attenuation. Phosphorylated eIF2α specifically promoted the translation of the activating transcription factor 4 (ATF4). ATF4 is a known important transcription factor which plays a pivotal role in osteoblast differentiation and bone formation. Furthermore, ATF4 is a downstream target of PERK. Studies have shown that PERK-eIF2α-ATF4 signal pathway mediated by ERS was involved in osteoblastic differentiation of osteoblasts. We have known that orthodontic tooth movement is a process of periodontal ligament cells (PDLCs) osteodifferentiation and alveolar bone remodeling under mechanical force. However, the involvement of PERK-eIF2α-ATF4 signal pathway mediated by ERS in osteogenic differentiation of PDLCs under mechanical force has not been unclear. In our study, we applied the cyclic mechanical force at 10% elongation with 0.5Hz to mimic occlusal force, and explored whether PERK-eIF2α-ATF4 signaling pathway mediated by ERS involved in osteogenic differentiation of PDLCs under mechanical force. Firstly, cyclic mechanical force will induce ERS and intensify several osteoblast marker genes (ATF4, OCN, and BSP). Next, we found that PERK overexpression increased eIF2α phosphorylation and expression of ATF4, furthermore induced BSP, OCN expression, thus it will promote osteodifferentiation of hPDLCs; mechanical force could promote this effect. However, PERK(-/-) cells showed the opposite changes, which will inhibit osteodifferentiation of hPDLCs. Taken together, our study proved that PERK-eIF2α-ATF4 signaling pathway

  3. Mechanical removal of necrotic periodontal ligament by either Robinson bristle brush with pumice or scalpel blade. Histomorphometric analysis and scanning electron microscopy.

    PubMed

    Esper, Helen Ramon; Panzarini, Sônia Regina; Poi, Wilson Roberto; Sonoda, Celso Koogi; Casatti, Cláudio Aparecido

    2007-12-01

    One of the important factors accounting for successful delayed replantation of avulsed teeth is seemingly the type of root surface treatment. Removal of necrotic cemental periodontal ligament remnants may prevent the occurrence of external root resorption, which is the major cause of loss of teeth replanted in such conditions. The purpose of this study was to compare the efficacy of two mechanical techniques for removal of root-adhered periodontal ligament. Preservation or removal of the cementum layer concomitantly with these procedures was also assessed. Forty-five roots of healthy premolars extracted for orthodontic purposes were selected. After extraction, the teeth were kept dry at room temperature for 1 h and then immersed in saline for rehydration for an additional 10 min. Thereafter, the roots were assigned to three groups, as follows: group 1 (control)--the cemental periodontal ligament was preserved; group 2--removal of the periodontal ligament by scraping root surface with a scalpel blade (SBS); group 3--periodontal ligament remnants were removed using a Robinson bristle brush at low-speed with pumice/water slurry (RBP). The specimens were analysed histomorphometrically and examined by scanning electron microscopy. The quantitative and qualitative analyses of the results showed that the RBP technique was significantly more effective than the SBS technique for removal of the periodontal ligament remnants adhered to root surface. Both techniques preserved the cementum layer.

  4. Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review.

    PubMed

    Sculean, Anton; Nikolidakis, Dimitris; Nikou, George; Ivanovic, Aleksandar; Chapple, Iain L C; Stavropoulos, Andreas

    2015-06-01

    Intrabony periodontal defects are a frequent complication of periodontitis and, if left untreated, may negatively affect long-term tooth prognosis. The optimal outcome of treatment in intrabony defects is considered to be the absence of bleeding on probing, the presence of shallow pockets associated with periodontal regeneration (i.e. formation of new root cementum with functionally orientated inserting periodontal ligament fibers connected to new alveolar bone) and no soft-tissue recession. A plethora of different surgical techniques, often including implantation of various types of bone graft and/or bone substitutes, root surface demineralization, guided tissue regeneration, growth and differentiation factors, enamel matrix proteins or various combinations thereof, have been employed to achieve periodontal regeneration. Despite positive observations in animal models and successful outcomes reported for many of the available regenerative techniques and materials in patients, including histologic reports, robust information on the degree to which reported clinical improvements reflect true periodontal regeneration does not exist. Thus, the aim of this review was to summarize, in a systematic manner, the available histologic evidence on the effect of reconstructive periodontal surgery using various types of biomaterials to enhance periodontal wound healing/regeneration in human intrabony defects. In addition, the inherent problems associated with performing human histologic studies and in interpreting the results, as well as certain ethical considerations, are discussed. The results of the present systematic review indicate that periodontal regeneration in human intrabony defects can be achieved to a variable extent using a range of methods and materials. Periodontal regeneration has been observed following the use of a variety of bone grafts and substitutes, guided tissue regeneration, biological factors and combinations thereof. Combination approaches appear to

  5. In vitro Osteogenic impulse effect of Dexamethasone on periodontal ligament stem cells

    PubMed Central

    Roozegar, Mohamad Ali; Mohammadi, Tayebeh Malek; Havasian, Mohamad Reza; Panahi, Jafar; Hashemian, Amirreza; Amraei, Mansur; Hoshmand, Behzad

    2015-01-01

    Periodontium is a complex organ composed of mineralized epithelial and connective tissue. Dexamethasone could stimulate proliferation of osteoblast and fibroblasts. This study aimed to assess the osteogenic effect of dexamethasone on periodental ligament (PDL) stem cells. PDL stem cells were collected from periodontal ligament tissue of root of extracted premolar of young and healthy people. The stem cells were cultured in α-MEM Medium in three groups, one group with basic medium contains (α- MEM and FBS 10 % and 50 mmol of β_ gelisrophosphat and L_ ascorbic acid µg/ml), the second group: basic medium with dexamethasone and the third one: basic medium without any osteogenic stimulant. Mineralization of cellular layer was analyzed with Alizarin red stain method. Osteogenic analysis was done by Alkaline phosphates and calcium test. These analysis indicated that the amount of intra-cellular calcium and alkaline phosphates in the Dexamethasone group was far more than the control and basic group (P<0.05). The results of Alizarin red stain indicated more mineralization of cultured cells in Dexamethasone group (P<0.05). The study results showed that Dexamethasone has significant osteogenic effect on PDL stem cells and further studies are recommended to evaluate its effect on treatment of bone disorders. PMID:25848170

  6. Evaluation of the resolving potency of a novel reconstruction filter on periodontal ligament space with dental cone-beam CT: a quantitative phantom study

    NASA Astrophysics Data System (ADS)

    Houno, Yuuki; Hishikawa, Toshimitsu; Gotoh, Ken-ichi; Naitoh, Munetaka; Ariji, Eiichiro; Kodera, Yoshie

    2014-03-01

    Diagnosis of the alveolar bone condition is important for the treatment planning of periodontal disease. Especially the determination of periodontal ligament space is the most important remark because it represents the periodontal tissue support for tooth retention. However, owing to the image blur of the current cone-beam CT (CBCT) imaging technique, the periodontal ligament space is difficult to visualize. In this study, we developed an original periodontal ligament phantom (PLP) and evaluated the image quality of simulated periodontal ligament space using a novel reconstruction filter for CBCT that emphasized high frequency component. PLP was composed from two resin blocks of different materials, the bone equivalent block and the dentine equivalent block. They were assembled to make continuously changing space from 0.0 to 1.0 millimeter that mimics periodontal ligament space. PLP was placed in water and the image was obtained by using Alphard-3030 dental cone-beam CT (Asahi Roentgen Industry Co., Ltd.). Then we reconstructed the projection data with a novel reconstruction filter. The axial images were compared with conventional reconstructed images. In novel filter reconstruction images, 0.4 millimeter of the space width was steadily detected by calculation of pixel value, on the other hand 0.6 millimeter was in conventional images. With our method, the resolving potency of conebeam CT images was improved.

  7. Enhanced bone-forming activity of side population cells in the periodontal ligament.

    PubMed

    Ninomiya, Tadashi; Hiraga, Toru; Hosoya, Akihiro; Ohnuma, Kiyoshi; Ito, Yuzuru; Takahashi, Masafumi; Ito, Susumu; Asashima, Makoto; Nakamura, Hiroaki

    2014-04-01

    Regeneration of alveolar bone is critical for the successful treatment of periodontal diseases. The periodontal ligament (PDL) has been widely investigated as a source of cells for the regeneration of periodontal tissues. In the present study where we attempted to develop an effective strategy for alveolar bone regeneration, we examined the osteogenic potential of side population (SP) cells, a stem cell-containing population that has been shown to be highly abundant in several kinds of tissues, in PDL cells. Isolated SP cells from the rat PDL exhibited a superior ability to differentiate into osteoblastic cells compared with non-SP (NSP) and unsorted PDL cells in vitro. The mRNA expressions of osteoblast markers and bone morphogenetic protein (BMP) 2 were significantly upregulated in SP cells and were further increased by osteogenic induction. To examine the bone-forming activity of SP cells in vivo, PDL SP cells isolated from green fluorescent protein (GFP)-transgenic rats were transplanted with hydroxyapatite (HA) disks into wild-type animals. SP cells exhibited a high ability to induce the mineralized matrix compared with NSP and unsorted PDL cells. At 12 weeks after the implantation, some of the pores in the HA disks with SP cells were filled with mineralized matrices, which were positive for bone matrix proteins, such as osteopontin, bone sialoprotein, and osteocalcin. Furthermore, osteoblast- and osteocyte-like cells on and in the bone-like mineralized matrices were GFP positive, suggesting that the matrices were directly formed by the transplanted cells. These results suggest that PDL SP cells possess enhanced osteogenic potential and could be a potential source for cell-based regenerative therapy for alveolar bone.

  8. Development of the oxytalan fiber system in the rat molar periodontal ligament evaluated by light- and electron-microscopic analyses.

    PubMed

    Inoue, Kouji; Hara, Yaiko; Sato, Tetsuji

    2012-09-01

    In the elastic fiber system of the periodontal ligaments only oxytalan fibers can be identified, whereas all three types of fibers, oxytalan, elaunin and elastic fibers, are present in the gingiva. However, little information is available concerning their organization in the developing periodontal ligament. In the present study, growth and distribution of the oxytalan fiber system were examined in the developing periodontal ligament of rat molars using the specific staining for oxytalan, elastic and collagen fibers, and electron-microscopic analyses. Oxytalan staining clearly confirmed the earliest oxytalan fibers in a bell-staged tooth germ at embryonic day 18, which were tiny violet-colored fibers in the dental follicle. Their cross images were made up of dot-like microfibrils of 10-15nm in diameter close to fibroblasts in the dental follicle of the rat molars aged 1 day. These microfibrils appeared to be linked to one another through delicate filaments in 3-nm-diameter. At the beginning of root formation, the cross figures of oxytalan fibers were found as dot-like structures around the root sheath as well as in areas very close to blood vessels. As development proceeded, longer oxytalan fibers were produced in the apico-occlusal direction along with blood vessels. In addition, the immunoreactive products to anti-amyloid β protein on the surface of blood vessels suggest that this molecule might be involved in the adhesion of oxytalan fibers to vascular basement membranes. Thus, the oxytalan fiber system might regulate periodontal ligament function through tensional variations registered on the walls of the vascular structures.

  9. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex.

    PubMed

    Vaquette, Cédryck; Fan, Wei; Xiao, Yin; Hamlet, Stephen; Hutmacher, Dietmar W; Ivanovski, Saso

    2012-08-01

    This study describes the design of a biphasic scaffold composed of a Fused Deposition Modeling scaffold (bone compartment) and an electrospun membrane (periodontal compartment) for periodontal regeneration. In order to achieve simultaneous alveolar bone and periodontal ligament regeneration a cell-based strategy was carried out by combining osteoblast culture in the bone compartment and placement of multiple periodontal ligament (PDL) cell sheets on the electrospun membrane. In vitro data showed that the osteoblasts formed mineralized matrix in the bone compartment after 21 days in culture and that the PDL cell sheet harvesting did not induce significant cell death. The cell-seeded biphasic scaffolds were placed onto a dentin block and implanted for 8 weeks in an athymic rat subcutaneous model. The scaffolds were analyzed by μCT, immunohistochemistry and histology. In the bone compartment, a more intense ALP staining was obtained following seeding with osteoblasts, confirming the μCT results which showed higher mineralization density for these scaffolds. A thin mineralized cementum-like tissue was deposited on the dentin surface for the scaffolds incorporating the multiple PDL cell sheets, as observed by H&E and Azan staining. These scaffolds also demonstrated better attachment onto the dentin surface compared to no attachment when no cell sheets were used. In addition, immunohistochemistry revealed the presence of CEMP1 protein at the interface with the dentine. These results demonstrated that the combination of multiple PDL cell sheets and a biphasic scaffold allows the simultaneous delivery of the cells necessary for in vivo regeneration of alveolar bone, periodontal ligament and cementum.

  10. The ionic products of bioactive glass particle dissolution enhance periodontal ligament fibroblast osteocalcin expression and enhance early mineralized tissue development.

    PubMed

    Varanasi, Venu G; Owyoung, Jeremy B; Saiz, Eduardo; Marshall, Sally J; Marshall, Grayson W; Loomer, Peter M

    2011-08-01

    This study resulted in enhanced collagen type 1 and osteocalcin expression in human periodontal ligament fibroblasts (hPDLF) when exposed to bioactive glass conditioned media that subsequently may promote early mineralized tissue development. Commercial Bioglass™ (45S5) and experimental bioactive coating glass (6P53-b), were used to make a glass conditioned media (GCM) for comparison to control medium. ICP-MS analysis showed increased concentrations of Ca(2+), PO(4) (3-), Si(4+), and Na(+), for 45S5 GCM and Mg(2+), K(+), Ca(2+), PO(4)(3-), Si(4+), and Na(+) for 6P53-b GCM (relative to control medium). Differentiating hPDLF cultures exposed to 45S5 and 6P53-b GCM showed enhanced expression of collagen type 1 (Col1α1, Col1α2), osteocalcin, and alkaline phosphatase gene expression. These GCM also enhanced osteocalcin protein expression. After 16 d of culture, 45S5 and 6P53-b GCM treated cells showed regions of deep red Alizarin staining, indicating increased Ca within their respective extracellular matrices (ECM), while control-treated cells did not exhibit these features. SEM analysis showed more developed ECM in GCM treated cultures, indicated by multiple tissue layering and abundant collagen fiber bundle formation, while control treated cells did not exhibit these features. SEM analysis showed polygonal structures suggestive of CaP in 45S5 GCM treated cultures. These results indicate the osteogenic potential of bioactive coating glass in periodontal bone defect filling applications.

  11. Functional Local Renin-Angiotensin System in Human and Rat Periodontal Tissue

    PubMed Central

    Santos, Carlos F.; Morandini, Ana C.; Dionísio, Thiago J.; Faria, Flávio A.; Lima, Marta C.; Figueiredo, Caio M.; Colombini-Ishikiriama, Bella L.; Sipert, Carla R.; Maciel, Rubens P.; Akashi, Ana P.; Souza, Gabriela P.; Garlet, Gustavo P.; Rodini, Camila O.; Amaral, Sandra L.; Becari, Christiane; Salgado, Maria C.; Oliveira, Eduardo B.; Matus, Isaac; Didier, Daniela N.; Greene, Andrew S.

    2015-01-01

    The initiation or progression of periodontitis might involve a local renin-angiotensin system (RAS) in periodontal tissue. The aim of this study was to further characterize the local RAS in human and rat periodontal tissues between healthy and periodontally-affected tissue. Components of the RAS were investigated using in vitro, ex vivo and in vivo experiments involving both human and Wistar rat periodontium. Although not upregulated when challenged with P. gingivalis-lipopolysaccharide, human gingival and periodontal ligament fibroblasts expressed RAS components. Likewise, healthy and inflamed human gingiva expressed RAS components, some of which were shown to be functional, yet no differences in expression were found between healthy and diseased gingiva. However, in inflamed tissue the immunoreactivity was greater for the AT1R compared to AT2R in fibroblasts. When compared to healthy tissue, ACE activity was increased in human gingiva from volunteers with gingivitis. Human-gingiva homogenates generated Ang II, Ang 1-9 and Ang 1-7 when incubated with precursors. In gingiva homogenates, Ang II formation from Ang I was nearly abolished only when captopril and chymostatin were combined. Ang 1-7 formation was significantly greater when human gingiva homogenates were incubated with chymostatin alone compared to incubation without any inhibitor, only captopril, or captopril and chymostatin. In rat gingiva, RAS components were also found; their expression was not different between healthy and experimentally induced periodontitis (EP) groups. However, renin inhibition (aliskiren) and an AT1R antagonist (losartan) significantly blocked EP-alveolar-bone loss in rats. Collectively, these data are consistent with the hypothesis that a local RAS system is not only present but is also functional in both human and rat periodontal tissue. Furthermore, blocking AT1R and renin can significantly prevent periodontal bone loss induced by EP in rats. PMID:26244896

  12. In vitro clonogenic capacity of periodontal ligament fibroblasts cultured with Emdogain.

    PubMed

    Ashkenazi, Malka; Shaked, Ilanit

    2006-02-01

    The aim of the present study was to evaluate the efficiency of Emdogain (EMD) in preserving the size of the periodontal ligament progenitor pool (clonogenic capacity) and in promoting their proliferation. Periodontal ligament fibroblasts (PDLF) were obtained from explants of young permanent healthy tooth. After initial outgrowth (10 days to 2 weeks following explantation), the culture medium of experimental flasks was replaced with medium supplemented with 100 microg ml(-1) EMD, whereas the other served as controls and were fed with regular medium. Following 5 weeks, the cells were washed (3x), harvested (trypsin + EDTA), and evaluated for their viability. Viable cells from each group were inoculated into six 96-well plates at a concentration of one viable cell per two wells and were allowed to grow for 5 weeks. The percentage of cells with clonogenic capacity was determined as the number of colonies formed/number of cells seeded x 100 in the experimental and control groups. Three degrees of dish area coverage were utilized: up to 25%, between 25% and 75% and higher than 75%. This experiment was repeated four times from four different donors. A total of 2328 cells were evaluated, half of which, were cultured with EMD. The mean percentage of cells (from all donors) who exhibited any clonogenic capacity in the presence of EMD was comparable with that of cells cultured in the absence of EMD: 26.6 +/- 14.3% when compared with 34.6 +/- 20.6% respectively (P = 0.186). Similarly, the percentage of clones that proliferated to cover up to 25% of the well area was comparable in the two groups 7.5 +/- 8.6 for EMD-treated clones and 7.1 +/- 7.8 for untreated clones (P = 0.674). The percentage of clones that proliferated to cover 25% up to 75% of the well area was greater EMD-treated clones as compared with the untreated cells: 8.1 +/- 6.7% vs 3.8 +/- 3%. However this difference was not statistically significant (P = 0.277). In contrast, the percentage of clones that covered

  13. Exposure of periodontal ligament progenitor cells to lipopolysaccharide from Escherichia coli changes osteoblast differentiation pattern

    PubMed Central

    ALBIERO, Mayra Laino; AMORIM, Bruna Rabelo; MARTINS, Luciane; CASATI, Márcio Zaffalon; SALLUM, Enilson Antonio; NOCITI, Francisco Humberto; SILVÉRIO, Karina Gonzales

    2015-01-01

    Periodontal ligament mesenchymal stem cells (PDLMSCs) are an important alternative source of adult stem cells and may be applied for periodontal tissue regeneration, neuroregenerative medicine, and heart valve tissue engineering. However, little is known about the impact of bacterial toxins on the biological properties of PDLSMSCs, including self-renewal, differentiation, and synthesis of extracellular matrix. Objective : This study investigated whether proliferation, expression of pro-inflammatory cytokines, and osteogenic differentiation of CD105-enriched PDL progenitor cell populations (PDL-CD105+ cells) would be affected by exposure to bacterial lipopolysaccharide from Escherichia coli (EcLPS). Material and Methods : Toll-like receptor 4 (TLR4) expression was assessed in PDL-CD105+ cells by the immunostaining technique and confirmed using Western blotting assay. Afterwards, these cells were exposed to EcLPS, and the following assays were carried out: (i) cell viability using MTS; (ii) expression of the interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor alpha (TNF-α) genes; (iii) osteoblast differentiation assessed by mineralization in vitro, and by mRNA levels of run-related transcription factor-2 (RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN) determined by quantitative PCR. Results : PDL-CD105+ cells were identified as positive for TLR4. EcLPS did not affect cell viability, but induced a significant increase of transcripts for IL-6 and IL-8. Under osteogenic condition, PDL-CD105+ cells exposed to EcLPS presented an increase of mineralized matrix deposition and higher RUNX2 and ALP mRNA levels when compared to the control group. Conclusions : These results provide evidence that CD105-enriched PDL progenitor cells are able to adapt to continuous Escherichia coli endotoxin challenge, leading to an upregulation of osteogenic activities. PMID:26018305

  14. Effect of the simulated periodontal ligament on cast post-and-core removal using an ultrasonic device

    PubMed Central

    BRITO-JUNIOR, Manoel; BRAGA, Neilor Mateus Antunes; RODRIGUES, Danilo Costa; CAMILO, Carla Cristina; FARIA-E-SILVA, André Luis

    2010-01-01

    Objective The aim of this study was to evaluate the effect of simulated periodontal ligament (SPDL) on custom cast dowel and core removal by ultrasonic vibration. Material and Methods Thirty-two human maxillary canines were included in resin cylinders with or without SPDL made from polyether impression material. In order to allow tensile testing, the roots included in resin cylinders with SPDL were fixed to cylinders with two stainless steel wires. Post-holes were prepared by standardizing the length at 8 mm and root canal impressions were made with self-cured resin acrylic. Cast dowel and core sets were fabricated and luted with Panavia F resin cement. Half of the samples were submitted to ultrasonic vibration before the tensile test. Data were analyzed statistically by two-way ANOVA and Tukey's post-hoc tests (p<0.05). Results The ultrasonic vibration reduced the tensile strength of the samples directly included in resin cylinders. There was no difference between the values, whether or not ultrasonic vibration was used, when the PDL was simulated. However, the presence of SPDL affected the tensile strength values even when no ultrasonic vibration was applied. Conclusion Simulation of PDL has an effect on both ultrasonic vibration and tensile testing. PMID:21085812

  15. Conditioned medium of periodontal ligament mesenchymal stem cells exert anti-inflammatory effects in lipopolysaccharide-activated mouse motoneurons.

    PubMed

    Rajan, Thangavelu Soundara; Giacoppo, Sabrina; Trubiani, Oriana; Diomede, Francesca; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela

    2016-11-15

    Conditioned medium derived from mesenchymal stem cells (MSCs) shows immunomodulatory and neuroprotective effects in preclinical models. Given the difficulty to harvest MSCs from bone marrow and adipose tissues, research has been focused to find alternative resources for MSCs, such as oral-derived tissues. Recently, we have demonstrated the protective effects of MSCs obtained from healthy human periodontal ligament tissue (hPDLSCs) in murine experimental autoimmune encephalomyelitis model. In the present in vitro study, we have investigated the immunomodulatory and neuroprotective effects of conditioned medium obtained from hPDLSCs of Relapsing Remitting- Multiple sclerosis (RR-MS) patients on NSC34 mouse motoneurons stimulated with lipopolysaccharide (LPS). Immunocytochemistry and western blotting were performed. Increased level of TLR4 and NFκB, and reduced level of IκB-α were observed in LPS-stimulated motoneurons, which were modulated by pre-conditioning with hPDLSC-conditioned medium. Inflammatory cytokines (TNF-α, IL-10), neuroprotective markers (Nestin, NFL 70, NGF, GAP43), and apoptotic markers (Bax, Bcl-2, p21) were modulated. Moreover, extracellular vesicles of hPDLSC-conditioned medium showed the presence of anti-inflammatory cytokines IL-10 and TGF-β. Our results demonstrate the immunosuppressive properties of hPDLSC-conditioned medium of RR-MS patients in motoneurons subjected to inflammation. Our findings warrant further preclinical and clinical studies to elucidate the autologous therapeutic efficacy of hPDLSC-conditioned medium in neurodegenerative diseases.

  16. Attachment, proliferation and differentiation of periodontal ligament cells on various guided tissue regeneration membranes.

    PubMed

    Takata, T; Wang, H L; Miyauchi, M

    2001-10-01

    The purpose of this study was to evaluate the biological effects of guided tissue regeneration (GTR) membrane materials, per se, on the periodontal tissue regeneration. Rat periodontal ligament (PDL)-derived cells were used to study the attachment, proliferation and differentiation, in vitro, on various GTR membranes. Five commercially available membranes bovine type I collagen (BioMend; BM), bovine type I atelocollagen (Tissue Guide; TG), polylactic acid (Epi-Guide; EG), co-polymer of polylactic acid and polyglycolic acid (Resolute; RL) and expanded polytetrafluoroethylene: e-PTFE (Gore Tex; GT)-were examined. A 3 x 3 mm section of the membrane was fixed to the bottom of a 35 x 10 mm style culture dish and plated with 2 ml of cell suspension at an initial density of 5 x 10(4) cells/ml in culture medium with 10% fetal bovine serum. For cell growth analysis, the specimens were fixed with 10% buffered formalin and stained with hematoxylin at 1.5 hours and 1, 3 and 5 days after cell seeding. The number of cells included in a unit area of 0.25 mm2 were counted under light microscopy. As a comparative scaffold of cell proliferation, a plastic cover for cell culture slip (Celldesk; CD) was used. For analysis of cell differentiation, activity of alkaline phosphatase (ALP) and calcification were histochemically revealed after 2-week cultivation. The initial number of PDL cells attached to the membrane at 1.5 hours after cell seeding was different among membranes. RL, TG and EG had the same level of attached cell numbers as that on CD, while the cell numbers on GT and BM were significantly lower than that on CD (p < 0.01). The rate of cell proliferation with time also differed among the membranes examined. RL and BM demonstrated a significantly higher number of cells at 5 days than at 1.5 hours (p < 0.01). TG had increased numbers of cells at 3 and 5 days after cell seeding. However, there was no statistical difference between the cell numbers at 1.5 hours and 5 days after

  17. Evaluation of Periodontal Ligament Cell Viability in Three Different Storage Media: An in Vitro Study

    PubMed Central

    Sharma, Sanjay; Reddy, Y. G.; Mittal, Rakesh; Agarwal, Vishal; Singh, Chanchal; Singh, Amandeep

    2015-01-01

    Objectives: This study was undertaken to evaluate the viability of periodontal ligament (PDL) cells of avulsed teeth in three different storage media. Materials and Methods: Forty-five premolars extracted for orthodontic therapeutic purposes were randomly and equally divided into three groups based on storage media used [Group I: milk (control); Group II: aloe vera (experimental); Group III: egg white (experimental)]. Following extractions, the teeth were placed in one of the three different storage media for 30 minutes, following which the scrapings of the PDL from these teeth were collected in Falcon tubes containing collagenase enzyme in 2.5 mL of phosphate buffered saline. The tubes were subsequently incubated for 30 minutes and centrifuged for five minutes at 800 rpm. The obtained PDL cells were stained with Trypan Blue and were observed under optical microscope. The percentage of viable cells was calculated. Results: Aloe vera showed the highest percentage of viable cells (114.3±8.0), followed by egg white (100.9±6.3) and milk (101.1±7.3). Conclusion: Within the limitations of this study, it appears that aloe vera maintains PDL cell viability better than egg white or milk. PMID:26877742

  18. The Biomechanical Function of Periodontal Ligament Fibres in Orthodontic Tooth Movement

    PubMed Central

    McCormack, Steven W.; Witzel, Ulrich; Watson, Peter J.; Fagan, Michael J.; Gröning, Flora

    2014-01-01

    Orthodontic tooth movement occurs as a result of resorption and formation of the alveolar bone due to an applied load, but the stimulus responsible for triggering orthodontic tooth movement remains the subject of debate. It has been suggested that the periodontal ligament (PDL) plays a key role. However, the mechanical function of the PDL in orthodontic tooth movement is not well understood as most mechanical models of the PDL to date have ignored the fibrous structure of the PDL. In this study we use finite element (FE) analysis to investigate the strains in the alveolar bone due to occlusal and orthodontic loads when PDL is modelled as a fibrous structure as compared to modelling PDL as a layer of solid material. The results show that the tension-only nature of the fibres essentially suspends the tooth in the tooth socket and their inclusion in FE models makes a significant difference to both the magnitude and distribution of strains produced in the surrounding bone. The results indicate that the PDL fibres have a very important role in load transfer between the teeth and alveolar bone and should be considered in FE studies investigating the biomechanics of orthodontic tooth movement. PMID:25036099

  19. In vitro phagocytosis of exogenous collagen by fibroblasts from the periodontal ligament: an electron microscopic study.

    PubMed Central

    Svoboda, E L; Brunette, D M; Melcher, A H

    1979-01-01

    There have been numerous electron microscopic reports of apparent phagocytosis of collagen by fibroblasts and other cells in vivo. We have developed an in vitro system which, to the best of our knowledge, will permit for the first time the study of regulatory mechanisms governing phagocytosis and digestion of collagen fibres. Cells were cultured from explants of monkey periodontal ligament, subcultured, and grown to confluence in alpha-MEM plus 15% fetal calf serum plus antibiotics. The confluent cells were then cultured together with minced rat tail tendon collagen in alpha-MEM lacking proline, lysine, glycine and fetal calf serum for up to 7 days, after which they were processed for electron microscopy. Intracellular collagen profiles could be seen in cultured cells that were associated with exogenous collagen fibrils as early as 24 hours after addition of the collagen. Through electron microscopic examination of serial sections of the culture, we have demonstrated: (1) that fibroblasts can phagocytose collagen; (2) that the observed intracellular collagen is not the result of aggregation of endogenous synthesized collagen; (3) that it is not possible to base a decision as to whether a collagen fibril has been phagocytosed in whole or in part by the type of vesicle with which it is associated; (4) that cleavage of collagen into small pieces may not be a necessary prelude to its phagocytosis. Images Fig. 1 Fig. 2 Fig. 4 (cont.) Fig. 4 Fig. 6 (cont.) Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:108237

  20. Ultrastructural visualization of carbohydrates in oxytalan fibers in monkey periodontal ligaments.

    PubMed

    Takagi, M; Yagasaki, H; Baba, T; Baba, H

    1985-10-01

    Fullmer's oxytalan fibers appear to be special connective tissue fibers belonging to elastic system fibers. We have ultrastructurally examined carbohydrates in oxytalan fibers in monkey periodontal ligaments after glutaraldehyde fixation and ethylenediaminetetraacetic acid (EDTA) decalcification using: Thiéry's periodic acid-thiocarbohydrazide-silver proteinate (PA-TCH-SP) method for thin-section staining of vicinal glycol-containing complex carbohydrates, and the concanavalin A-ferritin (Con A-ferritin) and Con A-horseradish peroxidase (Con-A-HRP) en bloc staining methods specific for alpha-D-mannosyl and alpha-D-glucosyl groups. PA-TCH-SP stained collagen fibrils weakly to moderately and stained oxytalan fibers moderately. Con A-ferritin and Con A-HRP stained collagen fibrils weakly or moderately and stained oxytalan fibers intensely within the superficial region of specimen blocks. The penetration of staining reagents was improved by prior saponin treatment and/or chondroitinase ABC digestion. Thus, these studies demonstrate that PA-TCH-SP and Con A staining of carbohydrates is very useful in identifying oxytalan fibers at the ultrastructural level and that more carbohydrate components are present in oxytalan fibers than in collagen fibrils.

  1. Effect of Four Different Media on Periodontal Ligament Cells Viability of Dry- Stored Dog Teeth

    PubMed Central

    Moazzami, Fariborz; Asheghi, Bahar; Sahebi, Safoura

    2017-01-01

    Statement of the Problem: The maintenance of viable periodontal ligament cells is the most important issue in the long-term preservation of avulsed teeth. Purpose: The aim of this study was to assess aloe vera as a new storage media in maintaining the cell viability of dry-stored teeth in comparison with soy milk, Hank`s balanced salt solution (HBSS), and milk. Materials and Method: Twenty one extracted dog premolar teeth were dried for 30 minutes and stored in soy milk, HBSS, milk, and aloe vera extract (50%) for 45 minutes (n=6 for each). Furthermore, positive and two negative control groups (n=6), corresponding to 0 min, 30 min, and 2-hour drying times were also prepared respectively. The number of viable cells was counted following storage using Trypan blue exclusion. Data were statistically analyzed using the one-way ANOVA and post hoc Tukey-HSD test. Results: Statistical analysis showed no significant differences in cell viability among aloe vera, soymilk, and HBSS- stored teeth; however, they were all superior to milk. Conclusion: Aloe vera extract can be recommended as a suitable storage media for avulsed teeth. PMID:28280756

  2. Effect of propolis on survival of periodontal ligament cells: new storage media for avulsed teeth.

    PubMed

    Ozan, Fatih; Polat, Zübeyde Akin; Er, Kürsat; Ozan, Ulkü; Değer, Orhan

    2007-05-01

    Propolis is a multifunctional material used by bees in the construction and maintenance of their hives. Propolis possesses several biologic activities such as anti-inflammatory, antibacterial, antioxidant, antifungal, antiviral, and tissue regenerative, among others. The purpose of this study was to determine the ability of propolis to serve as a temporary storage medium for the maintenance of periodontal ligament (PDL) cell viability of avulsed teeth. PDL cells were obtained from healthy third molars and cultured in Dulbecco's Modified Eagles Medium (DMEM). Cultures were subjected to 10% propolis solution, 20% propolis solution, long-shelf life light milk with lower fat content (milk), Hank's Balanced Salt Solution, tap water as the negative control, and DMEM as the positive control. Tissue culture plates were incubated with experimental media at 37 degrees C for 1, 3, 6, 12, or 24 hours. PDL cell viability was assessed by trypan blue exclusion. Statistical analysis of the data was accomplished by using one-way analysis of variance complemented by the Tukey test. The level of significance was 5% (p<0.05). The results showed that 10% propolis was a more effective storage medium than other groups. In conclusion, propolis can be recommended as a suitable transport medium for avulsed teeth.

  3. In vitro time-dependent response of periodontal ligament to mechanical loading.

    PubMed

    Sanctuary, Colin S; Wiskott, H W Anselm; Justiz, Jörn; Botsis, John; Belser, Urs C

    2005-12-01

    This study examined the time-dependent response of bovine periodontal ligament (PDL). Applying linear viscoelastic theory, the objective was 1) to examine the linearity of the PDL's response in terms of its scaling and superposition property and 2) to generate the phase lag-vs.-frequency spectrum graph. PDL specimens were tested under three separate straining conditions: 1) tension ramp tests conducted at different strain rates, 2) pulling step-straining to 0.3 in discrete tests and to 0.3 and 0.6 in one continuous run, and 3) tension-compression sinusoidal oscillations. To this effect, bar-shaped specimens of bovine roots that comprised portions of dentin, PDL tissue, and alveolar bone were produced and strained in a microtensile machine. The experimental data demonstrated that neither the scaling nor the superposition properties were verified and that the viscoelastic response of the PDL was nonlinear. The PDL's elastic response was essentially stiffening, and its viscous component was pseudoplastic. The tangent of the PDL's strain-stress phase lag was in the 0-0.1 range in the tensile direction and in the 0.35-0.45 range in the compressive direction. In line with other biological tissues, the phase lag was largely independent of frequency. By use of the data generated, a mathematical model is outlined that reproduces both the elastic stiffening and viscous thinning of the PDL's response.

  4. Influence of orthodontic forces on the distribution of proteoglycans in rat hypofunctional periodontal ligament.

    PubMed

    Esashika, Mayumi; Kaneko, Sawa; Yanagishita, Masaki; Soma, Kunimichi

    2003-06-01

    During orthodontic treatment, it is often necessary to move the hypofunctional teeth. In this study, we revealed an influence of orthodontic forces in the hypofunctional periodontal ligament, and focused on the distribution of proteoglycans, major extracellular matrix molecules. Five-week-old rats were divided into normal group and hypofunctional group. To induce occlusal hypofunction, occluding teeth of the mandibular first molar were extracted. At 8-week-old, orthodontic force by 15 or 2 gf titanium-nickel alloy closed coil spring was applied to the mandibular first molar toward the mesial direction. Immunohistochemical analysis was performed using antibodies for chondroitin sulfate (CS) and heparan sulfate (HS). In normal group, CS was observed throughout the extracellular matrix, while HS was observed on the endothelial cells and the osteoclastic cells on compressive side. In hypofunctional group without orthodontic appliance, CS and HS were detected in less amounts. With 15 gf, CS was observed at the compressive area where no cells and fibers were present, and HS was observed at the periphery of this area. With 2 gf, however, the distribution of CS and HS was similar to the normal control. These findings indicate that CS and HS were affected by orthodontic forces, and suggest their distinct functions in tissue remodeling.

  5. Dynamic tensile properties of bovine periodontal ligament: A nonlinear viscoelastic model.

    PubMed

    Oskui, Iman Z; Hashemi, Ata

    2016-03-21

    As a support to the tooth, the mechanical response of the periodontal ligament (PDL) is complex. Like other connective tissues, the PDL exhibits non-linear and time-dependent behavior. The viscoelasticity of the PDL plays a significant role in low and high loading rates. Little information, however, is available on the short-term viscoelastic behavior of the PDL. Also, due to the highly non-linear stress-strain response, it was hypothesized that the dynamic viscoelastic properties of the PDL would be greatly dependent on the preload. Therefore, the present study was designed to explore the dynamic tensile properties of the bovine PDL as a function of loading frequency and preload. The in vitro dynamic tensile tests were performed over a wide range of frequencies (0.01-100Hz) with dynamic force amplitude of 1N and different preloads of 3, 5 and 10N. The generalized Maxwell model was utilized to describe the non-linear viscoelastic behavior of the PDL. The low loss factor of the bovine PDL, measured between 0.04 and 0.08, indicates low energy dissipation due to the high content of collagen fibers. Moreover, the influence of viscous components in the linear region of the stress-strain curve (10N preload) was lower than those of the toe region (3N preload). The data reported in this study could be used in developing accurate computational models of the PDL.

  6. Skeletal ligament healing using the recombinant human amelogenin protein.

    PubMed

    Hanhan, Salem; Ejzenberg, Ayala; Goren, Koby; Saba, Faris; Suki, Yarden; Sharon, Shay; Shilo, Dekel; Waxman, Jacob; Spitzer, Elad; Shahar, Ron; Atkins, Ayelet; Liebergall, Meir; Blumenfeld, Anat; Deutsch, Dan; Haze, Amir

    2016-05-01

    Injuries to ligaments are common, painful and debilitating, causing joint instability and impaired protective proprioception sensation around the joint. Healing of torn ligaments usually fails to take place, and surgical replacement or reconstruction is required. Previously, we showed that in vivo application of the recombinant human amelogenin protein (rHAM(+)) resulted in enhanced healing of the tooth-supporting tissues. The aim of this study was to evaluate whether amelogenin might also enhance repair of skeletal ligaments. The rat knee medial collateral ligament (MCL) was chosen to prove the concept. Full thickness tear was created and various concentrations of rHAM(+), dissolved in propylene glycol alginate (PGA) carrier, were applied to the transected MCL. 12 weeks after transection, the mechanical properties, structure and composition of transected ligaments treated with 0.5 μg/μl rHAM(+) were similar to the normal un-transected ligaments, and were much stronger, stiffer and organized than control ligaments, treated with PGA only. Furthermore, the proprioceptive free nerve endings, in the 0.5 μg/μl rHAM(+) treated group, were parallel to the collagen fibres similar to their arrangement in normal ligament, while in the control ligaments the free nerve endings were entrapped in the scar tissue at different directions, not parallel to the axis of the force. Four days after transection, treatment with 0.5 μg/μl rHAM(+) increased the amount of cells expressing mesenchymal stem cell markers at the injured site. In conclusion application of rHAM(+) dose dependently induced mechanical, structural and sensory healing of torn skeletal ligament. Initially the process involved recruitment and proliferation of cells expressing mesenchymal stem cell markers.

  7. Periodontal ligament cells cultured under steady-flow environments demonstrate potential for use in heart valve tissue engineering.

    PubMed

    Martinez, Catalina; Rath, Sasmita; Van Gulden, Stephanie; Pelaez, Daniel; Alfonso, Abraham; Fernandez, Natasha; Kos, Lidia; Cheung, Herman; Ramaswamy, Sharan

    2013-02-01

    A major drawback of mechanical and prosthetic heart valves is their inability to permit somatic growth. By contrast, tissue-engineered pulmonary valves potentially have the capacity to remodel and integrate with the patient. For this purpose, adult stem cells may be suitable. Previously, human periodontal ligament cells (PDLs) have been explored as a reliable and robust progenitor cell source for cardiac muscle regeneration (Pelaez, D. Electronic Thesis and Dissertation Database, Coral Gables, FL, May 2011). Here, we investigate the potential of PDLs to support the valve lineage, specifically the concomitant differentiation to both endothelial cell (EC) and smooth muscle cell (SMC) types. We were able to successfully promote PDL differentiation to both SMC and EC phenotypes through a combination of stimulatory approaches using biochemical and mechanical flow conditioning (steady shear stress of 1 dyne/cm(2)), with flow-based mechanical conditioning having a predominant effect on PDL differentiation, particularly to ECs; in addition, strong expression of the marker FZD2 and an absence of the marker MLC1F point toward a unique manifestation of smooth muscle by PDLs after undergoing steady-flow mechanical conditioning alone, possible by only the heart valve and pericardium phenotypes. It was also determined that steady flow (which was performed using a physiologically relevant [for heart valves] magnitude of ~5-6 dynes/cm(2)) augmented the synthesis of the extracellular matrix collagen proteins. We conclude that under steady-flow dynamic culture environments, human PDLs can differentiate to heterogeneous cell populations that are relevant to heart valve tissue engineering. Further exploration of human PDLs for this purpose is thus warranted.

  8. Extraforaminal ligament attachments of the thoracic spinal nerves in humans.

    PubMed

    Kraan, G A; Hoogland, P V J M; Wuisman, P I J M

    2009-04-01

    An anatomical study of the extraforaminal attachments of the thoracic spinal nerves was performed using human spinal columns. The objectives of the study are to identify and describe the existence of ligamentous structures at each thoracic level that attach spinal nerves to structures at the extraforaminal region. During the last 120 years, several mechanisms have been described to protect the spinal nerve against traction. All the described structures were located inside the spinal canal proximal to the intervertebral foramen. Ligaments with a comparable function just outside the intervertebral foramen are mentioned ephemerally. No studies are available about ligamentous attachments of thoracic spinal nerves to the spine. Five embalmed human thoracic spines (Th2-Th11) were dissected. Bilaterally, the extraforaminal region was dissected to describe and measure anatomical structures and their relationships with the thoracic spinal nerves. Histology was done at the sites of attachment of the ligaments to the nerves and along the ligaments. The thoracic spinal nerves are attached to the transverse process of the vertebrae cranial and caudal to the intervertebral foramen. The ligaments consist mainly of collagenous fibers. In conclusion, at the thoracic level, direct ligamentous connections exist between extraforaminal thoracic spinal nerves and nearby structures. They may serve as a protective mechanism against traction and compression of the nerves by positioning the nerve in the intervertebral foramen.

  9. In vitro models of periodontal cells: a comparative study of long-term gingival, periodontal ligament and alveolar bone cell cultures in the presence of beta-glycerophosphate and dexamethasone.

    PubMed

    Cabral, Maria Cristina Trigo; Costa, Maria Adelina; Fernandes, Maria Helena

    2007-06-01

    Human gingival (HG), periodontal ligament (HPL) and alveolar bone (HAB) cells (first subculture) were cultured (10(4) cells/cm2) for 35 days in alpha-Minimal Essential Medium supplemented with 10% fetal bovine serum in the presence of (i) ascorbic acid (AA, 50 microg/mL), (ii) AA + beta-glycerophosphate (betaGP, 10 mM) and (iii) AA + betaGP + dexamethasone (Dex, 10 nM). Cultures were assessed for cell attachment and spreading, cell proliferation, alkaline phosphatase (ALP) and acid phosphatase (ACP) activities and matrix mineralization. HG cell cultures presented a high proliferation rate, a low ability to synthesize ALP and ACP and the formation of a non-mineralized extracellular matrix, regardless the experimental situation. HPL cell cultures were very sensitive to the culture conditions and showed a high proliferation rate, synthesis of moderate levels of ALP and ACP and a modest matrix mineralization in the presence of AA + betaGP + Dex. HAB cell cultures presented a growth rate lower than that of HG and HPL cells, a high ALP activity and comparatively low levels of ACP, and the ready formation of a heavy mineralized matrix in the presence of betaGP. In the three periodontal cell cultures, Dex enhanced cell proliferation and expression of osteoblastic markers. Results showed that betaGP and Dex allowed the modulation of the cell proliferation/differentiation behavior within the proposed physiological and regenerative capabilities of these periodontal cells.

  10. The evolution of human periodontal tissues with ageing.

    PubMed

    Craca, R; Romagnoli, P; Cambi, S; Orlando, S

    1991-01-01

    In this research, the structural modifications with ageing of clinically healthy periodontal tissues were analyzed by means of polarization microscopy and morphometrical methods for light microscopy. The new findings may be summarized as follows. The periodontal ligament was found to be widened in the cervical and apical regions. The thickening of cementum with ageing was shown to be accompanied by a modification in the shape of Sharpey's fibres, which in the elderlies were wavy instead of straight as in the control. Lamellar bone, forming an osteone, was found to substitute in part for cementum in one tooth. These results are interpreted as indicating that: (1) late active eruption occurs in man, causing the observed modification in the thickness of periodontal ligament and cementum in the apical region and in the direction of Sharpey's fibres within cementum; (2) cementum may undergo renewal during lifetime and in this case bone may be deposited in contact with dentin.

  11. Multiscale biomechanical responses of adapted bone-periodontal ligament-tooth fibrous joints

    PubMed Central

    Jang, Andrew T.; Merkle, Arno; Fahey, Kevin; Gansky, Stuart A.; Ho, Sunita P.

    2015-01-01

    Reduced functional loads cause adaptations in organs. In this study, temporal adaptations of bone-ligament-tooth fibrous joints to reduced functional loads were mapped using a holistic approach. Systematic studies were performed to evaluate organ-level and tissue-level adaptations in specimens harvested periodically from rats given powder food for 6 months (N = 60 over 8,12,16,20, and 24 weeks). Bone-periodontal ligament (PDL)-tooth fibrous joint adaptation was evaluated by comparing changes in joint stiffness with changes in functional space between the tooth and alveolar bony socket. Adaptations in tissues included mapping changes in the PDL and bone architecture as observed from collagen birefringence, bone hardness and volume fraction in rats fed soft foods (soft diet, SD) compared to those fed hard pellets as a routine diet (hard diet, HD). In situ biomechanical testing on harvested fibrous joints revealed increased stiffness in SD groups (SD:239-605 N/mm) (p<0.05) at 8 and 12 weeks. Increased joint stiffness in early development phase was due to decreased functional space (at 8wks change in functional space was −33 µm, at 12wks change in functional space was −30 µm) and shifts in tissue quality as highlighted by birefringence, architecture and hardness. These physical changes were not observed in joints that were well into function, that is, in rodents older than 12 weeks of age. Significant adaptations in older groups were highlighted by shifts in bone growth (bone volume fraction 24wks: Δ-0.06) and bone hardness (8wks: Δ−0.04 GPa, 16 wks: Δ−0.07 GPa, 24wks: Δ−0.06 GPa). The response rate (N/s) of joints to mechanical loads decreased in SD groups. Results from the study showed that joint adaptation depended on age. The initial form-related adaptation (observed change in functional space) can challenge strain-adaptive nature of tissues to meet functional demands with increasing age into adulthood. The coupled effect between functional space in

  12. Multiscale biomechanical responses of adapted bone-periodontal ligament-tooth fibrous joints.

    PubMed

    Jang, Andrew T; Merkle, Arno P; Fahey, Kevin P; Gansky, Stuart A; Ho, Sunita P

    2015-12-01

    Reduced functional loads cause adaptations in organs. In this study, temporal adaptations of bone-ligament-tooth fibrous joints to reduced functional loads were mapped using a holistic approach. Systematic studies were performed to evaluate organ-level and tissue-level adaptations in specimens harvested periodically from rats (N=60) given powder food for 6 months over 8,12,16,20, and 24 weeks. Bone-periodontal ligament (PDL)-tooth fibrous joint adaptation was evaluated by comparing changes in joint stiffness with changes in functional space between the tooth and alveolar bony socket. Adaptations in tissues included mapping changes in the PDL and bone architecture as observed from collagen birefringence, bone hardness and volume fraction in rats fed soft foods (soft diet, SD) compared to those fed hard pellets as a routine diet (hard diet, HD). In situ biomechanical testing on harvested fibrous joints revealed increased stiffness in SD groups (SD:239-605 N/mm) (p<0.05) at 8 and 12 weeks. Increased joint stiffness in early development phase was due to decreased functional space (at 8 weeks change in functional space was -33 μm, at 12 weeks change in functional space was -30 μm) and shifts in tissue quality as highlighted by birefringence, architecture and hardness. These physical changes were not observed in joints that were well into function, that is, in rodents older than 12 weeks of age. Significant adaptations in older groups were highlighted by shifts in bone growth (bone volume fraction 24 weeks: Δ-0.06) and bone hardness (8 weeks: Δ-0.04 GPa, 16 weeks: Δ-0.07 GPa, 24 weeks: Δ-0.06 GPa). The response rate (N/s) of joints to mechanical loads decreased in SD groups. Results from the study showed that joint adaptation depended on age. The initial form-related adaptation (observed change in functional space) can challenge strain-adaptive nature of tissues to meet functional demands with increasing age into adulthood. The coupled effect between functional

  13. The roles of calcium-sensing receptor and calcium channel in osteogenic differentiation of undifferentiated periodontal ligament cells.

    PubMed

    Koori, Katsuaki; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Kawachi, Giichiro; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Wada, Naohisa; Akamine, Akifumi

    2014-09-01

    Elevated extracellular calcium has been shown to promote the differentiation of osteoblasts. However, the way that calcium affects the osteogenic differentiation of human periodontal ligament stem/progenitor cells (PDLSCs) remains unclear. Our aim has been to investigate the proliferation and osteogenic differentiation of a calcium-exposed human PDLSC line (cell line 1-17) that we have recently established and to elucidate the roles of the calcium-sensing receptor (CaSR) and L-type voltage-dependent calcium channel (L-VDCC) in this process. Proliferation activity was investigated by WST-1 assay, and gene and protein expression was examined by quantitative reverse transcriptase plus the polymerase chain reaction and immunostaining, respectively. Calcification assay was performed by von Kossa and Alizarin red staining. Treatment with 5 mM CaCl2 significantly induced proliferation, bone-related gene expression, and calcification in cell line 1-17. During culture with 5 mM CaCl2, this cell line up-regulated the gene expression of CaSR, which was reduced after 7 days. Simultaneous treatment with NPS2143, a CaSR inhibitor, and calcium significantly further increased bone-related gene expression and calcification as compared with CaCl2 exposure alone. The L-VDCC inhibitor, nifedipine, significantly suppressed osteogenic differentiation of cell line 1-17 treated with 5 mM CaCl2 and promoted the expression of CaSR, as compared with calcium treatment alone. Thus, elevated extracellular calcium promotes the proliferation and osteogenic differentiation of a PDLSC line. Antagonizing CaSR further enhances the effect of calcium on osteogenic differentiation, with CaSR expression being regulated by L-VDCC under extracellular calcium. Extracellular calcium might therefore modulate the osteogenic differentiation of PDLSCs through reciprocal adjustments of CaSR and L-VDCC.

  14. Lymphatic Stomata in the Adult Human Pulmonary Ligament

    PubMed Central

    Miura, Masahiro; Iobe, Hiroaki; Kudo, Tomoo; Shimazu, Yoshihito; Aoba, Takaaki; Okudela, Koji; Nagahama, Kiyotaka; Sakamaki, Kentaro; Yoshida, Maki; Nagao, Toshitaka; Nakaya, Takeo; Kurata, Atsushi; Ohtani, Osamu

    2015-01-01

    Abstract Background: Lymphatic stomata are small lymphatic openings in the serosal membrane that communicate with the serosal cavity. Although these stomata have primarily been studied in experimental mammals, little is known concerning the presence and properties of lymphatic stomata in the adult human pleura. Thus, adult human pleurae were examined for the presence or absence of lymphatic stomata. Methods and Results: A total of 26 pulmonary ligaments (13 left and 13 right) were obtained from 15 adult human autopsy cases and examined using electron and light microscopy. The microscopic studies revealed the presence of apertures fringed with D2-40-positive, CD31-positive, and cytokeratin-negative endothelial cells directly communicating with submesothelial lymphatics in all of the pulmonary ligaments. The apertures' sizes and densities varied from case to case according to the serial tissue section. The medians of these aperture sizes ranged from 2.25 to 8.75 μm in the left pulmonary ligaments and from 2.50 to 12.50 μm in the right pulmonary ligaments. The densities of the apertures ranged from 2 to 9 per mm2 in the left pulmonary ligaments and from 2 to 18 per mm2 in the right pulmonary ligaments. However, no significant differences were found regarding the aperture size (p=0.359) and density (p=0.438) between the left and the right pulmonary ligaments. Conclusions: Our study revealed that apertures exhibit structural adequacy as lymphatic stomata on the surface of the pulmonary ligament, thereby providing evidence that lymphatic stomata are present in the adult human pleura. PMID:25526320

  15. Hydro-mechanical coupling in the periodontal ligament: a porohyperelastic finite element model.

    PubMed

    Bergomi, Marzio; Cugnoni, Joël; Galli, Matteo; Botsis, John; Belser, Urs C; Wiskott, H W Anselm

    2011-01-04

    Harmonic tension-compression tests at 0.1, 0.5 and 1 Hz on hydrated bovine periodontal ligament (PDL) were numerically simulated. The process was modeled by finite elements (FE) within the framework of poromechanics, with the objective of isolating the contributions of the solid- and fluid phases. The solid matrix was modeled as a porous hyperelastic material (hyperfoam) through which the incompressible fluid filling the pores flowed in accordance with the Darcy's law. The hydro-mechanical coupling between the porous solid matrix and the fluid phase circulating through it provided an apparent time-dependent response to the PDL, whose rate of deformation depended on the permeability of the porous solid with respect to the interstitial fluid. Since the PDL was subjected to significant deformations, finite strains were taken into account and an exponential dependence of PDL permeability on void ratio - and therefore on the deformation state - was assumed. PDL constitutive parameters were identified by fitting the simulated response to the experimental data for the tests at 1 Hz. The values thus obtained were then used to simulate the tests at 0.1 and 0.5 Hz. The results of the present simulation demonstrate that a porohyperelastic model with variable permeability is able to describe the two main aspects of the PDL's response: (1) the dependency on strain-rate-the saturated material can develop volumetric strains by only exchanging fluid and (2) the asymmetry between tension and compression, which is due to the effect of both the permeability and the elastic properties on deformation.

  16. Methanogenic Archaea and human periodontal disease

    PubMed Central

    Lepp, Paul W.; Brinig, Mary M.; Ouverney, Cleber C.; Palm, Katherine; Armitage, Gary C.; Relman, David A.

    2004-01-01

    Archaea have been isolated from the human colon, vagina, and oral cavity, but have not been established as causes of human disease. In this study, we reveal a relationship between the severity of periodontal disease and the relative abundance of archaeal small subunit ribosomal RNA genes (SSU rDNA) in the subgingival crevice by using quantitative PCR. Furthermore, the relative abundance of archaeal small subunit rDNA decreased at treated sites in association with clinical improvement. Archaea were harbored by 36% of periodontitis patients and were restricted to subgingival sites with periodontal disease. The presence of archaeal cells at these sites was confirmed by fluorescent in situ hybridization. The archaeal community at diseased sites was dominated by a Methanobrevibacter oralis-like phylotype and a distinct Methanobrevibacter subpopulation related to archaea that inhabit the gut of numerous animals. We hypothesize that methanogens participate in syntrophic relationships in the subgingival crevice that promote colonization by secondary fermenters during periodontitis. Because they are potential alternative syntrophic partners, our finding of larger Treponema populations sites without archaea provides further support for this hypothesis. PMID:15067114

  17. Mechanical design, analysis, and laboratory testing of a dental implant with axial flexibility similar to natural tooth with periodontal ligament.

    PubMed

    Pektaş, Ömer; Tönük, Ergin

    2014-11-01

    At the interface between the jawbone and the roots of natural teeth, a thin, elastic, shock-absorbing tissue, called the periodontal ligament, forms a cushion which provides certain flexibility under mechanical loading. The dental restorations supported by implants, however, involve comparatively rigid connections to the jawbone. This causes overloading of the implant while bearing functional loading together with neighboring natural teeth, which leads to high stresses within the implant system and in the jawbone. A dental implant, with resilient components in the upper structure (abutment) in order to mimic the mechanical behavior of the periodontal ligament in the axial direction, was designed, analyzed in silico, and produced for mechanical testing. The aims of the design were avoiding high levels of stress, loosening of the abutment connection screw, and soft tissue irritations. The finite element analysis of the designed implant revealed that the elastic abutment yielded a similar axial mobility with the natural tooth while keeping stress in the implant at safe levels. The in vitro mechanical testing of the prototype resulted in similar axial mobility predicted by the analysis and as that of a typical natural tooth. The abutment screw did not loosen under repeated loading and there was no static or fatigue failure.

  18. Comparative in vitro study of the effectiveness of Green tea extract and common storage media on periodontal ligament fibroblast viability

    PubMed Central

    Adeli, Fahimeh; Zabihi, Ebrahim; Abedian, Zeinab; Gharekhani, Samane; Pouramir, Mahdi; Khafri, Soraya; Ghasempour, Maryam

    2016-01-01

    Objective: Green tea extract (GTE) was shown to be effective in preserving periodontal ligament fibroblasts (PDLFs) of avulsed teeth. This study aimed at determining the potential of GTE in preserving the viability of PDLFs comparing with different storage media. Materials and Methods: Periodontal ligament cells were obtained from freshly extracted healthy impacted third molars and cultured in Dulbecco's Modified Eagle Medium (DMEM). Cell viability was determined by storing the cells in seven media; DMEM, tap water, Hank's balanced salt solution (HBSS), whole milk, hypotonic sucrose solution, GTE, and GTE + sucrose for 1, 2, 4, and 24 h at 37°C using tetrazolium salt-based colorimetric (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide) assay. Statistical analysis was performed by one-way analysis of variance and post hoc tests. Results: GTE showed significantly higher protective effect than HBSS at 2, 4, and 24 h (P = 0.009, P = 0.02, P = 0.016), DMED at 2 h (P = 0.003), and milk at 4 h (P = 0.039). Conclusion: Although with undesirable osmolality and pH, GTE had a good ability in preserving the PDLFs comparing with other studied media. PMID:27403063

  19. Biomechanics of a Bone-Periodontal Ligament-Tooth Fibrous Joint

    PubMed Central

    Lin, Jeremy D.; Özcoban, Hüseyin; Greene, Janelle; Jang, Andrew T.; Djomehri, Sabra; Fahey, Kevin; Hunter, Luke; Schneider, Gerold A; Ho, Sunita P.

    2013-01-01

    This study investigates bone-tooth association under compression to identify strain amplified sites within the bone-periodontal ligament (PDL)-tooth fibrous joint. Our results indicate that the biomechanical response of the joint is due to a combinatorial response of constitutive properties of organic, inorganic, and fluid components. Second maxillary molars within intact maxillae (N=8) of 5-month-old rats were loaded with a μ-XCT-compatible in situ loading device at various permutations of displacement rates (0.2, 0.5, 1.0, 1.5, 2.0 mm/min) and peak reactionary load responses (5, 10, 15, 20 N). Results indicated a nonlinear biomechanical response of the joint, in which the observed reactionary load rates were directly proportional to displacement rates (velocities). No significant differences in peak reactionary load rates at a displacement rate of 0.2 mm/min were observed. However, for displacement rates greater than 0.2 mm/min, an increasing trend in reactionary rate was observed for every peak reactionary load with significant increases at 2.0 mm/min. Regardless of displacement rates, two distinct behaviors were identified with stiffness (S) and reactionary load rate (LR) values at a peak load of 5 N (S5 N=290–523 N/mm) being significantly lower than those at 10 N (LR5 N=1–10 N/s) and higher (S10N–20 N=380–684 N/mm; LR10N–20 N=1–19 N/s). Digital image correlation revealed the possibility of a screw-like motion of the tooth into the PDL-space, i.e., predominant vertical displacement of 35 μm at 5 N, followed by a slight increase to 40 μm at 10 N and 50 μm at 20 N of the tooth and potential tooth rotation at loads above 10 N. Narrowed and widened PDL spaces as a result of tooth displacement indicated areas of increased apparent strain within the complex. We propose that such highly strained regions are “hot spots” that can potentiate local tissue adaptation under physiological loading and adverse tissue adaptation under pathological loading

  20. Co-culture with periodontal ligament stem cells enhances osteogenic gene expression in de-differentiated fat cells.

    PubMed

    Tansriratanawong, Kallapat; Tamaki, Yuichi; Ishikawa, Hiroshi; Sato, Soh

    2014-10-01

    In recent decades, de-differentiated fat cells (DFAT cells) have emerged in regenerative medicine because of their trans-differentiation capability and the fact that their characteristics are similar to bone marrow mesenchymal stem cells. Even so, there is no evidence to support the osteogenic induction using DFAT cells in periodontal regeneration and also the co-culture system. Consequently, this study sought to evaluate the DFAT cells co-culture with periodontal ligament stem cells (PDLSCs) in vitro in terms of gene expression by comparing runt-related transcription factor 2 (RUNX2) and Peroxisome proliferator-activated receptor gamma 2 (PPARγ2) genes. We isolated DFAT cells from mature adipocytes and compared proliferation with PDLSCs. After co-culture with PDLSCs, we analyzed transcriptional activity implying by DNA methylation in all adipogenic gene promoters using combined bisulfite restriction analysis. We compared gene expression in RUNX2 gene with the PPARγ2 gene using quantitative RT-PCR. After being sub-cultured, DFAT cells demonstrated morphology similar to fibroblast-like cells. At the same time, PDLSCs established all stem cell characteristics. Interestingly, the co-culture system attenuated proliferation while enhancing osteogenic gene expression in RUNX2 gene. Using the co-culture system, DFAT cells could trans-differentiate into osteogenic lineage enhancing, but conversely, their adipogenic characteristic diminished. Therefore, DFAT cells and the co-culture system might be a novel cell-based therapy for promoting osteogenic differentiation in periodontal regeneration.

  1. The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li+ ions released from bioactive scaffolds.

    PubMed

    Han, Pingping; Wu, Chengtie; Chang, Jiang; Xiao, Yin

    2012-09-01

    Lithium (Li) has been widely used as a long-term mood stabilizer in the treatment of bipolar and depressive disorders. Li(+) ions are thought to enhance the remyelination of peripheral nerves and also stimulate the proliferation of neural progenitor cells and retinoblastoma cells via activation of the Wnt/β-catenin signalling pathway. Until now there have been no studies reporting the biological effects of released Li(+) in bioactive scaffolds on cemetogenesis in periodontal tissue engineering applications. In this study, we incorporated parts of Li(+) ions into the mesoporous bioactive glass (MBG) scaffolds and showed that this approach yielded scaffolds with a favourable composition, microstructure and mesopore properties for cell attachment, proliferation, and cementogenic differentiation of human periodontal ligament-derived cells (hPDLCs). We went on to investigate the biological effects of Li(+) ions themselves on cell proliferation and cementogenic differentiation. The results showed that 5% Li(+) ions incorporated into MBG scaffolds enhanced the proliferation and cementogenic differentiation of hPDLCs on scaffolds, most likely via activation of Wnt/β-catenin signalling pathway. Further study demonstrated that Li(+) ions by themselves significantly enhanced the proliferation, differentiation and cementogenic gene expression of PDLCs. Our results indicate that incorporation of Li(+) ions into bioactive scaffolds is a viable means of enhancing the Wnt canonical signalling pathway to stimulate cementogenic differentiation of PDLCs.

  2. Co-culture with periodontal ligament stem cells enhanced osteoblastic differentiation of MC3T3-E1 cells and osteoclastic differentiation of RAW264.7 cells

    PubMed Central

    Chen, Shulan; Ye, Xin; Yu, Xinbo; Xu, Quanchen; Pan, Keqing; Lu, Shulai; Yang, Pishan

    2015-01-01

    Objectives: Periodontal ligament stem cells (PDLSCs) are characterized by having multipotential differentiation and immunoregulatory properties, which are the main mechanisms of PDLSCs-mediated periodontal regeneration. Periodontal or bone regeneration requires coordination of osteoblast and osteoclast, however, very little is known about the interactions between PDLSCs and osteoblast-like cells or osteoclast precursors. In this study, the indirect co-culture approach was introduced to preliminarily elucidate the effects of PDLSCs on differentiation of osteoblast-like cells and osteoclast precursors in vitro. Materials and methods: Human PDLSCs were obtained from premolars extracted and their stemness was identified in terms of their colony-forming ability, proliferative capacity, cell surface epitopes and multi-lineage differentiation potentials. A noncontact co-culture system of PDLSCs and preosteoblastic cell line MC3T3-E1 or osteoclast precursor cell line RAW264.7 was established, and osteoblastic differentiation of MC3T3-E1 and osteoclastic differentiation of RAW264.7 were evaluated. Results: PDLSCs exhibited features of mesenchymal stem cells. Further investigation through indirect co-culture system showed that PDLSCs enhanced ALP activity, expressions of ALP, Runx2, BSP, OPN mRNA and BSP, OPN proteins and mineralization matrix deposition in MC3T3-E1. Meanwhile, they improved maturation of osteoclasts and expressions of TRAP, CSTK, TRAF6 mRNA and TRAP, TRAF6 proteins in RAW264.7. Conclusions: PDLSCs stimulates osteoblastic differentiation of osteoblast precursors and osteoclastic differentiation of osteoclast precursors, at least partially, in a paracrine fasion. PMID:26823783

  3. Periodontitis

    MedlinePlus

    ... This is called gingivitis, the mildest form of periodontal disease. Ongoing inflammation eventually causes pockets to develop between ... you to a specialist in the treatment of periodontal disease (periodontist). Diagnosis of periodontitis is generally simple. Diagnosis ...

  4. [The use of Emdogain in periodontal and osseous regeneration].

    PubMed

    Sculean, Anton; Rathe, Florian; Junker, Rüdiger; Becker, Jürgen; Schwarz, Frank; Arweiler, Nicole

    2007-01-01

    The goal of regenerative periodontal therapy is the reconstitution of the lost periodontal structures (i. e. the new formation of root cementum, periodontal ligament and alveolar bone). Results from basic research have pointed to the important role of an enamel matrix protein derivative (EMD) in periodontal wound healing. Histological results from experiments in animals and from human case reports have shown that treatment with EMD promotes periodontal regeneration. Moreover, clinical studies have indicated that treatment with EMD positively influences periodontal wound healing in humans. The goal of the current overview is to present the clinical indications for regenerative therapy with EMD based on the existing evidence.

  5. Biological response at the cellular level within the periodontal ligament on application of orthodontic force – An update

    PubMed Central

    Meeran, Nazeer Ahmed

    2012-01-01

    Orthodontic force elicits a biological response in the tissues surrounding the teeth, resulting in remodeling of the periodontal ligament and the alveolar bone. The force-induced tissue strain result in reorganization of both cellular and extracellular matrix, besides producing changes in the local vascularity. This in turn leads to the synthesis and release of various neurotransmitters, arachidonic acid, growth factors, metabolites, cytokines, colony-stimulating factors, and enzymes like cathepsin K, matrix metalloproteinases, and aspartate aminotransferase. Despite the availability of many studies in the orthodontic and related scientific literature, a concise integration of all data is still lacking. Such a consolidation of the rapidly accumulating scientific information should help in understanding the biological processes that underlie the phenomenon of tooth movement in response to mechanical loading. Therefore, the aim of this review was to describe the biological processes taking place at the molecular level on application of orthodontic force and to provide an update of the current literature. PMID:24987618

  6. A simple fluorescence labeling method to visualize the three-dimensional arrangement of collagen fibers in the equine periodontal ligament.

    PubMed

    Staszyk, Carsten; Gasse, Hagen

    2004-04-01

    In order to display the collagen-fiber arrangement in the equine periodontal ligament an inexpensive and easy staining procedure with fluorescein was applied to paraffin sections. After fluorescein labeling a section was suitable for successful examination with three special microscopical systems: a) fluorescence microscopy b) phase contrast microscopy and c) polarized light microscopy. Collagen fibers were clearly displayed as compact structures in the fluorescence microscope. This distinct feature of the fluorescent image generated an almost three-dimensional impression of the fiber arrangement. Phase contrast microscopy and polarized light microscopical investigations of the same section supplemented the findings with further structural details. This contributed to demonstration of the complex architecture of the PDL, i. e. the varying sizes of the fiber bundles, their specific spatial alignment, and the entheses to the dental cementum.

  7. Patterns of cytokeratin expression in monkey and human periodontium following regenerative and conventional periodontal surgery.

    PubMed

    Sculean, A; Berakdar, M; Pahl, S; Windisch, P; Brecx, M; Reich, E; Donos, N

    2001-08-01

    The pattern of cytokeratin expression has been extensively described in the normal and inflamed periodontium. However, there is no information regarding the pattern of cytokeratin expression in the periodontium which has been reformed following regenerative periodontal surgery. The aim of the present investigation was to evaluate the pattern of cytokeratin expression in the reformed human and monkey periodontium following regenerative and conventional periodontal surgery. In 3 monkeys, acute fenestration-type and chronic intrabony defects were treated with guided tissue regeneration (GTR), enamel matrix proteins (EMD), or coronally repositioned flap surgery (control). After a healing period of 5 months, the animals were sacrificed and perfused with 10% buffered formalin for fixation. Specimens containing the defects and surrounding tissues were dissected free, decalcified in EDTA and embedded in paraffin. Histological sections were cut with the microtome set at 3 microm. The sections were alternatively stained either with hematoxylin and eosin, or immunohistochemically by using one of the broad range monoclonal antibodies 34betaE 12 (for cytokeratins 1, 5, 10 and 14) or KL 1 (for cytokeratins 1, 2, 5, 6, 7, 8, 10, 11, 16 and 19), or one of the individual monoclonal antibodies LL025 (for cytokeratin 16), DC 10 (for cytokeratin 18), A53-B/A2 (for cytokeratin 19). Twelve patients, each displaying one deep intrabony defect scheduled for extraction due to advanced periodontitis or prosthetic reasons, were treated as described above. Following a healing period of 6 months, the teeth were extracted together with some of their surrounding soft and hard tissues. The histological and immunohistochemical processing of the human biopsies was identical to that described in monkeys. The results revealed that both the normal non-treated (original) monkey and human junctional epithelium stained strongly with all of the monoclonal antibodies used. The reformed junctional epithelium

  8. Scleraxis and osterix antagonistically regulate tensile force-responsive remodeling of the periodontal ligament and alveolar bone.

    PubMed

    Takimoto, Aki; Kawatsu, Masayoshi; Yoshimoto, Yuki; Kawamoto, Tadafumi; Seiryu, Masahiro; Takano-Yamamoto, Teruko; Hiraki, Yuji; Shukunami, Chisa

    2015-02-15

    The periodontal ligament (PDL) is a mechanosensitive noncalcified fibrous tissue connecting the cementum of the tooth and the alveolar bone. Here, we report that scleraxis (Scx) and osterix (Osx) antagonistically regulate tensile force-responsive PDL fibrogenesis and osteogenesis. In the developing PDL, Scx was induced during tooth eruption and co-expressed with Osx. Scx was highly expressed in elongated fibroblastic cells aligned along collagen fibers, whereas Osx was highly expressed in the perialveolar/apical osteogenic cells. In an experimental model of tooth movement, Scx and Osx expression was significantly upregulated in parallel with the activation of bone morphogenetic protein (BMP) signaling on the tension side, in which bone formation compensates for the widened PDL space away from the bone under tensile force by tooth movement. Scx was strongly expressed in Scx(+)/Osx(+) and Scx(+)/Osx(-) fibroblastic cells of the PDL that does not calcify; however, Scx(-)/Osx(+) osteogenic cells were dominant in the perialveolar osteogenic region. Upon BMP6-driven osteoinduction, osteocalcin, a marker for bone formation was downregulated and upregulated by Scx overexpression and knockdown of endogenous Scx in PDL cells, respectively. In addition, mineralization by osteoinduction was significantly inhibited by Scx overexpression in PDL cells without affecting Osx upregulation, suggesting that Scx counteracts the osteogenic activity regulated by Osx in the PDL. Thus, Scx(+)/Osx(-), Scx(+)/Osx(+) and Scx(-)/Osx(+) cell populations participate in the regulation of tensile force-induced remodeling of periodontal tissues in a position-specific manner.

  9. Comparison of Periodontal Ligament Injection and Inferior Alveolar Nerve Block in Mandibular Primary Molars Pulpotomy: A Randomized Control Trial

    PubMed Central

    Haghgoo, Roza; Taleghani, Ferial

    2015-01-01

    Background: Inferior alveolar nerve block is a common technique for anesthesia of the primary mandibular molars. A number of disadvantages have been shown to be associated with this technique. Periodontal ligament (PDL) injection could be considered as an alternative to inferior alveolar nerve block. The aim of this study was to evaluate the effectiveness of PDL injection in the anesthesia of primary molar pulpotomy with mandibular block. Methods: This study was performed using a sequential double-blind randomized trial design. 80 children aged 3-7 years old who required pulpotomy in symmetrical mandibular primary molars were selected. The teeth of these children were anesthetized with periodontal injection on one side of the mandible and block on the other. Pulpotomy was performed on each patient during the same appointment. Signs of discomfort, including hand and body tension and eye movement, the verbal complaint and crying (SEM scale), were evaluated by a dental assistant who was blinded to the treatment allocation of the patients. Finally, the data were analyzed using the exact Fisher test and Pearson Chi-squared exact test. Results: Success rate was 88/75 and 91/25 in the PDL injection and nerve block groups, respectively. There was no statistically significant difference between the two techniques (P = 0.250). Conclusion: Results showed that PDL injection can be used as an alternative to nerve block in pulpotomy of the mandibular primary molars. PMID:26028895

  10. A three-dimensional cell culture model to study the mechano-biological behavior in periodontal ligament regeneration.

    PubMed

    Oortgiesen, Daniel A W; Yu, Na; Bronckers, Antonius L J J; Yang, Fang; Walboomers, X Frank; Jansen, John A

    2012-02-01

    Periodontitis is a disease affecting the supporting structures of the teeth, which can eventually result in tooth loss. A three-dimensional (3D) tissue culture model was developed that may serve to grow a 3D construct that not only transplants into defective periodontal sites, but also allows to examine the effect of mechanical load in vitro. In the current in vitro study, green fluorescent protein labeled periodontal ligament (PDL) cells form rat incisors were embedded in a 3D matrix and exposed to mechanical loading alone, to a chemical stimulus (Emdogain; enamel matrix derivative [EMD]) alone, or a combination of both. Loading consisted of unilateral stretching (8%, 1 Hz) and was applied for 1, 3, or 5 days. Results showed that PDL cells were distributed and randomly oriented within the artificial PDL space in static culture. On mechanical loading, the cells showed higher cell numbers. Moreover, cells realigned perpendicular to the stretching force depending on time and position, with great analogy to natural PDL tissue. EMD application gave a significant effect on growth and upregulated bone sialoprotein (BSP) and collagen type-I (Col-I), whereas Runx-2 was downregulated. This implies that PDL cells under loading might tend to act similar to bone-like cells (BSP and Col-I) but at the same time, react tendon like (Runx-2). The combination of chemical and mechanical stimulation seems possible, but does not show synergistic effects. In this study, a new model was successfully introduced in the field of PDL-related regenerative research. Besides validating the 3D model to mimic an authentic PDL space, it also provided a useful and well-controlled approach to study cell response to mechanical loading and other stimuli.

  11. [Molecular mechanisms for the improvement of wound healing ability of periodontal ligament in Marfan's syndrome].

    PubMed

    Saito, Masahiro; Tsuji, Takashi

    2012-01-01

    Marfan's syndrome (MFS) is a systemic disorder of the connective tissues caused by insufficient fibrillin-1 microfibril formation and can cause cardiac complications, emphysema, ocular lens dislocation and severe periodontal disease. ADAMTSL6β, a microfibril-associated extracellular matrix protein that has been implicated in fibrillin-1 microfibril assembly is able to improve microfibril insufficiency in MFS mice model. These findings suggest a new therapeutic strategy for the treatment of MFS through ADAMTSL6β-mediated fibrillin-1 microfibril assembly. We here review effect on ADAMTSL6β to the improvement of microfibril insufficiency in periodontal tissue as a model.

  12. Evaluation of Qualitative Changes in Simulated Periodontal Ligament and Alveolar Bone Using a Noncontact Electromagnetic Vibration Device with a Laser Displacement Sensor

    PubMed Central

    Kobayashi, Hiroshi; Hayashi, Makoto; Yamaoka, Masaru; Yasukawa, Takuya; Ibi, Haruna; Ogiso, Bunnai

    2016-01-01

    Evaluating periodontal tissue condition is an important diagnostic parameter in periodontal disease. Noncontact electromagnetic vibration device (NEVD) was previously developed to monitor this condition using mechanical parameters. However, this system requires accelerometer on the target tooth. This study assessed application of laser displacement sensor (LDS) to NEVD without accelerometer using experimental tooth models. Tooth models consisted of cylindrical rod, a tissue conditioner, and polyurethane or polyurethane foam to simulate tooth, periodontal ligament, and alveolar bone, respectively. Tissue conditioner was prepared by mixing various volumes of liquid with powder. Mechanical parameters (resonant frequency, elastic modulus, and coefficient of viscosity) were assessed using NEVD with the following methods: Group A, measurement with accelerometer; Group B, measurement with LDS in the presence of accelerometer; and Group C, measurement with LDS in the absence of accelerometer. Mechanical parameters significantly decreased with increasing liquid volume. Significant differences were also observed between the polyurethane and polyurethane foam models. Meanwhile, no statistically significant differences were observed between Groups A and B; however, most mechanical parameters in Group C were significantly larger and more distinguishable than those of Groups A and B. LDS could measure mechanical parameters more accurately and clearly distinguished the different periodontal ligament and alveolar bone conditions. PMID:27274995

  13. The Adaptive Nature of the Bone-Periodontal Ligament-Cementum Complex in a Ligature-Induced Periodontitis Rat Model

    PubMed Central

    Lee, Ji-Hyun; Lin, Jeremy D.; Fong, Justine I.; Ryder, Mark I.; Ho, Sunita P.

    2013-01-01

    The novel aspect of this study involves illustrating significant adaptation of a functionally loaded bone-PDL-cementum complex in a ligature-induced periodontitis rat model. Following 4, 8, and 15 days of ligation, proinflammatory cytokines (TNF-α and RANKL), a mineral resorption indicator (TRAP), and a cell migration and adhesion molecule for tissue regeneration (fibronectin) within the complex were localized and correlated with changes in PDL-space (functional space). At 4 days of ligation, the functional space of the distal complex was widened compared to controls and was positively correlated with an increased expression of TNF-α. At 8 and 15 days, the number of RANKL(+) cells decreased near the mesial alveolar bone crest (ABC) but increased at the distal ABC. TRAP(+) cells on both sides of the complex significantly increased at 8 days. A gradual change in fibronectin expression from the distal PDL-secondary cementum interfaces through precementum layers was observed when compared to increased and abrupt changes at the mesial PDL-cementum and PDL-bone interfaces in ligated and control groups. Based on our results, we hypothesize that compromised strain fields can be created in a diseased periodontium, which in response to prolonged function can significantly alter the original bone and apical cementum formations. PMID:23936854

  14. The stimulation of proliferation and differentiation of periodontal ligament cells by the ionic products from Ca7Si2P2O16 bioceramics.

    PubMed

    Zhou, Yinghong; Wu, Chengtie; Xiao, Yin

    2012-07-01

    The ultimate goal of periodontal tissue engineering is to produce predictable regeneration of alveolar bone, root cementum, and periodontal ligament, which are lost as a result of periodontal diseases. To achieve this goal, it is of great importance to develop novel bioactive materials which could stimulate the proliferation, differentiation and osteogenic/cementogenic gene expression of periodontal ligament cells (PDLCs) for periodontal regeneration. In this study, we synthesized novel Ca(7)Si(2)P(2)O(16) ceramic powders for the first time by the sol-gel method and investigated the biological performance of PDLCs after exposure to different concentrations of Ca(7)Si(2)P(2)O(16) extracts. The original extracts were prepared at 200 mg ml(-1) and further diluted with serum-free cell culture medium to obtain a series of diluted extracts (100, 50, 25, 12.5 and 6.25 mg ml(-1)). Proliferation, alkaline phosphatase (ALP) activity, Ca deposition, and osteogenesis/cementogenesis-related gene expression (ALP, Col I, Runx2 and CEMP1) were assayed for PDLCs on days 7 and 14. The results showed that the ionic products from Ca(7)Si(2)P(2)O(16) powders significantly stimulated the proliferation, ALP activity, Ca deposition and osteogenesis/cementogenesis-related gene expression of PDLCs. In addition, it was found that Ca(7)Si(2)P(2)O(16) powders had excellent apatite-mineralization ability in simulated body fluids. This study demonstrated that Ca(7)Si(2)P(2)O(16) powders with such a specific composition possess the ability to stimulate the PDLC proliferation and osteoblast/cemenoblast-like cell differentiation, indicating that they are a promising bioactive material for periodontal tissue regeneration application.

  15. Correction of hypophosphatasia (HPP) associated mineralization deficiencies in vitro by phosphate/pyrophosphate modulation in periodontal ligament cells

    PubMed Central

    Rodrigues, Thaisângela L.; Foster, Brian L.; Silverio, Karina G.; Martins, Luciane; Casati, Marcio Z.; Sallum, Enilson A.; Somerman, Martha J.; Nociti, Francisco H.

    2013-01-01

    Background Mutations in the Alpl gene in hypophosphatasia (HPP) reduce the function of tissue nonspecific alkaline phosphatase (TNAP), resulting in increased pyrophosphate (PPi) and a severe deficiency in acellular cementum. We hypothesized that exogenous phosphate (Pi) would rescue the in vitro mineralization capacity of periodontal ligament (PDL) cells harvested from HPP-diagnosed subjects, by correcting Pi/PPi ratio and modulating expression of genes involved with Pi/PPi metabolism. Methods Ex vivo and in vitro analyses were employed to identify mechanisms involved in HPP-associated PDL/tooth root deficiencies. Constitutive expression of PPi-associated genes was contrasted in PDL versus pulp tissues obtained from healthy subjects. Primary PDL cell cultures from HPP subjects (monozygotic twin males) were established to assay alkaline phosphatase activity (ALP), in vitro mineralization, and gene expression. Exogenous Pi was provided to correct Pi/PPi ratio. Results PDL tissues obtained from healthy individuals featured higher basal expression of key PPi regulators, genes Alpl, progressive ankylosis protein (Ankh) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1), versus paired pulp tissues. A novel Alpl mutation was identified in the twin HPP subjects enrolled in this study. Compared to controls, HPP-PDL cells exhibited significantly reduced ALP and mineralizing capacity, which were rescued by addition of 1mM Pi. Dysregulated expression of PPi regulatory genes Alpl, Ankh, and Enpp1 was also corrected by adding Pi, though other matrix markers evaluated in our study remained down-regulated. Conclusions These findings underscore the importance of controlling Pi/PPi ratio toward development of a functional periodontal apparatus, and support Pi/PPi imbalance as the etiology of HPP-associated cementum defects. PMID:22014174

  16. Increased Cell Proliferation and Gene Expression of Genes Related to Bone Remodeling, Cell Adhesion and Collagen Metabolism in the Periodontal Ligament of Unopposed Molars in Growing Rats

    PubMed Central

    Dorotheou, Domna; Farsadaki, Vassiliki; Bochaton-Piallat, Marie-Luce; Giannopoulou, Catherine; Halazonetis, Thanos D.; Kiliaridis, Stavros

    2017-01-01

    Tooth eruption, the process by which teeth emerge from within the alveolar bone into the oral cavity, is poorly understood. The post-emergent phase of tooth eruption continues throughout life, in particular, if teeth are not opposed by antagonists. The aim of the present study was to better understand the molecular processes underlying post-emergent tooth eruption. Toward this goal, we removed the crowns of the maxillary molars on one side of the mouth of 14 young rats and examined gene expression patterns in the periodontal ligaments (PDLs) of the ipsilateral and contralateral mandibular molars, 3 and 15 days later. Nine untreated rats served as controls. Expression of six genes, Adamts18, Ostn, P4ha3, Panx3, Pth1r, and Tnmd, was upregulated in unopposed molars relative to molars with antagonists. These genes function in osteoblast differentiation and proliferation, cell adhesion and collagen metabolism. Proliferation of PDL cells also increased following loss of the antagonist teeth. Interestingly, mutations in PTH1R have been linked to defects in the post-emergent phase of tooth eruption in humans. We conclude that post-emergent eruption of unopposed teeth is associated with gene expression patterns conducive to alveolar bone formation and PDL remodeling. PMID:28239357

  17. Fabrication of Core-Shell PEI/pBMP2-PLGA Electrospun Scaffold for Gene Delivery to Periodontal Ligament Stem Cells

    PubMed Central

    Xie, Qiao; Jia, Lie-ni; Xu, Hong-yu; Hu, Xiang-gang; Wang, Wei; Jia, Jun

    2016-01-01

    Bone tissue engineering is the most promising technology for enhancing bone regeneration. Scaffolds loaded with osteogenic factors improve the therapeutic effect. In this study, the bioactive PEI (polyethylenimine)/pBMP2- (bone morphogenetic protein-2 plasmid-) PLGA (poly(D, L-lactic-co-glycolic acid)) core-shell scaffolds were prepared using coaxial electrospinning for a controlled gene delivery to hPDLSCs (human periodontal ligament stem cells). The pBMP2 was encapsulated in the PEI phase as a core and PLGA was employed to control pBMP2 release as a shell. First, the scaffold characterization and mechanical properties were evaluated. Then the gene release behavior was analyzed. Our results showed that pBMP2 was released at high levels in the first few days, with a continuous release behavior in the next 28 days. At the same time, PEI/pBMP2 showed high transfection efficiency. Moreover, the core-shell electrospun scaffold showed BMP2 expression for a much longer time (more than 28 days) compared with the single axial electrospun scaffold, as evaluated by qRT-PCR and western blot after culturing with hPDLSCs. These results suggested that the core-shell PEI/pBMP2-PLGA scaffold fabricated by coaxial electrospinning had a good gene release behavior and showed a prolonged expression time with a high transfection efficiency. PMID:27313626

  18. The application of an enamel matrix protein derivative (Emdogain) in regenerative periodontal therapy: a review.

    PubMed

    Sculean, Anton; Schwarz, Frank; Becker, Jurgen; Brecx, Michel

    2007-01-01

    Regenerative periodontal therapy aims at reconstitution of the lost periodontal structures such as new formation of root cementum, periodontal ligament and alveolar bone. Findings from basic research indicate that enamel matrix protein derivative (EMD) has a key role in periodontal wound healing. Histological results from animal and human studies have shown that treatment with EMD promotes periodontal regeneration. Moreover, clinical studies have indicated that treatment with EMD positively influences periodontal wound healing in humans. This review aims to present an overview of evidence-based clinical indications for regenerative therapy with EMD.

  19. Stress Induced in the Periodontal Ligament under Orthodontic Loading (Part I): A Finite Element Method Study Using Linear Analysis

    PubMed Central

    Hemanth, M; deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-01-01

    Background: Orthodontic tooth movement is a complex procedure that occurs due to various biomechanical changes in the periodontium. Optimal orthodontic forces yield maximum tooth movement whereas if the forces fall beyond the optimal threshold it can cause deleterious effects. Among various types of tooth movements intrusion and lingual root torque are associated with causing root resoprtion, especially with the incisors. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with intrusion and lingual root torque using finite element method (FEM). Materials and Methods: A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with intrusive and lingual root torque movements by a 3D FEM using ANSYS software using linear stress analysis. Results: It was observed that with the application of intrusive load compressive stresses were distributed at the apex whereas tensile stress was seen at the cervical margin. With the application of lingual root torque maximum compressive stress was distributed at the apex and tensile stress was distributed throughout the PDL. Conclusion: For intrusive and lingual root torque movements stress values over the PDL was within the range of optimal stress value as proposed by Lee, with a given force system by Proffit as optimum forces for orthodontic tooth movement using linear properties. PMID:26464555

  20. Stress Induced in Periodontal Ligament under Orthodontic Loading (Part II): A Comparison of Linear Versus Non-Linear Fem Study

    PubMed Central

    Hemanth, M; Deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-01-01

    Background: Simulation of periodontal ligament (PDL) using non-linear finite element method (FEM) analysis gives better insight into understanding of the biology of tooth movement. The stresses in the PDL were evaluated for intrusion and lingual root torque using non-linear properties. Materials and Methods: A three-dimensional (3D) FEM model of the maxillary incisors was generated using Solidworks modeling software. Stresses in the PDL were evaluated for intrusive and lingual root torque movements by 3D FEM using ANSYS software. These stresses were compared with linear and non-linear analyses. Results: For intrusive and lingual root torque movements, distribution of stress over the PDL was within the range of optimal stress value as proposed by Lee, but was exceeding the force system given by Proffit as optimum forces for orthodontic tooth movement with linear properties. When same force load was applied in non-linear analysis, stresses were more compared to linear analysis and were beyond the optimal stress range as proposed by Lee for both intrusive and lingual root torque. To get the same stress as linear analysis, iterations were done using non-linear properties and the force level was reduced. Conclusion: This shows that the force level required for non-linear analysis is lesser than that of linear analysis. PMID:26435629

  1. In situ Compressive Loading and Correlative Noninvasive Imaging of the Bone-periodontal Ligament-tooth Fibrous Joint

    PubMed Central

    Jang, Andrew T.; Lin, Jeremy D.; Seo, Youngho; Etchin, Sergey; Merkle, Arno; Fahey, Kevin; Ho, Sunita P.

    2014-01-01

    This study demonstrates a novel biomechanics testing protocol. The advantage of this protocol includes the use of an in situ loading device coupled to a high resolution X-ray microscope, thus enabling visualization of internal structural elements under simulated physiological loads and wet conditions. Experimental specimens will include intact bone-periodontal ligament (PDL)-tooth fibrous joints. Results will illustrate three important features of the protocol as they can be applied to organ level biomechanics: 1) reactionary force vs. displacement: tooth displacement within the alveolar socket and its reactionary response to loading, 2) three-dimensional (3D) spatial configuration and morphometrics: geometric relationship of the tooth with the alveolar socket, and 3) changes in readouts 1 and 2 due to a change in loading axis, i.e. from concentric to eccentric loads. Efficacy of the proposed protocol will be evaluated by coupling mechanical testing readouts to 3D morphometrics and overall biomechanics of the joint. In addition, this technique will emphasize on the need to equilibrate experimental conditions, specifically reactionary loads prior to acquiring tomograms of fibrous joints. It should be noted that the proposed protocol is limited to testing specimens under ex vivo conditions, and that use of contrast agents to visualize soft tissue mechanical response could lead to erroneous conclusions about tissue and organ-level biomechanics. PMID:24638035

  2. Three-dimensional ultrastructural analysis of cells in the periodontal ligament using focused ion beam/scanning electron microscope tomography

    PubMed Central

    Hirashima, Shingo; Ohta, Keisuke; Kanazawa, Tomonoshin; Okayama, Satoko; Togo, Akinobu; Uchimura, Naohisa; Kusukawa, Jingo; Nakamura, Kei-ichiro

    2016-01-01

    The accurate comprehension of normal tissue provides essential data to analyse abnormalities such as disease and regenerative processes. In addition, understanding the proper structure of the target tissue and its microenvironment may facilitate successful novel treatment strategies. Many studies have examined the nature and structure of periodontal ligaments (PDLs); however, the three-dimensional (3D) structure of cells in normal PDLs remains poorly understood. In this study, we used focused ion beam/scanning electron microscope tomography to investigate the whole 3D ultrastructure of PDL cells along with quantitatively analysing their structural properties and ascertaining their orientation to the direction of the collagen fibre. PDL cells were shown to be in contact with each other, forming a widespread mesh-like network between the cementum and the alveolar bone. The volume of the cells in the horizontal fibre area was significantly larger than in other areas, whereas the anisotropy of these cells was lower than in other areas. Furthermore, the orientation of cells to the PDL fibres was not parallel to the PDL fibres in each area. As similar evaluations are recognized as being challenging using conventional two-dimensional methods, these novel 3D findings may contribute necessary knowledge for the comprehensive understanding and analysis of PDLs. PMID:27995978

  3. An electron microscopic radioautographic study of collagen secretion in periodontal ligament fibroblasts of the mouse: II. Colchicine-treated fibroblasts

    SciTech Connect

    Cho, M.I.; Garant, P.R.

    1981-12-01

    Colchicine administered intravenously depolymerized microtubules and disrupted the normal organization of the Golgi apparatus in periodontal ligament fibroblasts. Radioautography with /sup 3/H-proline indicated that collagen secretion was completely inhibited during a period of approximately 4 hours following the onset of the colchicine effect. During this period of secretory inhibition, labeled collagen precursors were present within a variety of dense bodies, primarily located in a juxtanuclear location replacing the normal Golgi complex. The time course of /sup 3/H-proline labeling from 2 to 8 hours suggested that small, newly formed dense bodies fused to form larger dense bodies and pleomorphic structures (zebra bodies), within which collagen precursors appeared to undergo partial polymerization. Autophagosomes, many labeled with /sup 3/H-proline, also increased in number after colchicine administration. A gradual decline in /sup 3/H-proline label occurred from 4 to 24 hours, presumably due to exocytosis of dense bodies or by the digestion of labeled collagen precursors within autophagosomes. These results support the concept that an intact microtubular network is essential for the organized transport of collagen precursors, from the rough endoplasmic reticulum to the Golgi apparatus, and the eventual transport and exocytosis of collagen secretory granules.

  4. Bacteriology of moderate (chronic) periodontitis in mature adult humans.

    PubMed Central

    Moore, W E; Holdeman, L V; Cato, E P; Smibert, R M; Burmeister, J A; Ranney, R R

    1983-01-01

    A total of 171 taxa was represented among 1,900 bacterial isolates from 60 samples of sites affected with moderate periodontitis in 22 mature adult humans. The composition of the subgingival sulcus flora was statistically significantly different from that of the adjacent supragingival flora and the subgingival flora of 14 people with healthy gingiva, but was not significantly different from that of sulci affected with severe periodontitis in 21 young human adults. The sulcus floras of moderate periodontitis and severe periodontitis shared many of their predominant bacterial species, but there were differences in the relative proportions of some of these species. Similar relationships were found for seven taxa of treponemes that were cultured from the samples. PMID:6642641

  5. Human Memory B Cells in Healthy Gingiva, Gingivitis, and Periodontitis.

    PubMed

    Mahanonda, Rangsini; Champaiboon, Chantrakorn; Subbalekha, Keskanya; Sa-Ard-Iam, Noppadol; Rattanathammatada, Warattaya; Thawanaphong, Saranya; Rerkyen, Pimprapa; Yoshimura, Fuminobu; Nagano, Keiji; Lang, Niklaus P; Pichyangkul, Sathit

    2016-08-01

    The presence of inflammatory infiltrates with B cells, specifically plasma cells, is the hallmark of periodontitis lesions. The composition of these infiltrates in various stages of homeostasis and disease development is not well documented. Human tissue biopsies from sites with gingival health (n = 29), gingivitis (n = 8), and periodontitis (n = 21) as well as gingival tissue after treated periodontitis (n = 6) were obtained and analyzed for their composition of B cell subsets. Ag specificity, Ig secretion, and expression of receptor activator of NF-κB ligand and granzyme B were performed. Although most of the B cell subsets in healthy gingiva and gingivitis tissues were CD19(+)CD27(+)CD38(-) memory B cells, the major B cell component in periodontitis was CD19(+)CD27(+)CD38(+)CD138(+)HLA-DR(low) plasma cells, not plasmablasts. Plasma cell aggregates were observed at the base of the periodontal pocket and scattered throughout the gingiva, especially apically toward the advancing front of the lesion. High expression of CXCL12, a proliferation-inducing ligand, B cell-activating factor, IL-10, IL-6, and IL-21 molecules involved in local B cell responses was detected in both gingivitis and periodontitis tissues. Periodontitis tissue plasma cells mainly secreted IgG specific to periodontal pathogens and also expressed receptor activator of NF-κB ligand, a bone resorption cytokine. Memory B cells resided in the connective tissue subjacent to the junctional epithelium in healthy gingiva. This suggested a role of memory B cells in maintaining periodontal homeostasis.

  6. Expression of interleukin-34 and colony stimulating factor-1 in the stimulated periodontal ligament cells with tumor necrosis factor-α.

    PubMed

    Kawabe, Mutsuki; Ohyama, Hideki; Kato-Kogoe, Nahoko; Yamada, Naoko; Yamanegi, Koji; Nishiura, Hiroshi; Hirano, Hirotugu; Kishimoto, Hiromitsu; Nakasho, Keiji

    2015-09-01

    Tumor necrosis factor-α (TNF-α) directly and indirectly plays a crucial role in osteoclastogenesis. However, the indirect effects of TNF-α on colony-stimulating factor-1 receptor (CSF-1R)-mediated osteoclastogenesis achieved via periodontal ligament (PDL) cells are not fully understood. We herein examined the potency of osteoclast differentiation and maturation induced by fivefold supernatants in the stimulated human PDL cells with a physiologically high concentration (10 ng/mL) of recombinant TNF-α to human peripheral blood monocytes/macrophages in the simultaneous presence of the receptor activator of nuclear factor kappa-B ligand. The number of tartrate-resistant acid phosphatase-positive cells with multiple nuclei, but not those with a single nucleus, was decreased by approximately 50% by neutralization with rabbit IgG against either interleukin-34 (IL-34) or CSF-1. Small and large amounts of IL34 and CSF1 transcripts were measured in the stimulated PDL cells using real-time polymerase chain reaction. The corresponding amounts of proteins to IL34 and CSF1 transcripts were observed in the stimulated PDL cells on immunohistochemical staining or Western blotting. Moreover, 0.13 ng/mL of IL-34 and 5.0 ng/mL of CSF-1 were measured in the supernatants of the stimulated PDL cells using an enzyme-linked immunosorbent assay. IL-34 derived from the stimulated PDL cells with TNF-α appeared to synergistically function with CSF-1 in the CSF-1R-mediated maturation of osteoclastogenesis.

  7. Periodontal-ligament-derived stem cells exhibit the capacity for long-term survival, self-renewal, and regeneration of multiple tissue types in vivo.

    PubMed

    Menicanin, Danijela; Mrozik, Krzysztof Marek; Wada, Naohisa; Marino, Victor; Shi, Songtao; Bartold, P Mark; Gronthos, Stan

    2014-05-01

    Primary periodontal ligament stem cells (PDLSCs) are known to possess multidifferentiation potential and exhibit an immunophenotype similar to that described for bone-marrow-derived mesenchymal stem cells. In the present study, bromo-deoxyuridine (BrdU)-labeled ovine PDLSCs implanted into immunodeficient mice survived after 8 weeks post-transplantation and exhibited the capacity to form bone/cementum-like mineralized tissue, ligament structures similar to Sharpey's fibers with an associated vasculature. To evaluate self-renewal potential, PDLSCs were recovered from harvested primary transplants 8 weeks post-transplantation that exhibit an immunophenotype and multipotential capacity comparable to primary PDLSCs. The re-derived PDLSCs isolated from primary transplants were implanted into secondary ectopic xenogeneic transplants. Histomorphological analysis demonstrated that four out of six donor re-derived PDLSC populations displayed a capacity to survive and form fibrous ligament structures and mineralized tissues associated with vasculature in vivo, although at diminished levels in comparison to primary PDLSCs. Further, the capacity for long-term survival and the potential role of PDLSCs in dental tissue regeneration were determined using an ovine preclinical periodontal defect model. Autologous ex vivo-expanded PDLSCs that were prelabeled with BrdU were seeded onto Gelfoam(®) scaffolds and then transplanted into fenestration defects surgically created in the periodontium of the second premolars. Histological assessment at 8 weeks post-implantation revealed surviving BrdU-positive PDLSCs associated with regenerated periodontium-related tissues, including cementum and bone-like structures. This is the first report to demonstrate the self-renewal capacity of PDLSCs using serial xenogeneic transplants and provides evidence of the long-term survival and tissue contribution of autologous PDLSCs in a preclinical periodontal defect model.

  8. Dataset of microarray analysis to identify endoglin-dependent bone morphogenetic protein-2-responsive genes in the murine periodontal ligament cell line PDL-L2.

    PubMed

    Ishibashi, Osamu; Inui, Takashi

    2014-12-01

    The periodontal ligament (PDL), connective tissue located between the cementum of teeth and alveolar bone of the mandibula, plays a crucial role in the maintenance and regeneration of periodontal tissues. We previously reported that endoglin was involved in the bone morphogenetic protein (BMP)-2-induced osteogenic differentiation of mouse PDL cells, which is associated with Smad-2 phosphorylation but not Smad-1/5/8 phosphorylation. Further, we found that the BMP-2-induced Smad-2 phosphorylation was, at least in part, dependent upon endoglin. In this study, to elucidate the detailed mechanism underlying the BMP-2-induced signaling pathway unique to PDL cells, we performed a cDNA microarray analysis to identify endoglin-dependent BMP-2-responsive genes in PDL-L2, a mouse PDL-derived cell line. Here we provide experimental methods and obtained dataset to correspond with our data in Gene Expression Omnibus (GEO) Datasets.

  9. Secretome Profiling of Periodontal Ligament from Deciduous and Permanent Teeth Reveals a Distinct Expression Pattern of Laminin Chains.

    PubMed

    Giovani, Priscila A; Salmon, Cristiane R; Martins, Luciane; Paes Leme, Adriana F; Rebouças, Pedro; Puppin Rontani, Regina M; Mofatto, Luciana S; Sallum, Enilson A; Nociti, Francisco H; Kantovitz, Kamila R

    2016-01-01

    It has been suggested that there are histological and functional distinctions between the periodontal ligament (PDL) of deciduous (DecPDL) and permanent (PermPDL) teeth. Thus, we hypothesized that DecPDL and PermPDL display differences in the constitutive expression of genes/proteins involved with PDL homeostasis. Primary PDL cell cultures were obtained for DecPDL (n = 3) and PermPDL (n = 3) to allow us to perform label-free quantitative secretome analysis. Although a highly similar profile was found between DecPDL and PermPDL cells, comparative secretome analysis evidenced that one of the most stickling differences involved cell adhesion molecules, including laminin subunit gamma 1 (LAMC1) and beta 2 (LAMB2). Next, total RNA and protein extracts were obtained from fresh PDL tissues of deciduous (n = 6) and permanent (n = 6) teeth, and Western blotting and qPCR analysis were used to validate our in vitro findings. Western blot analysis confirmed that LAMC1 was increased in DecPDL fresh tissues (p<0.05). Furthermore, qPCR data analysis revealed that mRNA levels for laminin subunit beta 1 (LAMB1), beta 3 (LAMB3), LAMC1, and gamma 2 (LAMC2) were higher in DecPDL fresh tissues, whereas transcripts for LAMB2 were increased in PermPDL (p<0.05). In conclusion, the differential expression of laminin chains in DecPDL and PermPDL suggests an involvement of laminin-dependent pathways in the control of physiological differences between them.

  10. The mechanical function of the periodontal ligament in the macaque mandible: a validation and sensitivity study using finite element analysis.

    PubMed

    Panagiotopoulou, Olga; Kupczik, Kornelius; Cobb, Samuel N

    2011-01-01

    Whilst the periodontal ligament (PDL) acts as an attachment tissue between bone and tooth, hypotheses regarding the role of the PDL as a hydrodynamic damping mechanism during intraoral food processing have highlighted its potential importance in finite element (FE) analysis. Although experimental and constitutive models have correlated the mechanical function of the PDL tissue with its anisotropic, heterogeneous, viscoelastic and non-linear elastic nature, in many FE simulations the PDL is either present or absent, and when present is variably modelled. In addition, the small space the PDL occupies and the inability to visualize the PDL tissue using μCT scans poses issues during FE model construction and so protocols for the PDL thickness also vary. In this paper we initially test and validate the sensitivity of an FE model of a macaque mandible to variations in the Young's modulus and the thickness of the PDL tissue. We then tested the validity of the FE models by carrying out experimental strain measurements on the same mandible in the laboratory using laser speckle interferometry. These strain measurements matched the FE predictions very closely, providing confidence that material properties and PDL thickness were suitably defined. The FE strain results across the mandible are generally insensitive to the absence and variably modelled PDL tissue. Differences are only found in the alveolar region adjacent to the socket of the loaded tooth. The results indicate that the effect of the PDL on strain distribution and/or absorption is restricted locally to the alveolar bone surrounding the teeth and does not affect other regions of the mandible.

  11. Secretome Profiling of Periodontal Ligament from Deciduous and Permanent Teeth Reveals a Distinct Expression Pattern of Laminin Chains

    PubMed Central

    Giovani, Priscila A.; Salmon, Cristiane R.; Martins, Luciane; Paes Leme, Adriana F.; Rebouças, Pedro; Puppin Rontani, Regina M.; Mofatto, Luciana S.; Sallum, Enilson A.; Nociti, Francisco H.; Kantovitz, Kamila R.

    2016-01-01

    It has been suggested that there are histological and functional distinctions between the periodontal ligament (PDL) of deciduous (DecPDL) and permanent (PermPDL) teeth. Thus, we hypothesized that DecPDL and PermPDL display differences in the constitutive expression of genes/proteins involved with PDL homeostasis. Primary PDL cell cultures were obtained for DecPDL (n = 3) and PermPDL (n = 3) to allow us to perform label-free quantitative secretome analysis. Although a highly similar profile was found between DecPDL and PermPDL cells, comparative secretome analysis evidenced that one of the most stickling differences involved cell adhesion molecules, including laminin subunit gamma 1 (LAMC1) and beta 2 (LAMB2). Next, total RNA and protein extracts were obtained from fresh PDL tissues of deciduous (n = 6) and permanent (n = 6) teeth, and Western blotting and qPCR analysis were used to validate our in vitro findings. Western blot analysis confirmed that LAMC1 was increased in DecPDL fresh tissues (p<0.05). Furthermore, qPCR data analysis revealed that mRNA levels for laminin subunit beta 1 (LAMB1), beta 3 (LAMB3), LAMC1, and gamma 2 (LAMC2) were higher in DecPDL fresh tissues, whereas transcripts for LAMB2 were increased in PermPDL (p<0.05). In conclusion, the differential expression of laminin chains in DecPDL and PermPDL suggests an involvement of laminin-dependent pathways in the control of physiological differences between them. PMID:27149379

  12. Strain mapping and correlative microscopy of the alveolar bone in a bone-periodontal ligament-tooth fibrous joint.

    PubMed

    Jang, Andrew; Prevost, Richard; Ho, Sunita P

    2016-07-05

    This study details a method to calculate strains within interradicular alveolar bone using digital volume correlation on X-ray tomograms of intact bone-periodontal ligament-tooth fibrous joints. The effects of loading schemes (concentric and eccentric) and optical magnification on the resulting strain in alveolar bone will be investigated with an intent to correlate deformation gradients with data sets from other complementary techniques. Strain maps will be correlated with structural and site-specific mechanical properties obtained on the same specimen using atomic force microscopy and atomic force microscopy-based nanoindentation technique. Specimens include polydimethylsiloxane as a standard material and intact hemi-mandibles harvested from rats. X-ray tomograms were taken at no-load and loaded conditions using an in situ load cell coupled to a micro X-ray computed tomography unit. Digital volume correlation was used to calculate deformations within alveolar bone. Comparison of strain maps was made as a result of different loading schemes (concentric vs eccentric) and at different magnifications (4× vs 10×). Virtual sections and strain maps from digital volume correlation solutions were aligned with structure and reduced elastic modulus to correlate datasets of the same region within a specimen. Strain distribution between concentrically and eccentrically loaded complexes was different but illustrated a similar range. Strain maps of homogeneous materials (polydimethylsiloxane) resulting from digital volume correlation at different magnifications were similar. However, strain maps of heterogeneous materials at lower and higher magnification differed. The digital volume correlation technique illustrated a dependence on optical magnification specifically for heterogeneous materials such as bone. The results at a higher optical magnification highlight the potential for extracting deformation at higher resolutions. Correlation of data spaces from different

  13. Evaluating Stress Distribution Pattern in Periodontal Ligament of Maxillary Incisors during Intrusion Assessed by the Finite Element Method

    PubMed Central

    Salehi, Parisa; Gerami, Alayar; Najafi, Amirhosein; Torkan, Sepideh

    2015-01-01

    Statement of the Problem The use of miniscrews has expedited the true maxillary incisor intrusion and has minimized untoward side effects such as labial tipping. Purpose The aim of this study was to assess the stress distribution in the periodontal ligament of maxillary incisors when addressed to different models of intrusion mechanics using miniscrews by employing finite element methods. The degree of relative and absolute intrusion of maxillary incisors in different conditions was also evaluated. Materials and Method Finite element model of maxillary central incisor to first premolar was generated by assembling images obtained from a three-dimensional model of maxillary dentition. Four different conditions of intrusion mechanics were simulated with different placement sites of miniscrews as well as different points of force application. In each model, 25-g force was applied to maxillary incisors via miniscrews. Results In all four models, increased stress values were identified in the apical region of lateral incisor. Proclination of maxillary incisors was also reported in all the four models. The minimum absolute intrusion was observed when the miniscrew was placed between the lateral incisor and canine and the force was applied at right angles to the archwire, which is very common in clinical practice. Conclusion From the results yield by this study, it seems that the apical region of lateral incisor is the most susceptible region to root resorption during anterior intrusion. When the minimum flaring of maxillary incisors is required in clinical situations, it is suggested to place the miniscrew halfway between the roots of lateral incisor and canine with the force applied to the archwire between central and lateral incisor. In order to achieve maximum absolute intrusion, it is advised to place miniscrew between the roots of central and lateral incisors with the force applied at a right angle to the archwire between these two teeth. PMID:26636119

  14. Distribution pattern of versican, link protein and hyaluronic acid in the rat periodontal ligament during experimental tooth movement.

    PubMed

    Sato, R; Yamamoto, H; Kasai, K; Yamauchi, M

    2002-02-01

    The ability of the periodontal ligament (PDL) to rapidly remodel is the basis of orthodontic tooth movement. During the tooth movement, matrix proteoglycans (PGs) may play important roles in spatial, mechanical and biological aspects for the maintenance and repair of the PDL. The aim of this study was to characterize the distribution of a large hyaluronic acid (HA)-binding proteoglycan, versican, link protein (LP) and HA in the rat molar PDL during experimental tooth movement by histochemical and immunohistochemical methods. Experimental tooth movement was performed according to Waldo's method. Histologically, regressive changes, such as decrease of fibroblasts and collagen fibers and exudative change of edema were observed in the compressive side and progressive changes, such as proliferation of fibroblasts and collagen fibers, in the strain side one day after treatment. By 3 days after tooth movement, regressive or progressive changes were not observed in either side. Using monoclonal antibodies specific to versican core protein or LP, the positive immunoreactivity for both molecules was constantly observed throughout the PDL. After the experimental force was applied to the tooth, however, the immunostainings of versican and LP became significantly intense only in the compressive side but decreased in the strain side. The intensity in the compressive side was strongest one day after the force was applied and gradually diminished thereafter. HA of both sides did not change during experimental tooth movement. Since HA is present in the PDL, large amounts of versican and LP expressed in the compressive side may create large hydrated aggregates via their association with HA that dissipates the compressive force applied to this tissue.

  15. Biocompatibility and Osteogenic Capacity of Periodontal Ligament Stem Cells on nHAC/PLA and HA/TCP Scaffolds.

    PubMed

    He, Huixia; Yu, Jinhua; Cao, Junkai; E, Lingling; Wang, Dongsheng; Zhang, Haizhong; Liu, Hongchen

    2011-01-01

    This study investigated the effects of a newly-developed scaffold, nano-hydroxyapatite/collagen/poly(L-lactide) (nHAC/PLA), on the attachment, proliferation and osteogenic capability of dog periodontal ligament stem cells (PDLSCs) in vitro and in vivo. Hydroxyapatite/tricalcium phosphate (HA/TCP), a commonly used bone substitute, was used as a positive control. PDLSCs isolated from dog molar were incubated in an osteogenic medium to evaluate their osteogenic differentiation in vitro, and then seeded onto nHAC/PLA and HA/TCP scaffolds. In vitro cell attachment, proliferation and differentiation were assessed by scanning electron microscopy (SEM), cell counting, 3-[4,5-dimethythiazol-2-yl]-5-[3-carboxy-phenyl]-2-[4-sulfophenyl]-2H-tetrazolium and alkaline phosphate activity, and reverse transcription-polymerase chain reaction, respectively. Finally, the constructs were implanted subcutaneously into dogs to investigate their osteogenic capacity. After osteogenic induction for 21 days, PDLSCs differentiated into osteogenic lineage, as indicated by the expressions of osteoblastic differentiation genes CoL-I, OCN and OPN mRNA, and the formation of mineral deposits. When seeded onto scaffolds, the cells attached and spread well, and retained their osteogenic phenotypes on both scaffolds. Comparatively, cell number and proliferative viability on nHAC/PLA constructs were greater than those on HA/TCP constructs (P < 0.05). Histological results showed that new bone and osteoid was formed in both groups, and histomorphometric analysis demonstrated that the amount of newly formed bone in the nHAC/PLA group was higher than that in the HA/TCP group (P < 0.05). This study suggests that nHAC/PLA can be used as a potent scaffold for alveolar bone regeneration.

  16. Mechanical environment change in root, periodontal ligament, and alveolar bone in response to two canine retraction treatment strategies

    PubMed Central

    Jiang, F.; Xia, Z.; Li, S.; Eckert, G.; Chen, J.

    2015-01-01

    Objective To investigate the initial mechanical environment (ME) changes in root surface, periodontal ligament (PDL), and alveolar bone due to two treatment strategies, low or high moment-to-force ratio (M/F). Setting and Sample Population Indiana University-Purdue University Indianapolis. Eighteen patients who underwent maxillary bilateral canine retraction. Material and method Finite element models of the maxillary canines from the patients were built based on their cone beam computed tomography scans. For each patient, the canine on one side had a specially designed T-loop spring with the M/F higher than the other side. Four stress invariants (1st principal/dilatational/3rd principal/von Mises stress) in the tissues were calculated. The stresses were compared with the bone mineral density (BMD) changes reported previously for linking the ME change to bone modeling/remodeling activities. The correlation was tested by the mixed-model anova. Results The alveolar bone in the direction of tooth movement is primarily in tension, while the PDL is in compression; the stresses in the opposite direction have a reversed pattern. The M/F primarily affects the stress in root. Three stress invariants (1st principal/3rd principal/dilatational stress) in the tooth movement direction have moderate correlations with BMD loss. Conclusions The stress invariants may be used to characterize what the osteocytes sense when ME changes. Their distributions in the tissues are significantly different, meaning the cells experience different stimuli. The higher bone activities along the direction of tooth movement may be related to the initial volumetric increase and decrease in the alveolar bone. PMID:25865531

  17. Angiogenic Capacity of Periodontal Ligament Stem Cells Pretreated with Deferoxamine and/or Fibroblast Growth Factor-2

    PubMed Central

    Ratajczak, Jessica; Hilkens, Petra; Gervois, Pascal; Wolfs, Esther; Jacobs, Reinhilde; Lambrichts, Ivo; Bronckaers, Annelies

    2016-01-01

    Periodontal ligament stem cells (PDLSCs) represent a good source of multipotent cells for cell-based therapies in regenerative medicine. The success rate of these treatments is severely dependent on the establishment of adequate vasculature in order to provide oxygen and nutrients to the transplanted cells. Pharmacological preconditioning of stem cells has been proposed as a promising method to augment their therapeutic efficacy. In this study, the aim was to improve the intrinsic angiogenic properties of PDLSCs by in vitro pretreatment with deferoxamine (DFX; 100μM), fibroblast growth factor-2 (FGF-2; 10ng/mL) or both substances combined. An antibody array revealed the differential expression of several proteins, including vascular endothelial growth factor (VEGF) and placental growth factor (PlGF). ELISA data confirmed a 1.5 to 1.8-fold increase in VEGF for all tested conditions. Moreover, 48 hours after the removal of DFX, VEGF levels remained elevated (1.8-fold) compared to control conditions. FGF-2 and combination treatment resulted in a 5.4 to 13.1-fold increase in PlGF secretion, whereas DFX treatment had no effect. Furthermore, both PDLSCs as pretreated PDLSCs induced endothelial migration. Despite the significant elevated VEGF levels of pretreated PDLSCs, the induced endothelial migration was not higher by pretreated PDLSCs. We find that the observed induced endothelial cell motility was not dependent on VEGF, since blocking the VEGFR1-3 with Axitinib (0.5nM) did not inhibit endothelial motility towards PDLSCs. Taken together, this study provides evidence that preconditioning with DFX and/or FGF-2 significantly improves the angiogenic secretome of PDLSCs, in particular VEGF and PlGF secretion. However, our data suggest that VEGF is not the only player when it comes to influencing endothelial behavior by the PDLSCs. PMID:27936076

  18. Periodontitis

    MedlinePlus

    ... your dentist if you have signs of gum disease. Prevention Good oral hygiene is the best way to prevent periodontitis. This includes thorough tooth brushing and flossing, and regular professional dental cleaning. Preventing and treating ... References Amsterdam JT. ...

  19. Effect of periodontal dressings on human gingiva fibroblasts in vitro

    SciTech Connect

    Eber, R.M.; Shuler, C.F.; Buchanan, W.; Beck, F.M.; Horton, J.E. )

    1989-08-01

    In vitro cytotoxicity studies of periodontal dressings have not generally produced a result consistent with in vivo observations. These prior in vitro studies have not used human intraoral cell lines. We tested the effects of two eugenol containing and two non-eugenol periodontal dressings on cultured human gingival fibroblasts (HGF) (ATCC No. 1292). Replicate HGF cultures grown in microtiter plates were exposed to stock, 1:4 and 1:16 dilutions of extracts made from each of the four periodontal dressings. The HGF cultures were pulse labelled with tritiated thymidine (3HTdR) after 24, 48, and 72 hours. Incorporations of the labelled thymidine were measured using liquid scintillation counting and expressed as counts per minute. The results showed that undiluted extracts from all four periodontal dressings totally inhibited 3HTdR uptake (P less than 0.05). The 1:4 dilution of eugenol dressings inhibited 3HTdR uptake significantly more than non-eugenol dressings (P less than 0.05). Interestingly, at 72 hours the 1:16 dilution of the non-eugenol dressings caused significantly increased 3HTdR uptake which was not observed with the eugenol dressings. The present results suggest that the use of a human fibroblastic cell line for testing the effects of periodontal dressings may provide information about the relative biological effects of these dressings. Using this cell line, we have found that eugenol dressings inhibit fibroblast proliferation to a greater extent than non-eugenol dressings.

  20. Engineering the periodontal ligament in hyaluronan-gelatin-type I collagen constructs: upregulation of apoptosis and alterations in gene expression by cyclic compressive strain.

    PubMed

    Saminathan, Aarthi; Sriram, Gopu; Vinoth, Jayasaleen Kumar; Cao, Tong; Meikle, Murray C

    2015-02-01

    To engineer constructs of the periodontal ligament (PDL), human PDL cells were incorporated into a matrix of hyaluronan, gelatin, and type I collagen (COLI) in sample holders (13×1 mm) of six-well Biopress culture plates. The loading dynamics of the PDL were mimicked by applying a cyclic compressive strain of 33.4 kPa (340.6 gm/cm(2)) to the constructs for 1.0 s every 60 s, for 6, 12, and 24 h in a Flexercell FX-4000C Strain Unit. Compression significantly increased the number of nonviable cells and increased the expression of several apoptosis-related genes, including initiator and executioner caspases. Of the 15 extracellular matrix genes screened, most were upregulated at some point after 6-12 h deformation, but all were downregulated at 24 h, except for MMPs1-3 and CTGF. In culture supernatants, matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinases-1 (TIMP-1) protein levels were upregulated at 24 h; receptor activator of nuclear kappa factor B (RANKL), osteoprotegerin (OPG) and fibroblast growth factor-2 (FGF-2) were unchanged; and connective tissue growth factor (CTGF) not detected. The low modulus of elasticity of the constructs was a disadvantage-future mechanobiology studies and tissue engineering applications will require constructs with much higher stiffness. Since the major structural protein of the PDL is COLI, a more rational approach would be to permeabilize preformed COLI scaffolds with PDL-populated matrices.

  1. Periodontal disease: an overview for physicians.

    PubMed

    Fenesy, K E

    1998-01-01

    Periodontitis is now seen as resulting from a complex interplay of bacterial infection and host response, often modified by behavioral factors. There has been a fundamental change in the prevailing periodontal disease model of the 1960s, which suggested that the susceptibility to periodontitis increases with age, and that all individuals are susceptible to severe periodontal disease. More recent research has changed the belief in universal susceptibility to the current view that only some 5-20% of any population suffer from severe generalized periodontitis, and that only moderate disease affects a majority of adults. One major risk factor is smoking, as there is now a clear association between smoking and periodontal disease independent of oral hygiene, age, or any other risk factor. In human periodontitis, there is no simple, direct pathogen-disease link. There are three pathogens that have a strong association with progressive periodontal disease: Actinobacillus actinomycetemcomitans, spirochetes of acute necrotizing gingivitis, and Porphyromonas gingivalis. These pathogens may be the cause of continued loss of periodontal attachment in all periodontal disease classifications despite diligent periodontal therapy. This loss of attachment, or destruction of the periodontal ligament and loss of adjacent supporting bone, is seen in adult periodontitis, as well as in early-onset periodontitis, which affects young persons who otherwise appear healthy. The three forms of early-onset periodontitis are prepubertal periodontitis, localized and generalized juvenile periodontitis, and rapidly progressive periodontitis. They are distinguished from adult periodontitis by the age of onset of the disease, the rapid rate of disease progression, manifestations of defects in host response, and the composition of the subgingival microflora. Prepubertal periodontitis is associated with attachment loss around teeth of the deciduous and/or permanent dentition, and is often associated

  2. Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs

    SciTech Connect

    Zhou, Qiang; Zhao, Zhi-Ning; Cheng, Jing-Tao; Zhang, Bin; Xu, Jie; Huang, Fei; Zhao, Rui-Ni; Chen, Yong-Jin

    2011-01-07

    Research highlights: {yields} Ibandronate significantly promote the proliferation of PDLSC cells. {yields} Ibandronate enhanced the expression of ALP, COL-1, OPG, OCN, Runx2. {yields} The expression of a class of miRNAs, e.g., miR-18a, miR-133a, miR-141 and miR-19a, was significantly modified in PDLSC cells cultured with ibandronate. {yields} Ibandronate regulates the expression of diverse bone formation-related genes via miRNAs in PDLSCs. {yields} Ibandronate can suppress the activity of osteoclast while promoting the proliferation of osteoblast by regulating the expression of microRNAs. -- Abstract: Bisphosphonates (BPs) have a profound effect on bone resorption and are widely used to treat osteoclast-mediated bone diseases. They suppress bone resorption by inhibiting the activity of mature osteoclasts and/or the formation of new osteoclasts. Osteoblasts may be an alternative target for BPs. Periodontal ligament stem cells (PDLSCs) exhibit osteoblast-like features and are capable of differentiating into osteoblasts or cementoblasts. This study aimed to determine the effects of ibandronate, a nitrogen-containing BP, on the proliferation and the differentiation of PDLSCs and to identify the microRNAs (miRNAs) that mediate these effects. The PDLSCs were treated with ibandronate, and cell proliferation was measured using the MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) assay. The expression of genes and miRNAs involved in osteoblastic differentiation was assayed using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Ibandronate promoted the proliferation of PDLSCs and enhanced the expression of alkaline phosphatase (ALP), type I collagen (COL-1), osteoprotegerin (OPG), osteocalcin (OCN), and Runx2. The expression of miRNAs, including miR-18a, miR-133a, miR-141 and miR-19a, was significantly altered in the PDLSCs cultured with ibandronate. In PDLSCs, ibandronate regulates the expression of diverse bone formation

  3. SPARC and the N-propeptide of collagen I influence fibroblast proliferation and collagen assembly in the periodontal ligament

    PubMed Central

    Trombetta-eSilva, Jessica; Hepfer, Glenn; Yao, Hai; Bradshaw, Amy Dodd

    2017-01-01

    The periodontal ligament (PDL) is a fibrous connective tissue that anchors tooth cementum into alveolar bone. Secreted protein acidic and rich in cysteine (SPARC) is a collagen-binding matricellular protein known to influence collagen fiber assembly in the PDL. In contrast, functional properties of the N-propeptide of collagen I, encoded in exon 2 of the COL1A1 gene, are poorly understood. In this study, the PDL of collagen I exon 2-deleted (wt/ko), SPARC-null (ko/wt), and double transgenic (ko/ko) mice were evaluated in terms of cellularity, collagen area, fiber morphology, and extraction force and compared to WT (wt/wt) mice. Picro sirius red staining indicated a decrease in total PDL collagen content in each of the transgenic mice compared to WT at 1 and 3 month age points. At 12 months, only SPARC-null (ko/wt) and double-null PDL demonstrated less total collagen versus WT. Likewise, an increase in thin PDL collagen fibers was observed at 1 and 3 months in each transgenic, with increases only in SPARC-null and double-null mice at 12 months. The force required for tooth extraction was significantly reduced in SPARC-null versus exon 2-deleted and WT mice, whereas double-null mice demonstrated further decreases in force required for tooth extraction. The number of proliferating fibroblasts and number and size of epithelial rests of Malassez were increased in each transgenic versus WT with double-null PDL exhibiting highest levels of proliferation and rests of Malassez at 1 month of age. Consistent with increases in PDL collagen in exon-2 deleted mice, with age, numbers of rests decreased at 12 months in this genotype. These results demonstrate for the first time a functional role of the N-propeptide in regulating collagen fiber assembly and cell behavior and suggest that SPARC and the N-propeptide of collagen I have distinct activities in regulating collagen fiber assembly and fibroblast function. PMID:28245286

  4. [Periodontitis and tissue regeneration].

    PubMed

    Yamazaki, Kazuhisa

    2005-08-01

    Chronic periodontitis is a destructive disease that affects the supporting structures of the teeth including periodontal ligament, cementum, and alveolar bone. If left untreated, patients may lose multiple teeth and extensive prosthetic treatment will be required. In order to re-engineer lost tooth-supporting tissues, various therapeutic modalities have been used clinically. Periodontal regeneration procedures including guided tissue regeneration have achieved substantial effects. However, there are several issues to be solved. They are highly technique-sensitive, applicable to limited cases which are susceptible to treatment, and supposed to have relatively low predictability. Therefore, it is necessary to develop new approaches to improve the predictability and effectiveness of regenerative therapies for periodontal tissues. Recently, the concept of tissue engineering has been introduced to restore lost tissues more effectively where the biological process of healing is mimicked. To achieve this, integration of three key elements is required: progenitor/stem cells, growth factors and the extracellular matrix scaffold. Although it has been shown that implantation of bone marrow-derived mesenchymal stem cells into periodontal osseous defects induced regeneration of cementum, periodontal ligament and alveolar bone in dogs, further extensive preclinical studies are required. On the other hand, application of growth factors, particularly basic fibroblast growth factor in the treatment of human periodontitis, is promising and is now in clinical trial. Furthermore, the rate of release of growth factor from the scaffold also can profoundly affect the results of tissue engineering strategies and the development of new materials is expected. In addition, as tissue regenerative potential is negatively regulated by aging, the effects of aging have to be clarified to gain complete regeneration.

  5. Bone Morphogenetic Proteins: Periodontal Regeneration

    PubMed Central

    Rao, Subramaniam M; Ugale, Gauri M; Warad, Shivaraj B

    2013-01-01

    Periodontitis is an infectious inflammatory disease that results in attachment loss and bone loss. Regeneration of the periodontal tissues entails de novo formation of cementum, periodontal ligament, and alveolar bone. Several different approaches are currently being explored to achieve complete, reliable, and reproducible regeneration of periodontal tissues. The therapeutic management of new bone formation is one of the key issues in successful periodontal regeneration. Bone morphogenetic proteins form a unique group of proteins within the transforming growth factor superfamily of genes and have a vital role in the regulation in the bone induction and maintenance. The activity of bone morphogenetic proteins was first identified in the 1960s, but the proteins responsible for bone induction were unknown until the purification and cloning of human bone morphogenetic proteins in the 1980s, because of their osteoinductive potential. Bone morphogenetic proteins have gained a lot of interest as therapeutic agents for treating periodontal defects. A systematic search for data related to the use of bone morphogenetic proteins for the regeneration of periodontal defects was performed to recognize studies on animals and human (PUBMED, MEDLINE, COCHRANE, and Google search). All the studies included showed noticeable regeneration of periodontal tissues with the use of BMP. PMID:23626951

  6. Synergistic Effects of a Calcium Phosphate/Fibronectin Coating on the Adhesion of Periodontal Ligament Stem Cells Onto Decellularized Dental Root Surfaces.

    PubMed

    Lee, Jung-Seok; Kim, Hyun-Suk; Park, So-Yon; Kim, Tae-Wan; Jung, Jae-Suk; Lee, Jong-Bin; Kim, Chang-Sung

    2015-01-01

    This study aimed to enhance the attachment of periodontal ligament stem cells (PDLSCs) onto the decellularized dental root surface using surface coating with fibronectin and/or calcium phosphate (CaP) and to evaluate the activity of PDLSCs attached to a coated dental root surface following tooth replantation. PDLSCs were isolated from five dogs, and the other dental roots were used as a scaffold for carrying PDLSCs and then assigned to one of four groups according to whether their surface was coated with CaP, fibronectin, CaP/fibronectin, or left uncoated (control). Fibronectin increased the adhesion of PDLSCs onto dental root surfaces compared to both the control and CaP-coated groups, and simultaneous surface coating with CaP and fibronectin significantly accelerated and increased PDLSC adhesion compared to the fibronectin-only group. On in vivo tooth replantation, functionally oriented periodontal new attachment was observed on the CaP/fibronectin-coated dental roots to which autologous PDLSCs had adhered, while in the control condition, dental root replantation was associated only with root resorption and ankylosis along the entire root length. CaP and fibronectin synergistically enhanced the attachment of PDLSCs onto dental root surfaces, and autologous PDLSCs could produce de novo periodontal new attachment in an experimental in vivo model.

  7. Effect of Coconut Water Concentration on Survival of Bench-Dried Periodontal Ligament Cells

    PubMed Central

    Al-Haj Ali, Sanaa; Mhaidat, Nizar; Awawdeh, Lama; Naffa, Randa

    2011-01-01

    ABSTRACT Background : Coconut water is a biological and sterile liquid. It contains a variety of electrolytes, sugars and amino acids. The purpose of this study is to evaluate the effect of concentration and maturity of coconut water on its ability to preserve human PDL cell viability after exposure to dry time of up to 120 minutes using an in vitro cell culture model. Methods : PDL cells were obtained from sound permanent first molars which were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM). Cultures were subjected to 0, 30, 60, 90 and 120 minutes dry periods then incubated with 100 and 50% young and mature coconut water for 45 minutes at room temperature (18-26°C). Untreated cells at 0 and 120 minutes, and cells incubated in DMEM served as controls. PDL cell viability was assessed by MTT assay. Statistical analysis of data was accomplished by using one-way analysis of variance complemented by Tukey test, and the level of significance was 5% (p < 0.05). Results : 100% mature coconut water (MCW) was better than 50% dilutions obtained from mature or young coconuts. However, no significant benefit to the cells was noticed from the addition of the soaking step prior to 30 minutes dry time. Conclusion : Avulsed teeth which are left dry for > 30 minutes may be benefited from soaking in 100% mature coconut water; further studies on simulated avulsion in animal models are needed to verify the above results. PMID:27616852

  8. Messenger ribonucleic acid levels in disrupted human anterior cruciate ligaments.

    PubMed

    Lo, Ian K Y; Marchuk, Linda; Hart, David A; Frank, Cyril B

    2003-02-01

    Thirty patients had anterior cruciate ligament reconstruction for ongoing instability. Two groups were defined according to gross morphologic features identified during reconstruction: anterior cruciate ligament disruptions with scars attached to a structure in the joint and disruptions without reattachments. Reverse transcription polymerase chain reaction for a subset of extracellular matrix molecules, proteinases, and proteinase inhibitors was done on samples of scarred anterior cruciate ligament tissue removed during reconstructive surgery. Results of the nonattached scar group showed significantly increased mRNA levels for Type I collagen, and an increased Type I to Type III collagen ratio compared with that for the attached scar group. In the first year after injury, decorin mRNA levels in the nonattached scar group also were significantly higher than in the attached scar group. Biglycan mRNA levels in the nonattached scar group correlated closely with Type I collagen mRNA levels. These results suggest differences in cellular expression in torn anterior cruciate ligaments that attach to structures in the joint versus those which do not. Although the molecular mechanisms responsible for these differences have not been delineated, different molecular signals may influence the gross morphologic features of anterior cruciate ligament disruptions or alternatively, differing gross morphologic features may be subject to different mechanical loads leading to altered molecular expression. However, the finding of endogenous cellular activity in injured anterior cruciate ligaments raises the possibility that this activity may be enhanced to improve outcomes.

  9. Comparative transcriptional analysis of three human ligaments with distinct biomechanical properties

    PubMed Central

    Lorda-Diez, Carlos I; Canga-Villegas, Ana; Cerezal, Luis; Plaza, Santiago; Hurlé, Juan M; García-Porrero, Juan A; Montero, Juan A

    2013-01-01

    One major aim of regenerative medicine targeting the musculoskeletal system is to provide complementary and/or alternative therapeutic approaches to current surgical therapies, often involving the removal and prosthetic substitution of damaged tissues such as ligaments. For these approaches to be successful, detailed information regarding the cellular and molecular composition of different musculoskeletal tissues is required. Ligaments have often been considered homogeneous tissues with common biomechanical properties. However, advances in tissue engineering research have highlighted the functional relevance of the organisational and compositional differences between ligament types, especially in those with higher risks of injury. The aim of this study was to provide information concerning the relative expression levels of a subset of key genes (including extracellular matrix components, transcription factors and growth factors) that confer functional identity to ligaments. We compared the transcriptomes of three representative human ligaments subjected to different biomechanical demands: the anterior cruciate ligament (ACL); the ligamentum teres of the hip (LT); and the iliofemoral ligament (IL). We revealed significant differences in the expression of type I collagen, elastin, fibromodulin, biglycan, transforming growth factor β1, transforming growth interacting factor 1, hypoxia-inducible factor 1-alpha and transforming growth factor β-induced gene between the IL and the other two ligaments. Thus, considerable molecular heterogeneity can exist between anatomically distinct ligaments with differing biomechanical demands. However, the LT and ACL were found to show remarkable molecular homology, suggesting common functional properties. This finding provides experimental support for the proposed role of the LT as a hip joint stabiliser in humans. PMID:24128114

  10. Synchrotron radiation analysis of possible correlations between metal status in human cementum and periodontal disease

    SciTech Connect

    Martin, R.R.; Naftel, S.J.; Nelson, A.J.; Edwards, M.; Mithoowani, H.; Stakiw, J.

    2010-03-16

    Periodontitis is a serious disease that affects up to 50% of an adult population. It is a chronic condition involving inflammation of the periodontal ligament and associated tissues leading to eventual tooth loss. Some evidence suggests that trace metals, especially zinc and copper, may be involved in the onset and severity of periodontitis. Thus we have used synchrotron X-ray fluorescence imaging on cross sections of diseased and healthy teeth using a microbeam to explore the distribution of trace metals in cementum and adhering plaque. The comparison between diseased and healthy teeth indicates that there are elevated levels of zinc, copper and nickel in diseased teeth as opposed to healthy teeth. This preliminary correlation between elevated levels of trace metals in the cementum and plaque of diseased teeth suggests that metals may play a role in the progress of periodontitis.

  11. Comparison of Coconut Water and Jordanian Propolis on Survival of Bench-dried Periodontal Ligament Cells: An in vitro Cell Culture Study

    PubMed Central

    Al-Jundi, Suhad; Mhaidat, Nizar

    2013-01-01

    ABSTRACT Aim: The aim of this study is to assess and compare the efficacy of Jordanian propolis and full concentration mature coconut water in their ability to preserve periodontal ligament (PDL) cell viability after exposure of PDL cells to up to 120 minutes dry storage. Materials and methods: PDL cells were obtained from sound permanent first molars which were cultured in Dulbecco's Modified Eagles Medium (DMEM). Cultures were subjected to 0, 30, 45, 60, 90 and 120 minutes dry storage times then incubated with 100% mature coconut water, Jordanian propolis and DMEM for 45 minutes at room temperature (18-26°C). Untreated cells served as controls at each dry storage time tested. PDL cell viability was assessed by MTT assay. Statistical analysis of data was accomplished by using one-way analysis of variance complemented by Tukey test and the level of significance was 5% ( p < 0.05). Results: Up to 60 minutes dry storage, no significant improvement on the percentage of viable cells was found from soaking in all tested media. On the other hand, soaking in mature coconut water only resulted in higher percentages of viable cells at >60 minutes dry storage. However, this improvement was not significant (p > 0.05). Conclusion: Avulsed teeth which have been left dry for <45 minutes should be replanted immediately, whereas avulsed teeth which have been left dry for >45 minutes may benefit from soaking for 45 minutes in mature coconut water. How to cite this article: Al-Haj Ali SN, Al-Jundi S, Mhaidat N. Comparison of Coconut Water and Jordanian Propolis on Survival of Bench-dried Periodontal Ligament Cells: An in vitro Cell Culture Study. Int J Clin Pediatr Dent 2013;6(3):161-165. PMID:25206215

  12. Ultrastructure of the rat periodontal ligament as observed with quick-freeze, deep-etch and replica methods: arrangement of collagen and related structures.

    PubMed

    Kuroiwa, M; Tachikawa, T; Izumiyama, N; Takubo, K; Yoshiki, S; Higashi, S

    1996-01-01

    The ultrastructure of the periodontal ligament of rat molars was examined with the quick-freeze, deep-etch replica methods. It was mainly composed of elongated fibroblast-like cells and 40- to 50-nm-wide collagen fibrils that are arranged parallel to one another to form fibers approximately 1 micron in width. Collagen fibrils are composed of 10-nm-wide substructures that may run helically against the long axis of the fibril. Numerous rod-like structures ('rods') approximately 10 nm in width are present around the collagen fibrils. Individual or groups of rods span spaces between neighboring collagen fibrils to interconnect them. The surfaces of the fibroblast-like cells are also connected to the nearest collagen fibrils through the rods. In place, strands with a thickness similar to that of the rods were seen self-assembled into irregular meshwork structures. The treatment of the tissue with 10% sodium hydroxide for up to 5 days removed most of these rods and strands, thus exposing a three-dimensional arrangement of collagen fibrils that is often not fully visualized in untreated tissues. With histochemical staining of thinly sectioned tissues using Alcian blue, these rods and strands were positively stained, and thus they were demonstrated to be composed of proteoglycans. The ultrastructural arrangement of the periodontal ligament, observed in this study as a delicate interaction of collagen and proteoglycan components, is likely to play a significant role in the transmission of occlusal forces applied to the tissue and in the dissipation of mechanical shock.

  13. Elastic Properties of the Annular Ligament of the Human Stapes--AFM Measurement.

    PubMed

    Kwacz, Monika; Rymuza, Zygmunt; Michałowski, Marcin; Wysocki, Jarosław

    2015-08-01

    Elastic properties of the human stapes annular ligament were determined in the physiological range of the ligament deflection using atomic force microscopy and temporal bone specimens. The annular ligament stiffness was determined based on the experimental load-deflection curves. The elastic modulus (Young's modulus) for a simplified geometry was calculated using the Kirchhoff-Love theory for thin plates. The results obtained in this study showed that the annular ligament is a linear elastic material up to deflections of about 100 nm, with a stiffness of about 120 N/m and a calculated elastic modulus of about 1.1 MPa. These parameters can be used in numerical and physical models of the middle and/or inner ear.

  14. Stem cells, tissue engineering and periodontal regeneration.

    PubMed

    Han, J; Menicanin, D; Gronthos, S; Bartold, P M

    2014-06-01

    The aim of this review is to discuss the clinical utility of stem cells in periodontal regeneration by reviewing relevant literature that assesses the periodontal-regenerative potential of stem cells. We consider and describe the main stem cell populations that have been utilized with regard to periodontal regeneration, including bone marrow-derived mesenchymal stem cells and the main dental-derived mesenchymal stem cell populations: periodontal ligament stem cells, dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla and dental follicle precursor cells. Research into the use of stem cells for tissue regeneration has the potential to significantly influence periodontal treatment strategies in the future.

  15. Emdogain in regenerative periodontal therapy. A review of the literature.

    PubMed

    Sculean, Anton; Windisch, Péter; Döri, Ferenc; Keglevich, Tibor; Molnár, Balint; Gera, István

    2007-10-01

    The goal of regenerative periodontal therapy is the reconstitution of the lost periodontal structures (i.e. the new formation of root cementum, periodontal ligament and alveolar bone). Results from basic research have pointed to the important role of the enamel matrix protein derivative (EMD) in the periodontal wound healing. Histological results from animal and human studies have shown that treatment with EMD promotes periodontal regeneration. Moreover, clinical studies have indicated that treatment with EMD positively influences periodontal wound healing in humans. The goal of the current overview is to present, based on the existing evidence, the clinical indications for regenerative therapy with EMD. Surgical periodontal treatment of deep intrabony defects with EMD promotes periodontal regeneration. The application of EMD in the context of non-surgical periodontal therapy has failed to result in periodontal regeneration. Surgical periodontal therapy of deep intrabony defects with EMD may lead to significantly higher improvements of the clinical parameters than open flap debridement alone. The results obtained following treatment with EMD are comparable to those following treatment with GTR and can be maintained over a longer period. Treatment of intrabony defects with a combination of EMD + GTR does not seem to additionally improve the results compared to treatment with EMD alone or GTR alone. The combination of EMD and some types of bone grafts/bone substitutes may result in certain improvements in the soft and hard tissue parameters compared to treatment with EMD alone. Treatment of recession-type defects with coronally repositioned flaps and EMD may promote formation of cementum, periodontal ligament and bone, and may significantly increase the width of the keratinized tissue. Application of EMD seems to provide better long-term results than coronally repositioned flaps alone. Application of EMD may enhance periodontal regeneration in mandibular Class II

  16. The suitability of human adipose-derived stem cells for the engineering of ligament tissue.

    PubMed

    Eagan, Michael J; Zuk, Patricia A; Zhao, Ke-Wei; Bluth, Benjamin E; Brinkmann, Elyse J; Wu, Benjamin M; McAllister, David R

    2012-10-01

    Rupture of the anterior cruciate ligament (ACL) is the one of the most common sports-related injuries. With its poor healing capacity, surgical reconstruction using either autografts or allografts is currently required to restore function. However, serious complications are associated with graft reconstructions and the number of such reconstructions has steadily risen over the years, necessitating the search for an alternative approach to ACL repair. Such an approach may likely be tissue engineering. Recent engineering approaches using ligament-derived fibroblasts have been promising, but the slow growth rate of such fibroblasts in vitro may limit their practical application. More promising results are being achieved using bone marrow mesenchymal stem cells (MSCs). The adipose-derived stem cell (ASC) is often proposed as an alternative choice to the MSC and, as such, may be a suitable stem cell for ligament engineering. However, the use of ASCs in ligament engineering still remains relatively unexplored. Therefore, in this study, the potential use of human ASCs in ligament tissue engineering was initially explored by examining their ability to express several ligament markers under growth factor treatment. ASC populations treated for up to 4 weeks with TGFβ1 or IGF1 did not show any significant and consistent upregulation in the expression of collagen types 1 and 3, tenascin C and scleraxis. While treatment with EGF or bFGF resulted in increased tenascin C expression, increased expression of collagens 1 and 3 were never observed. Therefore, simple in vitro treatment of human ASC populations with growth factors may not stimulate their ligament differentiative potential.

  17. Histological study of the extratympanic portion of the discomallear ligament in adult humans: a functional hypothesis

    PubMed Central

    Mérida-Velasco, J R; de la Cuadra-Blanco, C; Pozo Kreilinger, J J; Mérida-Velasco, J A

    2012-01-01

    This study was carried out on histological aspects of the extratympanic portion of the discomallear ligament (DL) in adult humans. The temporomandibular joint (TMJ) was dissected bilaterally in 20 cadavers; in 15 cases the articular disc (AD) and the retroarticular tissue were extirpated. The extratympanic portion of the DL had the shape of a base-down triangle, in relation to the AD, and an upper vertex, in relation to the petrotympanic fissure. In five cases, the base, measured bilaterally, had an average length of 6.4 mm, while the distance from the base to the upper vertex averaged 9.3 mm in length. The extratypanic portion of the DL is an intrinsic ligament of the TMJ, composed of collagen fibres and abundant elastic fibres. We propose that this ligament could act as a tensor of the synovial membrane in movements of the TMJ. PMID:22050648

  18. Histological study of the extratympanic portion of the discomallear ligament in adult humans: a functional hypothesis.

    PubMed

    Mérida-Velasco, J R; de la Cuadra-Blanco, C; Pozo Kreilinger, J J; Mérida-Velasco, J A

    2012-01-01

    This study was carried out on histological aspects of the extratympanic portion of the discomallear ligament (DL) in adult humans. The temporomandibular joint (TMJ) was dissected bilaterally in 20 cadavers; in 15 cases the articular disc (AD) and the retroarticular tissue were extirpated. The extratympanic portion of the DL had the shape of a base-down triangle, in relation to the AD, and an upper vertex, in relation to the petrotympanic fissure. In five cases, the base, measured bilaterally, had an average length of 6.4 mm, while the distance from the base to the upper vertex averaged 9.3 mm in length. The extratypanic portion of the DL is an intrinsic ligament of the TMJ, composed of collagen fibres and abundant elastic fibres. We propose that this ligament could act as a tensor of the synovial membrane in movements of the TMJ.

  19. Regenerative periodontal therapy.

    PubMed

    Kao, Daniel W K; Fiorellini, Joseph P

    2012-01-01

    Traditional treatment for loss of bone and attachment due to periodontal disease has focused around repairing the damage induced. However, over the past few decades, clinicians have begun to utilize regenerative techniques to rebuild bone, cementum and the periodontal ligament. Conventional procedures most often involve the use of barrier membranes with bone grafts that foster selective cell repopulation and regrowth of osseous structures. Since the predictability of these techniques may be limited to certain case types, pharmacologically based efforts are underway to investigate the possibility of harnessing osseous regrowth potential. Clinical research has found that proteins are potent biological mediators that promote many of the events in wound healing, and have been shown to promote bone formation in human clinical studies.

  20. Cementum- and periodontal ligament-like tissue formation by dental follicle cell sheets co-cultured with Hertwig's epithelial root sheath cells.

    PubMed

    Bai, Yudi; Bai, Yuxiang; Matsuzaka, Kenichi; Hashimoto, Sadamitsu; Fukuyama, Tatsuro; Wu, Lian; Miwa, Tsuneyuki; Liu, Xiaohui; Wang, Xiaojing; Inoue, Takashi

    2011-06-01

    Dental follicle cells (DFCs) are believed contain the precursor cells of the periodontium and can form cell sheets by secreting extracellular matrix (ECM) proteins. Cell sheet engineering has been recently developed and applied successfully in the field of tissue regeneration. However, research on the in vitro characteristics of DFC sheets is lacking and an assessment of whether DFC sheets can produce periodontal tissues in vivo has not been reported. To test the characteristics and applicability of DFC sheets in this field, we established a co-culture system of rat DFCs and Hertwig's epithelial root sheath (HERS) cells in vitro, and included the following controls: a co-culture of DFCs and alveolar mucosa epithelial cells, DFCs with no cells in the upper chamber, and DFCs cultured without an upper chamber. After 3 weeks of co-culturing the cells, the DFC sheets were transplanted into adult male rats' omenta. One week after co-culturing DFCs with HERS cells, mRNA levels of collagen type I (COL-1), alkaline phosphatase (ALP), runt related transcription factor 2 (Runx 2) and bone sialoprotein (BSP) were increased significantly. In addition, after 3 weeks of co-culturing the cells, the numbers of ALP-, osteocalcin (OCN)-, BSP- and osteoprotegerin (OPG)-positive DFCs increased. The DFCs also produced more calcified nodules and exhibited an increased number of subcellular organelles, which are important for protein synthesis and secretion. Moreover, gap junctions were found between the experimental DFCs within the sheet. Five weeks of in vivo growth of DFC sheets pre-exposed to HERS cells led to the formation of cementum-like tissues, which were positive for OCN, BSP and OPG, as well as the formation of periodontal ligament-like tissues, which were positive for COL-1. In contrast, control cells only produced fibrous tissues. These results indicate that the DFC sheets induced by HERS cells are able to produce periodontal tissues through epithelial

  1. Effects of mechanical strain on human mesenchymal stem cells and ligament fibroblasts in a textured poly(L-lactide) scaffold for ligament tissue engineering.

    PubMed

    Kreja, Ludwika; Liedert, Astrid; Schlenker, Heiter; Brenner, Rolf E; Fiedler, Jörg; Friemert, Benedikt; Dürselen, Lutz; Ignatius, Anita

    2012-10-01

    The purpose of this study was to prove the effect of cyclic uniaxial intermittent strain on the mRNA expression of ligament-specific marker genes in human mesenchymal stem cells (MSC) and anterior cruciate ligament-derived fibroblasts (ACL-fibroblasts) seeded onto a novel textured poly(L-lactide) scaffold (PLA scaffold). Cell-seeded scaffolds were mechanically stimulated by cyclic uniaxial stretching. The expression of ligament matrix gene markers: collagen types I and III, fibronectin, tenascin C and decorin, as well as the proteolytic enzymes matrix metalloproteinase MMP-1 and MMP-2 and their tissue specific inhibitors TIMP-1 and TIMP-2 was investigated by analysing the mRNA expression using reverse transcriptase polymerase chain reaction and related to the static control. In ACL-fibroblasts seeded on PLA, mechanical load induced up-regulation of collagen types I and III, fibronectin and tenascin C. No effect of mechanical stimulation on the expression of ligament marker genes was found in undifferentiated MSC seeded on PLA. The results indicated that the new textured PLA scaffold could transfer the mechanical load to the ACL-fibroblasts and improved their ligament phenotype. This scaffold might be suitable as a cell-carrying component of ACL prostheses.

  2. Evaluation and comparison of efficacy of three different storage media, coconut water, propolis, and oral rehydration solution, in maintaining the viability of periodontal ligament cells

    PubMed Central

    Sanghavi, Tulsi; Shah, Nimisha; Parekh, Vaishali; Singbal, Kiran

    2013-01-01

    Background: Two of the most critical factors affecting the prognosis of an avulsed tooth after replantation are extra oral dry time and the storage medium in which the tooth is placed before treatment is rendered. However, the ability of a storage/transport medium to support cell viability can be more important than the extra oral time to prevent ankylosis and replacement resorption. Aim: Purpose of this study was evaluation and comparison of efficacy of a new storage medium, oral rehydration solution (ORS) with coconut water, and propolis in maintaining the viability of periodontal ligament (PDL) cells by using a collagenase-dispase assay. Materials and Methods: 40 teeth were selected with intact crown which were advised for Orthodontic extraction having healthy PDL. Teeth were then randomly divided into three experimental storage solution groups. Other 10 were divided into positive and negative control groups (5 each). Statistical Analysis and Result: The results were statistically analyzed with analysis of variance and multiple range by using post hoc tests. The results of the prevailing study indicated that coconut water group demonstrated a significantly higher number of viable PDL cells than propolis 50%, and ORS. There was no significant difference between coconut water and propolis 50% groups. PMID:23349581

  3. Dental age estimation: periodontal ligament visibility (PLV)-pattern recognition of a conclusive mandibular maturity marker related to the lower left third molar at the 18-year threshold.

    PubMed

    Lucas, Victoria S; McDonald, Fraser; Andiappan, Manoharan; Roberts, Graham

    2016-11-03

    The purpose of this study was to explore the applicability of periodontal ligament visibility (PLV) at the 18-year threshold. This mandibular maturity marker is graded into four separate age related stages, PLV-A, PLV-B, PLV-C, and PLV-D. These are discernible on a dental panoramic tomograph (DPT). The sample comprised a total of 2000 DPTs evenly divided into half yearly age bands from 16.00 to 25.99 years with 50 females and 50 males in each age band. It was found that PLV-A and PLV-B had minimum values below the 18-year threshold. PLV-C and PLV-D in females had minimum values of 18.08 and 18.58 years, respectively. In males, the minimum values for PLV-C was 18.10 years and PLV-D was 18.67 years. It was concluded that the presence of PLV-C or PLV-D indicates that a subject is over 18 years with a very high level of probability.

  4. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold.

    PubMed

    Moshaverinia, Alireza; Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Ansari, Sahar; Zadeh, Homayoun H; Shi, Songtao

    2014-02-01

    Mesenchymal stem cells (MSCs) provide an advantageous alternative therapeutic option for bone regeneration in comparison to current treatment modalities. However, delivering MSCs to the defect site while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated bone regeneration. Here, we tested the bone regeneration capacity of periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) encapsulated in a novel RGD- (arginine-glycine-aspartic acid tripeptide) coupled alginate microencapsulation system in vitro and in vivo. Five-millimeter-diameter critical-size calvarial defects were created in immunocompromised mice and PDLSCs and GMSCs encapsulated in RGD-modified alginate microspheres were transplanted into the defect sites. New bone formation was assessed using microcomputed tomography and histological analyses 8 weeks after transplantation. Results confirmed that our microencapsulation system significantly enhanced MSC viability and osteogenic differentiation in vitro compared with non-RGD-containing alginate hydrogel microspheres with larger diameters. Results confirmed that PDLSCs were able to repair the calvarial defects by promoting the formation of mineralized tissue, while GMSCs showed significantly lower osteogenic differentiation capability. Further, results revealed that RGD-coupled alginate scaffold facilitated the differentiation of oral MSCs toward an osteoblast lineage in vitro and in vivo, as assessed by expression of osteogenic markers Runx2, ALP, and osteocalcin. In conclusion, these results for the first time demonstrated that MSCs derived from orofacial tissue encapsulated in RGD-modified alginate scaffold show promise for craniofacial bone regeneration. This treatment modality has many potential dental and orthopedic applications.

  5. A comparison of the postnatal development of muscle-spindle and periodontal-ligament neurons in the mesencephalic trigeminal nucleus of the rat.

    PubMed

    Umemura, Tetsuhiro; Yasuda, Kouichi; Ishihama, Kohji; Yamada, Hidefumi; Okayama, Masaki; Hasumi-Nakayama, Yoko; Furusawa, Kiyofumi

    2010-04-05

    The trigeminal mesencephalic nucleus (Vmes) is known to include primary afferent neurons of jaw muscle spindles (MS neurons) and periodontal ligament receptors (PL neurons). The aim of this study was to clarify the postnatal development of Vmes neurons by comparing MS neurons with PL neurons using horseradish peroxidase labeling. We measured somal diameter and somal shape of MS and PL neurons in rats from postnatal day (P)7 to P70. No significant changes were seen between postnatal day P7 and P70 in somal diameter or somal shape of MS neurons. Conversely, PL neurons showed a larger somal diameter at P7 than at P14, and in terms of somal profile, multipolar neurons comprised 0% at P7, but 4.8% at P14 and 16.9% at P70. These findings suggest that PL neurons develop with the eruption of teeth, taking into account the fact that tooth eruption occurs from around P14 in rats. Conversely, the lack of postnatal changes in MS neurons is due to the fact that these neurons have been active since the embryonic period, as swallowing starts in utero.

  6. Enhancement of Anti-Inflammatory and Osteogenic Abilities of Mesenchymal Stem Cells via Cell-to-Cell Adhesion to Periodontal Ligament-Derived Fibroblasts

    PubMed Central

    Suzuki, Keita; Sawada, Shunsuke; Takizawa, Naoki; Yaegashi, Takashi; Ishisaki, Akira

    2017-01-01

    Mesenchymal stem cells (MSCs) are involved in anti-inflammatory events and tissue repair; these functions are activated by their migration or homing to inflammatory tissues in response to various chemokines. However, the mechanism by which MSCs interact with other cell types in inflammatory tissue remains unclear. We investigated the role of periodontal ligament fibroblasts (PDL-Fs) in regulating the anti-inflammatory and osteogenic abilities of bone marrow-derived- (BM-) MSCs. The expression of monocyte chemotactic protein- (MCP-)1 was significantly enhanced by stimulation of PDL-Fs with inflammatory cytokines. MCP-1 induced the migratory ability of BM-MSCs but not PDL-Fs. Expression levels of anti-inflammatory and inflammatory cytokines were increased and decreased, respectively, by direct-contact coculture between MSCs and PDL-Fs. In addition, the direct-contact coculture enhanced the expression of MSC markers that play important roles in the self-renewal and maintenance of multipotency of MSCs, which in turn induced the osteogenic ability of the cells. These results suggest that MCP-1 induces the migration and homing of BM-MSCs into the PDL inflammatory tissue. The subsequent adherence of MSCs to PDL-Fs plays an immunomodulatory role to terminate inflammation during wound healing and upregulates the expression stem cell markers to enhance the stemness of MSCs, thereby facilitating bone formation in damaged PDL tissue. PMID:28167967

  7. Periodontal ligament versus bone marrow mesenchymal stem cells in combination with Bio-Oss scaffolds for ectopic and in situ bone formation: A comparative study in the rat.

    PubMed

    Yu, Bo-Han; Zhou, Qian; Wang, Zuo-Lin

    2014-08-01

    The aim of this study was to compare the osteogenic effects of periodontal ligament stem cells (PDLSCs) versus bone marrow mesenchymal stem cells (BMMSCs) in combination with Bio-Oss scaffolds on subcutaneous and critical-size defects in the immunodeficient rat calvarium. PDLSCs and BMMSCs were obtained from the same canine donor. Twenty-four rats were randomly assigned to one of four experimental groups (n = 6 each): group A (no-graft negative control), group B (Bio-Oss positive control), group C (BMMSC/Bio-Oss test group), and group D (PDLSC/Bio-Oss test group). Eight weeks post-transplantation, ectopic and in situ bone regeneration was evaluated by micro-computed tomography (µ-CT), histology, histomorphometry, and immunohistochemistry. The stem cell/Bio-Oss constructs were significantly superior to the controls in terms of their ability to promote osteogenesis (p < 0.01), while the PDLSC/Bio-Oss construct tended to be superior to the BMMSC/Bio-Oss construct. Thus, engineered stem cell/Bio-Oss complexes can successfully reconstruct critical-size defects in rats, and PDLSCs and BMMSCs are both suitable as seed cells.

  8. Finite element analysis of equine incisor teeth. Part 2: investigation of stresses and strain energy densities in the periodontal ligament and surrounding bone during tooth movement.

    PubMed

    Schrock, P; Lüpke, M; Seifert, H; Staszyk, C

    2013-12-01

    This study investigated the hypothetical contribution of biomechanical loading to the onset of equine odontoclastic tooth resorption and hypercementosis (EOTRH) and to elucidate the physiological age-related positional changes of the equine incisors. Based on high resolution micro-computed tomography (μCT) datasets, 3-dimensional models of entire incisor arcades and the canine teeth were constructed representing a young and an old incisor dentition. Special attention was paid to constructing an anatomically correct model of the periodontal ligament (PDL). Using previously determined Young's moduli for the equine incisor PDL, finite element (FE) analysis was performed. Resulting strains, stresses and strain energy densities (SEDs), as well as the resulting regions of tension and compression within the PDL and the surrounding bone were investigated during occlusion. The results showed a distinct distribution pattern of high stresses and corresponding SEDs in the PDL and bone. Due to the tooth movement, peaks of SEDs were obtained in the PDL as well as in the bone on the labial and palatal/lingual sides of the alveolar crest. At the root, highest SEDs were detected in the PDL on the palatal/lingual side slightly occlusal of the root tip. This distribution pattern of high SEDs within the PDL coincides with the position of initial resorptive lesions in EOTRH affected teeth. The position of high SEDs in the bone can explain the typical age-related alteration of shape and angulation of equine incisors.

  9. Evaluation of Osteogenic and Cementogenic Potential of Periodontal Ligament Fibroblast Spheroids Using a Three-Dimensional In Vitro Model of Periodontium

    PubMed Central

    Berahim, Zurairah; Moharamzadeh, Keyvan; Jowett, Adrian K.; Rawlinson, Andrew

    2015-01-01

    The aim of this study was to develop a three-dimensional in vitro model of periodontium to investigate the osteogenic and cementogenic differentiation potential of the periodontal ligament fibroblast (PDLF) spheroids within a dentin-membrane complex. PDLFs were cultured in both spheroid forms and monolayers and were seeded onto two biological collagen-based and synthetic membranes. Cell-membrane composites were then transferred onto dentin slices with fibroblasts facing the dentin surface and further cultured for 20 days. The composites were then processed for histology and immunohistochemical analyses for osteocalcin, Runx2, periostin, and cementum attachment protein (CAP). Both membranes seeded with PDLF-derived cells adhered to dentin and fibroblasts were present at the dentin interface and spread within both membranes. All membrane-cell-dentine composites showed positive staining for osteocalcin, Runx2, and periostin. However, CAP was not expressed by any of the tissue composites. It can be concluded that PDLFs exhibited some osteogenic potential when cultured in a 3D matrix in the presence of dentin as shown by the expression of osteocalcin. However the interaction of cells and dentin in this study was unable to stimulate cementum formation. The type of membrane did not have a significant effect upon differentiation, but fibroblast seeded-PGA membrane demonstrated better attachment to dentin than the collagen membrane. PMID:26633971

  10. Rare periodontal ligament drainage for periapical inflammation of an adjacent tooth: a case report and review of the literature.

    PubMed

    Guo, Hongmei; Lu, Wei; Han, Qianqian; Li, Shubo; Yang, Pishan

    2014-01-01

    Aim. To report a case with an unusual drainage route of periapical inflammation exiting through the gingival sulcus of an adjacent vital tooth and review probable factors determining the diversity of the discharge routes of periapical inflammation. Summary. An 18-year-old male patient presented with periodontal abscess of tooth 46, which was found to be caused by a periapical cyst with an acute abscess of tooth 45. During endodontic surgery, a rarely reported drainage route for periapical inflammation via the gingival sulcus of an adjacent vital tooth was observed for the first time. Complete periodontal healing of the deep pocket of tooth 46 and hiding of the periapical cyst of tooth 45 followed after root canal treatment and periapical surgery with Bio-Oss Collagen implantation on tooth 45. The drainage routes of periapical inflammation are multivariate and the diversity of drainage pathways of periapical inflammation is mainly related to factors such as gravity, barriers against inflammation, and the causative tooth itself.

  11. Oxidative damage to human parametrial ligament fibroblasts induced by mechanical stress.

    PubMed

    Hong, Shasha; Li, Hong; Wu, Debin; Li, Bingshu; Liu, Cheng; Guo, Wenjun; Min, Jie; Hu, Ming; Zhao, Yang; Yang, Qing

    2015-10-01

    The aim of the present study was to explore the underlying mechanisms of the roles of mechanical factors in the pathogenesis of pelvic organ prolapse (POP). The experiments were performed on fibroblasts derived from uterosacral ligaments and cardinal ligaments of patients who received total hysterectomy due to benign disease excluding POP. Fibroblasts were cultured after collagenase digestion and identified by morphological observation and immunocytochemical methods. A four‑point bending device was used to subject fibroblasts at passage 4‑6 to strains of 0, 1,333 µ (1 mm), 2,666 µ (2 mm) or 5,333 µ (4 mm) at a frequency of 0.1 Hz for 4 h. Intracellular reactive oxygen species (ROS) were quantified using the fluorescent probe 2',7'‑dichlorodihydrofluorescein diacetate. Changes in the mitochondrial membrane potential were verified using the fluorescent dye JC‑1, and apoptosis was detected using Annexin V/propidium iodide staining and flow cytometric analysis. Mechanical strain changed the morphology and adherence ability of parametrial ligament fibroblasts. Furthermore, the production of ROS was significantly increased and the mitochondrial membrane potential obviously declined with the enhancement of mechanical stress loading. In addition, the apoptotic rate of fibroblasts subjected to high mechanical strain was significantly increased compared with that in fibroblast under low‑intensity strain. In conclusion, the present study showed that mechanical strain enhanced intracellular ROS levels, decreased the mitochondrial membrane potential and increased the apoptotic rate in human parametrial ligament fibroblasts, which may contribute to POP.

  12. Quantification of Epstein-Barr Virus and Human Cytomegalovirus in Chronic Periodontal Patients

    PubMed Central

    Khosropanah, Hengameh; Karandish, Maryam; Ziaeyan, Mazyar; Jamalidoust, Marzieh

    2015-01-01

    Background: Although studies focused mainly on the identification of periopathogenic bacteria, recent reports have suggested that various herpes viruses may also be involved in the occurrence and progression of different forms of periodontal diseases. Objectives: This study aimed to compare the prevalence and load of Epstein-Barr Virus (EBV) and Human Cytomegalovirus (HCMV) in subgingival tissue specimens between chronic periodontitis and healthy sites. Patients and Methods: A total of 60 samples from the systematically healthy patients with chronic periodontitis participated in this study (mean age, 35 ± 7). Clinical periodontal evaluation included the plaque index (PI) (Loe and Silness), bleeding on probing (BOP) (O’Leary), bleeding index, periodontal pocket depth (PPD) and clinical attachment level measurement. Tissue specimens harvested from > 6 mm periodontal pockets and from ≤ 3 mm sulcus depth in a quadrant of the same patient using periodontal curettes. Moreover, the unstimulated whole saliva was gathered as a shedding medium. A Taq-man Real-Time Polymerase Chain Reaction assay was used to identify genomic copies of periodontal HCMV and EBV. Data were analyzed by the Wilcoxon-signed ranks and Friedman tests using the SPSS 16 software. Results: Out of 60 samples of subgingival tissues taken from the patients with chronic periodontitis, EBV count was the highest in saliva and the least in the tissue sample with PD < 3 mm (P < 0.05). The highest HCMV count was in saliva and tissue samples with PD > 6 mm (P < 0.05). Conclusions: According to the results of this study, quantification of HCMV and EBV observed in this study is high in periodontal tissue samples of severe chronic periodontitis. PMID:26322203

  13. Correlation of mast cells in different stages of human periodontal diseases: Pilot study

    PubMed Central

    Agrawal, Raina; Gupta, Jagriti; Gupta, Krishna Kumar; Kumar, Vinod

    2016-01-01

    Aims and Objectives: The aim of this study was to evaluate and correlate the relationship between mast cells counts and different stages of human periodontal diseases. Materials and Methods: The study sample comprised 50 patients, which were divided into three groups, consisting of 10 cases of clinically healthy gingival tissues (control group) 20 cases of dental plaque-induced gingivitis with no attachment loss and 20 cases of localized chronic periodontitis (LCP) characterized by the loss of periodontal support. The samples for control group were obtained during tooth extractions for orthodontic reasons. The specimens were immediately fixed in 10% neutral buffered formalin. Conclusion: In this study, LCP cases had higher mast cell counts compared to gingivitis sites or healthy tissues. Increased mast cell counts in the progressing sites of periodontal diseases may indicate the importance of these cells in the progression of chronic periodontitis. PMID:27194868

  14. Immunolocalization of a human cementoblastoma-conditioned medium-derived protein.

    PubMed

    Arzate, H; Jiménez-García, L F; Alvarez-Pérez, M A; Landa, A; Bar-Kana, I; Pitaru, S

    2002-08-01

    Little is known about the molecular mechanisms that regulate the cementogenesis process, because specific cementum markers are not yet available. To investigate whether a cementoblastoma-conditioned medium-derived protein (CP) could be useful as a cementum biological marker, we studied its expression and distribution in human periodontal tissues, human periodontal ligament, alveolar bone, and cementoblastoma-derived cells. In human periodontal tissues, immunoreactivity to anti-CP was observed throughout the cementoid phase of acellular and cellular cementum, cementoblasts, cementocytes, cells located in the endosteal spaces of human alveolar bone, and in cells in the periodontal ligament located near the blood vessels. Immunopurified CP promoted cell attachment on human periodontal ligament, alveolar bone-derived cells, and gingival fibroblasts. A monoclonal antibody against bovine cementum attachment protein (CAP) cross-reacted with CP. These findings indicate that CP identifies potential cementoblast progenitor cells, is immunologically related to CAP species, and serves as a biological marker for cementum.

  15. Intermittent Hypoxia Influences Alveolar Bone Proper Microstructure via Hypoxia-Inducible Factor and VEGF Expression in Periodontal Ligaments of Growing Rats

    PubMed Central

    Oishi, Shuji; Shimizu, Yasuhiro; Hosomichi, Jun; Kuma, Yoichiro; Maeda, Hideyuki; Nagai, Hisashi; Usumi-Fujita, Risa; Kaneko, Sawa; Shibutani, Naoki; Suzuki, Jun-ichi; Yoshida, Ken-ichi; Ono, Takashi

    2016-01-01

    Intermittent hypoxia (IH) recapitulates morphological changes in the maxillofacial bones in children with obstructive sleep apnea (OSA). Recently, we found that IH increased bone mineral density (BMD) in the inter-radicular alveolar bone (reflecting enhanced osteogenesis) in the mandibular first molar (M1) region in the growing rats, but the underlying mechanism remains unknown. In this study, we focused on the hypoxia-inducible factor (HIF) pathway to assess the effect of IH by testing the null hypothesis of no significant differences in the mRNA-expression levels of relevant factors associated with the HIF pathway, between control rats and growing rats with IH. To test the null hypothesis, we investigated how IH enhances mandibular osteogenesis in the alveolar bone proper with respect to HIF-1α and vascular endothelial growth factor (VEGF) in periodontal ligament (PDL) tissues. Seven-week-old male Sprague–Dawley rats were exposed to IH for 3 weeks. The microstructure and BMD in the alveolar bone proper of the distal root of the mandibular M1 were evaluated using micro-computed tomography (micro-CT). Expression of HIF-1α and VEGF mRNA in PDL tissues were measured, whereas osteogenesis was evaluated by measuring mRNA levels for alkaline phosphatase (ALP) and bone morphogenetic protein-2 (BMP-2). The null hypothesis was rejected: we found an increase in the expression of all of these markers after IH exposure. The results provided the first indication that IH enhanced osteogenesis of the mandibular M1 region in association with PDL angiogenesis during growth via HIF-1α in an animal model. PMID:27695422

  16. Bone Regeneration Potential of Stem Cells Derived from Periodontal Ligament or Gingival Tissue Sources Encapsulated in RGD-Modified Alginate Scaffold

    PubMed Central

    Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Ansari, Sahar; Zadeh, Homayoun H.; Shi, Songtao

    2014-01-01

    Mesenchymal stem cells (MSCs) provide an advantageous alternative therapeutic option for bone regeneration in comparison to current treatment modalities. However, delivering MSCs to the defect site while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated bone regeneration. Here, we tested the bone regeneration capacity of periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) encapsulated in a novel RGD- (arginine-glycine-aspartic acid tripeptide) coupled alginate microencapsulation system in vitro and in vivo. Five-millimeter-diameter critical-size calvarial defects were created in immunocompromised mice and PDLSCs and GMSCs encapsulated in RGD-modified alginate microspheres were transplanted into the defect sites. New bone formation was assessed using microcomputed tomography and histological analyses 8 weeks after transplantation. Results confirmed that our microencapsulation system significantly enhanced MSC viability and osteogenic differentiation in vitro compared with non-RGD-containing alginate hydrogel microspheres with larger diameters. Results confirmed that PDLSCs were able to repair the calvarial defects by promoting the formation of mineralized tissue, while GMSCs showed significantly lower osteogenic differentiation capability. Further, results revealed that RGD-coupled alginate scaffold facilitated the differentiation of oral MSCs toward an osteoblast lineage in vitro and in vivo, as assessed by expression of osteogenic markers Runx2, ALP, and osteocalcin. In conclusion, these results for the first time demonstrated that MSCs derived from orofacial tissue encapsulated in RGD-modified alginate scaffold show promise for craniofacial bone regeneration. This treatment modality has many potential dental and orthopedic applications. PMID:24070211

  17. Regenerative periodontal therapy.

    PubMed

    Hägi, Tobias T; Laugisch, Oliver; Ivanovic, Aleksandar; Sculean, Anton

    2014-03-01

    The goal of regenerative periodontal therapy is to completely restore the tooth's supporting apparatus that has been lost due to inflammatory periodontal disease or injury. It is characterized by formation of new cementum with inserting collagen fibers, new periodontal ligament, and new alveolar bone. Indeed conventional, nonsurgical, and surgical periodontal therapy usually result in clinical improvements evidenced by probing depth reduction and clinical attachment gain, but the healing occurs predominantly through formation of a long junctional epithelium and no or only unpredictable periodontal regeneration. Therefore, there is an ongoing search for new materials and improved surgical techniques, with the aim of predictably promoting periodontal wound healing/regeneration and improving the clinical outcome. This article attempts to provide the clinician with an overview of the most important biologic events involved in periodontal wound healing/ regeneration and on the criteria on how to select the appropriate regenerative material and surgical technique in order to optimize the clinical outcomes.

  18. Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis.

    PubMed

    Sun, Hai-Hua; Chen, Bo; Zhu, Qing-Lin; Kong, Hui; Li, Qi-Hong; Gao, Li-Na; Xiao, Min; Chen, Fa-Ming; Yu, Qing

    2014-11-01

    Recently, human dental pulp stem cells (DPSCs) isolated from inflamed dental pulp tissue have been demonstrated to retain some of their pluripotency and regenerative potential. However, the effects of periodontal inflammation due to periodontitis and its progression on the properties of DPSCs within periodontally compromised teeth remain unknown. In this study, DPSCs were isolated from discarded human teeth that were extracted due to aggressive periodontitis (AgP) and divided into three experimental groups (Groups A, B and C) based on the degree of inflammation-induced bone resorption approaching the apex of the tooth root before tooth extraction. DPSCs derived from impacted or non-functional third molars of matched patients were used as a control. Mesenchymal stem cell (MSC)-like characteristics, including colony-forming ability, proliferation, cell cycle, cell surface antigens, multi-lineage differentiation capability and in vivo tissue regeneration potential, were all evaluated in a patient-matched comparison. It was found that STRO-1- and CD146-positive DPSCs can be isolated from human teeth, even in very severe cases of AgP. Periodontal inflammation and its progression had an obvious impact on the characteristics of DPSCs isolated from periodontally affected teeth. Although all the isolated DPSCs in Groups A, B and C showed decreased colony-forming ability and proliferation rate (P < 0.05), the decreases were not consistent with the degree of periodontitis. Furthermore, the cells did not necessarily show significantly diminished in vitro multi-differentiation potential. Only DPSCs from Group A and the Control group formed dentin-like matrix in vivo when cell-seeded biomaterials were transplanted directly into an ectopic transplantation model. However, when cell-seeded scaffolds were placed in the root fragments of human teeth, all the cells formed significant dentin- and pulp-like tissues. The ability of DPSCs to generate dental tissues decreased when the

  19. Distal ligament in human glans: a comparative study of penile architecture.

    PubMed

    Hsu, Geng-Long; Lin, Chung-Wu; Hsieh, Cheng-Hsing; Hsieh, Ju-Ton; Chen, Shyh-Chyan; Kuo, Tzong-Fu; Ling, Pei-Ying; Huang, Hsiu-Mei; Wang, Chii-Jye; Tseng, Guo-Fang

    2005-01-01

    To elucidate the anatomic distal ligament of the human glans penis and associated clinical implications, we compared the structures of the glans penis and corpora cavernosa in dogs, rats, and humans. From May 2001 to March 2003, gross dissection, microscopic examinations, and stains for elastic fibers and collagen subtypes were made in the penises of 11 adult human male cadavers, 7 dogs, and 5 rats. A distal ligament in the human glans penis replaces the os penis that is present in dogs or rats, also termed the baculum, but retains collagen types I and III as common structural and interlocking components, respectively. The intercavernosal septum is complete, and intracavernosal pillars (ICPs) are abundant in dogs, absent in rats, and moderately developed in humans. A tunica with numerous elastic fibers exists to fulfill the requirements of erectile function in humans but not in dogs or rats, since it is essential for establishing tissue strength to serve as a buttress. We may conclude that in dogs and rats, the strong os penis is designed for ready intromission and is associated with a pair of well-developed nonelastic corpora to serve as a buttress for the os penis. These structures are necessary for the rigorous coitus observed in dogs. The less compliant corpus cavernosum is suitable for the flipping action observed in a mating male rat. These specific anatomic designs may provide explanations for the individual requirements for the specific physiologic functions that differ from species to species. Although there is no os in the human glans, a strong equivalent distal ligament is arranged centrally and acts as a supporting trunk for the glans penis. Without this important structure, the glans could be too weak to bear the buckling pressure generated during coitus and too limber to serve as a patent passage for ejaculation, and it could be too difficult to transmit the intracavernosal pressure surge along the entire penis during ejaculation. Given the common

  20. Estrogen enhances the bone regeneration potential of periodontal ligament stem cells derived from osteoporotic rats and seeded on nano-hydroxyapatite/collagen/poly(L-lactide).

    PubMed

    E, Ling-Ling; Xu, Wen-Huan; Feng, Lin; Liu, Yi; Cai, Dong-Qing; Wen, Ning; Zheng, Wen-Jie

    2016-06-01

    This study investigated the effects of estrogen on the bone regeneration potential of periodontal ligament stem cells (PDLSCs) derived from osteoporotic rats and seeded on a collagen-based composite scaffold [nano-hydroxyapatite/collagen/poly(L-lactide) (nHAC/PLA)]. For this purpose, 48 healthy 3‑month-old Sprague-Dawley female rats were divided into 2 groups as follows: the bilaterally ovariectomized (OVX) rats and sham‑operated rats. The PDLSCs were isolated at 3 months after surgery (by which time postmenopausal osteoporosis had developed). The effects of estrogen on the characteristics of these cells seeded in a culture plate and of the cells seeded on nHAC/PLA were then investigated. The PDLSC + nHAC/PLA constructs were implanted subcutaneously into the backs of severe combined immunodeficient (SCID) mice for 12 weeks in order to examine the role of estrogen in the bone formation ability of PDLSCs derived from osteoporotic rats. The results from methyl thiazolyl tetrazolium (MTT) assay revealed that the proliferation of the cells derived from the rats in the OVX group was significantly higher than that of the cells derived from the rats in the sham-operated group at the stage of logarithmic growth. The staining intensity of alkaline phosphatase (ALP) and the mineralization of the cells derived from the rats in the OVX group was significantly weaker than that of the cells from the rats in the sham-operated group. When the PDLSCs were seeded on nHAC/PLA, ALP activity, osteocalcin (OCN) secretion, mineral formation and the mRNA expression levels of ALP, OCN, estrogen receptor (ER)α and ERβ in the cells derived from the rats in the OVX group were markedly decreased. Treatment with 17β-estradiol (E2) significantly weakened the proliferative ability of the cells derived from the OVX group rats, and enhanced their osteogenic differentiation ability and the mRNA expression levels of ALP, OCN, ERα and ERβ. When the constructs were implanted

  1. Estrogen enhances the bone regeneration potential of periodontal ligament stem cells derived from osteoporotic rats and seeded on nano-hydroxyapatite/collagen/poly(L-lactide)

    PubMed Central

    E, LING-LING; XU, WEN-HUAN; FENG, LIN; LIU, YI; CAI, DONG-QING; WEN, NING; ZHENG, WEN-JIE

    2016-01-01

    This study investigated the effects of estrogen on the bone regeneration potential of periodontal ligament stem cells (PDLSCs) derived from osteoporotic rats and seeded on a collagen-based composite scaffold [nano-hydroxyapatite/collagen/poly(L-lactide) (nHAC/PLA)]. For this purpose, 48 healthy 3-month-old Sprague-Dawley female rats were divided into 2 groups as follows: the bilaterally ovariectomized (OVX) rats and sham-operated rats. The PDLSCs were isolated at 3 months after surgery (by which time postmenopausal osteoporosis had developed). The effects of estrogen on the characteristics of these cells seeded in a culture plate and of the cells seeded on nHAC/PLA were then investigated. The PDLSC + nHAC/PLA constructs were implanted subcutaneously into the backs of severe combined immunodeficient (SCID) mice for 12 weeks in order to examine the role of estrogen in the bone formation ability of PDLSCs derived from osteoporotic rats. The results from methyl thiazolyl tetrazolium (MTT) assay revealed that the proliferation of the cells derived from the rats in the OVX group was significantly higher than that of the cells derived from the rats in the sham-operated group at the stage of logarithmic growth. The staining intensity of alkaline phosphatase (ALP) and the mineralization of the cells derived from the rats in the OVX group was significantly weaker than that of the cells from the rats in the sham-operated group. When the PDLSCs were seeded on nHAC/PLA, ALP activity, osteocalcin (OCN) secretion, mineral formation and the mRNA expression levels of ALP, OCN, estrogen receptor (ER)α and ERβ in the cells derived from the rats in the OVX group were markedly decreased. Treatment with 17β-estradiol (E2) significantly weakened the proliferative ability of the cells derived from the OVX group rats, and enhanced their osteogenic differentiation ability and the mRNA expression levels of ALP, OCN, ERα and ERβ. When the constructs were implanted into the backs of SCID

  2. Bacteriology of severe periodontitis in young adult humans.

    PubMed Central

    Moore, W E; Holdeman, L V; Smibert, R M; Hash, D E; Burmeister, J A; Ranney, R R

    1982-01-01

    A total of 78 bacteriological samples were taken from the supragingival tooth surface after superficial cleaning with toothpicks or from the periodontal sulci of 42 affected sites in 21 adolescents or young adults with severe generalized periodontitis. Of 190 bacterial species, subspecies, or serotypes detected among 2,723 isolates, 11 species exceeded 1% of the subgingival flora and were most closely associated with the diseased sulci. Eleven others were also sufficiently frequent to be suspect agents of tissue destruction. Many of these species are known pathogens of other body sites. In addition, 10 species of Treponema were isolated. One of these and the "large treponeme" were also more closely associated with severe periodontitis than they were with healthy sites or gingivitis. There were highly significant differences between the composition of the flora of the affected sulci and the flora of (i) the adjacent supragingival tooth surface, (ii) the gingival crevice of periodontally healthy people, and (iii) sites with a gingival index score of 0 or 2 in experimental gingivitis studies. The floras of different individuals were also significantly different. There was no statistically detectable effect of sampling per se upon the composition of the flora of subsequent samples from the same sites. The composition of the supragingival flora of the patients with severe generalized periodontitis that had serum antibody to Actinobacillus actinomycetemcomitans was significantly different from the supragingival flora of patients without this serum antibody. However, there was no statistically significant difference in the composition of their subgingival floras. PMID:7152665

  3. Multiphasic Scaffolds for Periodontal Tissue Engineering

    PubMed Central

    Ivanovski, S.; Vaquette, C.; Gronthos, S.; Hutmacher, D.W.; Bartold, P.M.

    2014-01-01

    For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor–based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials. PMID:25139362

  4. Multiphasic scaffolds for periodontal tissue engineering.

    PubMed

    Ivanovski, S; Vaquette, C; Gronthos, S; Hutmacher, D W; Bartold, P M

    2014-12-01

    For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor-based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials.

  5. Regenerative effect of hOPG gene-modified autologous PDLs in combination with cell transplantation on periodontal defection in beagle dogs.

    PubMed

    Jiang, Su; Tang, Kunqi; Chen, Bin; Yan, Fuhua

    2016-12-01

    This study evaluated the ability of human osteoprotegerin gene-modified autologous periodontal ligament cells (PDLCs) in combination with cell transplantation to promote periodontal regeneration in beagle dogs. Adenovirus Ad5-hOPG-EGFP-transfected PDLCs and BME-10X collagen membranes were fabricated and used for periodontal repair. Buccal periodontal defects (mesiodistal width × depth: 5 × 5 mm) were created on the second, third, and fourth mandibular premolars in six normal beagle dogs, and the defects were histologically and histomorphometrically assessed for periodontal regeneration in the following four groups: (1) hOPG-PDLCs + BME-10X, (2) mock-PDLCs + BME-10X, (3) PDLCs + BME-10X, and (4) BME-10X. The radiographic and histological results suggested that hOPG-PDLCs significantly promoted periodontal defect repair. This study demonstrates the potential of hOPG-modified PDLCs for periodontal tissue regeneration.

  6. Effect of diode low-level lasers on fibroblasts derived from human periodontal tissue: a systematic review of in vitro studies.

    PubMed

    Ren, Chong; McGrath, Colman; Jin, Lijian; Zhang, Chengfei; Yang, Yanqi

    2016-09-01

    This study aimed to systematically assess the parameter-specific effects of the diode low-level laser on human gingival fibroblasts (HGFs) and human periodontal ligament fibroblasts (HPDLFs). An extensive search was performed in major electronic databases including PubMed (1997), EMBASE (1947) and Web of Science (1956) and supplemented by hand search of reference lists and relevant laser journals for cell culture studies investigating the effect of diode low-level lasers on HGFs and HPDLFs published from January 1995 to December 2015. A total of 21 studies were included after screening 324 independent records, amongst which eight targeted HPDLFs and 13 focussed on HGFs. The diode low-level laser showed positive effects on promoting fibroblast proliferation and osteogenic differentiation and modulating cellular inflammation via changes in gene expression and the release of growth factors, bone-remodelling markers or inflammatory mediators in a parameter-dependent manner. Repeated irradiations with wavelengths in the red and near-infrared range and at an energy density below 16 J/cm(2) elicited favourable responses. However, considerable variations and weaknesses in the study designs and laser protocols limited the interstudy comparison and clinical transition. Current evidence showed that diode low-level lasers with adequate parameters stimulated the proliferation and modulated the inflammation of fibroblasts derived from human periodontal tissue. However, further in vitro studies with better designs and more appropriate study models and laser parameters are anticipated to provide sound evidence for clinical studies and practice.

  7. Deformation and stress distribution of the human foot after plantar ligaments release: a cadaveric study and finite element analysis.

    PubMed

    Liang, Jun; Yang, Yunfeng; Yu, Guangrong; Niu, Wenxin; Wang, Yubin

    2011-03-01

    The majority of foot deformities are related to arch collapse or instability, especially the longitudinal arch. Although the relationship between the plantar fascia and arch height has been previously investigated, the stress distribution remains unclear. The aim of this study was to explore the role of the plantar ligaments in foot arch biomechanics. We constructed a geometrical detailed three-dimensional (3-D) finite element (FE) model of the human foot and ankle from computer tomography images. The model comprised the majority of joints in the foot as well as bone segments, major ligaments, and plantar soft tissue. Release of the plantar fascia and other ligaments was simulated to evaluate the corresponding biomechanical effects on load distribution of the bony and ligamentous structures. These intrinsic ligaments of the foot arch were sectioned to simulate different pathologic situations of injury to the plantar ligaments, and to explore bone segment displacement and stress distribution. The validity of the 3-D FE model was verified by comparing results with experimentally measured data via the displacement and von Mise stress of each bone segment. Plantar fascia release decreased arch height, but did not cause total collapse of the foot arch. The longitudinal foot arch was lost when all the four major plantar ligaments were sectioned simultaneously. Plantar fascia release was compromised by increased strain applied to the plantar ligaments and intensified stress in the midfoot and metatarsal bones. Load redistribution among the centralized metatarsal bones and focal stress relief at the calcaneal insertion were predicted. The 3-D FE model indicated that plantar fascia release may provide relief of focal stress and associated heel pain. However, these operative procedures may pose a risk to arch stability and clinically may produce dorsolateral midfoot pain. The initial strategy for treating plantar fasciitis should be non-operative.

  8. Comparative anatomy of the meniscofemoral ligament in humans and some domestic mammals.

    PubMed

    Gupte, C M; Bull, A M J; Murray, R; Amis, A A

    2007-02-01

    The purpose of this study was to investigate the presence, position and relative sizes of the meniscofemoral ligaments (MFL) in three quadrupeds and humans and relate these to the caudal slope of the lateral tibial plateau. Canine, ovine and equine stifles and human knees were dissected to identify the presence of MFLs, their obliquity in relation to the caudal cruciate ligaments (CCL), the relative size and shape of the MFLs compared with the CCL, the points of femoral attachment of the MFLs and CCL, and the distance between the MFLs and CCL at their midpoints. The lateral tibial condyle was divided sagittally with a handsaw and the caudal slope was measured. An MFL was present in all quadrupeds. It was caudal to the CCL, being analogous to the human posterior MFL. There was no structure analogous to the human anterior MFL, a structure that has a different femoral attachment from the human posterior MFL and MFLs in other species examined. The meniscotibial attachments were of varying sizes. The size ratio between the MFL and CCL was greater in all three quadrupeds than it was in the human knee. The MFL lies more obliquely than the CCL in all species examined. The caudal tibial slope was steeper in the quadrupeds. In the stifle joints of quadrupeds, the MFL is a substantial structure and appears to be related to the caudal tibial slope. It is known to resist caudal translation of the tibia in conjunction with the lateral meniscus. This must be borne in mind when considering its function in the human knee.

  9. Development of the Human Biceps Brachii Tendon and Coracoglenoid Ligament (7th-12th Week of Development).

    PubMed

    de la Cuadra-Blanco, Crótida; Arráez-Aybar, Luis A; Murillo-González, Jorge A; Herrera-Lara, Manuel E; Mérida-Velasco, Juan A; Mérida-Velasco, José R

    2017-02-10

    The goal of this study is to clarify the development of the long head of the biceps brachii tendon (LHBT) and to verify the existence and development of the coracoglenoid ligament. Histological preparations of 22 human embryos (7-8 weeks of development) and 43 human fetuses (9-12 weeks of development) were studied bilaterally using a conventional optical microscope. The articular interzone gives rise to the LHBT, glenoid labrum, and articular capsule. During the fetal period, it was observed that in 50 cases (58%), the LHBT originated from both the glenoid labrum and the scapula, while in 36 cases (42%), it originated only from the glenoid labrum. The coracoglenoid ligament, first described by Sappey in 1867, is a constant structure that originates at the base of the coracoid process and projects toward the glenoid labrum zone, which is related to the origin of the LHBT. The coracoglenoid ligament was more easily identifiable in the 36 cases in which the LHBT originated only from the glenoid labrum. We suggest that the coracoglenoid ligament is a constant anatomical structure, is not derived from the articular interzone unlike the LHBT, and contributes to the fixation of the glenoid labrum in the scapula in cases in which the LHBT originated only from the glenoid labrum. We postulate that, when the LHBT is fixed only at the glenoid labrum, alterations in the coracoglenoid ligament could lead to a less sufficient attachment of the glenoid labrum to the scapula which could predispose to a superior labral lesion.

  10. [Periodontal regeneration: the use of polypeptide growth factors].

    PubMed

    Di Genio, M; Barone, A; Ramaglia, L; Sbordone, L

    1994-10-01

    Polypeptide growth factors are a class of potent natural biologic mediators which regulate many of the activities of wound healing including cell proliferation, migration and metabolism. Periodontal regeneration is thought to require the migration and proliferation of periodontal ligament cells on the root surface. In fact, repopulation of the detached root surface by cells from periodontal ligament (PDL) is a prerequisite for new attachment formation. Many studies suggested that Polypeptide Growth Factors (PGF) such as Insulin-like Growth Factor I (IGF-I), Platelet Derived Growth Factor (PDGF), Transforming Growth Factor B (TGF-B), Epidermal Growth Factor (EGF), are important mediators of cellular events in wound healing. Studies in vitro analysed the mitogenic effects determined on periodontal ligament cells by growth factors using (3H) Thymidine incorporation during DNA synthesis. The results suggested that recombinant human PDGF and IGF-I stimulate the proliferation of PDL fibroblastic cells and the combination of these growth factors showed a synergistic effect revealing the highest mitogenic effect among all individual growth factors as well as any combination of the growth factors tested. Furthermore these studies demonstrated that rh-PDGF and IGF-I stimulate chemotaxis of PDL fibroblastic cells, and supported a role for TGF-B as a regulator of the mitogenic response to PDGF in these cells. Other studies in vivo showed periodontal tissues regeneration introducing mixtures of recombinant human platelet derived growth factor and insulin-like growth factor into lesions of experimentally induced periodontitis in beagle dogs and monkeys.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Quercitrin for periodontal regeneration: effects on human gingival fibroblasts and mesenchymal stem cells

    PubMed Central

    Gómez-Florit, Manuel; Monjo, Marta; Ramis, Joana M.

    2015-01-01

    Periodontal disease (PD) is the result of an infection and chronic inflammation of the gingiva that may lead to its destruction and, in severe cases, alveolar bone and tooth loss. The ultimate goal of periodontal treatment is to achieve periodontal soft and hard tissues regeneration. We previously selected quercitrin, a catechol-containing flavonoid, as a potential agent for periodontal applications. In this study, we tested the ability of quercitrin to alter biomarker production involved in periodontal regeneration on primary human gingival fibroblasts (hGF) and primary human mesenchymal stem cells (hMSC) cultured under basal and inflammatory conditions. To mimic PD inflammatory status, interleukin-1 beta (IL-1β) was used. The expression of different genes related to inflammation and extracellular matrix were evaluated and prostaglandin E2 (PGE2) production was quantified in hGFs; alkaline phosphatase (ALP) activity and calcium content were analysed in hMSCs. Quercitrin decreased the release of the inflammatory mediator PGE2 and partially re-established the impaired collagen metabolism induced by IL-1β treatment in hGFs. Quercitrin also increased ALP activity and mineralization in hMSCs, thus, it increased hMSCs differentiation towards the osteoblastic lineage. These findings suggest quercitrin as a novel bioactive molecule with application to enhance both soft and hard tissue regeneration of the periodontium. PMID:26558438

  12. Bacteriocin production by Actinobacillus actinomycetemcomitans isolated from the oral cavity of humans with periodontal disease, periodontally healthy subjects and marmosets.

    PubMed

    Lúcia, Lima Francisca; Farias, Flávio F; Eustáquio, Costa José; Auxiliadora, Maria; Carvalho, R; Alviano, Celuta S; Farias, Luiz M

    2002-01-01

    The ability of Actinobacillus actinomycetemcomitans to produce bacteriocin has rarely been reported. Antagonistic substance production may confer an important ecological advantage for the producer microorganisms, especially in a competitive ecosystem such as the oral cavity. In the present study, 75 A. actinomycetemcomitans strains isolated from the oral cavity of human patients with periodontal disease, periodontally healthy subjects and marmosets, as well as two reference strains (A. actinomycetemcomitans ATCC 29523 and FDC Y4) were evaluated for auto-, iso-, and heteroantagonistic activity. Fifty-one (68.00%) strains exhibited antagonistic activity; heteroantagonism was observed more often than isoantagonism. Isolated strains antagonized 17 different species of gram-positive and gram-negative bacteria from the oral and nonoral microbiota. Sensitivity to heat and to proteolytic enzymes constituted strong evidence that the antagonistic substance has a proteic nature. Taken together, our data enabled us to confirm that the antagonistic substance detected was a bacteriocin. The wide spectrum of activity indicates the possibility that more than one antagonistic substance is produced and that these substances play an important role in the ecological balance of the oral ecosystem.

  13. Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo.

    PubMed

    Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu

    2015-05-07

    The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.

  14. Material and structural tensile properties of the human medial patello-femoral ligament.

    PubMed

    Criscenti, G; De Maria, C; Sebastiani, E; Tei, M; Placella, G; Speziali, A; Vozzi, G; Cerulli, G

    2016-02-01

    The medial patellofemoral ligament (MPFL) is considered the most important passive patellar stabilizer and acts 50-60% of the force of the medial soft-tissue which restrains the lateralization of the patella between 0° and 30°. In this work, 24 human knees have been tested to evaluate the material properties of MPFL and to determine the structural behavior of femur-MPFL-Patella complex (FMPC). Particular attention was given to maintain the anatomical orientation between the patella and MPFL and to the evaluation of the elongation during the mechanical tests. The ultimate stress of the isolated ligament was 16±11MPa, the ultimate strain was 24.3±6.8%, the Young׳s Modulus was 116±95MPa and the strain energy density was 2.97±1.69MPa. The ultimate load of the whole structure, FMPC, was 145±68N, the ultimate elongation was 9.5±2.9mm, the linear stiffness was 42.5±10.2N/mm and the absorbed energy was 818.8±440.7Nmm. The evaluation of material and structural properties of MPFL is fundamental to understand its contribution as stabilizer and for the selection of repair and reconstruction methods.

  15. Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo

    NASA Astrophysics Data System (ADS)

    Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu

    2015-04-01

    The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01439e

  16. Estimation of periodontal ligament’s equivalent mechanical parameters for finite element modeling

    PubMed Central

    Xia, Zeyang; Jiang, Feifei; Chen, Jie

    2014-01-01

    Introduction Young’s modulus (E) and Poisson’s ratio (v) of the periodontal ligament are needed in a finite element analysis for investigating the biomechanical behavior of a tooth, periodontal ligament, and bone complex. However, large discrepancies in E (0.01–1,750 MPa) and v (0.28–0.49) were reported previously. The objective of this study was to narrow the ranges and to provide equivalent E and v pairs suitable for finite element modeling of a tooth, periodontal ligament, and bone complex by using a reported crown load-displacement relationship as the criterion. Methods A 3-dimensional finite element model of a 3-tooth, periodontal ligament, and bone complex, consisting of a maxillary central incisor with 2 adjacent teeth, from a cone-beam computed tomography scan was created. The dimensions, constraints, and loading condition were kept similar to those reported in the human study. With the load applied to the crown, both v and E were adjusted independently, and the corresponding crown displacements were calculated. The resulting load-displacement curves were compared with those reported in the human study. The mean absolute displacement difference method was used to find the best fit. The E and v pairs that generated the minimum mean absolute displacement difference were identified. Results The finite element model with 1 of the 3 E and v pairs (v = 0.35, E = 0.87 MPa; v = 0.4, E = 0.71 MPa; and v = 0.45, E = 0.47 MPa) simulated the tooth, periodontal ligament, and bone complex well. The mean absolute displacement differences were 0.0135, 0.0138, and 0.0138 mm, respectively; these are less than 8% of 0.175 mm, which was the crown displacement of the tooth, periodontal ligament, and bone complex under the load of 500 cN. Conclusions The E and v values close to the 3 pairs might be used for finite element modeling of the tooth, periodontal ligament, and bone complex. PMID:23561409

  17. Molecular-level evaluation of selected periodontal pathogens from subgingival regions in canines and humans with periodontal disease

    PubMed Central

    Polkowska, Izabela; Bartoszcze-Tomaszewska, Małgorzata; Sobczyńska-Rak, Aleksandra; Matuszewski, Łukasz

    2017-01-01

    Dogs commonly serve as a model for various human conditions, including periodontal diseases. The aim of this study was to identify the anaerobic bacteria that colonize the subgingival areas in dogs and humans by using rapid real-time polymerase chain reaction (RT-PCR)-based tests and to compare the results obtained in each species. Bacterial microflora evaluations, both quantitative and qualitative, were performed by applying ready-made tests on twelve dogs and twelve humans. Five samples were collected from each subject's deepest gingival pockets and joined to form a collective sample. The results of the study revealed interspecies similarities in the prevalences of Porphyromonas (P.) gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum. Red complex bacteria comprised the largest portion of the studied bacterial complexes in all study groups, with P. gingivalis being the most commonly isolated bacterium. The results show similarities in the prevalence of bacterial microflora in dogs and humans. Microbiological analysis of gingival pockets by using rapid real-time PCR-based tests in clinical practice, both veterinary and human, can facilitate the choice of appropriate pharmacological treatment and can provide a basis for subsequent verification of the treatment's effectiveness. PMID:27297417

  18. Low tension studies of collagen fibres from ligaments of the human spine.

    PubMed Central

    Shah, J S; Jayson, M I; Hampson, W G

    1977-01-01

    On polarization microscopy collagen fibres from human cadaveric anterior longitudinal, posterior longitudinal, and interspinous ligaments show a series of transmission and extinction bands. By observing changes in this pattern on rotating the polarizing stage and on rotating the fibres a crimped structure of the fibres was deduced and its parameters were calculated. From these data the force/strain behaviour of the fibres under low tension was calculated. This corresponded closely with the results from mechanical measurement. At the same time we documented alterations in the transmission and extinction patterns while under tensile load. The results suggest that it is the crimped structure that is responsible for the high extensibility of the collagen fibres under low tension. The initial extension is by deformity of the crimp segment. This avoids risk of tearing the collagen fibres. Images PMID:856065

  19. Flow cytometric approach to human polymorphonuclear leukocyte activation induced by gingival crevicular fluid in periodontal disease.

    PubMed

    Biselli, R; Ferlini, C; Di Murro, C; Paolantonio, M; Fattorossi, A

    1995-08-01

    In gingival pockets of patients with periodontal disease, polymorphonuclear leukocytes (PMN) are in contact with a peculiar exudate, the gingival crevicular fluid (GCF). Because of the pivotal role played by PMN in periodontal disease, we evaluated the ability of GCF in modulating normal human PMN. GCF was obtained from two gingival sites with severe periodontitis (SP) and two gingival sites with only mild periodontitis (MP) in 12 patients. Purified PMN were exposed to GCF from SP and MP sites and, as a control, to sterile culture medium. GCF activity was evaluated by monitoring the modulation of membrane molecules relevant to cell function. Compared to control medium, GCF from SP and MP sites was able to induce an activation status in PMN evidenced by an increased CD11b (62 +/- 9% and 28 +/- 7%, respectively) and f-Met-Leu-Phe (56 +/- 5% and 31 +/- 7%, respectively) receptor expression, with a concomitant reduction of CD62L expression (56 +/- 8% and 23 +/- 7%, respectively). Thus, reflecting the clinical status, GCF from SP sites was significantly more efficient in affecting PMN than GCF from MP sites. Cell size modifications, evaluated as an additional indicator of PMN activation, were consistent with membrane molecule modulation. The difference in PMN-activating capacity between SP and MP was abrogated by the successful completion of an appropriate periodontal therapy that dramatically improved clinical status. This is the first direct demonstration that GCF from periodontitis has the capacity to activate normal resting PMN and that this capacity reflects the magnitude of the inflammatory process that takes place in the gingiva.

  20. Expression of extracellular matrix molecules typical of articular cartilage in the human scapholunate interosseous ligament.

    PubMed

    Milz, S; Aktas, T; Putz, R; Benjamin, M

    2006-06-01

    The scapholunate interosseous ligament (SLIL) connects the scaphoid and lunate bones and plays a crucial role in carpal kinematics. Its rupture leads to carpal instability and impairment of radiocarpal joint function. As the ligament is one of the first structures affected in rheumatoid arthritis, we conducted an immunohistochemical study of cadaveric tissue to determine whether it contains known autoantigens for rheumatoid arthritis. We immunolabelled the ligament from one hand in 12 cadavers with monoclonal antibodies directed against a wide range of extracellular matrix (ECM) molecules associated with both fibrous and cartilaginous tissues. The labelling profile has also enabled us to comment on how the molecular composition of the ligament relates to its mechanical function. All regions of the ligament labelled for types I, III and VI collagens, chondroitin 4 and 6 sulphates, keratan sulphate, dermatan sulphate, versican, tenascin and cartilage oligomeric matrix protein (COMP). However, both entheses labelled strongly for type II collagen, aggrecan and link protein and were distinctly fibrocartilaginous. In some regions, the ligament attached to bone via a region of hyaline cartilage that was continuous with articular cartilage. Labelling for cartilage molecules in the midsubstance was most evident dorsally. We conclude that the SLIL has an ECM which is typical of other highly fibrocartilaginous ligaments that experience both tensile load and shear. The presence of aggrecan, link protein, COMP and type II collagen could explain why the ligament may be a target for autoantigenic destruction in some forms of rheumatoid arthritis.

  1. Impact of Periodontal Therapy on the Subgingival Microbiota of Severe Periodontitis: Comparison between Good Responders and “Refractory” Subjects by the Human Oral Microbe Identification Microarray (HOMIM)

    PubMed Central

    Colombo, Ana Paula V.; Bennet, Susan; Cotton, Sean L.; Goodson, J. Max; Kent, Ralph; Haffajee, Anne D.; Socransky, Sigmund S.; Hasturk, Hatice; Van Dyke, Thomas E.; Dewhirst, Floyd E.; Paster, Bruce J.

    2014-01-01

    Aim This study compared the changes on the subgingival microbiota of subjects with “refractory” periodontitis (RP) or treatable periodontitis (GR) before and after periodontal therapy by using the Human Oral Microbe Identification Microarray (HOMIM). Methods Individuals with chronic periodontitis were classified as RP (n=17) based on mean attachment loss (AL) and/or >3 sites with AL ≥2.5 mm after scaling and root planing, surgery and systemically administered amoxicillin and metronidazole or as GR (n=30) based on mean attachment gain and no sites with AL ≥2.5 mm after treatment. Subgingival plaque samples were taken at baseline and 15 months after treatment and analyzed for the presence of 300 species by HOMIM analysis. Significant differences in taxa before and after therapy were sought using the Wilcoxon test. Results The majority of species evaluated decreased in prevalence in both groups after treatment; however, only a small subset of organisms was significantly affected. Species that increased or persisted in high frequency in RP but were significantly reduced in GR included Bacteroidetes sp., Porphyromonas endodontalis, Porphyromonas gingivalis, Prevotella spp., Tannerella forsythia, Dialister spp., Selenomonas spp., Catonella morbi, Eubacterium spp., Filifactor alocis, Parvimonas micra, Peptostreptococcus sp. OT113, Fusobacterium sp. OT203, Pseudoramibacter alactolyticus, Streptococcus intermedius or Streptococcus constellatus and Shuttlesworthia satelles. In contrast, Capnocytophaga sputigena, Cardiobacterium hominis, Gemella haemolysans, Haemophilus parainfluenzae, Kingella oralis, Lautropia mirabilis, Neisseria elongata, Rothia dentocariosa, Streptococcus australis and Veillonella spp. were more associated with therapeutic success. Conclusion Persistence of putative and novel periodontal pathogens, as well as low prevalence of beneficial species was associated with chronic “refractory” periodontitis. PMID:22324467

  2. Periodontal therapy for severe chronic periodontitis with periodontal regeneration and different types of prosthesis.

    PubMed

    Kinumatsu, Takashi; Umehara, Kazuhiro; Nagano, Kyosuke; Saito, Atsushi

    2014-01-01

    We report a patient with severe chronic periodontitis requiring regenerative periodontal surgery and different types of prosthesis in the maxillary and mandibular regions. The patient was a 57-year-old woman who presented with the chief complaint of occlusal pain. An initial clinical examination revealed that 73% of sites had a probing depth of ≥4 mm, and 60% of sites exhibiting bleeding on probing. Radiographic examination revealed vertical bone defects in the molar region and widening of the periodontal ligament space around teeth #17 and 24. Initial periodontal therapy was implemented based on a clinical diagnosis of severe chronic periodontitis. Surgical periodontal therapy was subsequently performed at selected sites. Periodontal regenerative therapy using enamel matrix derivative was performed on #14, 15, and 35-37. Tunnel preparation was performed on #46 as it had a 2-wall vertical bony defect and Degree 3 furcation involvement. Other sites with residual periodontal pockets were treated by modified Widman flap surgery. After a re-evaluation, functional rehabilitation was implemented with a removable maxillary partial denture and a fixed mandibular bridge. No further deterioration was observed in the periodontal condition of most of the teeth during a 2-year period of supportive periodontal therapy (SPT). The patient is currently still undergoing SPT and some minor problems remain. However, the results suggest that treatment and subsequent maintenance for severe periodontitis with traumatic occlusion can be successful as long as the appropriate periodontal and prosthodontic treatment is planned and careful SPT carried out.

  3. Integrins in periodontal disease.

    PubMed

    Larjava, Hannu; Koivisto, Leeni; Heino, Jyrki; Häkkinen, Lari

    2014-07-15

    Cell surface integrin receptors mediate cell adhesion, migration and cellular signaling in all nucleated cells. They are activated by binding to extracellular ligands or by intracellular proteins, such as kindlins that engage with their cytoplasmic tails. Cells in the periodontal tissues express several integrins with overlapping ligand-binding capabilities. A distinct phenotype in the periodontium has only been described for knockouts or mutations of three integrin subunits, α11, β6 and β2. Integrin α11β1 appears to have some regulatory function in the periodontal ligament of continuously erupting incisors in mice. Integrin αvβ6 is expressed in the junctional epithelium (JE) of the gingiva. Animals deficient in this receptor develop classical signs of periodontal disease, including inflammation, apical migration of the JE and bone loss, suggesting that it plays a role in the regulation of periodontal inflmmation, likely through activation of transforming growth factor-β1. Lack of integrin activation in the JE is also associated with periodontitis. Patients with kindlin-1 mutations have severe early-onset periodontal disease. Finally, patients with mutations in the leukocyte-specific β2 integrin subunit have severe periodontal problems due to lack of transiting neutrophils in the periodontal tissues.

  4. Chronic stress accelerates ligature-induced periodontitis by suppressing glucocorticoid receptor-α signaling.

    PubMed

    Lu, Huaixiu; Xu, Minguang; Wang, Feng; Liu, Shisen; Gu, Jing; Lin, Songshan; Zhao, Lisheng

    2016-03-25

    Periodontitis is a common chronic inflammatory disease. Recent studies have shown that chronic stress (CS) might modulate periodontal disease, but there are few models of CS-induced periodontitis, and the underlying mechanisms are unclear. The present study established a rat model of periodontitis associated with CS induced by nylon thread ligatures. The severity of periodontitis was evaluated in this model by radiographic and pathological examination. The inflammatory reaction indicated by the elevated serum levels of interleukin (IL)-1β, IL-6 and IL-8 was assessed by enzyme-linked immunosorbent assay. Toll-like receptor-4 (TLR4) and glucocorticoid receptor-α (GR-α) expressions were detected by reverse transcriptase-PCR and western blotting. Open-field tests and serum corticosterone were used to evaluate CS. The results showed that CS induced behavioral changes and increased corticosterone levels of the animals with periodontitis. CS stimulation markedly increased alveolar bone loss, periodontal pocket depth and the number of plaques. It also enhanced the inflammatory reaction. These results suggest that CS accelerated the ligature-induced pathological changes associated with periodontitis. Further analysis of the mechanisms involved showed that GR-α expression was significantly downregulated in periodontal tissues of the animals undergoing CS. Blocking GR-α signaling in lipopolysaccharide and corticosteroid-treated human periodontal ligament fibroblast cells in vitro significantly upregulated the expression of p-Akt (protein kinase B) and TLR4, promoted nuclear factor-κB activity and increased levels of IL-1β, IL-6 and IL-8. This research suggests that CS might accelerate the pathological progression of periodontitis by a GR-α signaling-mediated inflammatory response and that this may be a potential therapeutic target for the treatment of periodontal disease, particularly in patients with CS.

  5. Anatomical variations of the anterior talofibular ligament of the human ankle joint

    PubMed Central

    MILNER, C. E.; SOAMES, R. W.

    1997-01-01

    Compared with other joints, the ligaments of the ankle have not been studied in great detail; consequently relatively little literature exists. The positions of the 3 major bands of the lateral collateral ligament are well known and documented (Schafer et al. 1915; Sarrafian, 1983; McMinn, 1994; Palastanga et al. 1994; Williams et al. 1995). The detailed anatomy of the ligaments is, however, relatively complex with variations of the major bands and several minor additional bands being reported (Sarrafian, 1993; Burks & Morgan, 1994; Rosenberg et al. 1995). PMID:9419003

  6. S100A4 upregulation suppresses tissue ossification and enhances matrix degradation in experimental periodontitis models

    PubMed Central

    Zhou, Min; Li, Zhuo-quan; Wang, Zuo-lin

    2015-01-01

    Aim: S100A4, also known as fibroblast-specific protein 1 or metastasin 1, is not only highly expressed in growth-stimulated cultured cells and metastatic tumor cells, but also in the periodontal ligament. The aim of this study was to investigate the roles of S100A4 in the pathogenesis of periodontitis and its regulatory mechanisms in inflammatory milieu. Methods: Experimental periodontitis was induced in rats by submarginal silk ligatures. TRAP activity and S100A4 expression in periodontal ligaments were examined using immunohistochemistry and immunofluorescence methods. IL-1β-treated human periodontal ligament cells (hPDLCs) were used as in vitro model of experimental periodontitis. S100A4 mRNA and protein were assessed using qRT-PCR and Western blot, respectively. hPDLCs were transfected with either S100A4 overexpression plasmids or shRNAs plasmids. The mineralization in hPDLCs was evaluated with a 12-d osteogenic induction assay, and the expression of ALP, OCN, MMP-2 and MMP-13 was analyzed by qRT-PCR. Results: In the periodontal ligaments of rats with experimental periodontitis, TRAP activity and S100A4 protein staining were considerably more intense compared with those in the control rats. Treatment of hPDLCs with IL-1β (10, 50 and 100 ng/mL) dose-dependently increased the mRNA and protein levels of S100A4. Transfection with shRNAs markedly increased mineralized nodule formation and the osteogenic-related markers ALP and OCN levels in hPDLCs, whereas the overexpression of S100A4 significantly reduced mineralized nodule formation, and increased the matrix degradation enzymes MMP-2 and MMP-13 levels in hPDLCs. Conclusion: S100A4 is upregulated in the experimental rat periodontitis and in IL-1β-treated hPDLCs, where S100A4 suppresses osteogenic differentiation and enhances matrix degradation. Thus, S100A4 is a potential target for the treatment of periodontitis. PMID:26499072

  7. Periodontal regeneration: a challenge for the tissue engineer?

    PubMed

    Hughes, F J; Ghuman, M; Talal, A

    2010-12-01

    Periodontitis affects around 15 per cent of human adult populations. While periodontal treatment aimed at removing the bacterial cause of the disease is generally very successful, the ability predictably to regenerate the damaged tissues remains a major unmet objective for new treatment strategies. Existing treatments include the use of space-maintaining barrier membranes (guided tissue regeneration), use of graft materials, and application of bioactive molecules to induce regeneration, but their overall effects are relatively modest and restricted in application. The periodontal ligament is rich in mesenchymal stem cells, and the understanding of the signalling molecules that may regulate their differentation has increased enormously in recent years. Applying these principles for the development of new tissue engineering strategies for periodontal regeneration will require further work to determine the efficacy of current experimental preclinical treatments, including pharmacological application of growth factors such as bone morphogenetic proteins (BMPs) or Wnts, use of autologous stem cell reimplantation strategies, and development of improved biomaterial scaffolds. This article describes the background to this problem, addresses the current status of periodontal regeneration, including the background biology, and discusses the potential for some of these experimental therapies to achieve the goal of clinically predictable periodontal regeneration.

  8. Chronic stress enhances progression of periodontitis via α1-adrenergic signaling: a potential target for periodontal disease therapy.

    PubMed

    Lu, Huaixiu; Xu, Minguang; Wang, Feng; Liu, Shisen; Gu, Jing; Lin, Songshan

    2014-10-17

    This study assessed the roles of chronic stress (CS) in the stimulation of the sympathetic nervous system and explored the underlying mechanisms of periodontitis. Using an animal model of periodontitis and CS, the expression of tyrosine hydroxylase (TH) and the protein levels of the α1-adrenergic receptor (α1-AR) and β2-adrenergic receptor (β2-AR) were assessed. Furthermore, human periodontal ligament fibroblasts (HPDLFs) were stimulated with lipopolysaccharide (LPS) to mimic the process of inflammation. The proliferation of the HPDLFs and the expression of α1-AR and β2-AR were assessed. The inflammatory-related cytokines interleukin (IL)-1β, IL-6 and IL-8 were detected after pretreatment with the α1/β2-AR blockers phentolamine/propranolol, both in vitro and in vivo. Results show that periodontitis under CS conditions enhanced the expression of TH, α1-AR and β2-AR. Phentolamine significantly reduced the inflammatory cytokine levels. Furthermore, we observed a marked decrease in HPDLF proliferation and the increased expression of α1-ARfollowing LPS pretreatment. Pretreatment with phentolamine dramatically ameliorated LPS-inhibited cell proliferation. In addition, the blocking of α1-ARsignaling also hindered the upregulation of the inflammatory-related cytokines IL-1β, IL-6 and IL-8. These results suggest that CS can significantly enhance the pathological progression of periodontitis by an α1-adrenergic signaling-mediated inflammatory response. We have identified a potential therapeutic target for the treatment of periodontal disease, particularly in those patients suffering from concurrent CS.

  9. INDUCED REMODELING OF PORCINE TENDONS TO HUMAN ANTERIOR CRUCIATE LIGAMENTS BY α-GAL EPITOPE REMOVAL AND PARTIAL CROSSLINKING.

    PubMed

    Stone, Kevin Robert; Walgenbach, Ann; Galili, Uri

    2017-01-09

    This review describes a novel method developed for processing porcine tendon and other ligament implants which enables in situ remodeling into autologous ligaments in humans. The method differs from methods using extracellular matrices (ECM) which provide post-operative ortho-biologic support (i.e. augmentation grafts) for healing of injured ligaments, in that the porcine bone-patellar-tendon-bone itself serves as the graft replacing ruptured anterior cruciate ligament (ACL). The method allows for gradual remodeling of porcine tendon into autologous human ACL while maintaining the biomechanical integrity. The method was first evaluated in a pre-clinical model of monkeys and subsequently in patients. The method overcomes detrimental effects of the natural anti-Gal antibody and harnesses anti-non gal antibodies for the remodeling process in two steps: Step 1. Elimination of α-gal epitopes- This epitope which is abundant in pigs (as in other non-primate mammals) binds the natural anti-Gal antibody which is the most abundant natural antibody in humans. This interaction, which can induce fast resorption of the porcine implant, is avoided by enzymatic elimination of α-gal epitopes from the implant with recombinant α-galactosidase. Step 2. Partial crosslinking of porcine tendon with glutaraldehyde- This crosslinking generates covalent bonds in the ECM which slow infiltration of macrophages into the implant. Anti-non gal antibodies are produced in recipients against the multiple porcine antigenic proteins and proteoglycans because of sequence differences between human and porcine homologous proteins. Anti-non gal antibodies bind to the implant ECM, recruit macrophages and induce the implant destruction by directing proteolytic activity of macrophages. Partial crosslinking of the tendon ECM decreases the extent of macrophage infiltration and degradation of the implant and enables concomitant infiltration of fibroblasts which follow the infiltrating macrophages. These

  10. Extracellular matrix metabolism disorder induced by mechanical strain on human parametrial ligament fibroblasts.

    PubMed

    Min, Jie; Li, Bingshu; Liu, Cheng; Guo, Wenjun; Hong, Shasha; Tang, Jianming; Hong, Li

    2017-03-24

    Pelvic organ prolapse (POP) is a global health problem that may seriously impact the quality of life of the sufferer. The present study aimed to investigate the potential mechanisms underlying alterations in extracellular matrix (ECM) metabolism in the pathogenesis of POP, by investigating the expression of ECM components in human parametrial ligament fibroblasts (hPLFs) subject to various mechanical strain loads. Fibroblasts derived from parametrial ligaments were cultured from patients with POP and without malignant tumors, who underwent vaginal hysterectomy surgery. Fibroblasts at generations 3‑6 of exponential phase cells were selected, and a four‑point bending device was used for 0, 1,333 or 5,333 µ mechanical loading of cells at 0.5 Hz for 4 h. mRNA and protein expression levels of collagen type I α 1 chain (COL1A1), collagen type III α 1 chain (COL3A1), elastin, matrix metalloproteinase (MMP) ‑2 and ‑9, and transforming growth factor (TGF)‑β1 were detected by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. Under increased mechanical strain (5,333 µ), mRNA and protein expression levels of COL1A1, COL3A1 elastin and TGF‑β1 decreased, particularly COL1A1; however, mRNA and protein expression levels of MMP‑2 and ‑9 were significantly increased, compared with the control group (0 µ strain). Following 1,333 µ mechanical strain, mRNA and protein expression levels of COL1A1, COL3A1 elastin and MMP‑2 increased, and MMP‑9 decreased, whereas no significant differences were observed in TGF‑β1 mRNA and protein expression levels. In conclusion, ECM alterations may be involved in pathogenesis of POP, with decreased synthesis and increased degradation of collagen and elastin. Furthermore, the TGF‑β1 signaling pathway may serve an important role in this process and thus may supply a new target and strategy for understanding the etiology and therapy of POP.

  11. Stretch-induced network reconfiguration of collagen fibres in the human facet capsular ligament.

    PubMed

    Zhang, Sijia; Bassett, Danielle S; Winkelstein, Beth A

    2016-01-01

    Biomaterials can display complex spatial patterns of cellular responses to external forces. Revealing and predicting the role of these patterns in material failure require an understanding of the statistical dependencies between spatially distributed changes in a cell's local biomechanical environment, including altered collagen fibre kinematics in the extracellular matrix. Here, we develop and apply a novel extension of network science methods to investigate how excessive tensile stretch of the human cervical facet capsular ligament (FCL), a common source of chronic neck pain, affects the local reorganization of collagen fibres. We define collagen alignment networks based on similarity in fibre alignment angles measured by quantitative polarized light imaging. We quantify the reorganization of these networks following macroscopic loading by describing the dynamic reconfiguration of network communities, regions of the material that display similar fibre alignment angles. Alterations in community structure occur smoothly over time, indicating coordinated adaptation of fibres to loading. Moreover, flexibility, a measure of network reconfiguration, tracks the loss of FCL's mechanical integrity at the onset of anomalous realignment (AR) and regions of AR display altered community structure. These findings use novel network-based techniques to explain abnormal collagen fibre reorganization, a dynamic and coordinated multivariate process underlying tissue failure.

  12. Anatomical study of the lateral collateral ligament and its circumference structures in the human knee joint.

    PubMed

    Yan, Jun; Sasaki, Wataru; Hitomi, Jiro

    2010-02-01

    Thirty-six cadavers (55 sides) were used to observe the innervation of the lateral collateral ligament (LCL) and its circumference structures with gross anatomical and histological methods to clarify the cause of indistinct pain in the lateral part of the knee joint. The innervating branches of the LCL could be divided into three types: (1) from the muscular branch of the biceps femoris muscle at lower 1/3 level of the thigh; (2) from the common fibular nerve (CFN) at the higher level of the fossa poplitea; (3) from the CFN at the level of the caput fibular. Furthermore, the three branches could singly or plurally distribute to the LCL (six types). Two of the connecting tissue membranes surrounding the surface of LCL formed an incomplete sheath structure, and a shutting "gap" was observed between the two membranes. Fine peripheral nervous branches were also observed in the two of the membranes. On the other hand, three types of nerve endings in the LCL (Type I/Ruffini mechanoreceptor; Type III/Golgi mechanoreceptor; Type IV/free nerve ending) were observed, and their presence was consistent with the ankle joint of humans. Therefore, the innervation of the two membranes (to form the shutting gap) in the surface of LCL may be associated with an indistinct pain when the knee joint is damaged.

  13. Ligament reconstruction.

    PubMed

    Glickel, Steven Z; Gupta, Salil

    2006-05-01

    Volar ligament reconstruction is an effective technique for treating symptomatic laxity of the CMC joint of the thumb. The laxity may bea manifestation of generalized ligament laxity,post-traumatic, or metabolic (Ehler-Danlos). There construction reduces the shear forces on the joint that contribute to the development and persistence of inflammation. Although there have been only a few reports of the results of volar ligament reconstruction, the use of the procedure to treat Stage I and Stage II disease gives good to excellent results consistently. More advanced stages of disease are best treated by trapeziectomy, with or without ligament reconstruction.

  14. Autologous Stem Cell Application in Periodontal Regeneration Technique (SAI-PRT) Using PDLSCs Directly From an Extracted Tooth···An Insight

    PubMed Central

    Vandana, KL; Desai, Rajendra; Dalvi, Priyanka Jairaj

    2015-01-01

    Periodontal regeneration represents the ultimate goal of periodontal therapy. The current regenerative techniques have limited success rates especially in advanced periodontal defects. Currently the research is focused on novel cell-based approaches for periodontal regeneration to overcome the limitations of existing treatment. The human clinical trial on stem cells based periodontal regeneration is promising. The plethora of animal studies provide sound evidence to support the belief that periodontal ligament stem cells (PDLSCs) can be used for periodontal regeneration. The direct application of autologous periodontal stem cells in treatment of intrabony defects is attempted for the first time in periodontal literature. Stem cell Application in Periodontal Regeneration Technique (SAI-PRT) using direct PDLSCs has overcome the limitations and concerns of ex- vivo stem cell culture methods like high cost, technique sensitivity, loss of stemness during cell passage, genetic manipulation and tumorigenic potential. Clinical feasibility, success and cost effectiveness over currently available techniques are encouraging. The clinical utility of this novel idea is recommended. PMID:26634072

  15. Anatomical considerations on the discomalleolar ligament

    PubMed Central

    RODRÍGUEZ-VÁZQUEZ, J. F.; MÉRIDA-VELASCO, J. R.; MÉRIDA-VELASCO, J. A.; JIMÉNEZ-COLLADO, J.

    1998-01-01

    A study was carried out on the discomalleolar ligament by dissection of adult human cadavers. The ligament corresponds to the most internal portion of the superior lamina of the temporomandibular joint capsule. It extends from the posterointernal portion of the temporomandibular joint disc, penetrates the petrotympanic fissure and reaches the malleus of the middle ear. Because of its morphology and anatomical arrangement the discomalleolar ligament should be considered as an intrinsic ligament of the temporomandibular joint and distinguished from the tympanic portion of the sphenomandibular ligament (anterior ligament of the malleus). PMID:9723988

  16. Human Amnion Membrane: Potential Applications in Oral and Periodontal Field

    PubMed Central

    Mohan, Ranjana; Bajaj, Aashima; Gundappa, Mohan

    2017-01-01

    Human amniotic membrane (HAM) is derived from the fetal membranes which consist of the inner amniotic membrane made of single layer of amnion cells fixed to collagen-rich mesenchyme attached to chorion. HAM has low immunogenicity, anti-inflammatory properties and their cells can be isolated without the sacrifice of human embryos. Amniotic membrane has biological properties which are important for the experimental and clinical applications in managing patients of various medical specialties. Abundant, natural and wonderful biomembrane not only protects the foetus but also has various clinical applications in the field of dermatology, ophthalmology, ENT surgery, orthopedics and dental surgery. As it is discarded post-partum it may be useful for regenerative medicine and cell therapy to treat damaged or diseased tissues. PMID:28316944

  17. Human Amnion Membrane: Potential Applications in Oral and Periodontal Field.

    PubMed

    Mohan, Ranjana; Bajaj, Aashima; Gundappa, Mohan

    2017-01-01

    Human amniotic membrane (HAM) is derived from the fetal membranes which consist of the inner amniotic membrane made of single layer of amnion cells fixed to collagen-rich mesenchyme attached to chorion. HAM has low immunogenicity, anti-inflammatory properties and their cells can be isolated without the sacrifice of human embryos. Amniotic membrane has biological properties which are important for the experimental and clinical applications in managing patients of various medical specialties. Abundant, natural and wonderful biomembrane not only protects the foetus but also has various clinical applications in the field of dermatology, ophthalmology, ENT surgery, orthopedics and dental surgery. As it is discarded post-partum it may be useful for regenerative medicine and cell therapy to treat damaged or diseased tissues.

  18. Biomaterials for periodontal regeneration

    PubMed Central

    Shue, Li; Yufeng, Zhang; Mony, Ullas

    2012-01-01

    Periodontal disease is characterized by the destruction of periodontal tissues. Various methods of regenerative periodontal therapy, including the use of barrier membranes, bone replacement grafts, growth factors and the combination of these procedures have been investigated. The development of biomaterials for tissue engineering has considerably improved the available treatment options above. They fall into two broad classes: ceramics and polymers. The available ceramic-based materials include calcium phosphate (eg, tricalcium phosphate and hydroxyapatite), calcium sulfate and bioactive glass. The bioactive glass bonds to the bone with the formation of a layer of carbonated hydroxyapatite in situ. The natural polymers include modified polysaccharides (eg, chitosan,) and polypeptides (collagen and gelatin). Synthetic polymers [eg, poly(glycolic acid), poly(L-lactic acid)] provide a platform for exhibiting the biomechanical properties of scaffolds in tissue engineering. The materials usually work as osteogenic, osteoconductive and osteoinductive scaffolds. Polymers are more widely used as a barrier material in guided tissue regeneration (GTR). They are shown to exclude epithelial downgrowth and allow periodontal ligament and alveolar bone cells to repopulate the defect. An attempt to overcome the problems related to a collapse of the barrier membrane in GTR or epithelial downgrowth is the use of a combination of barrier membranes and grafting materials. This article reviews various biomaterials including scaffolds and membranes used for periodontal treatment and their impacts on the experimental or clinical management of periodontal defect. PMID:23507891

  19. Mechano-transduction in periodontal ligament cells identifies activated states of MAP-kinases p42/44 and p38-stress kinase as a mechanism for MMP-13 expression

    PubMed Central

    2010-01-01

    Background Mechano-transduction in periodontal ligament (PDL) cells is crucial for physiological and orthodontic tooth movement-associated periodontal remodelling. On the mechanistic level, molecules involved in this mechano-transduction process in PDL cells are not yet completely elucidated. Results In the present study we show by western blot (WB) analysis and/or indirect immunofluorescence (IIF) that mechanical strain modulates the amount of the matrix metalloproteinase MMP-13, and induces non-coherent modulation in the amount and activity of signal transducing molecules, such as FAK, MAP-kinases p42/44, and p38 stress kinase, suggesting their mechanistic role in mechano-transduction. Increase in the amount of FAK occurs concomitant with increased levels of the focal contact integrin subunits β3 and β1, as indicated by WB or optionally by IIF. By employing specific inhibitors, we further identified p42/44 and p38 in their activated, i.e. phosphorylated state responsible for the expression of MMP-13. This finding may point to the obedience in the expression of this MMP as extracellular matrix (ECM) remodelling executioner from the activation state of mechano-transducing molecules. mRNA analysis by pathway-specific RT-profiler arrays revealed up- and/or down-regulation of genes assigning to MAP-kinase signalling and cell cycle, ECM and integrins and growth factors. Up-regulated genes include for example focal contact integrin subunit α3, MMP-12, MAP-kinases and associated kinases, and the transcription factor c-fos, the latter as constituent of the AP1-complex addressing the MMP-13 promotor. Among others, genes down-regulated are those of COL-1 and COL-14, suggesting that strain-dependent mechano-transduction may transiently perturbate ECM homeostasis. Conclusions Strain-dependent mechano-/signal-transduction in PDL cells involves abundance and activity of FAK, MAP-kinases p42/44, and p38 stress kinase in conjunction with the amount of MMP-13, and integrin

  20. Potential for Stem Cell-Based Periodontal Therapy.

    PubMed

    Bassir, Seyed Hossein; Wisitrasameewong, Wichaya; Raanan, Justin; Ghaffarigarakani, Sasan; Chung, Jamie; Freire, Marcelo; Andrada, Luciano C; Intini, Giuseppe

    2016-01-01

    Periodontal diseases are highly prevalent and are linked to several systemic diseases. The goal of periodontal treatment is to halt the progression of the disease and regenerate the damaged tissue. However, achieving complete and functional periodontal regeneration is challenging because the periodontium is a complex apparatus composed of different tissues, including bone, cementum, and periodontal ligament. Stem cells may represent an effective therapeutic tool for periodontal regeneration due to their plasticity and their ability to regenerate different tissues. This review presents and critically analyzes the available information on stem cell-based therapy for the regeneration of periodontal tissues and suggests new avenues for the development of more effective therapeutic protocols.

  1. Serology of oral Actinobacillus actinomycetemcomitans and serotype distribution in human periodontal disease.

    PubMed Central

    Zambon, J J; Slots, J; Genco, R J

    1983-01-01

    Actinobacillus actinomycetemcomitans from the human oral cavity was serologically characterized with rabbit antisera to the type strain NCTC 9710; a number of reference strains, including Y4, ATCC 29522, ATCC 29523, ATCC 29524, NCTC 9709; and our own isolates representative of each of 10 biotypes. Using immunoabsorbed antisera, we identified three distinct serotypes by immunodiffusion and indirect immunofluorescence. Serotype a was represented by ATCC 29523 and SUNYaB 75; serotype b was represented by ATCC 29522 and Y4; and serotype c was represented by NCTC 9710 and SUNYaB 67. Indirect immunofluorescence revealed no reaction between the three A. actinomycetemcomitans serotype-specific antisera and 62 strains representing 23 major oral bacterial species. Distinct from the serotype antigens were at least one A. actinomycetemcomitans species common antigen and an antigen shared with other Actinobacillus species, Haemophilus aphrophilus, and Haemophilus paraphrophilus. All serotype a A. actinomycetemcomitans strains failed to ferment xylose, whereas all serotype b organisms fermented xylose. Serotype c included xylose-positive as well as xylose-negative strains. A total of 301 isolates of A. actinomycetemcomitans from the oral cavity of 74 subjects were serologically categorized by indirect immunofluorescence with serotype-specific rabbit antisera. Each patient harbored only one serotype of A. actinomycetemcomitans. Fourteen healthy subjects, five diabetics, and seventeen adult periodontitis patients exhibited serotypes a and b in approximately equal frequency, whereas serotype c was found less frequently. In contrast, in 29 localized juvenile periodontitis patients, the incidence of serotype b was approximately two times higher than that of serotypes a or c, suggesting a particularly high periodontopathic potential of A. actinomycetemcomitans serotype b strains. In subjects infected with A. actinomycetemcomitans, serum antibodies were detected to the serotype

  2. The periodontal pathogen Porphyromonas gingivalis sensitises human blood platelets to epinephrine.

    PubMed

    Nylander, M; Lindahl, T L; Bengtsson, T; Grenegård, M

    2008-08-01

    Recent studies indicate connections between periodontitis and atherothrombosis, and the periodontal pathogen Porphyromonas gingivalis has been found within atherosclerotic lesions. P. gingivalis-derived proteases, designated gingipains activate human platelets, probably through a "thrombin-like" activity on protease-activated receptors (PARs). However, the potential interplay between P. gingivalis and other physiological platelet activators has not been investigated. The aim of this study was to elucidate consequences and mechanisms in the interaction between P. gingivalis and the stress hormone epinephrine. By measuring changes in light transmission through platelet suspensions, we found that P. gingivalis provoked aggregation, whereas epinephrine alone never had any effect. Intriguingly, pre-treatment of platelets with a low, sub-threshold number of P. gingivalis (i.e. a density that did not directly provoke platelet aggregation) resulted in a marked aggregation response when epinephrine was added. This synergistic action was not inhibited by the cyclooxygenas inhibitor aspirin. Furthermore, fura-2-measurements revealed that epinephrine caused an intracellular Ca(2+) mobilization in P. gingivalis pre-treated platelets, whereas epinephrine alone had no effect. Inhibition of the arg-specific gingipains, but not the lys-specific gingipains, abolished the aggregation and the Ca(2+) response provoked by epinephrine. Similar results were achieved by separate blockage of platelet alpha(2)-adrenergic receptors and PARs. In conclusion, the present study shows that a sub-threshold number of P. gingivalis sensitizes platelets to epinephrine. We suggest that P. gingivalis-derived arg-specific gingipains activates a small number of PARs on the surface of the platelets. This leads to an unexpected Ca(2+) mobilization and a marked aggregation response when epinephrine subsequently binds to the alpha(2)-adrenergic receptor. The present results are consistent with a direct

  3. The ulnar collateral ligament of the human elbow joint. Anatomy, function and biomechanics.

    PubMed Central

    Fuss, F K

    1991-01-01

    The posterior portion of the ulnar collateral ligament, which arises from the posterior surface of the medial epicondyle, is taut in maximal flexion. The anterior portion, which takes its origin from the anterior and inferior surfaces of the epicondyle, contains three functional fibre bundles. One of these is taut in maximal extension, another in intermediate positions between middle position and full flexion while the third bundle is always taut and serves as a guiding bundle. Movements of the elbow joint are checked by the ligaments well before the bony processes forming the jaws of the trochlear notch lock into the corresponding fossae on the humerus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:2050566

  4. Regeneration of periodontal tissues: guided tissue regeneration.

    PubMed

    Villar, Cristina C; Cochran, David L

    2010-01-01

    The concept that only fibroblasts from the periodontal ligament or undifferentiated mesenchymal cells have the potential to re-create the original periodontal attachment has been long recognized. Based on this concept, guided tissue regeneration has been applied with variable success to regenerate periodontal defects. Quantitative analysis of clinical outcomes after guided tissue regeneration suggests that this therapy is a successful and predictable procedure to treat narrow intrabony defects and class II mandibular furcations, but offers limited benefits in the treatment of other types of periodontal defects.

  5. The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering.

    PubMed

    Liu, Haifeng; Fan, Hongbin; Wang, Yue; Toh, Siew Lok; Goh, James C H

    2008-02-01

    Cell seeding on knitted scaffolds often require a gel system, which was found to be practically unsuitable for anterior cruciate ligament (ACL) reconstruction as the cell-gel composite often gets dislodged from the scaffold in the in vivo dynamic situations. In order to solve this problem, we fabricated this combined silk scaffold with weblike microporous silk sponges formed in the openings of a knitted silk scaffold and subsequently combined with adult human bone marrow-derived mesenchymal stem cells (hMSCs) for in vitro ligament tissue engineering. Human MSCs adhered and grew well on the combined silk scaffolds. Moreover, in comparison with the knitted silk scaffolds seeded with hMSCs in fibroin gel the cellular function was more actively exhibited on the combined silk scaffolds, as evident by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis for ligament-related gene markers (e.g., type I, III collagen and tenascin-C), immunohistochemical and western blot evaluations of ligament-related extracellular matrix (ECM) components. While the knitted structure holds the microporous silk sponges together and provides the structural strength of the combined silk scaffold, the microporous structure of the silk sponges mimic the ECM which consequently promotes cell proliferation, function, and differentiation. This feature overcomes the limitation of knitted scaffold for ligament tissue engineering application.

  6. Periodontal Diseases

    MedlinePlus

    ... Diseases Small Text Medium Text Large Text Periodontal Diseases Periodontal diseases are disorders of the gums, or gingiva, and other tissues around the teeth. Periodontal diseases vary in severity, from the reversible, recurring mild ...

  7. The effects of extracts of chewing sticks (Salvadora persica) on healthy and periodontally involved human dentine: a SEM study.

    PubMed

    Almas, K

    2001-01-01

    The popularity and availability of chewing sticks (Salvadora persica) in the Asia, Middle East and Africa make them a commonly used oral hygiene tool in those societies. Salvador persica chewing stick called miswak is frequently used in Saudi Arabia. The antimicrobial effects of miswak has been well documented. The aim of this study is to find our the effect of aqueous extracts of miswak on healthy and periodontally involved human dentine with Scanning Electron Microscopy (SEM) in vitro. 25% aqueous extract of freshly prepared miswak solution was used for the study. Twelve human premolars teeth (6 healthy and 6 with periodontal disease) recently extracted for orthodontic and periodontal reasons were used. 24 SEM specimens were prepared and treated with miswak extract with different conditions e.g. soaking and burnishing with miswak extract. Soaking the healthy and periodontally diseased root dentine in miswak extract resulted in partial removal of smear layer and occlusion of dentinal tubules was observed in dentine specimens burnished with miswak solution. Further research is needed to evaluate the effect of aqueous extract of miswak on etched human dentine at higher concentrations.

  8. Freeze gelated porous membranes for periodontal tissue regeneration.

    PubMed

    Qasim, Saad B; Delaine-Smith, Robin M; Fey, Tobias; Rawlinson, Andrew; Rehman, Ihtesham Ur

    2015-09-01

    Guided tissue regeneration (GTR) membranes have been used for the management of destructive forms of periodontal disease as a means of aiding regeneration of lost supporting tissues, including the alveolar bone, cementum, gingiva and periodontal ligaments (PDL). Currently available GTR membranes are either non-biodegradable, requiring a second surgery for removal, or biodegradable. The mechanical and biofunctional limitations of currently available membranes result in a limited and unpredictable treatment outcome in terms of periodontal tissue regeneration. In this study, porous membranes of chitosan (CH) were fabricated with or without hydroxyapatite (HA) using the simple technique of freeze gelation (FG) via two different solvents systems, acetic acid (ACa) or ascorbic acid (ASa). The aim was to prepare porous membranes to be used for GTR to improve periodontal regeneration. FG membranes were characterized for ultra-structural morphology, physiochemical properties, water uptake, degradation, mechanical properties, and biocompatibility with mature and progenitor osteogenic cells. Fourier transform infrared (FTIR) spectroscopy confirmed the presence of hydroxyapatite and its interaction with chitosan. μCT analysis showed membranes had 85-77% porosity. Mechanical properties and degradation rate were affected by solvent type and the presence of hydroxyapatite. Culture of human osteosarcoma cells (MG63) and human embryonic stem cell-derived mesenchymal progenitors (hES-MPs) showed that all membranes supported cell proliferation and long term matrix deposition was supported by HA incorporated membranes. These CH and HA composite membranes show their potential use for GTR applications in periodontal lesions and in addition FG membranes could be further tuned to achieve characteristics desirable of a GTR membrane for periodontal regeneration.

  9. Inhibition of pre-existing natural periodontitis in non-human primates by a locally administered peptide inhibitor of complement C3

    PubMed Central

    Maekawa, Tomoki; Briones, Ruel A.; Resuello, Ranillo R.G.; Tuplano, Joel V.; Hajishengallis, Evlambia; Kajikawa, Tetsuhiro; Koutsogiannaki, Sophia; Garcia, Cristina A.G.; Ricklin, Daniel; Lambris, John D.; Hajishengallis, George

    2016-01-01

    Aim Human periodontitis is associated with overactivation of complement, which is triggered by different mechanisms converging on C3, the central hub of the system. We assessed whether the C3 inhibitor Cp40 inhibits naturally-occurring periodontitis in non-human primates. Materials and Methods Non-human primates with chronic periodontitis were intra-gingivally injected with Cp40 either once (5 animals) or three times (10 animals) weekly for six weeks followed by a 6-week follow-up period. Clinical periodontal examinations and collection of gingival crevicular fluid and biopsies of gingiva and bone were performed at baseline and during the study. A one-way repeated measures ANOVA was used for data analysis. Results Whether administered once or three times weekly, Cp40 caused a significant reduction in clinical indices that measure periodontal inflammation (gingival index and bleeding on probing), tissue destruction (probing pocket depth and clinical attachment level) or tooth mobility. These clinical changes were associated with significantly reduced levels of pro-inflammatory mediators and decreased numbers of osteoclasts in bone biopsies. The protective effects of Cp40 persisted, albeit at reduced efficacy, for at least six weeks following drug discontinuation. Conclusion Cp40 inhibits pre-existing chronic periodontal inflammation and osteoclastogenesis in non-human primates, suggesting a novel adjunctive anti-inflammatory therapy for treating human periodontitis. PMID:26728318

  10. The personal human oral microbiome obscures the effects of treatment on periodontal disease.

    PubMed

    Schwarzberg, Karen; Le, Rosalin; Bharti, Balambal; Lindsay, Suzanne; Casaburi, Giorgio; Salvatore, Francesco; Saber, Mohamed H; Alonaizan, Faisal; Slots, Jørgen; Gottlieb, Roberta A; Caporaso, J Gregory; Kelley, Scott T

    2014-01-01

    Periodontitis is a progressive disease of the periodontium with a complex, polymicrobial etiology. Recent Next-Generation Sequencing (NGS) studies of the microbial diversity associated with periodontitis have revealed strong, community-level differences in bacterial assemblages associated with healthy or diseased periodontal sites. In this study, we used NGS approaches to characterize changes in periodontal pocket bacterial diversity after standard periodontal treatment. Despite consistent changes in the abundance of certain taxa in individuals whose condition improved with treatment, post-treatment samples retained the highest similarity to pre-treatment samples from the same individual. Deeper phylogenetic analysis of periodontal pathogen-containing genera Prevotella and Fusobacterium found both unexpected diversity and differential treatment response among species. Our results highlight how understanding interpersonal variability among microbiomes is necessary for determining how polymicrobial diseases respond to treatment and disturbance.

  11. The Personal Human Oral Microbiome Obscures the Effects of Treatment on Periodontal Disease

    PubMed Central

    Schwarzberg, Karen; Le, Rosalin; Bharti, Balambal; Lindsay, Suzanne; Casaburi, Giorgio; Salvatore, Francesco; Saber, Mohamed H.; Alonaizan, Faisal; Slots, Jørgen; Gottlieb, Roberta A.; Caporaso, J. Gregory; Kelley, Scott T.

    2014-01-01

    Periodontitis is a progressive disease of the periodontium with a complex, polymicrobial etiology. Recent Next-Generation Sequencing (NGS) studies of the microbial diversity associated with periodontitis have revealed strong, community-level differences in bacterial assemblages associated with healthy or diseased periodontal sites. In this study, we used NGS approaches to characterize changes in periodontal pocket bacterial diversity after standard periodontal treatment. Despite consistent changes in the abundance of certain taxa in individuals whose condition improved with treatment, post-treatment samples retained the highest similarity to pre-treatment samples from the same individual. Deeper phylogenetic analysis of periodontal pathogen-containing genera Prevotella and Fusobacterium found both unexpected diversity and differential treatment response among species. Our results highlight how understanding interpersonal variability among microbiomes is necessary for determining how polymicrobial diseases respond to treatment and disturbance. PMID:24489772

  12. Update on Actinobacillus Actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease.

    PubMed

    Slots, J

    1999-10-01

    Actinobacillus actinomycetemcomitans is an important pathogen of periodontitis in young individuals. Porphyromonas gingivalis is a major pathogen of severe adult periodontitis. A. actinomycetemcomitans and P. gingivalis can be transmitted from family member to family member and may cause periodontitis in the recipient individual. In the USA, A. actinomycetemcomitans occurs more frequently in Hispanics and Asians than in Caucasians. P. gingivalis is more common in Hispanics, Asians and Blacks than in Caucasians. A. actinomycetemcomitans and P. gingivalis strains differ in genotype, serotype, toxin and enzyme production, and cellular invasiveness. Variation in virulence may help explain differing clinical outcomes of periodontal A. actinomycetemcomitans and P. gingivalis infections. A. actinomycetemcomitans and P. gingivalis cannot be eradicated from the great majority of deep periodontal pockets by mechanical debridement alone. A. actinomycetemcomitans may be removed from subgingival sites by adjunctive systemic amoxicillin-metronidazole or other appropriate antibiotic therapies. Subgingival eradication of P. gingivalis may require periodontal surgery as well as antibiotic therapy.

  13. Development, in vitro and in vivo evaluation of novel injectable smart gels of azithromycin for chronic periodontitis.

    PubMed

    Venkatesh, M P; Kumar, T M Pramod; Avinash, B S; Kumar, G Sheela

    2013-04-01

    Periodontitis is an inflammatory condition affecting teeth resulting in progressive destruction of periodontal ligaments, resorption of alveolar bone and loss of teeth. Treatment of periodontitis includes surgical and non surgical management. Systemic antibiotics are also used for the treatment of periodontitis. The aim of this research was to formulate smart gel system of azithromycin (AZT) and to evaluate in vitro and in vivo for non-surgical treatment of chronic periodontitis. Azithromycin dihydrate, used systemically in the treatment of periodontitis, was formulated into smart gels using biodegradable, thermosensitive polymer Pluronic® F-127 (PF-127) and Hydroxy Ethyl Cellulose (HEC) as copolymer. The prepared smart gels were evaluated for sterility, content uniformity, gelation temperature and time, syringeability, rheological behavior, in vitro diffusion and in vivo efficacy in human patients. The prepared smart gels were clear and transparent, sterile, thermoresponsive and injectable. Viscosity of gels increased with increase in concentration of polymer/co-polymer and also with temperature. They gelled in short response time below the body temperature. In vitro release studies showed controlled drug release which was influenced significantly by the properties and concentration of PF-127 and HEC. In vivo efficacy studies showed a significant improvement (p <0.001) in clinical parameters such as gingival index, probing pocket depth, clinical attachment level, bleeding index and plaque index. The developed azithromycin smart gel system is a novel approach for the treatment of chronic periodontitis since it reduces the dose and side effects, bypasses the usual surgical procedures and improves patient compliance.

  14. Periodontal disease and diabetes.

    PubMed

    Bascones-Martínez, Antonio; Arias-Herrera, Santiago; Criado-Cámara, Elena; Bascones-Ilundáin, Jaime; Bascones-Ilundáin, Cristina

    2012-01-01

    Diabetes is considered to be a genetically and environmentally based chronic metabolic and vascular syndrome caused by a partial or total insulin deficiency with alteration in the metabolism of lipids, carbohydrates and proteins culminating with different manifestations in different organisms. In humans hyperglycemia is the main consequence of defects in the secretion and/or action of insulin, and its deregulation can produce secondary lesions in various organs, especially kidneys, eyes, nerves, blood vessels and immune systems. Periodontal disease is an entity of localized infection that involves tooth-supporting tissues. The first clinical manifestation of periodontal disease is the appearance of periodontal pockets, which offer a favorable niche for bacterial colonization. The etiology of periodontal disease is multifactorial, being caused by interactions between multiple micro-organisms (necessary but not sufficient primary etiologic factors), a host with some degree of susceptibility and environmental factors. According to current scientific evidence, there is a symbiotic relationship between diabetes and periodontitis, such that diabetes is associated with an increased incidence and progression of periodontitis, and periodontal infection is associated with poor glycaemic control in diabetes due to poor immune systems. Hence, for a good periodontal control it is necessary to treat both periodontal disease and glycaemic control.

  15. Increased Eotaxin and MCP-1 Levels in Serum from Individuals with Periodontitis and in Human Gingival Fibroblasts Exposed to Pro-Inflammatory Cytokines.

    PubMed

    Boström, Elisabeth A; Kindstedt, Elin; Sulniute, Rima; Palmqvist, Py; Majster, Mirjam; Holm, Cecilia Koskinen; Zwicker, Stephanie; Clark, Reuben; Önell, Sebastian; Johansson, Ingegerd; Lerner, Ulf H; Lundberg, Pernilla

    2015-01-01

    Periodontitis is a chronic inflammatory disease of tooth supporting tissues resulting in periodontal tissue destruction, which may ultimately lead to tooth loss. The disease is characterized by continuous leukocyte infiltration, likely mediated by local chemokine production but the pathogenic mechanisms are not fully elucidated. There are no reliable serologic biomarkers for the diagnosis of periodontitis, which is today based solely on the degree of local tissue destruction, and there is no available biological treatment tool. Prompted by the increasing interest in periodontitis and systemic inflammatory mediators we mapped serum cytokine and chemokine levels from periodontitis subjects and healthy controls. We used multivariate partial least squares (PLS) modeling and identified monocyte chemoattractant protein-1 (MCP-1) and eotaxin as clearly associated with periodontitis along with C-reactive protein (CRP), years of smoking and age, whereas the number of remaining teeth was associated with being healthy. Moreover, body mass index correlated significantly with serum MCP-1 and CRP, but not with eotaxin. We detected higher MCP-1 protein levels in inflamed gingival connective tissue compared to healthy but the eotaxin levels were undetectable. Primary human gingival fibroblasts displayed strongly increased expression of MCP-1 and eotaxin mRNA and protein when challenged with tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β), key mediators of periodontal inflammation. We also demonstrated that the upregulated chemokine expression was dependent on the NF-κΒ pathway. In summary, we identify higher levels of CRP, eotaxin and MCP-1 in serum of periodontitis patients. This, together with our finding that both CRP and MCP-1 correlates with BMI points towards an increased systemic inflammatory load in patients with periodontitis and high BMI. Targeting eotaxin and MCP-1 in periodontitis may result in reduced leukocyte infiltration and inflammation in

  16. Spatiotemporally controlled microchannels of periodontal mimic scaffolds.

    PubMed

    Park, C H; Kim, K H; Rios, H F; Lee, Y M; Giannobile, W V; Seol, Y J

    2014-12-01

    Physiologic bioengineering of the oral, dental, and craniofacial complex requires optimized geometric organizations of fibrous connective tissues. A computer-designed, fiber-guiding scaffold has been developed to promote tooth-supporting periodontal tissue regeneration and functional restoration despite limited printing resolution for the manufacture of submicron-scaled features. Here, we demonstrate the use of directional freeze-casting techniques to control pore directional angulations and create mimicked topographies to alveolar crest, horizontal, oblique, and apical fibers of natural periodontal ligaments. For the differing anatomic positions, the gelatin displayed varying patterns of ice growth, determined via internal pore architectures. Regardless of the freezing coordinates, the longitudinal pore arrangements resulted in submicron-scaled diameters (~50 µm), along with corresponding high biomaterial porosity (~90%). Furthermore, the horizontal + coronal ([Formula: see text]) freezing orientation facilitated the creation of similar structures to major fibers in the periodontal ligament interface. This periodontal tissue-mimicking microenvironment is a potential tissue platform for the generation of naturally oriented ligamentous tissues consistent with periodontal ligament neogenesis.

  17. A morphologic and quantitative comparison of mechanoreceptors in the tibial remnants of the ruptured human anterior cruciate ligament

    PubMed Central

    Sha, Lin; Xie, Guoming; Zhao, Song; Zhao, Jinzhong

    2017-01-01

    Abstract Reconstruction of the ruptured anterior cruciate ligament (ACL) does not always result in expected successful outcome. A satisfactory outcome depends not only on the tightness or strength of the graft but also on the quality of proprioceptive restoration. Mechanoreceptors of ACL are supposed to play considerable roles in the proprioceptive feedback system of knee. This study aimed to observe the condition and number of the surviving mechanoreceptors in the tibial remnant of ruptured ACL in human knees. From April 2009 to January 2012, 60 patients with existing free tibial remnants who had undergone arthroscopic ACL reconstruction were enrolled and divided into 4 groups according to the time duration of injury to surgery (Group I: no more than 3 months; Group II: 3 to 6 months; Group III, 6 months to 1 year; Group IV: more than 1 year). Six normal ACL specimens were taken as controls. Specimens were obtained from ACL tibial remnant and stained by the immunohistochemical staining method. The type, size, and quantity of mechanoreceptors were observed under the light microscope. A total of 92 Ruffini-like corpuscles, 9 Pacini-like corpuscles, 5 unclassified neural endings, and free nerve endings were identified via immunohistochemical staining. There were no significant differences in the number of mechanoreceptors in the 5 groups (P = 0.238). Some degenerative changes were observed in Group IV. The results suggest that the residual mechanoreceptors in the ruptured ACL exhibit long-term survival and showed no obvious signs of withering within 1 year. Residual mechanoreceptors do exist in the tibial remnants of ruptured anterior cruciate ligament in human knees and identified clearly by using immunohistochemistry staining. No significant difference was found regarding quantitative variation of the residual mechanoreceptors about the injury duration. PMID:28151920

  18. The B Cell-Stimulatory Cytokines BLyS and APRIL Are Elevated in Human Periodontitis and Are Required for B Cell-Dependent Bone Loss in Experimental Murine Periodontitis.

    PubMed

    Abe, Toshiharu; AlSarhan, Mohammed; Benakanakere, Manjunatha R; Maekawa, Tomoki; Kinane, Denis F; Cancro, Michael P; Korostoff, Jonathan M; Hajishengallis, George

    2015-08-15

    B-lineage cells (B lymphocytes and plasma cells) predominate in the inflammatory infiltrate of human chronic periodontitis. However, their role in disease pathogenesis and the factors responsible for their persistence in chronic lesions are poorly understood. In this regard, two cytokines of the TNF ligand superfamily, a proliferation-inducing ligand (APRIL) and B-lymphocyte stimulator (BLyS), are important for the survival, proliferation, and maturation of B cells. Thus, we hypothesized that APRIL and/or BLyS are upregulated in periodontitis and contribute to induction of periodontal bone loss. This hypothesis was addressed in both human and mouse experimental systems. We show that, relative to healthy controls, the expression of APRIL and BLyS mRNA and protein was upregulated in natural and experimental periodontitis in humans and mice, respectively. The elevated expression of these cytokines correlated with increased numbers of B cells/plasma cells in both species. Moreover, APRIL and BLyS partially colocalized with κ L chain-expressing B-lineage cells at the epithelial-connective tissue interface. Ligature-induced periodontitis resulted in significantly less bone loss in B cell-deficient mice compared with wild-type controls. Ab-mediated neutralization of APRIL or BLyS diminished the number of B cells in the gingival tissue and inhibited bone loss in wild-type, but not in B cell-deficient, mice. In conclusion, B cells and specific cytokines involved in their growth and differentiation contribute to periodontal bone loss. Moreover, APRIL and BLyS have been identified as potential therapeutic targets in periodontitis.

  19. The B-cell stimulatory cytokines BLyS and APRIL are elevated in human periodontitis and are required for B-cell–dependent bone loss in experimental murine periodontitis1

    PubMed Central

    Abe, Toshiharu; AlSarhan, Mohammed; Benakanakere, Manjunatha R.; Maekawa, Tomoki; Kinane, Denis F.; Cancro, Michael P.; Korostoff, Jonathan M.; Hajishengallis, George

    2015-01-01

    B-lineage cells (B lymphocytes and plasma cells) predominate in the inflammatory infiltrate of human chronic periodontitis. However, their role in disease pathogenesis and the factors responsible for their persistence in chronic lesions are poorly understood. In this regard, two cytokines of the TNF ligand superfamily, namely a proliferation-inducing ligand (APRIL) and B-lymphocyte stimulator (BLyS), are important for the survival, proliferation, and maturation of B cells. We thus hypothesized that APRIL and/or BLyS are upregulated in periodontitis and contribute to induction of periodontal bone loss. This hypothesis was addressed in both human and mouse experimental systems. We show that, relative to healthy controls, the expression of APRIL and BLyS mRNA and protein was upregulated in natural and experimental periodontitis in humans and mice, respectively. The elevated expression of these cytokines correlated with increased numbers of B cells/plasma cells in both species. Moreover, APRIL and BLyS partially colocalized with kappa light chain-expressing B lineage cells at the epithelial-connective tissue interface. Ligature-induced periodontitis resulted in significantly less bone loss in B cell-deficient mice compared to wild-type controls. Ab-mediated neutralization of APRIL or BLyS diminished the number of B cells in the gingival tissue and inhibited bone loss in wild-type but not in B cell-deficient mice. In conclusion, B cells and specific cytokines involved in their growth and differentiation contribute to periodontal bone loss. Moreover, APRIL and BLyS have been identified as potential therapeutic targets in periodontitis. PMID:26150532

  20. Porphyromonas gulae Has Virulence and Immunological Characteristics Similar to Those of the Human Periodontal Pathogen Porphyromonas gingivalis

    PubMed Central

    Lenzo, Jason C.; O'Brien-Simpson, Neil M.; Orth, Rebecca K.; Mitchell, Helen L.; Dashper, Stuart G.

    2016-01-01

    Periodontitis is a significant problem in companion animals, and yet little is known about the disease-associated microbiota. A major virulence factor for the human periodontal pathogen Porphyromonas gingivalis is the lysyl- and arginyl-specific proteolytic activity of the gingipains. We screened several Porphyromonas species isolated from companion animals—P. asaccharolytica, P. circumdentaria, P. endodontalis, P. levii, P. gulae, P. macacae, P. catoniae, and P. salivosa—for Lys- and Arg-specific proteolytic activity and compared the epithelial and macrophage responses and induction of alveolar bone resorption of the protease active species to that of Porphyromonas gingivalis. Only P. gulae exhibited Lys-and Arg-specific proteolytic activity. The genes encoding the gingipains (RgpA/B and Kgp) were identified in the P. gulae strain ATCC 51700 and all publicly available 12 draft genomes of P. gulae strains. P. gulae ATCC 51700 induced levels of alveolar bone resorption in an animal model of periodontitis similar to those in P. gingivalis W50 and exhibited a higher capacity for autoaggregation and binding to oral epithelial cells with induction of apoptosis. Macrophages (RAW 264.7) were found to phagocytose P. gulae ATCC 51700 and the fimbriated P. gingivalis ATCC 33277 at similar levels. In response to P. gulae ATCC 51700, macrophages secreted higher levels of cytokines than those induced by P. gingivalis ATCC 33277 but lower than those induced by P. gingivalis W50, except for the interleukin-6 response. Our results indicate that P. gulae exhibits virulence characteristics similar to those of the human periodontal pathogen P. gingivalis and therefore may play a key role in the development of periodontitis in companion animals. PMID:27354442

  1. Relationship between methanogenic archaea and subgingival microbial complexes in human periodontitis.

    PubMed

    Horz, H P; Robertz, N; Vianna, M E; Henne, K; Conrads, G

    2015-10-01

    We compared the amounts of methanogenic archaea with ten of the most important periodontal pathogens in 125 clinical samples. Correlation analysis suggests that the support of the periodontitis-associated bacterial consortium by methanogenic archaea may be driven through direct or indirect interactions with Prevotella intermedia.

  2. Current concepts in periodontal bioengineering

    PubMed Central

    Taba, M.; Jin, Q.; Sugai, J.V.; Giannobile, W.V.

    2008-01-01

    Repair of tooth supporting alveolar bone defects caused by periodontal and peri-implant tissue destruction is a major goal of reconstructive therapy. Oral and craniofacial tissue engineering has been achieved with limited success by the utilization of a variety of approaches such as cell-occlusive barrier membranes, bone substitutes and autogenous block grafting techniques. Signaling molecules such as growth factors have been used to restore lost tooth support because of damage by periodontal disease or trauma. This paper will review emerging periodontal therapies in the areas of materials science, growth factor biology and cell/gene therapy. Several different polymer delivery systems that aid in the targeting of proteins, genes and cells to periodontal and peri-implant defects will be highlighted. Results from preclinical and clinical trials will be reviewed using the topical application of bone morphogenetic proteins (BMP-2 and BMP-7) and platelet-derived growth factor-BB (PDGF) for periodontal and peri-implant regeneration. The paper concludes with recent research on the use of ex vivo and in vivo gene delivery strategies via gene therapy vectors encoding growth promoting and inhibiting molecules (PDGF, BMP, noggin and others) to regenerate periodontal structures including bone, periodontal ligament and cementum. PMID:16238610

  3. Periodontal regeneration following use of ABM/P-1 5: a case report.

    PubMed

    Yukna, Raymonda; Salinas, Thomas J; Carr, Ronald F

    2002-04-01

    ABM/P-15 is a combination of a natural anorganic bovine-derived hydroxyapatite matrix (ABM) and a synthetic cell-binding peptide (P- 15; PepGen P- 15) that has shown the capacity to encourage substantial clinical fill of periodontal infrabony defects. Human histology following its use has not been evaluated on pathologic root surfaces. A maxillary lateral incisor with advanced adult periodontitis that was treatment planned for extraction was treated with sulcular incisions, full-thickness flap reflection, debridement of granulomatous tissue from the defect, placement of a notch in the root at the apical extent of calculus, mechanical root planing, brief cleansing with citric acid, grafting with ABM/P-15, wound closure with sutures, and placement of a periodontal dressing. Biweekly to monthly recalls were made until removal of a small block section biopsy at about 6 months. Histologic evaluation of the region coronal to the apical edge of the calculus notch showed evidence of regeneration (new cementum, bone, and periodontal ligament). Graft particles were still present at 6 months, but no evidence of root resorption, ankylosis, or untoward inflammation was seen. This case report fulfills the proof of principle that use of ABM/P-15 can result in periodontal regeneration on previously diseased root surfaces in humans.

  4. Posterior Cruciate Ligament Injury

    MedlinePlus

    ... ACL connect your thighbone (femur) to your shinbone (tibia). If either ligament is torn, it might cause ... ligaments connect the thighbone (femur) to the shinbone (tibia). The anterior and posterior cruciate ligaments form an " ...

  5. Quantitative Analysis of Three Hydrogenotrophic Microbial Groups, Methanogenic Archaea, Sulfate-Reducing Bacteria, and Acetogenic Bacteria, within Plaque Biofilms Associated with Human Periodontal Disease▿

    PubMed Central

    Vianna, M. E.; Holtgraewe, S.; Seyfarth, I.; Conrads, G.; Horz, H. P.

    2008-01-01

    Human subgingival plaque biofilms are highly complex microbial ecosystems that may depend on H2-metabolizing processes. Here we investigated the ubiquity and proportions of methanogenic archaea, sulfate reducers, and acetogens in plaque samples from 102 periodontitis patients. In contrast to the case for 65 healthy control subjects, hydrogenotrophic groups were almost consistently detected in periodontal pockets, with the proportions of methanogens and sulfate reducers being significantly elevated in severe cases. In addition, antagonistic interactions among the three microbial groups indicated that they may function as alternative syntrophic partners of secondary fermenting periodontal pathogens. PMID:18326571

  6. Chondroprotective Effects of Ginsenoside Rg1 in Human Osteoarthritis Chondrocytes and a Rat Model of Anterior Cruciate Ligament Transection

    PubMed Central

    Cheng, Wendan; Jing, Juehua; Wang, Zhen; Wu, Dongying; Huang, Yumin

    2017-01-01

    This study aimed to assess whether Ginsenoside Rg1 (Rg1) inhibits inflammatory responses in human chondrocytes and reduces articular cartilage damage in a rat model of osteoarthritis (OA). Gene expression and protein levels of type II collagen, aggrecan, matrix metalloproteinase (MMP)-13 and cyclooxygenase-2 (COX-2) were determined in vitro by quantitative real-time-polymerase chain reaction and Western blotting. Prostaglandin E2 (PGE2) amounts in the culture medium were determined by enzyme-linked immunosorbent assay (ELISA). For in vivo assessment, a rat model of OA was generated by anterior cruciate ligament transection (ACLT). Four weeks after ACLT, Rg1 (30 or 60 mg/kg) or saline was administered by gavage once a day for eight consecutive weeks. Joint damage was analyzed by histology and immunohistochemistry. Ginsenoside Rg1 inhibited Interleukin (IL)-1β-induced chondrocyte gene and protein expressions of MMP-13, COX-2 and PGE2, and prevented type II collagen and aggrecan degradation, in a dose-dependent manner. Administration of Ginsenoside Rg1 to OA rats attenuated cartilage degeneration, and reduced type II collagen loss and MMP-13 levels. These findings demonstrated that Ginsenoside Rg1 can inhibit inflammatory responses in human chondrocytes in vitro and reduce articular cartilage damage in vivo, confirming the potential therapeutic value of Ginsenoside Rg1 in OA. PMID:28287423

  7. Clinical guide to periodontology: reconstructive periodontal treatment.

    PubMed

    Floyd, P D; Ide, M; Palmer, R M

    2014-05-01

    Regeneration of the lost tissues of the periodontium is an ideal therapeutic goal and has been the subject of much research and ingenious clinical techniques. Reconstructive or regenerative techniques are used either singly or in combination for three main purposes: (1) to regain lost periodontal ligament attachment, (2) to provide a wider zone of attached gingiva, and (3) to cover previously exposed root surfaces.

  8. Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls

    PubMed Central

    Damgaard, Christian; Jensen, Lars J.; Holmstrup, Palle

    2016-01-01

    Background The composition of the salivary microbiota has been reported to differentiate between patients with periodontitis, dental caries and orally healthy individuals. To identify characteristics of diseased and healthy saliva we thus wanted to compare saliva metaproteomes from patients with periodontitis and dental caries to healthy individuals. Methods Stimulated saliva samples were collected from 10 patients with periodontitis, 10 patients with dental caries and 10 orally healthy individuals. The proteins in the saliva samples were subjected to denaturing buffer and digested enzymatically with LysC and trypsin. The resulting peptide mixtures were cleaned up by solid-phase extraction and separated online with 2 h gradients by nano-scale C18 reversed-phase chromatography connected to a mass spectrometer through an electrospray source. The eluting peptides were analyzed on a tandem mass spectrometer operated in data-dependent acquisition mode. Results We identified a total of 35,664 unique peptides from 4,161 different proteins, of which 1,946 and 2,090 were of bacterial and human origin, respectively. The human protein profiles displayed significant overexpression of the complement system and inflammatory markers in periodontitis and dental caries compared to healthy controls. Bacterial proteome profiles and functional annotation were very similar in health and disease. Conclusions Overexpression of proteins related to the complement system and inflammation seems to correlate with oral disease status. Similar bacterial proteomes in healthy and diseased individuals suggests that the salivary microbiota predominantly thrives in a planktonic state expressing no disease-associated characteristics of metabolic activity. PMID:27672500

  9. Highly efficient neural differentiation of human somatic stem cells, isolated by minimally invasive periodontal surgery.

    PubMed

    Widera, Darius; Grimm, Wolf-Dieter; Moebius, Jeannette M; Mikenberg, Ilja; Piechaczek, Christoph; Gassmann, Georg; Wolff, Natascha A; Thévenod, Frank; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2007-06-01

    Neural stem cells (NSCs) are potential sources for cell therapy of neurodegenerative diseases and for drug screening. Despite their potential benefits, ethical and practical considerations limit the application of NSCs derived from human embryonic stem cells (ES) or adult brain tissue. Thus, alternative sources are required to satisfy the criteria of ready accessibility, rapid expansion in chemically defined media and reliable induction to a neuronal fate. We isolated somatic stem cells from the human periodontium that were collected during minimally invasive periodontal access flap surgery as part of guided tissue regeneration therapy. These cells could be propagated as neurospheres in serum-free medium, which underscores their cranial neural crest cell origin. Culture in the presence of epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) under serum-free conditions resulted in large numbers of nestin-positive/Sox-2-positive NSCs. These periodontium-derived (pd) NSCs are highly proliferative and migrate in response to chemokines that have been described as inducing NSC migration. We used immunocytochemical techniques and RT-PCR analysis to assess neural differentiation after treatment of the expanded cells with a novel induction medium. Adherence to substrate, growth factor deprivation, and retinoic acid treatment led to the acquisition of neuronal morphology and stable expression of markers of neuronal differentiation by more than 90% of the cells. Thus, our novel method might provide nearly limitless numbers of neuronal precursors from a readily accessible autologous adult human source, which could be used as a platform for further experimental studies and has potential therapeutic implications.

  10. Translational research and therapeutic applications of stem cell transplantation in periodontal regenerative medicine.

    PubMed

    Lu, Hong; Xie, Cheng; Zhao, Yi-Min; Chen, Fa-Ming

    2013-01-01

    Stem cells have received a great deal of interest from the research community as potential therapeutic "tools" for a variety of chronic debilitating diseases that lack clinically effective therapies. Stem cells are also of interest for the regeneration of tooth-supporting tissues that have been lost to periodontal disease. Indeed, substantial data have demonstrated that the exogenous administration of stem cells or their derivatives in preclinical animal models of periodontal defects can restore damaged tissues to their original form and function. As we discuss here, however, considerable hurdles must be overcome before these findings can be responsibly translated to novel clinical therapies. Generally, the application of stem cells for periodontal therapy in clinics will not be realized until the best cell(s) to use, the optimal dose, and an effective mode of administration are identified. In particular, we need to better understand the mechanisms of action of stem cells after transplantation in the periodontium and to learn how to preciously control stem cell fates in the pathological environment around a tooth. From a translational perspective, we outline the challenges that may vary across preclinical models for the evaluation of stem cell therapy in situations that require periodontal reconstruction and the safety issues that are related to clinical applications of human stem cells. Although clinical trials that use autologous periodontal ligament stem cells have been approved and have already been initiated, proper consideration of the technical, safety, and regulatory concerns may facilitate, rather than inhibit, the clinical translation of new therapies.

  11. The possible effect of periodontal diseases on occlusal function.

    PubMed

    Rosenbaum, R S

    1993-01-01

    This paper raises new questions about the relationship between occlusion and periodontics. Specifically, it raises questions about the effect of periodontal diseases on mechanoreceptors in the periodontal ligament. Periodontal mechanoreceptors transmit information from the periodontium to various reflexes coordinated by the central nervous system. One of these reflexes is the trigemino-neck reflex. Its function is to change the position of the head, neck, and jaws on a moment-to-moment basis, and it powerfully influences the occlusal position. This paper raises questions about the consequences of periodontal diseases on all reflexes that depend on periodontal mechanoreceptors, and specific questions are raised about the effect of periodontal disease on the trigemino-neck reflex because of its extreme importance to the way we analyze and treat occlusion.

  12. Increased intracellular levels of lysosomal beta-glucuronidase in peripheral blood PMNs from humans with rapidly progressive periodontitis.

    PubMed

    Pippin, D J; Cobb, C M; Feil, P

    1995-01-01

    Release of potent lysosomal enzymes by degranulation of polymorphonuclear leukocytes (PMNs) in host gingiva may contribute significantly to tissue destruction and the pathogenesis of periodontal disease. A pilot study established that peripheral blood PMNs from humans with rapidly progressive periodontitis (RPP) contained significantly increased amounts of intracellular lysosomal beta-glucuronidase as compared to healthy controls. This investigation gained insight into the question: are the increased levels of beta-glucuronidase in persons with RPP an a priori genetically determined PMN characteristic, or a reactive phenomenon induced by the periodontal disease process during granulopoiesis? Twelve healthy controls and twelve otherwise healthy individuals with RPP participated in a repeated measures design to T0 (initial, baseline), T1 (four weeks after disease control therapy), and T2 (two months later). At each visit clinical indices (GI, pocket depths, GCF flow, plaque index) were performed and peripheral blood obtained. PMNs were isolated and suspended as 5 x 10(6) cells in 2.0 ml of HBSS. PMN suspensions were tested for total intracellular beta-glucuronidase, degranulation induced by 1 x 10(-6)M and 5 x 10(-7) M FMLP challenges, and unchallenged for non-specific enzyme release. PMNs from individuals with RPP contained significantly higher absolute amounts of beta-glucuronidase and released greater absolute amounts at FMLP challenge at T0, T1, and T2 compared to controls. No relationship was found between any of the clinical indices and beta-glucuronidase levels and no pattern was discovered relating to the repeated measures over time. We conclude that RPP peripheral blood PMNs contain elevated levels of beta-glucuronidase that are not induced by the periodontal disease process.

  13. A Putative Association of a Single Nucleotide Polymorphism in GPR126 with Aggressive Periodontitis in a Japanese Population

    PubMed Central

    Asano, Yoshihiro; Imai, Atsuko; Kawai, Shinji; Michikami, Ikumi; Yamashita, Motozo; Yamada, Satoru; Kitamura, Masahiro; Murakami, Shinya

    2016-01-01

    Periodontitis is an inflammatory disease causing loss of tooth-supporting periodontal tissue. Disease susceptibility to the rapidly progressive form of periodontitis, aggressive periodontitis (AgP), appears to be influenced by genetic risk factors. To identify these in a Japanese population, we performed whole exome sequencing of 41 unrelated generalized or localized AgP patients. We found that AgP is putatively associated with single nucleotide polymorphism (SNP) rs536714306 in the G-protein coupled receptor 126 gene, GPR126 [c.3086 G>A (p.Arg1029Gln)]. Since GPR126 activates the cAMP/PKA signaling pathway, we performed cAMP ELISA analysis of cAMP concentrations, and found that rs536714306 impaired the signal transactivation of GPR126. Moreover, transfection of human periodontal ligament (HPDL) cells with wild-type or mutant GPR126 containing rs536714306 showed that wild-type GPR126 significantly increased the mRNA expression of bone sialoprotein, osteopontin, and Runx2 genes, while mutant GPR126 had no effect on the expression of these calcification-related genes. The increase in expression of these genes was through the GPR126-induced increase of bone morphogenic protein-2, inhibitor of DNA binding (ID) 2, and ID4 expression. These data indicate that GPR126 might be important in maintaining the homeostasis of periodontal ligament tissues through regulating the cytodifferentiation of HPDL cells. The GPR126 SNP rs536714306 negatively influences this homeostasis, leading to the development of AgP, suggesting that it is a candidate genetic risk factor for AgP in the Japanese population. PMID:27509131

  14. Periodontal Tissue Regeneration Using Syngeneic Adipose-Derived Stromal Cells in a Mouse Model.

    PubMed

    Lemaitre, Mathieu; Monsarrat, Paul; Blasco-Baque, Vincent; Loubières, Pascale; Burcelin, Rémy; Casteilla, Louis; Planat-Bénard, Valérie; Kémoun, Philippe

    2017-02-01

    Current treatment of periodontitis is still associated with a high degree of variability in clinical outcomes. Recent advances in regenerative medicine by mesenchymal cells, including adipose stromal cells (ASC) have paved the way to improved periodontal regeneration (PD) but little is known about the biological processes involved. Here, we aimed to use syngeneic ASCs for periodontal regeneration in a new, relevant, bacteria-induced periodontitis model in mice. Periodontal defects were induced in female C57BL6/J mice by oral gavage with periodontal pathogens. We grafted 2 × 10(5) syngeneic mouse ASCs expressing green fluorescent protein (GFP) (GFP+/ASC) within a collagen vehicle in the lingual part of the first lower molar periodontium (experimental) while carrier alone was implanted in the contralateral side (control). Animals were sacrificed 0, 1, 6, and 12 weeks after treatment by GFP+/ASC or vehicle graft, and microscopic examination, immunofluorescence, and innovative bio-informatics histomorphometry methods were used to reveal deep periodontium changes. From 1 to 6 weeks after surgery, GFP+ cells were identified in the periodontal ligament (PDL), in experimental sites only. After 12 weeks, cementum regeneration, the organization of PDL fibers, the number of PD vessels, and bone morphogenetic protein-2 and osteopontin expression were greater in experimental sites than in controls. Specific stromal cell subsets were recruited in the newly formed tissue in ASC-implanted periodontium only. These data suggest that ASC grafting in diseased deep periodontium, relevant to human pathology, induces a significant improvement of the PDL microenvironment, leading to a recovery of tooth-supporting tissue homeostasis. Stem Cells Translational Medicine 2017;6:656-665.

  15. Periodontal Tissue Regeneration Using Syngeneic Adipose-Derived Stromal Cells in a Mouse Model.

    PubMed

    Lemaitre, Mathieu; Monsarrat, Paul; Blasco-Baque, Vincent; Loubières, Pascale; Burcelin, Rémy; Casteilla, Louis; Planat-Bénard, Valérie; Kémoun, Philippe

    2016-09-16

    : Current treatment of periodontitis is still associated with a high degree of variability in clinical outcomes. Recent advances in regenerative medicine by mesenchymal cells, including adipose stromal cells (ASC) have paved the way to improved periodontal regeneration (PD) but little is known about the biological processes involved. Here, we aimed to use syngeneic ASCs for periodontal regeneration in a new, relevant, bacteria-induced periodontitis model in mice. Periodontal defects were induced in female C57BL6/J mice by oral gavage with periodontal pathogens. We grafted 2 × 10(5) syngeneic mouse ASCs expressing green fluorescent protein (GFP) (GFP+/ASC) within a collagen vehicle in the lingual part of the first lower molar periodontium (experimental) while carrier alone was implanted in the contralateral side (control). Animals were sacrificed 0, 1, 6, and 12 weeks after treatment by GFP+/ASC or vehicle graft, and microscopic examination, immunofluorescence, and innovative bio-informatics histomorphometry methods were used to reveal deep periodontium changes. From 1 to 6 weeks after surgery, GFP+ cells were identified in the periodontal ligament (PDL), in experimental sites only. After 12 weeks, cementum regeneration, the organization of PDL fibers, the number of PD vessels, and bone morphogenetic protein-2 and osteopontin expression were greater in experimental sites than in controls. Specific stromal cell subsets were recruited in the newly formed tissue in ASC-implanted periodontium only. These data suggest that ASC grafting in diseased deep periodontium, relevant to human pathology, induces a significant improvement of the PDL microenvironment, leading to a recovery of tooth-supporting tissue homeostasis.

  16. Gene therapy in periodontics.

    PubMed

    Chatterjee, Anirban; Singh, Nidhi; Saluja, Mini

    2013-03-01

    GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person's genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is 'the use of genes as medicine'. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  17. Periodontal disease in HIV-infected adults in the HAART era: Clinical, immunological, and microbiological aspects.

    PubMed

    Gonçalves, Lucio Souza; Gonçalves, Barbara Mulatinho Lopo; Fontes, Tatiana Vasconcellos

    2013-10-01

    The introduction of highly active antiretroviral therapy (HAART) has decreased the incidence and prevalence of several oral manifestations such as oral candidiasis, hairy leukoplakia, and Kaposi's sarcoma in HIV-infected patients. Regarding periodontal disease the findings are not clear. This disease represents a group of chronic oral diseases characterized by infection and inflammation of the periodontal tissues. These tissues surround the teeth and provide periodontal protection (the gingival tissue) and periodontal support (periodontal ligament, root cementum, alveolar bone). Clinical, immunological, and microbiological aspects of these diseases, such as linear gingival erythema (LGE), necrotizing periodontal diseases (NPD) (necrotizing ulcerative gingivitis [NUG], necrotizing ulcerative periodontitis [NUP] and necrotizing stomatitis), and chronic periodontitis, have been widely studied in HIV-infected individuals, but without providing conclusive results. The purpose of this review was to contribute to a better overall understanding of the probable impact of HIV-infection on the characteristics of periodontal infections.

  18. Ligament Tissue Engineering and Its Potential Role in Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Yates, E. W.; Rupani, A.; Foley, G. T.; Khan, W. S.; Cartmell, S.; Anand, S. J.

    2012-01-01

    Tissue engineering is an emerging discipline that combines the principle of science and engineering. It offers an unlimited source of natural tissue substitutes and by using appropriate cells, biomimetic scaffolds, and advanced bioreactors, it is possible that tissue engineering could be implemented in the repair and regeneration of tissue such as bone, cartilage, tendon, and ligament. Whilst repair and regeneration of ligament tissue has been demonstrated in animal studies, further research is needed to improve the biomechanical properties of the engineered ligament if it is to play an important part in the future of human ligament reconstruction surgery. We evaluate the current literature on ligament tissue engineering and its role in anterior cruciate ligament reconstruction. PMID:22253633

  19. Uncovering the molecular networks in periodontitis

    PubMed Central

    Trindade, Fábio; Oppenheim, Frank G.; Helmerhorst, Eva J.; Amado, Francisco; Gomes, Pedro S.; Vitorino, Rui

    2015-01-01

    Periodontitis is a complex immune-inflammatory disease that results from a preestablished infection in gingiva, mainly due to Gram-negative bacteria that colonize deeper in gingival sulcus and latter periodontal pocket. Host inflammatory and immune responses have both protective and destructive roles. Although cytokines, prostaglandins, and proteases struggle against microbial burden, these molecules promote connective tissue loss and alveolar bone resorption, leading to several histopathological changes, namely destruction of periodontal ligament, deepening of periodontal pocket, and bone loss, which can converge to attain tooth loss. Despite the efforts of genomics, transcriptomics, proteomics/peptidomics, and metabolomics, there is no available biomarker for periodontitis diagnosis, prognosis, and treatment evaluation, which could assist on the established clinical evaluation. Nevertheless, some genes, transcripts, proteins and metabolites have already shown a different expression in healthy subjects and in patients. Though, so far, ‘omics approaches only disclosed the host inflammatory response as a consequence of microbial invasion in periodontitis and the diagnosis in periodontitis still relies on clinical parameters, thus a molecular tool for assessing periodontitis lacks in current dental medicine paradigm. Saliva and gingival crevicular fluid have been attracting researchers due to their diagnostic potential, ease, and noninvasive nature of collection. Each one of these fluids has some advantages and disadvantages that are discussed in this review. PMID:24828325

  20. Inhibition of human periodontal prostaglandin E2 synthesis with selected agents.

    PubMed

    Offenbacher, S; Odle, B M; Green, M D; Mayambala, C S; Smith, M A; Fritz, M E; van Dyke, T E; Yeh, K C; Sena, F J

    1990-03-01

    Considerable evidence has demonstrated the importance of PGE2 synthesis in the pathogenesis of periodontal disease. Although various cyclooxygenase inhibitors have been known to block periodontal PGE2 synthesis and prevent disease progression in animal models, there are few reports comparing relative efficacies of various inhibitors of arachidonic acid (ARA) metabolism. We have developed a sensitive in vitro assay to measure PGE2 synthesis in periodontal tissues. The apparent IC50 values (i.e. the concentration of drug which causes 50% inhibition of maximum PGE2 synthesis) have been determined for a series of arachidonic acid analogues as well as competitive and non-competitive cyclooxygenase inhibitors. Periodontal tissue homogenates were incubated in the presence of 3H-arachidonic acid for 45 min at 37 degrees C. Inhibitors were tested at 10(-10)-10(-4) M and at zero concentration to measure conversion of 3H-arachidonate to 3H-PGE2. Log or half log dilutions of inhibitors were tested in triplicate for each assay. Radiolabeled PGE2 was extracted from homogenates, purified by reverse phase chromatography and quantitated by double antibody capture. RIA was performed on each homogenate to determine the amount of endogenous unlabeled PGE2 present in the sample to correct for antibody capture recovery. The apparent IC50 values were determined for each drug by averaging two or more replicate assays. Specific total enzymatic activity of periodontal tissue homogenates was typically 5-11 pg PGE2/min/mg tissue.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. The immune responses to human and microbial heat shock proteins in periodontal disease with and without coronary heart disease.

    PubMed

    Hasan, A; Sadoh, D; Palmer, R; Foo, M; Marber, M; Lehner, T

    2005-12-01

    The human 60 kDa and microbial 65 kDa heat shock proteins (HSP) have been implicated in the pathogenesis of chronic periodontitis (P) and coronary heart disease (CHD). We have studied four male non-smoking cohorts of 81 subjects, matched for age. Group (a) consisted of a healthy group with minimal gingivitis (n = 18), group (b) were patients with P (n = 23), group (c) patients with CHD and minimal gingivitis (n = 20) and group (d) patients with CHD and P (n = 20). T cells separated from peripheral blood were found to be primed to both microbial HSP65 and human HSP60 but significant CD4, human leucocyte antigen (HLA) class II-restricted proliferative responses were found only with the human HSP60 in patients with P (P < 0.001) and CHD without (P < 0.001) or with (P < 0.00001) periodontitis. Dose-dependent inhibition of T cell proliferative responses was carried out to determine the receptors involved in recognition of HSP60 and HSP65. Monoclonal antibodies to CD14 showed inhibition of T cell proliferation stimulated by both HSP60 and HSP65, consistent with the role of CD14 as a receptor for these HSPs in P and CHD. The toll-like receptor 2 (TLR-) and TLR-4 were then studied and these showed that TLR-4 was recognized by microbial HSP65, whereas TLR-2 was recognised by human HSP60 in both P and CHD. However, a dissociation was found in the HSP60 and TLR4 interaction, as TLR4 appeared to have been recognized by HSP60 in P but not in CHD. The results suggest an autoimmune or cross-reactive CD4(+) class II-restricted T cell response to the human HSP60 in P and CHD. Further studies are required to determine if there is a common epitope within HSP60 that stimulates T cell proliferation in P and CHD.

  2. Trends in Materials Science for Ligament Reconstruction.

    PubMed

    Sava, Oana Roxana; Sava, Daniel Florin; Radulescu, Marius; Albu, Madalina Georgiana; Ficai, Denisa; Veloz-Castillo, Maria Fernanda; Mendez-Rojas, Miguel Angel; Ficai, Anton

    2017-01-01

    The number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament replacement or reconstruction. This review intends to synthesize the major steps taken in the development of polymer-based materials for anterior cruciate ligament, their advantages and drawbacks and the results of different in vitro and in vivo tests. Until present, there is no successful polymer system for ligament reconstruction implanted in humans. The developing field of synthetic polymers for ligament reconstruction still has a lot of potential. In addition, several nano-structured materials, made of nanofibers or in the form of ceramic/polymeric nanocomposites, are attracting the interest of several groups due to their potential use as engineered scaffolds that mimic the native environment of cells, increasing the chances for tissue regeneration. Here, we review the last 15 years of literature in order to obtain a better understanding on the state-of-the-art that includes the usage of nano- and poly-meric materials for ligament reconstruction, and to draw perspectives on the future development of the field.

  3. Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues

    PubMed Central

    Xie, Yu-feng; Shu, Rong; Jiang, Shao-yun; Liu, Da-li; Zhang, Xiu-li

    2011-01-01

    MicroRNAs (miRNAs) have been demonstrated to play an important role in regulation of the immuno-inflammatory response; however, the function of miRNAs in periodontal inflammation has not been investigated. The objective of this study was to explore the properties of miRNAs in periodontal inflammation by comparing miRNA profiles of inflamed and healthy gingival tissues. Gingival tissues were obtained from 10 periodontitis patients and 10 healthy subjects. After RNA extraction, miRNA profiles were analyzed by microarray, and expression levels of selected miRNAs were confirmed by real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). Analyses using two computational methods, Targetscan and MicroRNA.org, were combined to identify common targets of these miRNAs. Finally, the individual miRNA expression levels of three toll-like receptor (TLR)-related miRNAs from inflamed and healthy gingival tissues were evaluated by RT-PCR. Ninety-one miRNAs were found to be upregulated and thirty-four downregulated over two-fold in inflamed gingival tissue compared with those in healthy gingival tissue. Twelve selected inflammatory-related miRNAs, hsa-miR-126*, hsa-miR-20a, hsa-miR-142-3p, hsa-miR-19a, hsa-let-7f, hsa-miR-203, hsa-miR-17, hsa-miR-223, hsa-miR-146b, hsa-miR-146a, hsa-miR-155, and hsa-miR-205 showed comparable expression levels by microarray and real-time quantitative RT-PCR analyses. In addition, the putative inflammation targets of these miRNAs were predicted, and three that were tested (hsa-miRNA-146a, hsa-miRNA-146b, and hsa-miRNA-155), showed significant differences between inflamed and healthy gingiva. This remarkable difference in miRNA profiles between periodontal diseased and healthy gingiva implicates a probable close relationship between miRNAs and periodontal inflammation. The data also suggest that the regulation of TLRs in periodontal inflammation may involve miRNA pathways. PMID:21789961

  4. Potential for Stem Cell-Based Periodontal Therapy

    PubMed Central

    Bassir, Seyed Hossein; Wisitrasameewong, Wichaya; Raanan, Justin; Ghaffarigarakani, Sasan; Chung, Jamie; Freire, Marcelo; Andrada, Luciano C.; Intini, Giuseppe

    2015-01-01

    Periodontal diseases are highly prevalent and are linked to several systemic diseases. The goal of periodontal treatment is to halt the progression of the disease and regenerate the damaged tissue. However, achieving complete and functional periodontal regeneration is challenging because the periodontium is a complex apparatus composed of different tissues, including bone, cementum, and periodontal ligament. Stem cell-based regenerative therapy may represent an effective therapeutic tool for periodontal regeneration due to their plasticity and ability to differentiate into different cell lineages. This review presents and critically analyzes the available information on stem cell-based therapy for the regeneration of periodontal tissues and suggests new avenues for the development of more effective therapeutic protocols. PMID:26058394

  5. Contribution of Nanotechnology to Improved Treatment of Periodontal Disease.

    PubMed

    Zupancic, Spela; Kocbek, Petra; Baumgartner, Sasa; Kristl, Julijana

    2015-01-01

    Periodontal disease is chronic inflammation of periodontal tissues resulting in formation of periodontal pockets, periodontal attachment loss and progressive destruction of the ligament and alveolar bone. This review gives an update on periodontal disease pathogenesis, which is important for the development of novel methods and delivery systems for its treatment. The available treatment approaches, including removal of dental plaque, modulation of the host inflammatory response, and regeneration of periodontal tissue, are reviewed and their drawbacks discussed. Furthermore the latest achievements involving development of nanomedicines, which represent a new approach to better treatment of periodontal disease, are highlighted. They enable local drug delivery to particular tissues, cells, or subcellular compartments in periodontal pockets, either to biofilm pathogens or host cells, as well as control the release of incorporated drugs, usually antibiotic or anti-inflammatory. Specific examples of the nanocarriers or nanomaterials such as liposomes, lipid and polymeric nanoparticles, nanocrystals, dendrimers, and nanofibers under development for the treatment of periodontal disease are also clearly reviewed. Nanofibers are of special interest as nanodelivery systems and scaffolds for the regeneration of periodontal tissue. Finally, the future outlook of novel therapeutic approaches involving nanodelivery systems in the treatment of periodontal disease is provided.

  6. The effect of splinting of teeth in combination with reconstructive periodontal surgery in humans.

    PubMed

    Schulz, A; Hilgers, R D; Niedermeier, W

    2000-06-01

    The purpose of this study was to evaluate the effect of splinting teeth on the results of periodontal reconstructive surgery using a specific carbonate bone replacement graft (BRG) material. Forty-five patients were randomly treated with a periodontal surgery approach. Natural coral calcium BRG was utilised in 33 patients. This 33-patient group was divided into three equal groups. In the presplint group, teeth were splinted to at least two rigid teeth before surgery, in the postsplint group, teeth were splinted at suture removal, and in the nonsplint group, the treated teeth were not splinted at all. In 12 patients, teeth were treated with surgical debridement (DEBR) alone and not splinted. Periodontal probing depth (PPD), clinical probing attachment level (CPAL), and tooth mobility were measured using desmodontometry (DDM) and periotest (PTV) with reproducible methods before surgery and at various periods up to 1 year afterwards. A decrease in PPD (5.4 mm, SD 1.4 mm) and tooth mobility (DDM-horizontal 257 microns, SD 60 microns) and a gain of CPAL (5.1 mm, SD 1.4 mm) were seen following the use of BRG in presplint teeth. In the same group, PPD and tooth mobility were significantly reduced compared to nonsplint teeth. DEBR alone showed reductions in tooth mobility and PPD and a significantly smaller gain in CPAL than in presplint teeth treated with BRG. The less favourable improvement in periodontal function of postsplint or nonsplint teeth seemed to be due to the loss of BRG material caused by tooth mobility. These results indicate that an undisturbed wound healing process using BRG together with tooth stability is beneficial to overall clinical success.

  7. Periodontal Microbiology.

    PubMed

    Harvey, John D

    2017-04-01

    This article provides a review of current information about periodontal bacteria, their activities within dental plaque biofilm, their interactions with the host immune system, and the infections with which they are associated. Periodontal disease, plaque formation, and the host immune response are also discussed, as are antimicrobial measures used to control the bacteria and the disease.

  8. GAKG-RGEKG an Epitope That Provokes Immune Cross-Reactivity between Prevotella sp. and Human Collagen: Evidence of Molecular Mimicry in Chronic Periodontitis

    PubMed Central

    2016-01-01

    Periodontal disease afflicts 20% of world population. This process usually occurs in the form of being lethargic and chronic, and consequently this disease is known as chronic process. All chronic diseases constantly cause activation of the immune system, and therefore the presentation of microbial peptides which are presented to lymphocytes by professional antigen presenting cells can present microbial peptides very similar to important structures of human economy causing autoimmune diseases, process known as molecular mimicry. Thus, the aim of this study was to verify the presence of molecular mimicry phenomenon between periodontopathogens and human proteins. Blasting microbes of Socransky periodontal complexes against human collagen were performed and then the proteins with similarities were modelled and were screened in the MHI binding virtual methods. The epitopes selected were produced and plasma of chronic periodontal volunteers was obtained and a dot immunobinding assay was performed. Hypothetical protein of Prevotella sp. and human collagen epitopes with high similarities were positive for dot immunobinding assay. With this result it can be suggested that the mimicry phenomena can occur on periodontal disease. PMID:28116146

  9. GAKG-RGEKG an Epitope That Provokes Immune Cross-Reactivity between Prevotella sp. and Human Collagen: Evidence of Molecular Mimicry in Chronic Periodontitis.

    PubMed

    Obando-Pereda, Gustavo Alberto

    2016-01-01

    Periodontal disease afflicts 20% of world population. This process usually occurs in the form of being lethargic and chronic, and consequently this disease is known as chronic process. All chronic diseases constantly cause activation of the immune system, and therefore the presentation of microbial peptides which are presented to lymphocytes by professional antigen presenting cells can present microbial peptides very similar to important structures of human economy causing autoimmune diseases, process known as molecular mimicry. Thus, the aim of this study was to verify the presence of molecular mimicry phenomenon between periodontopathogens and human proteins. Blasting microbes of Socransky periodontal complexes against human collagen were performed and then the proteins with similarities were modelled and were screened in the MHI binding virtual methods. The epitopes selected were produced and plasma of chronic periodontal volunteers was obtained and a dot immunobinding assay was performed. Hypothetical protein of Prevotella sp. and human collagen epitopes with high similarities were positive for dot immunobinding assay. With this result it can be suggested that the mimicry phenomena can occur on periodontal disease.

  10. [Changes of the periodontal vascular network, periodontal fiber and alveolar bone incident to tooth extrusion].

    PubMed

    Kawato, F

    1989-06-01

    During the application of orthodontic force to a tooth, the surrounding tissues undergo changes of bone resorption and apposition, thereby resulting in tooth movement. The purpose of this study was to investigate the interrelationship between alveolar bone changes and the periodontal vascular network caused by extrusive orthodontic force using a scanning electron microscopy. Extrusive orthodontic force was applied to the mandibular 2nd and 3rd premolars of adult dogs. At the completion of the loading process, the inferior alveolar arteries were injected with a low viscosity MMA resin (Mercox). The following results were obtained. 1) At 3 days post-extrusion, various types of vascular network showing a loop pattern were seen along the direction of the tooth movement. 2) At 7 days post-extrusion, various types of vascular network with a hairpin loop pattern along the direction of the tooth movement were observed. Histologically, the fibers of periodontal ligament were stretched in the direction of the extrusion, Vascular hairpin loop formations were observed within the fibers of periodontal ligament. Bone apposition was not observed on the surface of alveolar bone. 3) At 14 days post-extrusion, a much more extensive and developed hairpin loop pattern occurred. Furthermore, new bone apposition was seen on the alveolar bone beneath under the hairpin loops. The periodontal ligament space was retained in the same width, even after bony apposition. 4) At 21 days post-extrusion, the tooth side microvascular network showed abundant low hairpin loops which anastomosed each other, and new spinous bony apposition was observed right below the periodontal vascular network. 5) At 30 days post-extrusion, the periodontal vascular network showed a almost normal appearance, with the rearrangement of vascular network. The surface of the spinous bony apposition became flat. The appositional bone had a lower degree of calcification than the alveolar bone in control group. 6) At 60 days

  11. Ultrasonic device for measuring periodontal attachment levels

    NASA Astrophysics Data System (ADS)

    Lynch, J. E.; Hinders, M. K.

    2002-07-01

    Periodontal disease is manifested clinically by a degradation of the ligament that attaches the tooth to the bone. The most widely used diagnostic tool for assessment of periodontal diseases, measurement of periodontal attachment loss with a manual probe, may overestimate attachment loss by as much as 2 mm in untreated sites, while underestimating attachment loss by an even greater margin following treatment. Manual probing is also invasive, which causes patient discomfort. This work describes the development and testing of an ultrasonographic periodontal probe designed to replace manual probing. It uses a thin stream of water to project an ultrasonic beam into the periodontal pocket, and then measures echoes off features within the pocket. To do so, the ultrasonic beam must be narrowed from 2 (the diameter of the transducer) to 0.5 mm (the approximate width of the periodontal pocket at the gingival margin). The proper choice of transducer frequency, the proper method for controlling water flow from the probe, and a model for interpreting these echoes are also addressed. Initial results indicate that the device measures echoes from the hard tissue of the tooth surface, and that the periodontal attachment level can be inferred from these echoes.

  12. Lessons learned and unlearned in periodontal microbiology

    PubMed Central

    Teles, Ricardo; Teles, Flavia; Frias-Lopez, Jorge; Paster, Bruce; Haffajee, Anne

    2013-01-01

    Periodontal diseases are initiated by bacterial species living in polymicrobial biofilms at or below the gingival margin and progress largely as a result of the inflammation initiated by specific subgingival species. In the past few decades, efforts to understand the microbiota of periodontal diseases have led to an exponential increase in information about biofilms associated with periodontal health and disease. In fact, the oral microbiota is one of the best characterized microbiomes that colonize the human body. Despite this increased knowledge, one has to ask if our fundamental concepts of the etiology and pathogenesis of periodontal diseases have really changed. In this chapter we will review how our comprehension of the structure and function of the subgingival microbiota evolved over the years in search of lessons learned and unlearned in periodontal microbiology. More specifically, this review focuses on: 1) how the data obtained through molecular techniques has impacted our knowledge of the etiology of periodontal infections; 2) the potential role of viruses in the etiopathogenesis of periodontal diseases; 3) how concepts of microbial ecology have expanded our understanding of host microbial interactions that might lead to periodontal diseases; 4) the role of inflammation in the pathogenesis of periodontal diseases; and 5) the impact of these evolving concepts on treatment and preventive approaches to periodontal infections. We will conclude by reviewing how novel systems biology approaches promise to unravel new details of the pathogenesis of periodontal diseases and, hopefully, lead to a better understanding of periodontal disease mechanisms. PMID:23574465

  13. Periodontal regeneration.

    PubMed

    Wang, Hom-Lay; Greenwell, Henry; Fiorellini, Joseph; Giannobile, William; Offenbacher, Steven; Salkin, Leslie; Townsend, Cheryl; Sheridan, Phillip; Genco, Robert J

    2005-09-01

    Untreated periodontal disease leads to tooth loss through destruction of the attachment apparatus and tooth-supporting structures. The goals of periodontal therapy include not only the arrest of periodontal disease progression,but also the regeneration of structures lost to disease where appropriate. Conventional surgical approaches (e.g., flap debridement) continue to offer time-tested and reliable methods to access root surfaces,reduce periodontal pockets, and attain improved periodontal form/architecture. However, these techniques offer only limited potential towards recovering tissues destroyed during earlier disease phases. Recently, surgical procedures aimed at greater and more predictable regeneration of periodontal tissues and functional attachment close to their original level have been developed, analyzed, and employed in clinical practice. This paper provides a review of the current understanding of the mechanisms, cells, and factors required for regeneration of the periodontium and of procedures used to restore periodontal tissues around natural teeth. Targeted audiences for this paper are periodontists and/or researchers with an interest in improving the predictability of regenerative procedures. This paper replaces the version published in 1993.

  14. Periodontal maintenance.

    PubMed

    Tan, A E S

    2009-09-01

    The main goal of periodontal therapy is to establish an oral environment compatible with periodontal health by the physical disruption of the plaque biofilm and adjunctive chemical means if required. Implicit in this objective is the ongoing requirement of detection and interception of new and recurrent disease, which continues at selected intervals for the life of the dentition after the initial ("active") phase of periodontal treatment. This concept of ongoing periodontal maintenance therapy has been embraced as the mandatory requirement for favourable periodontal outcomes based on institutional clinical trials and in practice-based studies in various parts of the world. This review examines the ramifications of periodontal maintenance therapy based upon a multi-level assessment of logistic issues and risk factors at three levels: (1) The patient level - treatment time; patient attendance compliance; and homecare measures, antiseptics/antibiotics and smoking. (2) The level of the individual tooth - tooth loss; and evaluation of success versus survival. (3) The level of each tooth surface ("site") - probing depth, loss of attachment and bleeding on probing; and changes in clinical attachment levels. In spite of the diversity of studies conducted, there is agreement on the efficacy of periodontal maintenance therapy when compared with studies on untreated populations and in treated cases that were not maintained.

  15. Periodontics in the next millennium.

    PubMed

    Vandersall, D C

    1998-07-01

    This article prognosticates where periodontology will be in the next millennium. The forecasting of such events is wrought with confusion because such predictions are shadowed by bias, dogmatism, prejudice, experiences, and opinions from either a closed or open mind. The results of the survey from 101 periodontists reflect opinions from varied backgrounds, years of clinical experience, and individual levels of success or failure. The responses cannot be tested for accuracy or duplicated by another survey except to wait out the test of time for the year 2025. Clinicians will be challenged to make decisions on accepting new techniques and concepts as these are brought into the therapeutic fold of periodontics. The clinician will be met with new possibilities as a paradigm shift is inevitable for periodontal practice in the next millennium. After all, who would have thought in the 1960s, the soft tissue augmentation era, that 22 years later in 1982, the regeneration of the lost attachment apparatus (alveolar bone, cementum, and periodontal ligament) would become a reality. This survey strongly suggests that by the end of the first quarter of the twenty-first century, local delivery of antimicrobials, growth and differentiation factors, and root biomodification agents will have a major impact on the practice of periodontics. One thing is certain, in the next millennium, considering the responses from this survey, a new era in periodontics will be here. By the year 2025, the research, development, and dissemination of new periodontal knowledge will be beyond the imagination from what was considered usual and customary for the twentieth century.

  16. Artificial Ligaments: Promise or Panacea?

    ERIC Educational Resources Information Center

    Lubell, Adele

    1987-01-01

    The Food and Drug Administration has approved a prosthetic ligament for limited use in persons with damaged anterior cruciate ligaments (ACL). This article addresses ligament repair, ACL tears, current treatment, development of the Gore-Tex artificial ligament, other artificial ligaments in process, and arguments for and against their use.…

  17. Macroscopic and Microscopic Analysis of the Thumb Carpometacarpal Ligaments

    PubMed Central

    Ladd, Amy L.; Lee, Julia; Hagert, Elisabet

    2012-01-01

    Background: Stability and mobility represent the paradoxical demands of the human thumb carpometacarpal joint, yet the structural origin of each functional demand is poorly defined. As many as sixteen and as few as four ligaments have been described as primary stabilizers, but controversy exists as to which ligaments are most important. We hypothesized that a comparative macroscopic and microscopic analysis of the ligaments of the thumb carpometacarpal joint would further define their role in joint stability. Methods: Thirty cadaveric hands (ten fresh-frozen and twenty embalmed) from nineteen cadavers (eight female and eleven male; average age at the time of death, seventy-six years) were dissected, and the supporting ligaments of the thumb carpometacarpal joint were identified. Ligament width, length, and thickness were recorded for morphometric analysis and were compared with use of the Student t test. The dorsal and volar ligaments were excised from the fresh-frozen specimens and were stained with use of a triple-staining immunofluorescent technique and underwent semiquantitative analysis of sensory innervation; half of these specimens were additionally analyzed for histomorphometric data. Mixed-effects linear regression was used to estimate differences between ligaments. Results: Seven principal ligaments of the thumb carpometacarpal joint were identified: three dorsal deltoid-shaped ligaments (dorsal radial, dorsal central, posterior oblique), two volar ligaments (anterior oblique and ulnar collateral), and two ulnar ligaments (dorsal trapeziometacarpal and intermetacarpal). The dorsal ligaments were significantly thicker (p < 0.001) than the volar ligaments, with a significantly greater cellularity and greater sensory innervation compared with the anterior oblique ligament (p < 0.001). The anterior oblique ligament was consistently a thin structure with a histologic appearance of capsular tissue with low cellularity. Conclusions: The dorsal deltoid ligament

  18. Healing of human intrabony defects following regenerative periodontal therapy with a bovine-derived xenograft and guided tissue regeneration.

    PubMed

    Sculean, A; Stavropoulos, A; Windisch, P; Keglevich, T; Karring, T; Gera, I

    2004-06-01

    The purpose of the present study was to histologically evaluate the healing of human intrabony defects following treatment with either a bovine-derived xenograft (BDX) and guided tissue regeneration (GTR) [BDX + GTR] or a bovine-derived xenograft mixed with collagen (BDX Coll) and GTR [BDX Coll + GTR]. Eight patients with chronic periodontitis and each with one very deep intrabony defect around a tooth scheduled for extraction were treated with either a combination of BDX + GTR (five patients) or with BDX Coll + GTR (three patients). The postoperative healing was uneventful in all eight cases. After a healing period of 6 months, the teeth or roots were extracted together with some of their surrounding soft and hard tissues and subsequently fixed in 10% buffered formalin. Following decalcification in EDTA, the specimens were embedded in paraffin and 8-microm histological sections were cut in the mesio-distal direction, parallel to the long axes of the teeth. The sections were alternatively stained with hematoxylin and eosin, van Giesson's connective tissue stain or with the Ladevig's connective tissue staining method and examined under the light microscope. Generally, formation of new cementum with inserting collagen fibers was found in seven out of the eight treated cases, whereas in the remaining case (treated with BDX + GTR) the healing was characterized by formation of a long junctional epithelium along the debrided root surface and no formation of cementum or bone. In the specimens demonstrating periodontal regeneration the new cementum was always of a cellular type. In most cases, the graft particles were surrounded by bone. In some areas, the bone tissue around the graft particles was connected by perpendicularly inserting collagen fibers to the newly formed cementum on the root surface. The epithelium downgrowth stopped always at the most coronal part of the newly formed cementum. No remnants of the membrane material were observed in any of the biopsies

  19. Anatomically Shaped Tooth and Periodontal Regeneration by Cell Homing

    PubMed Central

    Kim, K.; Lee, C.H.; Kim, B.K.; Mao, J.J.

    2010-01-01

    Tooth regeneration by cell delivery encounters translational hurdles. We hypothesized that anatomically correct teeth can regenerate in scaffolds without cell transplantation. Novel, anatomically shaped human molar scaffolds and rat incisor scaffolds were fabricated by 3D bioprinting from a hybrid of poly-ε-caprolactone and hydroxyapatite with 200-µm-diameter interconnecting microchannels. In each of 22 rats, an incisor scaffold was implanted orthotopically following mandibular incisor extraction, whereas a human molar scaffold was implanted ectopically into the dorsum. Stromal-derived factor-1 (SDF1) and bone morphogenetic protein-7 (BMP7) were delivered in scaffold microchannels. After 9 weeks, a putative periodontal ligament and new bone regenerated at the interface of rat incisor scaffold with native alveolar bone. SDF1 and BMP7 delivery not only recruited significantly more endogenous cells, but also elaborated greater angiogenesis than growth-factor-free control scaffolds. Regeneration of tooth-like structures and periodontal integration by cell homing provide an alternative to cell delivery, and may accelerate clinical applications. PMID:20448245

  20. Periodontal materials.

    PubMed

    Darby, I

    2011-06-01

    Periodontics is more associated with debridement of periodontal pockets and not generally thought of as using dental materials in the treatment of patients. However, the last 30 years have seen the development of materials used in regeneration of the periodontal tissues following periodontal disease, guided tissue regeneration, and the use of these materials in bone regeneration more recently, guided bone regeneration. The materials used include bone grafts and membranes, but also growth factors and cells-based therapies. This review provides an overview of the materials currently used and looks at contemporary research with a view to what may be used in the future. It also looks at the clinical effectiveness of these regenerative therapies with an emphasis on what is available in Australia.

  1. Changes in the Distribution of Periodontal Nerve Fibers during Dentition Transition in the Cat.

    PubMed

    Miki, Koji; Honma, Shiho; Ebara, Satomi; Kumamoto, Kenzo; Murakami, Shinya; Wakisaka, Satoshi

    2015-01-01

    The periodontal ligament has a rich sensory nerve supply which originates from the trigeminal ganglion and trigeminal mesencephalic nucleus. Although various types of mechanoreceptors have been reported in the periodontal ligament, the Ruffini ending is an essential one. It is unknown whether the distribution of periodontal nerve fibers in deciduous teeth is identical to that in permanent teeth or not. Moreover, morphological changes in the distribution of periodontal nerve fibers during resorption of deciduous teeth and eruption of successional permanent teeth in diphyodont animals have not been reported in detail. Therefore, in this study, we examined changes in the distribution of periodontal nerve fibers in the cat during changes in dentition (i.e., deciduous, mixed and permanent dentition) by immunohistochemistry of protein gene product 9.5. During deciduous dentition, periodontal nerve fibers were concentrated at the apical portion, and sparsely distributed in the periodontal ligament of deciduous molars. During mixed dentition, the periodontal nerve fibers of deciduous molars showed degenerative profiles during resorption. In permanent dentition, the periodontal nerve fibers of permanent premolars, the successors of deciduous molars, increased in number. Similar to permanent premolars, the periodontal nerve fibers of permanent molars, having no predecessors, increased in number, and were densely present in the apical portion. The present results indicate that the distribution of periodontal nerve fibers in deciduous dentition is almost identical to that in permanent dentition although the number of periodontal nerve fibers in deciduous dentition was low. The sparse distribution of periodontal nerve fibers in deciduous dentition agrees with clinical evidence that children are less sensitive to tooth stimulation than adults.

  2. Anterior Cruciate Ligament (ACL) Injuries

    MedlinePlus

    ... Week of Healthy Breakfasts Shyness Anterior Cruciate Ligament (ACL) Injuries KidsHealth > For Teens > Anterior Cruciate Ligament (ACL) ... and Recovery Coping With an ACL Injury About ACL Injuries A torn anterior cruciate ligament (ACL) is ...

  3. Medial Collateral Ligament (MCL) Injuries

    MedlinePlus

    ... of Healthy Breakfasts Shyness Medial Collateral Ligament (MCL) Injuries KidsHealth > For Teens > Medial Collateral Ligament (MCL) Injuries ... Treatment Coping With an MCL Injury About MCL Injuries A torn medial collateral ligament (MCL) is a ...

  4. Tendon and ligament imaging

    PubMed Central

    Hodgson, R J; O'Connor, P J; Grainger, A J

    2012-01-01

    MRI and ultrasound are now widely used for the assessment of tendon and ligament abnormalities. Healthy tendons and ligaments contain high levels of collagen with a structured orientation, which gives rise to their characteristic normal imaging appearances as well as causing particular imaging artefacts. Changes to ligaments and tendons as a result of disease and injury can be demonstrated using both ultrasound and MRI. These have been validated against surgical and histological findings. Novel imaging techniques are being developed that may improve the ability of MRI and ultrasound to assess tendon and ligament disease. PMID:22553301

  5. Lumbar intrathecal ligaments.

    PubMed

    Kershner, David E; Binhammer, Robert T

    2002-03-01

    A meticulous examination was performed on 56 vertebral columns from cadavers between 64 and 89 years of age. Identification of all contents within the dural sac was completed; however, the main focus was the cauda equina and lumbar region. In addition to scope dissection, radiographs and histological preparations were used to identify structures, tissue types, and any possible pathology. Discrete intrathecal ligamentous bands were observed in all cadavers examined. They were found randomly binding the dorsal nerve roots of the cauda equina to the dura. Occasional binding of the ventral nerve roots to the dorsal roots was observed. Histological examination demonstrated a dense collagen ligament varying between 0.13 and 0.35 microm in thickness and from 3 mm to 3.5 cm in length. The average number of ligaments found per cadaver was 18. These ligaments displayed a broad base attachment to the nerve root or dura of approximately 3 mm. Looping of the nerve roots associated with these ligaments was seen in one cadaver with a burst fracture. Electron microscopic studies of these ligaments demonstrated similarities to denticulate ligaments. It is suggested that the intrathecal ligaments represent remnants from fetal development of the denticulate ligaments.

  6. Gingival crevicular fluid periostin levels in chronic periodontitis patients following nonsurgical periodontal treatment with low-level laser therapy

    PubMed Central

    Kumaresan, Dhanangchaayan; Balasundaram, Aruna; Naik, Vanaja Krishna; Appukuttan, Deva Priya

    2016-01-01

    Objective: Periostin is a matricellular protein highly expressed in periosteum, periodontal ligament and is essential for tissue integrity and maturation. It plays a role in collagen fibrillogenesis and is downregulated in periodontal disease. Biostimulation utilizing low-level laser therapy (LLLT) influences periodontal ligament fibroblast proliferation. This study was conducted with the objective of estimating periostin levels in chronic periodontitis (CP) patients following LLLT as an adjunct to root surface debridement (RSD). Materials and Methods: Thirty periodontally healthy participants (Group I) and sixty CP participants were recruited. Based on the therapeutic intervention, CP patients were allocated to either RSD (Group II) or to RSD with LLLT (Group III) group. Clinical parameters and gingival crevicular fluid (GCF) periostin levels were assessed at the baseline and at the 3rd month. Results: Periostin levels were significantly lower in CP patients when compared to healthy individuals at the baseline (P < 0.01). Following nonsurgical periodontal treatment (NSPT), periostin levels significantly increased in both Group II and III, when compared to baseline values (P < 0.001). Comparison of mean periostin levels between both the treatment groups showed a significant increase in LLLT group than RSD at the 3rd month (P < 0.05). Conclusion: Within the limitations of the present study, LLLT application was found to have additional benefits over RSD with respect to clinical periodontal parameters and GCF periostin levels. Moreover, periostin may be used as a possible biomarker to evaluate the outcome following NSPT. PMID:28042273

  7. Human immune responses to oral micro-organisms. I. Association of localized juvenile periodontitis (LJP) with serum antibody responses to Actinobacillus actinomycetemcomitans.

    PubMed Central

    Ebersole, J L; Taubman, M A; Smith, D J; Genco, R J; Frey, D E

    1982-01-01

    The association between periodontal disease in humans and serum and salivary antibody to Actinobacillus actinomycetemcomitans strain Y4 was determined. An Elisa was used to examine anti-Y4 antibody of the IgM, IgG, IgA and IgE isotypes in serum from 127 individuals and IgA in parotid saliva. Patients diagnosed as having localized juvenile periodontitis (n = 37) had significantly higher levels and frequency of serum IgG antibodies to Y4 than all other groups. Serum and salivary IgA and serum IgE antibody levels were significantly increased in patients with both localized and generalized types of juvenile periodontitis (n = 48) when compared to all other patient groups. Specificity studies suggested that the antigenic determinants that were differentiating the group responses were unique to the Y4 organism. These results indicate that serum antibodies to Y4 may reflect an infectious process with this micro-organism and that these responses may provide some diagnostic value in delineating different types of periodontal diseases. PMID:7094425

  8. Advanced drug delivery approaches against periodontitis.

    PubMed

    Joshi, Deeksha; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Periodontitis is an inflammatory disease of gums involving the degeneration of periodontal ligaments, creation of periodontal pocket and resorption of alveolar bone, resulting in the disruption of the support structure of teeth. According to WHO, 10-15% of the global population suffers from severe periodontitis. The disease results from the growth of a diverse microflora (especially anaerobes) in the pockets and release of toxins, enzymes and stimulation of body's immune response. Various local or systemic approaches were used for an effective treatment of periodontitis. Currently, controlled local drug delivery approach is more favorable as compared to systemic approach because it mainly focuses on improving the therapeutic outcomes by achieving factors like site-specific delivery, low dose requirement, bypass of first-pass metabolism, reduction in gastrointestinal side effects and decrease in dosing frequency. Overall it provides a safe and effective mode of treatment, which enhances patient compliance. Complete eradication of the organisms from the sites was not achieved by using various surgical and mechanical treatments. So a number of polymer-based delivery systems like fibers, films, chips, strips, microparticles, nanoparticles and nanofibers made from a variety of natural and synthetic materials have been successfully tested to deliver a variety of drugs. These systems are biocompatible and biodegradable, completely fill the pockets, and have strong retention on the target site due to excellent mucoadhesion properties. The review summarizes various available and recently developing targeted delivery devices for the treatment of periodontitis.

  9. Ligament repair: a molecular and immunohistological characterization.

    PubMed

    Roseti, L; Buda, R; Cavallo, C; Desando, G; Facchini, A; Grigolo, B

    2008-01-01

    The anterior cruciate ligament (ACL) is the most commonly injured tissue of the human knee. Its poor ability to regenerate after injury represents a challenge to ligament tissue engineering. An understanding of the molecular composition of the structures used for its repair is essential for clinical assessments and for the implementation of tissue engineering strategies. The objective of this study was to evaluate, both at gene and protein levels, the expression of characteristic molecules in human ACL, patellar, semitendinosus and gracilis tendons and in the ligament reconstructed with patellar or semitendinosus and gracilis tendons. We demonstrated that primary ACL and tendon tissues all express collagen I, II, Sox-9, tenascin-C and aggrecan. Collagen X expression was detected at very low levels or undetectable. Cathepsin B, MMP-1 and MMP-13 were expressed at higher levels in the ACL reconstructed by the two tendons, showing that a remodeling process occurs during "ligamentization". Both our molecular and immunohistochemical evaluations did not reveal significative differences between the tendons and ligaments analyzed. However, ACL reconstructed with semitendinosus and gracilis tendon seems to present a higher expression of collagen type II when compared to that reconstructed with patellar tendon. This study could give a reasonable identification of genetic and protein markers specific to tendon/ligament tissues and be helpful in testing tissue engineering approaches for ACL reconstruction.

  10. Periodontal Probe Improves Exams, Alleviates Pain

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Dentists, comedian Bill Cosby memorably mused, tell you not to pick your teeth with any sharp metal object. Then you sit in their chair, and the first thing they grab is an iron hook!" Conventional periodontal probing is indeed invasive, uncomfortable for the patient, and the results can vary greatly between dentists and even for repeated measurements by the same dentist. It is a necessary procedure, though, as periodontal disease is the most common dental disease, involving the loss of teeth by the gradual destruction of ligaments that hold teeth in their sockets in the jawbone. The disease usually results from an increased concentration of bacteria in the pocket, or sulcus, between the gums and teeth. These bacteria produce acids and other byproducts, which enlarge the sulcus by eroding the gums and the periodontal ligaments. The sulcus normally has a depth of 1 to 2 millimeters, but in patients with early stages of periodontal disease, it has a depth of 3 to 5 millimeters. By measuring the depth of the sulcus, periodontists can have a good assessment of the disease s progress. Presently, there are no reliable clinical indicators of periodontal disease activity, and the best available diagnostic aid, periodontal probing, can only measure what has already been lost. A method for detecting small increments of periodontal ligament breakdown would permit earlier diagnosis and intervention with less costly and time-consuming therapy, while overcoming the problems associated with conventional probing. The painful, conventional method for probing may be destined for the archives of dental history, thanks to the development of ultrasound probing technologies. The roots of ultrasound probes are in an ultrasound-based time-of-flight technique routinely used to measure material thickness and length in the Nondestructive Evaluation Sciences Laboratory at Langley Research Center. The primary applications of that technology have been for corrosion detection and bolt tension

  11. The Effect of Brain-Derived Neurotrophic Factor on Periodontal Furcation Defects

    PubMed Central

    Jimbo, Ryo; Tovar, Nick; Janal, Malvin N.; Mousa, Ramy; Marin, Charles; Yoo, Daniel; Teixeira, Hellen S.; Anchieta, Rodolfo B.; Bonfante, Estevam A.; Konishi, Akihiro; Takeda, Katsuhiro; Kurihara, Hidemi; Coelho, Paulo G.

    2014-01-01

    This study aimed to observe the regenerative effect of brain-derived neurotrophic factor (BDNF) in a non-human primate furcation defect model. Class II furcation defects were created in the first and second molars of 8 non-human primates to simulate a clinical situation. The defect was filled with either, Group A: BDNF (500 µg/ml) in high-molecular weight-hyaluronic acid (HMW-HA), Group B: BDNF (50 µg/ml) in HMW-HA, Group C: HMW-HA acid only, Group D: empty defect, or Group E: BDNF (500 µg/ml) in saline. The healing status for all groups was observed at different time-points with micro computed tomography. The animals were euthanized after 11 weeks, and the tooth-bone specimens were subjected to histologic processing. The results showed that all groups seemed to successfully regenerate the alveolar buccal bone, however, only Group A regenerated the entire periodontal tissue, i.e., alveolar bone, cementum and periodontal ligament. It is suggested that the use of BDNF in combination with a scaffold such as the hyaluronic acid in periodontal furcation defects may be an effective treatment option. PMID:24454754

  12. Ligament-Derived Stem Cells: Identification, Characterisation, and Therapeutic Application

    PubMed Central

    Clegg, Peter David; Comerford, Eithne Josephine; Canty-Laird, Elizabeth Gail

    2017-01-01

    Ligament is prone to injury and degeneration and has poor healing potential and, with currently ineffective treatment strategies, stem cell therapies may provide an exciting new treatment option. Ligament-derived stem cell (LDSC) populations have been isolated from a number of different ligament types with the majority of studies focussing on periodontal ligament. To date, only a few studies have investigated LDSC populations in other types of ligament, for example, intra-articular ligaments; however, this now appears to be a developing field. This literature review aims to summarise the current information on nondental LDSCs including in vitro characteristics of LDSCs and their therapeutic potential. The stem cell niche has been shown to be vital for stem cell survival and function in a number of different physiological systems; therefore, the LDSC niche may have an impact on LDSC phenotype. The role of the LDSC niche on LDSC viability and function will be discussed as well as the therapeutic potential of LDSC niche modulation. PMID:28386284

  13. The relative importance of plaque and occlusion in periodontal disease.

    PubMed

    Polson, A M

    1986-11-01

    A series of studies has investigated interactions between periodontal trauma and marginal periodontitis in relation to the initiation, progression and treatment of periodontal disease. Lesions of trauma in the periodontal ligament do not initiate the loss of connective tissue attachment characteristic of marginal periodontitis. Studies conducted in squirrel monkeys and beagle dogs in which jiggling forces were superimposed upon an established marginal periodontitis reported increased loss of alveolar bone, but the accelerated loss of attachment which occurred in the dog model did not occur in the monkey model. In order to clarify the relative importance of inflammation and tooth mobility in the treatment of advanced periodontal disease, periodontal responses were evaluated after removing combinations of traumatic and inflammatory components. Elimination of trauma in the presence of existing marginal inflammation did not reduce tooth mobility or increase bone volume. Osseous regeneration and decreased tooth mobility occurred after resolving both components; however, similar findings occurred after resolving inflammation in the presence of continued tooth mobility. After resolution of inflammation, remaining tooth mobility does not result in increased loss of connective tissue attachment. On a clinical level for periodontal disease treatment, the findings place decreased emphasis upon management of tooth mobility and increased emphasis upon resolution of marginal inflammation.

  14. Associations between Periodontal Microbiota and Death Rates

    PubMed Central

    Chiu, Chung-Jung; Chang, Min-Lee; Taylor, Allen

    2016-01-01

    It is conceived that specific combinations of periodontal bacteria are associated with risk for the various forms of periodontitis. We hypothesized that such specificity is also related to human cause-specific death rates. We tested this hypothesis in a representative sample of the US population followed for a mean duration of 11 years and found that two specific patterns of 21 serum antibodies against periodontal bacteria were significantly associated with increased all-cause and/or diabetes-related mortalities. These data suggested that specific combinations of periodontal bacteria, even without inducing clinically significant periodontitis, may have a significant impact on human cause-specific death rates. Our findings implied that increased disease and mortality risk could be transmittable via the transfer of oral microbiota, and that developing personalized strategies and maintaining healthy oral microbiota beyond protection against periodontitis would be important to manage the risk. PMID:27748442

  15. Surgical retrieval, isolation and in vitro expansion of human anterior cruciate ligament-derived cells for tissue engineering applications.

    PubMed

    Gupta, Ashim; Sharif, Kevin; Walters, Megan; Woods, Mia D; Potty, Anish; Main, Benjamin J; El-Amin, Saadiq F

    2014-04-30

    Injury to the ACL is a commonly encountered problem in active individuals. Even partial tears of this intra-articular knee ligament lead to biomechanical deficiencies that impair function and stability. Current options for the treatment of partial ACL tears range from nonoperative, conservative management to multiple surgical options, such as: thermal modification, single-bundle repair, complete reconstruction, and reconstruction of the damaged portion of the native ligament. Few studies, if any, have demonstrated any single method for management to be consistently superior, and in many cases patients continue to demonstrate persistent instability and other comorbidities. The goal of this study is to identify a potential cell source for utilization in the development of a tissue engineered patch that could be implemented in the repair of a partially torn ACL. A novel protocol was developed for the expansion of cells derived from patients undergoing ACL reconstruction. To isolate the cells, minced hACL tissue obtained during ACL reconstruction was digested in a Collagenase solution. Expansion was performed using DMEM/F12 medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (P/S). The cells were then stored at -80 ºC or in liquid nitrogen in a freezing medium consisting of DMSO, FBS and the expansion medium. After thawing, the hACL derived cells were then seeded onto a tissue engineered scaffold, PLAGA (Poly lactic-co-glycolic acid) and control Tissue culture polystyrene (TCPS). After 7 days, SEM was performed to compare cellular adhesion to the PLAGA versus the control TCPS. Cellular morphology was evaluated using immunofluorescence staining. SEM (Scanning Electron Microscope) micrographs demonstrated that cells grew and adhered on both PLAGA and TCPS surfaces and were confluent over the entire surfaces by day 7. Immunofluorescence staining showed normal, non-stressed morphological patterns on both surfaces. This technique is

  16. Age, sex, body anthropometry, and ACL size predict the structural properties of the human anterior cruciate ligament.

    PubMed

    Hashemi, Javad; Mansouri, Hossein; Chandrashekar, Naveen; Slauterbeck, James R; Hardy, Daniel M; Beynnon, Bruce D

    2011-07-01

    Anterior cruciate ligament (ACL) injury continues to be at the forefront of sports injury concerns because of its impact on quality of life and joint health prognosis. One strategy is to reduce the occurrence of this injury by identifying at-risk subjects based on key putative risk factors. The purpose of our study was to develop models that predict the structural properties of a subject's ACL based on the combination of known risk factors. We hypothesized that the structural properties of the ACL can be predicted using a multi-linear regression model based on significant covariates that are associated with increased risk of injury, including age, sex, body size, and ACL size. We also hypothesized that ACL size is a significant contributor to the model. The developed models had predictive capabilities for the structural properties of the ACL: load at failure (R2 = 0.914), elongation at failure (R2 = 0.872), energy at failure (R2 = 0.913), and linear stiffness (R2 = 0.756). Furthermore, sex, age, body mass, BMI, and height were contributors (p < 0.05) to all predicted structural properties. ACL minimal area was a contributor to elongation, energy at failure, and linear stiffness (p < 0.05), but not to load at failure. ACL volume was also a contributor to elongation and energy at failure (p < 0.05), but not to linear stiffness and load at failure models. ACL length was not a significant contributor to any structural property. The clinical significance of this research is its potential, after continued development and refinement of the model, for application to prognostic studies that are designed to identify individuals at increased risk for injury to the ligament.

  17. Quantifying the Nonlinear, Anisotropic Material Response of Spinal Ligaments

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel J.

    Spinal ligaments may be a significant source of chronic back pain, yet they are often disregarded by the clinical community due to a lack of information with regards to their material response, and innervation characteristics. The purpose of this dissertation was to characterize the material response of spinal ligaments and to review their innervation characteristics. Review of relevant literature revealed that all of the major spinal ligaments are innervated. They cause painful sensations when irritated and provide reflexive control of the deep spinal musculature. As such, including the neurologic implications of iatrogenic ligament damage in the evaluation of surgical procedures aimed at relieving back pain will likely result in more effective long-term solutions. The material response of spinal ligaments has not previously been fully quantified due to limitations associated with standard soft tissue testing techniques. The present work presents and validates a novel testing methodology capable of overcoming these limitations. In particular, the anisotropic, inhomogeneous material constitutive properties of the human supraspinous ligament are quantified and methods for determining the response of the other spinal ligaments are presented. In addition, a method for determining the anisotropic, inhomogeneous pre-strain distribution of the spinal ligaments is presented. The multi-axial pre-strain distributions of the human anterior longitudinal ligament, ligamentum flavum and supraspinous ligament were determined using this methodology. Results from this work clearly demonstrate that spinal ligaments are not uniaxial structures, and that finite element models which account for pre-strain and incorporate ligament's complex material properties may provide increased fidelity to the in vivo condition.

  18. Early bone healing events in the human extraction socket.

    PubMed

    Devlin, H; Sloan, P

    2002-12-01

    The tooth extraction socket is unique in terms of a bone-healing defect in that it contains the remnants of periodontal ligament fibroblasts attached to the socket wall. Although these cells have an osteogenic potential in vitro, the origin of cells populating the human extraction socket is unknown and may include bone marrow, periosteum and pericytic cells. Recently, monoclonal antibodies (AML-3, SB-10 and SB-20) have become available which can identify cells undergoing osteogenic differentiation. The aim of this work was to investigate the pattern of osteoblast differentiation in the human extraction socket using these markers. Immunolocalization was used to identify the osteoprogenitor cell population in the extraction sockets of three patients. Runx2 was most strongly expressed by the osteoblasts at the socket margin and in the surrounding marrow spaces. Osteoprogenitor, pre-osteoblast and osteoblast cells surrounded the newly formed trabeculae, and expressed on their cell surface antigens which reacted with the SB-10 and SB-20 antibodies. In a specimen with the tooth and periodontium present, both osteo-blasts and periodontal ligament fibroblasts were immunoreactive with S