Sample records for human physiological parameters

  1. Research on human physiological parameters intelligent clothing based on distributed Fiber Bragg Grating

    NASA Astrophysics Data System (ADS)

    Miao, Changyun; Shi, Boya; Li, Hongqiang

    2008-12-01

    A human physiological parameters intelligent clothing is researched with FBG sensor technology. In this paper, the principles and methods of measuring human physiological parameters including body temperature and heart rate in intelligent clothing with distributed FBG are studied, the mathematical models of human physiological parameters measurement are built; the processing method of body temperature and heart rate detection signals is presented; human physiological parameters detection module is designed, the interference signals are filtered out, and the measurement accuracy is improved; the integration of the intelligent clothing is given. The intelligent clothing can implement real-time measurement, processing, storage and output of body temperature and heart rate. It has accurate measurement, portability, low cost, real-time monitoring, and other advantages. The intelligent clothing can realize the non-contact monitoring between doctors and patients, timely find the diseases such as cancer and infectious diseases, and make patients get timely treatment. It has great significance and value for ensuring the health of the elders and the children with language dysfunction.

  2. Physiological Parameters Database for PBPK Modeling (External Review Draft)

    EPA Science Inventory

    EPA released for public comment a physiological parameters database (created using Microsoft ACCESS) intended to be used in PBPK modeling. The database contains physiological parameter values for humans from early childhood through senescence. It also contains similar data for an...

  3. DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology

    NASA Technical Reports Server (NTRS)

    Hester, Robert L.; Summers, Richard L.; lIescu, Radu; Esters, Joyee; Coleman, Thomas G.

    2010-01-01

    Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NASA

  4. Noncontact measurement of heart rate using facial video illuminated under natural light and signal weighted analysis.

    PubMed

    Yan, Yonggang; Ma, Xiang; Yao, Lifeng; Ouyang, Jianfei

    2015-01-01

    Non-contact and remote measurements of vital physical signals are important for reliable and comfortable physiological self-assessment. We presented a novel optical imaging-based method to measure the vital physical signals. Using a digital camera and ambient light, the cardiovascular pulse waves were extracted better from human color facial videos correctly. And the vital physiological parameters like heart rate were measured using a proposed signal-weighted analysis method. The measured HRs consistent with those measured simultaneously with reference technologies (r=0.94, p<0.001 for HR). The results show that the imaging-based method is suitable for measuring the physiological parameters, and provide a reliable and comfortable measurement mode. The study lays a physical foundation for measuring multi-physiological parameters of human noninvasively.

  5. Advancements in remote physiological measurement and applications in human-computer interaction

    NASA Astrophysics Data System (ADS)

    McDuff, Daniel

    2017-04-01

    Physiological signals are important for tracking health and emotional states. Imaging photoplethysmography (iPPG) is a set of techniques for remotely recovering cardio-pulmonary signals from video of the human body. Advances in iPPG methods over the past decade combined with the ubiquity of digital cameras presents the possibility for many new, lowcost applications of physiological monitoring. This talk will highlight methods for recovering physiological signals, work characterizing the impact of video parameters and hardware on these measurements, and applications of this technology in human-computer interfaces.

  6. Physiological Information Database (PID)

    EPA Science Inventory

    EPA has developed a physiological information database (created using Microsoft ACCESS) intended to be used in PBPK modeling. The database contains physiological parameter values for humans from early childhood through senescence as well as similar data for laboratory animal spec...

  7. Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response

    NASA Astrophysics Data System (ADS)

    Psikuta, Agnes; Mert, Emel; Annaheim, Simon; Rossi, René M.

    2018-02-01

    To evaluate the quality of new energy-saving and performance-supporting building and urban settings, the thermal sensation and comfort models are often used. The accuracy of these models is related to accurate prediction of the human thermo-physiological response that, in turn, is highly sensitive to the local effect of clothing. This study aimed at the development of an empirical regression model of the air gap thickness and the contact area in clothing to accurately simulate human thermal and perceptual response. The statistical model predicted reliably both parameters for 14 body regions based on the clothing ease allowances. The effect of the standard error in air gap prediction on the thermo-physiological response was lower than the differences between healthy humans. It was demonstrated that currently used assumptions and methods for determination of the air gap thickness can produce a substantial error for all global, mean, and local physiological parameters, and hence, lead to false estimation of the resultant physiological state of the human body, thermal sensation, and comfort. Thus, this model may help researchers to strive for improvement of human thermal comfort, health, productivity, safety, and overall sense of well-being with simultaneous reduction of energy consumption and costs in built environment.

  8. Evaluation of the effects of East Indian sandalwood oil and alpha-santalol on humans after transdermal absorption.

    PubMed

    Hongratanaworakit, T; Heuberger, E; Buchbauer, G

    2004-01-01

    The aim of the study was to investigate the effects of East Indian sandalwood oil ( Santalum album, Santalaceae) and alpha-santalol on physiological parameters as well as on mental and emotional conditions in healthy human subjects after transdermal absorption. In order to exclude any olfactory stimulation, the inhalation of the fragrances was prevented by breathing masks. Eight physiological parameters, i. e., blood oxygen saturation, blood pressure, breathing rate, eye-blink rate, pulse rate, skin conductance, skin temperature, and surface electromyogram were recorded. Subjective mental and emotional condition was assessed by means of rating scales. While alpha-santalol caused significant physiological changes which are interpreted in terms of a relaxing/sedative effect, sandalwood oil provoked physiological deactivation but behavioral activation. These findings are likely to represent an uncoupling of physiological and behavioral arousal processes by sandalwood oil.

  9. Translational Modeling in Schizophrenia: Predicting Human Dopamine D2 Receptor Occupancy.

    PubMed

    Johnson, Martin; Kozielska, Magdalena; Pilla Reddy, Venkatesh; Vermeulen, An; Barton, Hugh A; Grimwood, Sarah; de Greef, Rik; Groothuis, Geny M M; Danhof, Meindert; Proost, Johannes H

    2016-04-01

    To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs. A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information. To predict the passive transport across the human blood-brain barrier, apparent permeability values were scaled based on rat and human brain endothelial surface area. Active efflux clearance in brain was scaled from rat to human using both human brain endothelial surface area and MDR1 expression. Binding constants at the D2 receptor were scaled based on the differences between in vitro and in vivo systems of the same species. The predictive power of this physiology-based approach was determined by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at clinically relevant doses. Predicted human D2RO was in good agreement with clinically observed D2RO for five antipsychotics. Models using in vitro information predicted human D2RO well for most of the compounds evaluated in this analysis. However, human D2RO was under-predicted for haloperidol. The rat hybrid PBPKPD model structure, integrated with in vitro information and human pharmacokinetic and physiological information, constitutes a scientific basis to predict the time course of D2RO in man.

  10. Physiologically based pharmacokinetic modeling of tea catechin mixture in rats and humans.

    PubMed

    Law, Francis C P; Yao, Meicun; Bi, Hui-Chang; Lam, Stephen

    2017-06-01

    Although green tea ( Camellia sinensis) (GT) contains a large number of polyphenolic compounds with anti-oxidative and anti-proliferative activities, little is known of the pharmacokinetics and tissue dose of tea catechins (TCs) as a chemical mixture in humans. The objectives of this study were to develop and validate a physiologically based pharmacokinetic (PBPK) model of tea catechin mixture (TCM) in rats and humans, and to predict an integrated or total concentration of TCM in the plasma of humans after consuming GT or Polyphenon E (PE). To this end, a PBPK model of epigallocatechin gallate (EGCg) consisting of 13 first-order, blood flow-limited tissue compartments was first developed in rats. The rat model was scaled up to humans by replacing its physiological parameters, pharmacokinetic parameters and tissue/blood partition coefficients (PCs) with human-specific values. Both rat and human EGCg models were then extrapolated to other TCs by substituting its physicochemical parameters, pharmacokinetic parameters, and PCs with catechin-specific values. Finally, a PBPK model of TCM was constructed by linking three rat (or human) tea catechin models together without including a description for pharmacokinetic interaction between the TCs. The mixture PBPK model accurately predicted the pharmacokinetic behaviors of three individual TCs in the plasma of rats and humans after GT or PE consumption. Model-predicted total TCM concentration in the plasma was linearly related to the dose consumed by humans. The mixture PBPK model is able to translate an external dose of TCM into internal target tissue doses for future safety assessment and dose-response analysis studies in humans. The modeling framework as described in this paper is also applicable to the bioactive chemical in other plant-based health products.

  11. Estimation of bio-signal based on human motion for integrated visualization of daily-life.

    PubMed

    Umetani, Tomohiro; Matsukawa, Tsuyoshi; Yokoyama, Kiyoko

    2007-01-01

    This paper describes a method for the estimation of bio-signals based on human motion in daily life for an integrated visualization system. The recent advancement of computers and measurement technology has facilitated the integrated visualization of bio-signals and human motion data. It is desirable to obtain a method to understand the activities of muscles based on human motion data and evaluate the change in physiological parameters according to human motion for visualization applications. We suppose that human motion is generated by the activities of muscles reflected from the brain to bio-signals such as electromyograms. This paper introduces a method for the estimation of bio-signals based on neural networks. This method can estimate the other physiological parameters based on the same procedure. The experimental results show the feasibility of the proposed method.

  12. Investigation of pajama properties on skin under mild cold conditions: the interaction between skin and clothing.

    PubMed

    Yao, Lei; Gohel, Mayur D I; Li, Yi; Chung, Waiyee J

    2011-07-01

    Clothing is considered the second skin of the human body. The aim of this study was to determine clothing-wearer interaction on skin physiology under mild cold conditions. Skin physiological parameters, subjective sensory response, stress level, and physical properties of clothing fabric from two longitude parallel-designed wear trials were studied. The wear trials involved four kinds of pajamas made from cotton or polyester material that had hydrophilic or hydrophobic treatment, conducted for three weeks under mild cold conditions. Statistical tools, factor analysis, hierarchical linear regression, and logistic regression were applied to analyze the strong predictors of skin physiological parameters, stress level, and sensory response. A framework was established to illustrate clothing-wearer interactions with clothing fabric properties, skin physiology, stress level, and sensory response under mild cold conditions. Fabric has various effects on the human body under mild cold conditions. A fabric's properties influence skin physiology, sensation, and psychological response. © 2011 The International Society of Dermatology.

  13. Estimating human-equivalent no observed adverse-effect levels for VOCs (volatile organic compounds) based on minimal knowledge of physiological parameters. Technical paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, J.H.; Jarabek, A.M.

    1989-01-01

    The U.S. EPA advocates the assessment of health-effects data and calculation of inhaled reference doses as benchmark values for gauging systemic toxicity to inhaled gases. The assessment often requires an inter- or intra-species dose extrapolation from no observed adverse effect level (NOAEL) exposure concentrations in animals to human equivalent NOAEL exposure concentrations. To achieve this, a dosimetric extrapolation procedure was developed based on the form or type of equations that describe the uptake and disposition of inhaled volatile organic compounds (VOCs) in physiologically-based pharmacokinetic (PB-PK) models. The procedure assumes allometric scaling of most physiological parameters and that the value ofmore » the time-integrated human arterial-blood concentration must be limited to no more than to that of experimental animals. The scaling assumption replaces the need for most parameter values and allows the derivation of a simple formula for dose extrapolation of VOCs that gives equivalent or more-conservative exposure concentrations values than those that would be obtained using a PB-PK model in which scaling was assumed.« less

  14. Nonlinear dynamics applied to the study of cardiovascular effects of stress

    NASA Astrophysics Data System (ADS)

    Anishchenko, T. G.; Igosheva, N. B.

    1998-03-01

    We study cardiovascular responses to emotional stresses in humans and rats using traditional physiological parameters and methods of nonlinear dynamics. We found that emotional stress results in significant changes of chaos degree of ECG and blood pressure signals, estimated using a normalized entropy. We demonstrate that the normalized entropy is a more sensitive indicator of the stress-induced changes in cardiovascular systems compared with traditional physiological parameters Using the normalized entropy we discovered the significant individual differences in cardiovascular stress-reactivity that was impossible to obtain by traditional physiological methods.

  15. Telemetry methods for monitoring physiological parameters

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.; Sandler, H.

    1982-01-01

    The use of telemetry to monitor various physiological functions is discussed. The advantages of the technique and the parameters that it can monitor are assessed, and the main telemetry systems, including pressure telemetry, flow telemetry, and multichannel telemetry, are detailed. Human applications of implanted flow transducers, total implant versus backpack telemetry, the use of power sources and integrated circuits in telemetry, and the future prospects of the technique in hypertension treatment and research are discussed.

  16. Physiological responses to environmental factors related to space flight

    NASA Technical Reports Server (NTRS)

    Pace, N.; Grunbaum, B. W.; Kodama, A. M.; Mains, R. C.; Rahlmann, D. F.

    1975-01-01

    Physiological procedures and instrumentation developed for the measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are described along with the physiological response of monkeys to weightlessness. Specific areas examined include: cardiovascular studies; thyroid function; blood oxygen transport; growth and reproduction; excreta analysis for metabolic balance studies; and electrophoretic separation of creatine phosphokinase isoenzymes in human blood.

  17. Effect of local and global geomagnetic activity on human cardiovascular homeostasis.

    PubMed

    Dimitrova, Svetla; Stoilova, Irina; Yanev, Toni; Cholakov, Ilia

    2004-02-01

    The authors investigated the effects of local and planetary geomagnetic activity on human physiology. They collected data in Sofia, Bulgaria, from a group of 86 volunteers during the periods of the autumnal and vernal equinoxes. They used the factors local/planetary geomagnetic activity, day of measurement, gender, and medication use to apply a four-factor multiple analysis of variance. They also used a post hoc analysis to establish the statistical significance of the differences between the average values of the measured physiological parameters in the separate factor levels. In addition, the authors performed correlation analysis between the physiological parameters examined and geophysical factors. The results revealed that geomagnetic changes had a statistically significant influence on arterial blood pressure. Participants expressed this reaction with weak local geomagnetic changes and when major and severe global geomagnetic storms took place.

  18. Videophysiology--Videopsychology--Videoaesthetics.

    ERIC Educational Resources Information Center

    Malik, M. F.; Murphy, D.

    This article considers the physiological, psychological, and aesthetical parameters of video on two levels--practical and conceptual. Physiological effects and processes are defined as those which occur within a human being when viewing a video event, while videopsychology focuses on how people use the medium of video and the possibilities for…

  19. Life-Stage Physiologically-Based Pharmacokinetic (PBPK) Model Applications to Screen Environmental Hazards.

    EPA Science Inventory

    This presentation discusses methods used to extrapolate from in vitro high-throughput screening (HTS) toxicity data for an endocrine pathway to in vivo for early life stages in humans, and the use of a life stage PBPK model to address rapidly changing physiological parameters. A...

  20. Parameters for Pyrethroid Insecticide QSAR and PBPK/PD Models for Human Risk Assessment

    EPA Science Inventory

    This pyrethroid insecticide parameter review is an extension of our interest in developing quantitative structure–activity relationship–physiologically based pharmacokinetic/pharmacodynamic (QSAR-PBPK/PD) models for assessing health risks, which interest started with the organoph...

  1. A simple physiologically based pharmacokinetic model evaluating the effect of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans

    PubMed Central

    Saylor, Kyle; Zhang, Chenming

    2017-01-01

    Physiologically based pharmacokinetic (PBPK) modeling was applied to investigate the effects of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans. Successful construction of both rat and human models was achieved by fitting model outputs to published nicotine concentration time course data in the blood and in the brain. Key parameters presumed to have the most effect on the ability of these antibodies to prevent nicotine from entering the brain were selected for investigation using the human model. These parameters, which included antibody affinity for nicotine, antibody cross-reactivity with cotinine, and antibody concentration, were broken down into different, clinically-derived in silico treatment levels and fed into the human PBPK model. Model predictions suggested that all three parameters, in addition to smoking status, have a sizable impact on anti-nicotine antibodies’ ability to prevent nicotine from entering the brain and that the antibodies elicited by current human vaccines do not have sufficient binding characteristics to reduce brain nicotine concentrations. If the antibody binding characteristics achieved in animal studies can similarly be achieved in human studies, however, nicotine vaccine efficacy in terms of brain nicotine concentration reduction is predicted to meet threshold values for alleviating nicotine dependence. PMID:27473014

  2. Creating Simulated Microgravity Patient Models

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Doerr, Harold K.; Bacal, Kira

    2004-01-01

    The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).

  3. Preventing and Treating Hypoxia: Using a Physiology Simulator to Demonstrate the Value of Pre-Oxygenation and the Futility of Hyperventilation.

    PubMed

    Lerant, Anna A; Hester, Robert L; Coleman, Thomas G; Phillips, William J; Orledge, Jeffrey D; Murray, W Bosseau

    2015-01-01

    Insufficient pre-oxygenation before emergency intubation, and hyperventilation after intubation are mistakes that are frequently observed in and outside the operating room, in clinical practice and in simulation exercises. Physiological parameters, as appearing on standard patient monitors, do not alert to the deleterious effects of low oxygen saturation on coronary perfusion, or that of low carbon dioxide concentrations on cerebral perfusion. We suggest the use of HumMod, a computer-based human physiology simulator, to demonstrate beneficial physiological responses to pre-oxygenation and the futility of excessive minute ventilation after intubation. We programmed HumMod, to A.) compare varying times (0-7 minutes) of pre-oxygenation on oxygen saturation (SpO2) during subsequent apnoea; B.) simulate hyperventilation after apnoea. We compared the effect of different minute ventilation rates on SpO2, acid-base status, cerebral perfusion and other haemodynamic parameters. A.) With no pre-oxygenation, starting SpO2 dropped from 98% to 90% in 52 seconds with apnoea. At the other extreme, following full pre-oxygenation with 100% O2 for 3 minutes or more, the SpO2 remained 100% for 7.75 minutes during apnoea, and dropped to 90% after another 75 seconds. B.) Hyperventilation, did not result in more rapid normalization of SpO2, irrespective of the level of minute ventilation. However, hyperventilation did cause significant decreases in cerebral blood flow (CBF). HumMod accurately simulates the physiological responses compared to published human studies of pre-oxygenation and varying post intubation minute ventilations, and it can be used over wider ranges of parameters than available in human studies and therefore available in the literature.

  4. Preventing and Treating Hypoxia: Using a Physiology Simulator to Demonstrate the Value of Pre-Oxygenation and the Futility of Hyperventilation

    PubMed Central

    Lerant, Anna A.; Hester, Robert L.; Coleman, Thomas G.; Phillips, William J.; Orledge, Jeffrey D.; Murray, W. Bosseau

    2015-01-01

    Introduction: Insufficient pre-oxygenation before emergency intubation, and hyperventilation after intubation are mistakes that are frequently observed in and outside the operating room, in clinical practice and in simulation exercises. Physiological parameters, as appearing on standard patient monitors, do not alert to the deleterious effects of low oxygen saturation on coronary perfusion, or that of low carbon dioxide concentrations on cerebral perfusion. We suggest the use of HumMod, a computer-based human physiology simulator, to demonstrate beneficial physiological responses to pre-oxygenation and the futility of excessive minute ventilation after intubation. Methods: We programmed HumMod, to A.) compare varying times (0-7 minutes) of pre-oxygenation on oxygen saturation (SpO2) during subsequent apnoea; B.) simulate hyperventilation after apnoea. We compared the effect of different minute ventilation rates on SpO2, acid-base status, cerebral perfusion and other haemodynamic parameters. Results: A.) With no pre-oxygenation, starting SpO2 dropped from 98% to 90% in 52 seconds with apnoea. At the other extreme, following full pre-oxygenation with 100% O2 for 3 minutes or more, the SpO2 remained 100% for 7.75 minutes during apnoea, and dropped to 90% after another 75 seconds. B.) Hyperventilation, did not result in more rapid normalization of SpO2, irrespective of the level of minute ventilation. However, hyperventilation did cause significant decreases in cerebral blood flow (CBF). Conclusions: HumMod accurately simulates the physiological responses compared to published human studies of pre-oxygenation and varying post intubation minute ventilations, and it can be used over wider ranges of parameters than available in human studies and therefore available in the literature. PMID:26283881

  5. Building an experimental model of the human body with non-physiological parameters.

    PubMed

    Labuz, Joseph M; Moraes, Christopher; Mertz, David R; Leung, Brendan M; Takayama, Shuichi

    2017-03-01

    New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform - commonly called a 'human-on-a-chip (HOC)' - requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo -like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O 2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10 -6 ) microfluidic model of the human body.

  6. Building an experimental model of the human body with non-physiological parameters

    PubMed Central

    Labuz, Joseph M.; Moraes, Christopher; Mertz, David R.; Leung, Brendan M.; Takayama, Shuichi

    2017-01-01

    New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform — commonly called a ‘human-on-a-chip (HOC)’ — requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo-like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10−6) microfluidic model of the human body. PMID:28713851

  7. Use of a probabilistic PBPK/PD model to calculate Data Derived Extrapolation Factors for chlorpyrifos.

    PubMed

    Poet, Torka S; Timchalk, Charles; Bartels, Michael J; Smith, Jordan N; McDougal, Robin; Juberg, Daland R; Price, Paul S

    2017-06-01

    A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model combined with Monte Carlo analysis of inter-individual variation was used to assess the effects of the insecticide, chlorpyrifos and its active metabolite, chlorpyrifos oxon in humans. The PBPK/PD model has previously been validated and used to describe physiological changes in typical individuals as they grow from birth to adulthood. This model was updated to include physiological and metabolic changes that occur with pregnancy. The model was then used to assess the impact of inter-individual variability in physiology and biochemistry on predictions of internal dose metrics and quantitatively assess the impact of major sources of parameter uncertainty and biological diversity on the pharmacodynamics of red blood cell acetylcholinesterase inhibition. These metrics were determined in potentially sensitive populations of infants, adult women, pregnant women, and a combined population of adult men and women. The parameters primarily responsible for inter-individual variation in RBC acetylcholinesterase inhibition were related to metabolic clearance of CPF and CPF-oxon. Data Derived Extrapolation Factors that address intra-species physiology and biochemistry to replace uncertainty factors with quantitative differences in metrics were developed in these same populations. The DDEFs were less than 4 for all populations. These data and modeling approach will be useful in ongoing and future human health risk assessments for CPF and could be used for other chemicals with potential human exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Reintrepreting the cardiovascular system as a mechanical model

    NASA Astrophysics Data System (ADS)

    Lemos, Diogo; Machado, José; Minas, Graça; Soares, Filomena; Barros, Carla; Leão, Celina Pinto

    2013-10-01

    The simulation of the different physiological systems is very useful as a pedagogical tool, allowing a better understanding of the mechanisms and the functions of the processes. The observation of the physiological phenomena through mechanical simulators represents a great asset. Furthermore, the development of these simulators allows reinterpreting physiological systems, with the advantage of using the same transducers and sensors that are commonly used in diagnostic and therapeutic cardiovascular procedures for the monitoring of system' parameters. The cardiovascular system is one of the most important systems of the human body and has been the target of several biomedical studies. The present work describes a mechanical simulation of the cardiovascular system, in particularly, the systemic circulation, which can be described in terms of its hemodynamic variables. From the mechanical process and parameters, physiological system's behavior was reproduced, as accurately as possible.

  9. Relationship between human physiological parameters and geomagnetic variations of solar origin

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    Results presented concern influence of increased geomagnetic activity on some human physiological parameters. The blood pressure and heart rate of 86 volunteers were measured on working days in autumn 2001 (01/10 09/11) and in spring 2002 (08/04 28/05). These periods were chosen because of maximal expected geomagnetic activity. Altogether 2799 recordings were obtained and analysed. Questionnaire information about subjective psycho-physiological complaints was also gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The factors were the following: (1) planetary geomagnetic activity level estimated by Ap-index and divided into five levels; (2) gender males and females; (3) blood pressure degree persons in the group examined were divided into hypotensive, normotensive and hypertensive. Post hoc analysis was performed to elicit the significance of differences in the factors’ levels. The average arterial blood pressure of the group was found to increase significantly with the increase of geomagnetic activity level. The average increment of systolic and diastolic blood pressure of the group examined reached 9%. This effect was present irrespectively of gender. Results obtained suppose that hypertensive persons have the highest sensitivity and the hypotensive persons have the lowest sensitivity of the arterial blood pressure to increase of geomagnetic activity. The results did not show significant changes in the heart rate. The percentage of the persons who reported subjective psycho-physiological complaints was also found to increase significantly with the geomagnetic activity increase and the highest sensitivity was revealed for the hypertensive females.

  10. [Functional state of various physiological systems of the human body during respiration of neon-oxygen mixture at depth up to 400 meters].

    PubMed

    Poleshuk, I P; Genin, A M; Unku, R D; Mikhnenko, A E; Sementsov, V N; Suvorov, A V

    1991-01-01

    Hyperbaric neon-oxygen mixture has been studied for the effect of its high density under pressure of 41 ata on basic physiological functions of human organism. Typical changes of the cardiorespiratory system and tissue respiration parameters are revealed. Changes in physical working capacity are shown. Exposure to gaseous medium of high pressure and density is accompanied by the development of some compensatory-adaptive reactions. The possibility to perform mid-hard physical work is attained with overstrain of respiration and circulation function.

  11. Linking physiological parameters to perturbations in the human exposome: Environmental exposures modify blood pressure and lung function via inflammatory cytokine pathway

    EPA Science Inventory

    Human biomonitoring is an indispensable tool for establishing the systemic effects from external stressors including environmental pollutants, chemicals from consumer products, and pharmaceuticals. This article uses a combination of new results and meta-data from previous work to...

  12. Physiological responses to hypothermia.

    PubMed

    Wood, Thomas; Thoresen, Marianne

    2015-04-01

    Therapeutic hypothermia is the only treatment currently recommended for moderate or severe encephalopathy of hypoxic‒ischaemic origin in term neonates. Though the effects of hypothermia on human physiology have been explored for many decades, much of the data comes from animal or adult studies; the latter originally after accidental hypothermia, followed by application of controlled hypothermia after cardiac arrest or trauma, or during cardiopulmonary bypass. Though this work is informative, the effects of hypothermia on neonatal physiology after perinatal asphyxia must be considered in the context of a prolonged hypoxic insult that has already induced a number of significant physiological sequelae. This article reviews the effects of therapeutic hypothermia on respiratory, cardiovascular, and metabolic parameters, including glycaemic control and feeding requirements. The potential pitfalls of blood‒gas analysis and overtreatment of physiological changes in cardiovascular parameters are also discussed. Finally, the effects of hypothermia on drug metabolism are covered, focusing on how the pharmacokinetics, pharmacodynamics, and dosing requirements of drugs frequently used in neonatal intensive care may change during therapeutic hypothermia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model

    PubMed Central

    Yang, Anxiong; Stingl, Michael; Berry, David A.; Lohscheller, Jörg; Voigt, Daniel; Eysholdt, Ulrich; Döllinger, Michael

    2011-01-01

    With the use of an endoscopic, high-speed camera, vocal fold dynamics may be observed clinically during phonation. However, observation and subjective judgment alone may be insufficient for clinical diagnosis and documentation of improved vocal function, especially when the laryngeal disease lacks any clear morphological presentation. In this study, biomechanical parameters of the vocal folds are computed by adjusting the corresponding parameters of a three-dimensional model until the dynamics of both systems are similar. First, a mathematical optimization method is presented. Next, model parameters (such as pressure, tension and masses) are adjusted to reproduce vocal fold dynamics, and the deduced parameters are physiologically interpreted. Various combinations of global and local optimization techniques are attempted. Evaluation of the optimization procedure is performed using 50 synthetically generated data sets. The results show sufficient reliability, including 0.07 normalized error, 96% correlation, and 91% accuracy. The technique is also demonstrated on data from human hemilarynx experiments, in which a low normalized error (0.16) and high correlation (84%) values were achieved. In the future, this technique may be applied to clinical high-speed images, yielding objective measures with which to document improved vocal function of patients with voice disorders. PMID:21877808

  14. Bayesian inference of physiologically meaningful parameters from body sway measurements.

    PubMed

    Tietäväinen, A; Gutmann, M U; Keski-Vakkuri, E; Corander, J; Hæggström, E

    2017-06-19

    The control of the human body sway by the central nervous system, muscles, and conscious brain is of interest since body sway carries information about the physiological status of a person. Several models have been proposed to describe body sway in an upright standing position, however, due to the statistical intractability of the more realistic models, no formal parameter inference has previously been conducted and the expressive power of such models for real human subjects remains unknown. Using the latest advances in Bayesian statistical inference for intractable models, we fitted a nonlinear control model to posturographic measurements, and we showed that it can accurately predict the sway characteristics of both simulated and real subjects. Our method provides a full statistical characterization of the uncertainty related to all model parameters as quantified by posterior probability density functions, which is useful for comparisons across subjects and test settings. The ability to infer intractable control models from sensor data opens new possibilities for monitoring and predicting body status in health applications.

  15. A Detection Device for the Signs of Human Life in Accident

    NASA Astrophysics Data System (ADS)

    Ning, Li; Ruilan, Zhang; Jian, Liu; Ruirui, Cheng; Yuhong, Diao

    2017-12-01

    A detection device for the signs of human life in accidents is a device used in emergency situations, such as the crash site. the scene of natural disasters, the battlefield ruins. it designed to detect the life signs of the distress under the injured ambulance vital signs devices. The device can on human vital signs, including pulse, respiration physiological signals to make rapid and accurate response. After some calculations, and after contrast to normal human physiological parameters given warning signals, in order for them to make timely ambulance judgment. In this case the device is required to do gymnastics convenience, ease of movement, power and detection of small flexible easy realization. This device has the maximum protection of the wounded safety significance.

  16. A simple physiologically based pharmacokinetic model evaluating the effect of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saylor, Kyle, E-mail: saylor@vt.edu; Zhang, Chenmi

    Physiologically based pharmacokinetic (PBPK) modeling was applied to investigate the effects of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans. Successful construction of both rat and human models was achieved by fitting model outputs to published nicotine concentration time course data in the blood and in the brain. Key parameters presumed to have the most effect on the ability of these antibodies to prevent nicotine from entering the brain were selected for investigation using the human model. These parameters, which included antibody affinity for nicotine, antibody cross-reactivity with cotinine, and antibody concentration, were broken down intomore » different, clinically-derived in silico treatment levels and fed into the human PBPK model. Model predictions suggested that all three parameters, in addition to smoking status, have a sizable impact on anti-nicotine antibodies' ability to prevent nicotine from entering the brain and that the antibodies elicited by current human vaccines do not have sufficient binding characteristics to reduce brain nicotine concentrations. If the antibody binding characteristics achieved in animal studies can similarly be achieved in human studies, however, nicotine vaccine efficacy in terms of brain nicotine concentration reduction is predicted to meet threshold values for alleviating nicotine dependence. - Highlights: • Modelling of nicotine disposition in the presence of anti-nicotine antibodies • Key vaccine efficacy factors are evaluated in silico in rats and in humans. • Model predicts insufficient antibody binding in past human nicotine vaccines. • Improving immunogenicity and antibody specificity may lead to vaccine success.« less

  17. Accumulation of Aluminium and Physiological Status of Tree Foliage in the Vicinity of a Large Aluminium Smelter

    PubMed Central

    Wannaz, E. D.; Rodriguez, J. H.; Wolfsberger, T.; Carreras, H. A.; Pignata, M. L.; Fangmeier, A.; Franzaring, J.

    2012-01-01

    A pollution gradient was observed in tree foliage sampled in the vicinity of a large aluminium production facility in Patagonia (Argentina). Leaves of Eucalyptus rostrata, and Populus hybridus and different needle ages of Pinus spec. were collected and concentrations of aluminium (Al) and sulphur (S) as well as physiological parameters (chlorophyll and lipid oxidation products) were analyzed. Al and S concentrations indicate a steep pollution gradient in the study showing a relationship with the physiological parameters in particular membrane lipid oxidation products. The present study confirms that aluminium smelting results in high Al and sulphur deposition in the study area, and therefore further studies should be carried out taking into account potentially adverse effects of these compounds on human and ecosystem health. PMID:22654642

  18. Functional modeling of the human auditory brainstem response to broadband stimulationa)

    PubMed Central

    Verhulst, Sarah; Bharadwaj, Hari M.; Mehraei, Golbarg; Shera, Christopher A.; Shinn-Cunningham, Barbara G.

    2015-01-01

    Population responses such as the auditory brainstem response (ABR) are commonly used for hearing screening, but the relationship between single-unit physiology and scalp-recorded population responses are not well understood. Computational models that integrate physiologically realistic models of single-unit auditory-nerve (AN), cochlear nucleus (CN) and inferior colliculus (IC) cells with models of broadband peripheral excitation can be used to simulate ABRs and thereby link detailed knowledge of animal physiology to human applications. Existing functional ABR models fail to capture the empirically observed 1.2–2 ms ABR wave-V latency-vs-intensity decrease that is thought to arise from level-dependent changes in cochlear excitation and firing synchrony across different tonotopic sections. This paper proposes an approach where level-dependent cochlear excitation patterns, which reflect human cochlear filter tuning parameters, drive AN fibers to yield realistic level-dependent properties of the ABR wave-V. The number of free model parameters is minimal, producing a model in which various sources of hearing-impairment can easily be simulated on an individualized and frequency-dependent basis. The model fits latency-vs-intensity functions observed in human ABRs and otoacoustic emissions while maintaining rate-level and threshold characteristics of single-unit AN fibers. The simulations help to reveal which tonotopic regions dominate ABR waveform peaks at different stimulus intensities. PMID:26428802

  19. The concept of comparative information yield curves and its application to risk-based site characterization

    NASA Astrophysics Data System (ADS)

    de Barros, Felipe P. J.; Rubin, Yoram; Maxwell, Reed M.

    2009-06-01

    Defining rational and effective hydrogeological data acquisition strategies is of crucial importance as such efforts are always resource limited. Usually, strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of their impacts on uncertainty. This paper presents an approach for determining site characterization needs on the basis of human health risk. The main challenge is in striking a balance between reduction in uncertainty in hydrogeological, behavioral, and physiological parameters. Striking this balance can provide clear guidance on setting priorities for data acquisition and for better estimating adverse health effects in humans. This paper addresses this challenge through theoretical developments and numerical simulation. A wide range of factors that affect site characterization needs are investigated, including the dimensions of the contaminant plume and additional length scales that characterize the transport problem, as well as the model of human health risk. The concept of comparative information yield curves is used for investigating the relative impact of hydrogeological and physiological parameters in risk. Results show that characterization needs are dependent on the ratios between flow and transport scales within a risk-driven approach. Additionally, the results indicate that human health risk becomes less sensitive to hydrogeological measurements for large plumes. This indicates that under near-ergodic conditions, uncertainty reduction in human health risk may benefit from better understanding of the physiological component as opposed to a more detailed hydrogeological characterization.

  20. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment

    NASA Astrophysics Data System (ADS)

    Höppe, P.

    With considerably increased coverage of weather information in the news media in recent years in many countries, there is also more demand for data that are applicable and useful for everyday life. Both the perception of the thermal component of weather as well as the appropriate clothing for thermal comfort result from the integral effects of all meteorological parameters relevant for heat exchange between the body and its environment. Regulatory physiological processes can affect the relative importance of meteorological parameters, e.g. wind velocity becomes more important when the body is sweating. In order to take into account all these factors, it is necessary to use a heat-balance model of the human body. The physiological equivalent temperature (PET) is based on the Munich Energy-balance Model for Individuals (MEMI), which models the thermal conditions of the human body in a physiologically relevant way. PET is defined as the air temperature at which, in a typical indoor setting (without wind and solar radiation), the heat budget of the human body is balanced with the same core and skin temperature as under the complex outdoor conditions to be assessed. This way PET enables a layperson to compare the integral effects of complex thermal conditions outside with his or her own experience indoors. On hot summer days, for example, with direct solar irradiation the PET value may be more than 20 K higher than the air temperature, on a windy day in winter up to 15 K lower.

  1. Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss.

    PubMed

    Verhulst, Sarah; Altoè, Alessandro; Vasilkov, Viacheslav

    2018-03-01

    Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Life-Stage Physiologically-Based Pharmacokinetic (PBPK) ...

    EPA Pesticide Factsheets

    This presentation discusses methods used to extrapolate from in vitro high-throughput screening (HTS) toxicity data for an endocrine pathway to in vivo for early life stages in humans, and the use of a life stage PBPK model to address rapidly changing physiological parameters. Adverse outcome pathways (AOPs), in this case endocrine disruption during development, provide a biologically-based framework for linking molecular initiating events triggered by chemical exposures to key events leading to adverse outcomes. The application of AOPs to human health risk assessment requires extrapolation of in vitro HTS toxicity data to in vivo exposures (IVIVE) in humans, which can be achieved through the use of a PBPK/PD model. Exposure scenarios for chemicals in the PBPK/PD model will consider both placental and lactational transfer of chemicals, with a focus on age dependent dosimetry during fetal development and after birth for a nursing infant. This talk proposes a universal life-stage computational model that incorporates changing physiological parameters to link environmental exposures to in vitro levels of HTS assays related to a developmental toxicological AOP for vascular disruption. In vitro toxicity endpoints discussed are based on two mechanisms: 1) Fetal vascular disruption, and 2) Neurodevelopmental toxicity induced by altering thyroid hormone levels in neonates via inhibition of thyroperoxidase in the thyroid gland. Application of our Life-stage computati

  3. Physiological Characterization of the SynCardia Total Artificial Heart in a Mock Circulation System

    PubMed Central

    Crosby, Jessica R.; DeCook, Katrina J.; Tran, Phat L.; Smith, Richard G.; Larson, Douglas F.; Khalpey, Zain I.; Burkhoff, Daniel; Slepian, Marvin J.

    2014-01-01

    The SynCardia total artificial heart (TAH) has emerged as an effective, life-saving bi-ventricular replacement system for a wide variety of patients with end-stage heart failure. While the clinical performance of the TAH is established, modern physiologic characterization, in terms of elastance behavior and pressure-volume characterization has not been defined. Herein we examine the TAH in terms of elastance using a non-ejecting left-ventricle, and then characterize the pressure-volume relationship of the TAH by varying preload and afterload parameters using a Donovan Mock Circulatory System. We demonstrate that the TAH does not operate with time-varying elastance, differing from the human heart. Further, we show that the TAH has a pressure-volume relationship behavior that also differs from that of the human heart. The TAH does exhibit Starling-like behavior, with output increasing via preload dependent mechanisms, without reliance on an alteration of inotropic state within the operating window of the TAH. Within our testing range, the TAH is insensitive to variations in afterload, however this insensitivity has a limit, the limit being the maximum driving pressure of the pneumatic driver. Understanding the physiology of the TAH affords insight into the functional parameters that govern artificial heart behavior providing perspective on differences compared to the human heart. PMID:25551416

  4. Physiological characterization of the SynCardia total artificial heart in a mock circulation system.

    PubMed

    Crosby, Jessica R; DeCook, Katrina J; Tran, Phat L; Smith, Richard G; Larson, Douglas F; Khalpey, Zain I; Burkhoff, Daniel; Slepian, Marvin J

    2015-01-01

    The SynCardia total artificial heart (TAH) has emerged as an effective, life-saving biventricular replacement system for a wide variety of patients with end-stage heart failure. Although the clinical performance of the TAH is established, modern physiological characterization, in terms of elastance behavior and pressure-volume (PV) characterization has not been defined. Herein, we examine the TAH in terms of elastance using a nonejecting left ventricle, and then characterize the PV relation of the TAH by varying preload and afterload parameters using a Donovan Mock Circulatory System. We demonstrate that the TAH does not operate with time-varying elastance, differing from the human heart. Furthermore, we show that the TAH has a PV relation behavior that also differs from that of the human heart. The TAH does exhibit Starling-like behavior, with output increasing via preload-dependent mechanisms, without reliance on an alteration of inotropic state within the operating window of the TAH. Within our testing range, the TAH is insensitive to variations in afterload; however, this insensitivity has a limit, the limit being the maximum driving pressure of the pneumatic driver. Understanding the physiology of the TAH affords insight into the functional parameters that govern artificial heart behavior providing perspective on differences compared with the human heart.

  5. Effects of Intranasal Oxytocin Administration on Sexual Functions in Healthy Women: A Laboratory Paradigm.

    PubMed

    Kruger, Tillmann H C; Deiter, Frank; Zhang, Yuanyuan; Jung, Stefanie; Schippert, Cordula; Kahl, Kai G; Heinrichs, Markus; Schedlowski, Manfred; Hartmann, Uwe

    2018-06-01

    The neuropeptide oxytocin (OXT) has a variety of physiological functions in maternal behavior and attachment including sexual behavior. Based on animal research and our previous human studies, we set out to investigate intranasal administration of OXT and hypothesized that OXT should be able to modulate sexual function in women. In a double-blind, placebo-controlled, crossover laboratory setting, the acute effects of intranasal administered OXT (24 international units) on sexual drive, arousal, orgasm, and refractory aspects of sexual behavior were analyzed in 27 healthy females (mean age ± SD, 27.52 ± 8.04) together with physiological parameters using vaginal photoplethysmography. Oxytocin administration showed no effect on subjective sexual parameters (eg, postorgasmic tension; P = 0.051). Physiological parameters (vaginal photoplethysmography amplitude and vaginal blood volume) showed a response pattern towards sexual arousal but were not affected by OXT. Using a well-established laboratory paradigm, we did not find that intranasal OXT influences female sexual parameters. Also, sexual drive and other functions were not affected by OXT. These findings indicate that OXT is not able to significantly increase subjective and objective parameters of sexual function in a setting with high internal validity; however, this might be different in a more naturalistic setting.

  6. The functional status of the human vestibular analysor following 56 days in an aqueous immersion medium

    NASA Technical Reports Server (NTRS)

    Matsnev, E. I.; Shulzhenko, Y. B.

    1981-01-01

    Two male volunteers were kept hypokinetic in the immersion and physiological parameters were evaluated following the experiment. Prophylactic measures (g-forces, physical exercises, and supplementary salt and water) were applied daily. Caloric and equilibrium tests were utilized to evaluate the physiological responses. The functional changes observed after the 56 day immersion were found to be of a moderate type which normalized quite quickly.

  7. BIOTEX--biosensing textiles for personalised healthcare management.

    PubMed

    Coyle, Shirley; Lau, King-Tong; Moyna, Niall; O'Gorman, Donal; Diamond, Dermot; Di Francesco, Fabio; Costanzo, Daniele; Salvo, Pietro; Trivella, Maria Giovanna; De Rossi, Danilo Emilio; Taccini, Nicola; Paradiso, Rita; Porchet, Jacque-André; Ridolfi, Andrea; Luprano, Jean; Chuzel, Cyril; Lanier, Thierry; Revol-Cavalier, Frdéric; Schoumacker, Sébastien; Mourier, Véronique; Chartier, Isabelle; Convert, Reynald; De-Moncuit, Henri; Bini, Christina

    2010-03-01

    Textile-based sensors offer an unobtrusive method of continually monitoring physiological parameters during daily activities. Chemical analysis of body fluids, noninvasively, is a novel and exciting area of personalized wearable healthcare systems. BIOTEX was an EU-funded project that aimed to develop textile sensors to measure physiological parameters and the chemical composition of body fluids, with a particular interest in sweat. A wearable sensing system has been developed that integrates a textile-based fluid handling system for sample collection and transport with a number of sensors including sodium, conductivity, and pH sensors. Sensors for sweat rate, ECG, respiration, and blood oxygenation were also developed. For the first time, it has been possible to monitor a number of physiological parameters together with sweat composition in real time. This has been carried out via a network of wearable sensors distributed around the body of a subject user. This has huge implications for the field of sports and human performance and opens a whole new field of research in the clinical setting.

  8. Integrating multi-scale data to create a virtual physiological mouse heart.

    PubMed

    Land, Sander; Niederer, Steven A; Louch, William E; Sejersted, Ole M; Smith, Nicolas P

    2013-04-06

    While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle.

  9. Integrating multi-scale data to create a virtual physiological mouse heart

    PubMed Central

    Land, Sander; Niederer, Steven A.; Louch, William E.; Sejersted, Ole M.; Smith, Nicolas P.

    2013-01-01

    While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle. PMID:24427525

  10. Trabecular network arrangement within the human patella: how osteoarthritis remodels the 3D trabecular structure

    NASA Astrophysics Data System (ADS)

    Hoechel, Sebastian; Deyhle, Hans; Toranelli, Mireille; Müller-Gerbl, Magdalena

    2016-10-01

    Following the principles of "morphology reveals biomechanics", the anatomical structure of the cartilage-osseous interface and the supporting trabecular network show defined adaptation in their architectural properties to physiological loading. In case of a faulty relationship, the ability to support the load diminishes and the onset of osteoarthritis (OA) may arise and disturb the balanced formation and resorption processes. To describe and quantify the changes occurring, 10 human OA patellae were analysed concerning the architectural parameters of the trabecular network within the first five mms by the evaluation of 3Dmicro-CT datasets. The analysed OA-samples showed a strong irregularity for all trabecular parameters across the trabecular network, no regularity in parameter distribution was found. In general, we saw a decrease of material in the OA population as BV/TV, BS/TV, Tb.N and Tb.Th were decreased and the spacing increased. The development into depth showed a logarithmic dependency, which revealed the greatest difference for all parameters within the first mm in comparison to the physiologic samples. The differences decreased towards the 5th mm. The interpretation of the mathematic dependency leads to the conclusion that the main impact of OA is beneath the subchondral bone plate (SBP) and lessens with depth. Next to the clear difference in material, the architectural arrangement is more rod-like and isotropic just beneath the SBP in comparison to the plate-like and more anisotropic physiological arrangement.

  11. Combining Chimeric Mice with Humanized Liver, Mass Spectrometry, and Physiologically-Based Pharmacokinetic Modeling in Toxicology.

    PubMed

    Yamazaki, Hiroshi; Suemizu, Hiroshi; Mitsui, Marina; Shimizu, Makiko; Guengerich, F Peter

    2016-12-19

    Species differences exist in terms of drug oxidation activities, which are mediated mainly by cytochrome P450 (P450) enzymes. To overcome the problem of species extrapolation, transchromosomic mice containing a human P450 3A cluster or chimeric mice transplanted with human hepatocytes have been introduced into the human toxicology research area. In this review, drug metabolism and disposition mediated by humanized livers in chimeric mice are summarized in terms of biliary/urinary excretions of phthalate and bisphenol A and plasma clearances of the human cocktail probe drugs caffeine, warfarin, omeprazole, metoprolol, and midazolam. Simulation of human plasma concentrations of the teratogen thalidomide and its human metabolites is possible with a simplified physiologically based pharmacokinetic model based on data obtained in chimeric mice, in accordance with reported clinical thalidomide concentrations. In addition, in vivo nonspecific hepatic protein binding parameters of metabolically activated 14 C-drug candidate and hepatotoxic medicines in humanized liver mice can be analyzed by accelerator mass spectrometry and are useful for predictions in humans.

  12. Dynamic quantitative photothermal monitoring of cell death of individual human red blood cells upon glucose depletion

    NASA Astrophysics Data System (ADS)

    Vasudevan, Srivathsan; Chen, George Chung Kit; Andika, Marta; Agarwal, Shuchi; Chen, Peng; Olivo, Malini

    2010-09-01

    Red blood cells (RBCs) have been found to undergo ``programmed cell death,'' or eryptosis, and understanding this process can provide more information about apoptosis of nucleated cells. Photothermal (PT) response, a label-free photothermal noninvasive technique, is proposed as a tool to monitor the cell death process of living human RBCs upon glucose depletion. Since the physiological status of the dying cells is highly sensitive to photothermal parameters (e.g., thermal diffusivity, absorption, etc.), we applied linear PT response to continuously monitor the death mechanism of RBC when depleted of glucose. The kinetics of the assay where the cell's PT response transforms from linear to nonlinear regime is reported. In addition, quantitative monitoring was performed by extracting the relevant photothermal parameters from the PT response. Twofold increases in thermal diffusivity and size reduction were found in the linear PT response during cell death. Our results reveal that photothermal parameters change earlier than phosphatidylserine externalization (used for fluorescent studies), allowing us to detect the initial stage of eryptosis in a quantitative manner. Hence, the proposed tool, in addition to detection of eryptosis earlier than fluorescence, could also reveal physiological status of the cells through quantitative photothermal parameter extraction.

  13. Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.

    PubMed

    Hack, C Eric

    2006-04-17

    Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach.

  14. An integrated physiology model to study regional lung damage effects and the physiologic response

    PubMed Central

    2014-01-01

    Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032

  15. ITC Recommendations for Transporter Kinetic Parameter Estimation and Translational Modeling of Transport-Mediated PK and DDIs in Humans

    PubMed Central

    Zamek-Gliszczynski, MJ; Lee, CA; Poirier, A; Bentz, J; Chu, X; Ellens, H; Ishikawa, T; Jamei, M; Kalvass, JC; Nagar, S; Pang, KS; Korzekwa, K; Swaan, PW; Taub, ME; Zhao, P; Galetin, A

    2013-01-01

    This white paper provides a critical analysis of methods for estimating transporter kinetics and recommendations on proper parameter calculation in various experimental systems. Rational interpretation of transporter-knockout animal findings and application of static and dynamic physiologically based modeling approaches for prediction of human transporter-mediated pharmacokinetics and drug–drug interactions (DDIs) are presented. The objective is to provide appropriate guidance for the use of in vitro, in vivo, and modeling tools in translational transporter science. PMID:23588311

  16. Estimating physiological skin parameters from hyperspectral signatures

    NASA Astrophysics Data System (ADS)

    Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe

    2013-05-01

    We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers.

  17. Spacelab Life Sciences 1 - The stepping stone

    NASA Technical Reports Server (NTRS)

    Dalton, B. P.; Leon, H.; Hogan, R.; Clarke, B.; Tollinger, D.

    1988-01-01

    The Spacelab Life Sciences (SLS-1) mission scheduled for launch in March 1990 will study the effects of microgravity on physiological parameters of humans and animals. The data obtained will guide equipment design, performance of activities involving the use of animals, and prediction of human physiological responses during long-term microgravity exposure. The experiments planned for the SLS-1 mission include a particulate-containment demonstration test, integrated rodent experiments, jellyfish experiments, and validation of the small-mass measuring instrument. The design and operation of the Research Animal Holding Facility, General-Purpose Work Station, General-Purpose Transfer Unit, and Animal Enclosure Module are discussed and illustrated with drawings and diagrams.

  18. Micro-patterned graphene-based sensing skins for human physiological monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Long; Loh, Kenneth J.; Chiang, Wei-Hung; Manna, Kausik

    2018-03-01

    Ultrathin, flexible, conformal, and skin-like electronic transducers are emerging as promising candidates for noninvasive and nonintrusive human health monitoring. In this work, a wearable sensing membrane is developed by patterning a graphene-based solution onto ultrathin medical tape, which can then be attached to the skin for monitoring human physiological parameters and physical activity. Here, the sensor is validated for monitoring finger bending/movements and for recognizing hand motion patterns, thereby demonstrating its future potential for evaluating athletic performance, physical therapy, and designing next-generation human-machine interfaces. Furthermore, this study also quantifies the sensor’s ability to monitor eye blinking and radial pulse in real-time, which can find broader applications for the healthcare sector. Overall, the printed graphene-based sensing skin is highly conformable, flexible, lightweight, nonintrusive, mechanically robust, and is characterized by high strain sensitivity.

  19. Parameters for Pesticide QSAR and PBPK/PD Models to inform Human Risk Assessments

    EPA Science Inventory

    Physiologically-based pharmacokinetic and pharmacodynamic (PBPK/PD) modeling has emerged as an important computational approach supporting quantitative risk assessment of agrochemicals. However, before complete regulatory acceptance of this tool, an assessment of assets and liabi...

  20. Radiofrequency for the treatment of skin laxity: mith or truth*

    PubMed Central

    de Araújo, Angélica Rodrigues; Soares, Viviane Pinheiro Campos; da Silva, Fernanda Souza; Moreira, Tatiane da Silva

    2015-01-01

    The nonablative radiofrequency is a procedure commonly used for the treatment of skin laxity from an increase in tissue temperature. The goal is to induce thermal damage to thus stimulate neocollagenesis in deep layers of the skin and subcutaneous tissue. However, many of these devices haven't been tested and their parameters are still not accepted by the scientific community. Because of this, it is necessary to review the literature regarding the physiological effects and parameters for application of radiofrequency and methodological quality and level of evidence of studies. A literature search was performed in MEDLINE, PEDro, SciELO, PubMed, LILACS and CAPES and experimental studies in humans, which used radiofrequency devices as treatment for facial or body laxity, were selected. The results showed that the main physiological effect is to stimulate collagen synthesis. There was no homogeneity between studies in relation to most of the parameters used and the methodological quality of studies and level of evidence for using radiofrequency are low. This fact complicates the determination of effective parameters for clinical use of this device in the treatment of skin laxity. The analyzed studies suggest that radiofrequency is effective, however the physiological mechanisms and the required parameters are not clear in the literature. PMID:26560216

  1. A stochastic whole-body physiologically based pharmacokinetic model to assess the impact of inter-individual variability on tissue dosimetry over the human lifespan.

    PubMed

    Beaudouin, Rémy; Micallef, Sandrine; Brochot, Céline

    2010-06-01

    Physiologically based pharmacokinetic (PBPK) models have proven to be successful in integrating and evaluating the influence of age- or gender-dependent changes with respect to the pharmacokinetics of xenobiotics throughout entire lifetimes. Nevertheless, for an effective application of toxicokinetic modelling to chemical risk assessment, a PBPK model has to be detailed enough to include all the multiple tissues that could be targeted by the various xenobiotics present in the environment. For this reason, we developed a PBPK model based on a detailed compartmentalization of the human body and parameterized with new relationships describing the time evolution of physiological and anatomical parameters. To take into account the impact of human variability on the predicted toxicokinetics, we defined probability distributions for key parameters related to the xenobiotics absorption, distribution, metabolism and excretion. The model predictability was evaluated by a direct comparison between computational predictions and experimental data for the internal concentrations of two chemicals (1,3-butadiene and 2,3,7,8-tetrachlorodibenzo-p-dioxin). A good agreement between predictions and observed data was achieved for different scenarios of exposure (e.g., acute or chronic exposure and different populations). Our results support that the general stochastic PBPK model can be a valuable computational support in the area of chemical risk analysis. (c)2010 Elsevier Inc. All rights reserved.

  2. Virtual Patients and Sensitivity Analysis of the Guyton Model of Blood Pressure Regulation: Towards Individualized Models of Whole-Body Physiology

    PubMed Central

    Moss, Robert; Grosse, Thibault; Marchant, Ivanny; Lassau, Nathalie; Gueyffier, François; Thomas, S. Randall

    2012-01-01

    Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models. PMID:22761561

  3. Analysis of the binding interaction in uric acid - Human hemoglobin system by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Makarska-Bialokoz, Magdalena

    2017-05-01

    The binding interaction between human hemoglobin and uric acid has been studied for the first time, by UV-vis absorption and steady-state, synchronous and three-dimensional fluorescence techniques. Characteristic effects observed for human hemoglobin intrinsic fluorescence during interaction with uric acid at neutral pH point at the formation of stacking non-covalent and non-fluorescent complexes. All the calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants, as well as Förster resonance energy transfer parameters confirm the existence of static quenching. The results of synchronous fluorescence measurements indicate that the fluorescence quenching of human hemoglobin originates both from Trp and Tyr residues and that the addition of uric acid could significantly hinder the physiological functions of human hemoglobin.

  4. Unique life sciences research facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  5. Optimizing Muscle Parameters in Musculoskeletal Modeling Using Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Hanson, Andrea; Reed, Erik; Cavanagh, Peter

    2011-01-01

    Astronauts assigned to long-duration missions experience bone and muscle atrophy in the lower limbs. The use of musculoskeletal simulation software has become a useful tool for modeling joint and muscle forces during human activity in reduced gravity as access to direct experimentation is limited. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler(TM) (San Clemente, CA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces. However, no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. Peak hip joint force using the default parameters was 2.96 times body weight (BW) and increased to 3.21 BW in an optimized, feature-selected test case. The rectus femoris was predicted to peak at 60.1% activation following muscle recruitment optimization, compared to 19.2% activation with default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.

  6. Physiological monitoring and control in hemodialysis: state of the art and outlook.

    PubMed

    Kraemer, Matthias

    2006-09-01

    Medical devices for monitoring and feedback control of physiological parameters of the dialysis patient were introduced in the early 1990s. They have a wide range of applications, aiming at increasing the safety and ensuring the efficiency of the treatment, and at an improved restoration of physiological conditions, leading to an overall reduction in morbidity and mortality. Such devices include sensors for the measurement of temperature, optical parameters and sound speed in blood, and electrical characteristics of the human body, and other parameters. Essential for the development of these devices is a detailed understanding of the pathophysiological background of a therapeutical problem. There is still a large potential to introduce new devices for further therapy improvement and automation. Also, the size of the hemodialysis market appears attractive; however, a new product has to meet several specific requirements in order to also become commercially successful. This review describes the therapeutic and technical principles of several available devices, reports on concepts for possible future devices, and presents a short overview on the market environment.

  7. Relationship Between Human Physiological Parameters And Geomagnetic Variations Of Solar Origin

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    This study attempts to assess the influence of increased geomagnetic activity on some human physiological parameters. The blood pressure, heart rate and general well-being of 86 volunteers were measured (the latter by means of a standardized questionnaire) on work days in autumn 2001 (01/10 to 09/11) and in spring 2002 (08/04 to 28/05). These periods were chosen because of maximal expected geomagnetic activity. Altogether, 2799 recordings were obtained and analysed. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The three factors were the following: 1) planetary geomagnetic activity level estimated by Ap-index and divided into five levels; 2) gender - males and females; 3) blood pressure degree - persons in the group examined were divided into hypotensive, normotensive and hypertensive. Post hoc analysis was performed to elicit the significance of differences in the factors' levels. The average arterial blood pressure of the group was found to increase significantly with the increase of geomagnetic activity level. The average increment of systolic and diastolic blood pressure reached 9%, which deserves attention from a medical point of view. This effect was present irrespectively of gender. Results obtained suppose that hypertensive persons have the highest sensitivity and the hypotensive persons have the lowest sensitivity of the arterial blood pressure to increase of geomagnetic activity. The results did not show significant changes in the heart rate. The percentage of the persons who reported subjective psycho-physiological complaints was also found to increase significantly with the geomagnetic activity increase. During severe geomagnetic storms 30% of the persons examined reported subjective complaints and the highest sensitivity was revealed for the hypertensive females. The results obtained add further evidence that blood pressure seems to be affected by geomagnetic variations of solar origin. The examinations and analyses performed show that space weather prediction may be utilized for the purpose of pharmacological and regime measures to limit the adverse physiological reactions to geomagnetic storms.

  8. Real time monitoring to the odour of excrement for health of infants and elderly completely bedridden

    NASA Astrophysics Data System (ADS)

    Ye, Jiancheng; Huang, Guoliang

    2017-01-01

    In the domain of biomedical signals measurements, monitoring human physiological parameters is an important issue. With the rapid development of wireless body area network, it makes monitor, transmit and record physiological parameters faster and more convenient. Infants and the elderly completely bedridden are two special groups of the society who need more medical care. According to researches investigating current frontier domains and the market products, the detection of physiological parameters from the excrement is rare. However, urine and faeces contain a large number of physiological information, which are high relative to health. The mainly distributed odour from urine is NH4 and the distributed odour from feces is mainly H2S, which are both could be detected by the sensors. In this paper, we introduce the design and implementation of a portable wireless device based on body area network for real time monitoring to the odour of excrement for health of infants and the elderly completely bedridden. The device not only could monitor in real time the emitted odour of faeces and urine for health analysis, but also measures the body temperature and environment humidity, and send data to the mobile phone of paramedics to alarm or the server for storage and process, which has prospect to monitoring infants and the paralysis elderly.

  9. Relationship of psychological and physiological parameters during an arctic ski expedition

    NASA Astrophysics Data System (ADS)

    Bishop, Sheryl L.; Grobler, Lukas C.; SchjØll, Olaf

    2001-08-01

    Considerable data (primarily physiological) have been collected during expeditions in extreme environments over the last century. Physiological measurements have only recently been examined in association with the emotional or behavioral state of the subject. Establishing this psychophysiological relationship is essential to understanding fully the adaptation of humans to the stresses of extreme environments. This pilot study investigated the simultaneous collection of physiological, psychological and behavioral data from a two-man Greenland expedition in order to model how specific relationships between physiological and psychological adaptation to a polar environment may be identified. The data collected describes changes in adrenal and other hormonal activity and psychological functioning. Levels of cortisol and testosterone were calculated. Factors influencing the plasma profiles of the aforementioned included 24-hour sunlight, high calorific intake of more than 28 000 kJ/day and extreme physical exercise. There was a difference between individual psychological profiles as well as self-report stress and physiological stress.

  10. The physiological effects of slow breathing in the healthy human

    PubMed Central

    Russo, Marc A.; Santarelli, Danielle M.; O’Rourke, Dean

    2017-01-01

    Slow breathing practices have been adopted in the modern world across the globe due to their claimed health benefits. This has piqued the interest of researchers and clinicians who have initiated investigations into the physiological (and psychological) effects of slow breathing techniques and attempted to uncover the underlying mechanisms. The aim of this article is to provide a comprehensive overview of normal respiratory physiology and the documented physiological effects of slow breathing techniques according to research in healthy humans. The review focuses on the physiological implications to the respiratory, cardiovascular, cardiorespiratory and autonomic nervous systems, with particular focus on diaphragm activity, ventilation efficiency, haemodynamics, heart rate variability, cardiorespiratory coupling, respiratory sinus arrhythmia and sympathovagal balance. The review ends with a brief discussion of the potential clinical implications of slow breathing techniques. This is a topic that warrants further research, understanding and discussion. Key points Slow breathing practices have gained popularity in the western world due to their claimed health benefits, yet remain relatively untouched by the medical community. Investigations into the physiological effects of slow breathing have uncovered significant effects on the respiratory, cardiovascular, cardiorespiratory and autonomic nervous systems. Key findings include effects on respiratory muscle activity, ventilation efficiency, chemoreflex and baroreflex sensitivity, heart rate variability, blood flow dynamics, respiratory sinus arrhythmia, cardiorespiratory coupling, and sympathovagal balance. There appears to be potential for use of controlled slow breathing techniques as a means of optimising physiological parameters that appear to be associated with health and longevity, and that may extend to disease states; however, there is a dire need for further research into the area. Educational aims To provide a comprehensive overview of normal human respiratory physiology and the documented effects of slow breathing in healthy humans. To review and discuss the evidence and hypotheses regarding the mechanisms underlying slow breathing physiological effects in humans. To provide a definition of slow breathing and what may constitute “autonomically optimised respiration”. To open discussion on the potential clinical implications of slow breathing techniques and the need for further research. PMID:29209423

  11. Monitoring of endogenous carbon monoxide dynamics in human breath by tunable diode laser

    NASA Astrophysics Data System (ADS)

    Stepanov, Eugene V.; Daraselia, Mikhail V.; Zyrianov, Pavel V.; Shulagin, Yurii A.; Skrupskii, Vladimir A.

    1996-01-01

    High sensitive CO gas analyzer based on tunable diode laser (TDL) was used as a real time monitor of endogenous carbon monoxide in a set of breath physiology experiments. The measurements of the CO content dynamics in exhaled air with 10 ppb sensitivity were attended with detection of carbon dioxide and O2 in breath, lung ventilation parameters, heart rate and blood analysis using conventional techniques. Temporal variations of endogenous CO in human breath caused by hyperoxia, hypoxia, hyperventilation and sport loading were first studied in real time. Scattering of the CO variation time constants was observed for different tested persons. Possible reasons for this scattering related with the organisms' physiology peculiarities are discussed.

  12. Immune Alterations in Rats Exposed to Airborne Lunar Dust

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence

    2014-01-01

    The lunar surface is covered by a layer of fine, reactive dust. Very little is known regarding the toxicity of lunar dust on human physiology. This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and systemic immune parameters.

  13. Some data about the relationship between ths human state and external perturbations of geomagnetic field

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.; Stoilova, I.; Yanev, T.

    The influence of solar activity changes and related to them geomagnetic field variations on human health is confirmed in a lot of publications but the investigations in this area are still sporadic and incomplete because of the fact that it is difficult to separate the geomagnetic influence from the environmental factor complex, which influence the human life activity. That is why we have studied the influence of changes in geomagnetic activity on human physiological, psycho-physiological parameters and behavioural reactions. In this article we looked for influence of changes in GMA on the systolic and diastolic blood pressure and pulse-rate. We examined 54 volunteers. 26 persons of them had some cardio-vascular or blood pressure disturbances. The registrations were performed every day at one and the same time for each person during the period 1.10 - 10.11.2001. Four-way analysis of variance (MANOVA method) with factors: GMA, day, sex and cardiovascular pathology was performed. GMA was divided into four levels according to the Kp- and Ap-index values. The days examined were divided into six levels in relation to the day with increased GMA. Factor "cardiovascular pathology" was divided into two levels: healthy subjects and subjects that had some cardio -vascular or blood pressure disturbances. When we employed four-way analysis of variance, the influence of some of the factors on the physiological parameters examined turned out to be statistically significant at p<0.05. Our investigations indicate that most of the persons examined irrespectively to their status could be sensitive to the geomagnetic disturbances.

  14. Low physiological levels of prostaglandins E2 and F2α improve human sperm functions.

    PubMed

    Rios, Mariana; Carreño, Daniela V; Oses, Carolina; Barrera, Nelson; Kerr, Bredford; Villalón, Manuel

    2016-03-01

    Prostaglandins (PGs) have been reported to be present in the seminal fluid and cervical mucus, affecting different stages of sperm maturation from spermatogenesis to the acrosome reaction. This study assessed the effects of low physiological PGE2 and PGF2α concentrations on human sperm motility and on the ability of the spermatozoa to bind to the zona pellucida (ZP). Human spermatozoa were isolated from seminal samples with normal concentration and motility parameters and incubated with 1μM PGE2, 1μM PGF2α or control solution to determine sperm motility and the ability to bind to human ZP. The effects of both PGs on intracellular calcium levels were determined. Incubation for 2 or 18h with PGE2 or PGF2α resulted in a significant (P<0.05) increase in the percentage of spermatozoa with progressive motility. In contrast with PGF2α, PGE2 alone induced an increase in sperm intracellular calcium levels; however, the percentage of sperm bound to the human ZP was doubled for both PGs. These results indicate that incubation of human spermatozoa with low physiological levels of PGE2 or PGF2α increases sperm functions and could improve conditions for assisted reproduction protocols.

  15. Microgravity-Induced Physiological Fluid Redistribution: Computational Analysis to Assess Influence of Physiological Parameters

    NASA Technical Reports Server (NTRS)

    Myers, J. G.; Eke, Chika; Werner, C.; Nelson, E. S.; Mulugeta, L.; Feola, A.; Raykin, J.; Samuels, B.; Ethier, C. R.

    2016-01-01

    Space flight impacts human physiology in many ways, the most immediate being the marked cephalad (headward) shift of fluid upon introduction into the microgravity environment. This physiological response to microgravity points to the redistribution of blood and interstitial fluid as a major factor in the loss of venous tone and reduction in heart muscle efficiency which impact astronaut performance. In addition, researchers have hypothesized that a reduction in astronaut visual acuity, part of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, is associated with this redistribution of fluid. VIIP arises within several months of beginning space flight and includes a variety of ophthalmic changes including posterior globe flattening, distension of the optic nerve sheath, and kinking of the optic nerve. We utilize a suite of lumped parameter models to simulate microgravity-induced fluid redistribution in the cardiovascular, central nervous and ocular systems to provide initial and boundary data to a 3D finite element simulation of ocular biomechanics in VIIP. Specifically, the lumped parameter cardiovascular model acts as the primary means of establishing how microgravity, and the associated lack of hydrostatic gradient, impacts fluid redistribution. The cardiovascular model consists of 16 compartments, including three cerebrospinal fluid (CSF) compartments, three cranial blood compartments, and 10 thoracic and lower limb blood compartments. To assess the models capability to address variations in physiological parameters, we completed a formal uncertainty and sensitivity analysis that evaluated the relative importance of 42 input parameters required in the model on relative compartment flows and compartment pressures. Utilizing the model in a pulsatile flow configuration, the sensitivity analysis identified the ten parameters that most influenced each compartment pressure. Generally, each compartment responded appropriately to parameter variations associated with itself and adjacent compartments. However, several unexpected interactions between components, such as between the choroid plexus and the lower capillaries, were found, and are due to simplifications in the formulation of the model. The analysis illustrates that highly influential parameters and those that have unique influences within the model formulation must be tightly controlled for successful model application.

  16. Thermal responses and perceptions under distinct ambient temperature and wind conditions.

    PubMed

    Shimazaki, Yasuhiro; Yoshida, Atsumasa; Yamamoto, Takanori

    2015-01-01

    Wind conditions are widely recognized to influence the thermal states of humans. In this study, we investigated the relationship between wind conditions and thermal perception and energy balance in humans. The study participants were exposed for 20 min to 3 distinct ambient temperatures, wind speeds, and wind angles. During the exposure, the skin temperatures as a physiological reaction and mental reactions of the human body were measured and the energy balance was calculated based on the human thermal-load method. The results indicate that the human thermal load is an accurate indicator of human thermal states under all wind conditions. Furthermore, wind speed and direction by themselves do not account for the human thermal experience. Because of the thermoregulation that occurs to prevent heat loss and protect the core of the body, a low skin temperature was maintained and regional differences in skin temperature were detected under cool ambient conditions. Thus, the human thermal load, which represents physiological parameters such as skin-temperature change, adequately describes the mixed sensation of the human thermal experience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Application of step-frequency radars in medicine

    NASA Astrophysics Data System (ADS)

    Anishchenko, L.; Alekhin, M.; Tataraidze, A.; Ivashov, S.; Bugaev, Alexander S.; Soldovieri, F.

    2014-05-01

    The paper summarizes results of step-frequency radars application in medicine. Remote and non-contact control of physiological parameters with modern bioradars provides a wide range of possibilities for non-contact remote monitoring of a human psycho-emotional state and physiological condition. The paper provides information about technical characteristics of bioradars designed at Bauman Moscow State Technical University and experiments using them. Results of verification experiment showed that bioradars of BioRASCAN type may be used for simultaneous remote measurements of breathing and heart rate parameters. In addition, bioradar assisted experiments for detecting of different sleep disorders are described. Their results proved that method of bioradiolocation allows correct estimation of obstructive sleep apnea severity compared to the polysomnography method, which satisfies standard medical recommendations.

  18. Said another way: stroke, evolution, and the rainforests: an ancient approach to modern health care.

    PubMed

    Collins, Christopher

    2007-01-01

    The relatively new discipline of evolutionary medicine. To raise awareness among healthcare professionals that our modern view of illness and health care might be flawed. Published literature in CINAHL, MEDLINE, Cochrane databases, and EMBASE. Our modern lifestyles and healthcare paradigms (using stroke as example), may be at odds with our palaeolithic genome. The dietary regimes of remaining hunter-gatherer communities merit attention and study in this regard. Time is running out as the rainforests dwindle and hunter-gatherer communities are acculturated. The selective forces that resulted in the evolution of the human species were mainly environmental. Our metabolism, physiology, and genome, therefore, are geared towards survival under certain environmental parameters. With the advent of agriculture, almost 11,000 years ago, those parameters changed. Our ancestors' lifestyles transformed from wandering hunter-gatherers to sedentary consumers of more than they needed to survive. Many studies link today's prevalence of metabolic syndrome (diabetes, obesity, and cardio- and cerebrovascular diseases) in developed countries with this historic change in human behavior. If this is a valid correlation to make, then the few remaining hunter-gatherer communities in today's rainforests must surely hold the key to human health. Certainly, physiological parameters in these people are impressive, but trends are worrying. There is clear derangement of these parameters when exposed to any degree of acculturated lifestyle. In addition, the natural homelands of these communities, the rainforests, are dwindling at an alarming rate in order to maintain our acculturated norms. The race is on, therefore, to learn what we can about diet, exercise, and natural medicine from the last few humans who live lifestyles that might be closest to our natural state.

  19. Physiological and hypoxic oxygen concentration differentially regulates human c-Kit+ cardiac stem cell proliferation and migration.

    PubMed

    Bellio, Michael A; Rodrigues, Claudia O; Landin, Ana Marie; Hatzistergos, Konstantinos E; Kuznetsov, Jeffim; Florea, Victoria; Valasaki, Krystalenia; Khan, Aisha; Hare, Joshua M; Schulman, Ivonne Hernandez

    2016-12-01

    Cardiac stem cells (CSCs) are being evaluated for their efficacy in the treatment of heart failure. However, numerous factors impair the exogenously delivered cells' regenerative capabilities. Hypoxia is one stress that contributes to inadequate tissue repair. Here, we tested the hypothesis that hypoxia impairs cell proliferation, survival, and migration of human CSCs relative to physiological and room air oxygen concentrations. Human endomyocardial biopsy-derived CSCs were isolated, selected for c-Kit expression, and expanded in vitro at room air (21% O 2 ). To assess the effect on proliferation, survival, and migration, CSCs were transferred to physiological (5%) or hypoxic (0.5%) O 2 concentrations. Physiological O 2 levels increased proliferation (P < 0.05) but did not affect survival of CSCs. Although similar growth rates were observed in room air and hypoxia, a significant reduction of β-galactosidase activity (-4,203 fluorescent units, P < 0.05), p16 protein expression (0.58-fold, P < 0.001), and mitochondrial content (0.18-fold, P < 0.001) in hypoxia suggests that transition from high (21%) to low (0.5%) O 2 reduces senescence and promotes quiescence. Furthermore, physiological O 2 levels increased migration (P < 0.05) compared with room air and hypoxia, and treatment with mesenchymal stem cell-conditioned media rescued CSC migration under hypoxia to levels comparable to physiological O 2 migration (2-fold, P < 0.05 relative to CSC media control). Our finding that physiological O 2 concentration is optimal for in vitro parameters of CSC biology suggests that standard room air may diminish cell regenerative potential. This study provides novel insights into the modulatory effects of O 2 concentration on CSC biology and has important implications for refining stem cell therapies. Copyright © 2016 the American Physiological Society.

  20. Skin hydration, microrelief and greasiness of normal skin in Antarctica.

    PubMed

    Tsankov, N; Mateev, D; Darlenski, R

    2018-03-01

    The skin is the primary defence of the human body against external factors from physical, chemical, mechanical and biologic origin. Climatic factors together with low temperature and sun radiation affect the skin. The effect of climatic conditions in Antarctica on healthy skin has not been previously addressed. The aim of this study was to evaluate the changes in the skin hydration, greasiness and microrelief due to the extreme climatic environmental factors during the stay of the members of the Bulgarian Antarctic expedition. Fifty-nine Caucasian healthy subjects, 42 men and 17 women with mean age 50.9 years (27-68), were enrolled. The study was performed in five consecutive years from 2011 to 2016 at the Bulgarian Antarctic base camp at Livingston Island. The study protocol consisted of two parts: study A: duration of 15 days with measurement of skin physiology parameters on a daily basis, and study B: five measurements at baseline and at days 14, 30, 45 and 50 upon arrival in Antarctica. We measured three biophysical parameters related to skin physiology at cheek skin by an impedance measuring device. No statistically significant difference between parameters at the different measurement points. There is a variation in skin hydration reaching its lower point at day 11 and then returning to values similar to baseline. Initially, an increase in skin greasiness was witnessed with a sharp depression at day 11 and final values at day 15 resembling the ones at baseline. An increase, although not statistically significant, in skin roughness was observed in the first 15 days of the study. Study B showed no statistically significant variances between values of the three parameters. Our studies show the pioneer results of the effect of Antarctic climate on human skin physiology. © 2017 European Academy of Dermatology and Venereology.

  1. A physiologically based model for temporal envelope encoding in human primary auditory cortex.

    PubMed

    Dugué, Pierre; Le Bouquin-Jeannès, Régine; Edeline, Jean-Marc; Faucon, Gérard

    2010-09-01

    Communication sounds exhibit temporal envelope fluctuations in the low frequency range (<70 Hz) and human speech has prominent 2-16 Hz modulations with a maximum at 3-4 Hz. Here, we propose a new phenomenological model of the human auditory pathway (from cochlea to primary auditory cortex) to simulate responses to amplitude-modulated white noise. To validate the model, performance was estimated by quantifying temporal modulation transfer functions (TMTFs). Previous models considered either the lower stages of the auditory system (up to the inferior colliculus) or only the thalamocortical loop. The present model, divided in two stages, is based on anatomical and physiological findings and includes the entire auditory pathway. The first stage, from the outer ear to the colliculus, incorporates inhibitory interneurons in the cochlear nucleus to increase performance at high stimuli levels. The second stage takes into account the anatomical connections of the thalamocortical system and includes the fast and slow excitatory and inhibitory currents. After optimizing the parameters of the model to reproduce the diversity of TMTFs obtained from human subjects, a patient-specific model was derived and the parameters were optimized to effectively reproduce both spontaneous activity and the oscillatory part of the evoked response. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  2. Inter-Individual Variability in High-Throughput Risk ...

    EPA Pesticide Factsheets

    We incorporate realistic human variability into an open-source high-throughput (HT) toxicokinetics (TK) modeling framework for use in a next-generation risk prioritization approach. Risk prioritization involves rapid triage of thousands of environmental chemicals, most which have little or no existing TK data. Chemicals are prioritized based on model estimates of hazard and exposure, to decide which chemicals should be first in line for further study. Hazard may be estimated with in vitro HT screening assays, e.g., U.S. EPA’s ToxCast program. Bioactive ToxCast concentrations can be extrapolated to doses that produce equivalent concentrations in body tissues using a reverse TK approach in which generic TK models are parameterized with 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. Here we draw physiological parameters from realistic estimates of distributions of demographic and anthropometric quantities in the modern U.S. population, based on the most recent CDC NHANES data. A Monte Carlo approach, accounting for the correlation structure in physiological parameters, is used to estimate ToxCast equivalent doses for the most sensitive portion of the population. To quantify risk, ToxCast equivalent doses are compared to estimates of exposure rates based on Bayesian inferences drawn from NHANES urinary analyte biomonitoring data. The inclusion

  3. Population Physiologically-Based Pharmacokinetic Modeling for the Human Lactational Transfer of PCB 153 with Consideration of Worldwide Human Biomonitoring Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redding, Laurel E.; Sohn, Michael D.; McKone, Thomas E.

    2008-03-01

    We developed a physiologically based pharmacokinetic model of PCB 153 in women, and predict its transfer via lactation to infants. The model is the first human, population-scale lactational model for PCB 153. Data in the literature provided estimates for model development and for performance assessment. Physiological parameters were taken from a cohort in Taiwan and from reference values in the literature. We estimated partition coefficients based on chemical structure and the lipid content in various body tissues. Using exposure data in Japan, we predicted acquired body burden of PCB 153 at an average childbearing age of 25 years and comparemore » predictions to measurements from studies in multiple countries. Forward-model predictions agree well with human biomonitoring measurements, as represented by summary statistics and uncertainty estimates. The model successfully describes the range of possible PCB 153 dispositions in maternal milk, suggesting a promising option for back estimating doses for various populations. One example of reverse dosimetry modeling was attempted using our PBPK model for possible exposure scenarios in Canadian Inuits who had the highest level of PCB 153 in their milk in the world.« less

  4. Dynamic Simulation and Analysis of Human Walking Mechanism

    NASA Astrophysics Data System (ADS)

    Azahari, Athirah; Siswanto, W. A.; Ngali, M. Z.; Salleh, S. Md.; Yusup, Eliza M.

    2017-01-01

    Behaviour such as gait or posture may affect a person with the physiological condition during daily activities. The characteristic of human gait cycle phase is one of the important parameter which used to described the human movement whether it is in normal gait or abnormal gait. This research investigates four types of crouch walking (upright, interpolated, crouched and severe) by simulation approach. The assessment are conducting by looking the parameters of hamstring muscle joint, knee joint and ankle joint. The analysis results show that based on gait analysis approach, the crouch walking have a weak pattern of walking and postures. Short hamstring and knee joint is the most influence factor contributing to the crouch walking due to excessive hip flexion that typically accompanies knee flexion.

  5. Clinical experimental stress studies: methods and assessment.

    PubMed

    Bali, Anjana; Jaggi, Amteshwar Singh

    2015-01-01

    Stress is a state of threatened homeostasis during which a variety of adaptive processes are activated to produce physiological and behavioral changes. Stress induction methods are pivotal for understanding these physiological or pathophysiological changes in the body in response to stress. Furthermore, these methods are also important for the development of novel pharmacological agents for stress management. The well-described methods to induce stress in humans include the cold pressor test, Trier Social Stress Test, Montreal Imaging Stress Task, Maastricht Acute Stress Test, CO2 challenge test, Stroop test, Paced Auditory Serial Addition Task, noise stress, and Mannheim Multicomponent Stress Test. Stress assessment in humans is done by measuring biochemical markers such as cortisol, cortisol awakening response, dexamethasone suppression test, salivary α-amylase, plasma/urinary norepinephrine, norepinephrine spillover rate, and interleukins. Physiological and behavioral changes such as galvanic skin response, heart rate variability, pupil size, and muscle and/or skin sympathetic nerve activity (microneurography) and cardiovascular parameters such as heart rate, blood pressure, and self-reported anxiety are also monitored to assess stress response. This present review describes these commonly employed methods to induce stress in humans along with stress assessment methods.

  6. [Methods for measuring skin aging].

    PubMed

    Zieger, M; Kaatz, M

    2016-02-01

    Aging affects human skin and is becoming increasingly important with regard to medical, social and aesthetic issues. Detection of intrinsic and extrinsic components of skin aging requires reliable measurement methods. Modern techniques, e.g., based on direct imaging, spectroscopy or skin physiological measurements, provide a broad spectrum of parameters for different applications.

  7. Constitutive description of human femoropopliteal artery aging.

    PubMed

    Kamenskiy, Alexey; Seas, Andreas; Deegan, Paul; Poulson, William; Anttila, Eric; Sim, Sylvie; Desyatova, Anastasia; MacTaggart, Jason

    2017-04-01

    Femoropopliteal artery (FPA) mechanics play a paramount role in pathophysiology and the artery's response to therapeutic interventions, but data on FPA mechanical properties are scarce. Our goal was to characterize human FPAs over a wide population to derive a constitutive description of FPA aging to be used for computational modeling. Fresh human FPA specimens ([Formula: see text]) were obtained from [Formula: see text] predominantly male (80 %) donors 54±15 years old (range 13-82 years). Morphometric characteristics including radius, wall thickness, opening angle, and longitudinal pre-stretch were recorded. Arteries were subjected to multi-ratio planar biaxial extension to determine constitutive parameters for an invariant-based model accounting for the passive contributions of ground substance, elastin, collagen, and smooth muscle. Nonparametric bootstrapping was used to determine unique sets of material parameters that were used to derive age-group-specific characteristics. Physiologic stress-stretch state was calculated to capture changes with aging. Morphometric and constitutive parameters were derived for seven age groups. Vessel radius, wall thickness, and circumferential opening angle increased with aging, while longitudinal pre-stretch decreased ([Formula: see text]). Age-group-specific constitutive parameters portrayed orthotropic FPA stiffening, especially in the longitudinal direction. Structural changes in artery wall elastin were associated with reduction of physiologic longitudinal and circumferential stretches and stresses with age. These data and the constitutive description of FPA aging shed new light on our understanding of peripheral arterial disease pathophysiology and arterial aging. Application of this knowledge might improve patient selection for specific treatment modalities in personalized, precision medicine algorithms and could assist in device development for treatment of peripheral artery disease.

  8. Intrinsic thermodynamics of ethoxzolamide inhibitor binding to human carbonic anhydrase XIII

    PubMed Central

    2012-01-01

    Background Human carbonic anhydrases (CAs) play crucial role in various physiological processes including carbon dioxide and hydrocarbon transport, acid homeostasis, biosynthetic reactions, and various pathological processes, especially tumor progression. Therefore, CAs are interesting targets for pharmaceutical research. The structure-activity relationships (SAR) of designed inhibitors require detailed thermodynamic and structural characterization of the binding reaction. Unfortunately, most publications list only the observed thermodynamic parameters that are significantly different from the intrinsic parameters. However, only intrinsic parameters could be used in the rational design and SAR of the novel compounds. Results Intrinsic binding parameters for several inhibitors, including ethoxzolamide, trifluoromethanesulfonamide, and acetazolamide, binding to recombinant human CA XIII isozyme were determined. The parameters were the intrinsic Gibbs free energy, enthalpy, entropy, and the heat capacity. They were determined by titration calorimetry and thermal shift assay in a wide pH and temperature range to dissect all linked protonation reaction contributions. Conclusions Precise determination of the inhibitor binding thermodynamics enabled correct intrinsic affinity and enthalpy ranking of the compounds and provided the means for SAR analysis of other rationally designed CA inhibitors. PMID:22676044

  9. Environmental quality of mussel farms in the Vigo estuary: pollution by PAHs, origin and effects on reproduction.

    PubMed

    Ruiz, Y; Suarez, P; Alonso, A; Longo, E; Villaverde, A; San Juan, F

    2011-01-01

    This work analyzes the influence of environmental and physiological parameters on PAHs accumulation in cultured mussels. Lipid content and reproductive stage are directly related with PAHs accumulation pattern. We observed a rapid accumulation and depuration of PAHs, mainly during periods of nutrients accumulation, spawns and gonadic restorations. Correlations between PAHs accumulation and physiological status indicate when mussels are more susceptible to adverse effects of these pollutants. A positive correlation between mutagenic congener's accumulation and occurrence of gonadic neoplastic disorders is shown for the first time in mussels. Molecular indices were used to identify the origin of hydrocarbons accumulated by Mytilus, showing a chronic pyrolytic pollution and pollutant episodes by petrogenic sources and biomass combustion in the studied area. Multivariate analysis suggests the possibility of including physiological parameters of sentinel organisms in environmental biomonitoring programs, mainly in aquaculture areas, taking into account their two aspects: farms productivity and human food safety. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Physiological responses induced by pleasant stimuli.

    PubMed

    Watanuki, Shigeki; Kim, Yeon-Kyu

    2005-01-01

    The specific physiological responses induced by pleasant stimuli were investigated in this study. Various physiological responses of the brain (encephaloelectrogram; EEG), autonomic nervous system (ANS), immune system and endocrine system were monitored when pleasant stimuli such as odors, emotional pictures and rakugo, a typical Japanese comical story-telling, were presented to subjects. The results revealed that (i) EEG activities of the left frontal brain region were enhanced by a pleasant odor; (ii) emotional pictures related to primitive element such as nudes and erotic couples elevated vasomotor sympathetic nervous activity; and (iii) an increase in secretory immunoglobulin A (s-IgA) and a decrease in salivary cortisol (s-cortisol) were induced by rakugo-derived linguistic pleasant emotion. Pleasant emotion is complicated state. However, by considering the evolutionary history of human being, it is possible to assess and evaluate pleasant emotion from certain physiological responses by appropriately summating various physiological parameters.

  11. Different geomagnetic indices as an indicator for geo-effective solar storms and human physiological state

    NASA Astrophysics Data System (ADS)

    Dimitrova, Svetla

    2008-02-01

    A group of 86 healthy volunteers were examined on each working day during periods of high solar activity. Data about systolic and diastolic blood pressure, pulse pressure, heart rate and subjective psycho-physiological complaints were gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters. The factors were as follows: (1) geomagnetic activity estimated by daily amplitude of H-component of the local geomagnetic field, Ap- and Dst-index; (2) gender; and (3) the presence of medication. Average values of systolic, diastolic blood pressure, pulse pressure and subjective complaints of the group were found to increase significantly with geomagnetic activity increment.

  12. Compact continuum brain model for human electroencephalogram

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Shin, H.-B.; Robinson, P. A.

    2007-12-01

    A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.

  13. Parameterization using Fourier series expansion of the diffuse reflectance of human skin to vary the concentration of the melanocytes

    NASA Astrophysics Data System (ADS)

    Narea, J. Freddy; Muñoz, Aarón A.; Castro, Jorge; Muñoz, Rafael A.; Villalba, Caroleny E.; Martinez, María. F.; Bravo, Kelly D.

    2013-11-01

    Human skin has been studied in numerous investigations, given the interest in knowing information about physiology, morphology and chemical composition. These parameters can be determined using non invasively optical techniques in vivo, such as the diffuse reflectance spectroscopy. The human skin color is determined by many factors, but primarily by the amount and distribution of the pigment melanin. The melanin is produced by the melanocytes in the basal layer of the epidermis. This research characterize the spectral response of the human skin using the coefficients of Fourier series expansion. Simulating the radiative transfer equation for the Monte Carlo method to vary the concentration of the melanocytes (fme) in a simplified model of human skin. It fits relating the Fourier series coefficient a0 with fme. Therefore it is possible to recover the skin biophysical parameter.

  14. Control of joint motion simulators for biomechanical research

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.

    1992-01-01

    The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.

  15. Analysis of Geomagnetic Disturbances and Cosmic Ray Intensity Variations in Relation to Medical Data from Rome

    NASA Astrophysics Data System (ADS)

    Giannaropoulou, E.; Papailiou, M.; Mavromichalaki, H.; Tsipis, A.

    2010-07-01

    Over the last few years many studies have been conducted concerning the possible influence of geomagnetic and solar activity and cosmic ray activity on human physiological state and in particular on human cardio - health state. As it is shown the human organism is sensitive to environmental changes and reacts to them through a series of variations of its physiological parameters such as heart rate, arterial systolic and diastolic blood pressure, etc. In this paper daily mean values of heart rate, as they were registered for a group of 2.028 volunteers during medical examinations in the Polyclinico Tor Vergata, Rome, Italy are analyzed in relation to daily cosmic ray intensity variations, as measured by the Neutron Monitor of the University of Athens and daily variations of the geomagnetic indices Dst, Ap and Kp. The results from this study show that geomagnetic activity changes and cosmic rays intensity variations may regulate the human homeostasis.

  16. [Cardiac rhythm variability as an index of vegetative heart regulation in a situation of psychoemotional tension].

    PubMed

    Revina, N E

    2006-01-01

    Differentiated role of segmental and suprasegmental levels of cardiac rhythm variability regulation in dynamics of motivational human conflict was studied for the first time. The author used an original method allowing simultaneous analysis of psychological and physiological parameters of human activity. The study demonstrates that will and anxiety, as components of motivational activity spectrum, form the "energetic" basis of voluntary-constructive and involuntary-affective behavioral strategies, selectively uniting various levels of suprasegmental and segmental control of human heart functioning in a conflict situation.

  17. Sex differences in human cardiovascular stress responses: mathematical and physiological approaches

    NASA Astrophysics Data System (ADS)

    Anishchenko, Tatijana G.; Igosheva, N. B.; Saparin, P. I.

    1993-06-01

    A new quantitative electrocardiogram characteristic is introduced as a distribution entropy, normalized by the signal energy. A perspective of this parameter application as a diagnostic criterion is proved by series of test experiments. By way of comparison with traditional medico-biological characteristics the higher sensitivity and stability of this criterion is proved.

  18. Extreme respiratory sinus arrhythmia enables overwintering black bear survival--physiological insights and applications to human medicine.

    PubMed

    Laske, Timothy G; Harlow, Henry J; Garshelis, David L; Iaizzo, Paul A

    2010-10-01

    American black bears survive winter months without food and water while in a mildly hypothermic, hypometabolic, and inactive state, yet they appear to be able to return to near-normal systemic function within minutes of arousal. This study's goal was to characterize the cardiovascular performance of overwintering black bears and elicit the underlying mechanisms enabling survival. Mid-winter cardiac electrophysiology was assessed in four wild black bears using implanted data recorders. Paired data from early and late winter were collected from 37 wild bears, which were anesthetized and temporarily removed from their dens to record cardiac electrophysiological parameters (12-lead electrocardiograms) and cardiac dimensional changes (echocardiography). Left ventricular thickness, primary cardiac electrophysiological parameters, and cardiovascular response to threats ("fight or flight" response) were preserved throughout winter. Dramatic respiratory sinus arrhythmias were recorded (cardiac cycle length variations up to 865%) with long sinus pauses between breaths (up to 13 s). The accelerated heart rate during breathing efficiently transports oxygen, with the heart "resting" between breaths to minimize energy usage. This adaptive cardiac physiology may have broad implications for human medicine.

  19. Metabolism and physiologically based pharmacokinetic modeling of flumioxazin in pregnant animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takaku, Tomoyuki, E-mail: takakut@sc.sumitomo-chem.co.jp; Nagahori, Hirohisa; Sogame, Yoshihisa

    A physiologically based pharmacokinetic (PBPK) model was developed to predict the concentration of flumioxazin, in the blood and fetus of pregnant humans during a theoretical accidental intake (1000 mg/kg). The data on flumioxazin concentration in pregnant rats (30 mg/kg po) was used to develop the PBPK model in pregnant rats using physiological parameters and chemical specific parameters. The rat PBPK model developed was extrapolated to a human model. Liver microsomes of female rats and a mixed gender of humans were used for the in vitro metabolism study. To determine the % of flumioxazin absorbed after administration at a dose ofmore » 1000 mg/kg assuming maximum accidental intake, the biliary excretion study of [phenyl-U-{sup 14}C]flumioxazin was conducted in bile duct-cannulated female rats (Crl:CD (SD)) to collect and analyze the bile, urine, feces, gastrointestinal tract, and residual carcass. The % of flumioxazin absorbed at a dose of 1000 mg/kg in rats was low (12.3%) by summing up {sup 14}C of the urine, bile, and residual carcass. The pregnant human model that was developed demonstrated that the maximum flumioxazin concentration in the blood and fetus of a pregnant human at a dose of 1000 mg/kg po was 0.86 μg/mL and 0.68 μg/mL, respectively, which is much lower than K{sub m} (202.4 μg/mL). Because the metabolism was not saturated and the absorption rate was low at a dose of 1000 mg/kg, the calculated flumioxazin concentration in pregnant humans was thought to be relatively low, considering the flumioxazin concentration in pregnant rats at a dose of 30 mg/kg. For the safety assessment of flumioxazin, these results would be useful for further in vitro toxicology experiments. - Highlights: • A PBPK model of flumioxazin in pregnant humans was developed. • Simulated flumioxazin concentration in pregnant humans was relatively low. • The results would be useful for further in vitro toxicology experiments.« less

  20. Interim methods for development of inhalation reference concentrations. Draft report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackburn, K.; Dourson, M.; Erdreich, L.

    1990-08-01

    An inhalation reference concentration (RfC) is an estimate of continuous inhalation exposure over a human lifetime that is unlikely to pose significant risk of adverse noncancer health effects and serves as a benchmark value for assisting in risk management decisions. Derivation of an RfC involves dose-response assessment of animal data to determine the exposure levels at which no significant increase in the frequency or severity of adverse effects between the exposed population and its appropriate control exists. The assessment requires an interspecies dose extrapolation from a no-observed-adverse-effect level (NOAEL) exposure concentration of an animal to a human equivalent NOAEL (NOAEL(HBC)).more » The RfC is derived from the NOAEL(HBC) by the application of generally order-of-magnitude uncertainty factors. Intermittent exposure scenarios in animals are extrapolated to chronic continuous human exposures. Relationships between external exposures and internal doses depend upon complex simultaneous and consecutive processes of absorption, distribution, metabolism, storage, detoxification, and elimination. To estimate NOAEL(HBC)s when chemical-specific physiologically-based pharmacokinetic models are not available, a dosimetric extrapolation procedure based on anatomical and physiological parameters of the exposed human and animal and the physical parameters of the toxic chemical has been developed which gives equivalent or more conservative exposure concentrations values than those that would be obtained with a PB-PK model.« less

  1. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance.

    PubMed

    Thompson, M A

    2017-08-01

    Running events range from 60-m sprints to ultra-marathons covering 100 miles or more, which presents an interesting diversity in terms of the parameters for successful performance. Here, we review the physiological and biomechanical variations underlying elite human running performance in sprint to ultramarathon distances. Maximal running speeds observed in sprint disciplines are achieved by high vertical ground reaction forces applied over short contact times. To create this high force output, sprint events rely heavily on anaerobic metabolism, as well as a high number and large cross-sectional area of type II fibers in the leg muscles. Middle distance running performance is characterized by intermediates of biomechanical and physiological parameters, with the possibility of unique combinations of each leading to high-level performance. The relatively fast velocities in mid-distance events require a high mechanical power output, though ground reaction forces are less than in sprinting. Elite mid-distance runners exhibit local muscle adaptations that, along with a large anaerobic capacity, provide the ability to generate a high power output. Aerobic capacity starts to become an important aspect of performance in middle distance events, especially as distance increases. In distance running events, V˙O2max is an important determinant of performance, but is relatively homogeneous in elite runners. V˙O2 and velocity at lactate threshold have been shown to be superior predictors of elite distance running performance. Ultramarathons are relatively new running events, as such, less is known about physiological and biomechanical parameters that underlie ultra-marathon performance. However, it is clear that performance in these events is related to aerobic capacity, fuel utilization, and fatigue resistance. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in the public domain in the US.

  2. Detection of cardiac activity changes from human speech

    NASA Astrophysics Data System (ADS)

    Tovarek, Jaromir; Partila, Pavol; Voznak, Miroslav; Mikulec, Martin; Mehic, Miralem

    2015-05-01

    Impact of changes in blood pressure and pulse from human speech is disclosed in this article. The symptoms of increased physical activity are pulse, systolic and diastolic pressure. There are many methods of measuring and indicating these parameters. The measurements must be carried out using devices which are not used in everyday life. In most cases, the measurement of blood pressure and pulse following health problems or other adverse feelings. Nowadays, research teams are trying to design and implement modern methods in ordinary human activities. The main objective of the proposal is to reduce the delay between detecting the adverse pressure and to the mentioned warning signs and feelings. Common and frequent activity of man is speaking, while it is known that the function of the vocal tract can be affected by the change in heart activity. Therefore, it can be a useful parameter for detecting physiological changes. A method for detecting human physiological changes by speech processing and artificial neural network classification is described in this article. The pulse and blood pressure changes was induced by physical exercises in this experiment. The set of measured subjects was formed by ten healthy volunteers of both sexes. None of the subjects was a professional athlete. The process of the experiment was divided into phases before, during and after physical training. Pulse, systolic, diastolic pressure was measured and voice activity was recorded after each of them. The results of this experiment describe a method for detecting increased cardiac activity from human speech using artificial neural network.

  3. Towards a psycho-physiological model of thermal perception

    NASA Astrophysics Data System (ADS)

    Auliciems, A.

    1981-06-01

    Recommendations for indoor thermal requirements have been based upon verbalized responses on traditional assumptions that (1) minimal thermoregulatory activity may be equated to maximum subjective acceptability (2) sensations and levels of discomfort are synonymous and (3) perception of warmth is exclusively the function of thermal stimulus — physiological response. These concepts are reviewed in the light of recent researches which indicate the inadequacy of the existing physiological models and methods of research. In particular, recognition is made of higher levels of mental integration of information flows which, it is argued, must include parameters of past cultural and climatic experiences and expectations. The aim is to initiate a more holistic approach to research into human thermal environments, and, a clearer definition of concepts significant to practical application.

  4. Comparison of rotator cuff muscle architecture between humans and other selected vertebrate species

    PubMed Central

    Mathewson, Margie A.; Kwan, Alan; Eng, Carolyn M.; Lieber, Richard L.; Ward, Samuel R.

    2014-01-01

    In this study, we compare rotator cuff muscle architecture of typically used animal models with that of humans and quantify the scaling relationships of these muscles across mammals. The four muscles that correspond to the human rotator cuff – supraspinatus, infraspinatus, subscapularis and teres minor – of 10 commonly studied animals were excised and subjected to a series of comparative measurements. When body mass among animals was regressed against physiological cross-sectional area, muscle mass and normalized fiber length, the confidence intervals suggested geometric scaling but did not exclude other scaling relationships. Based on the architectural difference index (ADI), a combined measure of fiber length-to-moment arm ratio, fiber length-to-muscle length ratio and the fraction of the total rotator cuff physiological cross-sectional area contributed by each muscle, chimpanzees were found to be the most similar to humans (ADI=2.15), followed closely by capuchins (ADI=2.16). Interestingly, of the eight non-primates studied, smaller mammals such as mice, rats and dogs were more similar to humans in architectural parameters compared with larger mammals such as sheep, pigs or cows. The force production versus velocity trade-off (indicated by fiber length-to-moment arm ratio) and the excursion ability (indicated by fiber length-to-muscle length ratio) of humans were also most similar to those of primates, followed by the small mammals. Overall, primates provide the best architectural representation of human muscle architecture. However, based on the muscle architectural parameters of non-primates, smaller rather than larger mammals may be better models for studying muscles related to the human rotator cuff. PMID:24072803

  5. Recombinant methionyl human leptin administration activates signal transducer and activator of transcription 3 signaling in peripheral blood mononuclear cells in vivo and regulates soluble tumor necrosis factor-alpha receptor levels in humans with relative leptin deficiency.

    PubMed

    Chan, Jean L; Moschos, Stergios J; Bullen, John; Heist, Kathleen; Li, Xian; Kim, Young-Bum; Kahn, Barbara B; Mantzoros, Christos S

    2005-03-01

    Studies of congenital complete leptin deficiency in animals and humans support a role for leptin in regulating immune function. Whether acquired relative leptin deficiency affects immunological parameters in healthy humans remains unknown. We thus used experimental models of relative leptin deficiency and recombinant methionyl human leptin (r-metHuLeptin) administration in humans to investigate whether r-metHuLeptin would activate signaling pathways in peripheral blood mononuclear cells (PBMCs) and whether acquired relative leptin deficiency and/or increasing circulating leptin levels into the physiologic range would change PBMC subpopulations and cytokines important in the T-helper cell and systemic immune responses. We found that r-metHuLeptin administration to healthy humans activates signal transducer and activator of transcription-3 signaling in PBMCs in vivo. Neither short-term leptin deficiency, induced by 3-d complete fasting, nor physiologic r-metHuLeptin replacement for the same period of time had a major effect on PBMC subpopulations or serum cytokines in healthy men. In contrast, normalizing serum leptin levels over 8 wk in lean women with relative leptin deficiency for 5.1 +/- 1.4 yr (mean +/- se) due to chronic energy deficit increased soluble TNFalpha receptor levels, indicating activation of the TNFalpha system. These findings suggest that relative leptin deficiency due to more long-term energy deprivation is associated with defects in immunological parameters that may be corrected with exogenous r-metHuLeptin administration. Further studies are warranted to assess the implications of acquired relative hypoleptinemia and/or r-metHuLeptin administration on the immunosuppression associated with energy- and leptin-deficient states in humans.

  6. Gestation-Specific Changes in the Anatomy and Physiology of Healthy Pregnant Women: An Extended Repository of Model Parameters for Physiologically Based Pharmacokinetic Modeling in Pregnancy.

    PubMed

    Dallmann, André; Ince, Ibrahim; Meyer, Michaela; Willmann, Stefan; Eissing, Thomas; Hempel, Georg

    2017-11-01

    In the past years, several repositories for anatomical and physiological parameters required for physiologically based pharmacokinetic modeling in pregnant women have been published. While providing a good basis, some important aspects can be further detailed. For example, they did not account for the variability associated with parameters or were lacking key parameters necessary for developing more detailed mechanistic pregnancy physiologically based pharmacokinetic models, such as the composition of pregnancy-specific tissues. The aim of this meta-analysis was to provide an updated and extended database of anatomical and physiological parameters in healthy pregnant women that also accounts for changes in the variability of a parameter throughout gestation and for the composition of pregnancy-specific tissues. A systematic literature search was carried out to collect study data on pregnancy-related changes of anatomical and physiological parameters. For each parameter, a set of mathematical functions was fitted to the data and to the standard deviation observed among the data. The best performing functions were selected based on numerical and visual diagnostics as well as based on physiological plausibility. The literature search yielded 473 studies, 302 of which met the criteria to be further analyzed and compiled in a database. In total, the database encompassed 7729 data. Although the availability of quantitative data for some parameters remained limited, mathematical functions could be generated for many important parameters. Gaps were filled based on qualitative knowledge and based on physiologically plausible assumptions. The presented results facilitate the integration of pregnancy-dependent changes in anatomy and physiology into mechanistic population physiologically based pharmacokinetic models. Such models can ultimately provide a valuable tool to investigate the pharmacokinetics during pregnancy in silico and support informed decision making regarding optimal dosing regimens in this vulnerable special population.

  7. Physiological Factors Analysis in Unpressurized Aircraft Cabins

    NASA Astrophysics Data System (ADS)

    Patrao, Luis; Zorro, Sara; Silva, Jorge

    2016-11-01

    Amateur and sports flight is an activity with growing numbers worldwide. However, the main cause of flight incidents and accidents is increasingly pilot error, for a number of reasons. Fatigue, sleep issues and hypoxia, among many others, are some that can be avoided, or, at least, mitigated. This article describes the analysis of psychological and physiological parameters during flight in unpressurized aircraft cabins. It relates cerebral oximetry and heart rate with altitude, as well as with flight phase. The study of those parameters might give clues on which variations represent a warning sign to the pilot, thus preventing incidents and accidents due to human factors. Results show that both cerebral oximetry and heart rate change along the flight and altitude in the alert pilot. The impaired pilot might not reveal these variations and, if this is detected, he can be warned in time.

  8. An Experimental Study of the Effects of External Physiological Parameters on the Photoplethysmography Signals in the Context of Local Blood Pressure (Hydrostatic Pressure Changes).

    PubMed

    Yuan, Hongwei; Poeggel, Sven; Newe, Thomas; Lewis, Elfed; Viphavakit, Charusluk; Leen, Gabriel

    2017-03-10

    A comprehensive study of the effect of a wide range of controlled human subject motion on Photoplethysmographic signals is reported. The investigation includes testing of two separate groups of 5 and 18 subjects who were asked to undertake set exercises whilst simultaneously monitoring a wide range of physiological parameters including Breathing Rate, Heart Rate and Localised Blood Pressure using commercial clinical sensing systems. The unique finger mounted PPG probe equipped with miniature three axis accelerometers for undertaking this investigation was a purpose built in-house version which is designed to facilitate reproducible application to a wide range of human subjects and the study of motion. The subjects were required to undertake several motion based exercises including standing, sitting and lying down and transitions between these states. They were also required to undertake set arm movements including arm-swinging and wrist rotation. A comprehensive set of experimental results corresponding to all motion inducing exercises have been recorded and analysed including the baseline (BL) value (DC component) and the amplitude of the oscillation of the PPG. All physiological parameters were also recorded as a simultaneous time varying waveform. The effects of the motion and specifically the localised Blood Pressure (BP) have been studied and related to possible influences of the Autonomic Nervous System (ANS) and hemodynamic pressure variations. It is envisaged that a comprehensive study of the effect of motion and the localised pressure fluctuations will provide valuable information for the future minimisation of motion artefact effect on the PPG signals of this probe and allow the accurate assessment of total haemoglobin concentration which is the primary function of the probe.

  9. Scale-up of a physiologically-based pharmacokinetic model to predict the disposition of monoclonal antibodies in monkeys.

    PubMed

    Glassman, Patrick M; Chen, Yang; Balthasar, Joseph P

    2015-10-01

    Preclinical assessment of monoclonal antibody (mAb) disposition during drug development often includes investigations in non-human primate models. In many cases, mAb exhibit non-linear disposition that relates to mAb-target binding [i.e., target-mediated disposition (TMD)]. The goal of this work was to develop a physiologically-based pharmacokinetic (PBPK) model to predict non-linear mAb disposition in plasma and in tissues in monkeys. Physiological parameters for monkeys were collected from several sources, and plasma data for several mAbs associated with linear pharmacokinetics were digitized from prior literature reports. The digitized data displayed great variability; therefore, parameters describing inter-antibody variability in the rates of pinocytosis and convection were estimated. For prediction of the disposition of individual antibodies, we incorporated tissue concentrations of target proteins, where concentrations were estimated based on categorical immunohistochemistry scores, and with assumed localization of target within the interstitial space of each organ. Kinetics of target-mAb binding and target turnover, in the presence or absence of mAb, were implemented. The model was then employed to predict concentration versus time data, via Monte Carlo simulation, for two mAb that have been shown to exhibit TMD (2F8 and tocilizumab). Model predictions, performed a priori with no parameter fitting, were found to provide good prediction of dose-dependencies in plasma clearance, the areas under plasma concentration versu time curves, and the time-course of plasma concentration data. This PBPK model may find utility in predicting plasma and tissue concentration versus time data and, potentially, the time-course of receptor occupancy (i.e., mAb-target binding) to support the design and interpretation of preclinical pharmacokinetic-pharmacodynamic investigations in non-human primates.

  10. Physiological typing of Pseudallescheria and Scedosporium strains using Taxa Profile, a semi-automated, 384-well microtitre system.

    PubMed

    Horré, R; Schaal, K P; Marklein, G; de Hoog, G S; Reiffert, S-M

    2011-10-01

    During the last few decades, Pseudallescheria and Scedosporium infections in humans are noted with increasing frequency. Multi-drug resistance commonly occurring in this species complex interferes with adequate therapy. Rapid and correct identification of clinical isolates is of paramount significance for optimal treatment in the early stages of infection, while strain typing is necessary for epidemiological purposes. In view of the development of physiological diagnostic parameters, 570 physiological reactions were evaluated using the Taxa Profile Micronaut system, a semi-automatic, computer-assisted, 384-well microtitre platform. Thirty two strains of the Pseudallescheria and Scedosporium complex were analysed after molecular verification of correct species attribution. Of the compounds tested, 254 proved to be polymorphic. Cluster analysis was performed with the Micronaut profile software, which is linked to the ntsypc® program. The systemic opportunist S. prolificans was unambiguously separated from the remaining species. Within the P. boydii/P. apiosperma complex differentiation was noted at the level of individual strains, but no unambiguous parameters for species recognition were revealed. © 2011 Blackwell Verlag GmbH.

  11. Corneal thickness: measurement and implications.

    PubMed

    Ehlers, Niels; Hjortdal, Jesper

    2004-03-01

    The thickness of the cornea was reported in more than 100-year-old textbooks on physiological optics (Helmholtz, Gullstrand). Physiological interest was revived in the 1950s by David Maurice, and over the next 50 years, this 'simple' biological parameter has been studied extensively. Several techniques for its measurement have been described and physiological and clinical significance have been studied. In this review, the different methods and techniques of measurement are briefly presented (optical, ultrasound). While the corneal thickness of many animals are the same over a considerable part of the surface, in the human cornea anterior and posterior curvature are not concentric giving rise to a problem of definition. Based on this the precision and accuracy of determining the central corneal thickness are discussed. Changes in corneal thickness reflects changes in function of the boundary layers, in particular the endothelial barrier. The absolute value of thickness is of importance for the estimation of IOP but also in diagnosis of corneal and systemic disorders. Finally it is discussed to what extent the thickness is a biometric parameter of significance, e.g. in the progression of myopia or in the development of retinal detachment.

  12. Biological effects of exposure to static electric fields in humans and vertebrates: a systematic review.

    PubMed

    Petri, Anne-Kathrin; Schmiedchen, Kristina; Stunder, Dominik; Dechent, Dagmar; Kraus, Thomas; Bailey, William H; Driessen, Sarah

    2017-04-17

    High-voltage direct current (HVDC) lines are the technology of choice for the transport of large amounts of energy over long distances. The operation of these lines produces static electric fields (EF), but the data reviewed in previous assessments were not sufficient to assess the need for any environmental limit. The aim of this systematic review was to update the current state of research and to evaluate biological effects of static EF. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) recommendations, we collected and evaluated experimental and epidemiological studies examining biological effects of exposure to static EF in humans (n = 8) and vertebrates (n = 40). There is good evidence that humans and animals are able to perceive the presence of static EF at sufficiently high levels. Hair movements caused by electrostatic forces may play a major role in this perception. A large number of studies reported responses of animals (e.g., altered metabolic, immunologic or developmental parameters) to a broad range of static EF strengths as well, but these responses are likely secondary physiological responses to sensory stimulation. Furthermore, the quality of many of the studies reporting physiological responses is poor, which raises concerns about confounding. The weight of the evidence from the literature reviewed did not indicate that static EF have adverse biological effects in humans or animals. The evidence strongly supported the role of superficial sensory stimulation of hair and skin as the basis for perception of the field, as well as reported indirect behavioral and physiological responses. Physical considerations also preclude any direct effect of static EF on internal physiology, and reports that some physiological processes are affected in minor ways may be explained by other factors. While this literature does not support a level of concern about biological effects of exposure to static EF, the conditions that affect thresholds for human detection and possible annoyance at suprathreshold levels should be investigated.

  13. Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirenko, Oksana, E-mail: oksana.sirenko@moldev.com; Cromwell, Evan F., E-mail: evan.cromwell@moldev.com; Crittenden, Carole

    2013-12-15

    Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes show promise for screening during early drug development. Here, we tested a hypothesis that in vitro assessment of multiple cardiomyocyte physiological parameters enables predictive and mechanistically-interpretable evaluation of cardiotoxicity in a high-throughput format. Human iPSC-derived cardiomyocytes were exposed for 30 min or 24 h to 131 drugs, positive (107) and negative (24) for in vivo cardiotoxicity, in up to 6 concentrations (3 nM to 30 uM) in 384-well plates. Fast kinetic imaging was used to monitor changes in cardiomyocyte function using intracellular Ca{sup 2+} flux readouts synchronous with beating, and cell viability. Amore » number of physiological parameters of cardiomyocyte beating, such as beat rate, peak shape (amplitude, width, raise, decay, etc.) and regularity were collected using automated data analysis. Concentration–response profiles were evaluated using logistic modeling to derive a benchmark concentration (BMC) point-of-departure value, based on one standard deviation departure from the estimated baseline in vehicle (0.3% dimethyl sulfoxide)-treated cells. BMC values were used for cardiotoxicity classification and ranking of compounds. Beat rate and several peak shape parameters were found to be good predictors, while cell viability had poor classification accuracy. In addition, we applied the Toxicological Prioritization Index (ToxPi) approach to integrate and display data across many collected parameters, to derive “cardiosafety” ranking of tested compounds. Multi-parameter screening of beating profiles allows for cardiotoxicity risk assessment and identification of specific patterns defining mechanism-specific effects. These data and analysis methods may be used widely for compound screening and early safety evaluation in drug development. - Highlights: • Induced pluripotent stem cell-derived cardiomyocytes are promising in vitro models. • We tested if evaluation of cardiotoxicity is possible in a high-throughput format. • The assay shows benefits of automated data integration across multiple parameters. • Quantitative assessment of concentration–response is possible using iPSCs. • Multi-parametric screening allows for cardiotoxicity risk assessment.« less

  14. Assessing and Promoting Functional Resilience in Flight Crews During Exploration Missions

    NASA Technical Reports Server (NTRS)

    Shelhamer, Mark

    2015-01-01

    NASA plans to send humans to Mars in about 20 years. The NASA Human Research Program supports research to mitigate the major risks to human health and performance on extended missions. However, there will undoubtedly be unforeseen events on any mission of this nature - thus mitigation of known risks alone is not sufficient to ensure optimal crew health and performance. Research should be directed not only to mitigating known risks, but also to providing crews with the tools to assess and enhance resilience, as a group and individually. We can draw on ideas from complexity theory and network theory to assess crew and individual resilience. The entire crew or the individual crewmember can be viewed as a complex system that is composed of subsystems (individual crewmembers or physiological subsystems), and the interactions between subsystems are of crucial importance for overall health and performance. An understanding of the structure of the interactions can provide important information even in the absence of complete information on the component subsystems. This is critical in human spaceflight, since insufficient flight opportunities exist to elucidate the details of each subsystem. Enabled by recent advances in noninvasive measurement of physiological and behavioral parameters, subsystem monitoring can be implemented within a mission and also during preflight training to establish baseline values and ranges. Coupled with appropriate mathematical modeling, this can provide real-time assessment of health and function, and detect early indications of imminent breakdown. Since the interconnected web of physiological systems (and crewmembers) can be interpreted as a network in mathematical terms, we can draw on recent work that relates the structure of such networks to their resilience (ability to self-organize in the face of perturbation). There are many parameters and interactions to choose from. Normal variability is an established characteristic of a healthy physiological response. Healthy coupling has been investigated less extensively, but there are cases in which too tight or too loose coupling can be problematic. This might be in inter-individual behaviors, such as sleep cycles, coordination of work and meal times, and coupled motions during communication. Less apparent are couplings of physiological systems, nevertheless examples abound of coupled systems which might be monitored: cardio-respiratory rhythms; circadian rhythms, body temperature, and sleep; stress markers and cognition, sleep, and performance; profiles of biochemical markers related to immune function and nutritional status; sensorimotor aspects such as motion sickness, ataxia, reaction time, and manual control. Tools for resilience are then the means to measure and analyze these parameters, incorporate them into appropriate models of normal variability and interconnectedness, and recognize when parameters or their couplings are outside of normal limits. What to do when a problem is identified depends on its nature. Changes can be made to crew procedures, work pacing, interpersonal interactions, sleep cycles, meal timing and content, as guided by the model. Use and continued development of these methods could not only provide tools for resilience, but also meaningful autonomous work for the crew on an extended flight.

  15. Human physiological responses to wooden indoor environment.

    PubMed

    Zhang, Xi; Lian, Zhiwei; Wu, Yong

    2017-05-15

    Previous studies are mainly focused on non-wooden environments, whereas few are concerned with wooden ones. How wooden indoor environments impact the physiology of the occupants is still unclear. The purpose of this study was to explore the distinct physiological responses to wooden and non-wooden indoor environments, assessed by physiological parameters tests including blood pressure, electrocardiogram measurements, electro-dermal activity, oxyhemoglobin saturation, skin temperature, and near distance vision. Twenty healthy adults participated in this experiment, and their physiological responses were evaluated in a 90minute investigation. The results illustrated that; less tension and fatigue were generated in the wooden rooms than in the non-wooden rooms when the participants did their work. In addition, the study also found that the wooden environments benefit the autonomic nervous system, respiratory system, and visual system. Moreover, wooden rooms play a valuable role in physiological regulation and ease function especially after a consecutive period of work. These results provide an experimental basis to support that wooden environment is beneficial to indoor occupants than the non-wooden indoor environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Novel noninvasive point-of-care device for real time hemoglobin monitoring

    NASA Astrophysics Data System (ADS)

    Timm, Ulrich; Gewiss, Helge; Kraitl, Jens; Stuepmann, Kirstin; Hinz, Michael; Koball, Sebastian; Ewald, Hartmut

    2014-02-01

    During the perioperative period, which includes the period before surgery and after surgery (postoperative), it is essential to measure diagnostic parameters such as: blood oxygen saturation; hemoglobin (Hb) concentration; and pulse rate. The Hb concentration in human blood is an important parameter to evaluate the physiological condition of an individual, as Hb is the oxygen carrying component of red blood cells. By determining the Hb concentration, it is possible, for example, to observe intraoperative or postoperative bleeding, and use this information as a trigger for autologous/ allogenic blood transfusions. In blood donation center it is also an essential parameter for the decision regarding the acceptance of the donor.

  17. Improved inhalation technology for setting safe exposure levels for workplace chemicals

    NASA Technical Reports Server (NTRS)

    Stuart, Bruce O.

    1993-01-01

    Threshold Limit Values recommended as allowable air concentrations of a chemical in the workplace are often based upon a no-observable-effect-level (NOEL) determined by experimental inhalation studies using rodents. A 'safe level' for human exposure must then be estimated by the use of generalized safety factors in attempts to extrapolate from experimental rodents to man. The recent development of chemical-specific physiologically-based toxicokinetics makes use of measured physiological, biochemical, and metabolic parameters to construct a validated model that is able to 'scale-up' rodent response data to predict the behavior of the chemical in man. This procedure is made possible by recent advances in personal computer software and the emergence of appropriate biological data, and provides an analytical tool for much more reliable risk evaluation and airborne chemical exposure level setting for humans.

  18. Male apoE*3-Leiden.CETP mice on high-fat high-cholesterol diet exhibit a biphasic dyslipidemic response, mimicking the changes in plasma lipids observed through life in men.

    PubMed

    Paalvast, Yared; Gerding, Albert; Wang, Yanan; Bloks, Vincent W; van Dijk, Theo H; Havinga, Rick; Willems van Dijk, Ko; Rensen, Patrick C N; Bakker, Barbara M; Kuivenhoven, Jan Albert; Groen, Albert K

    2017-10-01

    Physiological adaptations resulting in the development of the metabolic syndrome in man occur over a time span of several decades. This combined with the prohibitive financial cost and ethical concerns to measure key metabolic parameters repeatedly in subjects for the major part of their life span makes that comprehensive longitudinal human data sets are virtually nonexistent. While experimental mice are often used, little is known whether this species is in fact an adequate model to better understand the mechanisms that drive the metabolic syndrome in man. We took up the challenge to study the response of male apoE*3-Leiden.CETP mice (with a humanized lipid profile) to a high-fat high-cholesterol diet for 6 months. Study parameters include body weight, food intake, plasma and liver lipids, hepatic transcriptome, VLDL - triglyceride production and importantly the use of stable isotopes to measure hepatic de novo lipogenesis, gluconeogenesis, and biliary/fecal sterol secretion to assess metabolic fluxes. The key observations include (1) high inter-individual variation; (2) a largely unaffected hepatic transcriptome at 2, 3, and 6 months; (3) a biphasic response curve of the main metabolic features over time; and (4) maximum insulin resistance preceding dyslipidemia. The biphasic response in plasma triglyceride and total cholesterol appears to mimic that of men in cross-sectional studies. Combined, these observations suggest that studies such as these can help to delineate the causes of metabolic derangements in patients suffering from metabolic syndrome. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  19. Physiological basis for noninvasive skin cancer diagnosis using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Markey, Mia K.; Tunnell, James W.

    2017-02-01

    Diffuse reflectance spectroscopy offers a noninvasive, fast, and low-cost alternative to visual screening and biopsy for skin cancer diagnosis. We have previously acquired reflectance spectra from 137 lesions in 76 patients and determined the capability of spectral diagnosis using principal component analysis (PCA). However, it is not well elucidated why spectral analysis enables tissue classification. To provide the physiological basis, we used the Monte Carlo look-up table (MCLUT) model to extract physiological parameters from those clinical data. The MCLUT model results in the following physiological parameters: oxygen saturation, hemoglobin concentration, melanin concentration, vessel radius, and scattering parameters. Physiological parameters show that cancerous skin tissue has lower scattering and larger vessel radii, compared to normal tissue. These results demonstrate the potential of diffuse reflectance spectroscopy for detection of early precancerous changes in tissue. In the future, a diagnostic algorithm that combines these physiological parameters could be enable non-invasive diagnosis of skin cancer.

  20. A Simple fMRI Compatible Robotic Stimulator to Study the Neural Mechanisms of Touch and Pain.

    PubMed

    Riillo, F; Bagnato, C; Allievi, A G; Takagi, A; Fabrizi, L; Saggio, G; Arichi, T; Burdet, E

    2016-08-01

    This paper presents a simple device for the investigation of the human somatosensory system with functional magnetic imaging (fMRI). PC-controlled pneumatic actuation is employed to produce innocuous or noxious mechanical stimulation of the skin. Stimulation patterns are synchronized with fMRI and other relevant physiological measurements like electroencephalographic activity and vital physiological parameters. The system allows adjustable regulation of stimulation parameters and provides consistent patterns of stimulation. A validation experiment demonstrates that the system safely and reliably identifies clusters of functional activity in brain regions involved in the processing of pain. This new device is inexpensive, portable, easy-to-assemble and customizable to suit different experimental requirements. It provides robust and consistent somatosensory stimulation, which is of crucial importance to investigating the mechanisms of pain and its strong connection with the sense of touch.

  1. Biological data assimilation for parameter estimation of a phytoplankton functional type model for the western North Pacific

    NASA Astrophysics Data System (ADS)

    Hoshiba, Yasuhiro; Hirata, Takafumi; Shigemitsu, Masahito; Nakano, Hideyuki; Hashioka, Taketo; Masuda, Yoshio; Yamanaka, Yasuhiro

    2018-06-01

    Ecosystem models are used to understand ecosystem dynamics and ocean biogeochemical cycles and require optimum physiological parameters to best represent biological behaviours. These physiological parameters are often tuned up empirically, while ecosystem models have evolved to increase the number of physiological parameters. We developed a three-dimensional (3-D) lower-trophic-level marine ecosystem model known as the Nitrogen, Silicon and Iron regulated Marine Ecosystem Model (NSI-MEM) and employed biological data assimilation using a micro-genetic algorithm to estimate 23 physiological parameters for two phytoplankton functional types in the western North Pacific. The estimation of the parameters was based on a one-dimensional simulation that referenced satellite data for constraining the physiological parameters. The 3-D NSI-MEM optimized by the data assimilation improved the timing of a modelled plankton bloom in the subarctic and subtropical regions compared to the model without data assimilation. Furthermore, the model was able to improve not only surface concentrations of phytoplankton but also their subsurface maximum concentrations. Our results showed that surface data assimilation of physiological parameters from two contrasting observatory stations benefits the representation of vertical plankton distribution in the western North Pacific.

  2. Development of a remote photoplethysmographic technique for human biometrics

    NASA Astrophysics Data System (ADS)

    Shi, Ping; Hu, Sijung; Echiadis, Angelos; Azorin Peris, Vicente; Zheng, Jia; Zhu, Yisheng

    2009-02-01

    Non-contact reflection photoplethysmography (NRPPG) is being developed to trace pulse features for comparison with contact photoplethysmography (CPPG). Simultaneous recordings of CPPG and NRPPG signals from 22 healthy subjects were studied. The power spectrum of PPG signals were analysed and compared between NRPPG and CPPG. The recurrence plot (RP) was used as a graphical tool to visualize the time dependent behaviour of the dynamics of the pulse signals. The agreement between NRPPG and CPPG for physiological monitoring, i.e. HRV parameters, was determined by means of the Bland-Altman plot and Pearson's correlation coefficient. The results indicated that NRPPG could be used for the assessment of cardio-physiological signals.

  3. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the developmentmore » and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.« less

  4. Physiologic effects of voice stimuli in conscious and unconscious palliative patients-a pilot study.

    PubMed

    Buchholz, Kerstin; Liebl, Patrick; Keinki, Christian; Herth, Natalie; Huebner, Jutta

    2018-05-01

    Sounds and acoustic stimuli can have an effect on human beings. In medical care, sounds are often used as parts of therapies, e. g., in different types of music therapies. Also, human speech greatly affects the mental status. Although calming sounds and music are widely established in the medical field, clear evidence for the effect of sounds in palliative care is scare, and data about effects of the human voice in general are still missing. Thus, the aim of this study was to evaluate the effects of different voice stimuli on palliative patients. Two different voice stimuli (one calm, the other turbulent) were presented in a randomized sequence, and physiological parameters (blood pressure, heart frequency, oxygen saturation, respiratory rate) were recorded. Twenty patients (14 conscious and 6 unconscious) participated in this study. There was a decrease of heart frequency as well as an increase of oxygen saturation in the group of conscious patients, whereas no significant change of blood pressure or respiratory rate were detected in either group, conscious and unconscious patients. Although our dataset is heterogeneous, it can be concluded that voice stimuli can influence conscious patients. However, in this setting, no effect on unconscious patients was demonstrated. More clinical research on this topic with larger groups and a broader spectrum of parameters is needed.

  5. Simulation environment and graphical visualization environment: a COPD use-case.

    PubMed

    Huertas-Migueláñez, Mercedes; Mora, Daniel; Cano, Isaac; Maier, Dieter; Gomez-Cabrero, David; Lluch-Ariet, Magí; Miralles, Felip

    2014-11-28

    Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules. It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios.

  6. Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability.

    PubMed

    Ring, Caroline L; Pearce, Robert G; Setzer, R Woodrow; Wetmore, Barbara A; Wambaugh, John F

    2017-09-01

    The thousands of chemicals present in the environment (USGAO, 2013) must be triaged to identify priority chemicals for human health risk research. Most chemicals have little of the toxicokinetic (TK) data that are necessary for relating exposures to tissue concentrations that are believed to be toxic. Ongoing efforts have collected limited, in vitro TK data for a few hundred chemicals. These data have been combined with biomonitoring data to estimate an approximate margin between potential hazard and exposure. The most "at risk" 95th percentile of adults have been identified from simulated populations that are generated either using standard "average" adult human parameters or very specific cohorts such as Northern Europeans. To better reflect the modern U.S. population, we developed a population simulation using physiologies based on distributions of demographic and anthropometric quantities from the most recent U.S. Centers for Disease Control and Prevention National Health and Nutrition Examination Survey (NHANES) data. This allowed incorporation of inter-individual variability, including variability across relevant demographic subgroups. Variability was analyzed with a Monte Carlo approach that accounted for the correlation structure in physiological parameters. To identify portions of the U.S. population that are more at risk for specific chemicals, physiologic variability was incorporated within an open-source high-throughput (HT) TK modeling framework. We prioritized 50 chemicals based on estimates of both potential hazard and exposure. Potential hazard was estimated from in vitro HT screening assays (i.e., the Tox21 and ToxCast programs). Bioactive in vitro concentrations were extrapolated to doses that produce equivalent concentrations in body tissues using a reverse dosimetry approach in which generic TK models are parameterized with: 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. For risk-based prioritization of chemicals, predicted bioactive equivalent doses were compared to demographic-specific inferences of exposure rates that were based on NHANES urinary analyte biomonitoring data. The inclusion of NHANES-derived inter-individual variability decreased predicted bioactive equivalent doses by 12% on average for the total population when compared to previous methods. However, for some combinations of chemical and demographic groups the margin was reduced by as much as three quarters. This TK modeling framework allows targeted risk prioritization of chemicals for demographic groups of interest, including potentially sensitive life stages and subpopulations. Published by Elsevier Ltd.

  7. A Low Cost Device for Monitoring the Urine Output of Critical Care Patients

    PubMed Central

    Otero, Abraham; Palacios, Francisco; Akinfiev, Teodor; Apalkov, Andrey

    2010-01-01

    In critical care units most of the patients’ physiological parameters are sensed by commercial monitoring devices. These devices can also supervise whether the values of the parameters lie within a pre-established range set by the clinician. The automation of the sensing and supervision tasks has discharged the healthcare staff of a considerable workload and avoids human errors, which are common in repetitive and monotonous tasks. Urine output is very likely the most relevant physiological parameter that has yet to be sensed or supervised automatically. This paper presents a low cost patent-pending device capable of sensing and supervising urine output. The device uses reed switches activated by a magnetic float in order to measure the amount of urine collected in two containers which are arranged in cascade. When either of the containers fills, it is emptied automatically using a siphon mechanism and urine begins to collect again. An electronic unit sends the state of the reed switches via Bluetooth to a PC that calculates the urine output from this information and supervises the achievement of therapeutic goals. PMID:22163495

  8. A low cost device for monitoring the urine output of critical care patients.

    PubMed

    Otero, Abraham; Palacios, Francisco; Akinfiev, Teodor; Apalkov, Andrey

    2010-01-01

    In critical care units most of the patients' physiological parameters are sensed by commercial monitoring devices. These devices can also supervise whether the values of the parameters lie within a pre-established range set by the clinician. The automation of the sensing and supervision tasks has discharged the healthcare staff of a considerable workload and avoids human errors, which are common in repetitive and monotonous tasks. Urine output is very likely the most relevant physiological parameter that has yet to be sensed or supervised automatically. This paper presents a low cost patent-pending device capable of sensing and supervising urine output. The device uses reed switches activated by a magnetic float in order to measure the amount of urine collected in two containers which are arranged in cascade. When either of the containers fills, it is emptied automatically using a siphon mechanism and urine begins to collect again. An electronic unit sends the state of the reed switches via Bluetooth to a PC that calculates the urine output from this information and supervises the achievement of therapeutic goals.

  9. Misalignment with the external light environment drives metabolic and cardiac dysfunction.

    PubMed

    West, Alexander C; Smith, Laura; Ray, David W; Loudon, Andrew S I; Brown, Timothy M; Bechtold, David A

    2017-09-12

    Most organisms use internal biological clocks to match behavioural and physiological processes to specific phases of the day-night cycle. Central to this is the synchronisation of internal processes across multiple organ systems. Environmental desynchrony (e.g. shift work) profoundly impacts human health, increasing cardiovascular disease and diabetes risk, yet the underlying mechanisms remain unclear. Here, we characterise the impact of desynchrony between the internal clock and the external light-dark (LD) cycle on mammalian physiology. We reveal that even under stable LD environments, phase misalignment has a profound effect, with decreased metabolic efficiency and disrupted cardiac function including prolonged QT interval duration. Importantly, physiological dysfunction is not driven by disrupted core clock function, nor by an internal desynchrony between organs, but rather the altered phase relationship between the internal clockwork and the external environment. We suggest phase misalignment as a major driver of pathologies associated with shift work, chronotype and social jetlag.The misalignment between internal circadian rhythm and the day-night cycle can be caused by genetic, behavioural and environmental factors, and may have a profound impact on human physiology. Here West et al. show that desynchrony between the internal clock and the external environment alter metabolic parameters and cardiac function in mice.

  10. Coupling of three-dimensional field and human thermoregulatory models in a crowded enclosure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, H.; Kang, Z.J.; Bong, T.Y.

    1999-11-12

    Health, comfort, and energy conservation are important factors to consider in the design of a building and its HVAC systems. Advanced tools are required to evaluate parameters regarding airflow, temperature, and humidity ratio in buildings, with the end results being better indoor air quality and thermal environment as well as increased confidence in the performance of buildings. A numerical model coupling the three-dimensional field and human thermoregulatory models is proposed and developed. A high-Re {kappa}-{epsilon} turbulence model is used for the field simulation. A modified 25-mode model of human thermoregulation is adopted to predict human thermal response in physiological parameters,more » such as body temperature and body heat loss. Distributions of air velocity, temperature, and moisture content are demonstrated in a crowded enclosure with mechanical ventilation under two ventilation rates. The results are analyzed and discussed. The coupling model is useful in assisting and verifying ventilation and air-conditioning system designs.« less

  11. A protocol to study ex vivo mouse working heart at human-like heart rate.

    PubMed

    Feng, Han-Zhong; Jin, Jian-Ping

    2018-01-01

    Genetically modified mice are widely used as experimental models to study human heart function and diseases. However, the fast rate of normal mouse heart at 400-600bpm limits its capacity of assessing kinetic parameters that are important for the physiology and pathophysiology of human heart that beats at a much slower rate (75-180bpm). To extend the value of mouse models, we established a protocol to study ex vivo mouse working hearts at a human-like heart rate. In the presence of 300μM lidocaine to lower pacemaker and conductive activities and prevent arrhythmia, a stable rate of 120-130bpm at 37°C is achieved for ex vivo mouse working hearts. The negative effects of decreased heart rate on force-frequency dependence and lidocaine as a myocardial depressant on intracellular calcium can be compensated by using a higher but still physiological level of calcium (2.75mM) in the perfusion media. Multiple parameters were studied to compare the function at the human-like heart rate with that of ex vivo mouse working hearts at the standard rate of 480bpm. The results showed that the conditions for slower heart rate in the presence of 300μM lidocaine did not have depressing effect on left ventricular pressure development, systolic and diastolic velocities and stroke volume with maintained positive inotropic and lusitropic responses to β-adrenergic stimulation. Compared with that at 480bpm, the human-like heart rate increased ventricular filling and end diastolic volume with enhanced Frank-Starling responses. Coronary perfusion was increased from longer relaxation time and interval between beats whereas cardiac efficiency was significantly improved. Although the intrinsic differences between mouse and human heart remain, this methodology for ex vivo mouse hearts to work at human-like heart rate extends the value of using genetically modified mouse models to study cardiac function and human heart diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. East Indian Sandalwood and alpha-santalol odor increase physiological and self-rated arousal in humans.

    PubMed

    Heuberger, Eva; Hongratanaworakit, Tapanee; Buchbauer, Gerhard

    2006-07-01

    In Ayurvedic medicine, East Indian Sandalwood is an important remedy for the treatment of both somatic and mental disorders. In this investigation, the effects of inhalation of East Indian Sandalwood essential oil and its main compound, alpha-santalol, on human physiological parameters (blood oxygen saturation, respiration rate, eye-blink rate, pulse rate, skin conductance, skin temperature, surface electromyogram, and blood pressure) and self-ratings of arousal (alertness, attentiveness, calmness, mood, relaxation and vigor) were studied in healthy volunteers. Compared to either an odorless placebo or alpha-santalol, Sandalwood oil elevated pulse rate, skin conductance level, and systolic blood pressure. alpha-Santalol, however, elicited higher ratings of attentiveness and mood than did Sandalwood oil or the placebo. Correlation analyses revealed that these effects are mainly due to perceived odor quality. The results suggest a relation between differences in perceived odor quality and differences in arousal level.

  13. Columbus payload requirements in human physiology

    NASA Astrophysics Data System (ADS)

    Stegemann, Juergen

    1993-03-01

    Most of the biological feedback loops in the human body are interrelated. This means that several different parameters have to be recorded simultaneously to understand the interrelationship of different subsystems within the body when fast and slow adaptation processes are to be studied. This determines the requirements for the payload in the Columbus module. In 1988 ESA asked some European scientists in different fields of physiology to provide a 'science study' for the Columbus payload requirements. Their report was the basis of a phase A study completed in December 1991, concerning the 'ANTHROLAB', a laboratory that covers all presently known research challenges in this area. Anthrolab is more or less an improvement of the Anthrorack to be flown on the German Spacelab mission D-2 and on the Columbus precursor flight E-1. Beside the present Anthrorack design, Anthrolab will also provide subelements for vestibular, neurophysiological, and biomechanical research.

  14. The development of a tele-monitoring system for physiological parameters based on the B/S model.

    PubMed

    Shuicai, Wu; Peijie, Jiang; Chunlan, Yang; Haomin, Li; Yanping, Bai

    2010-01-01

    The development of a new physiological multi-parameter remote monitoring system is based on the B/S model. The system consists of a server monitoring center, Internet network and PC-based multi-parameter monitors. Using the B/S model, the clients can browse web pages via the server monitoring center and download and install ActiveX controls. The physiological multi-parameters are collected, displayed and remotely transmitted. The experimental results show that the system is stable, reliable and operates in real time. The system is suitable for use in physiological multi-parameter remote monitoring for family and community healthcare. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Interaction of Salinity and CaCO3 Affects the Physiology and Fatty Acid Metabolism in Portulaca oleracea.

    PubMed

    Bessrour, Mouna; Chelbi, Najla; Moreno, Diego A; Chibani, Farhat; Abdelly, Chedly; Carvajal, Micaela

    2018-06-25

    As a result of the extreme conditions that usually occur in Mediterranean climates, the objective of this work is to study the combined and/or separate effects of saline and alkaline stresses in Portulaca oleracea. The study was carried out to determine the nutritional food potential in relation to plant physiological parameters. The results show that alkaline media in which CaCO 3 was present did not affect growth but exposure to 100 mM NaCl decreased it greatly. Fatty acid content increased under all stress conditions but to a higher extent with salinity; however, the protein content was increased only by alkaline media. The beneficial effect of each stress on P. oleracea is discussed in light of the physiological response, pointing out the suitability of this plant for human nutrition.

  16. Human-in-the-loop Bayesian optimization of wearable device parameters

    PubMed Central

    Malcolm, Philippe; Speeckaert, Jozefien; Siviy, Christoper J.; Walsh, Conor J.; Kuindersma, Scott

    2017-01-01

    The increasing capabilities of exoskeletons and powered prosthetics for walking assistance have paved the way for more sophisticated and individualized control strategies. In response to this opportunity, recent work on human-in-the-loop optimization has considered the problem of automatically tuning control parameters based on realtime physiological measurements. However, the common use of metabolic cost as a performance metric creates significant experimental challenges due to its long measurement times and low signal-to-noise ratio. We evaluate the use of Bayesian optimization—a family of sample-efficient, noise-tolerant, and global optimization methods—for quickly identifying near-optimal control parameters. To manage experimental complexity and provide comparisons against related work, we consider the task of minimizing metabolic cost by optimizing walking step frequencies in unaided human subjects. Compared to an existing approach based on gradient descent, Bayesian optimization identified a near-optimal step frequency with a faster time to convergence (12 minutes, p < 0.01), smaller inter-subject variability in convergence time (± 2 minutes, p < 0.01), and lower overall energy expenditure (p < 0.01). PMID:28926613

  17. Mathematical modelling of the human cardiovascular system in the presence of stenosis

    NASA Technical Reports Server (NTRS)

    Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.

    1993-01-01

    This paper reports a theoretical study on the distribution of blood flow in the human cardiovascular system when one or more blood vessels are affected by stenosis. The analysis employs a mathematical model of the entire system based on the finite element method. The arterial-venous network is represented by a large number of interconnected segments in the model. Values for the model parameters are based upon the published data on the physiological and rheological properties of blood. Computational results show how blood flow through various parts of the cardiovascular system is affected by stenosis in different blood vessels. No significant changes in the flow parameters of the cardiovascular system were found to occur when the reduction in the lumen diameter of the stenosed vessels was less than 65%.

  18. Use of animal models for space flight physiology studies, with special focus on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    2005-01-01

    Animal models have been used to study the effects of space flight on physiological systems. The animal models have been used because of the limited availability of human subjects for studies to be carried out in space as well as because of the need to carry out experiments requiring samples and experimental conditions that cannot be performed using humans. Experiments have been carried out in space using a variety of species, and included developmental biology studies. These species included rats, mice, non-human primates, fish, invertebrates, amphibians and insects. The species were chosen because they best fit the experimental conditions required for the experiments. Experiments with animals have also been carried out utilizing ground-based models that simulate some of the effects of exposure to space flight conditions. Most of the animal studies have generated results that parallel the effects of space flight on human physiological systems. Systems studied have included the neurovestibular system, the musculoskeletal system, the immune system, the neurological system, the hematological system, and the cardiovascular system. Hindlimb unloading, a ground-based model of some of the effects of space flight on the immune system, has been used to study the effects of space flight conditions on physiological parameters. For the immune system, exposure to hindlimb unloading has been shown to results in alterations of the immune system similar to those observed after space flight. This has permitted the development of experiments that demonstrated compromised resistance to infection in rodents maintained in the hindlimb unloading model as well as the beginning of studies to develop countermeasures to ameliorate or prevent such occurrences. Although there are limitations to the use of animal models for the effects of space flight on physiological systems, the animal models should prove very valuable in designing countermeasures for exploration class missions of the future.

  19. Microencapsulated fluorescent pH probe as implantable sensor for monitoring the physiological state of fish embryos.

    PubMed

    Gurkov, Anton; Sadovoy, Anton; Shchapova, Ekaterina; Teh, Cathleen; Meglinski, Igor; Timofeyev, Maxim

    2017-01-01

    In vivo physiological measurement is a major challenge in modern science and technology, as is environment conservation at the global scale. Proper toxicological testing of widely produced mixtures of chemicals is a necessary step in the development of new products, allowing us to minimize the human impact on aquatic ecosystems. However, currently available bioassay-based techniques utilizing small aquatic organisms such as fish embryos for toxicity testing do not allow assessing in time the changes in physiological parameters in the same individual. In this study, we introduce microencapsulated fluorescent probes as a promising tool for in vivo monitoring of internal pH variation in zebrafish embryos. The pH alteration identified under stress conditions demonstrates the applicability of the microencapsulated fluorescent probes for the repeated analysis of the embryo's physiological state. The proposed approach has strong potential to simultaneously measure a range of physiological characteristics using a set of specific fluorescent probes and to finally bring toxicological bioassays and related research fields to a new level of effectiveness and sensitivity.

  20. Space Weather and the State of Cardiovascular System of a Healthy Human Being

    NASA Astrophysics Data System (ADS)

    Samsonov, S. N.; Manykina, V. I.; Krymsky, G. F.; Petrova, P. G.; Palshina, A. M.; Vishnevsky, V. V.

    The term "space weather" characterizes a state of the near-Earth environmental space. An organism of human being represents an open system so the change of conditions in the environment including the near-Earth environmental space influences the health state of a human being.In recent years many works devoted to the effect of space weather on the life on the Earth, and the degree of such effect has been represented from a zero-order up to apocalypse. To reveal a real effect of space weather on the health of human being the international Russian- Ukrainian experiment "Geliomed" is carried out since 2005 (http://geliomed.immsp.kiev.ua) [Vishnevsky et al., 2009]. The analysis of observational set of data has allowed to show a synchronism and globality of such effect (simultaneous manifestation of space weather parameters in a state of cardiovascular system of volunteer groups removed from each other at a distance over 6000 km). The response of volunteer' cardiovascular system to the changes of space weather parameters were observed even at insignificant values of the Earth's geomagnetic field. But even at very considerable disturbances of space weather parameters a human being healthy did not feel painful symptoms though measurements of objective physiological indices showed their changes.

  1. Application of physiologically based absorption modeling to formulation development of a low solubility, low permeability weak base: mechanistic investigation of food effect.

    PubMed

    Zhang, Hefei; Xia, Binfeng; Sheng, Jennifer; Heimbach, Tycho; Lin, Tsu-Han; He, Handan; Wang, Yanfeng; Novick, Steven; Comfort, Ann

    2014-04-01

    Physiologically based pharmacokinetic (PBPK) modeling has been broadly used to facilitate drug development, hereby we developed a PBPK model to systematically investigate the underlying mechanisms of the observed positive food effect of compound X (cpd X) and to strategically explore the feasible approaches to mitigate the food effect. Cpd X is a weak base with pH-dependent solubility; the compound displays significant and dose-dependent food effect in humans, leading to a nonadherence of drug administration. A GastroPlus Opt logD Model was selected for pharmacokinetic simulation under both fasted and fed conditions, where the biopharmaceutic parameters (e.g., solubility and permeability) for cpd X were determined in vitro, and human pharmacokinetic disposition properties were predicted from preclinical data and then optimized with clinical pharmacokinetic data. A parameter sensitivity analysis was performed to evaluate the effect of particle size on the cpd X absorption. A PBPK model was successfully developed for cpd X; its pharmacokinetic parameters (e.g., C max, AUCinf, and t max) predicted at different oral doses were within ±25% of the observed mean values. The in vivo solubility (in duodenum) and mean precipitation time under fed conditions were estimated to be 7.4- and 3.4-fold higher than those under fasted conditions, respectively. The PBPK modeling analysis provided a reasonable explanation for the underlying mechanism for the observed positive food effect of the cpd X in humans. Oral absorption of the cpd X can be increased by reducing the particle size (<100 nm) of an active pharmaceutical ingredient under fasted conditions and therefore, reduce the cpd X food effect correspondingly.

  2. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans.

    PubMed

    Verloop, Herman; Dekkers, Olaf M; Peeters, Robin P; Schoones, Jan W; Smit, Johannes W A

    2014-09-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clinical endpoints. Interest in clinical effects of genetic variation in deiodinases has clearly increased. We aimed to provide an overview for the role of deiodinase polymorphisms in human physiology and morbidity. In this systematic review, studies evaluating the relationship between deiodinase polymorphisms and clinical parameters in humans were eligible. No restrictions on publication date were imposed. The following databases were searched up to August 2013: Pubmed, EMBASE (OVID-version), Web of Science, COCHRANE Library, CINAHL (EbscoHOST-version), Academic Search Premier (EbscoHOST-version), and ScienceDirect. Deiodinase physiology at molecular and tissue level is described, and finally the role of these polymorphisms in pathophysiological conditions is reviewed. Deiodinase type 1 (D1) polymorphisms particularly show moderate-to-strong relationships with thyroid hormone parameters, IGF1 production, and risk for depression. D2 variants correlate with thyroid hormone levels, insulin resistance, bipolar mood disorder, psychological well-being, mental retardation, hypertension, and risk for osteoarthritis. D3 polymorphisms showed no relationship with inter-individual variation in serum thyroid hormone parameters. One D3 polymorphism was associated with risk for osteoarthritis. Genetic deiodinase profiles only explain a small proportion of inter-individual variations in serum thyroid hormone levels. Evidence suggests a role of genetic deiodinase variants in certain pathophysiological conditions. The value for determination of deiodinase polymorphism in clinical practice needs further investigation. © 2014 European Society of Endocrinology.

  3. Physiology informed virtual surgical planning: a case study with a virtual airway surgical planner and BioGears

    NASA Astrophysics Data System (ADS)

    Potter, Lucas; Arikatla, Sreekanth; Bray, Aaron; Webb, Jeff; Enquobahrie, Andinet

    2017-03-01

    Stenosis of the upper airway affects approximately 1 in 200,000 adults per year1 , and occurs in neonates as well2 . Its treatment is often dictated by institutional factors and clinicians' experience or preferences 3 . Objective and quantitative methods of evaluating treatment options hold the potential to improve care in stenosis patients. Virtual surgical planning software tools are critically important for this. The Virtual Pediatric Airway Workbench (VPAW) is a software platform designed and evaluated for upper airway stenosis treatment planning. It incorporates CFD simulation and geometric authoring with objective metrics from both that help in informed evaluation and planning. However, this planner currently lacks physiological information which could impact the surgical planning outcomes. In this work, we integrated a lumped parameter, model based human physiological engine called BioGears with VPAW. We demonstrated the use of physiology informed virtual surgical planning platform for patient-specific stenosis treatment planning. The preliminary results show that incorporating patient-specific physiology in the pretreatment plan would play important role in patient-specific surgical trainers and planners in airway surgery and other types of surgery that are significantly impacted by physiological conditions during surgery.

  4. Assessment of organ culture for the conservation of human skin allografts.

    PubMed

    Hautier, A; Sabatier, F; Stellmann, P; Andrac, L; Nouaille De Gorce, Y; Dignat-George, F; Magalon, G

    2008-03-01

    Human skin allografts are used in the treatment of severe burns and their preservation is therefore critical for optimal clinical benefit. Current preservation methods, such as 4 degrees C storage or cryopreservation, cannot prevent the decrease of tissue viability. The aim of this study was to assess viability and function of skin allografts in a new skin organ culture model, allowing conservation parameters as close as possible to physiological conditions: 32 degrees C, air-liquid interface and physiological skin tension. Twelve skin samples, harvested from 6 living surgical donors, were conserved 35 days in two conditions: conservation at 4 degrees C and organ culture. Viability and function of skin samples were investigated at Day 0, 7, 14, 21, 28 and 35 using cell culture methods (trypan blue exclusion, Colony Forming Efficiency and Growth Rate), histopathological and histoenzymological studies (Ki67 immunostaining). In the two conditions, fibroblast and keratinocyte viability was progressively affected by storage, with a significant decrease observed after 35 days. No statistical difference could be observed between the two conditions. The two methods were also comparable regarding alterations of fibroblast and keratinocyte culture parameters, which were respectively significantly reduced at Day 7 and 21, compared to fresh skin. By contrast, histopathological and histoenzymological studies revealed a better preservation of skin architecture and proliferative potential at 4 degrees C, as compared to organ culture. These results indicate that skin organ culture does not provide significant advantages for skin allograft preservation. However, its potential use as an experimental model to study skin physiology and wound healing should be further evaluated.

  5. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics.

    PubMed

    Cardone, Daniela; Pinti, Paola; Merla, Arcangelo

    2015-01-01

    Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity.

  6. Endogenous CO dynamics monitoring in breath by tunable diode laser

    NASA Astrophysics Data System (ADS)

    Kouznetsov, Andrian I.; Stepanov, Eugene V.; Shulagin, Yurii A.; Skrupskii, Vladimir A.

    1996-04-01

    High sensitive CO gas analyzer based on tunable diode laser (TDL) was used as a real time monitor of endogenous carbon monoxide in a set of breath physiology experiments. The measurements of the CO content dynamics in exhaled air with 10 ppb sensitivity were attended with detection of carbon dioxide and O2 in breath, lung ventilation parameters, heart rate and blood analysis using conventional techniques. Variations of endogenous CO in human breath caused by hyperoxia, hypoxia, hyperventilation as well as sport loading were studied in real time. Scattering of the CO variation time constants was observed for different tested persons. Possible reasons for this scattering related with the organisms' physiology peculiarities are discussed.

  7. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty

    PubMed Central

    Schiavazzi, Daniele E.; Baretta, Alessia; Pennati, Giancarlo; Hsia, Tain-Yen; Marsden, Alison L.

    2017-01-01

    Summary Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. PMID:27155892

  8. Evidence for altered metabolic pathways during environmental stress: (1)H-NMR spectroscopy based metabolomics and clinical studies on subjects of sea-voyage and Antarctic-stay.

    PubMed

    Yadav, Anand Prakash; Chaturvedi, Shubhra; Mishra, Kamla Prasad; Pal, Sunil; Ganju, Lilly; Singh, Shashi Bala

    2014-08-01

    The Antarctic context is an analogue of space travel, with close similarity in ambience of extreme climate, isolation, constrained living spaces, disrupted sleep cycles, and environmental stress. The present study examined the impact of the harsh habitat of Antarctica on human physiology and its metabolic pathways, by analyzing human serum samples, using (1)H-NMR spectroscopy for identification of metabolites; and quantifying other physiological and clinical parameters for correlation between expression data and metabolite data. Sera from seven adult males (of median age 36years) who participated in this study, from the 28th Indian Expeditionary group to the Antarctica station Maitri, were collected in chronological sequence. These included: i) baseline control; ii) during ship journey; iii) at Antarctica, in the months of March, May, August and November; to enable study of temporal evolution of monitored physiological states. 29 metabolites in serum were identified from the 400MHz (1)H-NMR spectra. Out of these, 19 metabolites showed significant variations in levels, during the ship journey and the stay at Maitri, compared to the base-line levels. Further biochemical analysis also supported these results, indicating that the ship journey, and the long-term Antarctic exposure, affected kidney and liver functioning. Our metabolite data highlights for the first time the effect of environmental stress on the patho-physiology of the human system. Multivariate analysis tools were employed for this metabonomics study, using (1)H-NMR spectroscopy. Copyright © 2014. Published by Elsevier Inc.

  9. Physiological monitoring and analysis of a manned stratospheric balloon test program.

    PubMed

    Garbino, Alejandro; Blue, Rebecca S; Pattarini, James M; Law, Jennifer; Clark, Jonathan B

    2014-02-01

    The Red Bull Stratos Project consisted of incremental high altitude parachute jumps [maximum altitude 127,852 ft (38,969 m)] from a pressurized capsule suspended from a stratospheric helium-filled balloon. A physiological monitoring system was worn by the parachutist to provide operational medical and acceleration data and to record a unique set of data in a supersonic environment. Various physiological parameters, including heart rate (HR), respiratory rate (RR), skin temperature, and triaxial acceleration, were collected during the ascent, high altitude float, free fall, and parachute opening and descent stages of multiple low- and high altitude jumps. Physiologic data were synchronized with global positioning system (GPS) and audiovisual data for a comprehensive understanding of the environmental stressors experienced. HR reached maximum during capsule egress and remained elevated throughout free fall and landing. RR reached its maximum during free fall. Temperature data were unreliable and did not provide useful results. The highest accelerations parameters were recorded during parachute opening and during landing. During each high altitude jump, immediately after capsule egress, the parachutist experienced a few seconds of microgravity during which some instability occurred. Control was regained as the parachutist entered denser atmosphere. The high altitude environment resulted in extremely high vertical speeds due to little air resistance in comparison to lower altitude jumps with similar equipment. The risk for tumbling was highest at initial step-off. Physiological responses included elevated HR and RR throughout critical phases of free fall. The monitoring unit performed well despite the austere environment and extreme human performance activities.

  10. Research of pulse signal processing based on sleep-monitoring alarm system

    NASA Astrophysics Data System (ADS)

    Zhang, Kaisheng; Zeng, Yuan

    2009-07-01

    From pulse diagnosis of Chinese herbalist doctor to the research of cardiovascular system by modem iatrology,they all have showed and proved that human pulse has a good affinity with diseases,especially cardiovascular diseases. Human pulse contains much physical information, and it will be propitious to know the human healthy state early so as to get therapy and recovery early when pulse signal is often detected and analyzed. study how to use the embedded microcontroller to transmit physiological signal from human to personal computer by infrared communication, and the normal sphygmic parameter in one's sleeping is compared with the one measured in order to judge whether one's sleeping condition is normal, finally ascertain the best control plan.

  11. [Robotics and improvement of the quality of geriatric care].

    PubMed

    Ettore, Éric; Wyckaert, Emeline; David, Renaud; Robert, Philippe; Guérin, Olivier; Prate, Frédéric

    2016-01-01

    New technologies offer innovations to improve the care of the elderly with Alzheimer's or and other forms of dementia. Robots, endowed with features such as monitoring of physiological parameters, cognitive training or occupational therapy, have appeared. They are not, however, intended to replace humans. Still underutilized, these robots are in development, much like the digital literacy of the elderly. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Visual detection following retinal damage: predictions of an inhomogeneous retino-cortical model

    NASA Astrophysics Data System (ADS)

    Arnow, Thomas L.; Geisler, Wilson S.

    1996-04-01

    A model of human visual detection performance has been developed, based on available anatomical and physiological data for the primate visual system. The inhomogeneous retino- cortical (IRC) model computes detection thresholds by comparing simulated neural responses to target patterns with responses to a uniform background of the same luminance. The model incorporates human ganglion cell sampling distributions; macaque monkey ganglion cell receptive field properties; macaque cortical cell contrast nonlinearities; and a optical decision rule based on ideal observer theory. Spatial receptive field properties of cortical neurons were not included. Two parameters were allowed to vary while minimizing the squared error between predicted and observed thresholds. One parameter was decision efficiency, the other was the relative strength of the ganglion-cell center and surround. The latter was only allowed to vary within a small range consistent with known physiology. Contrast sensitivity was measured for sinewave gratings as a function of spatial frequency, target size and eccentricity. Contrast sensitivity was also measured for an airplane target as a function of target size, with and without artificial scotomas. The results of these experiments, as well as contrast sensitivity data from the literature were compared to predictions of the IRC model. Predictions were reasonably good for grating and airplane targets.

  13. Space Biosensor Systems: Implications for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)

    1997-01-01

    To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.

  14. Age-related changes in human vestibulo-ocular reflexes: Sinusoidal rotation and caloric tests

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.; Schoenhoff, M. B.

    1989-01-01

    The dynamic response properties of horizontal vestibulo-ocular reflex (VOR) were characterized in 216 human subjects ranging in age from 7 to 81 years. The object of this cross-sectional study was to determine the effects of aging on VOR dynamics, and to identify the distributions of parameters which describe VOR responses to caloric and to sinusoidal rotational stimuli in a putatively normal population. Caloric test parameters showed no consistent trend with age. Rotation test parameters showed declining response amplitude and slightly less compensatory response phase with increasing age. The magnitudes of these changes were not large relative to the variability within the population. The age-related trends in VOR were not consistent with the anatomic changes in the periphery reported by others which showed an increasing rate of peripheral hair cell and nerve fiber loss in subjects over 55 years. The poor correlation between physiological and anatomical data suggest that adaptive mechanisms in the central nervous system are important in maintaining the VOR.

  15. Prediction of Losartan-Active Carboxylic Acid Metabolite Exposure Following Losartan Administration Using Static and Physiologically Based Pharmacokinetic Models.

    PubMed

    Nguyen, Hoa Q; Lin, Jian; Kimoto, Emi; Callegari, Ernesto; Tse, Susanna; Obach, R Scott

    2017-09-01

    The aim of this study was to evaluate a strategy based on static and dynamic physiologically based pharmacokinetic (PBPK) modeling for the prediction of metabolite and parent drug area under the time-concentration curve ratio (AUC m /AUC p ) and their PK profiles in humans using in vitro data when active transport processes are involved in disposition. The strategy was applied to losartan and its pharmacologically active metabolite carboxylosartan as test compounds. Hepatobiliary transport including transport-mediated uptake, canilicular and basolateral efflux, and metabolic clearance estimates were obtained from in vitro studies using human liver microsomes and sandwich-cultured hepatocytes. Human renal clearance of carboxylosartan was estimated from dog renal clearance using allometric scaling approach. All clearance mechanisms were mechanistically incorporated in a static model to predict the relative exposure of carboxylosartan versus losartan (AUC m /AUC p ). The predicted AUC m /AUC p were consistent with the observed data following intravenous and oral administration of losartan. Moreover, the in vitro parameters were used as initial parameters in PBPK permeability-limited disposition models to predict the concentration-time profiles for both parent and its active metabolite after oral administration of losartan. The PBPK model was able to recover the plasma profiles of both losartan and carboxylosartan, further substantiating the validity of this approach. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Adapting Human Videofluoroscopic Swallow Study Methods to Detect and Characterize Dysphagia in Murine Disease Models

    PubMed Central

    Lever, Teresa E.; Braun, Sabrina M.; Brooks, Ryan T.; Harris, Rebecca A.; Littrell, Loren L.; Neff, Ryan M.; Hinkel, Cameron J.; Allen, Mitchell J.; Ulsas, Mollie A.

    2015-01-01

    This study adapted human videofluoroscopic swallowing study (VFSS) methods for use with murine disease models for the purpose of facilitating translational dysphagia research. Successful outcomes are dependent upon three critical components: test chambers that permit self-feeding while standing unrestrained in a confined space, recipes that mask the aversive taste/odor of commercially-available oral contrast agents, and a step-by-step test protocol that permits quantification of swallow physiology. Elimination of one or more of these components will have a detrimental impact on the study results. Moreover, the energy level capability of the fluoroscopy system will determine which swallow parameters can be investigated. Most research centers have high energy fluoroscopes designed for use with people and larger animals, which results in exceptionally poor image quality when testing mice and other small rodents. Despite this limitation, we have identified seven VFSS parameters that are consistently quantifiable in mice when using a high energy fluoroscope in combination with the new murine VFSS protocol. We recently obtained a low energy fluoroscopy system with exceptionally high imaging resolution and magnification capabilities that was designed for use with mice and other small rodents. Preliminary work using this new system, in combination with the new murine VFSS protocol, has identified 13 swallow parameters that are consistently quantifiable in mice, which is nearly double the number obtained using conventional (i.e., high energy) fluoroscopes. Identification of additional swallow parameters is expected as we optimize the capabilities of this new system. Results thus far demonstrate the utility of using a low energy fluoroscopy system to detect and quantify subtle changes in swallow physiology that may otherwise be overlooked when using high energy fluoroscopes to investigate murine disease models. PMID:25866882

  17. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care

    NASA Astrophysics Data System (ADS)

    Chen, Lisa Y.; Tee, Benjamin C.-K.; Chortos, Alex L.; Schwartz, Gregor; Tse, Victor; J. Lipomi, Darren; Wong, H.-S. Philip; McConnell, Michael V.; Bao, Zhenan

    2014-10-01

    Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.

  18. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care.

    PubMed

    Chen, Lisa Y; Tee, Benjamin C-K; Chortos, Alex L; Schwartz, Gregor; Tse, Victor; Lipomi, Darren J; Wong, H-S Philip; McConnell, Michael V; Bao, Zhenan

    2014-10-06

    Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.

  19. Digital Health: Tracking Physiomes and Activity Using Wearable Biosensors Reveals Useful Health-Related Information

    PubMed Central

    Zhou, Gao; Zhou, Wenyu; Schüssler-Fiorenza Rose, Sophia Miryam; Perelman, Dalia; Colbert, Elizabeth; Runge, Ryan; Rego, Shannon; Sonecha, Ria; Datta, Somalee; McLaughlin, Tracey; Snyder, Michael P.

    2017-01-01

    A new wave of portable biosensors allows frequent measurement of health-related physiology. We investigated the use of these devices to monitor human physiological changes during various activities and their role in managing health and diagnosing and analyzing disease. By recording over 250,000 daily measurements for up to 43 individuals, we found personalized circadian differences in physiological parameters, replicating previous physiological findings. Interestingly, we found striking changes in particular environments, such as airline flights (decreased peripheral capillary oxygen saturation [SpO2] and increased radiation exposure). These events are associated with physiological macro-phenotypes such as fatigue, providing a strong association between reduced pressure/oxygen and fatigue on high-altitude flights. Importantly, we combined biosensor information with frequent medical measurements and made two important observations: First, wearable devices were useful in identification of early signs of Lyme disease and inflammatory responses; we used this information to develop a personalized, activity-based normalization framework to identify abnormal physiological signals from longitudinal data for facile disease detection. Second, wearables distinguish physiological differences between insulin-sensitive and -resistant individuals. Overall, these results indicate that portable biosensors provide useful information for monitoring personal activities and physiology and are likely to play an important role in managing health and enabling affordable health care access to groups traditionally limited by socioeconomic class or remote geography. PMID:28081144

  20. Effects of foot reflexology on anxiety and physiological parameters in patients undergoing coronary artery bypass graft surgery: A clinical trial.

    PubMed

    Abbaszadeh, Yaser; Allahbakhshian, Atefeh; Seyyedrasooli, Alehe; Sarbakhsh, Parvin; Goljarian, Sakineh; Safaei, Naser

    2018-05-01

    This study aimed to investigate the effect of foot reflexology on anxiety and physiological parameters in patients after CABG surgery. This was a single-blind, three-arm, parallel-group, randomized controlled trial with three groups of 40 male patients undergoing CABG. Participants were placed in three groups, named intervention, placebo, and control. Physiological parameters were measured including systolic and diastolic blood pressure, mean arterial pressure, heart rate, respiratory rate, percutaneous oxygen saturation, and anxiety of participants. Results showed a statistically significant difference between intervention and control groups in terms of the level of anxiety (p < 0.05). Also, results showed a statistically significant effect on all physiological parameters except heart rate (p < 0.05). This study indicated that foot reflexology may be used by nurses as an adjunct to standard ICU care to reduce anxiety and stabilize physiological parameters such as systolic, diastolic, mean arterial pressure, and heart rate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. High-fertility phenotypes: two outbred mouse models exhibit substantially different molecular and physiological strategies warranting improved fertility.

    PubMed

    Langhammer, Martina; Michaelis, Marten; Hoeflich, Andreas; Sobczak, Alexander; Schoen, Jennifer; Weitzel, Joachim M

    2014-01-01

    Animal models are valuable tools in fertility research. Worldwide, there are more than 400 transgenic or knockout mouse models available showing a reproductive phenotype; almost all of them exhibit an infertile or at least subfertile phenotype. By contrast, animal models revealing an improved fertility phenotype are barely described. This article summarizes data on two outbred mouse models exhibiting a 'high-fertility' phenotype. These mouse lines were generated via selection over a time period of more than 40 years and 161 generations. During this selection period, the number of offspring per litter and the total birth weight of the entire litter nearly doubled. Concomitantly with the increased fertility phenotype, several endocrine parameters (e.g. serum testosterone concentrations in male animals), physiological parameters (e.g. body weight, accelerated puberty, and life expectancy), and behavioral parameters (e.g. behavior in an open field and endurance fitness on a treadmill) were altered. We demonstrate that the two independently bred high-fertility mouse lines warranted their improved fertility phenotype using different molecular and physiological strategies. The fertility lines display female- as well as male-specific characteristics. These genetically heterogeneous mouse models provide new insights into molecular and cellular mechanisms that enhance fertility. In view of decreasing fertility in men, these models will therefore be a precious information source for human reproductive medicine. Translated abstract A German translation of abstract is freely available at http://www.reproduction-online.org/content/147/4/427/suppl/DC1.

  2. Prosthetic avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery.

    PubMed

    Arneodo, Ezequiel M; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B

    2012-01-01

    Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.

  3. Wall Shear Stress Distribution in a Patient-Specific Cerebral Aneurysm Model using Reduced Order Modeling

    NASA Astrophysics Data System (ADS)

    Han, Suyue; Chang, Gary Han; Schirmer, Clemens; Modarres-Sadeghi, Yahya

    2016-11-01

    We construct a reduced-order model (ROM) to study the Wall Shear Stress (WSS) distributions in image-based patient-specific aneurysms models. The magnitude of WSS has been shown to be a critical factor in growth and rupture of human aneurysms. We start the process by running a training case using Computational Fluid Dynamics (CFD) simulation with time-varying flow parameters, such that these parameters cover the range of parameters of interest. The method of snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases using the training CFD simulation. The resulting ROM enables us to study the flow patterns and the WSS distributions over a range of system parameters computationally very efficiently with a relatively small number of modes. This enables comprehensive analysis of the model system across a range of physiological conditions without the need to re-compute the simulation for small changes in the system parameters.

  4. An Automatic Critical Care Urine Meter

    PubMed Central

    Otero, Abraham; Fernández, Roemi; Apalkov, Andrey; Armada, Manuel

    2012-01-01

    Nowadays patients admitted to critical care units have most of their physiological parameters measured automatically by sophisticated commercial monitoring devices. More often than not, these devices supervise whether the values of the parameters they measure lie within a pre-established range, and issue warning of deviations from this range by triggering alarms. The automation of measuring and supervising tasks not only discharges the healthcare staff of a considerable workload but also avoids human errors in these repetitive and monotonous tasks. Arguably, the most relevant physiological parameter that is still measured and supervised manually by critical care unit staff is urine output (UO). In this paper we present a patent-pending device that provides continuous and accurate measurements of patient's UO. The device uses capacitive sensors to take continuous measurements of the height of the column of liquid accumulated in two chambers that make up a plastic container. The first chamber, where the urine inputs, has a small volume. Once it has been filled it overflows into a second bigger chamber. The first chamber provides accurate UO measures of patients whose UO has to be closely supervised, while the second one avoids the need for frequent interventions by the nursing staff to empty the container. PMID:23201988

  5. Coupling of computer modeling with in vitro methodologies to reduce animal usage in toxicity testing.

    PubMed

    Clewell, H J

    1993-05-01

    The use of in vitro data to support the development of physiologically based pharmacokinetic (PBPK) models and to reduce the requirement for in vivo testing is demonstrated by three examples. In the first example, polychlorotrifluoroethylene, in vitro studies comparing metabolism and tissue response in rodents and primates made it possible to obtain definitive data for a human risk assessment without resorting to additional in vivo studies with primates. In the second example, a PBPK model for organophosphate esters was developed in which the parameters defining metabolism, tissue partitioning, and enzyme inhibition were all characterized by in vitro studies, and the rest of the model parameters were established from the literature. The resulting model was able to provide a coherent description of enzyme inhibition following both acute and chronic exposures in mice, rats, and humans. In the final example, the carcinogenic risk assessment for methylene chloride was refined by the incorporation of in vitro data on human metabolism into a PBPK model.

  6. Simulation of human plasma concentration-time profiles of the partial glucokinase activator PF-04937319 and its disproportionate N-demethylated metabolite using humanized chimeric mice and semi-physiological pharmacokinetic modeling.

    PubMed

    Kamimura, Hidetaka; Ito, Satoshi; Chijiwa, Hiroyuki; Okuzono, Takeshi; Ishiguro, Tomohiro; Yamamoto, Yosuke; Nishinoaki, Sho; Ninomiya, Shin-Ichi; Mitsui, Marina; Kalgutkar, Amit S; Yamazaki, Hiroshi; Suemizu, Hiroshi

    2017-05-01

    1. The partial glucokinase activator N,N-dimethyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide (PF-04937319) is biotransformed in humans to N-methyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide (M1), accounting for ∼65% of total exposure at steady state. 2. As the disproportionately abundant nature of M1 could not be reliably predicted from in vitro metabolism studies, we evaluated a chimeric mouse model with humanized liver on TK-NOG background for its ability to retrospectively predict human disposition of PF-04937319. Since livers of chimeric mice were enlarged by hyperplasia and contained remnant mouse hepatocytes, hepatic intrinsic clearances normalized for liver weight, metabolite formation and liver to plasma concentration ratios were plotted against the replacement index by human hepatocytes and extrapolated to those in the virtual chimeric mouse with 100% humanized liver. 3. Semi-physiological pharmacokinetic analyses using the above parameters revealed that simulated concentration curves of PF-04937319 and M1 were approximately superimposed with the observed clinical data in humans. 4. Finally, qualitative profiling of circulating metabolites in humanized chimeric mice dosed with PF-04937319 or M1 also revealed the presence of a carbinolamide metabolite, identified in the clinical study as a human-specific metabolite. The case study demonstrates that humanized chimeric mice may be potentially useful in preclinical discovery towards studying disproportionate or human-specific metabolism of drug candidates.

  7. Smart Vest: wearable multi-parameter remote physiological monitoring system.

    PubMed

    Pandian, P S; Mohanavelu, K; Safeer, K P; Kotresh, T M; Shakunthala, D T; Gopal, Parvati; Padaki, V C

    2008-05-01

    The wearable physiological monitoring system is a washable shirt, which uses an array of sensors connected to a central processing unit with firmware for continuously monitoring physiological signals. The data collected can be correlated to produce an overall picture of the wearer's health. In this paper, we discuss the wearable physiological monitoring system called 'Smart Vest'. The Smart Vest consists of a comfortable to wear vest with sensors integrated for monitoring physiological parameters, wearable data acquisition and processing hardware and remote monitoring station. The wearable data acquisition system is designed using microcontroller and interfaced with wireless communication and global positioning system (GPS) modules. The physiological signals monitored are electrocardiogram (ECG), photoplethysmogram (PPG), body temperature, blood pressure, galvanic skin response (GSR) and heart rate. The acquired physiological signals are sampled at 250samples/s, digitized at 12-bit resolution and transmitted wireless to a remote physiological monitoring station along with the geo-location of the wearer. The paper describes a prototype Smart Vest system used for remote monitoring of physiological parameters and the clinical validation of the data are also presented.

  8. Results and Lessons Learned from Performance Testing of Humans in Spacesuits in Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.

    2010-01-01

    The Apollo lunar EVA experience revealed challenges with suit stability and control-likely a combination of mass, mobility, and center of gravity (CG) factors. The EVA Physiology, Systems and Performence (EPSP) Project is systematically working with other NASA projects, labs, and facilities to lead a series of studies to understand the role of suit mass, weight, CG, and other parameters on astronaut performance in partial gravity environments.

  9. Physiological frailty index (PFI): quantitative in-life estimate of individual biological age in mice.

    PubMed

    Antoch, Marina P; Wrobel, Michelle; Kuropatwinski, Karen K; Gitlin, Ilya; Leonova, Katerina I; Toshkov, Ilia; Gleiberman, Anatoli S; Hutson, Alan D; Chernova, Olga B; Gudkov, Andrei V

    2017-03-19

    The development of healthspan-extending pharmaceuticals requires quantitative estimation of age-related progressive physiological decline. In humans, individual health status can be quantitatively assessed by means of a frailty index (FI), a parameter which reflects the scale of accumulation of age-related deficits. However, adaptation of this methodology to animal models is a challenging task since it includes multiple subjective parameters. Here we report a development of a quantitative non-invasive procedure to estimate biological age of an individual animal by creating physiological frailty index (PFI). We demonstrated the dynamics of PFI increase during chronological aging of male and female NIH Swiss mice. We also demonstrated acceleration of growth of PFI in animals placed on a high fat diet, reflecting aging acceleration by obesity and provide a tool for its quantitative assessment. Additionally, we showed that PFI could reveal anti-aging effect of mTOR inhibitor rapatar (bioavailable formulation of rapamycin) prior to registration of its effects on longevity. PFI revealed substantial sex-related differences in normal chronological aging and in the efficacy of detrimental (high fat diet) or beneficial (rapatar) aging modulatory factors. Together, these data introduce PFI as a reliable, non-invasive, quantitative tool suitable for testing potential anti-aging pharmaceuticals in pre-clinical studies.

  10. Assessment of anxiety in open field and elevated plus maze using infrared thermography.

    PubMed

    Lecorps, Benjamin; Rödel, Heiko G; Féron, Christophe

    2016-04-01

    Due to their direct inaccessibility, affective states are classically assessed by gathering concomitant physiological and behavioral measures. Although such a dual approach to assess emotional states is frequently used in different species including humans, the invasiveness of procedures for physiological recordings particularly in smaller-sized animals strongly restricts their application. We used infrared thermography, a non-invasive method, to assess physiological arousal during open field and elevated plus maze tests in mice. By measuring changes in surface temperature indicative of the animals' emotional response, we aimed to improve the inherently limited and still controversial information provided by behavioral parameters commonly used in these tests. Our results showed significant and consistent thermal responses during both tests, in accordance with classical physiological responses occurring in stressful situations. Besides, we found correlations between these thermal responses and the occurrence of anxiety-related behaviors. Furthermore, initial temperatures measured at the start of each procedure (open field, elevated plus maze), which can be interpreted as a measure of the animals' initial physiological arousal, predicted the levels of activity and of anxiety-related behaviors displayed during the tests. Our results stress the strong link between physiological correlates of emotions and behaviors expressed during unconditioned fear tests. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Influence of Population Variation of Physiological Parameters in Computational Models of Space Physiology

    NASA Technical Reports Server (NTRS)

    Myers, J. G.; Feola, A.; Werner, C.; Nelson, E. S.; Raykin, J.; Samuels, B.; Ethier, C. R.

    2016-01-01

    The earliest manifestations of Visual Impairment and Intracranial Pressure (VIIP) syndrome become evident after months of spaceflight and include a variety of ophthalmic changes, including posterior globe flattening and distension of the optic nerve sheath. Prevailing evidence links the occurrence of VIIP to the cephalic fluid shift induced by microgravity and the subsequent pressure changes around the optic nerve and eye. Deducing the etiology of VIIP is challenging due to the wide range of physiological parameters that may be influenced by spaceflight and are required to address a realistic spectrum of physiological responses. Here, we report on the application of an efficient approach to interrogating physiological parameter space through computational modeling. Specifically, we assess the influence of uncertainty in input parameters for two models of VIIP syndrome: a lumped-parameter model (LPM) of the cardiovascular and central nervous systems, and a finite-element model (FEM) of the posterior eye, optic nerve head (ONH) and optic nerve sheath. Methods: To investigate the parameter space in each model, we employed Latin hypercube sampling partial rank correlation coefficient (LHSPRCC) strategies. LHS techniques outperform Monte Carlo approaches by enforcing efficient sampling across the entire range of all parameters. The PRCC method estimates the sensitivity of model outputs to these parameters while adjusting for the linear effects of all other inputs. The LPM analysis addressed uncertainties in 42 physiological parameters, such as initial compartmental volume and nominal compartment percentage of total cardiac output in the supine state, while the FEM evaluated the effects on biomechanical strain from uncertainties in 23 material and pressure parameters for the ocular anatomy. Results and Conclusion: The LPM analysis identified several key factors including high sensitivity to the initial fluid distribution. The FEM study found that intraocular pressure and intracranial pressure had dominant impact on the peak strains in the ONH and retro-laminar optic nerve, respectively; optic nerve and lamina cribrosa stiffness were also important. This investigation illustrates the ability of LHSPRCC to identify the most influential physiological parameters, which must therefore be well-characterized to produce the most accurate numerical results.

  12. Successful Implementation of Inquiry-Based Physiology Laboratories in Undergraduate Major and Nonmajor Courses

    ERIC Educational Resources Information Center

    Casotti, G.; Rieser-Danner, L.; Knabb, M. T.

    2008-01-01

    Recent evidence has demonstrated that inquiry-based physiology laboratories improve students' critical- and analytical-thinking skills. We implemented inquiry-based learning into three physiology courses: Comparative Vertebrate Physiology (majors), Human Physiology (majors), and Human Anatomy and Physiology (nonmajors). The aims of our curricular…

  13. Host-Microbe Interactions in Microgravity: Assessment and Implications

    PubMed Central

    Foster, Jamie S.; Wheeler, Raymond M.; Pamphile, Regine

    2014-01-01

    Spaceflight imposes several unique stresses on biological life that together can have a profound impact on the homeostasis between eukaryotes and their associated microbes. One such stressor, microgravity, has been shown to alter host-microbe interactions at the genetic and physiological levels. Recent sequencing of the microbiomes associated with plants and animals have shown that these interactions are essential for maintaining host health through the regulation of several metabolic and immune responses. Disruptions to various environmental parameters or community characteristics may impact the resiliency of the microbiome, thus potentially driving host-microbe associations towards disease. In this review, we discuss our current understanding of host-microbe interactions in microgravity and assess the impact of this unique environmental stress on the normal physiological and genetic responses of both pathogenic and mutualistic associations. As humans move beyond our biosphere and undergo longer duration space flights, it will be essential to more fully understand microbial fitness in microgravity conditions in order to maintain a healthy homeostasis between humans, plants and their respective microbiomes. PMID:25370197

  14. Host-microbe interactions in microgravity: assessment and implications.

    PubMed

    Foster, Jamie S; Wheeler, Raymond M; Pamphile, Regine

    2014-05-26

    Spaceflight imposes several unique stresses on biological life that together can have a profound impact on the homeostasis between eukaryotes and their associated microbes. One such stressor, microgravity, has been shown to alter host-microbe interactions at the genetic and physiological levels. Recent sequencing of the microbiomes associated with plants and animals have shown that these interactions are essential for maintaining host health through the regulation of several metabolic and immune responses. Disruptions to various environmental parameters or community characteristics may impact the resiliency of the microbiome, thus potentially driving host-microbe associations towards disease. In this review, we discuss our current understanding of host-microbe interactions in microgravity and assess the impact of this unique environmental stress on the normal physiological and genetic responses of both pathogenic and mutualistic associations. As humans move beyond our biosphere and undergo longer duration space flights, it will be essential to more fully understand microbial fitness in microgravity conditions in order to maintain a healthy homeostasis between humans, plants and their respective microbiomes.

  15. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics

    PubMed Central

    Cardone, Daniela; Pinti, Paola; Merla, Arcangelo

    2015-01-01

    Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity. PMID:26339284

  16. Challenges in simulating the human gut for understanding the role of the microbiota in obesity.

    PubMed

    Aguirre, M; Venema, K

    2017-02-07

    There is an elevated incidence of cases of obesity worldwide. Therefore, the development of strategies to tackle this condition is of vital importance. This review focuses on the necessity of optimising in vitro systems to model human colonic fermentation in obese subjects. This may allow to increase the resolution and the physiological relevance of the information obtained from this type of studies when evaluating the potential role that the human gut microbiota plays in obesity. In light of the parameters that are currently used for the in vitro simulation of the human gut (which are mostly based on information derived from healthy subjects) and the possible difference with an obese condition, we propose to revise and improve specific standard operating procedures.

  17. Physiological investigation of automobile driver's activation index using simulated monotonous driving.

    PubMed

    Yamakoshi, T; Yamakoshi, K; Tanaka, S; Nogawa, M; Kusakabe, M; Kusumi, M; Tanida, K

    2004-01-01

    Monotonous automobile operation in our daily life may cause the lowering of what might be termed an activation state of the human body, resulting in an increased risk of an accident. We therefore propose to create a more suitable environment in-car so as to allow active operation of the vehicle, hopefully thus avoiding potentially dangerous situations during driving. In order to develop such an activation method as a final goal, we have firstly focused on the acquisition of physiological variables, including cardiovascular parameters, during presentation to the driver of a monotonous screen image, simulating autonomous travel of constant-speed on a motorway. Subsequently, we investigated the derivation of a driver's activation index. During the screen image presentation, a momentary electrical stimulation of about 1 second duration was involuntarily applied to a subject's shoulder to obtain a physiological response. We have successfully monitored various physiological variables during the image presentation, and results suggest that a peculiar pattern in the beat-by-beat change of blood pressure in response to the involuntary stimulus may be an appropriate, and feasible, index relevant to activation state.

  18. Simulation environment and graphical visualization environment: a COPD use-case

    PubMed Central

    2014-01-01

    Background Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. Results In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules. This simulation environment has been validated with the integration of three models: two deterministic, i.e. based on linear and differential equations, and one probabilistic, i.e., based on probability theory. These models have been selected based on the disease under study in this project, i.e., chronic obstructive pulmonary disease. Conclusion It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios. PMID:25471327

  19. Singularity now: using the ventricular assist device as a model for future human-robotic physiology.

    PubMed

    Martin, Archer K

    2016-04-01

    In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.

  20. Singularity now: using the ventricular assist device as a model for future human-robotic physiology

    PubMed Central

    Martin, Archer K.

    2016-01-01

    In our 21st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today’s world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named “IshBot”) can best be studied in ventricular assist devices – VAD. PMID:28913480

  1. [Construction and analysis of a monitoring system with remote real-time multiple physiological parameters based on cloud computing].

    PubMed

    Zhu, Lingyun; Li, Lianjie; Meng, Chunyan

    2014-12-01

    There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.

  2. Investigation into the interaction of methylparaben and erythromycin with human serum albumin using multispectroscopic methods.

    PubMed

    Naik, Keerti M; Nandibewoor, Sharanappa T

    2016-03-01

    In this paper, the interaction of methylparaben and erythromycin with human serum albumin (HSA) was studied for the first time using spectroscopic methods including Fourier transform infrared (FTIR) spectroscopy and UV absorption spectroscopy in combination with fluorescence quenching under physiological conditions. The binding parameters were evaluated using a fluorescence quenching method. Based on Förster's theory of non-radiation energy transfer, the binding average distance, r between the donor (HSA) and the acceptor (methylparaben and erythromycin) was evaluated. UV/vis absorption, FTIR, synchronous and 3D spectral results showed that the conformation of HSA was changed in the presence of methylparaben and erythromycin. The thermodynamic parameters were calculated according to the van't Hoff equation and are discussed. The effect of some biological metal ions and site probes on the binding of methylparaben and erythromycin to HSA were further examined. Copyright © 2015 John Wiley & Sons, Ltd.

  3. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells

    PubMed Central

    Willumeit-Römer, Regine; Laipple, Daniel; Luthringer, Bérengère; Feyerabend, Frank

    2016-01-01

    Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys) is studied for up to 14 days. Several parameters such as composition of the degradation interface (directly beneath the cells) are analysed with a scanning electron microscope equipped with energy dispersive X-ray and focused ion beam. Furthermore, influence of the materials on cell metabolism is examined via different parameters like active mineralisation process. The results are highlighting the influences of the selected alloying element on the initial cells metabolic activity. PMID:27327435

  4. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells.

    PubMed

    Ahmad Agha, Nezha; Willumeit-Römer, Regine; Laipple, Daniel; Luthringer, Bérengère; Feyerabend, Frank

    2016-01-01

    Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys) is studied for up to 14 days. Several parameters such as composition of the degradation interface (directly beneath the cells) are analysed with a scanning electron microscope equipped with energy dispersive X-ray and focused ion beam. Furthermore, influence of the materials on cell metabolism is examined via different parameters like active mineralisation process. The results are highlighting the influences of the selected alloying element on the initial cells metabolic activity.

  5. Insights into the interaction of methotrexate and human serum albumin: A spectroscopic and molecular modeling approach.

    PubMed

    Cheng, Li-Yang; Fang, Min; Bai, Ai-Min; Ouyang, Yu; Hu, Yan-Jun

    2017-08-01

    In this study, fluorescence spectroscopy and molecular modeling approaches were employed to investigate the binding of methotrexate to human serum albumin (HSA) under physiological conditions. From the mechanism, it was demonstrated that fluorescence quenching of HSA by methotrexate results from the formation of a methotrexate/HSA complex. Binding parameters calculated using the Stern-Volmer method and the Scatchard method showed that methotrexate binds to HSA with binding affinities in the order 10 4  L·mol -1 . Thermodynamic parameter studies revealed that the binding reaction is spontaneous, and that hydrogen bonds and van der Waals interactions play a major role in the reaction. Site marker competitive displacement experiments and a molecular modeling approach demonstrated that methotrexate binds with appropriate affinity to site I (subdomain IIA) of HSA. Furthermore, we discuss some factors that influence methotrexate binding to HSA. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Treadmill Exercise Within LBNP as an Integrated Coutermeasure to Microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Stuart; Hargens, A. R.; Schneider, S. M.; Watenpaugh, D. E.

    2010-01-01

    An integrated exercise countermeasure for microgravity is needed to protect multiple physiologic systems and save crew time. Such a countermeasure should protect orthostatic tolerance, upright ambulatory capability (including sprinting), aerobic capacity, muscle strength/endurance, and other physiologic parameters relevant to human performance. We developed a novel physiologic countermeasure, treadmill exercise within LBNP, for preventing cardiovascular and musculoskeletal deconditioning associated with prolonged bed rest and spaceflight. We evaluated 40 min of daily LBNP treadmill exercise by a battery of physiologic parameters relevant to maintaining exercise performance and health of both women and men during bed-rest (simulated microgravity) studies lasting from 5 to 60 days. For 30 day studies, we employed identical twins with one twin as the control and the other twin as the exerciser to improve comparative power. During the WISE 60-day HDT study, the treadmill exercise within LBNP was performed 3-4 days each week and resistive exercise was performed 2-3 days each week. Our treadmill within LBNP protocol maintained plasma volume and sprint speed (30 day HDT bed-rest studies of identical twins), orthostatic tolerance to a degree, upright exercise capacity, muscle strength and endurance, and some bone parameters during 30 day (twin studies) and 60 day (WISE-2005) bed-rest simulations of microgravity. When combining treadmill exercise within LBNP and resistive exercise (WISE), cardiac mass increased significantly in the exercise (EX) group during bed rest relative to controls (CON). Upright peak VO2, and knee extensor strength and endurance decreased significantly in CON subjects; but these parameters were preserved in the EX group. In the 60 day WISE study, each LBNP exercise session was followed immediately by 10 minutes of static LBNP, and the last such session occurred three days before the end of bed rest. Still, orthostatic tolerance was better maintained in the EX group than in the CON group. Therefore, these collective peer-reviewed results document that our treadmill exercise within LBNP countermeasure safely and efficiently protects multiple physiologic systems in women and men during bed-rest studies of up to 60 days. Supported by NASA grants NNJ04HF71G and NAG 9-1425, NIH grant GCRC M01 RR00827 and by WISE support from ESA, NASA, CSA, and CNES.

  7. A real time study of the human equilibrium using an instrumented insole with 3 pressure sensors.

    PubMed

    Abou Ghaida, Hussein; Mottet, Serge; Goujon, Jean-Marc

    2014-01-01

    The present work deals with the study of the human equilibrium using an ambulatory e-health system. One of the point on which we focus is the fall risk, when losing equilibrium control. A specific postural learning model is presented, and an ambulatory instrumented insole is developed using 3 pressures sensors per foot, in order to determine the real-time displacement and the velocity of the centre of pressure (CoP). The increase of these parameters signals a loss of physiological sensation, usually of vision or of the inner ear. The results are compared to those obtained from classical more complex systems.

  8. Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory.

    PubMed

    Censor, Nitzan; Cohen, Leonardo G

    2011-01-01

    In the last two decades, there has been a rapid development in the research of the physiological brain mechanisms underlying human motor learning and memory. While conventional memory research performed on animal models uses intracellular recordings, microfusion of protein inhibitors to specific brain areas and direct induction of focal brain lesions, human research has so far utilized predominantly behavioural approaches and indirect measurements of neural activity. Repetitive transcranial magnetic stimulation (rTMS), a safe non-invasive brain stimulation technique, enables the study of the functional role of specific cortical areas by evaluating the behavioural consequences of selective modulation of activity (excitation or inhibition) on memory generation and consolidation, contributing to the understanding of the neural substrates of motor learning. Depending on the parameters of stimulation, rTMS can also facilitate learning processes, presumably through purposeful modulation of excitability in specific brain regions. rTMS has also been used to gain valuable knowledge regarding the timeline of motor memory formation, from initial encoding to stabilization and long-term retention. In this review, we summarize insights gained using rTMS on the physiological and neural mechanisms of human motor learning and memory. We conclude by suggesting possible future research directions, some with direct clinical implications.

  9. Exploring the site-selective binding of jatrorrhizine to human serum albumin: spectroscopic and molecular modeling approaches.

    PubMed

    Mi, Ran; Hu, Yan-Jun; Fan, Xiao-Yang; Ouyang, Yu; Bai, Ai-Min

    2014-01-03

    This paper exploring the site-selective binding of jatrorrhizine to human serum albumin (HSA) under physiological conditions (pH=7.4). The investigation was carried out using fluorescence spectroscopy, UV-vis spectroscopy, and molecular modeling. The results of fluorescence quenching and UV-vis absorption spectra experiments indicated the formation of the complex of HSA-jatrorrhizine. Binding parameters calculating from Stern-Volmer method and Scatchard method were calculated at 298, 304 and 310 K, with the corresponding thermodynamic parameters ΔG, ΔH and ΔS as well. Binding parameters calculating from Stern-Volmer method and Scatchard method showed that jatrorrhizine bind to HSA with the binding affinities of the order 10(4) L mol(-1). The thermodynamic parameters studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the electrostatic interactions play a major role for jatrorrhizine-HSA association. Site marker competitive displacement experiments and molecular modeling calculation demonstrating that jatrorrhizine is mainly located within the hydrophobic pocket of the subdomain IIIA of HSA. Furthermore, the synchronous fluorescence spectra suggested that the association between jatrorrhizine and HSA changed molecular conformation of HSA. Copyright © 2013. Published by Elsevier B.V.

  10. Lead remediation and changes in human lead exposure: some physiological and biokinetic dimensions.

    PubMed

    Mushak, Paul

    2003-02-15

    This paper presents a qualitative and quantitative analysis of the various aspects of lead remediation effectiveness with particular reference to human health risk assessment. One of the key elements of lead remediation efforts at such sites as those under the Superfund program deals with populations at elevated exposure and toxicity risk in the proximity of, or at, the site of remediation, especially remediation workers, workers at other tasks on sites that were remediated down to some action level of lead concentration in soils, and groups at risk in nearby communities. A second element has to do with how one measures or models lead exposure changes with special reference to baseline and post-remediation conditions. Various biomarkers of lead exposure can be employed, but their use requires detailed knowledge of what results using each means. The most commonly used approach is measurement of blood lead (Pb-B). Recognized limitations in the use of Pb-B has led to the use of predictive Pb exposure models, which are less vulnerable to the many behavioral, physiological, and environmental parameters that can distort isolated or 'single shot' Pb-B testings. A third aspect covered in this paper presents various physiological factors that affect the methods by which one evaluates Pb remediation effectiveness. Finally, this article offers an integrated look at how lead remediation actions directed at one lead source or pathway affect the total lead exposure picture for human populations at elevated lead exposure and toxicity risk.

  11. Prosthetic Avian Vocal Organ Controlled by a Freely Behaving Bird Based on a Low Dimensional Model of the Biomechanical Periphery

    PubMed Central

    Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B.

    2012-01-01

    Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform. PMID:22761555

  12. MRI-based three-dimensional thermal physiological characterization of thyroid gland of human body.

    PubMed

    Jin, Chao; He, Zhi Zhu; Yang, Yang; Liu, Jing

    2014-01-01

    This article is dedicated to present a MRI (magnetic resonance imaging) based three-dimensional finite element modeling on the thermal manifestations relating to the pathophysiology of thyroid gland. An efficient approach for identifying the metabolic dysfunctions of thyroid has also been demonstrated through tracking the localized non-uniform thermal distribution or enhanced dynamic imaging. The temperature features over the skin surface and thyroid domain have been characterized using the numerical simulation and experimental measurement which will help better interpret the thermal physiological mechanisms of the thyroid under steady-state or water-cooling condition. Further, parametric simulations on the hypermetabolism symptoms of hyperthyroidism and thermal effects within thyroid domain caused by varying breathing airflow in the trachea and blood-flow in artery and vein were performed. It was disclosed that among all the parameters, the airflow volume has the largest effect on the total heat flux of thyroid surface. However, thermal contributions caused by varying the breathing frequency and blood-flow velocity are negligibly small. The present study suggests a generalized way for simulating the close to reality physiological behavior or process of human thyroid, which is of significance for disease diagnosis and treatment planning. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. The electromagnetic response of human skin in the millimetre and submillimetre wave range.

    PubMed

    Feldman, Yuri; Puzenko, Alexander; Ben Ishai, Paul; Caduff, Andreas; Davidovich, Issak; Sakran, Fadi; Agranat, Aharon J

    2009-06-07

    Recent studies of the minute morphology of the skin by optical coherence tomography revealed that the sweat ducts in human skin are helically shaped tubes, filled with a conductive aqueous solution. This, together with the fact that the dielectric permittivity of the dermis is higher than that of the epidermis, brings forward the supposition that as electromagnetic entities, the sweat ducts could be regarded as low Q helical antennas. The implications of this statement were further investigated by electromagnetic simulation and experiment of the in vivo reflectivity of the skin of subjects under varying physiological conditions (Feldman et al 2008 Phys. Rev. Lett. 100 128102). The simulation and experimental results are in a good agreement and both demonstrate that sweat ducts in the skin could indeed behave as low Q antennas. Thus, the skin spectral response in the sub-Terahertz region is governed by the level of activity of the perspiration system and shows the minimum of reflectivity at some frequencies in the frequency band of 75-110 GHz. It is also correlated to physiological stress as manifested by the pulse rate and the systolic blood pressure. As such, it has the potential to become the underlying principle for remote sensing of the physiological parameters and the mental state of the examined subject.

  14. The Role of Heart-Rate Variability Parameters in Activity Recognition and Energy-Expenditure Estimation Using Wearable Sensors.

    PubMed

    Park, Heesu; Dong, Suh-Yeon; Lee, Miran; Youn, Inchan

    2017-07-24

    Human-activity recognition (HAR) and energy-expenditure (EE) estimation are major functions in the mobile healthcare system. Both functions have been investigated for a long time; however, several challenges remain unsolved, such as the confusion between activities and the recognition of energy-consuming activities involving little or no movement. To solve these problems, we propose a novel approach using an accelerometer and electrocardiogram (ECG). First, we collected a database of six activities (sitting, standing, walking, ascending, resting and running) of 13 voluntary participants. We compared the HAR performances of three models with respect to the input data type (with none, all, or some of the heart-rate variability (HRV) parameters). The best recognition performance was 96.35%, which was obtained with some selected HRV parameters. EE was also estimated for different choices of the input data type (with or without HRV parameters) and the model type (single and activity-specific). The best estimation performance was found in the case of the activity-specific model with HRV parameters. Our findings indicate that the use of human physiological data, obtained by wearable sensors, has a significant impact on both HAR and EE estimation, which are crucial functions in the mobile healthcare system.

  15. Genetic differences in human circadian clock genes among worldwide populations.

    PubMed

    Ciarleglio, Christopher M; Ryckman, Kelli K; Servick, Stein V; Hida, Akiko; Robbins, Sam; Wells, Nancy; Hicks, Jennifer; Larson, Sydney A; Wiedermann, Joshua P; Carver, Krista; Hamilton, Nalo; Kidd, Kenneth K; Kidd, Judith R; Smith, Jeffrey R; Friedlaender, Jonathan; McMahon, Douglas G; Williams, Scott M; Summar, Marshall L; Johnson, Carl Hirschie

    2008-08-01

    The daily biological clock regulates the timing of sleep and physiological processes that are of fundamental importance to human health, performance, and well-being. Environmental parameters of relevance to biological clocks include (1) daily fluctuations in light intensity and temperature, and (2) seasonal changes in photoperiod (day length) and temperature; these parameters vary dramatically as a function of latitude and locale. In wide-ranging species other than humans, natural selection has genetically optimized adaptiveness along latitudinal clines. Is there evidence for selection of clock gene alleles along latitudinal/photoperiod clines in humans? A number of polymorphisms in the human clock genes Per2, Per3, Clock, and AANAT have been reported as alleles that could be subject to selection. In addition, this investigation discovered several novel polymorphisms in the human Arntl and Arntl2 genes that may have functional impact upon the expression of these clock transcriptional factors. The frequency distribution of these clock gene polymorphisms is reported for diverse populations of African Americans, European Americans, Ghanaians, Han Chinese, and Papua New Guineans (including 5 subpopulations within Papua New Guinea). There are significant differences in the frequency distribution of clock gene alleles among these populations. Population genetic analyses indicate that these differences are likely to arise from genetic drift rather than from natural selection.

  16. Effects of a capacitive-resistive electric transfer therapy on physiological and biomechanical parameters in recreational runners: A randomized controlled crossover trial.

    PubMed

    Duñabeitia, Iratxe; Arrieta, Haritz; Torres-Unda, Jon; Gil, Javier; Santos-Concejero, Jordan; Gil, Susana M; Irazusta, Jon; Bidaurrazaga-Letona, Iraia

    2018-05-26

    This study compared the effects of a capacitive-resistive electric transfer therapy (Tecar) and passive rest on physiological and biomechanical parameters in recreational runners when performed shortly after an exhausting training session. Randomized controlled crossover trial. University biomechanical research laboratory. Fourteen trained male runners MAIN OUTCOME MEASURES: Physiological (running economy, oxygen uptake, respiratory exchange ratio, ventilation, heart rate, blood lactate concentration) and biomechanical (step length; stride angle, height, frequency, and contact time; swing time; contact phase; support phase; push-off phase) parameters were measured during two incremental treadmill running tests performed two days apart after an exhaustive training session. When running at 14 km/h and 16 km/h, the Tecar treatment group presented greater increases in stride length (p < 0.001), angle (p < 0.05) and height (p < 0.001) between the first and second tests than the control group and, accordingly, greater decreases in stride frequency (p < 0.05). Physiological parameters were similar between groups. The present study suggests that a Tecar therapy intervention enhances biomechanical parameters in recreational runners after an exhaustive training session more than passive rest, generating a more efficient running pattern without affecting selected physiological parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Addressing Early Life Sensitivity Using Physiologically Based Pharmacokinetic Modeling and In Vitro to In Vivo Extrapolation

    PubMed Central

    Yoon, Miyoung; Clewell, Harvey J.

    2016-01-01

    Physiologically based pharmacokinetic (PBPK) modeling can provide an effective way to utilize in vitro and in silico based information in modern risk assessment for children and other potentially sensitive populations. In this review, we describe the process of in vitro to in vivo extrapolation (IVIVE) to develop PBPK models for a chemical in different ages in order to predict the target tissue exposure at the age of concern in humans. We present our on-going studies on pyrethroids as a proof of concept to guide the readers through the IVIVE steps using the metabolism data collected either from age-specific liver donors or expressed enzymes in conjunction with enzyme ontogeny information to provide age-appropriate metabolism parameters in the PBPK model in the rat and human, respectively. The approach we present here is readily applicable to not just to other pyrethroids, but also to other environmental chemicals and drugs. Establishment of an in vitro and in silico-based evaluation strategy in conjunction with relevant exposure information in humans is of great importance in risk assessment for potentially vulnerable populations like early ages where the necessary information for decision making is limited. PMID:26977255

  18. Addressing Early Life Sensitivity Using Physiologically Based Pharmacokinetic Modeling and In Vitro to In Vivo Extrapolation.

    PubMed

    Yoon, Miyoung; Clewell, Harvey J

    2016-01-01

    Physiologically based pharmacokinetic (PBPK) modeling can provide an effective way to utilize in vitro and in silico based information in modern risk assessment for children and other potentially sensitive populations. In this review, we describe the process of in vitro to in vivo extrapolation (IVIVE) to develop PBPK models for a chemical in different ages in order to predict the target tissue exposure at the age of concern in humans. We present our on-going studies on pyrethroids as a proof of concept to guide the readers through the IVIVE steps using the metabolism data collected either from age-specific liver donors or expressed enzymes in conjunction with enzyme ontogeny information to provide age-appropriate metabolism parameters in the PBPK model in the rat and human, respectively. The approach we present here is readily applicable to not just to other pyrethroids, but also to other environmental chemicals and drugs. Establishment of an in vitro and in silico-based evaluation strategy in conjunction with relevant exposure information in humans is of great importance in risk assessment for potentially vulnerable populations like early ages where the necessary information for decision making is limited.

  19. Underwater Electrical Safety Practices

    DTIC Science & Technology

    1976-01-01

    under water. While advances continue in developing new and more effective underwater electrical equipment, the Navy is concerned that its underwater...levels passing through human tissue is known to alter, temporarily, the physiological function of cells. The long-term effects , if any, are unknown. Much...of the system--human physiology, equipment, procedures, and training. Human Physiology Present knowledge of the physiological effects of electrical

  20. Behavioral and physiological reactions in dogs to a veterinary examination: Owner-dog interactions improve canine well-being.

    PubMed

    Csoltova, Erika; Martineau, Michaël; Boissy, Alain; Gilbert, Caroline

    2017-08-01

    In order to improve well-being of dogs during veterinary visits, we aimed to investigate the effect of human social interactions on behavior and physiology during routine examination. Firstly, we assessed the impact of a standardized veterinary examination on behavioral and physiological indicators of stress in dogs. Secondly, we examined whether the owner's tactile and verbal interactions with the dog influenced behavioral and physiological stress-associated parameters. A randomized within-subjects crossover design was used to examine behavior (n=33), rectal temperature (n=33), heart rate (HR) (n=18), maximal ocular surface temperature (max OST) (n=13) and salivary cortisol concentrations (n=10) in healthy privately owned pet dogs. The study consisted of two experimental conditions: a) "contact" - owner petting and talking to the dog during the examination; b) "non-contact" - owner present during the examination but not allowed to interact with the dog. Our findings showed that the veterinary examinations produced acute stress responses in dogs during both "contact" and "non-contact" conditions, with significant increases in lip licking, HR, and max OST. A significant decrease in attempts to jump off the examination table (p=0.002) was observed during the examination in the "contact" compared to the "non-contact" condition. In addition, interactions of owners showed an attenuating effect on HR (p=0.018) and max OST (p=0.011) in their dogs. The testing order (first vs. second visit) had no impact on behavioral and physiological parameters, suggesting that dogs did not habituate or sensitize to the examination procedure. Moreover, the duration of the owner-dog interactions had no significant impact on the behavioral and physiological responses of their dogs. This study demonstrates that owner-dog interactions improve the well-being of dogs during a veterinary examination. Future research may assist in further understanding the mechanisms associated with reducing stress in dogs in similar settings. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Implantation of radiotelemetry transmitters yielding data on ECG, heart rate, core body temperature and activity in free-moving laboratory mice.

    PubMed

    Cesarovic, Nikola; Jirkof, Paulin; Rettich, Andreas; Arras, Margarete

    2011-11-21

    The laboratory mouse is the animal species of choice for most biomedical research, in both the academic sphere and the pharmaceutical industry. Mice are a manageable size and relatively easy to house. These factors, together with the availability of a wealth of spontaneous and experimentally induced mutants, make laboratory mice ideally suited to a wide variety of research areas. In cardiovascular, pharmacological and toxicological research, accurate measurement of parameters relating to the circulatory system of laboratory animals is often required. Determination of heart rate, heart rate variability, and duration of PQ and QT intervals are based on electrocardiogram (ECG) recordings. However, obtaining reliable ECG curves as well as physiological data such as core body temperature in mice can be difficult using conventional measurement techniques, which require connecting sensors and lead wires to a restrained, tethered, or even anaesthetized animal. Data obtained in this fashion must be interpreted with caution, as it is well known that restraining and anesthesia can have a major artifactual influence on physiological parameters. Radiotelemetry enables data to be collected from conscious and untethered animals. Measurements can be conducted even in freely moving animals, and without requiring the investigator to be in the proximity of the animal. Thus, known sources of artifacts are avoided, and accurate and reliable measurements are assured. This methodology also reduces interanimal variability, thus reducing the number of animals used, rendering this technology the most humane method of monitoring physiological parameters in laboratory animals. Constant advancements in data acquisition technology and implant miniaturization mean that it is now possible to record physiological parameters and locomotor activity continuously and in realtime over longer periods such as hours, days or even weeks. Here, we describe a surgical technique for implantation of a commercially available telemetry transmitter used for continuous measurements of core body temperature, locomotor activity and biopotential (i.e. onelead ECG), from which heart rate, heart rate variability, and PQ and QT intervals can be established in freeroaming, untethered mice. We also present pre-operative procedures and protocols for post-operative intensive care and pain treatment that improve recovery, well-being and survival rates in implanted mice.

  2. Physiologic regulation of body energy storage

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1978-01-01

    Both new and published data (rats, mice, and human beings) on three parameters - fat mass, fat-free body mass (FFBM), and total body mass in some cases - are evaluated. Steady state values of the parameters are analyzed for changes in response to specific perturbing agents and for their frequency distributions. Temporal sequences of values on individuals are examined for evidence of regulatory responses. The results lead to the hypothesis that the FFBM is regulated, but probably not as a unit, and that mass of fat is regulated with a high priority near the range extremes but with a much lower priority in the mid-range. Properties and advantages of such a mechanism are discussed.

  3. Individual Colorimetric Observer Model

    PubMed Central

    Asano, Yuta; Fairchild, Mark D.; Blondé, Laurent

    2016-01-01

    This study proposes a vision model for individual colorimetric observers. The proposed model can be beneficial in many color-critical applications such as color grading and soft proofing to assess ranges of color matches instead of a single average match. We extended the CIE 2006 physiological observer by adding eight additional physiological parameters to model individual color-normal observers. These eight parameters control lens pigment density, macular pigment density, optical densities of L-, M-, and S-cone photopigments, and λmax shifts of L-, M-, and S-cone photopigments. By identifying the variability of each physiological parameter, the model can simulate color matching functions among color-normal populations using Monte Carlo simulation. The variabilities of the eight parameters were identified through two steps. In the first step, extensive reviews of past studies were performed for each of the eight physiological parameters. In the second step, the obtained variabilities were scaled to fit a color matching dataset. The model was validated using three different datasets: traditional color matching, applied color matching, and Rayleigh matches. PMID:26862905

  4. A device for automatically measuring and supervising the critical care patient's urine output.

    PubMed

    Otero, Abraham; Palacios, Francisco; Akinfiev, Teodor; Fernández, Roemi

    2010-01-01

    Critical care units are equipped with commercial monitoring devices capable of sensing patients' physiological parameters and supervising the achievement of the established therapeutic goals. This avoids human errors in this task and considerably decreases the workload of the healthcare staff. However, at present there still is a very relevant physiological parameter that is measured and supervised manually by the critical care units' healthcare staff: urine output. This paper presents a patent-pending device capable of automatically recording and supervising the urine output of a critical care patient. A high precision scale is used to measure the weight of a commercial urine meter. On the scale's pan there is a support frame made up of Bosch profiles that isolates the scale from force transmission from the patient's bed, and guarantees that the urine flows properly through the urine meter input tube. The scale's readings are sent to a PC via Bluetooth where an application supervises the achievement of the therapeutic goals. The device is currently undergoing tests at a research unit associated with the University Hospital of Getafe in Spain.

  5. Vanishing tattoo multi-sensor for biomedical diagnostics

    NASA Astrophysics Data System (ADS)

    Moczko, E.; Meglinski, I.; Piletsky, S.

    2008-04-01

    Currently, precise non-invasive diagnostics systems for the real-time multi detection and monitoring of physiological parameters and chemical analytes in the human body are urgently required by clinicians, physiologists and bio-medical researchers. We have developed a novel cost effective smart 'vanishing tattoo' (similar to temporary child's tattoos) consisting of environmental-sensitive dyes. Painlessly impregnated into the skin the smart tattoo is capable of generating optical/fluorescence changes (absorbance, transmission, reflectance, emission and/or luminescence within UV, VIS or NIR regions) in response to physical or chemical changes. These changes allow the identification of colour pattern changes similar to bar-code scanning. Such a system allows an easy, cheap and robust comprehensive detection of various parameters and analytes in a small volume of sample (e.g. variations in pH, temperature, ionic strength, solvent polarity, presence of redox species, surfactants, oxygen). These smart tattoos have possible applications in monitoring the progress of disease and transcutaneous drug delivery. The potential of this highly innovative diagnostic tool is wide and diverse and can impact on routine clinical diagnostics, general therapeutic management, skin care and cosmetic products testing as well as fundamental physiological investigations.

  6. Vanishing "tattoo" multisensor for biomedical diagnostics

    NASA Astrophysics Data System (ADS)

    Moczko, E.; Meglinski, I.; Piletsky, S.

    2008-02-01

    Currently, precise non-invasive diagnostics systems for the real-time multi detection and monitoring of physiological parameters and chemical analytes in the human body are urgently required by clinicians, physiologists and bio-medical researchers. We have developed a novel cost effective smart 'vanishing tattoo' (similar to temporary child's tattoos) consisting of environmental-sensitive dyes. Painlessly impregnated into the skin the smart tattoo is capable of generating optical/fluorescence changes (absorbance, transmission, reflectance, emission and/or luminescence within UV, VIS or NIR regions) in response to physical or chemical changes. These changes allow the identification of colour pattern changes similar to bar-code scanning. Such a system allows an easy, cheap and robust comprehensive detection of various parameters and analytes in a small volume of sample (e.g. variations in pH, temperature, ionic strength, solvent polarity, presence of redox species, surfactants, oxygen). These smart tattoos have possible applications in monitoring the progress of disease and transcutaneous drug delivery. The potential of this highly innovative diagnostic tool is wide and diverse and can impact on routine clinical diagnostics, general therapeutic management, skin care and cosmetic products testing as well as fundamental physiological investigations.

  7. Potential formulation of sleep dynamics

    NASA Astrophysics Data System (ADS)

    Phillips, A. J. K.; Robinson, P. A.

    2009-02-01

    A physiologically based model of the mechanisms that control the human sleep-wake cycle is formulated in terms of an equivalent nonconservative mechanical potential. The potential is analytically simplified and reduced to a quartic two-well potential, matching the bifurcation structure of the original model. This yields a dynamics-based model that is analytically simpler and has fewer parameters than the original model, allowing easier fitting to experimental data. This model is first demonstrated to semiquantitatively match the dynamics of the physiologically based model from which it is derived, and is then fitted directly to a set of experimentally derived criteria. These criteria place rigorous constraints on the parameter values, and within these constraints the model is shown to reproduce normal sleep-wake dynamics and recovery from sleep deprivation. Furthermore, this approach enables insights into the dynamics by direct analogies to phenomena in well studied mechanical systems. These include the relation between friction in the mechanical system and the timecourse of neurotransmitter action, and the possible relation between stochastic resonance and napping behavior. The model derived here also serves as a platform for future investigations of sleep-wake phenomena from a dynamical perspective.

  8. Dose selection based on physiologically based pharmacokinetic (PBPK) approaches.

    PubMed

    Jones, Hannah M; Mayawala, Kapil; Poulin, Patrick

    2013-04-01

    Physiologically based pharmacokinetic (PBPK) models are built using differential equations to describe the physiology/anatomy of different biological systems. Readily available in vitro and in vivo preclinical data can be incorporated into these models to not only estimate pharmacokinetic (PK) parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties. They provide a mechanistic framework to understand and extrapolate PK and dose across in vitro and in vivo systems and across different species, populations and disease states. Using small molecule and large molecule examples from the literature and our own company, we have shown how PBPK techniques can be utilised for human PK and dose prediction. Such approaches have the potential to increase efficiency, reduce the need for animal studies, replace clinical trials and increase PK understanding. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however some limitations need to be addressed to realise its application and utility more broadly.

  9. Multifractality of cerebral blood flow

    NASA Astrophysics Data System (ADS)

    West, Bruce J.; Latka, Miroslaw; Glaubic-Latka, Marta; Latka, Dariusz

    2003-02-01

    Scale invariance, the property relating time series across multiple scales, has provided a new perspective of physiological phenomena and their underlying control systems. The traditional “signal plus noise” paradigm of the engineer was first replaced with a model in which biological time series have a fractal structure in time (Fractal Physiology, Oxford University Press, Oxford, 1994). This new paradigm was subsequently shown to be overly restrictive when certain physiological signals were found to be characterized by more than one scaling parameter and therefore to belong to a class of more complex processes known as multifractals (Fractals, Plenum Press, New York, 1988). Here we demonstrate that in addition to heart rate (Nature 399 (1999) 461) and human gait (Phys. Rev. E, submitted for publication), the nonlinear control system for cerebral blood flow (CBF) (Phys. Rev. Lett., submitted for publication; Phys. Rev. E 59 (1999) 3492) is multifractal. We also find that this multifractality is greatly reduced for subjects with “serious” migraine and we present a simple model for the underlying control process to describe this effect.

  10. The potential of a modified physiologically equivalent temperature (mPET) based on local thermal comfort perception in hot and humid regions

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Ping; Yang, Shing-Ru; Chen, Yung-Chang; Matzarakis, Andreas

    2018-02-01

    Physiologically equivalent temperature (PET) is a thermal index that is widely used in the field of human biometeorology and urban bioclimate. However, it has several limitations, including its poor ability to predict thermo-physiological parameters and its weak response to both clothing insulation and humid conditions. A modified PET (mPET) was therefore developed to address these shortcomings. To determine whether the application of mPET in hot-humid regions is more appropriate than the PET, an analysis of a thermal comfort survey database, containing 2071 questionnaires collected from participants in hot-humid Taiwan, was conducted. The results indicate that the thermal comfort range is similar (26-30 °C) when the mPET and PET are applied as thermal indices to the database. The sensitivity test for vapor pressure and clothing insulation also show that the mPET responds well to the behavior and perceptions of local people in a subtropical climate.

  11. Order-picking in deep cold--physiological responses of younger and older females. Part 1: heart rate.

    PubMed

    Kluth, Karsten; Baldus, Sandra; Strasser, Helmut

    2012-01-01

    The sales figures of chilled and frozen food have been rising steadily over the years. Naturally, this has also led to an increase in the number of jobs related to these goods. While these workplaces are becoming more and more important there are, nevertheless, only a few investigations into the effects of working in deep cold on humans. Order-picking in a cold environment represents a high workload. Especially working at -24°C with wearing heavy cold protective clothing leads to explicitly higher strain. Since performance decreases with age, varying physical strain between younger and older employees can hypothetically be expected. In order to quantify the physiological responses to working in the cold, 15 subjects of two female age groups, each, (20- to 35-year-olds and 40- to 65-year-olds) were asked to carry out whole working day tasks in a chill room (+3°) and in a cold store (-24°C). Simultaneously, heart rate and other physiological relevant parameters were measured.

  12. Analysis of the Federal Cataloging System and COSATI (Committee on Scientific and Technical Information) Cataloging,

    DTIC Science & Technology

    1985-06-21

    etc. Animal anatomy, physiology, and pathology. Care and breeding of labora- tory animals. For human anatomy and physiology, see 06 16 Physiology...sensation, etc. Human anatomy . For animal anatomy and physiology, see 06 03 Biology. For physiological psychology, see 05 10 Psychology. See also 06 19

  13. Human Physiology and the Environment in Health and Disease: Readings from Scientific American.

    ERIC Educational Resources Information Center

    1976

    This anthology of articles is designed to supplement standard texts for courses in human physiology, environmental physiology, anatomy and physiology, pathobiology, general biology, and environmental medicine. It focuses on the influences of the external environment on the body, the physiological responses to environmental challenges, and the ways…

  14. Evolutionary Medicine: The Ongoing Evolution of Human Physiology and Metabolism.

    PubMed

    Rühli, Frank; van Schaik, Katherine; Henneberg, Maciej

    2016-11-01

    The field of evolutionary medicine uses evolutionary principles to understand changes in human anatomy and physiology that have occurred over time in response to environmental changes. Through this evolutionary-based approach, we can understand disease as a consequence of anatomical and physiological "trade-offs" that develop to facilitate survival and reproduction. We demonstrate how diachronic study of human anatomy and physiology is fundamental for an increased understanding of human health and disease. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  15. Physiological Parameters for Oral Delivery and In vitro Testing

    PubMed Central

    Mudie, Deanna M.; Amidon, Gordon L.; Amidon, Gregory E.

    2010-01-01

    Pharmaceutical solid oral dosage forms must undergo dissolution in the intestinal fluids of the gastrointestinal tract before they can be absorbed and reach the systemic circulation. Therefore, dissolution is a critical part of the drug-delivery process. The rate and extent of drug dissolution and absorption depend on the characteristics of the active ingredient as well as properties of the dosage form. Just as importantly, characteristics of the physiological environment such as buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and hydrodynamics can significantly impact dissolution and absorption. While significant progress has been made since 1970 when the first compendial dissolution test was introduced (USP Apparatus 1), current dissolution testing does not take full advantage of the extensive physiologic information that is available. For quality control purposes, where the question is one of lot-to-lot consistency in performance, using nonphysiologic test conditions that match drug and dosage form properties with practical dissolution media and apparatus may be appropriate. However, where in vitro – in vivo correlations are desired, it is logical to consider and utilize knowledge of the in vivo condition. This publication critically reviews the literature that is relevant to oral human drug delivery. Physiologically relevant information must serve as a basis for the design of dissolution test methods and systems that are more representative of the human condition. As in vitro methods advance in their physiological relevance, better in vitro - in vivo correlations will be possible. This will, in turn, lead to in vitro systems that can be utilized to more effectively design dosage forms that have improved and more consistent oral bioperformance. PMID:20822152

  16. Simple electrical model and initial experiments for intra-body communications.

    PubMed

    Gao, Y M; Pun, S H; Du, M; Mak, P U; Vai, M I

    2009-01-01

    Intra-Body Communication(IBC) is a short range "wireless" communication technique appeared in recent years. This technique relies on the conductive property of human tissue to transmit the electric signal among human body. This is beneficial for devices networking and sensors among human body, and especially suitable for wearable sensors, telemedicine system and home health care system as in general the data rates of physiologic parameters are low. In this article, galvanic coupling type IBC application on human limb was investigated in both its mathematical model and related experiments. The experimental results showed that the proposed mathematical model was capable in describing the galvanic coupling type IBC under low frequency. Additionally, the calculated result and experimental result also indicated that the electric signal induced by the transmitters of IBC can penetrate deep into human muscle and thus, provide an evident that IBC is capable of acting as networking technique for implantable devices.

  17. The physiological determinants of drug-induced lysosomal stress resistance

    PubMed Central

    Woldemichael, Tehetina; Rosania, Gus R.

    2017-01-01

    Many weakly basic, lipophilic drugs accumulate in lysosomes and exert complex, pleiotropic effects on organelle structure and function. Thus, modeling how perturbations of lysosomal physiology affect the maintenance of lysosomal ion homeostasis is necessary to elucidate the key factors which determine the toxicological effects of lysosomotropic agents, in a cell-type dependent manner. Accordingly, a physiologically-based mathematical modeling and simulation approach was used to explore the dynamic, multi-parameter phenomenon of lysosomal stress. With this approach, parameters that are either directly involved in lysosomal ion transportation or lysosomal morphology were transiently altered to investigate their downstream effects on lysosomal physiology reflected by the changes they induce in lysosomal pH, chloride, and membrane potential. In addition, combinations of parameters were simultaneously altered to assess which parameter was most critical for recovery of normal lysosomal physiology. Lastly, to explore the relationship between organelle morphology and induced stress, we investigated the effects of parameters controlling organelle geometry on the restoration of normal lysosomal physiology following a transient perturbation. Collectively, our results indicate a key, interdependent role of V-ATPase number and membrane proton permeability in lysosomal stress tolerance. This suggests that the cell-type dependent regulation of V-ATPase subunit expression and turnover, together with the proton permeability properties of the lysosomal membrane, is critical to understand the differential sensitivity or resistance of different cell types to the toxic effects of lysosomotropic drugs. PMID:29117253

  18. Evaluation of type II thyroplasty on phonatory physiology in an excised canine larynx model

    PubMed Central

    Devine, Erin E.; Hoffman, Matthew R.; McCulloch, Timothy M.; Jiang, Jack J.

    2016-01-01

    Objective Type II thyroplasty is an alternative treatment for spasmodic dysphonia, addressing hyperadduction by incising and lateralizing the thyroid cartilage. We quantified the effect of lateralization width on phonatory physiology using excised canine larynges. Methods Normal closure, hyperadduction, and type II thyroplasty (lateralized up to 5mm at 1mm increments with hyperadducted arytenoids) were simulated in excised larynges (N=7). Aerodynamic, acoustic, and videokymographic data were recorded at three subglottal pressures relative to phonation threshold pressure (PTP). One-way repeated measures ANOVA assessed effect of condition on aerodynamic parameters. Random intercepts linear mixed effects models assessed effects of condition and subglottal pressure on acoustic and videokymographic parameters. Results PTP differed across conditions (p<0.001). Condition affected percent shimmer (p<0.005) but not percent jitter. Both pressure (p<0.03) and condition (p<0.001) affected fundamental frequency. Pressure affected vibratory amplitude (p<0.05) and intra-fold phase difference (p<0.05). Condition affected phase difference between the vocal folds (p<0.001). Conclusions Hyperadduction increased PTP and worsened perturbation compared to normal, with near normal physiology restored with 1mm lateralization. Further lateralization deteriorated voice quality and increased PTP. Acoustic and videokymographic results indicate that normal physiologic relationships between subglottal pressure and vibration are preserved at optimal lateralization width, but then degrade with further lateralization. The 1mm optimal width observed here is due to the small canine larynx size. Future human trials would likely demonstrate a greater optimal width, with patient-specific value potentially determined based on larynx size and symptom severity. PMID:27223665

  19. A stretchable and flexible system for skin-mounted measurement of motion tracking and physiological signals.

    PubMed

    Pinghung Wei; Raj, Milan; Yung-Yu Hsu; Morey, Briana; DePetrillo, Paolo; McGrane, Bryan; Xianyan Wang; Lin, Monica; Keen, Bryan; Papakyrikos, Cole; Lowe, Jared; Ghaffari, Roozbeh

    2014-01-01

    In this paper, we present a stretchable wearable system capable of i) measuring multiple physiological parameters and ii) transmitting data via radio frequency to a smart phone. The electrical architecture consists of ultra thin sensors (<; 20 μm thick) and a conformal network of associated active and passive electronics in a mesh-like geometry that can mechanically couple with the curvilinear surfaces of the human body. Spring-like metal interconnects between individual chips on board the device allow the system to accommodate strains approaching ~30% A representative example of a smart patch that measures movement and electromyography (EMG) signals highlights the utility of this new class of medical skin-mounted system in monitoring a broad range of neuromuscular and cardiovascular diseases.

  20. The development of a whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Kay, F. J.

    1973-01-01

    The whole-body algorithm is envisioned as a mathematical model that utilizes human physiology to simulate the behavior of vital body systems. The objective of this model is to determine the response of selected body parameters within these systems to various input perturbations, or stresses. Perturbations of interest are exercise, chemical unbalances, gravitational changes and other abnormal environmental conditions. This model provides for a study of man's physiological response in various space applications, underwater applications, normal and abnormal workloads and environments, and the functioning of the system with physical impairments or decay of functioning components. Many methods or approaches to the development of a whole-body algorithm are considered. Of foremost concern is the determination of the subsystems to be included, the detail of the subsystems and the interaction between the subsystems.

  1. In vivo imaging of the pathophysiological changes and neutrophil dynamics in influenza virus-infected mouse lungs.

    PubMed

    Ueki, Hiroshi; Wang, I-Hsuan; Fukuyama, Satoshi; Katsura, Hiroaki; da Silva Lopes, Tiago Jose; Neumann, Gabriele; Kawaoka, Yoshihiro

    2018-06-25

    The pathophysiological changes that occur in lungs infected with influenza viruses are poorly understood. Here we established an in vivo imaging system that combines two-photon excitation microscopy and fluorescent influenza viruses of different pathogenicity. This approach allowed us to monitor and correlate several parameters and physiological changes including the spread of infection, pulmonary permeability, pulmonary perfusion speed, number of recruited neutrophils in infected lungs, and neutrophil motion in the lungs of live mice. Several physiological changes were larger and occurred earlier in mice infected with a highly pathogenic H5N1 influenza virus compared with those infected with a mouse-adapted human strain. These findings demonstrate the potential of our in vivo imaging system to provide novel information about the pathophysiological consequences of virus infections.

  2. Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells.

    PubMed

    Li, Ronald A; Keung, Wendy; Cashman, Timothy J; Backeris, Peter C; Johnson, Bryce V; Bardot, Evan S; Wong, Andy O T; Chan, Patrick K W; Chan, Camie W Y; Costa, Kevin D

    2018-05-01

    Tissue engineers and stem cell biologists have made exciting progress toward creating simplified models of human heart muscles or aligned monolayers to help bridge a longstanding gap between experimental animals and clinical trials. However, no existing human in vitro systems provide the direct measures of cardiac performance as a pump. Here, we developed a next-generation in vitro biomimetic model of pumping human heart chamber, and demonstrated its capability for pharmaceutical testing. From human pluripotent stem cell (hPSC)-derived ventricular cardiomyocytes (hvCM) embedded in collagen-based extracellular matrix hydrogel, we engineered a three-dimensional (3D) electro-mechanically coupled, fluid-ejecting miniature human ventricle-like cardiac organoid chamber (hvCOC). Structural characterization showed organized sarcomeres with myofibrillar microstructures. Transcript and RNA-seq analyses revealed upregulation of key Ca 2+ -handling, ion channel, and cardiac-specific proteins in hvCOC compared to lower-order 2D and 3D cultures of the same constituent cells. Clinically-important, physiologically complex contractile parameters such as ejection fraction, developed pressure, and stroke work, as well as electrophysiological properties including action potential and conduction velocity were measured: hvCOC displayed key molecular and physiological characteristics of the native ventricle, and showed expected mechanical and electrophysiological responses to a range of pharmacological interventions (including positive and negative inotropes). We conclude that such "human-heart-in-a-jar" technology could facilitate the drug discovery process by providing human-specific preclinical data during early stage drug development. Copyright © 2018. Published by Elsevier Ltd.

  3. Back to the future! Revisiting the physiological cost of negative work as a team-based activity for exercise physiology students.

    PubMed

    Kilgas, Matthew A; Elmer, Steven J

    2017-03-01

    We implemented a team-based activity in our exercise physiology teaching laboratory that was inspired from Abbott et al.'s classic 1952 Journal of Physiology paper titled "The physiological cost of negative work." Abbott et al. connected two bicycles via one chain. One person cycled forward (muscle shortening contractions, positive work) while the other resisted the reverse moving pedals (muscle lengthening contractions, negative work), and the cost of work was compared. This study was the first to link human whole body energetics with isolated muscle force-velocity characteristics. The laboratory activity for our students ( n = 35) was designed to reenact Abbott et al.'s experiment, integrate previously learned techniques, and illustrate differences in physiological responses to muscle shortening and lengthening contractions. Students (11-12 students/laboratory section) were split into two teams (positive work vs. negative work). One student from each team volunteered to cycle against the other for ~10 min. The remaining students in each team were tasked with measuring: 1 ) O 2 consumption, 2 ) heart rate, 3 ) blood lactate, and 4 ) perceived exertion. Students discovered that O 2 consumption during negative work was about one-half that of positive work and all other physiological parameters were also substantially lower. Muscle lengthening contractions were discussed and applied to rehabilitation and sport training. The majority of students (>90%) agreed or strongly agreed that they stayed engaged during the activity and it improved their understanding of exercise physiology. All students recommended the activity be performed again. This activity was engaging, emphasized teamwork, yielded clear results, was well received, and preserved the history of classic physiological experiments. Copyright © 2017 the American Physiological Society.

  4. Image Discrimination Models With Stochastic Channel Selection

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Beard, Bettina L.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    Many models of human image processing feature a large fixed number of channels representing cortical units varying in spatial position (visual field direction and eccentricity) and spatial frequency (radial frequency and orientation). The values of these parameters are usually sampled at fixed values selected to ensure adequate overlap considering the bandwidth and/or spread parameters, which are usually fixed. Even high levels of overlap does not always ensure that the performance of the model will vary smoothly with image translation or scale changes. Physiological measurements of bandwidth and/or spread parameters result in a broad distribution of estimated parameter values and the prediction of some psychophysical results are facilitated by the assumption that these parameters also take on a range of values. Selecting a sample of channels from a continuum of channels rather than using a fixed set can make model performance vary smoothly with changes in image position, scale, and orientation. It also facilitates the addition of spatial inhomogeneity, nonlinear feature channels, and focus of attention to channel models.

  5. Tumor Growth Model with PK Input for Neuroblastoma Drug Development

    DTIC Science & Technology

    2015-09-01

    Your credit card order has been processed on  Tuesday  2 December 2014 at 3:05 PM. Status: Complete 12/3/2014 Oasis, The Online Abstract Submission System...pharmacokinetic models. Toxicol Ind Health, 1997. 13(4): p. 407-84. PMID: 9249929 4. Davies, B. and T. Morris , Physiological parameters in laboratory animals and humans. Pharm Res, 1993. 10(7): p. 1093-5. PMID: 8378254

  6. Multi-zone cooling/warming garment

    NASA Technical Reports Server (NTRS)

    Leon, Gloria R. (Inventor); Koscheyev, Victor S. (Inventor); Dancisak, Michael J. (Inventor)

    2006-01-01

    A thermodynamically efficient garment for cooling and/or heating a human body. The thermodynamic efficiency is provided in part by targeting the heat exchange capabilities of the garment to specific areas and/or structures of the human body. The heat exchange garment includes heat exchange zones and one or more non-heat exchange zones, where the heat exchange zones are configured to correspond to one or more high density tissue areas of the human body when the garment is worn. A system including the garment can be used to exchange heat with the adjacent HD tissue areas under the control of a feedback control system. Sensed physiological parameters received by the feedback control system can be used to adjust the characteristics of heat exchange fluid moving within the heat exchange garment.

  7. Heart Rate and Heart Rate Variability in Dairy Cows with Different Temperament and Behavioural Reactivity to Humans

    PubMed Central

    Tőzsér, János; Szenci, Ottó; Póti, Péter; Pajor, Ferenc

    2015-01-01

    From the 1990s, extensive research was started on the physiological aspects of individual traits in animals. Previous research has established two extreme (proactive and reactive) coping styles in several animal species, but the means of reactivity with the autonomic nervous system (ANS) activity has not yet been investigated in cattle. The aim of this study was the characterization of cardiac autonomic activity under different conditions in cows with different individual characteristics. For this purpose, we investigated heart rate and ANS-related heart rate variability (HRV) parameters of dairy cows (N = 282) on smaller- and larger-scale farms grouped by (1) temperament and (2) behavioural reactivity to humans (BRH). Animals with high BRH scores were defined as impulsive, while animals with low BRH scores were defined as reserved. Cardiac parameters were calculated for undisturbed lying (baseline) and for milking bouts, the latter with the presence of an unfamiliar person (stressful situation). Sympathetic tone was higher, while vagal activity was lower in temperamental cows than in calm animals during rest both on smaller- and larger-scale farms. During milking, HRV parameters were indicative of a higher sympathetic and a lower vagal activity of temperamental cows as compared to calm ones in farms of both sizes. Basal heart rate did not differ between BRH groups either on smaller- or larger-scale farms. Differences between basal ANS activity of impulsive and reserved cows reflected a higher resting vagal and lower sympathetic activity of reserved animals compared to impulsive ones both on smaller- and larger-scale farms. There was no difference either in heart rate or in HRV parameters between groups during milking neither in smaller- nor in larger-scale farms. These two groupings allowed to draw possible parallels between personality and cardiac autonomic activity during both rest and milking in dairy cows. Heart rate and HRV seem to be useful for characterisation of physiological differences related to temperament and BRH. PMID:26291979

  8. Changes in Physiological Parameters after Combined Exercise according to the I/D Polymorphism of hUCP2 Gene in Middle-Aged Obese Females

    PubMed Central

    DUK OH, Sang

    2014-01-01

    Abstract Background The purpose of this study was to determine whether a 45 bp insertion/deletion (I/D) polymorphism in human uncoupling protein 2 (hUCP2) gene was associated with changes in several cardiovascular risk and physical fitness factors in response to combined exercise during 12 weeks in Korean middle-aged women. The changes in physiological parameters after combined exercise during 12 weeks were compared between each genotype subgroups of hUCP2 gene to clarify the inter-individual differences in exercised-induced changes according to genetic predisposition. Methods A total of 185 women aged over 40 years living in Seoul, Korea were participated in this study, and analyzed before and after 12 weeks on combined exercise including aerobic exercise and strength training for body composition, hemodynamic parameters, physical fitness and metabolic variables. A 45 bp I/D polymorphism in hUCP2 gene was genotyped by polymerase chain reaction (PCR) amplification and agarose gel electrophoresis method. Results Combined exercise program during 12 weeks indicated the significant health-promoting effects for our participants on multiple body composition, hemodynamic parameters, physical fitness factors and metabolic parameters, respectively. With respect to a 45 bp I/D polymorphism in hUCP2 gene, this polymorphism was significantly associated with baseline %body fat of our participants (P <.05). Moreover, this polymorphism was significantly associated with the changes in %body fat and serum triglyceride(TG) level after combined exercise program during 12 weeks(P <.05). Conclusion Our data suggest that a 45 bp I/D polymorphism in hUCP2 gene may at least in part contribute to the inter-individual differences on the changes in some clinical and metabolic parameters following combined exercise in middle-aged women. PMID:25909061

  9. Physiological and Molecular Effects of in vivo and ex vivo Mild Skin Barrier Disruption.

    PubMed

    Pfannes, Eva K B; Weiss, Lina; Hadam, Sabrina; Gonnet, Jessica; Combardière, Béhazine; Blume-Peytavi, Ulrike; Vogt, Annika

    2018-01-01

    The success of topically applied treatments on skin relies on the efficacy of skin penetration. In order to increase particle or product penetration, mild skin barrier disruption methods can be used. We previously described cyanoacrylate skin surface stripping as an efficient method to open hair follicles, enhance particle penetration, and activate Langerhans cells. We conducted ex vivo and in vivo measurements on human skin to characterize the biological effect and quantify barrier disruption-related inflammation on a molecular level. Despite the known immunostimulatory effects, this barrier disruption and hair follicle opening method was well accepted and did not result in lasting changes of skin physiological parameters, cytokine production, or clinical side effects. Only in ex vivo human skin did we find a discrete increase in IP-10, TGF-β, IL-8, and GM-CSF mRNA. The data underline the safety profile of this method and demonstrate that the procedure per se does not cause substantial inflammation or skin damage, which is also of interest when applied to non-invasive sampling of biomarkers in clinical trials. © 2018 S. Karger AG, Basel.

  10. Should modulation of p50 be a therapeutic target in the critically ill?

    PubMed

    Srinivasan, Amudan J; Morkane, Clare; Martin, Daniel S; Welsby, Ian J

    2017-05-01

    A defining feature of human hemoglobin is its oxygen binding affinity, quantified by the partial pressure of oxygen at which hemoglobin is 50% saturated (p50), and the variability of this parameter over a range of physiological and environmental states. Modulation of this property of hemoglobin can directly affect the degree of peripheral oxygen offloading and tissue oxygenation. Areas covered: This review summarizes the role of hemoglobin oxygen affinity in normal and abnormal physiology and discusses the current state of the literature regarding artificial modulation of p50. Hypoxic tumors, sickle cell disease, heart failure, and transfusion medicine are discussed in the context of recent advances in hemoglobin oxygen affinity manipulation. Expert commentary: Of particular clinical interest is the possibility of maintaining adequate end-organ oxygen availability in patients with anemia or compromised cardiac function via an increase in systemic p50. This increase in systemic p50 can be achieved with small molecule drugs or a packed red blood cell unit processing variant called rejuvenation, and human trials are needed to better understand the potential clinical benefits to modulating p50.

  11. Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction: a review

    NASA Astrophysics Data System (ADS)

    Quitadamo, L. R.; Cavrini, F.; Sbernini, L.; Riillo, F.; Bianchi, L.; Seri, S.; Saggio, G.

    2017-02-01

    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported.

  12. Assessing and Promoting Functional Resilience in Flight Crews During Exploration Missions

    NASA Technical Reports Server (NTRS)

    Shelhamer, M.

    2015-01-01

    The NASA Human Research Program works to mitigate risks to health and performance on extended missions. However, research should be directed not only to mitigating known risks, but also to providing crews with tools to assess and enhance resilience, as a group and individually. We can draw on ideas from complexity theory to assess resilience. The entire crew or the individual crewmember can be viewed as a complex system composed of subsystems; the interactions between subsystems are of crucial importance. Understanding the interactions can provide important information even in the absence of complete information on the component subsystems. Enabled by advances in noninvasive measurement of physiological and behavioral parameters, subsystem monitoring can be implemented within a mission and during training to establish baselines. Coupled with mathematical modeling, this can provide assessment of health and function. Since the web of physiological systems (and crewmembers) can be interpreted as a network in mathematical terms, we can draw on recent work that relates the structure of such networks to their resilience (ability to self-organize in the face of perturbation). Some of the many parameters and interactions to choose from include: sleep cycles, coordination of work and meal times, cardiorespiratory rhythms, circadian rhythms and body temperature, stress markers and cognition, sleep and performance, immune function and nutritional status. Tools for resilience are then the means to measure and analyze these parameters, incorporate them into models of normal variability and interconnectedness, and recognize when parameters or their couplings are outside of normal limits.

  13. Bioprocess development workflow: Transferable physiological knowledge instead of technological correlations.

    PubMed

    Reichelt, Wieland N; Haas, Florian; Sagmeister, Patrick; Herwig, Christoph

    2017-01-01

    Microbial bioprocesses need to be designed to be transferable from lab scale to production scale as well as between setups. Although substantial effort is invested to control technological parameters, usually the only true constant parameter is the actual producer of the product: the cell. Hence, instead of solely controlling technological process parameters, the focus should be increasingly laid on physiological parameters. This contribution aims at illustrating a workflow of data life cycle management with special focus on physiology. Information processing condenses the data into physiological variables, while information mining condenses the variables further into physiological descriptors. This basis facilitates data analysis for a physiological explanation for observed phenomena in productivity. Targeting transferability, we demonstrate this workflow using an industrially relevant Escherichia coli process for recombinant protein production and substantiate the following three points: (1) The postinduction phase is independent in terms of productivity and physiology from the preinduction variables specific growth rate and biomass at induction. (2) The specific substrate uptake rate during induction phase was found to significantly impact the maximum specific product titer. (3) The time point of maximum specific titer can be predicted by an easy accessible physiological variable: while the maximum specific titers were reached at different time points (19.8 ± 7.6 h), those maxima were reached all within a very narrow window of cumulatively consumed substrate dSn (3.1 ± 0.3 g/g). Concluding, this contribution provides a workflow on how to gain a physiological view on the process and illustrates potential benefits. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:261-270, 2017. © 2016 American Institute of Chemical Engineers.

  14. Voluntary exercise prevents the obese and diabetic metabolic syndrome of the melanocortin-4 receptor knockout mouse.

    PubMed

    Haskell-Luevano, Carrie; Schaub, Jay W; Andreasen, Amy; Haskell, Kim R; Moore, Marcus C; Koerper, Lorraine M; Rouzaud, Francois; Baker, Henry V; Millard, William J; Walter, Glenn; Litherland, S A; Xiang, Zhimin

    2009-02-01

    Exercise is a mechanism for maintenance of body weight in humans. Morbidly obese human patients have been shown to possess single nucleotide polymorphisms in the melanocortin-4 receptor (MC4R). MC4R knockout mice have been well characterized as a genetic model that possesses phenotypic metabolic disorders, including obesity, hyperphagia, hyperinsulinemia, and hyperleptinemia, similar to those observed in humans possessing dysfunctional hMC4Rs. Using this model, we examined the effect of voluntary exercise of MC4R knockout mice that were allowed access to a running wheel for a duration of 8 wk. Physiological parameters that were measured included body weight, body composition of fat and lean mass, food consumption, body length, and blood levels of cholesterol and nonfasted glucose, insulin, and leptin. At the termination of the experiment, hypothalamic mRNA expression levels of neuropeptide Y (NPY), agouti-related protein (AGRP), proopiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), orexin, brain-derived neurotropic factor (BDNF), phosphatase with tensin homology (Pten), melanocortin-3 receptor (MC3R), and NPY-Y1R were determined. In addition, islet cell distribution and function in the pancreas were examined. In the exercising MC4R knockout mice, the pancreatic islet cell morphology and other physiological parameters resembled those observed in the wild-type littermate controls. Gene expression profiles identified exercise as having a significant effect on hypothalamic POMC, orexin, and MC3R levels. Genotype had a significant effect on AGRP, POMC, CART, and NPY-Y1R, with an exercise and genotype interaction effect on NPY gene expression. These data support the hypothesis that voluntary exercise can prevent the genetic predisposition of melanocortin-4 receptor-associated obesity and diabetes.

  15. Negative pressure ventilation decreases inflammation and lung edema during normothermic ex-vivo lung perfusion.

    PubMed

    Aboelnazar, Nader S; Himmat, Sayed; Hatami, Sanaz; White, Christopher W; Burhani, Mohamad S; Dromparis, Peter; Matsumura, Nobutoshi; Tian, Ganghong; Dyck, Jason R B; Mengel, Michael; Freed, Darren H; Nagendran, Jayan

    2018-04-01

    Normothermic ex-vivo lung perfusion (EVLP) using positive pressure ventilation (PPV) and both acellular and red blood cell (RBC)-based perfusate solutions have increased the rate of donor organ utilization. We sought to determine whether a negative pressure ventilation (NPV) strategy would improve donor lung assessment during EVLP. Thirty-two pig lungs were perfused ex vivo for 12 hours in a normothermic state, and were allocated equally to 4 groups according to the mode of ventilation (positive pressure ventilation [PPV] vs NPV) and perfusate composition (acellular vs RBC). The impact of ventilation strategy on the preservation of 6 unutilized human donor lungs was also evaluated. Physiologic parameters, cytokine profiles, lung injury, bullae and edema formation were compared between treatment groups. Perfused lungs demonstrated acceptable oxygenation (partial pressure of arterial oxygen/fraction of inspired oxygen ratio >350 mm Hg) and physiologic parameters. However, there was less generation of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interleukin-8) in human and pig lungs perfused, irrespective of perfusate solution used, when comparing NPV with PPV (p < 0.05), and a reduction in bullae formation with an NPV modality (p = 0.02). Pig lungs developed less edema with NPV (p < 0.01), and EVLP using an acellular perfusate solution had greater edema formation, irrespective of ventilation strategy (p = 0.01). Interestingly, human lungs perfused with NPV developed negative edema, or "drying" (p < 0.01), and lower composite acute lung injury (p < 0.01). Utilization of an NPV strategy during extended EVLP is associated with significantly less inflammation, and lung injury, irrespective of perfusate solution composition. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  16. Multi-sector thermo-physiological head simulator for headgear research

    NASA Astrophysics Data System (ADS)

    Martinez, Natividad; Psikuta, Agnes; Corberán, José Miguel; Rossi, René M.; Annaheim, Simon

    2017-02-01

    A novel thermo-physiological human head simulator for headgear testing was developed by coupling a thermal head manikin with a thermo-physiological model. As the heat flux at head-site is directly measured by the head manikin, this method provides a realistic quantification of the heat transfer phenomena occurring in the headgear, such as moisture absorption-desorption cycles, condensation, or moisture migration across clothing layers. Before coupling, the opportunities of the head manikin for representing the human physiology were evaluated separately. The evaluation revealed reduced precision in forehead and face temperature predictions under extreme heterogeneous temperature distributions and no initial limitation for simulating temperature changes observed in the human physiology. The thermo-physiological model predicted higher sweat rates when applied for coupled than for pure virtual simulations. After coupling, the thermo-physiological human head simulator was validated using eight human experiments. It precisely predicted core, mean skin, and forehead temperatures with average rmsd values within the average experimental standard deviation (rmsd of 0.20 ± 0.15, 0.83 ± 0.34, and 1.04 ± 0.54 °C, respectively). However, in case of forehead, precision was lower for the exposures including activity than for the sedentary exposures. The representation of the human sweat evaporation could be affected by a reduced evaporation efficiency and the manikin sweat dynamics. The industry will benefit from this thermo-physiological human head simulator leading to the development of helmet designs with enhanced thermal comfort and, therefore, with higher acceptance by users.

  17. Cognitive Workload and Psychophysiological Parameters During Multitask Activity in Helicopter Pilots.

    PubMed

    Gaetan, Sophie; Dousset, Erick; Marqueste, Tanguy; Bringoux, Lionel; Bourdin, Christophe; Vercher, Jean-Louis; Besson, Patricia

    2015-12-01

    Helicopter pilots are involved in a complex multitask activity, implying overuse of cognitive resources, which may result in piloting task impairment or in decision-making failure. Studies usually investigate this phenomenon in well-controlled, poorly ecological situations by focusing on the correlation between physiological values and either cognitive workload or emotional state. This study aimed at jointly exploring workload induced by a realistic simulated helicopter flight mission and emotional state, as well as physiological markers. The experiment took place in the helicopter full flight dynamic simulator. Six participants had to fly on two missions. Workload level, skin conductance, RMS-EMG, and emotional state were assessed. Joint analysis of psychological and physiological parameters associated with workload estimation revealed particular dynamics in each of three profiles. 1) Expert pilots showed a slight increase of measured physiological parameters associated with the increase in difficulty level. Workload estimates never reached the highest level and the emotional state for this profile only referred to positive emotions with low emotional intensity. 2) Non-Expert pilots showed increasing physiological values as the perceived workload increased. However, their emotional state referred to either positive or negative emotions, with a greater variability in emotional intensity. 3) Intermediate pilots were similar to Expert pilots regarding emotional states and similar to Non-Expert pilots regarding physiological patterns. Overall, high interindividual variability of these results highlight the complex link between physiological and psychological parameters with workload, and question whether physiology alone could predict a pilot's inability to make the right decision at the right time.

  18. Prospective evaluation of the acute patient physiologic and laboratory evaluation score and an extended clinicopathological profile in dogs with systemic inflammatory response syndrome.

    PubMed

    Giunti, Massimo; Troia, Roberta; Bergamini, Paolo Famigli; Dondi, Francesco

    2015-01-01

    To investigate the prognostic value of the acute patient physiologic and laboratory evaluation (APPLE) score and relevant clinicopathological markers in dogs with systemic inflammatory response syndrome (SIRS). Prospective observational cohort study. Veterinary teaching hospital. Thirty-three dogs with SIRS admitted to the intensive care unit (ICU) were compared to 35 healthy control dogs. Dogs with SIRS were divided into septic (n = 20) and nonseptic (n = 13) etiologies and as survivors (alive to discharge, n = 22) and nonsurvivors (n = 11: died, n = 6, or humanely euthanized, n = 5). For all dogs, physiological and laboratory parameters were prospectively collected for the calculation of the APPLE fast score. No difference between septic and nonseptic SIRS dogs was detected for any parameter evaluated. Survivors had significantly higher total protein, albumin concentrations, antithrombin activity (ATA), and base excess (BE), as well as significantly lower lactate, urea, creatinine concentrations, urinary protein to creatinine ratio and APPLE fast score compared to nonsurvivors. Higher values of creatinine, lactate, anion gap, alanine transaminase (ALT), and APPLE fast score were significantly associated with an increased risk of death in SIRS dogs, while higher values of total protein, albumin, ATA, and BE were associated with a significantly reduced risk of mortality. When a multivariate binary logistic regression analysis was performed, the APPLE fast score was the only significant parameter retained. The determination of the APPLE fast score in clinical setting, as well as the measurement of APP, ATA, lactate, BE, anion gap, ALT, urinary proteins, and electrolytes may be beneficial for a better assessment of dogs with SIRS. Identified parameters were significantly related with the presence of SIRS and their evaluation should be considered for the assessment of disease severity, and guidance of the decision-making process in critically ill dogs. © Veterinary Emergency and Critical Care Society 2014.

  19. A three-dimensional virtual environment for modeling mechanical cardiopulmonary interactions.

    PubMed

    Kaye, J M; Primiano, F P; Metaxas, D N

    1998-06-01

    We have developed a real-time computer system for modeling mechanical physiological behavior in an interactive, 3-D virtual environment. Such an environment can be used to facilitate exploration of cardiopulmonary physiology, particularly in situations that are difficult to reproduce clinically. We integrate 3-D deformable body dynamics with new, formal models of (scalar) cardiorespiratory physiology, associating the scalar physiological variables and parameters with the corresponding 3-D anatomy. Our framework enables us to drive a high-dimensional system (the 3-D anatomical models) from one with fewer parameters (the scalar physiological models) because of the nature of the domain and our intended application. Our approach is amenable to modeling patient-specific circumstances in two ways. First, using CT scan data, we apply semi-automatic methods for extracting and reconstructing the anatomy to use in our simulations. Second, our scalar physiological models are defined in terms of clinically measurable, patient-specific parameters. This paper describes our approach, problems we have encountered and a sample of results showing normal breathing and acute effects of pneumothoraces.

  20. Effects of hydration level and heat stress on thermoregulatory responses, hematological and blood rheological properties in growing pigs.

    PubMed

    Waltz, Xavier; Baillot, Michelle; Connes, Philippe; Bocage, Bruno; Renaudeau, David

    2014-01-01

    Heat stress is one of the major limiting factors of production efficiency in the swine industry. The aims of the present study were 1) to observe if hemorheological and hematological parameters could be associated to physiological acclimation during the first days of heat stress exposure and 2) to determine if water restriction could modulate the effect of thermal heat stress on physiological, hematological and hemorheological parameters. Twelve Large White male pigs were divided into an ad libitum and a water restricted group. All pigs were submitted to one week at 24 °C (D-7 to D-1). Then, at D0, temperature was progressively increased until 32 °C and maintained during one week (D1 to D7). We performed daily measurements of water and feed intake. Physiological (i.e., skin temperature, rectal temperature, respiratory rate), hematological and hemorheological parameters were measured on D-6, D-5, D0, D1, D2 and D7. Water restriction had no effect on physiological, hematological and hemorheological parameters. The first days of heat stress caused an increase in the three physiological parameters followed by a reduction of these parameters suggesting a successful acclimation of pigs to heat stress. We showed an increase in hematocrit, red blood cell aggregation and red blood cell aggregation strength during heat stress. Further, we observed an important release of reticulocytes, an increase of red blood cell deformability and a reduction of feed intake and blood viscosity under heat stress. This study suggests that physiological acute adaptation to heat stress is accompanied by large hematological and hemorheological changes.

  1. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth

    PubMed Central

    Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai

    2017-01-01

    State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern greenhouse production. PMID:28848565

  2. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth.

    PubMed

    Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai

    2017-01-01

    State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern greenhouse production.

  3. Spectroscopic and molecular modeling studies of the interaction between cytidine and human serum albumin and its analytical application.

    PubMed

    Cui, Fengling; Wang, Junli; Yao, Xiaojun; Wang, Li; Zhang, Qiangzhai; Qu, Guirong

    In this study, the interaction between cytidine and human serum albumin (HSA) was investigated for the first time by fluorescence spectroscopy in combination with UV absorption spectrum and molecular modeling under simulative physiological conditions. Experimental results indicated that cytidine had a strong ability to quench the intrinsic fluorescence of human serum albumin. The binding constants (K) at different temperatures, thermodynamic parameter enthalpy changes (DeltaH) and entropy changes (DeltaS) of HSA-cytidine had been calculated according to the relevant fluorescence data, which indicated that the hydrophobic and electrostatic interactions played a major role, which was in agreement with the results of molecular modeling study. In addition, the effects of other ions on the binding constants were also studied. Furthermore, synchronous fluorescence technology was successfully applied to the determination of human serum albumin added into the cytidine solution.

  4. Sensitivity of corneal biomechanical and optical behavior to material parameters using design of experiments method.

    PubMed

    Xu, Mengchen; Lerner, Amy L; Funkenbusch, Paul D; Richhariya, Ashutosh; Yoon, Geunyoung

    2018-02-01

    The optical performance of the human cornea under intraocular pressure (IOP) is the result of complex material properties and their interactions. The measurement of the numerous material parameters that define this material behavior may be key in the refinement of patient-specific models. The goal of this study was to investigate the relative contribution of these parameters to the biomechanical and optical responses of human cornea predicted by a widely accepted anisotropic hyperelastic finite element model, with regional variations in the alignment of fibers. Design of experiments methods were used to quantify the relative importance of material properties including matrix stiffness, fiber stiffness, fiber nonlinearity and fiber dispersion under physiological IOP. Our sensitivity results showed that corneal apical displacement was influenced nearly evenly by matrix stiffness, fiber stiffness and nonlinearity. However, the variations in corneal optical aberrations (refractive power and spherical aberration) were primarily dependent on the value of the matrix stiffness. The optical aberrations predicted by variations in this material parameter were sufficiently large to predict clinically important changes in retinal image quality. Therefore, well-characterized individual variations in matrix stiffness could be critical in cornea modeling in order to reliably predict optical behavior under different IOPs or after corneal surgery.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corley, Richard A.; Kabilan, Senthil; Kuprat, Andrew P.

    Coupling computational fluid dynamics (CFD) with physiologically based pharmacokinetic (PBPK) models is useful for predicting site-specific dosimetry of airborne materials in the respiratory tract and elucidating the importance of species differences in anatomy, physiology, and breathing patterns. Historically, these models were limited to discrete regions of the respiratory system. CFD/PBPK models have now been developed for the rat, monkey, and human that encompass airways from the nose or mouth to the lung. A PBPK model previously developed to describe acrolein uptake in nasal tissues was adapted to the extended airway models as an example application. Model parameters for each anatomicmore » region were obtained from the literature, measured directly, or estimated from published data. Airflow and site-specific acrolein uptake patterns were determined under steadystate inhalation conditions to provide direct comparisons with prior data and nasalonly simulations. Results confirmed that regional uptake was dependent upon airflow rates and acrolein concentrations with nasal extraction efficiencies predicted to be greatest in the rat, followed by the monkey, then the human. For human oral-breathing simulations, acrolein uptake rates in oropharyngeal and laryngeal tissues were comparable to nasal tissues following nasal breathing under the same exposure conditions. For both breathing modes, higher uptake rates were predicted for lower tracheo-bronchial tissues of humans than either the rat or monkey. These extended airway models provide a unique foundation for comparing dosimetry across a significantly more extensive range of conducting airways in the rat, monkey, and human than prior CFD models.« less

  6. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity.

    PubMed

    Pang, Yu; Zhang, Kunning; Yang, Zhen; Jiang, Song; Ju, Zhenyi; Li, Yuxing; Wang, Xuefeng; Wang, Danyang; Jian, Muqiang; Zhang, Yingying; Liang, Renrong; Tian, He; Yang, Yi; Ren, Tian-Ling

    2018-03-27

    Recently, wearable pressure sensors have attracted tremendous attention because of their potential applications in monitoring physiological signals for human healthcare. Sensitivity and linearity are the two most essential parameters for pressure sensors. Although various designed micro/nanostructure morphologies have been introduced, the trade-off between sensitivity and linearity has not been well balanced. Human skin, which contains force receptors in a reticular layer, has a high sensitivity even for large external stimuli. Herein, inspired by the skin epidermis with high-performance force sensing, we have proposed a special surface morphology with spinosum microstructure of random distribution via the combination of an abrasive paper template and reduced graphene oxide. The sensitivity of the graphene pressure sensor with random distribution spinosum (RDS) microstructure is as high as 25.1 kPa -1 in a wide linearity range of 0-2.6 kPa. Our pressure sensor exhibits superior comprehensive properties compared with previous surface-modified pressure sensors. According to simulation and mechanism analyses, the spinosum microstructure and random distribution contribute to the high sensitivity and large linearity range, respectively. In addition, the pressure sensor shows promising potential in detecting human physiological signals, such as heartbeat, respiration, phonation, and human motions of a pushup, arm bending, and walking. The wearable pressure sensor array was further used to detect gait states of supination, neutral, and pronation. The RDS microstructure provides an alternative strategy to improve the performance of pressure sensors and extend their potential applications in monitoring human activities.

  7. Effects of microgravity on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Taylor, Gerald R.

    1991-01-01

    Changes in resistance to bacterial and viral infections in Apollo crew members has stimulated interest in the study of immunity and space flight. Results of studies from several laboratories in both humans and rodents have indicated alterations after space flight that include the following immunological parameters: thymus size, lymphocyte blastogenesis, interferon and interleukin production, natural killer cell activity, cytotoxic T-cell activity, leukocyte subset population distribution, response of bone marrow cells to colony stimulating factors, and delayed hypersensitivity skin test reactivity. The interactions of the immune system with other physiological systems, including muscle, bone, and the nervous system, may play a major role in the development of these immunological parameters during and after flight. There may also be direct effects of space flight on immune responses.

  8. A comparison between Warner-Bratzler shear force measurement and texture profile analysis of meat and meat products: a review

    NASA Astrophysics Data System (ADS)

    Novaković, S.; Tomašević, I.

    2017-09-01

    Texture is one of the most important characteristics of meat and we can explain it as the human physiological-psychological awareness of a number of rheological and other properties of foods and their relations. In this paper, we discuss instrumental measurement of texture by Warner-Bratzler shear force (WBSF) and texture profile analysis (TPA). The conditions for using the device are detailed in WBSF measurements, and the influence of different parameters on the execution of the method and final results are shown. After that, the main disadvantages are reflected in the non-standardized method. Also, we introduce basic texture parameters which connect and separate TPA and WBSF methods and mention contemporary methods with their main advantage.

  9. The extreme heat wave in Athens in July 1987 from the point of view of human biometeorology

    NASA Astrophysics Data System (ADS)

    Matzarakis, Andreas; Mayer, Helmut

    At the end of July 1987 a heat wave came over Greece and had as a consequence an increase in the mortality to double the normal values. Predicted mean vote ( PMV), physiologically equivalent temperature ( PET), and for comparison discomfort index ( DI) as thermal indices as well as core temperature, mean skin temperature, and skin wetness as body parameters are calculated for that period based on meteorological data of the Meteorological Institute of the National Observatory in the centre of Athens and of the suburban station New Philadelphia of the Hellenic National Weather Service. The results for the thermal indices and the body parameters indicate a very high thermal stress on people. In addition, the air quality stress index ( AQSI) has been used for characterizing air quality conditions in Athens during the heat wave. The results Combined with the thermal effects of the heat wave the stress on humans due to environmental conditions has been very injurious to health.

  10. Dynamical complexity in a mean-field model of human EEG

    NASA Astrophysics Data System (ADS)

    Frascoli, Federico; Dafilis, Mathew P.; van Veen, Lennaert; Bojak, Ingo; Liley, David T. J.

    2008-12-01

    A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.

  11. Hyperoxia reduces insulin release and induces mitochondrial dysfunction with possible implications for hyperoxic treatment of neonates.

    PubMed

    Hals, Ingrid; Ohki, Tsuyoshi; Singh, Rinku; Ma, Zuheng; Björklund, Anneli; Balasuriya, Chandima; Scholz, Hanne; Grill, Valdemar

    2017-10-01

    We previously showed that hyperoxia in vitro negatively affects beta cells of the rat. Here, we tested for possible clinical significance as well as mitochondrial interactions by hyperoxia, using human islets (function and viability), INS-1 832/13 cells (mitochondrial metabolism), and mouse neonates (effects in vivo). Lastly, we assessed relevant parameters in a cohort of individuals born preterm and then exposed to hyperoxia. Human islets and INS-1 832/13 cells were exposed to 24 h of hyperoxia (90-92% oxygen). Mouse neonates were subjected to 5 days of continuous hyperoxia. Individuals born preterm were evaluated in terms of glucose homeostasis and beta cell function by HbA1c and the HOMA2 formula. In human islets, hyperoxia significantly reduced glucose-stimulated insulin secretion by 42.2 ± 5.3% and viability assessed by MTT by 22.5 ± 5.4%. Hyperoxia down-regulated mitochondrial complex II by 21 ± 5% and upregulated complex III by 26 ± 10.1% and complex IV by 37 ± 10.6%. Partly similar effects on mitochondrial complexes were found in hyperoxia-exposed INS-1 832/13 cells. Exposure to hyperoxia swiftly reduced oxygen consumption in these cells and increased mitochondrial uncoupling. Hyperoxia transiently but significantly reduced insulin release in mouse neonates. Individuals born preterm displayed higher HbA1c versus controls, as well as insulin resistance. Thus, hyperoxia exerts negative effects in vitro on human beta cells and results indicate inhibitory effects on insulin secretion in vivo in mouse neonates. Negative effects may be lessened by the demonstrated swift and profound mitochondrial adaptability. Our findings open the possibility that hyperoxia could negatively affect beta cells of preterm human neonates. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. The effect of foot reflexology on physiologic parameters and mechanical ventilation weaning time in patients undergoing open-heart surgery: A clinical trial study.

    PubMed

    Ebadi, Abbas; Kavei, Parastoo; Moradian, Seyyed Tayyeb; Saeid, Yaser

    2015-08-01

    The aim of this study was to investigate the efficacy of foot reflexology on physiological parameters and mechanical ventilation weaning time in patients undergoing open-heart surgery. This was a double blind three-group randomized controlled trial. Totally, 96 patients were recruited and randomly allocated to the experimental, placebo, and the control groups. Study groups respectively received foot reflexology, simple surface touching, and the routine care of the study setting. Physiological parameters (pulse rate, respiratory rate, systolic and diastolic blood pressures, mean arterial pressure, percutaneous oxygen saturation) and weaning time were measured. The study groups did not differ significantly in terms of physiological parameters (P value > 0.05). However, the length of weaning time in the experimental group was significantly shorter than the placebo and the control groups (P value < 0.05). The study findings demonstrated the efficiency of foot reflexology in shortening the length of weaning time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Selection of physiological parameters for optoelectronic system supporting behavioral therapy of autistic children

    NASA Astrophysics Data System (ADS)

    Landowska, A.; Karpienko, K.; Wróbel, M.; Jedrzejewska-Szczerska, M.

    2014-11-01

    In this article the procedure of selection of physiological parameters for optoelectronic system supporting behavioral therapy of autistic children is proposed. Authors designed and conducted an experiment in which a group of 30 health volunteers (16 females and 14 males) were examined. Under controlled conditions people were exposed to a stressful situation caused by the picture or sound (1kHz constant sound, which was gradually silenced and finished with a shot sound). For each of volunteers, a set of physiological parameters were recorded, including: skin conductance, heart rate, peripheral temperature, respiration rate and electromyography. The selected characteristics were measured in different locations in order to choose the most suitable one for the designed therapy supporting system. The bio-statistical analysis allowed us to discern the proper physiological parameters that are most associated to changes due to emotional state of a patient, such as: skin conductance, temperatures and respiration rate. This allowed us to design optoelectronic sensors network for supporting behavioral therapy of children with autism.

  14. Design Projects in Human Anatomy & Physiology

    ERIC Educational Resources Information Center

    Polizzotto, Kristin; Ortiz, Mary T.

    2008-01-01

    Very often, some type of writing assignment is required in college entry-level Human Anatomy and Physiology courses. This assignment can be anything from an essay to a research paper on the literature, focusing on a faculty-approved topic of interest to the student. As educators who teach Human Anatomy and Physiology at an urban community college,…

  15. Effect of aromatherapy massage on anxiety, depression, and physiologic parameters in older patients with the acute coronary syndrome: A randomized clinical trial.

    PubMed

    Bahrami, Tahereh; Rejeh, Nahid; Heravi-Karimooi, Majideh; Vaismoradi, Mojtaba; Tadrisi, Seyed Davood; Sieloff, Christina

    2017-12-01

    This study aimed to investigate the effect of aromatherapy massage on anxiety, depression, and physiologic parameters in older patients with acute coronary syndrome. This randomized controlled trial was conducted on 90 older women with acute coronary syndrome. The participants were randomly assigned into the intervention and control groups (n = 45). The intervention group received reflexology with lavender essential oil, but the control group only received routine care. Physiologic parameters, the levels of anxiety and depression in the hospital were evaluated using a checklist and the Hospital's Anxiety and Depression Scale, respectively, before and immediately after the intervention. Significant differences in the levels of anxiety and depression were reported between the groups after the intervention. The analysis of physiological parameters revealed a statistically significant reduction (P < .05) in systolic blood pressure, diastolic blood pressure, mean arterial pressure, and heart rate. However, no significant difference was observed in the respiratory rate. Aromatherapy massage can be considered by clinical nurses an efficient therapy for alleviating psychological and physiological responses among older women suffering from acute coronary syndrome. © 2017 John Wiley & Sons Australia, Ltd.

  16. Characteristics of hyperthermia-induced hyperventilation in humans

    PubMed Central

    Tsuji, Bun; Hayashi, Keiji; Kondo, Narihiko; Nishiyasu, Takeshi

    2016-01-01

    ABSTRACT In humans, hyperthermia leads to activation of a set of thermoregulatory responses that includes cutaneous vasodilation and sweating. Hyperthermia also increases ventilation in humans, as is observed in panting dogs, but the physiological significance and characteristics of the hyperventilatory response in humans remain unclear. The relative contribution of respiratory heat loss to total heat loss in a hot environment in humans is small, and this hyperventilation causes a concomitant reduction in arterial CO2 pressure (hypocapnia), which can cause cerebral hypoperfusion. Consequently, hyperventilation in humans may not contribute to the maintenance of physiological homeostasis (i.e., thermoregulation). To gain some insight into the physiological significance of hyperthermia-induced hyperventilation in humans, in this review, we discuss 1) the mechanisms underlying hyperthermia-induced hyperventilation, 2) the factors modulating this response, and 3) the physiological consequences of the response. PMID:27227102

  17. Kinematic Characterization of Left Ventricular Chamber Stiffness and Relaxation

    NASA Astrophysics Data System (ADS)

    Mossahebi, Sina

    Heart failure is the most common cause of hospitalization today, and diastolic heart failure accounts for 40-50% of cases. Therefore, it is critical to identify diastolic dysfunction at a subclinical stage so that appropriate therapy can be administered before ventricular function is further, and perhaps irreversibly impaired. Basic concepts in physics such as kinematic modeling provide a unique method with which to characterize cardiovascular physiology, specifically diastolic function (DF). The advantage of an approach that is standard in physics, such as the kinematic modeling is its causal formulation that functions in contrast to correlative approaches traditionally utilized in the life sciences. Our research group has pioneered theoretical and experimental quantitative analysis of DF in humans, using both non-invasive (echocardiography, cardiac MRI) and invasive (simultaneous catheterization-echocardiography) methods. Our group developed and validated the Parametrized Diastolic Filling (PDF) formalism which is motivated by basic physiologic principles (LV is a mechanical suction pump at the mitral valve opening) that obey Newton's Laws. PDF formalism is a kinematic model of filling employing an equation of motion, the solution of which accurately predicts all E-wave contours in accordance with the rules of damped harmonic oscillatory motion. The equation's lumped parameters---ventricular stiffness, ventricular viscoelasticity/relaxation and ventricular load---are obtained by solving the 'inverse problem'. The parameters' physiologic significance and clinical utility have been repeatedly demonstrated in multiple clinical settings. In this work we apply our kinematic modeling approach to better understand how the heart works as it fills in order to advance the relationship between physiology and mathematical modeling. Through the use of this modeling, we thereby define and validate novel, causal indexes of diastolic function such as early rapid filling energy, diastatic stiffness, and relaxation and stiffness components of E-wave deceleration time.

  18. Simulating the decentralized processes of the human immune system in a virtual anatomy model.

    PubMed

    Sarpe, Vladimir; Jacob, Christian

    2013-01-01

    Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.

  19. A graphical simulation software for instruction in cardiovascular mechanics physiology.

    PubMed

    Wildhaber, Reto A; Verrey, François; Wenger, Roland H

    2011-01-25

    Computer supported, interactive e-learning systems are widely used in the teaching of physiology. However, the currently available complimentary software tools in the field of the physiology of cardiovascular mechanics have not yet been adapted to the latest systems software. Therefore, a simple-to-use replacement for undergraduate and graduate students' education was needed, including an up-to-date graphical software that is validated and field-tested. Software compatible to Windows, based on modified versions of existing mathematical algorithms, has been newly developed. Testing was performed during a full term of physiological lecturing to medical and biology students. The newly developed CLabUZH software models a reduced human cardiovascular loop containing all basic compartments: an isolated heart including an artificial electrical stimulator, main vessels and the peripheral resistive components. Students can alter several physiological parameters interactively. The resulting output variables are printed in x-y diagrams and in addition shown in an animated, graphical model. CLabUZH offers insight into the relations of volume, pressure and time dependency in the circulation and their correlation to the electrocardiogram (ECG). Established mechanisms such as the Frank-Starling Law or the Windkessel Effect are considered in this model. The CLabUZH software is self-contained with no extra installation required and runs on most of today's personal computer systems. CLabUZH is a user-friendly interactive computer programme that has proved to be useful in teaching the basic physiological principles of heart mechanics.

  20. Multi-sector thermo-physiological head simulator for headgear research.

    PubMed

    Martinez, Natividad; Psikuta, Agnes; Corberán, José Miguel; Rossi, René M; Annaheim, Simon

    2017-02-01

    A novel thermo-physiological human head simulator for headgear testing was developed by coupling a thermal head manikin with a thermo-physiological model. As the heat flux at head-site is directly measured by the head manikin, this method provides a realistic quantification of the heat transfer phenomena occurring in the headgear, such as moisture absorption-desorption cycles, condensation, or moisture migration across clothing layers. Before coupling, the opportunities of the head manikin for representing the human physiology were evaluated separately. The evaluation revealed reduced precision in forehead and face temperature predictions under extreme heterogeneous temperature distributions and no initial limitation for simulating temperature changes observed in the human physiology. The thermo-physiological model predicted higher sweat rates when applied for coupled than for pure virtual simulations. After coupling, the thermo-physiological human head simulator was validated using eight human experiments. It precisely predicted core, mean skin, and forehead temperatures with average rmsd values within the average experimental standard deviation (rmsd of 0.20 ± 0.15, 0.83 ± 0.34, and 1.04 ± 0.54 °C, respectively). However, in case of forehead, precision was lower for the exposures including activity than for the sedentary exposures. The representation of the human sweat evaporation could be affected by a reduced evaporation efficiency and the manikin sweat dynamics. The industry will benefit from this thermo-physiological human head simulator leading to the development of helmet designs with enhanced thermal comfort and, therefore, with higher acceptance by users.

  1. Prediction of Fetal Darunavir Exposure by Integrating Human Ex-Vivo Placental Transfer and Physiologically Based Pharmacokinetic Modeling.

    PubMed

    Schalkwijk, Stein; Buaben, Aaron O; Freriksen, Jolien J M; Colbers, Angela P; Burger, David M; Greupink, Rick; Russel, Frans G M

    2017-07-25

    Fetal antiretroviral exposure is usually derived from the cord-to-maternal concentration ratio. This static parameter does not provide information on the pharmacokinetics in utero, limiting the assessment of a fetal exposure-effect relationship. The aim of this study was to incorporate placental transfer into a pregnancy physiologically based pharmacokinetic model to simulate and evaluate fetal darunavir exposure at term. An existing and validated pregnancy physiologically based pharmacokinetic model of maternal darunavir/ritonavir exposure was extended with a feto-placental unit. To parameterize the model, we determined maternal-to-fetal and fetal-to-maternal darunavir/ritonavir placental clearance with an ex-vivo human cotyledon perfusion model. Simulated maternal and fetal pharmacokinetic profiles were compared with observed clinical data to qualify the model for simulation. Next, population fetal pharmacokinetic profiles were simulated for different maternal darunavir/ritonavir dosing regimens. An average (±standard deviation) maternal-to-fetal cotyledon clearance of 0.91 ± 0.11 mL/min and fetal-to-maternal clearance of 1.6 ± 0.3 mL/min was determined (n = 6 perfusions). Scaled placental transfer was integrated into the pregnancy physiologically based pharmacokinetic model. For darunavir 600/100 mg twice a day, the predicted fetal maximum plasma concentration, trough concentration, time to maximum plasma concentration, and half-life were 1.1, 0.57 mg/L, 3, and 21 h, respectively. This indicates that the fetal population trough concentration is higher or around the half-maximal effective darunavir concentration for a resistant virus (0.55 mg/L). The results indicate that the population fetal exposure after oral maternal darunavir dosing is therapeutic and this may provide benefits to the prevention of mother-to-child transmission of human immunodeficiency virus. Moreover, this integrated approach provides a tool to prevent fetal toxicity or enhance the development of more selectively targeted fetal drug treatments.

  2. A Workflow for Global Sensitivity Analysis of PBPK Models

    PubMed Central

    McNally, Kevin; Cotton, Richard; Loizou, George D.

    2011-01-01

    Physiologically based pharmacokinetic (PBPK) models have a potentially significant role in the development of a reliable predictive toxicity testing strategy. The structure of PBPK models are ideal frameworks into which disparate in vitro and in vivo data can be integrated and utilized to translate information generated, using alternative to animal measures of toxicity and human biological monitoring data, into plausible corresponding exposures. However, these models invariably include the description of well known non-linear biological processes such as, enzyme saturation and interactions between parameters such as, organ mass and body mass. Therefore, an appropriate sensitivity analysis (SA) technique is required which can quantify the influences associated with individual parameters, interactions between parameters and any non-linear processes. In this report we have defined the elements of a workflow for SA of PBPK models that is computationally feasible, accounts for interactions between parameters, and can be displayed in the form of a bar chart and cumulative sum line (Lowry plot), which we believe is intuitive and appropriate for toxicologists, risk assessors, and regulators. PMID:21772819

  3. Comparative Computational Modeling of Airflows and Vapor Dosimetry in the Respiratory Tracts of Rat, Monkey, and Human

    PubMed Central

    Corley, Richard A.

    2012-01-01

    Computational fluid dynamics (CFD) models are useful for predicting site-specific dosimetry of airborne materials in the respiratory tract and elucidating the importance of species differences in anatomy, physiology, and breathing patterns. We improved the imaging and model development methods to the point where CFD models for the rat, monkey, and human now encompass airways from the nose or mouth to the lung. A total of 1272, 2172, and 135 pulmonary airways representing 17±7, 19±9, or 9±2 airway generations were included in the rat, monkey and human models, respectively. A CFD/physiologically based pharmacokinetic model previously developed for acrolein was adapted for these anatomically correct extended airway models. Model parameters were obtained from the literature or measured directly. Airflow and acrolein uptake patterns were determined under steady-state inhalation conditions to provide direct comparisons with prior data and nasal-only simulations. Results confirmed that regional uptake was sensitive to airway geometry, airflow rates, acrolein concentrations, air:tissue partition coefficients, tissue thickness, and the maximum rate of metabolism. Nasal extraction efficiencies were predicted to be greatest in the rat, followed by the monkey, and then the human. For both nasal and oral breathing modes in humans, higher uptake rates were predicted for lower tracheobronchial tissues than either the rat or monkey. These extended airway models provide a unique foundation for comparing material transport and site-specific tissue uptake across a significantly greater range of conducting airways in the rat, monkey, and human than prior CFD models. PMID:22584687

  4. Computational Model for Oxygen Transport and Consumption in Human Vitreous

    PubMed Central

    Filas, Benjamen A.; Shui, Ying-Bo; Beebe, David C.

    2013-01-01

    Purpose. Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. Methods. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. Results. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Conclusions. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts. PMID:24008409

  5. Computational model for oxygen transport and consumption in human vitreous.

    PubMed

    Filas, Benjamen A; Shui, Ying-Bo; Beebe, David C

    2013-10-15

    Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts.

  6. HUMAN--A Comprehensive Physiological Model.

    ERIC Educational Resources Information Center

    Coleman, Thomas G.; Randall, James E.

    1983-01-01

    Describes computer program (HUMAN) used to simulate physiological experiments on patient pathology. Program (available from authors, including versions for microcomputers) consists of dynamic interactions of over 150 physiological variables and integrating approximations of cardiovascular, renal, lung, temperature regulation, and some hormone…

  7. Use of Physiologically Based Pharmacokinetic (PBPK) Models to Quantify the Impact of Human Age and Interindividual Differences in Physiology and Biochemistry Pertinent to Risk (Final Report)

    EPA Science Inventory

    EPA announced the availability of the final report, Use of Physiologically Based Pharmacokinetic (PBPK) Models to Quantify the Impact of Human Age and Interindividual Differences in Physiology and Biochemistry Pertinent to Risk Final Report for Cooperative Agreement. Th...

  8. An investigation on effects of amputee's physiological parameters on maximum pressure developed at the prosthetic socket interface using artificial neural network.

    PubMed

    Nayak, Chitresh; Singh, Amit; Chaudhary, Himanshu; Unune, Deepak Rajendra

    2017-10-23

    Technological advances in prosthetics have attracted the curiosity of researchers in monitoring design and developments of the sockets to sustain maximum pressure without any soft tissue damage, skin breakdown, and painful sores. Numerous studies have been reported in the area of pressure measurement at the limb/socket interface, though, the relation between amputee's physiological parameters and the pressure developed at the limb/socket interface is still not studied. Therefore, the purpose of this work is to investigate the effects of patient-specific physiological parameters viz. height, weight, and stump length on the pressure development at the transtibial prosthetic limb/socket interface. Initially, the pressure values at the limb/socket interface were clinically measured during stance and walking conditions for different patients using strain gauges placed at critical locations of the stump. The measured maximum pressure data related to patient's physiological parameters was used to develop an artificial neural network (ANN) model. The effects of physiological parameters on the pressure development at the limb/socket interface were examined using the ANN model. The analyzed results indicated that the weight and stump length significantly affects the maximum pressure values. The outcomes of this work could be an important platform for the design and development of patient-specific prosthetic socket which can endure the maximum pressure conditions at stance and ambulation conditions.

  9. The effect of music on preprocedure anxiety in Hong Kong Chinese day patients.

    PubMed

    Lee, David; Henderson, Amanda; Shum, David

    2004-03-01

    To identify the effect of music on preprocedure anxiety levels of Hong Kong Chinese patients undergoing day procedures in a local community based hospital. Pre and post-test quasi experimental design with non-random assignment. A total of 113 participants were assigned to the control group or intervention group depending on the day of their procedure. Participants' anxiety levels were measured objectively by comparing their vital signs and subjectively by the Spielberger State Trait Anxiety Scale. Participants' physiological parameters (blood pressure, pulse and respiration) and State Trait Anxiety Scale were measured at two time periods. The control group undertook the usual relaxing activities provided in the waiting room compared with the intervention group who listened to music of their own choice in reclining chairs while waiting for the procedure. The physiological parameters for both the control and intervention groups dropped significantly during the waiting period, however, only the intervention group had a significant reduction in reported anxiety levels. These results suggest that providing self-selected music to day procedure patients in the preprocedure period assists in the reduction of physiological parameters and anxiety, yet, a relaxing environment can assist in the reduction of physiological parameters. The administration of self-selected music to day procedure patients in the preprocedure period can be effective in the reduction of physiological parameters and anxiety.

  10. Modified physiologically equivalent temperature—basics and applications for western European climate

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Chang; Matzarakis, Andreas

    2018-05-01

    A new thermal index, the modified physiologically equivalent temperature (mPET) has been developed for universal application in different climate zones. The mPET has been improved against the weaknesses of the original physiologically equivalent temperature (PET) by enhancing evaluation of the humidity and clothing variability. The principles of mPET and differences between original PET and mPET are introduced and discussed in this study. Furthermore, this study has also evidenced the usability of mPET with climatic data in Freiburg, which is located in Western Europe. Comparisons of PET, mPET, and Universal Thermal Climate Index (UTCI) have shown that mPET gives a more realistic estimation of human thermal sensation than the other two thermal indices (PET, UTCI) for the thermal conditions in Freiburg. Additionally, a comparison of physiological parameters between mPET model and PET model (Munich Energy Balance Model for Individual, namely MEMI) is proposed. The core temperatures and skin temperatures of PET model vary more violently to a low temperature during cold stress than the mPET model. It can be regarded as that the mPET model gives a more realistic core temperature and mean skin temperature than the PET model. Statistical regression analysis of mPET based on the air temperature, mean radiant temperature, vapor pressure, and wind speed has been carried out. The R square (0.995) has shown a well co-relationship between human biometeorological factors and mPET. The regression coefficient of each factor represents the influence of the each factor on changing mPET (i.e., ±1 °C of T a = ± 0.54 °C of mPET). The first-order regression has been considered predicting a more realistic estimation of mPET at Freiburg during 2003 than the other higher order regression model, because the predicted mPET from the first-order regression has less difference from mPET calculated from measurement data. Statistic tests recognize that mPET can effectively evaluate the influences of all human biometeorological factors on thermal environments. Moreover, a first-order regression function can also predict the thermal evaluations of the mPET by using human biometeorological factors in Freiburg.

  11. The fiber orientation in the coronary arterial wall at physiological loading evaluated with a two-fiber constitutive model.

    PubMed

    van der Horst, Arjen; van den Broek, Chantal N; van de Vosse, Frans N; Rutten, Marcel C M

    2012-03-01

    A patient-specific mechanical description of the coronary arterial wall is indispensable for individualized diagnosis and treatment of coronary artery disease. A way to determine the artery's mechanical properties is to fit the parameters of a constitutive model to patient-specific experimental data. Clinical data, however, essentially lack information about the stress-free geometry of an artery, which is necessary for constitutive modeling. In previous research, it has been shown that a way to circumvent this problem is to impose extra modeling constraints on the parameter estimation procedure. In this study, we propose a new modeling constraint concerning the in-situ fiber orientation (β (phys)). β (phys), which is a major contributor to the arterial stress-strain behavior, was determined for porcine and human coronary arteries using a mixed numerical-experimental method. The in-situ situation was mimicked using in-vitro experiments at a physiological axial pre-stretch, in which pressure-radius and pressure-axial force were measured. A single-layered, hyperelastic, thick-walled, two-fiber material model was accurately fitted to the experimental data, enabling the computation of stress, strain, and fiber orientation. β (phys) was found to be almost equal for all vessels measured (36.4 ± 0.3)°, which theoretically can be explained using netting analysis. In further research, this finding can be used as an extra modeling constraint in parameter estimation from clinical data.

  12. Descriptive parameters of the erythrocyte aggregation phenomenon using a laser transmission optical chip

    NASA Astrophysics Data System (ADS)

    Toderi, Martín A.; Castellini, Horacio V.; Riquelme, Bibiana D.

    2017-01-01

    The study of red blood cell (RBC) aggregation is of great interest because of its implications for human health. Altered RBC aggregation can lead to microcirculatory problems as in vascular pathologies, such as hypertension and diabetes, due to a decrease in the erythrocyte surface electric charge and an increase in the ligands present in plasma. The process of erythrocyte aggregation was studied in stasis situation (free shear stresses), using an optical chip based on the laser transmission technique. Kinetic curves of erythrocyte aggregation under different conditions were obtained, allowing evaluation and characterization of this process. Two main characteristics of blood that influence erythrocyte aggregation were analyzed: the erythrocyte surface anionic charge (EAC) after digestion with the enzyme trypsin and plasmatic protein concentration in suspension medium using plasma dissolutions in physiological saline with human albumin. A theoretical approach was evaluated to obtain aggregation and disaggregation ratios by syllectograms data fitting. Sensible parameters (Amp100, t) regarding a reduced erythrocyte EAC were determined, and other parameters (AI, M-Index) resulted that are representative of a variation in the plasmatic protein content of the suspension medium. These results are very useful for further applications in biomedicine.

  13. Mathematical modeling and spectrum analysis of the physiological patello-femoral pulse train produced by slow knee movement.

    PubMed

    Zhang, Y T; Frank, C B; Rangayyan, R M; Bell, G D

    1992-09-01

    Analysis of vibration signals emitted by the knee joint has the potential for the development of a noninvasive procedure for the diagnosis and monitoring of knee pathology. In order to obtain as much information as possible from the power density spectrum of the knee vibration signal, it is necessary to identify the physiological factors (or physiologically relevant parameters) that shape the spectrum. This paper presents a mathematical model for knee vibration signals, in particular the physiological patello-femoral pulse (PFP) train produced by slow knee movement. It demonstrates through the mathematical model that the repetition rate of the physiological PFP train introduces repeated peaks in the power spectrum, and that it affects the spectrum mainly at low frequencies. The theoretical results also show that the spectral peaks at multiples of the PFP repetition rate become more evident when the variance of the interpulse interval (IPI) is small, and that these spectral peaks shift toward higher frequencies with increasing PFP repetition rates. To evaluate the mathematical model, a simulation algorithm was developed, which generates PFP signals with adjustable repetition rate and IPI variance. Signals generated by simulation were seen to possess representative spectral characteristics typically observed in physiological PFP signals. This simulation procedure allows an interactive examination of several factors which affect the PFP train spectrum. Finally, in vivo measurements of physiological PFP signals of normal volunteers are presented. Results of simulations and analysis of signals recorded from human subjects support the mathematical model's prediction that the IPI statistics play a very significant role in determining the low-end power spectrum of the physiological PFP signal.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Simulator technology as a tool for education in cardiac care.

    PubMed

    Hravnak, Marilyn; Beach, Michael; Tuite, Patricia

    2007-01-01

    Assisting nurses in gaining the cognitive and psychomotor skills necessary to safely and effectively care for patients with cardiovascular disease can be challenging for educators. Ideally, nurses would have the opportunity to synthesize and practice these skills in a protected training environment before application in the dynamic clinical setting. Recently, a technology known as high fidelity human simulation was introduced, which permits learners to interact with a simulated patient. The dynamic physiologic parameters and physical assessment capabilities of the simulated patient provide for a realistic learning environment. This article describes the High Fidelity Human Simulation Laboratory at the University of Pittsburgh School of Nursing and presents strategies for using this technology as a tool in teaching complex cardiac nursing care at the basic and advanced practice nursing levels. The advantages and disadvantages of high fidelity human simulation in learning are discussed.

  15. Older adults' attitudes towards and perceptions of "smart home" technologies: a pilot study.

    PubMed

    Demiris, George; Rantz, Marilyn; Aud, Myra; Marek, Karen; Tyrer, Harry; Skubic, Marjorie; Hussam, Ali

    2004-06-01

    The study aim is to explore the perceptions and expectations of seniors in regard to "smart home" technology installed and operated in their homes with the purpose of improving their quality of life and/or monitoring their health status. Three focus group sessions were conducted within this pilot study to assess older adults' perceptions of the technology and ways they believe technology can improve their daily lives. Themes discussed in these groups included participants' perceptions of the usefulness of devices and sensors in health-related issues such as preventing or detecting falls, assisting with visual or hearing impairments, improving mobility, reducing isolation, managing medications, and monitoring of physiological parameters. The audiotapes were transcribed and a content analysis was performed. A total of 15 older adults participated in three focus group sessions. Areas where advanced technologies would benefit older adult residents included emergency help, prevention and detection of falls, monitoring of physiological parameters, etc. Concerns were expressed about the user-friendliness of the devices, lack of human response and the need for training tailored to older learners. All participants had an overall positive attitude towards devices and sensors that can be installed in their homes in order to enhance their lives.

  16. Proportional Feedback Control of Energy Intake During Obesity Pharmacotherapy.

    PubMed

    Hall, Kevin D; Sanghvi, Arjun; Göbel, Britta

    2017-12-01

    Obesity pharmacotherapies result in an exponential time course for energy intake whereby large early decreases dissipate over time. This pattern of declining drug efficacy to decrease energy intake results in a weight loss plateau within approximately 1 year. This study aimed to elucidate the physiology underlying the exponential decay of drug effects on energy intake. Placebo-subtracted energy intake time courses were examined during long-term obesity pharmacotherapy trials for 14 different drugs or drug combinations within the theoretical framework of a proportional feedback control system regulating human body weight. Assuming each obesity drug had a relatively constant effect on average energy intake and did not affect other model parameters, our model correctly predicted that long-term placebo-subtracted energy intake was linearly related to early reductions in energy intake according to a prespecified equation with no free parameters. The simple model explained about 70% of the variance between drug studies with respect to the long-term effects on energy intake, although a significant proportional bias was evident. The exponential decay over time of obesity pharmacotherapies to suppress energy intake can be interpreted as a relatively constant effect of each drug superimposed on a physiological feedback control system regulating body weight. © 2017 The Obesity Society.

  17. Relationship of Physiological Parameters and Achievement in Wheelchair Athletics.

    ERIC Educational Resources Information Center

    Hurst, Judith A.

    The relationship between achievement in track and field events (60, 100, 200, 400 meter runs and shotput, discus, and javelin throws) and selected physiological parameters (grip strength, body fat, vital lung capacity, and cardiovascular efficiency) of 20 wheelchair athletes was investigated. Results of track and field events were obtained from…

  18. Important Physiological Parameters and Physical Activity Data for Evaluating Exposure Modeling Performance: a Synthesis

    EPA Science Inventory

    The purpose of this report is to develop a database of physiological parameters needed for understanding and evaluating performance of the APEX and SHEDS exposure/intake dose rate model used by the Environmental Protection Agency (EPA) as part of its regulatory activities. The A...

  19. Man as the main component of the closed ecological system of the spacecraft or planetary station.

    PubMed

    Parin, V V; Adamovich, B A

    1968-01-01

    Current life-support systems of the spacecraft provide human requirements for food, water and oxygen only. Advanced life-support systems will involve man as their main component and will ensure completely his material and energy requirements. The design of individual components of such systems will assure their entire suitability and mutual control effects. Optimization of the performance of the crew and ecological system, on the basis of the information characterizing their function, demands efficient methods of collection and treatment of the information obtained through wireless recording of physiological parameters and their automatic treatment. Peculiarities of interplanetary missions and planetary stations make it necessary to conform the schedule of physiological recordings with the work-and-rest cycle of the space crew and inertness of components of the ecological system, especially of those responsible for oxygen regeneration. It is rational to model ecological systems and their components, taking into consideration the correction effect of the information on the health conditions and performance of the crewmen. Wide application of physiological data will allow the selection of optimal designs and sharply increase reliability of ecological systems.

  20. Measuring dynamic kidney function in an undergraduate physiology laboratory.

    PubMed

    Medler, Scott; Harrington, Frederick

    2013-12-01

    Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on a "dipstick" approach of urinalysis. Although this technique can provide some basic insights into the functioning of the kidneys, it overlooks the dynamic processes of filtration, reabsorption, and secretion. In the present article, we provide a straightforward approach of using renal clearance measurements to estimate glomerular filtration rate, fractional water reabsorption, glucose clearance, and other physiologically relevant parameters. The estimated values from our measurements in laboratory are in close agreement with those anticipated based on textbook parameters. For example, we found glomerular filtration rate to average 124 ± 45 ml/min, serum creatinine to be 1.23 ± 0.4 mg/dl, and fractional water reabsorption to be ∼96.8%. Furthermore, analyses for the class data revealed significant correlations between parameters like fractional water reabsorption and urine concentration, providing opportunities to discuss urine concentrating mechanisms and other physiological processes. The procedures outlined here are general enough that most undergraduate physiology laboratory courses should be able to implement them without difficulty.

  1. Variable responses of human and non-human primate gut microbiomes to a Western diet.

    PubMed

    Amato, Katherine R; Yeoman, Carl J; Cerda, Gabriela; Schmitt, Christopher A; Cramer, Jennifer Danzy; Miller, Margret E Berg; Gomez, Andres; Turner, Trudy R; Wilson, Brenda A; Stumpf, Rebecca M; Nelson, Karen E; White, Bryan A; Knight, Rob; Leigh, Steven R

    2015-11-16

    The human gut microbiota interacts closely with human diet and physiology. To better understand the mechanisms behind this relationship, gut microbiome research relies on complementing human studies with manipulations of animal models, including non-human primates. However, due to unique aspects of human diet and physiology, it is likely that host-gut microbe interactions operate differently in humans and non-human primates. Here, we show that the human microbiome reacts differently to a high-protein, high-fat Western diet than that of a model primate, the African green monkey, or vervet (Chlorocebus aethiops sabaeus). Specifically, humans exhibit increased relative abundance of Firmicutes and reduced relative abundance of Prevotella on a Western diet while vervets show the opposite pattern. Predictive metagenomics demonstrate an increased relative abundance of genes associated with carbohydrate metabolism in the microbiome of only humans consuming a Western diet. These results suggest that the human gut microbiota has unique properties that are a result of changes in human diet and physiology across evolution or that may have contributed to the evolution of human physiology. Therefore, the role of animal models for understanding the relationship between the human gut microbiota and host metabolism must be re-focused.

  2. Detailed Analysis of the African Green Monkey Model of Nipah Virus Disease

    PubMed Central

    Johnston, Sara C.; Briese, Thomas; Bell, Todd M.; Pratt, William D.; Shamblin, Joshua D.; Esham, Heather L.; Donnelly, Ginger C.; Johnson, Joshua C.; Hensley, Lisa E.; Lipkin, W. Ian; Honko, Anna N.

    2015-01-01

    Henipaviruses are implicated in severe and frequently fatal pneumonia and encephalitis in humans. There are no approved vaccines or treatments available for human use, and testing of candidates requires the use of well-characterized animal models that mimic human disease. We performed a comprehensive and statistically-powered evaluation of the African green monkey model to define parameters critical to disease progression and the extent to which they correlate with human disease. African green monkeys were inoculated by the intratracheal route with 2.5×104 plaque forming units of the Malaysia strain of Nipah virus. Physiological data captured using telemetry implants and assessed in conjunction with clinical pathology were consistent with shock, and histopathology confirmed widespread tissue involvement associated with systemic vasculitis in animals that succumbed to acute disease. In addition, relapse encephalitis was identified in 100% of animals that survived beyond the acute disease phase. Our data suggest that disease progression in the African green monkey is comparable to the variable outcome of Nipah virus infection in humans. PMID:25706617

  3. Synergistic and Antagonistic Effects of Thermal Shock, Air Exposure, and Fishing Capture on the Physiological Stress of Squilla mantis (Stomatopoda)

    PubMed Central

    Raicevich, Saša; Minute, Fabrizio; Finoia, Maria Grazia; Caranfa, Francesca; Di Muro, Paolo; Scapolan, Lucia; Beltramini, Mariano

    2014-01-01

    This study is aimed at assessing the effects of multiple stressors (thermal shock, fishing capture, and exposure to air) on the benthic stomatopod Squilla mantis, a burrowing crustacean quite widespread in the Mediterranean Sea. Laboratory analyses were carried out to explore the physiological impairment onset over time, based on emersion and thermal shocks, on farmed individuals. Parallel field-based studies were carried out to also investigate the role of fishing (i.e., otter trawling) in inducing physiological imbalance in different seasonal conditions. The dynamics of physiological recovery from physiological disruption were also studied. Physiological stress was assessed by analysing hemolymph metabolites (L-Lactate, D-glucose, ammonia, and H+), as well as glycogen concentration in muscle tissues. The experiments were carried out according to a factorial scheme considering the three factors (thermal shock, fishing capture, and exposure to air) at two fixed levels in order to explore possible synergistic, additive, or antagonistic effects among factors. Additive effects on physiological parameters were mainly detected when the three factors interacted together while synergistic effects were found as effect of the combination of two factors. This finding highlights that the physiological adaptive and maladaptive processes induced by the stressors result in a dynamic response that may encounter physiological limits when high stress levels are sustained. Thus, a further increase in the physiological parameters due to synergies cannot be reached. Moreover, when critical limits are encountered, mortality occurs and physiological parameters reflect the response of the last survivors. In the light of our mortality studies, thermal shock and exposure to air have the main effect on the survival of S. mantis only on trawled individuals, while lab-farmed individuals did not show any mortality during exposure to air until after 2 hours. PMID:25133593

  4. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaoxia, E-mail: xiaoxia.yang@fda.hhs.gov; Doerge, Daniel R.; Teeguarden, Justin G.

    A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d{sub 6}-BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d{sub 6}-BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult humanmore » model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d{sub 6}-BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in adult humans. • Serum concentrations of aglycone BPA are available for model calibration. • Model predicted peak BPA serum levels for adult humans were in the range of pM. • Model predicted 95% of human variability fell within an order of magnitude.« less

  5. Dimensions of the foot muscles in the lowland gorilla.

    PubMed

    Oishi, Motoharu; Ogihara, Naomichi; Endo, Hideki; Komiya, Teruyuki; Kawada, Shin-Ichiro; Tomiyama, Tae; Sugiura, Yosuke; Ichihara, Nobutsune; Asari, Masao

    2009-06-01

    We dissected the hindlimb of a female western lowland gorilla and determined the muscle dimensions (mass, fascicle length, and physiological cross-sectional area: PCSA). Comparisons of the muscle parameters of the measured gorilla with corresponding reported human data demonstrated that the triceps surae muscles were larger and had more capacity to generate force than the other muscle groups in both species, but this tendency was more prominent in the human, probably as an adaptation to strong toe-off during bipedal walking. On the other hand, PCSAs of the extrinsic pedal digital flexors and digiti minimi muscles were larger in the western lowland gorilla, suggesting that the foot, particularly the fifth toe, has a relatively high grasping capability in the lowland gorilla.

  6. Physiological responses to environmental factors related to space flight. [hemodynamic and metabolic responses to weightlessness

    NASA Technical Reports Server (NTRS)

    Pace, N.

    1973-01-01

    Physiological base line data are established, and physiological procedures and instrumentation necessary for the automatic measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are developed.

  7. Behavioral Health and Performance Laboratory Standard Measures (BHP-SM)

    NASA Technical Reports Server (NTRS)

    Williams, Thomas J.; Cromwell, Ronita

    2017-01-01

    The Spaceflight Standard Measures is a NASA Johnson Space Center Human Research Project (HRP) project that proposes to collect a set of core measurements, representative of many of the human spaceflight risks, from astronauts before, during and after long-duration International Space Station (ISS) missions. The term "standard measures" is defined as a set of core measurements, including physiological, biochemical, psychosocial, cognitive, and functional, that are reliable, valid, and accepted in terrestrial science, are associated with a specific and measurable outcome known to occur as a consequence of spaceflight, that will be collected in a standardized fashion from all (or most) crewmembers. While such measures might be used to define standards of health and performance or readiness for flight, the prime intent in their collection is to allow longitudinal analysis of multiple parameters in order to answer a variety of operational, occupational, and research-based questions. These questions are generally at a high level, and the approach for this project is to populate the standard measures database with the smallest set of data necessary to indicate further detailed research is required. Also included as standard measures are parameters that are not outcome-based in and of-themselves, but provide ancillary information that supports interpretation of the outcome measures, e.g., nutritional assessment, vehicle environmental parameters, crew debriefs, etc. The project's main aim is to ensure that an optimized minimal set of measures is consistently captured from all ISS crewmembers until the end of Station in order to characterize the human in space. -This allows the HRP to identify, establish, and evaluate a common set of measures for use in spaceflight and analog research to: develop baselines, systematically characterize risk likelihood and consequences, and assess effectiveness of countermeasures that work for behavioral health and performance risk factors. -By standardizing the battery of measures on all crewmembers, it will allow the HRP to evaluate countermeasures that work for one physiological system and ensure another system is not negatively affected. -These measures, named "Standard Measures," will serve as a data repository and be available to other studies under data sharing agreements.

  8. Human Adaptation to Space: Space Physiology and Countermeasures

    NASA Technical Reports Server (NTRS)

    Fogarty, Jennifer

    2009-01-01

    This viewgraph presentation reviews human physiological responses to spaceflight, and the countermeasures taken to prevent adverse effects of manned space flight. The topics include: 1) Human Spaceflight Experience; 2) Human Response to Spaceflight; 3) ISS Expeditions 1-16; 4) Countermeasure; and 5) Biomedical Data;

  9. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    PubMed

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2018-06-01

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  10. Geo-Effective Heliophysical Variations and Human Physiological State

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    2006-03-01

    A group of 86 volunteers was examined on each working day in autumn 2001 and in spring 2002. These periods were chosen because of maximal expected geomagnetic activity. There were 26 persons in the group on a drug treatment, mainly because of hypertension. Systolic and diastolic blood pressure and heart rate were registered. Pulse pressure was calculated. Data about subjective psycho-physiological complaints of the persons examined were also gathered. Altogether 2799 recordings were obtained and analyzed. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The factors were as follows: 1) geomagnetic activity estimated by H-component of the local geomagnetic field and divided into five levels; 2) gender - males and females; 3) presence of medication. Post hoc analysis was performed to elicit the significance of differences in the factors' levels. The average arterial blood pressure, pulse pressure and the percentage of the persons in the group with subjective psycho-physiological complaints were found to increase significantly with the increase of geomagnetic activity. The maximal increment of systolic and diastolic blood pressure was 10-11% and for pulse pressure 13.6%. Analyses revealed that females and persons on a medication were more sensitive to the increase of geomagnetic activity than respectively males and persons with no medication.

  11. Rain influences the physiological and metabolic responses to exercise in hot conditions.

    PubMed

    Ito, Ryo; Yamashita, Naoyuki; Suzuki, Eiko; Matsumoto, Takaaki

    2015-01-01

    Outdoor exercise often proceeds in rainy conditions. However, the cooling effects of rain on human physiological responses have not been systematically studied in hot conditions. The present study determined physiological and metabolic responses using a climatic chamber that can precisely simulate hot, rainy conditions. Eleven healthy men ran on a treadmill at an intensity of 70% VO2max for 30 min in the climatic chamber at an ambient temperature of 33°C in the presence (RAIN) or absence (CON) of 30 mm · h(-1) of precipitation and a headwind equal to the running velocity of 3.15 ± 0.19 m · s(-1). Oesophageal temperature, mean skin temperature, heart rate, rating of perceived exertion, blood parameters, volume of expired air and sweat loss were measured. Oesophageal and mean skin temperatures were significantly lower from 5 to 30 min, and heart rate was significantly lower from 20 to 30 min in RAIN than in CON (P < 0.05 for all). Plasma lactate and epinephrine concentrations (30 min) and sweat loss were significantly lower (P < 0.05) in RAIN compared with CON. Rain appears to influence physiological and metabolic responses to exercise in heat such that heat-induced strain might be reduced.

  12. Detection of physiological changes after exercise via a remote optophysiological imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hu, Sijung; Azorin-Peris, Vicente; Zheng, Jia; Greenwald, Stephen; Chambers, Jonathon; Zhu, Yisheng

    2011-03-01

    A study of blood perfusion mapping was performed with a remote opto-physiological imaging (OPI) system coupling a sensitive CMOS camera and a custom-built resonant cavity light emitting diode (RCLED) ringlight. The setup is suitable for the remote assessment of blood perfusion in tissue over a wide range of anatomical locations. The purpose of this study is to evaluate the reliability and stability of the OPI system when measuring a cardiovascular variable of clinical interest, in this case, heart rate. To this end, the non-contact and contact photoplethysmographic (PPG) signals obtained from the OPI system and conventional PPG sensor were recorded simultaneously from each of 12 subjects before and after 5-min of cycling exercise. The time-frequency representation (TFR) method was used to visualize the time-dependent behavior of the signal frequency. The physiological parameters derived from the images captured by the OPI system exhibit comparable functional characteristics to those taken from conventional contact PPG pulse waveform measurements in both the time and frequency domains. Finally and more importantly, a previously developed opto-physiological model was employed to provide a 3-D representation of blood perfusion in human tissue which could provide a new insight into clinical assessment and diagnosis of circulatory pathology in various tissue segments.

  13. Temporal changes in physiology and haematology in response to high- and micro-doses of recombinant human erythropoietin.

    PubMed

    Clark, Brad; Woolford, Sarah M; Eastwood, Annette; Sharpe, Ken; Barnes, Peter G; Gore, Christopher J

    2017-10-01

    There is evidence to suggest athletes have adopted recombinant human erythropoietin (rHuEPO) dosing regimens that diminish the likelihood of being caught by direct detection techniques. However, the temporal response in physiology, performance, and Athlete Biological Passport (ABP) parameters to such regimens is not clearly understood. Participants were assigned to a high-dose only group (HIGH, n = 8, six rHuEPO doses of 250 IU/kg over two weeks), a combined high micro-dose group (COMB, n = 8, high-dose plus nine rHuEPO micro-doses over a further three weeks), or one of two placebo control groups who received saline in the same pattern as the HIGH (HIGH-PLACEBO, n = 4) or COMB (COMB-PLACEBO, n = 4) groups. Temporal changes in physiology and performance were tracked by graded exercise test (GXT) and haemoglobin mass assessment at baseline, after high dose, after micro-dose (COMB and COMB-PLACEBO only) and after a four-week washout. Venous blood samples were collected throughout the baseline, rHuEPO administration, and washout periods to determine the haematological and ABP response to each dosing regimen. Physiological adaptations induced by a two-week rHuEPO high-dose were maintained by rHuEPO micro-dosing for at least three weeks. However, all participants administered rHuEPO registered at least one suspicious ABP value during the administration or washout periods. These results indicate there is sufficient sensitivity in the ABP to detect use of high rHuEPO doping regimens in athletic populations and they provide important empirical examples for use by anti-doping experts. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Role of vitamin D in ovarian physiology and its implication in reproduction: a systematic review.

    PubMed

    Irani, Mohamad; Merhi, Zaher

    2014-08-01

    To report an update on the role of vitamin D (VD) in ovarian physiology with a focus on genes involved in steroidogenesis, follicular development, and ovarian reserve, as well as ovulatory dysfunction associated with polycystic ovary syndrome (PCOS), and ovarian response to assisted reproductive technology (ART). Systematic review. Not applicable. Human, animal, and cell culture models. Pubmed literature search. Granulosa cell function, serum antimüllerian hormone (AMH), AMH and its receptor gene expression, soluble receptor for advanced glycation end-products (sRAGE), PCOS parameters, and ART outcome. In human granulosa cells, VD alters AMH signaling, FSH sensitivity, and progesterone production and release, indicating a possible physiologic role for VD in ovarian follicular development and luteinization. In the serum, 25-hydroxyvitamin D (25OH-D) is positively correlated with AMH, and appropriate VD supplementation in VD-depleted women can suppress the seasonal changes that occur in serum AMH. In VD-deficient women with PCOS, VD supplementation lowers the abnormally elevated serum AMH levels, possibly indicating a mechanism by which VD improves folliculogenesis. The antiinflammatory sRAGE serum levels significantly increase in women with PCOS after VD replacement. Although follicular fluid 25OH-D correlates with IVF outcomes, there is a lack of data pertaining to the impact of VD supplementation on pregnancy rates following IVF. This review underscores the need for understanding the mechanistic actions of VD in ovarian physiology and the critical need for randomized trials to elucidate the impact of VD supplementation on controlled ovarian hyperstimulation/IVF outcome and ovulatory dysfunction associated with PCOS. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Applications of minimal physiologically-based pharmacokinetic models

    PubMed Central

    Cao, Yanguang

    2012-01-01

    Conventional mammillary models are frequently used for pharmacokinetic (PK) analysis when only blood or plasma data are available. Such models depend on the quality of the drug disposition data and have vague biological features. An alternative minimal-physiologically-based PK (minimal-PBPK) modeling approach is proposed which inherits and lumps major physiologic attributes from whole-body PBPK models. The body and model are represented as actual blood and tissue usually total body weight) volumes, fractions (fd) of cardiac output with Fick’s Law of Perfusion, tissue/blood partitioning (Kp), and systemic or intrinsic clearance. Analyzing only blood or plasma concentrations versus time, the minimal-PBPK models parsimoniously generate physiologically-relevant PK parameters which are more easily interpreted than those from mam-millary models. The minimal-PBPK models were applied to four types of therapeutic agents and conditions. The models well captured the human PK profiles of 22 selected beta-lactam antibiotics allowing comparison of fitted and calculated Kp values. Adding a classical hepatic compartment with hepatic blood flow allowed joint fitting of oral and intravenous (IV) data for four hepatic elimination drugs (dihydrocodeine, verapamil, repaglinide, midazolam) providing separate estimates of hepatic intrinsic clearance, non-hepatic clearance, and pre-hepatic bioavailability. The basic model was integrated with allometric scaling principles to simultaneously describe moxifloxacin PK in five species with common Kp and fd values. A basic model assigning clearance to the tissue compartment well characterized plasma concentrations of six monoclonal antibodies in human subjects, providing good concordance of predictions with expected tissue kinetics. The proposed minimal-PBPK modeling approach offers an alternative and more rational basis for assessing PK than compartmental models. PMID:23179857

  16. The Comparison of Some Physical and Physiological Parameters of Footballers

    ERIC Educational Resources Information Center

    Ekinci, Ezgi Samar; Beyleroglu, Malik; Ulukan, Hasan; Konuklar, Ercan; Gürkan, Alper Cenk; Erbay, Adem

    2016-01-01

    In this study, it's to aim for comparison of some physical and physiological parameters of footballers at "The Erenler Sport Team" and "Didim Municipality Sport Team". Thirty volunteers sportsman from each two teams joined to this research. It measured the values of age, weight, length, flexibility, balance, power of left-right…

  17. Association between human and animal thermal comfort indices and physiological heat stress indicators in dairy calves.

    PubMed

    Kovács, L; Kézér, F L; Ruff, F; Szenci, O; Jurkovich, V

    2018-06-06

    Warm summer episodes have a significant effect on the overall health and well-being of young cattle; however, it is not known which temperature measure should be used for estimating heat stress in dairy calves. In this study, generalized linear mixed-effects models were used to estimate the relationships between thermal comfort indices and animal-based heat stress indicators in sixteen Holstein bull calves that were housed in individual calf hutches. Data were collected under continental weather characteristics over a 5-day period: day 1 (lower-temperature day), days 2 and 3 (heat stress days), and a 2-day post-stress period. Relative humidity, ambient temperature, the heat index, the humidex and five different temperature-humidity indices (THI) were used as thermal indices. Physiological variables monitored included respiratory rate, rectal temperature, ear skin temperature and heart rate. The heat index and the humidex measuring human thermal comfort were more closely associated with physiological measures than were the ambient temperature or the THIs (in case of heat index: R 2 = 0.87 for respiratory rate, R 2 = 0.63 for rectal temperature, R 2 = 0.70 for ear skin temperature, and R 2 = 0.78 for heart rate, respectively; in case of humidex: R 2 = 0.85 for respiratory rate, R 2 = 0.60 for rectal temperature, R 2 = 0.68 for ear skin temperature, and R 2 = 0.75 for heart rate, respectively). Based on our results, parameters of human outdoor comfort seem better to estimate heat stress in dairy calves in a continental region than those of THIs or ambient temperature. Copyright © 2018. Published by Elsevier Inc.

  18. Drilling force and temperature of bone under dry and physiological drilling conditions

    NASA Astrophysics Data System (ADS)

    Xu, Linlin; Wang, Chengyong; Jiang, Min; He, Huiyu; Song, Yuexian; Chen, Hanyuan; Shen, Jingnan; Zhang, Jiayong

    2014-11-01

    Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systematic study of mid- and high-speed drilling under dry and physiological conditions(injection of saline). Furthermore, there is no consensus on optimal drilling parameters. To study these parameters under dry and physiological drilling conditions, pig humerus bones are drilled with medical twist drills operated using a wide range of drilling speeds and feed rates. Drilling force and temperature are measured using a YDZ-II01W dynamometer and a NEC TVS-500EX thermal infrared imager, respectively, to evaluate internal bone damage. To evaluate drilling quality, bone debris and hole morphology are observed by SEM(scanning electron microscopy). Changes in drilling force and temperature give similar results during drilling such that the value of each parameter peaks just before the drill penetrates through the osteon of the compact bone into the trabeculae of the spongy bone. Drilling temperatures under physiological conditions are much lower than those observed under dry conditions, while a larger drilling force occurs under physiological conditions than dry conditions. Drilling speed and feed rate have a significant influence on drilling force, temperature, bone debris and hole morphology. The investigation of the effect of drilling force and temperature on internal bone damage reveals that a drilling speed of 4500 r/min and a feed rate of 50 mm/min are recommended for bone drilling under physiological conditions. Drilling quality peaks under these optimal parameter conditions. This paper proposes the optimal drilling parameters under mid- and high-speed surgical drilling, considering internal bone damage and drilling quality, which can be looked as a reference for surgeons performing orthopedic operations.

  19. Relationship Between Physiological Parameters and Acute Coronary Syndrome in Patients Presenting to the Emergency Department With Undifferentiated Chest Pain.

    PubMed

    Greenslade, Jaimi H; Beamish, Daniel; Parsonage, William; Hawkins, Tracey; Schluter, Jessica; Dalton, Emily; Parker, Kate; Than, Martin; Hammett, Christopher; Lamanna, Arvin; Cullen, Louise

    2016-01-01

    The investigators of this study sought to examine whether abnormal physiological parameters are associated with increased risk for acute coronary syndrome (ACS) in patients presenting to the emergency department (ED) with chest pain. We used prospectively collected data on adult patients presenting with suspected ACS in 2 EDs in Australia and New Zealand. Trained research nurses collected physiological data including temperature, respiratory rate, heart rate, and systolic blood pressure (SBP) on presentation to the ED. The primary endpoint was ACS within 30 days of presentation, as adjudicated by cardiologists using standardized guidelines. The prognostic utility of physiological parameters for ACS was examined using risk ratios. Acute coronary syndrome was diagnosed in 384 of the 1951 patients (20%) recruited. Compared with patients whose SBP was between 100 and 140 mm Hg, patients with an SBP of lower than 100 mm Hg or higher than 140 mm Hg were 1.4 times (95% confidence interval, 1.2-1.7) more likely to have ACS. Similarly, compared with patients whose temperature was between 36.5°C and 37.5°C, patients with temperature of lower than 36.5°C or higher than 37.5°C were 1.4 times (95% confidence interval, 1.1-1.6) more likely to have ACS. Heart rate and respiratory rate were not predictors of ACS. Patients with abnormal temperature or SBP were slightly more likely to have ACS, but such risk was of too small a magnitude to be useful in clinical decision making. Other physiological parameters (heart rate and respiratory rate) had no prognostic value. The use of physiological parameters cannot reliably confirm or rule out ACS.

  20. An extra-uterine system to physiologically support the extreme premature lamb

    PubMed Central

    Partridge, Emily A.; Davey, Marcus G.; Hornick, Matthew A.; McGovern, Patrick E.; Mejaddam, Ali Y.; Vrecenak, Jesse D.; Mesas-Burgos, Carmen; Olive, Aliza; Caskey, Robert C.; Weiland, Theodore R.; Han, Jiancheng; Schupper, Alexander J.; Connelly, James T.; Dysart, Kevin C.; Rychik, Jack; Hedrick, Holly L.; Peranteau, William H.; Flake, Alan W.

    2017-01-01

    In the developed world, extreme prematurity is the leading cause of neonatal mortality and morbidity due to a combination of organ immaturity and iatrogenic injury. Until now, efforts to extend gestation using extracorporeal systems have achieved limited success. Here we report the development of a system that incorporates a pumpless oxygenator circuit connected to the fetus of a lamb via an umbilical cord interface that is maintained within a closed ‘amniotic fluid' circuit that closely reproduces the environment of the womb. We show that fetal lambs that are developmentally equivalent to the extreme premature human infant can be physiologically supported in this extra-uterine device for up to 4 weeks. Lambs on support maintain stable haemodynamics, have normal blood gas and oxygenation parameters and maintain patency of the fetal circulation. With appropriate nutritional support, lambs on the system demonstrate normal somatic growth, lung maturation and brain growth and myelination. PMID:28440792

  1. Near-infrared measurements of hemodynamic and oxygenation changes on the frontal cortex during breath holding, hyperventilation, and natural sleep

    NASA Astrophysics Data System (ADS)

    Noponen, Tommi E.; Kotilahti, Kalle; Toppila, Jussi; Nissila, Ilkka T.; Salmi, Tapani; Kajava, Timo T.; Katila, Toivo E.

    2003-07-01

    We have developed a frequency-domain near-infrared device suitable for physiological studies in human. In this work, a four-channel configuration of the instrument is applied to monitor hemodynamic and oxygenation changes in the frontal cortex of volunteers during different ventilation tasks. We use four different source-receiver separations (2, 3, 4, and 5 cm) and three wavelengths (760, 808, and 830 nm) to test the sensitivity of these parameters to cardiovascular and metabolic changes. Low-frequency oscillations (~ 0.02 Hz) and variations in heart rate during different ventilation tasks are investigated as well. We also study physiological changes during natural sleep using the frequency-domain instrument simultaneously with a polysomnography system containing a pulse oximeter. Our results indicate that hemodynamic and oxygenation changes in the frontal cortex during natural sleep can be detected using near-infrared measurements.

  2. Characterization of interaction between doxycycline and human serum albumin by capillary electrophoresis-frontal analysis.

    PubMed

    Sun, Hanwen; He, Pan

    2009-06-01

    The binding of doxycycline to HSA under simulated physiological conditions (pH 7.4, 67 mM phosphate, I=0.17, drug concentration 100 microM, HSA concentration up to 475 microM, 36.5 degrees C) was studied by CE-frontal analysis. The number of primary binding sites, binding constant and physiological protein-binding percentage were 1.9, 1.51 x 10(3) M(-1) and 59.80%, respectively. In addition, the thermodynamic parameters including enthalpy change (DeltaH), entropy change (DeltaS) and free energy change (DeltaG) of the reaction were obtained in order to characterize the acting forces between doxycycline and HSA. Furthermore, to better understand the nature of doxycycline-HSA binding and to get information about potential interaction with other drugs, displacement experiments were performed. The results showed that doxycycline binds at site II of HSA.

  3. Abnormal cardiac response to exercise in a murine model of familial hypertrophic cardiomyopathy.

    PubMed

    Nguyen, Lan; Chung, Jessica; Lam, Lien; Tsoutsman, Tatiana; Semsarian, Christopher

    2007-07-10

    Clinical outcome in familial hypertrophic cardiomyopathy (FHC) may be influenced by modifying factors such as exercise. Transgenic mice which overexpress the human disease-causing cTnI gene mutation, Gly203Ser (designated cTnI-G203S), develop all the characteristic phenotypic features of FHC. To study the modifying effect of exercise in early disease, mice underwent swimming exercise at an early age prior to the development of the FHC phenotype. In non-transgenic and cTnI-wt mice, swimming resulted in a significant increase in left ventricular wall thickness and contractility on echocardiography, consistent with a physiological hypertrophic response to exercise. In contrast, cTnI-G203S mice showed no increase in these parameters, indicating an abnormal response to exercise. The lack of a physiological response to exercise may indicate an important novel mechanistic insight into the role of exercise in triggering adverse events in FHC.

  4. The influence of anatomical and physiological parameters on the interference voltage at the input of unipolar cardiac pacemakers in low frequency electric fields.

    PubMed

    Joosten, S; Pammler, K; Silny, J

    2009-02-07

    The problem of electromagnetic interference of electronic implants such as cardiac pacemakers has been well known for many years. An increasing number of field sources in everyday life and occupational environment leads unavoidably to an increased risk for patients with electronic implants. However, no obligatory national or international safety regulations exist for the protection of this patient group. The aim of this study is to find out the anatomical and physiological worst-case conditions for patients with an implanted pacemaker adjusted to unipolar sensing in external time-varying electric fields. The results of this study with 15 volunteers show that, in electric fields, variation of the interference voltage at the input of a cardiac pacemaker adds up to 200% only because of individual factors. These factors should be considered in human studies and in the setting of safety regulations.

  5. An extra-uterine system to physiologically support the extreme premature lamb

    NASA Astrophysics Data System (ADS)

    Partridge, Emily A.; Davey, Marcus G.; Hornick, Matthew A.; McGovern, Patrick E.; Mejaddam, Ali Y.; Vrecenak, Jesse D.; Mesas-Burgos, Carmen; Olive, Aliza; Caskey, Robert C.; Weiland, Theodore R.; Han, Jiancheng; Schupper, Alexander J.; Connelly, James T.; Dysart, Kevin C.; Rychik, Jack; Hedrick, Holly L.; Peranteau, William H.; Flake, Alan W.

    2017-04-01

    In the developed world, extreme prematurity is the leading cause of neonatal mortality and morbidity due to a combination of organ immaturity and iatrogenic injury. Until now, efforts to extend gestation using extracorporeal systems have achieved limited success. Here we report the development of a system that incorporates a pumpless oxygenator circuit connected to the fetus of a lamb via an umbilical cord interface that is maintained within a closed `amniotic fluid' circuit that closely reproduces the environment of the womb. We show that fetal lambs that are developmentally equivalent to the extreme premature human infant can be physiologically supported in this extra-uterine device for up to 4 weeks. Lambs on support maintain stable haemodynamics, have normal blood gas and oxygenation parameters and maintain patency of the fetal circulation. With appropriate nutritional support, lambs on the system demonstrate normal somatic growth, lung maturation and brain growth and myelination.

  6. Modeling Physiological Systems in the Human Body as Networks of Quasi-1D Fluid Flows

    NASA Astrophysics Data System (ADS)

    Staples, Anne

    2008-11-01

    Extensive research has been done on modeling human physiology. Most of this work has been aimed at developing detailed, three-dimensional models of specific components of physiological systems, such as a cell, a vein, a molecule, or a heart valve. While efforts such as these are invaluable to our understanding of human biology, if we were to construct a global model of human physiology with this level of detail, computing even a nanosecond in this computational being's life would certainly be prohibitively expensive. With this in mind, we derive the Pulsed Flow Equations, a set of coupled one-dimensional partial differential equations, specifically designed to capture two-dimensional viscous, transport, and other effects, and aimed at providing accurate and fast-to-compute global models for physiological systems represented as networks of quasi one-dimensional fluid flows. Our goal is to be able to perform faster-than-real time simulations of global processes in the human body on desktop computers.

  7. An immunologic model for rapid vaccine assessment -- a clinical trial in a test tube.

    PubMed

    Higbee, Russell G; Byers, Anthony M; Dhir, Vipra; Drake, Donald; Fahlenkamp, Heather G; Gangur, Jyoti; Kachurin, Anatoly; Kachurina, Olga; Leistritz, Del; Ma, Yifan; Mehta, Riyaz; Mishkin, Eric; Moser, Janice; Mosquera, Luis; Nguyen, Mike; Parkhill, Robert; Pawar, Santosh; Poisson, Louis; Sanchez-Schmitz, Guzman; Schanen, Brian; Singh, Inderpal; Song, Haifeng; Tapia, Tenekua; Warren, William; Wittman, Vaughan

    2009-09-01

    While the duration and size of human clinical trials may be difficult to reduce, there are several parameters in pre-clinical vaccine development that may be possible to further optimise. By increasing the accuracy of the models used for pre-clinical vaccine testing, it should be possible to increase the probability that any particular vaccine candidate will be successful in human trials. In addition, an improved model will allow the collection of increasingly more-informative data in pre-clinical tests, thus aiding the rational design and formulation of candidates entered into clinical evaluation. An acceleration and increase in sophistication of pre-clinical vaccine development will thus require the advent of more physiologically-accurate models of the human immune system, coupled with substantial advances in the mechanistic understanding of vaccine efficacy, achieved by using this model. We believe the best viable option available is to use human cells and/or tissues in a functional in vitro model of human physiology. Not only will this more accurately model human diseases, it will also eliminate any ethical, moral and scientific issues involved with use of live humans and animals. An in vitro model, termed "MIMIC" (Modular IMmune In vitro Construct), was designed and developed to reflect the human immune system in a well-based format. The MIMIC System is a laboratory-based methodology that replicates the human immune system response. It is highly automated, and can be used to simulate a clinical trial for a diverse population, without putting human subjects at risk. The MIMIC System uses the circulating immune cells of individual donors to recapitulate each individual human immune response by maintaining the autonomy of the donor. Thus, an in vitro test system has been created that is functionally equivalent to the donor's own immune system and is designed to respond in a similar manner to the in vivo response. 2009 FRAME.

  8. Enhancement of non-invasive trans-membrane drug delivery using ultrasound and microbubbles during physiologically relevant flow.

    PubMed

    Shamout, Farah E; Pouliopoulos, Antonios N; Lee, Patrizia; Bonaccorsi, Simone; Towhidi, Leila; Krams, Rob; Choi, James J

    2015-09-01

    Sonoporation has been associated with drug delivery across cell membranes and into target cells, yet several limitations have prohibited further advancement of this technology. Higher delivery rates were associated with increased cellular death, thus implying a safety-efficacy trade-off. Meanwhile, there has been no reported study of safe in vitro sonoporation in a physiologically relevant flow environment. The objective of our study was not only to evaluate sonoporation under physiologically relevant flow conditions, such as fluid velocity, shear stress and temperature, but also to design ultrasound parameters that exploit the presence of flow to maximize sonoporation efficacy while minimizing or avoiding cellular damage. Human umbilical vein endothelial cells (EA.hy926) were seeded in flow chambers as a monolayer to mimic the endothelium. A peristaltic pump maintained a constant fluid velocity of 12.5 cm/s. A focused 0.5 MHz transducer was used to sonicate the cells, while an inserted focused 7.5 MHz passive cavitation detector monitored microbubble-seeded cavitation emissions. Under these conditions, propidium iodide, which is normally impermeable to the cell membrane, was traced to determine whether it could enter cells after sonication. Meanwhile, calcein-AM was used as a cell viability marker. A range of focused ultrasound parameters was explored, with several unique bioeffects observed: cell detachment, preservation of cell viability with no membrane penetration, cell death and preservation of cell viability with sonoporation. The parameters were then modified further to produce safe sonoporation with minimal cell death. To increase the number of favourable cavitation events, we lowered the ultrasound exposure pressure to 40 kPapk-neg and increased the number of cavitation nuclei by 50 times to produce a trans-membrane delivery rate of 62.6% ± 4.3% with a cell viability of 95% ± 4.2%. Furthermore, acoustic cavitation analysis showed that the low pressure sonication produced stable and non-inertial cavitation throughout the pulse sequence. To our knowledge, this is the first study to demonstrate a high drug delivery rate coupled with high cell viability in a physiologically relevant in vitro flow system. Copyright © 2015. Published by Elsevier Inc.

  9. Effect of anapanasati meditation technique through electrophotonic imaging parameters: A pilot study.

    PubMed

    Deo, Guru; Itagi R, Kumar; Thaiyar M, Srinivasan; Kuldeep, Kushwah K

    2015-01-01

    Mindfulness along with breathing is a well-established meditation technique. Breathing is an exquisite tool for exploring subtle awareness of mind and life itself. This study aimed at measuring changes in the different parameters of electrophotonic imaging (EPI) in anapanasati meditators. To carry out this study, 51 subjects comprising 32 males and 19 females of age 18 years and above (mean age 45.64 ± 14.43) were recruited voluntarily with informed consent attending Karnataka Dhyana Mahachakra-1 at Pyramid Valley International, Bengaluru, India. The design was a single group pre- post and data collected by EPI device before and after 5 days of intensive meditation. Results show significant changes in EPI parameter integral area with filter (physiological) in both right and left side, which reflects the availability of high functional energy reserve in meditators. The researchers observed similar trends without filter (psycho-physiological) indicating high reserves of energy at psycho-physiological level also. Activation coefficient, another parameter of EPI, reduced showing more relaxed state than earlier, possibly due to parasympathetic dominance. Integral entropy decreased in the case of psycho-physiological parameters left-side without filter, which indicates less disorder after meditation, but these changes were not significant. The study showed a reversed change in integral entropy in the right side without filter; however, the values on both sides with filter increased, which indicates disorder. The study suggests that EPI can be used in the recording functional physiological and psychophysiological status of meditators at a subtle level.

  10. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles.

    PubMed

    Peters, Sheila Annie

    2008-01-01

    Despite recent advances in understanding of the role of the gut as a metabolizing organ, recognition of gut wall metabolism and/or other factors contributing to intestinal loss of a compound has been a challenging task due to the lack of well characterized methods to distinguish it from first-pass hepatic extraction. The implications of identifying intestinal loss of a compound in drug discovery and development can be enormous. Physiologically based pharmacokinetic (PBPK) simulations of pharmacokinetic profiles provide a simple, reliable and cost-effective way to understand the mechanisms underlying pharmacokinetic processes. The purpose of this article is to demonstrate the application of PBPK simulations in bringing to light intestinal loss of orally administered drugs, using two example compounds: verapamil and an in-house compound that is no longer in development (referred to as compound A in this article). A generic PBPK model, built in-house using MATLAB software and incorporating absorption, metabolism, distribution, biliary and renal elimination models, was employed for simulation of concentration-time profiles. Modulation of intrinsic hepatic clearance and tissue distribution parameters in the generic PBPK model was done to achieve a good fit to the observed intravenous pharmacokinetic profiles of the compounds studied. These optimized clearance and distribution parameters are expected to be invariant across different routes of administration, as long as the kinetics are linear, and were therefore employed to simulate the oral profiles of the compounds. For compounds with reasonably good solubility and permeability, an area under the concentration-time curve for the simulated oral profile that far exceeded the observed would indicate some kind of loss in the intestine. PBPK simulations applied to compound A showed substantial loss of the compound in the gastrointestinal tract in humans but not in rats. This accounted for the lower bioavailability of the compound in humans than in rats. PBPK simulations of verapamil identified gut wall metabolism, well established in the literature, and showed large interspecies differences with respect to both gut wall metabolism and drug-induced delays in gastric emptying. Mechanistic insights provided by PBPK simulations can be very valuable in answering vital questions in drug discovery and development. However, such applications of PBPK models are limited by the lack of accurate inputs for clearance and distribution. This article demonstrates a successful application of PBPK simulations to identify and quantify intestinal loss of two model compounds in rats and humans. The limitation of inaccurate inputs for the clearance and distribution parameters was overcome by optimizing these parameters through fitting intravenous profiles. The study also demonstrated that the large interspecies differences associated with gut wall metabolism and gastric emptying, evident for the compounds studied, make animal model extrapolations to humans unreliable. It is therefore important to do PBPK simulations of human pharmacokinetic profiles to understand the relevance of intestinal loss of a compound in humans.

  11. Human Thiel-Embalmed Cadaveric Aortic Model with Perfusion for Endovascular Intervention Training and Medical Device Evaluation.

    PubMed

    McLeod, Helen; Cox, Ben F; Robertson, James; Duncan, Robyn; Matthew, Shona; Bhat, Raj; Barclay, Avril; Anwar, J; Wilkinson, Tracey; Melzer, Andreas; Houston, J Graeme

    2017-09-01

    The purpose of this investigation was to evaluate human Thiel-embalmed cadavers with the addition of extracorporeal driven ante-grade pulsatile flow in the aorta as a model for simulation training in interventional techniques and endovascular device testing. Three human cadavers embalmed according to the method of Thiel were selected. Extracorporeal pulsatile ante-grade flow of 2.5 L per min was delivered directly into the aorta of the cadavers via a surgically placed connection. During perfusion, aortic pressure and temperature were recorded and optimized for physiologically similar parameters. Pre- and post-procedure CT imaging was conducted to plan and follow up thoracic and abdominal endovascular aortic repair as it would be in a clinical scenario. Thoracic endovascular aortic repair (TEVAR) and endovascular abdominal repair (EVAR) procedures were conducted in simulation of a clinical case, under fluoroscopic guidance with a multidisciplinary team present. The Thiel cadaveric aortic perfusion model provided pulsatile ante-grade flow, with pressure and temperature, sufficient to conduct a realistic simulation of TEVAR and EVAR procedures. Fluoroscopic imaging provided guidance during the intervention. Pre- and post-procedure CT imaging facilitated planning and follow-up evaluation of the procedure. The human Thiel-embalmed cadavers with the addition of extracorporeal flow within the aorta offer an anatomically appropriate, physiologically similar robust model to simulate aortic endovascular procedures, with potential applications in interventional radiology training and medical device testing as a pre-clinical model.

  12. Plasma vs heart tissue concentration in humans - literature data analysis of drugs distribution.

    PubMed

    Tylutki, Zofia; Polak, Sebastian

    2015-03-12

    Little is known about the uptake of drugs into the human heart, although it is of great importance nowadays, when science desires to predict tissue level behavior rather than to measure it. Although the drug concentration in cardiac tissue seems a better predictor for physiological and electrophysiological changes than its level in plasma, knowledge of this value is very limited. Tissue to plasma partition coefficients (Kp) come to rescue since they characterize the distribution of a drug among tissues as being one of the input parameters in physiologically based pharmacokinetic (PBPK) models. The article reviews cardiac surgery and forensic medical studies to provide a reference for drug concentrations in human cardiac tissue. Firstly, the focus is on whether a drug penetrates into heart tissue at a therapeutic level; the provided values refer to antibiotics, antifungals and anticancer drugs. Drugs that directly affect cardiomyocyte electrophysiology are another group of interest. Measured levels of amiodarone, digoxin, perhexiline and verapamil in different sites in human cardiac tissue where the compounds might meet ion channels, gives an insight into how these more lipophilic drugs penetrate the heart. Much data are derived from postmortem studies and they provide insight to the cardiac distribution of more than 200 drugs. The analysis depicts potential problems in defining the active concentration location, what may indirectly suggest multiple mechanisms involved in the drug distribution within the heart. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Studying permethrin exposure in flight attendants using a physiologically based pharmacokinetic model

    PubMed Central

    Wei, Binnian; Isukapalli, Sastry S.; Weisel, Clifford P.

    2014-01-01

    Assessment of potential health risks to flight attendants from exposure to pyrethroid insecticides, used for aircraft disinsection, is limited because of (a) lack of information on exposures to these insecticides, and (b) lack of tools for linking these exposures to biomarker data. We developed and evaluated a physiologically based pharmacokinetic (PBPK) model to assess the exposure of flight attendants to the pyrethroid insecticide permethrin attributable to aircraft disinsection. The permethrin PBPK model was developed by adapting previous models for pyrethroids, and was parameterized using currently available metabolic parameters for permethrin. The human permethrin model was first evaluated with data from published human studies. Then, it was used to estimate urinary metabolite concentrations of permethrin in flight attendants who worked in aircrafts, which underwent residual and pre-flight spray treatments. The human model was also applied to analyze the toxicokinetics following permethrin exposures attributable to other aircraft disinsection scenarios. Predicted levels of urinary 3-phenoxybenzoic acid (3-PBA), a metabolite of permethrin, following residual disinsection treatment were comparable to the measurements made for flight attendants. Simulations showed that the median contributions of the dermal, oral and inhalation routes to permethrin exposure in flight attendants were 83.5%, 16.1% and 0.4% under residual treatment scenario, respectively, and were 5.3%, 5.0% and 89.7% under pre-flight spray scenario, respectively. The PBPK model provides the capability to simulate the toxicokinetic profiles of permethrin, and can be used in the studies on human exposure to permethrin. PMID:23462847

  14. Physiologically based Pharmacokinetic Modeling of 1,4-Dioxane in Rats, Mice, and Humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, Lisa M.; Thrall, Karla D.; Poet, Torka S.

    2008-01-01

    ABSTRACT 1,4-Dioxane (CAS No. 123-91-1) is used primarily as a solvent or as a solvent stabilizer. It can cause lung, liver and kidney damage at sufficiently high exposure levels. Two physiologically-based pharmacokinetic (PBPK) models of 1,4-dioxane and its major metabolite, hydroxyethoxyacetic acid (HEAA), were published in 1990. These models have uncertainties and deficiencies that could be addressed and the model strengthened for use in a contemporary cancer risk assessment for 1,4-dioxane. Studies were performed to fill data gaps and reduce uncertainties pertaining to the pharmacokinetics of 1,4-dioxane and HEAA in rats, mice, and humans. Three types of studies were performed:partitionmore » coefficient measurements, blood time course in mice, and in vitro pharmacokinetics using rat, mouse, and human hepatocytes. Updated PBPK models were developed based on these new data and previously available data. The optimized rate of metabolism for the mouse was significantly higher than the value previously estimated. The optimized rat kinetic parameters were similar to those in the 1990 models. Only two human studies were identified. Model predictions were consistent with one study, but did not fit the second as well. In addition, a rat nasal exposure was completed. The results confirmed water directly contacts rat nasal tissues during drinking water under bioassays. Consistent with previous PBPK models, nasal tissues were not specifically included in the model. Use of these models will reduce the uncertainty in future 1,4-dioxane risk assessments.« less

  15. Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes

    PubMed Central

    Petrosino, Jennifer M.; Heiss, Valerie J.; Maurya, Santosh K.; Kalyanasundaram, Anuradha; Periasamy, Muthu; LaFountain, Richard A.; Wilson, Jacob M.; Simonetti, Orlando P.; Ziouzenkova, Ouliana

    2016-01-01

    Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics. PMID:26859763

  16. Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes.

    PubMed

    Petrosino, Jennifer M; Heiss, Valerie J; Maurya, Santosh K; Kalyanasundaram, Anuradha; Periasamy, Muthu; LaFountain, Richard A; Wilson, Jacob M; Simonetti, Orlando P; Ziouzenkova, Ouliana

    2016-01-01

    Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics.

  17. Statistical modeling of ecosystem respiration using eddy covariance data: Maximum likelihood parameter estimation, and Monte Carlo simulation of model and parameter uncertainty, applied to three simple models

    Treesearch

    Andrew D. Richardson; David Y. Hollinger; David Y. Hollinger

    2005-01-01

    Whether the goal is to fill gaps in the flux record, or to extract physiological parameters from eddy covariance data, researchers are frequently interested in fitting simple models of ecosystem physiology to measured data. Presently, there is no consensus on the best models to use, or the ideal optimization criteria. We demonstrate that, given our estimates of the...

  18. A mathematical model of physiological processes and its application to the study of aging

    NASA Technical Reports Server (NTRS)

    Hibbs, A. R.; Walford, R. L.

    1989-01-01

    The behavior of a physiological system which, after displacement, returns by homeostatic mechanisms to its original condition can be described by a simple differential equation in which the "recovery time" is a parameter. Two such systems, which influence one another, can be linked mathematically by the use of "coupling" or "feedback" coefficients. These concepts are the basis for many mathematical models of physiological behavior, and we describe the general nature of such models. Next, we introduce the concept of a "fatal limit" for the displacement of a physiological system, and show how measures of such limits can be included in mathematical models. We show how the numerical values of such limits depend on the values of other system parameters, i.e., recovery times and coupling coefficients, and suggest ways of measuring all these parameters experimentally, for example by monitoring changes induced by X-irradiation. Next, we discuss age-related changes in these parameters, and show how the parameters of mortality statistics, such as the famous Gompertz parameters, can be derived from experimentally measurable changes. Concepts of onset-of-aging, critical or fatal limits, equilibrium value (homeostasis), recovery times and coupling constants are involved. Illustrations are given using published data from mouse and rat populations. We believe that this method of deriving survival patterns from model that is experimentally testable is unique.

  19. Cellular Immunosenescence in Adult Male Crickets, Gryllus assimilis

    USDA-ARS?s Scientific Manuscript database

    Ecological immunity studies in invertebrates, particularly insects, have generated new insights into trade-offs between immune functions and other physiological parameters. These studies document physiologically-directed reallocations of immune costs to other high-cost areas of physiology. Immunos...

  20. Uncovering the mystery of opposite circadian rhythms between mouse and human leukocytes in humanized mice.

    PubMed

    Zhao, Yue; Liu, Min; Chan, Xue Ying; Tan, Sue Yee; Subramaniam, Sharrada; Fan, Yong; Loh, Eva; Chang, Kenneth Tou En; Tan, Thiam Chye; Chen, Qingfeng

    2017-11-02

    Many immune parameters show circadian rhythms during the 24-hour day in mammals. The most striking circadian oscillation is the number of circulating immune cells that display an opposite rhythm between humans and mice. The physiological roles and mechanisms of circadian variations in mouse leukocytes are well studied, whereas for humans they remain unclear because of the lack of a proper model. In this study, we found that consistent with their natural host species, mouse and human circulating leukocytes exhibited opposite circadian oscillations in humanized mice. This cyclic pattern of trafficking correlated well with the diurnal expression levels of C-X-C chemokine receptor 4, which were controlled by the intracellular hypoxia-inducible factor 1α/aryl hydrocarbon receptor nuclear translocator-like heterodimer. Furthermore, we also discovered that p38 mitogen-activated protein kinases/mitogen-activated 2 had opposite effects between mice and humans in generating intracellular reactive oxygen species, which subsequently regulated HIF-1α expression. In conclusion, we propose humanized mice as a robust model for human circadian studies and reveal insights on a novel molecular clock network in the human circadian rhythm. © 2017 by The American Society of Hematology.

  1. Rabbit as an animal model for intravitreal pharmacokinetics: Clinical predictability and quality of the published data.

    PubMed

    Del Amo, Eva M; Urtti, Arto

    2015-08-01

    Intravitreal administration is the method of choice in drug delivery to the retina and/or choroid. Rabbit is the most commonly used animal species in intravitreal pharmacokinetics, but it has been criticized as being a poor model of human eye. The critique is based on some anatomical differences, properties of the vitreous humor, and observed differences in drug concentrations in the anterior chamber after intravitreal injections. We have systematically analyzed all published information on intravitreal pharmacokinetics in the rabbit and human eye. The analysis revealed major problems in the design of the pharmacokinetic studies. In this review we provide advice for study design. Overall, the pharmacokinetic parameters (clearance, volume of distribution, half-life) in the human and rabbit eye have good correlation and comparable absolute values. Therefore, reliable rabbit-to-man translation of intravitreal pharmacokinetics should be feasible. The relevant anatomical and physiological parameters in rabbit and man show only small differences. Furthermore, the claimed discrepancy between drug concentrations in the human and rabbit aqueous humor is not supported by the data analysis. Based on the available and properly conducted pharmacokinetic studies, the differences in the vitreous structure in rabbits and human patients do not lead to significant pharmacokinetic differences. This review is the first step towards inter-species translation of intravitreal pharmacokinetics. More information is still needed to dissect the roles of drug delivery systems, disease states, age and ocular manipulation on the intravitreal pharmacokinetics in rabbit and man. Anyway, the published data and the derived pharmacokinetic parameters indicate that the rabbit is a useful animal model in intravitreal pharmacokinetics. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Modelling ecological and human exposure to POPs in Venice lagoon - Part II: Quantitative uncertainty and sensitivity analysis in coupled exposure models.

    PubMed

    Radomyski, Artur; Giubilato, Elisa; Ciffroy, Philippe; Critto, Andrea; Brochot, Céline; Marcomini, Antonio

    2016-11-01

    The study is focused on applying uncertainty and sensitivity analysis to support the application and evaluation of large exposure models where a significant number of parameters and complex exposure scenarios might be involved. The recently developed MERLIN-Expo exposure modelling tool was applied to probabilistically assess the ecological and human exposure to PCB 126 and 2,3,7,8-TCDD in the Venice lagoon (Italy). The 'Phytoplankton', 'Aquatic Invertebrate', 'Fish', 'Human intake' and PBPK models available in MERLIN-Expo library were integrated to create a specific food web to dynamically simulate bioaccumulation in various aquatic species and in the human body over individual lifetimes from 1932 until 1998. MERLIN-Expo is a high tier exposure modelling tool allowing propagation of uncertainty on the model predictions through Monte Carlo simulation. Uncertainty in model output can be further apportioned between parameters by applying built-in sensitivity analysis tools. In this study, uncertainty has been extensively addressed in the distribution functions to describe the data input and the effect on model results by applying sensitivity analysis techniques (screening Morris method, regression analysis, and variance-based method EFAST). In the exposure scenario developed for the Lagoon of Venice, the concentrations of 2,3,7,8-TCDD and PCB 126 in human blood turned out to be mainly influenced by a combination of parameters (half-lives of the chemicals, body weight variability, lipid fraction, food assimilation efficiency), physiological processes (uptake/elimination rates), environmental exposure concentrations (sediment, water, food) and eating behaviours (amount of food eaten). In conclusion, this case study demonstrated feasibility of MERLIN-Expo to be successfully employed in integrated, high tier exposure assessment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Prediction of human core body temperature using non-invasive measurement methods.

    PubMed

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  4. White noise and synchronization shaping the age structure of the human population

    NASA Astrophysics Data System (ADS)

    Cebrat, Stanislaw; Biecek, Przemyslaw; Bonkowska, Katarzyna; Kula, Mateusz

    2007-06-01

    We have modified the standard diploid Penna model of ageing in such a way that instead of threshold of defective loci resulting in genetic death of individuals, the fluctuation of environment and "personal" fluctuations of individuals were introduced. The sum of the both fluctuations describes the health status of the individual. While environmental fluctuations are the same for all individuals in the population, the personal component of fluctuations is composed of fluctuations corresponding to each physiological function (gene, genetic locus). It is rather accepted hypothesis that physiological parameters of any organism fluctuate highly nonlinearly. Transition to the synchronized behaviors could be a very strong diagnostic signal of the life threatening disorder. Thus, in our model, mutations of genes change the chaotic fluctuations representing the function of a wild gene to the synchronized signals generated by mutated genes. Genes are switched on chronologically, like in the standard Penna model. Accumulation of defective genes predicted by Medawar's theory of ageing leads to the replacement of uncorrelated white noise corresponding to the healthy organism by the correlated signals of defective functions. As a result we have got the age distribution of population corresponding to the human demographic data.

  5. Thirst-Dependent Activity of the Insular Cortex Reflects its Emotion-Related Subdivision: A Cerebral Blood Flow Study.

    PubMed

    Meier, Lea; Federspiel, Andrea; Jann, Kay; Wiest, Roland; Strik, Werner; Dierks, Thomas

    2018-04-26

    Recent studies investigating neural correlates of human thirst have identified various subcortical and telencephalic brain areas. The experience of thirst represents a homeostatic emotion and a state that slowly evolves over time. Therefore, the present study aims at systematically examining cerebral perfusion during the parametric progression of thirst. We measured subjective thirst ratings, serum parameters and cerebral blood flow in 20 healthy subjects across four different thirst stages: intense thirst, moderate thirst, subjective satiation and physiological satiation. Imaging data revealed dehydration-related perfusion differences in previously identified brain areas, such as the anterior cingulate cortex, the middle temporal gyrus and the insular cortex. However, significant differences across all four thirst stages (including the moderate thirst level), were exclusively found in the posterior insular cortex. The subjective thirst ratings over the different thirst stages, however, were associated with perfusion differences in the right anterior insula. These findings add to our understanding of the insular cortex as a key player in human thirst - both on the level of physiological dehydration and the level of the subjective thirst experience. Copyright © 2018. Published by Elsevier Ltd.

  6. A novel yet effective motion artefact reduction method for continuous physiological monitoring

    NASA Astrophysics Data System (ADS)

    Alzahrani, A.; Hu, S.; Azorin-Peris, V.; Kalawsky, R.; Zhang, X.; Liu, C.

    2014-03-01

    This study presents a non-invasive and wearable optical technique to continuously monitor vital human signs as required for personal healthcare in today's increasing ageing population. The study has researched an effective way to capture human critical physiological parameters, i.e., oxygen saturation (SaO2%), heart rate, respiration rate, body temperature, heart rate variability by a closely coupled wearable opto-electronic patch sensor (OEPS) together with real-time and secure wireless communication functionalities. The work presents the first step of this research; an automatic noise cancellation method using a 3-axes MEMS accelerometer to recover signals corrupted by body movement which is one of the biggest sources of motion artefacts. The effects of these motion artefacts have been reduced by an enhanced electronic design and development of self-cancellation of noise and stability of the sensor. The signals from the acceleration and the opto-electronic sensor are highly correlated thus leading to the desired pulse waveform with rich bioinformatics signals to be retrieved with reduced motion artefacts. The preliminary results from the bench tests and the laboratory setup demonstrate that the goal of the high performance wearable opto-electronics is viable and feasible.

  7. Longitudinal development of physical and performance parameters during biological maturation of young male swimmers.

    PubMed

    Lätt, Evelin; Jürimäe, Jaak; Haljaste, Kaja; Cicchella, Antonio; Purge, Priit; Jürimäe, Toivo

    2009-02-01

    The aim of the study was to examine the development of specific physical, physiological, and biomechanical parameters in 29 young male swimmers for whom measurements were made three times for two consecutive years. During the 400-m front-crawl swimming, the energy cost of swimming, and stroking parameters were assessed. Peak oxygen consumption (VO2 peak) was assessed by means of the backward-extrapolation technique recording VO2 during the first 20 sec. of recovery period after a maximal trial of 400-m distance. Swimming performance at different points of physical maturity was mainly related to the increases in body height and arm-span values from physical parameters, improvement in sport-specific VO2 peak value from physiological characteristics, and improvement in stroke indices on biomechanical parameters. In addition, biomechanical factors characterised best the 400-m swimming performance followed by physical and physiological factors during the 2-yr. study period for the young male swimmers.

  8. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population

    NASA Astrophysics Data System (ADS)

    Ozheredov, V. A.; Chibisov, S. M.; Blagonravov, M. L.; Khodorovich, N. A.; Demurov, E. A.; Goryachev, V. A.; Kharlitskaya, E. V.; Eremina, I. S.; Meladze, Z. A.

    2017-05-01

    There are many references in the literature related to connection between the space weather and the state of human organism. The search of external factors influence on humans is a multi-factor problem and it is well known that humans have a meteo-sensitivity. A direct problem of finding the earth weather conditions, under which the space weather manifests itself most strongly, is discussed in the present work for the first time in the helio-biology. From a formal point of view, this problem requires identification of subset (magnetobiotropic region) in three-dimensional earth's weather parameters such as pressure, temperature, and humidity, corresponding to the days when the human body is the most sensitive to changes in the geomagnetic field variations and when it reacts by statistically significant increase (or decrease) of a particular physiological parameter. This formulation defines the optimization of the problem, and the solution of the latter is not possible without the involvement of powerful metaheuristic methods of searching. Using the algorithm of differential evolution, we prove the existence of magnetobiotropic regions in the earth's weather parameters, which exhibit magneto-sensitivity of systolic, diastolic blood pressure, and heart rate of healthy young subjects for three weather areas (combinations of atmospheric temperature, pressure, and humidity). The maximum value of the correlation confidence for the measurements attributable to the days of the weather conditions that fall into each of three magnetobiotropic areas is an order of 0.006, that is almost 10 times less than the confidence, equal to 0.05, accepted in many helio-biological researches.

  9. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population.

    PubMed

    Ozheredov, V A; Chibisov, S M; Blagonravov, M L; Khodorovich, N A; Demurov, E A; Goryachev, V A; Kharlitskaya, E V; Eremina, I S; Meladze, Z A

    2017-05-01

    There are many references in the literature related to connection between the space weather and the state of human organism. The search of external factors influence on humans is a multi-factor problem and it is well known that humans have a meteo-sensitivity. A direct problem of finding the earth weather conditions, under which the space weather manifests itself most strongly, is discussed in the present work for the first time in the helio-biology. From a formal point of view, this problem requires identification of subset (magnetobiotropic region) in three-dimensional earth's weather parameters such as pressure, temperature, and humidity, corresponding to the days when the human body is the most sensitive to changes in the geomagnetic field variations and when it reacts by statistically significant increase (or decrease) of a particular physiological parameter. This formulation defines the optimization of the problem, and the solution of the latter is not possible without the involvement of powerful metaheuristic methods of searching. Using the algorithm of differential evolution, we prove the existence of magnetobiotropic regions in the earth's weather parameters, which exhibit magneto-sensitivity of systolic, diastolic blood pressure, and heart rate of healthy young subjects for three weather areas (combinations of atmospheric temperature, pressure, and humidity). The maximum value of the correlation confidence for the measurements attributable to the days of the weather conditions that fall into each of three magnetobiotropic areas is an order of 0.006, that is almost 10 times less than the confidence, equal to 0.05, accepted in many helio-biological researches.

  10. The Graphical Representation of the Digital Astronaut Physiology Backbone

    NASA Technical Reports Server (NTRS)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  11. Physiologically relevant organs on chips

    PubMed Central

    Yum, Kyungsuk; Hong, Soon Gweon; Lee, Luke P.

    2015-01-01

    Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or organs on chips, that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue–tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. PMID:24357624

  12. Optimal villi density for maximal oxygen uptake in the human placenta.

    PubMed

    Serov, A S; Salafia, C M; Brownbill, P; Grebenkov, D S; Filoche, M

    2015-01-07

    We present a stream-tube model of oxygen exchange inside a human placenta functional unit (a placentone). The effect of villi density on oxygen transfer efficiency is assessed by numerically solving the diffusion-convection equation in a 2D+1D geometry for a wide range of villi densities. For each set of physiological parameters, we observe the existence of an optimal villi density providing a maximal oxygen uptake as a trade-off between the incoming oxygen flow and the absorbing villus surface. The predicted optimal villi density 0.47±0.06 is compatible to previous experimental measurements. Several other ways to experimentally validate the model are also proposed. The proposed stream-tube model can serve as a basis for analyzing the efficiency of human placentas, detecting possible pathologies and diagnosing placental health risks for newborns by using routine histology sections collected after birth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo.

    PubMed

    Schwarz, Mathias; Buehler, Andreas; Aguirre, Juan; Ntziachristos, Vasilis

    2016-01-01

    Optical imaging plays a major role in disease detection in dermatology. However, current optical methods are limited by lack of three-dimensional detection of pathophysiological parameters within skin. It was recently shown that single-wavelength optoacoustic (photoacoustic) mesoscopy resolves skin morphology, i.e. melanin and blood vessels within epidermis and dermis. In this work we employed illumination at multiple wavelengths for enabling three-dimensional multispectral optoacoustic mesoscopy (MSOM) of natural chromophores in human skin in vivo operating at 15-125 MHz. We employ a per-pulse tunable laser to inherently co-register spectral datasets, and reveal previously undisclosed insights of melanin, and blood oxygenation in human skin. We further reveal broadband absorption spectra of specific skin compartments. We discuss the potential of MSOM for label-free visualization of physiological biomarkers in skin in vivo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The use of information theory for the evaluation of biomarkers of aging and physiological age.

    PubMed

    Blokh, David; Stambler, Ilia

    2017-04-01

    The present work explores the application of information theoretical measures, such as entropy and normalized mutual information, for research of biomarkers of aging. The use of information theory affords unique methodological advantages for the study of aging processes, as it allows evaluating non-linear relations between biological parameters, providing the precise quantitative strength of those relations, both for individual and multiple parameters, showing cumulative or synergistic effect. Here we illustrate those capabilities utilizing a dataset on heart disease, including diagnostic parameters routinely available to physicians. The use of information-theoretical methods, utilizing normalized mutual information, revealed the exact amount of information that various diagnostic parameters or their combinations contained about the persons' age. Based on those exact informative values for the correlation of measured parameters with age, we constructed a diagnostic rule (a decision tree) to evaluate physiological age, as compared to chronological age. The present data illustrated that younger subjects suffering from heart disease showed characteristics of people of higher age (higher physiological age). Utilizing information-theoretical measures, with additional data, it may be possible to create further clinically applicable information-theory-based markers and models for the evaluation of physiological age, its relation to age-related diseases and its potential modifications by therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Advancements in noncontact, multiparameter physiological measurements using a webcam.

    PubMed

    Poh, Ming-Zher; McDuff, Daniel J; Picard, Rosalind W

    2011-01-01

    We present a simple, low-cost method for measuring multiple physiological parameters using a basic webcam. By applying independent component analysis on the color channels in video recordings, we extracted the blood volume pulse from the facial regions. Heart rate (HR), respiratory rate, and HR variability (HRV, an index for cardiac autonomic activity) were subsequently quantified and compared to corresponding measurements using Food and Drug Administration-approved sensors. High degrees of agreement were achieved between the measurements across all physiological parameters. This technology has significant potential for advancing personal health care and telemedicine.

  16. Pilot Workload Measurement and Experience on Supersonic Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Rezek, T. W.

    1978-01-01

    Aircraft parameters and physiological parameters most indicative of crew workload were investigated. Recommendations were used to form the basis for a continuing study in which variations of the interval between heart beats are used as a measure of nonphysical workload. Preliminary results are presented and current efforts in further defining this physiological measure are outlined.

  17. Evaluation of immunological and physiological parameters associated with an infectious bovine rhinotracheitis viral challenge in beef steers

    USDA-ARS?s Scientific Manuscript database

    To evaluate the effects infectious bovine rhinotracheitis virus (IBRV) has on immunological and physiological parameters of cattle; 12 Angus crossbred steers (228.82 ± 22.15 kg) were randomly assigned to either a Control group or an IBRV challenged group. Prior to the challenge, steers were fitted w...

  18. A physiologically based in silico model for trans-2-hexenal detoxification and DNA adduct formation in human including interindividual variation indicates efficient detoxification and a negligible genotoxicity risk.

    PubMed

    Kiwamoto, R; Spenkelink, A; Rietjens, I M C M; Punt, A

    2013-09-01

    A number of α,β-unsaturated aldehydes are present in food both as natural constituents and as flavouring agents. Their reaction with DNA due to their electrophilic α,β-unsaturated aldehyde moiety may result in genotoxicity as observed in some in vitro models, thereby raising a safety concern. A question that remains is whether in vivo detoxification would be efficient enough to prevent DNA adduct formation and genotoxicity. In this study, a human physiologically based kinetic/dynamic (PBK/D) model of trans-2-hexenal (2-hexenal), a selected model α,β-unsaturated aldehyde, was developed to examine dose-dependent detoxification and DNA adduct formation in humans upon dietary exposure. The kinetic model parameters for detoxification were quantified using relevant pooled human tissue fractions as well as tissue fractions from 11 different individual subjects. In addition, a Monte Carlo simulation was performed so that the impact of interindividual variation in 2-hexenal detoxification on the DNA adduct formation in the population as a whole could be examined. The PBK/D model revealed that DNA adduct formation due to 2-hexenal exposure was 0.039 adducts/10⁸ nucleotides (nt) at the estimated average 2-hexenal dietary intake (0.04 mg 2-hexenal/kg bw) and 0.18 adducts/10⁸ nt at the 95th percentile of the dietary intake (0.178 mg 2-hexenal/kg bw) in the most sensitive people. These levels are three orders of magnitude lower than natural background DNA adduct levels that have been reported in disease-free humans (6.8-110 adducts/10⁸ nt), suggesting that the genotoxicity risk for the human population at realistic dietary daily intakes of 2-hexenal may be negligible.

  19. A PHYSIOLOGICALLY BASED TOXICOKINETIC MODEL FOR LAKE TROUT (SALVELINUS NAMAYCUSH)

    EPA Science Inventory

    A physiologically based toxicokinetic (PB-TK) model for fish, incorporating chemical exchange at the gill and accumulation in five tissue compartments, was used to examine the effect of natural variability in physiological, morphological, and physico-chemical parameters on model ...

  20. International collaboration on Russian spacecraft and the case for free flyer biosatellites

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Ilyin, Eugene A.; Holley, Daniel C.; Skidmore, Michael G.

    2005-01-01

    Animal research has been critical to the initiation and progress of space exploration. Animals were the original explorers of "space" two centuries ago and have played a crucial role by demonstrating that the space environment, with precautions, is compatible with human survival. Studies of mammals have yielded much of our knowledge of space physiology. As spaceflights to other planets are anticipated, animal research will continue to be essential to further reveal space physiology and to enable the longer missions. Much of the physiology data collected from space was obtained from the Cosmos (Bion) spaceflights, a series of Russian (Soviet)-International collaborative flights, over a 22 year period, which employed unmanned, free flyer biosatellites. Begun as a Soviet-only program, after the second flight the Russians invited American and other foreign scientists to participate. This program filled the 10 year hiatus between the last US biosatellite and the first animal experiments on the shuttles. Of the 11 flights in the Cosmos program nine of them were international; the flights continued over the years regardless of political differences between the Soviet Union and the Western world. The science evolved from sharing tissues to joint international planning and development, and from rat postmortem tissue analysis to in vivo measurements of a host of monkey physiological parameters during flight. Many types of biological specimens were carried on the modified Vostok spacecraft, but only the mammalian studies are discussed herein. The types of studies done encompass the full range of physiology and have begun to answer "critical" questions of space physiology posed by various ad hoc committees. The studies have not only yielded a prodigious and significant body of data, they have also introduced some new perspectives in physiology. A number of the physiological insights gained are relevant to physiology on Earth. The Cosmos flights also added significantly to flight-related technology, some of which also has application on our planet. In summary, the Cosmos biosatellite flights were extremely productive and of low cost. The Bion vehicles are versatile in that they can be placed into a variety of orbits and altitudes, and can carry radiation sources or other hazardous material which cannot be carried on manned vehicles. With recent advances in sensor, robotic, and data processing technology, future free flyers will be even more productive, and will largely preclude the need to fly animal experiments on manned vehicles. Currently, mammalian researchers do not have access to space for an unknown time, seriously impeding the advancement and understanding of space physiology during long duration missions. Initiation of a new, international program of free flyer biosatellites is critical to our further understanding of space physiology, and essential to continued human exploration of space.

  1. Effect of Ambient Temperature on the Human Tear Film.

    PubMed

    Abusharha, Ali A; Pearce, E Ian; Fagehi, Raied

    2016-09-01

    During everyday life, the tear film is exposed to a wide range of ambient temperatures. This study aims to investigate the effect of ambient temperature on tear film physiology. A controlled environment chamber was used to create different ambient temperatures (5, 10, 15, 20, and 25°C) at a constant relative humidity of 40%. Subjects attended for two separate visits and were exposed to 25, 20, and 15°C at one visit and to 10 and 5°C at the other visit. The subjects were exposed to each room temperature for 10 min before investigating tear film parameters. The order of the visits was random. Tear physiology parameters assessed were tear evaporation rate, noninvasive tear break-up time (NITBUT), lipid layer thickness (LLT), and ocular surface temperature (OST). Each parameter was assessed under each condition. A threefold increase in tear evaporation rate was observed as ambient temperature increased to 25°C (P=0.00). The mean evaporation rate increased from 0.056 μL/min at 5°C to 0.17 μL/min at 25°C. The mean NITBUT increased from 7.31 sec at 5°C to 12.35 sec at 25°C (P=0.01). A significant change in LLT was also observed (P=0.00), LLT median ranged between 20 and 40 nm at 5 and 10°C and increased to 40 and 90 nm at 15, 20, and 25°C. Mean reduction of 4°C OST was observed as ambient temperature decreased from 25 to 5°C. Ambient temperature has a considerable effect on human tear film characteristics. Tear evaporation rate, tear LLT, tear stability, and OST were considerably affected by ambient temperature. Chronic exposure to low ambient temperature would likely result in symptoms of dry eye and ultimately ocular surface disorders.

  2. The Virtual Physiological Human

    PubMed Central

    Coveney, Peter V.; Diaz, Vanessa; Hunter, Peter; Kohl, Peter; Viceconti, Marco

    2011-01-01

    The Virtual Physiological Human is synonymous with a programme in computational biomedicine that aims to develop a framework of methods and technologies to investigate the human body as a whole. It is predicated on the transformational character of information technology, brought to bear on that most crucial of human concerns, our own health and well-being.

  3. Determinants of Microdamage in Elderly Human Vertebral Trabecular Bone

    PubMed Central

    Follet, Hélène; Farlay, Delphine; Bala, Yohann; Viguet-Carrin, Stéphanie; Gineyts, Evelyne; Burt-Pichat, Brigitte; Wegrzyn, Julien; Delmas, Pierre; Boivin, Georges; Chapurlat, Roland

    2013-01-01

    Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53) from donors 54–95 years of age (22 men and 30 women, 1 unknown) and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen) was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types. PMID:23457465

  4. The impacts of uncertainty and variability in groundwater-driven health risk assessment. (Invited)

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.

    2010-12-01

    Potential human health risk from contaminated groundwater is becoming an important, quantitative measure used in management decisions in a range of applications from Superfund to CO2 sequestration. Quantitatively assessing the potential human health risks from contaminated groundwater is challenging due to the many coupled processes, uncertainty in transport parameters and the variability in individual physiology and behavior. Perspective on human health risk assessment techniques will be presented and a framework used to predict potential, increased human health risk from contaminated groundwater will be discussed. This framework incorporates transport of contaminants through the subsurface from source to receptor and health risks to individuals via household exposure pathways. The subsurface is shown subject to both physical and chemical heterogeneity which affects downstream concentrations at receptors. Cases are presented where hydraulic conductivity can exhibit both uncertainty and spatial variability in addition to situations where hydraulic conductivity is the dominant source of uncertainty in risk assessment. Management implications, such as characterization and remediation will also be discussed.

  5. Physiological spacecraft environment data documentation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The physiological limits of exposure to environmental parameters encountered during space flight was documented. The environmental limits which have been previously established were described in terms of acceptable physiological changes. The process of coordinating data and assembling the completed data book is described in this report.

  6. Deformable Surface Accommodating Intraocular Lens: Second Generation Prototype Design Methodology and Testing.

    PubMed

    McCafferty, Sean J; Schwiegerling, Jim T

    2015-04-01

    Present an analysis methodology for developing and evaluating accommodating intraocular lenses incorporating a deformable interface. The next generation design of extruded gel interface intraocular lens is presented. A prototype based upon similar previously in vivo proven design was tested with measurements of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were used to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force to accommodate. The prototype lens produced adequate image quality with the available physiologic accommodating force. The iterative mathematical modeling based upon the prototype yielded maximized optical and mechanical performance through maximum allowable gel thickness to extrusion diameter ratio, maximum feasible refractive index change at the interface, and minimum gel material properties in Poisson's ratio and Young's modulus. The design prototype performed well. It operated within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye's natural focusing feedback, while maintaining image quality in the space available. The parameters that optimized optical and mechanical performance were delineated as those, which minimize both asphericity and actuation pressure. The design parameters outlined herein can be used as a template to maximize the performance of a deformable interface intraocular lens. The article combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary animal trials.

  7. Medical, Psychophysiological, and Human Performance Problems During Extended EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP1, the discussion focuses on the following topics: New Developments in the Assessment of the Risk of Decompression Sickness in Null Gravity During Extravehicular Activity; The Dynamic of Physiological Reactions of Cosmonauts Under the Influence of Repeated EVA Workouts, The Russian Experience; Medical Emergencies in Space; The Evolution from 'Physiological Adequacy' to 'Physiological Tuning'; Five Zones of Symmetrical and Asymmetrical Conflicting Temperatures on the Human Body, Physiological Consequences; Human Performance and Subjective Perception in Nonuniform Thermal Conditions; The Hand as a Control System, Implications for Hand-Finger Dexterity During Extended EVA; and Understanding the Skill of Extravehicular Mass Handling.

  8. Concentration dependence of the cell membrane permeability to cryoprotectant and water and implications for design of methods for post-thaw washing of human erythrocytes.

    PubMed

    Lahmann, John M; Benson, James D; Higgins, Adam Z

    2018-02-01

    For more than fifty years the human red blood cell (RBC) has been a widely studied model for transmembrane mass transport. Existing literature spans myriad experimental designs with varying results and physiologic interpretations. In this review, we examine the kinetics and mechanisms of membrane transport in the context of RBC cryopreservation. We include a discussion of the pathways for water and glycerol permeation through the cell membrane and the implications for mathematical modeling of the membrane transport process. In particular, we examine the concentration dependence of water and glycerol transport and provide equations for estimating permeability parameters as a function of concentration based on a synthesis of literature data. This concentration-dependent transport model may allow for design of improved methods for post-thaw removal of glycerol from cryopreserved blood. More broadly, the consideration of the concentration dependence of membrane permeability parameters may be important for other cell types as well, especially for design of methods for equilibration with the highly concentrated solutions used for vitrification. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effect of music on postoperative pain and physiologic parameters of patients after open heart surgery.

    PubMed

    Özer, Nadiye; Karaman Özlü, Zeynep; Arslan, Sevban; Günes, Nezihat

    2013-03-01

    The aim of this study was to investigate the effect of listening to personal choice of music on self-report of pain intensity and the physiologic parameters in patients who have undergone open heart surgery. The study design was quasiexperimental. Patients were selected through convenience sampling in the Cardiovascular Surgery Intensive Care Unit at a university hospital. The study was conducted with a total of 87 patients who underwent open heart surgery: 44 in the music group, 43 in the control group, ages between 18 and 78 years. Through pretest-posttest design, postoperative first-day data were collected. First, physiologic parameters (blood pressure, heart rate, oxygen saturation, and respiratory rate) were recorded and a unidimensional verbal pain intensity scale applied to all participants. Later, the control group had a rest in their beds while the music group listened to their choice of music for 30 minutes. Physiologic data were then collected and the pain intensity scale applied once more. In the music group, there was a statistically significant increase in oxygen saturation (p = .001) and a lower pain score (p = .001) than in the control group. There was no difference between the groups in the other physiologic parameters. Results of this research provide evidence to support the use of music. Music might be a simple, safe, and effective method of reducing potentially harmful physiologic responses arising from pain in patients after open heart surgery. Copyright © 2013 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  10. Effect of anapanasati meditation technique through electrophotonic imaging parameters: A pilot study

    PubMed Central

    Deo, Guru; Itagi R, Kumar; Thaiyar M, Srinivasan; Kuldeep, Kushwah K

    2015-01-01

    Background: Mindfulness along with breathing is a well-established meditation technique. Breathing is an exquisite tool for exploring subtle awareness of mind and life itself. Aim: This study aimed at measuring changes in the different parameters of electrophotonic imaging (EPI) in anapanasati meditators. Materials and Methods: To carry out this study, 51 subjects comprising 32 males and 19 females of age 18 years and above (mean age 45.64 ± 14.43) were recruited voluntarily with informed consent attending Karnataka Dhyana Mahachakra-1 at Pyramid Valley International, Bengaluru, India. The design was a single group pre- post and data collected by EPI device before and after 5 days of intensive meditation. Results: Results show significant changes in EPI parameter integral area with filter (physiological) in both right and left side, which reflects the availability of high functional energy reserve in meditators. The researchers observed similar trends without filter (psycho-physiological) indicating high reserves of energy at psycho-physiological level also. Activation coefficient, another parameter of EPI, reduced showing more relaxed state than earlier, possibly due to parasympathetic dominance. Integral entropy decreased in the case of psycho-physiological parameters left-side without filter, which indicates less disorder after meditation, but these changes were not significant. The study showed a reversed change in integral entropy in the right side without filter; however, the values on both sides with filter increased, which indicates disorder. Conclusion: The study suggests that EPI can be used in the recording functional physiological and psychophysiological status of meditators at a subtle level. PMID:26170590

  11. A physiology-based model describing heterogeneity in glucose metabolism: the core of the Eindhoven Diabetes Education Simulator (E-DES).

    PubMed

    Maas, Anne H; Rozendaal, Yvonne J W; van Pul, Carola; Hilbers, Peter A J; Cottaar, Ward J; Haak, Harm R; van Riel, Natal A W

    2015-03-01

    Current diabetes education methods are costly, time-consuming, and do not actively engage the patient. Here, we describe the development and verification of the physiological model for healthy subjects that forms the basis of the Eindhoven Diabetes Education Simulator (E-DES). E-DES shall provide diabetes patients with an individualized virtual practice environment incorporating the main factors that influence glycemic control: food, exercise, and medication. The physiological model consists of 4 compartments for which the inflow and outflow of glucose and insulin are calculated using 6 nonlinear coupled differential equations and 14 parameters. These parameters are estimated on 12 sets of oral glucose tolerance test (OGTT) data (226 healthy subjects) obtained from literature. The resulting parameter set is verified on 8 separate literature OGTT data sets (229 subjects). The model is considered verified if 95% of the glucose data points lie within an acceptance range of ±20% of the corresponding model value. All glucose data points of the verification data sets lie within the predefined acceptance range. Physiological processes represented in the model include insulin resistance and β-cell function. Adjusting the corresponding parameters allows to describe heterogeneity in the data and shows the capabilities of this model for individualization. We have verified the physiological model of the E-DES for healthy subjects. Heterogeneity of the data has successfully been modeled by adjusting the 4 parameters describing insulin resistance and β-cell function. Our model will form the basis of a simulator providing individualized education on glucose control. © 2014 Diabetes Technology Society.

  12. Practical Murine Hematopathology: A Comparative Review and Implications for Research

    PubMed Central

    O'Connell, Karyn E; Mikkola, Amy M; Stepanek, Aaron M; Vernet, Andyna; Hall, Christopher D; Sun, Chia C; Yildirim, Eda; Staropoli, John F; Lee, Jeannie T; Brown, Diane E

    2015-01-01

    Hematologic parameters are important markers of disease in human and veterinary medicine. Biomedical research has benefited from mouse models that recapitulate such disease, thus expanding knowledge of pathogenetic mechanisms and investigative therapies that translate across species. Mice in health have many notable hematologic differences from humans and other veterinary species, including smaller erythrocytes, higher percentage of circulating reticulocytes or polychromasia, lower peripheral blood neutrophil and higher peripheral blood and bone marrow lymphocyte percentages, variable leukocyte morphologies, physiologic splenic hematopoiesis and iron storage, and more numerous and shorter-lived erythrocytes and platelets. For accurate and complete hematologic analyses of disease and response to investigative therapeutic interventions, these differences and the unique features of murine hematopathology must be understood. Here we review murine hematology and hematopathology for practical application to translational investigation. PMID:25926395

  13. A Simulator for the Respiratory Tree in Healthy Subjects Derived from Continued Fractions Expansions

    NASA Astrophysics Data System (ADS)

    Muntean, Ionuţ; Ionescu, Clara; Naşcu, Ioan

    2009-04-01

    Taking into account the self-similar recurrent geometrical structure of the human respiratory tree, the total respiratory impedance can be represented using an electrical equivalent of a ladder network model. In this paper, the parameters of the respiratory tree are employed in simulation, based on clinical insight and morphology. Once the transfer function of the total input impedance model is calculated, it is further interpreted in its continued fraction expansion form. The purpose is to compare the ladder network structure with the continuous fraction expansion form of the impedance. The results are supporting the theory of fractional-order impedance appearance (also known as constant-phase behaviour) and help understanding the mathematical and morphological basis for constructing a physiology-based simulator of the human lungs.

  14. Resistance of Magnesium Alloys to Corrosion Fatigue for Biodegradable Implant Applications: Current Status and Challenges

    PubMed Central

    Raman, R. K. Singh; Harandi, Shervin Eslami

    2017-01-01

    Magnesium (Mg) alloys are attracting increasing interest as the most suitable metallic materials for construction of biodegradable and bio-absorbable temporary implants. However, Mg-alloys can suffer premature and catastrophic fracture under the synergy of cyclic loading and corrosion (i.e., corrosion fatigue (CF)). Though Mg alloys are reported to be susceptible to CF also in the corrosive human body fluid, there are very limited studies on this topic. Furthermore, the in vitro test parameters employed in these investigations have not properly simulated the actual conditions in the human body. This article presents an overview of the findings of available studies on the CF of Mg alloys in pseudo-physiological solutions and the employed testing procedures, as well as identifying the knowledge gap. PMID:29144428

  15. Resistance of Magnesium Alloys to Corrosion Fatigue for Biodegradable Implant Applications: Current Status and Challenges.

    PubMed

    Raman, R K Singh; Harandi, Shervin Eslami

    2017-11-16

    Magnesium (Mg) alloys are attracting increasing interest as the most suitable metallic materials for construction of biodegradable and bio-absorbable temporary implants. However, Mg-alloys can suffer premature and catastrophic fracture under the synergy of cyclic loading and corrosion (i.e., corrosion fatigue (CF)). Though Mg alloys are reported to be susceptible to CF also in the corrosive human body fluid, there are very limited studies on this topic. Furthermore, the in vitro test parameters employed in these investigations have not properly simulated the actual conditions in the human body. This article presents an overview of the findings of available studies on the CF of Mg alloys in pseudo-physiological solutions and the employed testing procedures, as well as identifying the knowledge gap.

  16. Methods of estimating the effect of integral motorcycle helmets on physiological and psychological performance.

    PubMed

    Bogdan, Anna; Sudoł-Szopińska, Iwona; Luczak, Anna; Konarska, Maria; Pietrowski, Piotr

    2012-01-01

    This article proposes a method for a comprehensive assessment of the effect of integral motorcycle helmets on physiological and cognitive responses of motorcyclists. To verify the reliability of commonly used tests, we conducted experiments with 5 motorcyclists. We recorded changes in physiological parameters (heart rate, local skin temperature, core temperature, air temperature, relative humidity in the space between the helmet and the surface of the head, and the concentration of O(2) and CO(2) under the helmet) and in psychological parameters (motorcyclists' reflexes, fatigue, perceptiveness and mood). We also studied changes in the motorcyclists' subjective sensation of thermal comfort. The results made it possible to identify reliable parameters for assessing the effect of integral helmets on performance, i.e., physiological factors (head skin temperature, internal temperature and concentration of O(2) and CO(2) under the helmet) and on psychomotor factors (reaction time, attention and vigilance, work performance, concentration and a subjective feeling of mood and fatigue).

  17. Influence of two different doses of infectious bovine rhinotracheitis virus (IBRV) on immune and physiological parameters in steers

    USDA-ARS?s Scientific Manuscript database

    To evaluate the effects different doses of IBRV and the impact they have on immunological and physiological parameters of cattle, 18 Holstein steers (450.11 ± 75.70 kg) were randomly assigned to either a control group or 1 of 2 IBRV challenged groups. Prior to the challenge, steers were fitted with ...

  18. Physiological Parameter Response to Variation of Mental Workload.

    PubMed

    Marinescu, Adrian Cornelius; Sharples, Sarah; Ritchie, Alastair Campbell; Sánchez López, Tomas; McDowell, Michael; Morvan, Hervé P

    2018-02-01

    To examine the relationship between experienced mental workload and physiological response by noninvasive monitoring of physiological parameters. Previous studies have examined how individual physiological measures respond to changes in mental demand and subjective reports of workload. This study explores the response of multiple physiological parameters and quantifies their added value when estimating the level of demand. The study presented was conducted in laboratory conditions and required participants to perform a visual-motor task that imposed varying levels of demand. The data collected consisted of physiological measurements (heart interbeat intervals, breathing rate, pupil diameter, facial thermography), subjective ratings of workload (Instantaneous Self-Assessment Workload Scale [ISA] and NASA-Task Load Index), and the performance. Facial thermography and pupil diameter were demonstrated to be good candidates for noninvasive workload measurements: For seven out of 10 participants, pupil diameter showed a strong correlation ( R values between .61 and .79 at a significance value of .01) with mean ISA normalized values. Facial thermography measures added on average 47.7% to the amount of variability in task performance explained by a regression model. As with the ISA ratings, the relationship between the physiological measures and performance showed strong interparticipant differences, with some individuals demonstrating a much stronger relationship between workload and performance measures than others. The results presented in this paper demonstrate that physiological and pupil diameter can be used for noninvasive real-time measurement of workload. The methods presented in this article, with current technological capabilities, are better suited for workplaces where the person is seated, offering the possibility of being applied to pilots and air traffic controllers.

  19. Photometric flow analysis system for biomedical investigations of iron/transferrin speciation in human serum.

    PubMed

    Strzelak, Kamil; Rybkowska, Natalia; Wiśniewska, Agnieszka; Koncki, Robert

    2017-12-01

    The Multicommutated Flow Analysis (MCFA) system for the estimation of clinical iron parameters: Serum Iron (SI), Unsaturated Iron Binding Capacity (UIBC) and Total Iron Binding Capacity (TIBC) has been proposed. The developed MCFA system based on simple photometric detection of iron with chromogenic agent (ferrozine) enables a speciation of transferrin (determination of free and Fe-bound protein) in human serum. The construction of manifold was adapted to the requirements of measurements under changing conditions. In the course of studies, a different effect of proteins on SI and UIBC determination has been proven. That was in turn the reason to perform two kinds of calibration methods. For measurements in acidic medium for SI/holotransferrin determination, the calibration curve method was applied, characterized by limit of determination and limit of quantitation on the level of 3.4 μmol L -1 and 9.1 μmol L -1 , respectively. The determination method for UIBC parameter (related to apotransferrin level) in physiological medium of pH 7.4 forced the use of standard addition method due to the strong influence of proteins on obtaining analytical signals. These two different methodologies, performed in the presented system, enabled the estimation of all three clinical iron/transferrin parameters in human serum samples. TIBC corresponding to total transferrin level was calculated as a sum of SI and UIBC. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Neural theory for the perception of causal actions.

    PubMed

    Fleischer, Falk; Christensen, Andrea; Caggiano, Vittorio; Thier, Peter; Giese, Martin A

    2012-07-01

    The efficient prediction of the behavior of others requires the recognition of their actions and an understanding of their action goals. In humans, this process is fast and extremely robust, as demonstrated by classical experiments showing that human observers reliably judge causal relationships and attribute interactive social behavior to strongly simplified stimuli consisting of simple moving geometrical shapes. While psychophysical experiments have identified critical visual features that determine the perception of causality and agency from such stimuli, the underlying detailed neural mechanisms remain largely unclear, and it is an open question why humans developed this advanced visual capability at all. We created pairs of naturalistic and abstract stimuli of hand actions that were exactly matched in terms of their motion parameters. We show that varying critical stimulus parameters for both stimulus types leads to very similar modulations of the perception of causality. However, the additional form information about the hand shape and its relationship with the object supports more fine-grained distinctions for the naturalistic stimuli. Moreover, we show that a physiologically plausible model for the recognition of goal-directed hand actions reproduces the observed dependencies of causality perception on critical stimulus parameters. These results support the hypothesis that selectivity for abstract action stimuli might emerge from the same neural mechanisms that underlie the visual processing of natural goal-directed action stimuli. Furthermore, the model proposes specific detailed neural circuits underlying this visual function, which can be evaluated in future experiments.

  1. Non-mydriatic video ophthalmoscope to measure fast temporal changes of the human retina

    NASA Astrophysics Data System (ADS)

    Tornow, Ralf P.; Kolář, Radim; Odstrčilík, Jan

    2015-07-01

    The analysis of fast temporal changes of the human retina can be used to get insight to normal physiological behavior and to detect pathological deviations. This can be important for the early detection of glaucoma and other eye diseases. We developed a small, lightweight, USB powered video ophthalmoscope that allows taking video sequences of the human retina with at least 25 frames per second without dilating the pupil. Short sequences (about 10 s) of the optic nerve head (20° x 15°) are recorded from subjects and registered offline using two-stage process (phase correlation and Lucas-Kanade approach) to compensate for eye movements. From registered video sequences, different parameters can be calculated. Two applications are described here: measurement of (i) cardiac cycle induced pulsatile reflection changes and (ii) eye movements and fixation pattern. Cardiac cycle induced pulsatile reflection changes are caused by changing blood volume in the retina. Waveform and pulse parameters like amplitude and rise time can be measured in any selected areas within the retinal image. Fixation pattern ΔY(ΔX) can be assessed from eye movements during video acquisition. The eye movements ΔX[t], ΔY[t] are derived from image registration results with high temporal (40 ms) and spatial (1,86 arcmin) resolution. Parameters of pulsatile reflection changes and fixation pattern can be affected in beginning glaucoma and the method described here may support early detection of glaucoma and other eye disease.

  2. PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR HUMAN EXPOSURES TO METHYL TERTIARY-BUTYL ETHER

    EPA Science Inventory

    Humans can be exposed by inhalation, ingestion, or dermal absorption to methyl tertiary-butyl ether (MTBE), an oxygenated fuel additive, from contaminated water sources. The purpose of this research was to develop a physiologically based pharmacokinetic model describing in human...

  3. Preparing computers for affective communication: a psychophysiological concept and preliminary results.

    PubMed

    Whang, Min Cheol; Lim, Joa Sang; Boucsein, Wolfram

    Despite rapid advances in technology, computers remain incapable of responding to human emotions. An exploratory study was conducted to find out what physiological parameters might be useful to differentiate among 4 emotional states, based on 2 dimensions: pleasantness versus unpleasantness and arousal versus relaxation. The 4 emotions were induced by exposing 26 undergraduate students to different combinations of olfactory and auditory stimuli, selected in a pretest from 12 stimuli by subjective ratings of arousal and valence. Changes in electroencephalographic (EEG), heart rate variability, and electrodermal measures were used to differentiate the 4 emotions. EEG activity separates pleasantness from unpleasantness only in the aroused but not in the relaxed domain, where electrodermal parameters are the differentiating ones. All three classes of parameters contribute to a separation between arousal and relaxation in the positive valence domain, whereas the latency of the electrodermal response is the only differentiating parameter in the negative domain. We discuss how such a psychophysiological approach may be incorporated into a systemic model of a computer responsive to affective communication from the user.

  4. A statistical note on the redundancy of nine standard baroreflex parameters

    NASA Technical Reports Server (NTRS)

    Ludwig, David A.; Convertino, Victor A.

    1991-01-01

    An accepted method for measuring the responsiveness of the carotid-cardiac baroreflex to arterial pressure changes is to artificially stimulate the baroreceptors in the neck with a pressurized neck chamber. Nine physiological responses to this type of stimulation are quantified and used as indicators of the baroreflex response function. Thirty male humans between the ages of 27 and 46 underwent the carotid-cardiac baroreflex test. The data for the nine response parameters were analyzed by principle component factor analysis. The results indicated that 92.5 percent of the total variance across all nine parameters could be explained in four dimensions. The first two dimensions reflected location points for R-R interval and carotid distending pressure, respectively. The third factor was composed of measures reflecting the gain (responsiveness) of the reflex. The fourth dimension was the ratio of baseline R-R interval to the maximal R-R interval response during simulated hypertension. The data suggest that the analysis of all nine baroreflex parameters is likely to be redundant and researchers should account for these redundancies either in their analyses or conclusions.

  5. "Usability of data integration and visualization software for multidisciplinary pediatric intensive care: a human factors approach to assessing technology".

    PubMed

    Lin, Ying Ling; Guerguerian, Anne-Marie; Tomasi, Jessica; Laussen, Peter; Trbovich, Patricia

    2017-08-14

    Intensive care clinicians use several sources of data in order to inform decision-making. We set out to evaluate a new interactive data integration platform called T3™ made available for pediatric intensive care. Three primary functions are supported: tracking of physiologic signals, displaying trajectory, and triggering decisions, by highlighting data or estimating risk of patient instability. We designed a human factors study to identify interface usability issues, to measure ease of use, and to describe interface features that may enable or hinder clinical tasks. Twenty-two participants, consisting of bedside intensive care physicians, nurses, and respiratory therapists, tested the T3™ interface in a simulation laboratory setting. Twenty tasks were performed with a true-to-setting, fully functional, prototype, populated with physiological and therapeutic intervention patient data. Primary data visualization was time series and secondary visualizations were: 1) shading out-of-target values, 2) mini-trends with exaggerated maxima and minima (sparklines), and 3) bar graph of a 16-parameter indicator. Task completion was video recorded and assessed using a use error rating scale. Usability issues were classified in the context of task and type of clinician. A severity rating scale was used to rate potential clinical impact of usability issues. Time series supported tracking a single parameter but partially supported determining patient trajectory using multiple parameters. Visual pattern overload was observed with multiple parameter data streams. Automated data processing using shading and sparklines was often ignored but the 16-parameter data reduction algorithm, displayed as a persistent bar graph, was visually intuitive. However, by selecting or automatically processing data, triggering aids distorted the raw data that clinicians use regularly. Consequently, clinicians could not rely on new data representations because they did not know how they were established or derived. Usability issues, observed through contextual use, provided directions for tangible design improvements of data integration software that may lessen use errors and promote safe use. Data-driven decision making can benefit from iterative interface redesign involving clinician-users in simulated environments. This study is a first step in understanding how software can support clinicians' decision making with integrated continuous monitoring data. Importantly, testing of similar platforms by all the different disciplines who may become clinician users is a fundamental step necessary to understand the impact on clinical outcomes of decision aids.

  6. USE OF A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL TO ESTIMATE ABSORBED CARBARYL DOSE IN CHILDREN AFTER TURF APPLICATION

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model was developed to investigate exposure scenarios of children to carbaryl following turf application. Physiological, pharmacokinetic and pharmacodynamic parameters describing the fate and effects of carbaryl in rats were scaled ...

  7. Predicting Age-Appropriate Pharmacokinetics of Six Volatile Organic Compounds in the Rat Utilizing Physiologically Based Pharmacokinetic Modeling

    EPA Science Inventory

    The capability of physiologically based pharmacokinetic models to incorporate age-appropriate physiological and chemical-specific parameters was utilized to predict changes in internal dosimetry for six volatile organic compounds (VOCs) across different ages of rats.

  8. Physiological responses to environmental factors related to space flight

    NASA Technical Reports Server (NTRS)

    Pace, N.

    1972-01-01

    The research is reported for establishing physiological base line data, and for developing procedures and instrumentation necessary for the automatic measurement of hemodynamic and metabolic parameters. The work in the following areas is discussed: biochemistry, bioinstrumentation, nutrition, physiology, experimental surgery, and animal colony.

  9. The physiology of spacecraft and space suit atmosphere selection

    NASA Astrophysics Data System (ADS)

    Waligora, J. M.; Horrigan, D. J.; Nicogossian, A.

    The majority of the environmental factors which comprise the spacecraft and space suit environments can be controlled at "Earth normal" values, at optimum values, or at other values decided upon by spacecraft designers. Factors which are considered in arriving at control values and control ranges of these parameters include physiological, engineering, operational cost, and safety considerations. Several of the physiologic considerations, including hypoxia and hyperoxia, hypercapnia, temperature regulation, and decompression sickness are identified and their impact on space craft and space suit atmosphere selection are considered. The past experience in controlling these parameters in U.S. and Soviet spacecraft and space suits and the associated physiological responses are reviewed. Current areas of physiological investigation relating to environmental factors in spacecraft are discussed, particularly decompression sickness which can occur as a result of change in pressure from Earth to spacecraft or spacecraft to space suit. Physiological considerations for long-term lunar or Martian missions will have different impacts on atmosphere selection and may result in the selection of atmospheres different than those currently in use.

  10. EFFECTS OF AROMATHERAPY MASSAGE ON THE SLEEP QUALITY AND PHYSIOLOGICAL PARAMETERS OF PATIENTS IN A SURGICAL INTENSIVE CARE UNIT.

    PubMed

    Özlü, Zeynep Karaman; Bilican, Pınar

    2017-01-01

    Surgical pain is experienced by inpatients with clinical, disease-related concerns, unknown encounters after surgery, quality of sleep, restrictions in position after surgery is known to be serious. The study was conducted to determine the effect of aromatherapy massage on quality of sleep and physiological parameters in surgical intensive care patients. This is an experimental study. The sample of this study consisted of 60 patients who were divided into two groups as experimental group and control group including 30 patients in each one. The participants were postoperative patients, absent complications, who were unconscious and extubated. A data collection form on personal characteristics of the patients, a registration form on their physical parameters and the Richards-Campbell Sleep Scale (RCSQ) were used to collect the data of the study. The Richards-Campbell Sleep Scale indicated that while the experimental group had a mean score of 53.80 ± 13.20, the control group had a mean score of 29.08 ± 9.71 and there was a statistically significant difference between mean scores of the groups. In a comparison of physiologic parameters, only diastolic blood pressure measuring between parameters in favor of an assembly as a statistically significant difference was detected. Results of the study showed that aromatherapy massage enhanced the sleep quality of patients in a surgical intensive care unit and resulted in some positive changes in their physiological parameters.

  11. EFFECTS OF AROMATHERAPY MASSAGE ON THE SLEEP QUALITY AND PHYSIOLOGICAL PARAMETERS OF PATIENTS IN A SURGICAL INTENSIVE CARE UNIT

    PubMed Central

    Özlü, Zeynep Karaman; Bilican, Pınar

    2017-01-01

    Background: Surgical pain is experienced by inpatients with clinical, disease-related concerns, unknown encounters after surgery, quality of sleep, restrictions in position after surgery is known to be serious. The study was conducted to determine the effect of aromatherapy massage on quality of sleep and physiological parameters in surgical intensive care patients. Materials and Methods: This is an experimental study. The sample of this study consisted of 60 patients who were divided into two groups as experimental group and control group including 30 patients in each one. The participants were postoperative patients, absent complications, who were unconscious and extubated. A data collection form on personal characteristics of the patients, a registration form on their physical parameters and the Richards-Campbell Sleep Scale (RCSQ) were used to collect the data of the study. Results: The Richards-Campbell Sleep Scale indicated that while the experimental group had a mean score of 53.80 ± 13.20, the control group had a mean score of 29.08 ± 9.71 and there was a statistically significant difference between mean scores of the groups. In a comparison of physiologic parameters, only diastolic blood pressure measuring between parameters in favor of an assembly as a statistically significant difference was detected. Conclusions: Results of the study showed that aromatherapy massage enhanced the sleep quality of patients in a surgical intensive care unit and resulted in some positive changes in their physiological parameters. PMID:28480419

  12. The Use of an Acellular Oxygen Carrier in a Human Liver Model of Normothermic Machine Perfusion.

    PubMed

    Laing, Richard W; Bhogal, Ricky H; Wallace, Lorraine; Boteon, Yuri; Neil, Desley A H; Smith, Amanda; Stephenson, Barney T F; Schlegel, Andrea; Hübscher, Stefan G; Mirza, Darius F; Afford, Simon C; Mergental, Hynek

    2017-11-01

    Normothermic machine perfusion of the liver (NMP-L) is a novel technique that preserves liver grafts under near-physiological conditions while maintaining their normal metabolic activity. This process requires an adequate oxygen supply, typically delivered by packed red blood cells (RBC). We present the first experience using an acellular hemoglobin-based oxygen carrier (HBOC) Hemopure in a human model of NMP-L. Five discarded high-risk human livers were perfused with HBOC-based perfusion fluid and matched to 5 RBC-perfused livers. Perfusion parameters, oxygen extraction, metabolic activity, and histological features were compared during 6 hours of NMP-L. The cytotoxicity of Hemopure was also tested on human hepatic primary cell line cultures using an in vitro model of ischemia reperfusion injury. The vascular flow parameters and the perfusate lactate clearance were similar in both groups. The HBOC-perfused livers extracted more oxygen than those perfused with RBCs (O2 extraction ratio 13.75 vs 9.43 % ×10 per gram of tissue, P = 0.001). In vitro exposure to Hemopure did not alter intracellular levels of reactive oxygen species, and there was no increase in apoptosis or necrosis observed in any of the tested cell lines. Histological findings were comparable between groups. There was no evidence of histological damage caused by Hemopure. Hemopure can be used as an alternative oxygen carrier to packed red cells in NMP-L perfusion fluid.

  13. Agricultural land use and human presence around breeding sites increase stress-hormone levels and decrease body mass in barn owl nestlings.

    PubMed

    Almasi, Bettina; Béziers, Paul; Roulin, Alexandre; Jenni, Lukas

    2015-09-01

    Human activities can have a suite of positive and negative effects on animals and thus can affect various life history parameters. Human presence and agricultural practice can be perceived as stressors to which animals react with the secretion of glucocorticoids. The acute short-term secretion of glucocorticoids is considered beneficial and helps an animal to redirect energy and behaviour to cope with a critical situation. However, a long-term increase of glucocorticoids can impair e.g. growth and immune functions. We investigated how nestling barn owls (Tyto alba) are affected by the surrounding landscape and by human activities around their nest sites. We studied these effects on two response levels: (a) the physiological level of the hypothalamus-pituitary-adrenal axis, represented by baseline concentrations of corticosterone and the concentration attained by a standardized stressor; (b) fitness parameters: growth of the nestlings and breeding performance. Nestlings growing up in intensively cultivated areas showed increased baseline corticosterone levels late in the season and had an increased corticosterone release after a stressful event, while their body mass was decreased. Nestlings experiencing frequent anthropogenic disturbance had elevated baseline corticosterone levels, an increased corticosterone stress response and a lower body mass. Finally, breeding performance was better in structurally more diverse landscapes. In conclusion, anthropogenic disturbance affects offspring quality rather than quantity, whereas agricultural practices affect both life history traits.

  14. The effect of noise and lipid signals on determination of Gaussian and non-Gaussian diffusion parameters in skeletal muscle.

    PubMed

    Cameron, Donnie; Bouhrara, Mustapha; Reiter, David A; Fishbein, Kenneth W; Choi, Seongjin; Bergeron, Christopher M; Ferrucci, Luigi; Spencer, Richard G

    2017-07-01

    This work characterizes the effect of lipid and noise signals on muscle diffusion parameter estimation in several conventional and non-Gaussian models, the ultimate objectives being to characterize popular fat suppression approaches for human muscle diffusion studies, to provide simulations to inform experimental work and to report normative non-Gaussian parameter values. The models investigated in this work were the Gaussian monoexponential and intravoxel incoherent motion (IVIM) models, and the non-Gaussian kurtosis and stretched exponential models. These were evaluated via simulations, and in vitro and in vivo experiments. Simulations were performed using literature input values, modeling fat contamination as an additive baseline to data, whereas phantom studies used a phantom containing aliphatic and olefinic fats and muscle-like gel. Human imaging was performed in the hamstring muscles of 10 volunteers. Diffusion-weighted imaging was applied with spectral attenuated inversion recovery (SPAIR), slice-select gradient reversal and water-specific excitation fat suppression, alone and in combination. Measurement bias (accuracy) and dispersion (precision) were evaluated, together with intra- and inter-scan repeatability. Simulations indicated that noise in magnitude images resulted in <6% bias in diffusion coefficients and non-Gaussian parameters (α, K), whereas baseline fitting minimized fat bias for all models, except IVIM. In vivo, popular SPAIR fat suppression proved inadequate for accurate parameter estimation, producing non-physiological parameter estimates without baseline fitting and large biases when it was used. Combining all three fat suppression techniques and fitting data with a baseline offset gave the best results of all the methods studied for both Gaussian diffusion and, overall, for non-Gaussian diffusion. It produced consistent parameter estimates for all models, except IVIM, and highlighted non-Gaussian behavior perpendicular to muscle fibers (α ~ 0.95, K ~ 3.1). These results show that effective fat suppression is crucial for accurate measurement of non-Gaussian diffusion parameters, and will be an essential component of quantitative studies of human muscle quality. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  15. A physiologically based pharmacokinetic model for lactational transfer of Na-131I

    NASA Astrophysics Data System (ADS)

    Turner, Anita Loretta

    The excretion of radionuclides in human breast milk after administration of radiopharmaceuticals is a concern as a radiation risk to nursing infants. It is not uncommon to administer radiopharmaceuticals to lactating patients due to emergency nuclear medicine investigations such as thyroid complications, kidney failure, and pulmonary embolism. There is a need to quantify the amount of radioactivity translocated into breast milk in cases of ingestion by a breast-fed infant. A physiologically based pharmacokinetic model (PBPK) and a modified International Commission on Radiological Protection (ICRP) model have been developed to predict iodine concentrations in breast milk after ingestion of radioiodine by the mother. In the PBPK model, all compartments are interconnected by blood flow and represent real anatomic tissue regions in the body. All parameters involved are measurable values with physiological or physiochemical meaning such as tissue masses, blood flow rates, partition coefficients and cardiac output. However, some of the parameters such as the partition coefficients and metabolic constants are not available for iodine and had to be inferred from other information. The structure of the PBPK model for the mother consists of the following tissue compartments: gastrointestinal tract, blood, kidney, thyroid, milk, and other tissues. With the exception of the milk compartment, the model for the nursing infant is structured similarly to the mother. The ICRP model describing iodine metabolism in a standard 70-kg man was modified to represent iodine metabolism in a lactating woman and nursing infant. The parameters involved in this model are transfer rates and biological half-lives which are based on experimental observations. The results of the PBPK model and the modified ICRP model describing the lactational transfer of iodine were compared. When administering 1 mCi of Na131I to the lactating mother, the concentration reaches a maximum of 0.1 mCi/liter in 24 hours and decreases with an effective half-life of 1.2 day.

  16. Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body.

    PubMed

    Psikuta, Agnes; Kuklane, Kalev; Bogdan, Anna; Havenith, George; Annaheim, Simon; Rossi, René M

    2016-03-01

    Combining the strengths of an advanced mathematical model of human physiology and a thermal manikin is a new paradigm for simulating thermal behaviour of humans. However, the forerunners of such adaptive manikins showed some substantial limitations. This project aimed to determine the opportunities and constraints of the existing thermal manikins when dynamically controlled by a mathematical model of human thermal physiology. Four thermal manikins were selected and evaluated for their heat flux measurement uncertainty including lateral heat flows between manikin body parts and the response of each sector to the frequent change of the set-point temperature typical when using a physiological model for control. In general, all evaluated manikins are suitable for coupling with a physiological model with some recommendations for further improvement of manikin dynamic performance. The proposed methodology is useful to improve the performance of the adaptive manikins and help to provide a reliable and versatile tool for the broad research and development domain of clothing, automotive and building engineering.

  17. Physiologically relevant organs on chips.

    PubMed

    Yum, Kyungsuk; Hong, Soon Gweon; Healy, Kevin E; Lee, Luke P

    2014-01-01

    Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or also known as "ogans-on-chips", that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue-tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Biotelemetry

    NASA Technical Reports Server (NTRS)

    Mundt, C.

    1999-01-01

    Sensors 2000! is developing pill-shaped biotelemeters for measuring physiological parameters during space flight life sciences experiments using rodents aboard the ISS Gravitational Biology Facility, with the additional capability for monitoring the health of astronauts in the Human Research Facility. The first "pill transmitter" is capable of measuring pressure and temperature for up to 10 months. The NASA objective is to utilize these devices. The pill-transmitters can also be used by non-NASA users for medical applications. One application is fetal surgery. The 44pill" is small enough to be endoscopically placed into the womb through a tube used during surgeries to correct fetal defects before birth. After surgery, the pill-transmitter will continue to monitor body temperature, pressure and other vital signs in the womb, radioing results to physicians. It will help them to detect preterm-labor, a serious problem after fetal surgery. The pill is about one-third-of-an-inch across and one-and-one-third-inches long. Future pill-versions will include pH, heartrate, and ECG. A pH-pill prototype is currently being tested. Sensors 2000! has also designed and built a 2-channel biotelemetry receiver and has developed data acquisition software to display and record the measured physiological parameters. A DSP-base hand-held receiver (trisponder) is currently under development.

  19. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    NASA Astrophysics Data System (ADS)

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-06-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange.

  20. Effect of cadmium on the physiological parameters and the subcellular cadmium localization in the potato (Solanum tuberosum L.).

    PubMed

    Xu, Dongyu; Chen, Zhifan; Sun, Ke; Yan, Dong; Kang, Mingjie; Zhao, Ye

    2013-11-01

    The pollution of agricultural soils with cadmium (Cd) has become a serious problem worldwide. The potato (Solanum tuberosum L.) was used to investigate how different concentrations of Cd (1, 5, and 25mgkg(-1)) affected the physiological parameters and the subcellular distribution of Cd in the potato. The analyses were conducted using scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX). The results suggest that the leaf is the organ with the highest accumulation of Cd. The malondialdehyde (MDA) content increased and the chlorophyll content decreased in response to high level of Cd. The SEM-EDX microanalysis revealed that Cd was primarily deposited in the spongy and palisade tissues of the leaf. Furthermore, Cd was also detected in the cortex and the adjacent phloem and was observed inside the intercellular space, the interior surface of the plasma membrane, and on the surface of the elliptical starch granules in the tubers of the potato. Although low concentrations of Cd migrated from the root to the tuber, the accumulation of Cd in the tuber exceeded the standard for food security. Therefore, the planting of potato plants in farmland containing Cd should be seriously evaluated because Cd-containing potatoes might present high health risk to humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    PubMed Central

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-01-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange. PMID:27311826

  2. Human thermal bioclimatic conditions associated with acute cardiovascular syndromes in Crete Island, Greece

    NASA Astrophysics Data System (ADS)

    Bleta, Anastasia G.; Nastos, Panagiotis T.

    2013-04-01

    The aim of this study is to quantify the association between bioclimatic conditions and daily counts of admissions for non-fatal acute cardiovascular (acute coronary syndrome, arrhythmia, decompensation of heart failure) syndromes (ACS) registered by the two main hospitals in Heraklion, Crete Island, during a five-year period 2008-2012. The bioclimatic conditions analyzed are based on human thermal bioclimatic indices such as the Physiological Equivalent Temperature (PET) and the Universal Thermal Climate Index (UTCI). Mean daily meteorological parameters, such as air temperature, relative humidity, wind speed and cloudiness, were acquired from the meteorological station of Heraklion (Hellenic National Meteorological Service). These parameters were used as input variables in modeling the aforementioned thermal indices, in order to interpret the grade of the thermo-physiological stress. The PET and UTCI analysis was performed by the use of the radiation and bioclimate model, "RayMan", which is well-suited to calculate radiation fluxes and human biometeorological indices. Generalized linear models (GLM) were applied to time series of daily numbers of outpatients with ACS against bioclimatic variations, after controlling for possible confounders and adjustment for season and trends. The interpretation of the results of this analysis suggests a significant association between cold weather and increased coronary heart disease incidence, especially in the elderly and males. Additionally, heat stress plays an important role in the configuration of daily ACS outpatients, even in temperate climate, as that in Crete Island. In this point it is worth mentioning that Crete Island is frequently affected by Saharan outbreaks, which are associated in many cases with miscellaneous phenomena, such as Föhn winds - hot and dry winds - causing extreme bioclimatic conditions (strong heat stress). Taking into consideration the projected increased ambient temperature in the future, ACS exacerbation is very likely to happen during the warm period, against mitigation during the cold period of the year.

  3. Multiple regression for physiological data analysis: the problem of multicollinearity.

    PubMed

    Slinker, B K; Glantz, S A

    1985-07-01

    Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.

  4. Dehydration Parameters and Standards for Laboratory Mice

    PubMed Central

    Bekkevold, Christine M; Robertson, Kimberly L; Reinhard, Mary K; Battles, August H; Rowland, Neil E

    2013-01-01

    Water deprivation and restriction are common features of many physiologic and behavioral studies; however, there are no data-driven humane standards regarding mice on water deprivation or restriction studies to guide IACUC, investigators, and veterinarians. Here we acutely deprived outbred CD1 mice of water for as long as 48 h or restricted them to a 75% or 50% water ration; physical and physiologic indicators of dehydration were measured. With acute water deprivation, the appearance and attitude of mice deteriorated after 24 h, and weight loss exceeded 15%. Plasma osmolality was increased, and plasma volume decreased with each time interval. Plasma corticosterone concentration increased with duration of deprivation. There were no differences in any dehydration measures between mice housed in conventional static cages or ventilated racks. Chronic water restriction induced no significant changes compared with ad libitum availability. We conclude that acute water deprivation of as long as 24 h produces robust physiologic changes; however, deprivation in excess of 24 h is not recommended in light of apparent animal distress. Although clearly thirsty, mice adapt to chronic water restriction of as much as 50% of the ad libitum daily ration that is imposed over an interval of as long as 8 d. PMID:23849404

  5. Evaluating the Impact of Contaminant Dilution and Biodegradation in Uncertainty Quantification of Human Health Risk

    NASA Astrophysics Data System (ADS)

    Zarlenga, Antonio; de Barros, Felipe; Fiori, Aldo

    2016-04-01

    We present a probabilistic framework for assessing human health risk due to groundwater contamination. Our goal is to quantify how physical hydrogeological and biochemical parameters control the magnitude and uncertainty of human health risk. Our methodology captures the whole risk chain from the aquifer contamination to the tap water assumption by human population. The contaminant concentration, the key parameter for the risk estimation, is governed by the interplay between the large-scale advection, caused by heterogeneity and the degradation processes strictly related to the local scale dispersion processes. The core of the hazard identification and of the methodology is the reactive transport model: erratic displacement of contaminant in groundwater, due to the spatial variability of hydraulic conductivity (K), is characterized by a first-order Lagrangian stochastic model; different dynamics are considered as possible ways of biodegradation in aerobic and anaerobic conditions. With the goal of quantifying uncertainty, the Beta distribution is assumed for the concentration probability density function (pdf) model, while different levels of approximation are explored for the estimation of the one-point concentration moments. The information pertaining the flow and transport is connected with a proper dose response assessment which generally involves the estimation of physiological parameters of the exposed population. Human health response depends on the exposed individual metabolism (e.g. variability) and is subject to uncertainty. Therefore, the health parameters are intrinsically a stochastic. As a consequence, we provide an integrated in a global probabilistic human health risk framework which allows the propagation of the uncertainty from multiple sources. The final result, the health risk pdf, is expressed as function of a few relevant, physically-based parameters such as the size of the injection area, the Péclet number, the K structure metrics and covariance shape, reaction parameters pertaining to aerobic and anaerobic degradation processes respectively as well as the dose response parameters. Even though the final result assumes a relatively simple form, few numerical quadratures are required in order to evaluate the trajectory moments of the solute plume. In order to perform a sensitivity analysis we apply the methodology to a hypothetical case study. The scenario investigated is made by an aquifer which constitutes a water supply for a population where a continuous source of NAPL contaminant feeds a steady plume. The risk analysis is limited to carcinogenic compounds for which the well-known linear relation for human risk is assumed. Analysis performed shows few interesting findings: the risk distribution is strictly dependent on the pore scale dynamics that trigger dilution and mixing; biodegradation may involve a significant reduction of the risk.

  6. Predicting Age-appropriate Pharmacokinetics of Six Volatile Organic Compounds in the Rat Utilizing Physiologically-based Pharmacokinetic Modeling (T)

    EPA Science Inventory

    The capability of physiologically-based pharmacokinetic (PBPK) models to incorporate ageappropriate physiological and chemical-specific parameters was utilized in this study to predict changes in internal dosimetry for six volatile organic compounds (VOCs) across different ages o...

  7. Risk-adjusted scoring systems in colorectal surgery.

    PubMed

    Leung, Edmund; McArdle, Kirsten; Wong, Ling S

    2011-01-01

    Consequent to recent advances in surgical techniques and management, survival rate has increased substantially over the last 25 years, particularly in colorectal cancer patients. However, post-operative morbidity and mortality from colorectal cancer vary widely across the country. Therefore, standardised outcome measures are emphasised not only for professional accountability, but also for comparison between treatment units and regions. In a heterogeneous population, the use of crude mortality as an outcome measure for patients undergoing surgery is simply misleading. Meaningful comparisons, however, require accurate risk stratification of patients being analysed before conclusions can be reached regarding the outcomes recorded. Sub-specialised colorectal surgical units usually dedicated to more complex and high-risk operations. The need for accurate risk prediction is necessary in these units as both mortality and morbidity often are tools to justify the practice of high-risk surgery. The Acute Physiology And Chronic Health Evaluation (APACHE) is a system for classifying patients in the intensive care unit. However, APACHE score was considered too complex for general surgical use. The American Society of Anaesthesiologists (ASA) grade has been considered useful as an adjunct to informed consent and for monitoring surgical performance through time. ASA grade is simple but too subjective. The Physiological & Operative Severity Score for the enUmeration of Mortality and morbidity (POSSUM) and its variant Portsmouth POSSUM (P-POSSUM) were devised to predict outcomes in surgical patients in general, taking into account of the variables in the case-mix. POSSUM has two parts, which include assessment of physiological parameters and operative scores. There are 12 physiological parameters and 6 operative measures. The physiological parameters are taken at the time of surgery. Each physiological parameter or operative variable is sub-divided into three or four levels with an exponentially increasing score. However, POSSUM and P-POSSUM over-predict mortality in patients who have had colorectal surgery. Discrepancies in these models have led to the introduction of a specialty-specific POSSUM: the ColoRectal POSSUM (CR-POSSUM). CR-POSSUM only uses six physiological parameters and four operative measures for prediction of mortality. It is much simplified to allow ease of use. Copyright © 2010 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Effect of considering the initial parameters on accuracy of experimental studies conclusions

    NASA Astrophysics Data System (ADS)

    Zagulova, D.; Nesterenko, A.; Kapilevich, L.; Popova, J.

    2015-11-01

    The presented paper contains the evidences of the necessity to take into account the initial level of physiological parameters while conducting the biomedical research; it is exemplified by certain indicators of cardiorespiratory system. The analysis is based on the employment of data obtained via the multiple surveys of medical and pharmaceutical college students. There has been revealed a negative correlation of changes of the studied parameters of cardiorespiratory system in the repeated measurements compared to their initial level. It is assumed that the dependence of the changes of physiological parameters from the baseline can be caused by the biorhythmic changes inherent for all body systems.

  9. Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health.

    PubMed

    Leulier, François; MacNeil, Lesley T; Lee, Won-Jae; Rawls, John F; Cani, Patrice D; Schwarzer, Martin; Zhao, Liping; Simpson, Stephen J

    2017-03-07

    Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that diet also shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Carbon and water flux responses to physiology by environment interactions: a sensitivity analysis of variation in climate on photosynthetic and stomatal parameters

    NASA Astrophysics Data System (ADS)

    Bauerle, William L.; Daniels, Alex B.; Barnard, David M.

    2014-05-01

    Sensitivity of carbon uptake and water use estimates to changes in physiology was determined with a coupled photosynthesis and stomatal conductance ( g s) model, linked to canopy microclimate with a spatially explicit scheme (MAESTRA). The sensitivity analyses were conducted over the range of intraspecific physiology parameter variation observed for Acer rubrum L. and temperate hardwood C3 (C3) vegetation across the following climate conditions: carbon dioxide concentration 200-700 ppm, photosynthetically active radiation 50-2,000 μmol m-2 s-1, air temperature 5-40 °C, relative humidity 5-95 %, and wind speed at the top of the canopy 1-10 m s-1. Five key physiological inputs [quantum yield of electron transport ( α), minimum stomatal conductance ( g 0), stomatal sensitivity to the marginal water cost of carbon gain ( g 1), maximum rate of electron transport ( J max), and maximum carboxylation rate of Rubisco ( V cmax)] changed carbon and water flux estimates ≥15 % in response to climate gradients; variation in α, J max, and V cmax input resulted in up to ~50 and 82 % intraspecific and C3 photosynthesis estimate output differences respectively. Transpiration estimates were affected up to ~46 and 147 % by differences in intraspecific and C3 g 1 and g 0 values—two parameters previously overlooked in modeling land-atmosphere carbon and water exchange. We show that a variable environment, within a canopy or along a climate gradient, changes the spatial parameter effects of g 0, g 1, α, J max, and V cmax in photosynthesis- g s models. Since variation in physiology parameter input effects are dependent on climate, this approach can be used to assess the geographical importance of key physiology model inputs when estimating large scale carbon and water exchange.

  11. Influence of the magnesium aspartate hydrochloride administration to the maternal circuit on the aspartate concentration of the fetal circuit under in vitro perfusion of human placenta.

    PubMed

    Malek, A; Leiser, R

    2009-01-01

    Magnesium aspartate hydrochloride (Magnesiocard, Mg-Asp-HCl) is proposed as a substitute of magnesium sulfate for the treatment of preeclampsia and premature labor. After an i.v. administration of a dose equivalent to that used in the treatment of preeclampsia to nonpregnant volunteers, a 10-fold increase of aspartic acid (Asp) over the physiological level was observed. Animal experiments have demonstrated that highly increased fetal levels of acidic amino acids such as Asp could be associated with neurotoxic damage in the fetal brain. The influence of such an elevation of Asp concentration in the maternal circuit on the fetal level, using the in vitro perfusion model of human placenta, was investigated. After a control phase (2h), a therapeutic dose of Mg combined with Asp (Magnesiocard, Mg-Asp-HCl) was applied to the maternal circuit approaching 10 times the physiological level of Asp. The administration was performed in two different phases simulating either a peak of maximum concentration (bolus application, 2h) or a steady state level (initially added, 4h). In four experiments, during experimental phases (6h) a slow increase in concentration in the fetal circuit was seen for Mg, AIB (alpha-aminoisobutyric acid, artificial amino acid) and creatinine confirming previous observations. In contrast, no net transfer of Asp across the placenta was seen. A continuous decrease in the concentration of Asp on both maternal and fetal side suggests active uptake and metabolization by the placenta. Viability control parameters remained stable indicating the absence of an effect on placental metabolism, permeability and morphology. Elevation of Asp concentration up to 10 times the physiological level by the administration of Mg-Asp-HCl to the maternal circuit under in vitro perfusion conditions of human placenta has no influence on the fetal level of Asp suggesting no transfer of Asp from the maternal to fetal compartment. Therefore, the administration of Mg-Asp-HCl to preeclamptic patients would be beneficial for the patients without any impact on placental or fetal physiology.

  12. Radon decay products in realistic living rooms and their activity distributions in human respiratory system.

    PubMed

    Mohery, M; Abdallah, A M; Baz, S S; Al-Amoudi, Z M

    2014-12-01

    In this study, the individual activity concentrations of attached short-lived radon decay products ((218)Po, (214)Pb and (214)Po) in aerosol particles were measured in ten poorly ventilated realistic living rooms. Using standard methodologies, the samples were collected using a filter holder technique connected with alpha-spectrometric. The mean value of air activity concentration of these radionuclides was found to be 5.3±0.8, 4.5±0.5 and 3.9±0.4 Bq m(-3), respectively. Based on the physical properties of the attached decay products and physiological parameters of light work activity for an adult human male recommended by ICRP 66 and considering the parameters of activity size distribution (AMD = 0.25 μm and σ(g) = 2.5) given by NRC, the total and regional deposition fractions in each airway generation could be evaluated. Moreover, the total and regional equivalent doses in the human respiratory tract could be estimated. In addition, the surface activity distribution per generation is calculated for the bronchial region (BB) and the bronchiolar region (bb) of the respiratory system. The maximum values of these activities were found in the upper bronchial airway generations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis

    NASA Technical Reports Server (NTRS)

    Nickerson, Cheryl A.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; LeBlanc, Carly L.; Honer zu Bentrup, Kerstin; Hammond, Timothy; Pierson, Duane L.

    2003-01-01

    Bacteria inhabit an impressive variety of ecological niches and must adapt constantly to changing environmental conditions. While numerous environmental signals have been examined for their effect on bacteria, the effects of mechanical forces such as shear stress and gravity have only been investigated to a limited extent. However, several important studies have demonstrated a key role for the environmental signals of low shear and/or microgravity in the regulation of bacterial gene expression, physiology, and pathogenesis [Chem. Rec. 1 (2001) 333; Appl. Microbiol. Biotechnol. 54 (2000) 33; Appl. Environ. Microbiol. 63 (1997) 4090; J. Ind. Microbiol. 18 (1997) 22; Curr. Microbiol. 34(4) (1997) 199; Appl. Microbiol. Biotechnol. 56(3-4) (2001) 384; Infect Immun. 68(6) (2000) 3147; Cell 109(7) (2002) 913; Appl. Environ. Microbiol. 68(11) (2002) 5408; Proc. Natl. Acad. Sci. U. S. A. 99(21) (2002) 13807]. The response of bacteria to these environmental signals, which are similar to those encountered during prokaryotic life cycles, may provide insight into bacterial adaptations to physiologically relevant conditions. This review focuses on the current and potential future research trends aimed at understanding the effect of the mechanical forces of low shear and microgravity analogues on different bacterial parameters. In addition, this review also discusses the use of microgravity technology to generate physiologically relevant human tissue models for research in bacterial pathogenesis.

  14. Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers.

    PubMed

    Lätt, Evelin; Jürimäe, Jaak; Mäestu, Jarek; Purge, Priit; Rämson, Raul; Haljaste, Kaja; Keskinen, Kari L; Rodriguez, Ferran A; Jürimäe, Toivo

    2010-01-01

    The purpose of this study was to analyze the relationships between 100-m front crawl swimming performance and relevant biomechanical, anthropometrical and physiological parameters in male adolescent swimmers. Twenty five male swimmers (mean ± SD: age 15. 2 ± 1.9 years; height 1.76 ± 0.09 m; body mass 63.3 ± 10.9 kg) performed an all-out 100-m front crawl swimming test in a 25-m pool. A respiratory snorkel and valve system with low hydrodynamic resistance was used to collect expired air. Oxygen uptake was measured breath-by-breath by a portable metabolic cart. Swimming velocity, stroke rate (SR), stroke length and stroke index (SI) were assessed during the test by time video analysis. Blood samples for lactate measurement were taken from the fingertip pre exercise and at the third and fifth minute of recovery to estimate net blood lactate accumulation (ΔLa). The energy cost of swimming was estimated from oxygen uptake and blood lactate energy equivalent values. Basic anthropometry included body height, body mass and arm span. Body composition parameters were measured using dual-energy X-ray absorptiometry (DXA). Results indicate that biomechanical factors (90.3%) explained most of 100-m front crawl swimming performance variability in these adolescent male swimmers, followed by anthropometrical (45.8%) and physiological (45.2%) parameters. SI was the best single predictor of performance, while arm span and ∆La were the best anthropometrical and physiological indicators, respectively. SI and SR alone explained 92.6% of the variance in competitive performance. These results confirm the importance of considering specific stroke technical parameters when predicting success in young swimmers. Key pointsThis study investigated the influence of different anthropometrical, physiological and biomechanical parameters on 100-m swimming performance in adolescent boys.Biomechanical factors contributed most to sprint swimming performance in these young male swimmers (90.3% of variability in performance), followed by anthropometrical (45.8%) and physiological (45.2%) parameters.Two selected variables (stroke index and stroke rate) explained 92.6% of the variance in competitive performance in these adolescent swimmers.

  15. Physiological, Biomechanical and Anthropometrical Predictors of Sprint Swimming Performance in Adolescent Swimmers

    PubMed Central

    Lätt, Evelin; Jürimäe, Jaak; Mäestu, Jarek; Purge, Priit; Rämson, Raul; Haljaste, Kaja; Keskinen, Kari L.; Rodriguez, Ferran A.; Jürimäe, Toivo

    2010-01-01

    The purpose of this study was to analyze the relationships between 100-m front crawl swimming performance and relevant biomechanical, anthropometrical and physiological parameters in male adolescent swimmers. Twenty five male swimmers (mean ± SD: age 15. 2 ± 1.9 years; height 1.76 ± 0.09 m; body mass 63.3 ± 10.9 kg) performed an all-out 100-m front crawl swimming test in a 25-m pool. A respiratory snorkel and valve system with low hydrodynamic resistance was used to collect expired air. Oxygen uptake was measured breath-by-breath by a portable metabolic cart. Swimming velocity, stroke rate (SR), stroke length and stroke index (SI) were assessed during the test by time video analysis. Blood samples for lactate measurement were taken from the fingertip pre exercise and at the third and fifth minute of recovery to estimate net blood lactate accumulation (ΔLa). The energy cost of swimming was estimated from oxygen uptake and blood lactate energy equivalent values. Basic anthropometry included body height, body mass and arm span. Body composition parameters were measured using dual-energy X-ray absorptiometry (DXA). Results indicate that biomechanical factors (90.3%) explained most of 100-m front crawl swimming performance variability in these adolescent male swimmers, followed by anthropometrical (45.8%) and physiological (45.2%) parameters. SI was the best single predictor of performance, while arm span and ∆La were the best anthropometrical and physiological indicators, respectively. SI and SR alone explained 92.6% of the variance in competitive performance. These results confirm the importance of considering specific stroke technical parameters when predicting success in young swimmers. Key points This study investigated the influence of different anthropometrical, physiological and biomechanical parameters on 100-m swimming performance in adolescent boys. Biomechanical factors contributed most to sprint swimming performance in these young male swimmers (90.3% of variability in performance), followed by anthropometrical (45.8%) and physiological (45.2%) parameters. Two selected variables (stroke index and stroke rate) explained 92.6% of the variance in competitive performance in these adolescent swimmers. PMID:24149633

  16. Improving the physiological realism of experimental models.

    PubMed

    Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L

    2016-04-06

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.

  17. Superposed epoch analysis of physiological fluctuations: possible space weather connections

    NASA Astrophysics Data System (ADS)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events—space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  18. Superposed epoch analysis of physiological fluctuations: possible space weather connections.

    PubMed

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events-space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  19. Sex-specific ecophysiological responses to environmental fluctuations of free-ranging Hermann's tortoises: implication for conservation.

    PubMed

    Sibeaux, Adélaïde; Michel, Catherine Louise; Bonnet, Xavier; Caron, Sébastien; Fournière, Kévin; Gagno, Stephane; Ballouard, Jean-Marie

    2016-01-01

    Physiological parameters provide indicators to evaluate how organisms respond to conservation actions. For example, individuals translocated during reinforcement programmes may not adapt to their novel host environment and may exhibit elevated chronic levels of stress hormones and/or decreasing body condition. Conversely, successful conservation actions should be associated with a lack of detrimental physiological perturbation. However, physiological references fluctuate over time and are influenced by various factors (e.g. sex, age, reproductive status). It is therefore necessary to determine the range of natural variations of the selected physiological metrics to establish useful baselines. This study focuses on endangered free-ranging Hermann's tortoises ( Testudo hermanni hermanni ), where conservation actions have been preconized to prevent extinction of French mainland populations. The influence of sex and of environmental factors (site, year and season) on eight physiological parameters (e.g. body condition, corticosterone concentrations) was assessed in 82 individuals from two populations living in different habitats. Daily displacements were monitored by radio-tracking. Most parameters varied between years and seasons and exhibited contrasting sex patterns but with no or limited effect of site. By combining behavioural and physiological traits, this study provides sex-specific seasonal baselines that can be used to monitor the health status of Hermann's tortoises facing environmental threats (e.g. habitat changes) or during conservation actions (e.g. translocation). These results might also assist in selection of the appropriate season for translocation.

  20. Forecasting extreme temperature health hazards in Europe

    NASA Astrophysics Data System (ADS)

    Di Napoli, Claudia; Pappenberger, Florian; Cloke, Hannah L.

    2017-04-01

    Extreme hot temperatures, such as those experienced during a heat wave, represent a dangerous meteorological hazard to human health. Heat disorders such as sunstroke are harmful to people of all ages and responsible for excess mortality in the affected areas. In 2003 more than 50,000 people died in western and southern Europe because of a severe and sustained episode of summer heat [1]. Furthermore, according to the Intergovernmental Panel on Climate Change heat waves are expected to get more frequent in the future thus posing an increasing threat to human lives. Developing appropriate tools for extreme hot temperatures prediction is therefore mandatory to increase public preparedness and mitigate heat-induced impacts. A recent study has shown that forecasts of the Universal Thermal Climate Index (UTCI) provide a valid overview of extreme temperature health hazards on a global scale [2]. UTCI is a parameter related to the temperature of the human body and its regulatory responses to the surrounding atmospheric environment. UTCI is calculated using an advanced thermo-physiological model that includes the human heat budget, physiology and clothing. To forecast UTCI the model uses meteorological inputs, such as 2m air temperature, 2m water vapour pressure and wind velocity at body height derived from 10m wind speed, from NWP models. Here we examine the potential of UTCI as an extreme hot temperature prediction tool for the European area. UTCI forecasts calculated using above-mentioned parameters from ECMWF models are presented. The skill in predicting UTCI for medium lead times is also analysed and discussed for implementation to international health-hazard warning systems. This research is supported by the ANYWHERE project (EnhANcing emergencY management and response to extreme WeatHER and climate Events) which is funded by the European Commission's HORIZON2020 programme. [1] Koppe C. et al., Heat waves: risks and responses. World Health Organization. Health and Global Environmental Change, Series No. 2, Copenhagen, Denmark, 2004. [2] Pappenberger F. et al., Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI), International Journal of Biometeorology 59(3): 311-323, 2015.

  1. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin.

    PubMed

    Groves, Rachel B; Coulman, Sion A; Birchall, James C; Evans, Sam L

    2013-02-01

    The mechanical characteristics of skin are extremely complex and have not been satisfactorily simulated by conventional engineering models. The ability to predict human skin behaviour and to evaluate changes in the mechanical properties of the tissue would inform engineering design and would prove valuable in a diversity of disciplines, for example the pharmaceutical and cosmetic industries, which currently rely upon experiments performed in animal models. The aim of this study was to develop a predictive anisotropic, hyperelastic constitutive model of human skin and to validate this model using laboratory data. As a corollary, the mechanical characteristics of human and murine skin have been compared. A novel experimental design, using tensile tests on circular skin specimens, and an optimisation procedure were adopted for laboratory experiments to identify the material parameters of the tissue. Uniaxial tensile tests were performed along three load axes on excised murine and human skin samples, using a single set of material parameters for each skin sample. A finite element model was developed using the transversely isotropic, hyperelastic constitutive model of Weiss et al. (1996) and was embedded within a Veronda-Westmann isotropic material matrix, using three fibre families to create anisotropic behaviour. The model was able to represent the nonlinear, anisotropic behaviour of the skin well. Additionally, examination of the optimal material coefficients and the experimental data permitted quantification of the mechanical differences between human and murine skin. Differences between the skin types, most notably the extension of the skin at low load, have highlighted some of the limitations of murine skin as a biomechanical model of the human tissue. The development of accurate, predictive computational models of human tissue, such as skin, to reduce, refine or replace animal models and to inform developments in the medical, engineering and cosmetic fields, is a significant challenge but is highly desirable. Concurrent advances in computer technology and our understanding of human physiology must be utilised to produce more accurate and accessible predictive models, such as the finite element model described in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Situational Determinants of Social Anxiety in Clinic and Nonclinic Samples: Physiological and Cognitive Correlates.

    ERIC Educational Resources Information Center

    Turner, Samuel M.; And Others

    1986-01-01

    Nonclinic socially anxious individuals, clinic socially anxious patients, and nonsocially anxious subjects were assessed for changes in patterns of physiological reactivity and cognition across three interpersonal tasks. Results indicated that both thoughts and physiological reactivity were influenced by situational parameters. (Author/ABB)

  3. Dimensional analysis of MINMOD leads to definition of the disposition index of glucose regulation and improved simulation algorithm.

    PubMed

    Nittala, Aparna; Ghosh, Soumitra; Stefanovski, Darko; Bergman, Richard; Wang, Xujing

    2006-07-14

    Frequently Sampled Intravenous Glucose Tolerance Test (FSIVGTT) together with its mathematical model, the minimal model (MINMOD), have become important clinical tools to evaluate the metabolic control of glucose in humans. Dimensional analysis of the model is up to now not available. A formal dimensional analysis of MINMOD was carried out and the degree of freedom of MINMOD was examined. Through re-expressing all state variable and parameters in terms of their reference scales, MINMOD was transformed into a dimensionless format. Previously defined physiological indices including insulin sensitivity, glucose effectiveness, and first and second phase insulin responses were re-examined in this new formulation. Further, the parameter estimation from FSIVGTT was implemented using both the dimensional and the dimensionless formulations of MINMOD, and the performances were compared utilizing Monte Carlo simulation as well as real human FSIVGTT data. The degree of freedom (DOF) of MINMOD was found to be 7. The model was maximally simplified in the dimensionless formulation that normalizes the variation in glucose and insulin during FSIVGTT. In the new formulation, the disposition index (Dl), a composite parameter known to be important in diabetes pathology, was naturally defined as one of the dimensionless parameters in the system. The numerical simulation using the dimensionless formulation led to a 1.5-5 fold gain in speed, and significantly improved accuracy and robustness in parameter estimation compared to the dimensional implementation. Dimensional analysis of MINMOD led to simplification of the model, direct identification of the important composite factors in the dynamics of glucose metabolic control, and better simulations algorithms.

  4. Transient CD15-positive endothelial phenotype in the human placenta correlates with physiological and pathological fetoplacental immaturity.

    PubMed

    Seidmann, L; Suhan, T; Unger, R; Gerein, V; Kirkpatrick, C J

    2014-09-01

    Placental growth and villous maturation are critical parameters of placental function at the end of pregnancy. A failure in these processes leads to the development of placental dysfunction, as well as fetal and neonatal mortality and morbidity. The aim of the study was to determine the relevant diagnostic markers associated with pathological placental development. Forty tissue samples from normal placentas of different gestational age and 68 pathological term placentas with defective villous maturation (GDM, idiopathic IUFD, preeclamsia, HELLP syndrome) comprised the comparative immunohistochemical study (CD15, CD45 and CD34). Positive immunohistochemical reactions were quantitatively assessed in the chorionic plate and vessels of the villi of different histological type. Physiologically immature placentas of the first and second trimester and pathologically immature term placentas were characterized by marked endothelial CD15-immunostaining. A significant loss of CD15-positive endothelium of the placentas was associated with a physiological and accelerated villous maturity. A spatio-temporal correlation was shown for CD15+ endothelial cells (ECs) and the number of CD45+ stromal cells (SCs). A negative temporal correlation was shown for CD15+ ECs and CD15+ myelomonocytes in the fetal blood. CD34 expression in the ECs was stable during the pregnancy. A correlation between a transient CD15-positive endothelial phenotype and a physiological and pathological fetoplacental immaturity was demonstrated. Physiological and accelerated placental maturation was accompanied by a significant disappearance of CD15-positive endothelium. We propose that "immature" CD15+ endothelium is an important diagnostic marker of the physiological and pathological fetoplacental immaturity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Physiological parameter values in greyhounds before and after high-intensity exercise.

    PubMed

    Pellegrino, Francisco Javier; Risso, Analía; Vaquero, Pablo G; Corrada, Yanina A

    2018-01-01

    Dog sports competitions have greatly expanded. The availability of reference values for each type of activity could help assess fitness accurately. Heart rate (HR), blood lactate (BL) and rectal temperature (RT) are relevant physiological parameters to determine the dogs response to effort. Previous studies in greyhounds have reported the effect of high-intensity exercise on many physiological parameters immediately after completing different racing distances and recovery times. However, there are no studies concerning physiological changes over shorter racing distances. We therefore assessed the effect of sprint exercise on HR, BL and RT in nine greyhounds performing sprint exercise over a 100-m distance chasing a lure. After the exercise, dogs underwent a passive 10-min recovery phase. Before the exercise, immediately after it and at 5 and 10 min during recovery, HR and RT were assessed and blood samples were collected for BL determination. HR, BL and RT values increased significantly after the exercise (P<0.01). Whereas HR returned to pre-exercise values at 10 min during the recovery phase (P>0.1), BL concentration and RT remained increased (P<0.01). The abrupt increase in HR, BL and RT values observed immediately after the exercise indicates the high intensity of the effort performed. Similarly, BL concentration after the exercise exceeded the 4 mmol/L lactate threshold, suggesting a predominant anaerobic metabolism during effort. Although HR returned to pre-exercise values 10 min after the exercise, a more extensive recovery phase would be necessary for a total return to resting values, particularly for BL and RT. In greyhounds subjected to high-intensity exercise, HR, BL and RT were reliable physiological parameters to accurately assess the physiological response to effort. The use of sprint exercises over short racing distances could be useful for appropriately monitoring fitness in sporting dogs.

  6. Heart Rate Variability Reflects the Natural History of Physiological Development in Healthy Children and Is Not Associated with Quality of Life

    PubMed Central

    Seifert, Georg; Calaminus, Gabriele; Wiener, Andreas; Cysarz, Dirk

    2014-01-01

    Background Quality of life (QoL), being the sum expression of diverse influencing factors, is not easy to determine. A clinically relevant option would be to identify and measure quality of life on the basis of physiological parameters which correlate plausibly and statistically with psychometrically measured QoL. Analysis of heart rate variability (HRV) offers readily measurable physiological parameters which could be of use here. A correlation of HRV with both course of disease and QoL has been reported in patients with chronic illness. Various psychometric instruments have been developed for use in paediatric oncology. The aim of this study was to obtain data on HRV and QoL and their correlations, initially in healthy children. Methods Holter ECG and quality of life were examined in 160 children and adolescents (72 male) aged between 8 and 18 years. QoL was determined with the established questionnaire PEDQoL. Standard parameters of HRV from the frequency domain were calculated and correlated with QoL domains using Spearman (nonparametric) correlation analysis. Results Minor but significant associations were revealed only with regard to the PEDQoL domain “autonomy” on the one hand and heart rate and HRV (e.g. MRR, MRRn, MRRd, HRV_ULF, SDNN) parameters which evidently reflect distinct physiological functions on the other. Conclusions In healthy children and adolescents we have a first indication that there is a correlation between parameters of HRV and QoL. However, to a greater extent, HRV reflects associated physiological processes of the autonomic nervous system. A higher correlation is more likely to be found in chronically ill children. PMID:24625571

  7. The Lactate Minimum Test: Concept, Methodological Aspects and Insights for Future Investigations in Human and Animal Models

    PubMed Central

    Messias, Leonardo H. D.; Gobatto, Claudio A.; Beck, Wladimir R.; Manchado-Gobatto, Fúlvia B.

    2017-01-01

    In 1993, Uwe Tegtbur proposed a useful physiological protocol named the lactate minimum test (LMT). This test consists of three distinct phases. Firstly, subjects must perform high intensity efforts to induce hyperlactatemia (phase 1). Subsequently, 8 min of recovery are allowed for transposition of lactate from myocytes (for instance) to the bloodstream (phase 2). Right after the recovery, subjects are submitted to an incremental test until exhaustion (phase 3). The blood lactate concentration is expected to fall during the first stages of the incremental test and as the intensity increases in subsequent stages, to rise again forming a “U” shaped blood lactate kinetic. The minimum point of this curve, named the lactate minimum intensity (LMI), provides an estimation of the intensity that represents the balance between the appearance and clearance of arterial blood lactate, known as the maximal lactate steady state intensity (iMLSS). Furthermore, in addition to the iMLSS estimation, studies have also determined anaerobic parameters (e.g., peak, mean, and minimum force/power) during phase 1 and also the maximum oxygen consumption in phase 3; therefore, the LMT is considered a robust physiological protocol. Although, encouraging reports have been published in both human and animal models, there are still some controversies regarding three main factors: (1) the influence of methodological aspects on the LMT parameters; (2) LMT effectiveness for monitoring training effects; and (3) the LMI as a valid iMLSS estimator. Therefore, the aim of this review is to provide a balanced discussion between scientific evidence of the aforementioned issues, and insights for future investigations are suggested. In summary, further analyses is necessary to determine whether these factors are worthy, since the LMT is relevant in several contexts of health sciences. PMID:28642717

  8. Physiological Parameter Response to Variation of Mental Workload

    PubMed Central

    Marinescu, Adrian Cornelius; Sharples, Sarah; Ritchie, Alastair Campbell; Sánchez López, Tomas; McDowell, Michael; Morvan, Hervé P.

    2017-01-01

    Objective: To examine the relationship between experienced mental workload and physiological response by noninvasive monitoring of physiological parameters. Background: Previous studies have examined how individual physiological measures respond to changes in mental demand and subjective reports of workload. This study explores the response of multiple physiological parameters and quantifies their added value when estimating the level of demand. Method: The study presented was conducted in laboratory conditions and required participants to perform a visual-motor task that imposed varying levels of demand. The data collected consisted of physiological measurements (heart interbeat intervals, breathing rate, pupil diameter, facial thermography), subjective ratings of workload (Instantaneous Self-Assessment Workload Scale [ISA] and NASA-Task Load Index), and the performance. Results: Facial thermography and pupil diameter were demonstrated to be good candidates for noninvasive workload measurements: For seven out of 10 participants, pupil diameter showed a strong correlation (R values between .61 and .79 at a significance value of .01) with mean ISA normalized values. Facial thermography measures added on average 47.7% to the amount of variability in task performance explained by a regression model. As with the ISA ratings, the relationship between the physiological measures and performance showed strong interparticipant differences, with some individuals demonstrating a much stronger relationship between workload and performance measures than others. Conclusion: The results presented in this paper demonstrate that physiological and pupil diameter can be used for noninvasive real-time measurement of workload. Application: The methods presented in this article, with current technological capabilities, are better suited for workplaces where the person is seated, offering the possibility of being applied to pilots and air traffic controllers. PMID:28965433

  9. Study of physiological responses to acute carbon monoxide exposure with a human patient simulator.

    PubMed

    Cesari, Whitney A; Caruso, Dominique M; Zyka, Enela L; Schroff, Stuart T; Evans, Charles H; Hyatt, Jon-Philippe K

    2006-12-01

    Human patient simulators are widely used to train health professionals and students in a clinical setting, but they also can be used to enhance physiology education in a laboratory setting. Our course incorporates the human patient simulator for experiential learning in which undergraduate university juniors and seniors are instructed to design, conduct, and present (orally and in written form) their project testing physiological adaptation to an extreme environment. This article is a student report on the physiological response to acute carbon monoxide exposure in a simulated healthy adult male and a coal miner and represents how 1) human patient simulators can be used in a nonclinical way for experiential hypothesis testing; 2) students can transition from traditional textbook learning to practical application of their knowledge; and 3) student-initiated group investigation drives critical thought. While the course instructors remain available for consultation throughout the project, the relatively unstructured framework of the assignment drives the students to create an experiment independently, troubleshoot problems, and interpret the results. The only stipulation of the project is that the students must generate an experiment that is physiologically realistic and that requires them to search out and incorporate appropriate data from primary scientific literature. In this context, the human patient simulator is a viable educational tool for teaching integrative physiology in a laboratory environment by bridging textual information with experiential investigation.

  10. From Micro to Nano: The Evolution of Wireless Sensor-Based Health Care.

    PubMed

    Sarkar, Subhadeep; Misra, Sudip

    2016-01-01

    Over the past decade, embedded systems and microelectromechanical systems have evolved in a radical way, redefining our standard of living and enhancing the quality of life. Health care, among various other fields, has benefited vastly from this technological development. The concept of using sensors for health care purposes originated in the late 1980s when sensors were developed to measure certain physiological parameters associated with the human body. In traditional sensor nodes, the signal sources are mostly different environmental phenomena (such as temperature, vibration, and luminosity) or man-made events (such as intrusion and mobile target tracking), whereas in case of the physiological sensors, the signal source is living human tissue. These sensor nodes, as their primary sensing element, have a diaphragm that converts pressure into displacement. This displacement, in turn, is subsequently transformed into an electrical signal. The concept of wireless physiological sensor nodes, however, gained popularity in the mid-2000s, with the sensed data from the nodes transmitted to the hub via a wireless medium. The network formed by this heterogeneous set of wireless body sensor nodes is termed a wireless body-area network (WBAN). Each WBAN is essentially a composition of multiple wireless body sensor nodes and a single hub. The hub is primarily responsible for acquisition of the raw sensed data from all the component sensor nodes and first-level aggregation of the data before transmitting the aggregated data for further analysis to a remote data acquisition center. Here, we outline the evolution of WBANs in the context of modern health care and its convergence with nanotechnology.

  11. Adaptive Filtration of Physiological Artifacts in EEG Signals in Humans Using Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Grubov, V. V.; Runnova, A. E.; Hramov, A. E.

    2018-05-01

    A new method for adaptive filtration of experimental EEG signals in humans and for removal of different physiological artifacts has been proposed. The algorithm of the method includes empirical mode decomposition of EEG, determination of the number of empirical modes that are considered, analysis of the empirical modes and search for modes that contains artifacts, removal of these modes, and reconstruction of the EEG signal. The method was tested on experimental human EEG signals and demonstrated high efficiency in the removal of different types of physiological EEG artifacts.

  12. Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming.

    PubMed

    Hanna, Elizabeth G; Tait, Peter W

    2015-07-15

    Human thermoregulation and acclimatization are core components of the human coping mechanism for withstanding variations in environmental heat exposure. Amidst growing recognition that curtailing global warming to less than two degrees is becoming increasing improbable, human survival will require increasing reliance on these mechanisms. The projected several fold increase in extreme heat events suggests we need to recalibrate health protection policies and ratchet up adaptation efforts. Climate researchers, epidemiologists, and policy makers engaged in climate change adaptation and health protection are not commonly drawn from heat physiology backgrounds. Injecting a scholarly consideration of physiological limitations to human heat tolerance into the adaptation and policy literature allows for a broader understanding of heat health risks to support effective human adaptation and adaptation planning. This paper details the physiological and external environmental factors that determine human thermoregulation and acclimatization. We present a model to illustrate the interrelationship between elements that modulate the physiological process of thermoregulation. Limitations inherent in these processes, and the constraints imposed by differing exposure levels, and thermal comfort seeking on achieving acclimatization, are then described. Combined, these limitations will restrict the likely contribution that acclimatization can play in future human adaptation to global warming. We postulate that behavioral and technological adaptations will need to become the dominant means for human individual and societal adaptations as global warming progresses.

  13. Physical Test Validation for Job Selection. Chapter 5

    DTIC Science & Technology

    2000-09-21

    Borgs perceived exertion andlpain scaling method. Champaign: Human Kinetics . 17. Brooks, G., & Fahey, T (1984). Exercise physiology: Human bioenergetics...Eds.), Measurement concepts in physical education and exercise science. Champaign: Human Kinetics . 44. Jackson, A. S., Blair, S. N., Mahar, M. T...Chapter 5: Physical Test Evaluation for Job Selection 94. Wilmore, J. H., & Costill, D. L. (1994). Physiology of sport and exercise. Champaign, IL: Human

  14. Effect of Table Tennis Trainings on Certain Physical and Physiological Parameters in Children Aged 10-12

    ERIC Educational Resources Information Center

    Tas, Murat; Sinanoglu, Ahmet

    2017-01-01

    In the research it was aimed to examine the effects of basic table tennis trainings, which were implemented on girls aged 10-12 for 16 weeks, on certain physical and physiological parameters. A total of 40 students, as randomly selected 20 test groups and 20 control groups at an age range of 10-12 participated in the research. These students were…

  15. Heart rate variability and the anxious client: cardiac autonomic and behavioral associations with therapeutic alliance.

    PubMed

    Stratford, Trisha; Meara, Alan; Psychotherapy, M Gestalt; Lal, Sara

    2014-08-01

    This exploratory study was designed to investigate the link between a client's heart rate variability (HRV) and the forming of a therapeutic alliance (TA) during psychotherapy. Change in HRV is associated with many psychological and physiological situations, including cardiac mortality. Cardiac effects were evaluated during therapy in 30 symptomatically anxious clients using HRV during six weekly 1-hour therapy sessions (S1-S6). Therapeutic index (TI), a measure of TA, was evaluated using skin conductance resonance between client and therapist. The Working Alliance Inventory provides a subjective measure of TA. State and trait anxiety and mood states were also assessed. Most HRV parameters were highest during S4. The sympathovagal balance was highest in S1 but stabilized after S2. In S4, TI was linked to high HRV parameters. Overall higher anxiety levels seem to be associated to lower HRV parameters. Conversely, in S4, high HRV parameters were linked to higher mood scores. This study found that a subjective measure of TA contradicted the physiological outcome. Results suggest that physiological data collected during therapy are a more accurate barometer of TA forming. These research findings suggest a need for further research identifying physiological markers in clients with a variety of mental health disorders over long-term therapy.

  16. Correlations of psycho-physiological parameters influencing the physical fitness of aged women.

    PubMed

    Bretz, É; Kóbor-Nyakas, D É; Bretz, K J; Hrehuss, N; Radák, Z; Nyakas, Csaba

    2014-12-01

    Regular assessment of psycho-physiological parameters in aged subjects helps to clarify physical and mental conditions which are important in the prevention of health-endangering events to assure a healthy aging. Thirty older care female residents consented voluntarily to participate in the study. The somatic and psycho-physiological parameters recorded were handgrip force, disjunctive reaction time, balance control and whole body movement coordination, the electrocardiogram and heart rate variability. Significant correlations were found between (a) reaction time and balance control efficiency (r = -0.567, p < 0.009), (b) reaction time and movement coordination accuracy (r = -0.453, p < 0.045), (c) cardiac state and movement coordination accuracy (r = 0.545, p < 0.016), (d) cardiac stress and cardiac state (r = -0.495, p < 0.031), and (e) cardiac stress and force (r = -0.822, p < 0.045). In conclusion, for the aim of establishing basic battery tests for assessing psycho-physiological condition of physical fitness our results emphasize the importance of systematic physical activity, endurance and strength training supporting muscle force, balance control and whole-body movement coordination, in addition to improving the cardiac stress index level. The strong interrelation among these parameters allows the drawing of a more complete view regarding the health condition of aged individuals.

  17. The impact of transportation on physiological and behavioral parameters in Wistar rats: implications for acclimatization periods.

    PubMed

    Arts, Johanna W M; Kramer, Klaas; Arndt, Saskia S; Ohl, Frauke

    2012-01-01

    Transportation of laboratory rodents unavoidably causes stress. Nevertheless, very little is known about the effects of transportation and how long it takes for the animal to recuperate. In the present study, we investigated physiological and behavioral parameters before and after transportation in both transported and nontransported animals. We took blood samples to analyze plasma corticosterone and creatine kinase, and performed physiological measurements by means of telemetry, measuring heart rate, blood pressure, and activity. Behavior was measured by means of home cage observations. This study revealed that plasma corticosterone levels increased at least up to 16 days after transportation, blood pressure and heart rate showed a lasting decrease after transportation, grooming increased, and social interactions and locomotor activity decreased after transportation. With these data we demonstrate that there is a long-lasting effect of transportation on physiological and behavioral parameters. Our results show that the stressful impact of transportation embraces all parts of the procedure, including for example the packing of the animals. Researchers must be aware of this impact and provide a sufficient acclimatization period to allow for the (re-)stabilization of parameters. Insufficient acclimatization periods endanger not only the reliability of research results but also the welfare of the animal used.

  18. Physiological correlates of stress-induced decrements in human perceptual performance.

    DOT National Transportation Integrated Search

    1993-11-01

    Stress-induced changes in human performance have been thought to result from alterations in the "multidimensional arousal state" of the individual, as indexed by alterations in the physiological and psychological mechanisms controlling performance. I...

  19. Improving the physiological realism of experimental models

    PubMed Central

    Vinnakota, Kalyan C.; Cha, Chae Y.; Rorsman, Patrik; Balaban, Robert S.; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A.

    2016-01-01

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease. PMID:27051507

  20. An international collaboration studying the physiological and anatomical cerebral effects of carbon dioxide during head-down tilt bed rest: the SPACECOT study.

    PubMed

    Marshall-Goebel, Karina; Mulder, Edwin; Donoviel, Dorit; Strangman, Gary; Suarez, Jose I; Venkatasubba Rao, Chethan; Frings-Meuthen, Petra; Limper, Ulrich; Rittweger, Jörn; Bershad, Eric M

    2017-06-01

    Exposure to the microgravity environment results in various adaptive and maladaptive physiological changes in the human body, with notable ophthalmic abnormalities developing during 6-mo missions on the International Space Station (ISS). These findings have led to the hypothesis that the loss of gravity induces a cephalad fluid shift, decreased cerebral venous outflow, and increased intracranial pressure, which may be further exacerbated by increased ambient carbon dioxide (CO 2 ) levels on the ISS. Here we describe the SPACECOT study (studying the physiological and anatomical cerebral effects of CO 2 during head-down tilt), a randomized, double-blind crossover design study with two conditions: 29 h of 12° head-down tilt (HDT) with ambient air and 29 h of 12° HDT with 0.5% CO 2 The internationally collaborative SPACECOT study utilized an innovative approach to study the effects of headward fluid shifting induced by 12° HDT and increased ambient CO 2 as well as their interaction with a focus on cerebral and ocular anatomy and physiology. Here we provide an in-depth overview of this new approach including the subjects, study design, and implementation, as well as the standardization plan for nutritional intake, environmental parameters, and bed rest procedures. NEW & NOTEWORTHY A new approach for investigating the combined effects of cephalad fluid shifting and increased ambient carbon dioxide (CO 2 ) is presented. This may be useful for studying the neuroophthalmic and cerebral effects of spaceflight where cephalad fluid shifts occur in an elevated CO 2 environment. Copyright © 2017 the American Physiological Society.

  1. Acute exposure to 2G phase shifts the rat circadian timing system

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, T. M.; Murakami, D. M.; Tandon, T.; Fuller, C. A.

    1995-01-01

    The circadian timing system (CTS) provides internal and external temporal coordination of an animal's physiology and behavior. In mammals, the generation and coordination of these circadian rhythms is controlled by a neural pacemaker, the suprachiasmatic nucleus (SCN), located within the hypothalamus. The pacemaker is synchronized to the 24 hour day by time cures (zeitgebers) such as the light/dark cycle. When an animal is exposed to an environment without time cues, the circadian rhythms maintain internal temporal coordination, but exhibit a 'free-running' condition in which the period length is determined by the internal pacemaker. Maintenance of internal and external temporal coordination are critical for normal physiological and psychological function in human and non-human primates. Exposure to altered gravitational environments has been shown to affect the amplitude, mean, and timing of circadian rhythms in species ranging from unicellular organisms to man. However, it has not been determined whether altered gravitational fields have a direct effect on the neural pacemaker, or affect peripheral parameters. In previous studies, the ability of a stimulus to phase shift circadian rhythms was used to determine whether a stimulus has a direct effect on the neural pacemaker. The present experiment was performed in order to determine whether acute exposure to a hyperdynamic field could phase shift circadian rhythms.

  2. An innovative nonintrusive driver assistance system for vital signal monitoring.

    PubMed

    Sun, Ye; Yu, Xiong Bill

    2014-11-01

    This paper describes an in-vehicle nonintrusive biopotential measurement system for driver health monitoring and fatigue detection. Previous research has found that the physiological signals including eye features, electrocardiography (ECG), electroencephalography (EEG) and their secondary parameters such as heart rate and HR variability are good indicators of health state as well as driver fatigue. A conventional biopotential measurement system requires the electrodes to be in contact with human body. This not only interferes with the driver operation, but also is not feasible for long-term monitoring purpose. The driver assistance system in this paper can remotely detect the biopotential signals with no physical contact with human skin. With delicate sensor and electronic design, ECG, EEG, and eye blinking can be measured. Experiments were conducted on a high fidelity driving simulator to validate the system performance. The system was found to be able to detect the ECG/EEG signals through cloth or hair with no contact with skin. Eye blinking activities can also be detected at a distance of 10 cm. Digital signal processing algorithms were developed to decimate the signal noise and extract the physiological features. The extracted features from the vital signals were further analyzed to assess the potential criterion for alertness and drowsiness determination.

  3. Nanomaterial-Enabled Wearable Sensors for Healthcare.

    PubMed

    Yao, Shanshan; Swetha, Puchakayala; Zhu, Yong

    2018-01-01

    Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Characterizing uncertainty and variability in physiologically based pharmacokinetic models: state of the science and needs for research and implementation.

    PubMed

    Barton, Hugh A; Chiu, Weihsueh A; Setzer, R Woodrow; Andersen, Melvin E; Bailer, A John; Bois, Frédéric Y; Dewoskin, Robert S; Hays, Sean; Johanson, Gunnar; Jones, Nancy; Loizou, George; Macphail, Robert C; Portier, Christopher J; Spendiff, Martin; Tan, Yu-Mei

    2007-10-01

    Physiologically based pharmacokinetic (PBPK) models are used in mode-of-action based risk and safety assessments to estimate internal dosimetry in animals and humans. When used in risk assessment, these models can provide a basis for extrapolating between species, doses, and exposure routes or for justifying nondefault values for uncertainty factors. Characterization of uncertainty and variability is increasingly recognized as important for risk assessment; this represents a continuing challenge for both PBPK modelers and users. Current practices show significant progress in specifying deterministic biological models and nondeterministic (often statistical) models, estimating parameters using diverse data sets from multiple sources, using them to make predictions, and characterizing uncertainty and variability of model parameters and predictions. The International Workshop on Uncertainty and Variability in PBPK Models, held 31 Oct-2 Nov 2006, identified the state-of-the-science, needed changes in practice and implementation, and research priorities. For the short term, these include (1) multidisciplinary teams to integrate deterministic and nondeterministic/statistical models; (2) broader use of sensitivity analyses, including for structural and global (rather than local) parameter changes; and (3) enhanced transparency and reproducibility through improved documentation of model structure(s), parameter values, sensitivity and other analyses, and supporting, discrepant, or excluded data. Longer-term needs include (1) theoretical and practical methodological improvements for nondeterministic/statistical modeling; (2) better methods for evaluating alternative model structures; (3) peer-reviewed databases of parameters and covariates, and their distributions; (4) expanded coverage of PBPK models across chemicals with different properties; and (5) training and reference materials, such as cases studies, bibliographies/glossaries, model repositories, and enhanced software. The multidisciplinary dialogue initiated by this Workshop will foster the collaboration, research, data collection, and training necessary to make characterizing uncertainty and variability a standard practice in PBPK modeling and risk assessment.

  5. An integrated coronary circulation teaching model.

    PubMed

    van Oostrom, Johannes H; Kentgens, S; Beneken, J E W; Gravenstein, J S

    2006-08-01

    We present in this paper a model of the coronary circulation. This model is integrated with a model of the systemic circulation, and contains models for oxygen supply and demand. Three compartments are created: one for the right ventricle, one for the epicardial segment of the left ventricle and one for the endo-cardial segment of the left ventricle. The model was implemented in the Java programming language and contains a visual representation of the left and right ventricles which beat in real time. Color shading is used to represent the partial pressure of oxygen in the segments. A multitude of model parameters can be changed to simulate different scenarios. The output of the model was characterized under different conditions and the results verified by clinicians. Educational models of human physiology can be very useful for a more in depth understanding of complete physiologic systems. The models must however have enough complexity, interaction with other systems, and realism to show the concepts being taught.

  6. Chemistry and health of olive oil phenolics.

    PubMed

    Cicerale, Sara; Conlan, Xavier A; Sinclair, Andrew J; Keast, Russell S J

    2009-03-01

    The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, and certain types of cancer. The apparent health benefits have been partially attributed to the dietary consumption of virgin olive oil by Mediterranean populations. Most recent interest has focused on the biologically active phenolic compounds naturally present in virgin olive oils. Studies (human, animal, in vivo and in vitro) have shown that olive oil phenolics have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, and antimicrobial activity. Presumably, regular dietary consumption of virgin olive oil containing phenolic compounds manifests in health benefits associated with a Mediterranean diet. This paper summarizes current knowledge on the physiological effects of olive oil phenolics. Moreover, a number of factors have the ability to affect phenolic concentrations in virgin olive oil, so it is of great importance to understand these factors in order to preserve the essential health promoting benefits of olive oil phenolic compounds.

  7. Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell.

    PubMed

    Arrigo, André-Patrick

    2017-07-01

    Constitutively expressed small heat shock protein HspB1 regulates many fundamental cellular processes and plays major roles in many human pathological diseases. In that regard, this chaperone has a huge number of apparently unrelated functions that appear linked to its ability to recognize many client polypeptides that are subsequently modified in their activity and/or half-life. A major parameter to understand how HspB1 is dedicated to interact with particular clients in defined cellular conditions relates to its complex oligomerization and phosphorylation properties. Indeed, HspB1 structural organization displays dynamic and complex rearrangements in response to changes in the cellular environment or when the cell physiology is modified. These structural modifications probably reflect the formation of structural platforms aimed at recognizing specific client polypeptides. Here, I have reviewed data from the literature and re-analyzed my own studies to describe and discuss these fascinating changes in HspB1 structural organization.

  8. What happens in the skin? Integrating skin permeation kinetics into studies of developmental and reproductive toxicity following topical exposure.

    PubMed

    Dancik, Yuri; Bigliardi, Paul L; Bigliardi-Qi, Mei

    2015-12-01

    Animal-based developmental and reproductive toxicological studies involving skin exposure rarely incorporate information on skin permeation kinetics. For practical reasons, animal studies cannot investigate the many factors which can affect human skin permeation and systemic uptake kinetics in real-life scenarios. Traditional route-to-route extrapolation is based on the same types of experiments and requires assumptions regarding route similarity. Pharmacokinetic modeling based on skin physiology and structure is the most efficient way to incorporate the variety of intrinsic skin and exposure-dependent parameters occurring in clinical and occupational settings into one framework. Physiologically-based pharmacokinetic models enable the integration of available in vivo, in vitro and in silico data to quantitatively predict the kinetics of uptake at the site of interest, as needed for 21st century toxicology and risk assessment. As demonstrated herein, proper interpretation and integration of these data is a multidisciplinary endeavor requiring toxicological, risk assessment, mathematical, pharmaceutical, biological and dermatological expertise. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. [Diastolic dysfunction in the elderly subjects. Disease or a physiological manifestation of ageing?].

    PubMed

    Meluzín, J; Podroužková, H; Gregorová, Z; Panovský, R

    2013-05-01

    The purpose of this summary paper is to discuss the current knowledge of the impact of age on diastolic function of the left ventricle. Data from the literature: Reports published till this time have convincingly demonstrated a significant relationship of age to diastolic function of the left ventricle. Ageing is a physiological process accompanied by structural changes in both myocardium and arterial bed resulting in worsening of parameters characterizing the left ventricular diastolic function. This "physiological" diastolic dysfunction in the elderly subjects can be explained by the deterioration of passive left ventricular filling properties and by worsening of left ventricular relaxation. The detailed analysis of published reports shows problems in distiguishing this "physiological" diastolic dysfunction resulting from physiological tissue ageing from "pathological" diastolic dysfunction reflecting a disease of cardiovascular system. To interprete correctly values of parameters quantifying diastolic function of the left ventricle, one should take into account the age of subjects under the examination. Further studies are necessary to distinguish exactly "physiological" deterioration of diastolic function associated with ageing from really "pathological" diastolic dysfunction in the elderly subjects.

  10. A Study on the Effects of Sympathetic Skin Response Parameters in Diagnosis of Fibromyalgia Using Artificial Neural Networks.

    PubMed

    Ozkan, Ozhan; Yildiz, Murat; Arslan, Evren; Yildiz, Sedat; Bilgin, Suleyman; Akkus, Selami; Koyuncuoglu, Hasan R; Koklukaya, Etem

    2016-03-01

    Fibromyalgia syndrome (FMS), usually observed commonly in females over age 30, is a rheumatic disease accompanied by extensive chronic pain. In the diagnosis of the disease non-objective psychological tests and physiological tests and laboratory test results are evaluated and clinical experiences stand out. However, these tests are insufficient in differentiating FMS with similar diseases that demonstrate symptoms of extensive pain. Thus, objective tests that would help the diagnosis are needed. This study analyzes the effect of sympathetic skin response (SSR) parameters on the auxiliary tests used in FMS diagnosis, the laboratory tests and physiological tests. The study was conducted in Suleyman Demirel University, Faculty of Medicine, Physical Medicine and Rehabilitation Clinic in Turkey with 60 patients diagnosed with FMS for the first time and a control group of 30 healthy individuals. In the study all participants underwent laboratory tests (blood tests), certain physiological tests (pulsation, skin temperature, respiration) and SSR measurements. The test data and SSR parameters obtained were classified using artificial neural network (ANN). Finally, in the ANN framework, where only laboratory and physiological test results were used as input, a simulation result of 96.51 % was obtained, which demonstrated diagnostic accuracy. This data, with the addition of SSR parameter values obtained increased to 97.67 %. This result including SSR parameters - meaning a higher diagnostic accuracy - demonstrated that SSR could be a new auxillary diagnostic method that could be used in the diagnosis of FMS.

  11. Effect of cell phone exposure on physiologic and hematologic parameters of male medical students of Bijapur (Karnataka) with reference to serum lipid profile.

    PubMed

    Parkar, Matin A; Ahmed, Rishad; Abdullah, Bilal Bin; Patil, B S; Das, Kusal K

    2010-01-01

    The public awareness about cell phone safety increased greatly in the last few years as various reports of potential adverse health effects on humans exposed to radiations emitted from cellular phones were published. The aim of the study was to assess the effect of long term cell phone exposure on physiological and hematological parameters along with its impact on serum lipid profiles and a single call effect on heart rate, blood pressure and SpO2(%) of healthy male medical students. The students were divided into two groups, group I (n=22, age 20.63 +/- 1.17 yrs) comprising first year medical students who were never exposed to cell phones at the time of this study and group II (n=35, age 22.00 +/- 1.56 yrs) consists of final year (fourth year) male medical students who were using cell phone for more than four years before this study. The results showed no significant differences the groups in basal heart rate, systolic blood pressure, SpO2(%), or various hematologic parameters. Acute exposure (single call of cell phone with 900 MHz for 1 minute) in both groups showed a significant increase in peak heart rate in group II as compared with group I and a significant decrease in peak SpO2 (%) in group I as compared with group II. Serum total cholesterol, VLDL-cholesterol, and triglycerides concentration were significantly higher in group II (long term cell phone exposed) than in group I, suggesting a mild alteration of lipid profile among group II subjects.

  12. Analysis and synthesis of laughter

    NASA Astrophysics Data System (ADS)

    Sundaram, Shiva; Narayanan, Shrikanth

    2004-10-01

    There is much enthusiasm in the text-to-speech community for synthesis of emotional and natural speech. One idea being proposed is to include emotion dependent paralinguistic cues during synthesis to convey emotions effectively. This requires modeling and synthesis techniques of various cues for different emotions. Motivated by this, a technique to synthesize human laughter is proposed. Laughter is a complex mechanism of expression and has high variability in terms of types and usage in human-human communication. People have their own characteristic way of laughing. Laughter can be seen as a controlled/uncontrolled physiological process of a person resulting from an initial excitation in context. A parametric model based on damped simple harmonic motion to effectively capture these diversities and also maintain the individuals characteristics is developed here. Limited laughter/speech data from actual humans and synthesis ease are the constraints imposed on the accuracy of the model. Analysis techniques are also developed to determine the parameters of the model for a given individual or laughter type. Finally, the effectiveness of the model to capture the individual characteristics and naturalness compared to real human laughter has been analyzed. Through this the factors involved in individual human laughter and their importance can be better understood.

  13. UTCI—Why another thermal index?

    NASA Astrophysics Data System (ADS)

    Jendritzky, Gerd; de Dear, Richard; Havenith, George

    2012-05-01

    Existing procedures for the assessment of the thermal environment in the fields of public weather services, public health systems, precautionary planning, urban design, tourism and recreation and climate impact research exhibit significant shortcomings. This is most evident for simple (mostly two-parameter) indices, when comparing them to complete heat budget models developed since the 1960s. ISB Commission 6 took up the idea of developing a Universal Thermal Climate Index (UTCI) based on the most advanced multi-node model of thermoregulation representing progress in science within the last three to four decades, both in thermo-physiological and heat exchange theory. Creating the essential research synergies for the development of UTCI required pooling the resources of multidisciplinary experts in the fields of thermal physiology, mathematical modelling, occupational medicine, meteorological data handling (in particular radiation modelling) and application development in a network. It was possible to extend the expertise of ISB Commission 6 substantially by COST (a European programme promoting Cooperation in Science and Technology) Action 730 so that finally over 45 scientists from 23 countries (Australia, Canada, Israel, several Europe countries, New Zealand, and the United States) worked together. The work was performed under the umbrella of the WMO Commission on Climatology (CCl). After extensive evaluations, Fiala's multi-node human physiology and thermal comfort model (FPC) was adopted for this study. The model was validated extensively, applying as yet unused data from other research groups, and extended for the purposes of the project. This model was coupled with a state-of-the-art clothing model taking into consideration behavioural adaptation of clothing insulation by the general urban population in response to actual environmental temperature. UTCI was then derived conceptually as an equivalent temperature (ET). Thus, for any combination of air temperature, wind, radiation, and humidity (stress), UTCI is defined as the isothermal air temperature of the reference condition that would elicit the same dynamic response (strain) of the physiological model. As UTCI is based on contemporary science its use will standardise applications in the major fields of human biometeorology, thus making research results comparable and physiologically relevant.

  14. The effect of stress-inducible extracellular Hsp72 on human neutrophil chemotaxis: a role during acute intense exercise.

    PubMed

    Ortega, Eduardo; Hinchado, M D; Martín-Cordero, L; Asea, A

    2009-05-01

    We studied the physiological role of the 72 kDa extracellular heat shock protein (Hsp72, a stress-inducible protein) in modulating neutrophil chemotaxis during a single bout of intense exercise performed by sedentary women, together with various cell mechanisms potentially involved in the modulation. For each volunteer, we evaluated neutrophil chemotaxis and serum Hsp72 concentration before and immediately after a single bout of exercise (1 h on a cycle ergometer at 70% VO(2) max), and 24 h later. Both parameters were found to be stimulated by the exercise, and had returned to basal values 24 h later. In vitro, there was a dose-dependent increase in chemotaxis when neutrophils were incubated both with physiological Hsp72 concentrations and with a 100 x greater concentration. The chemotaxis was greater when the neutrophils were incubated with the post-exercise Hsp72 concentration than with the basal concentration, suggesting a physiological role for this protein in the context of the stimulation of neutrophil chemotaxis by intense exercise. The 100 x Hsp72 concentration stimulated chemotaxis even more strongly. In addition, Hsp72 was found to have chemoattractant and chemokinetic effects on the neutrophils at physiological concentrations, with these effects being significantly greater with the post-exercise than with the basal Hsp72 concentration. The Hsp72-induced stimulation of neutrophil chemotaxis disappeared when the toll-like receptor 2 (TLR-2) was blocked, and phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and nuclear transcription factor kappa B (NF-kappaB) were also found to be involved in the signaling process. No changes were observed, however, in neutrophil intracellular calcium levels in response to Hsp72. In conclusion, physiological concentrations of the stress protein Hsp72 stimulate human neutrophil chemotaxis through TLR-2 with its cofactor CD14, involving ERK, NF-kappaB, and PI3K, but not iCa(2 + ), as intracellular messengers. In addition, Hsp72 seems to participate in the stimulation of chemotaxis induced by a single bout of intense exercise performed by sedentary women.

  15. Randomized controlled trial of skin-to-skin contact from birth versus conventional incubator for physiological stabilization in 1200- to 2199-gram newborns.

    PubMed

    Bergman, N J; Linley, L L; Fawcus, S R

    2004-06-01

    Conventional care of prematurely born infants involves extended maternal-infant separation and incubator care. Recent research has shown that separation causes adverse effects. Maternal-infant skin-to-skin contact (SSC) provides an alternative habitat to the incubator, with proven benefits for stable prematures; this has not been established for unstable or newborn low-birthweight infants. SSC from birth was therefore compared to incubator care for infants between 1200 and 2199 g at birth. This was a prospective, unblinded, randomized controlled clinical trial; potential subjects were identified before delivery and randomized by computerized minimization technique at 5 min if eligible. Standardized care and observations were maintained for 6 h. Stability was measured in terms of a set of pre-determined physiological parameters, and a composite cardio-respiratory stabilization score (SCRIP). 34 infants were analysed in comparable groups: 3/18 SSC compared to 12/13 incubator babies exceeded the pre-determined parameters (p < 0.001). Stabilization scores were 77.11 for SSC versus 74.23 for incubator (maximum 78), mean difference 2.88 (95% CI: 0.3-5.46, p = 0.031). All 18 SSC subjects were stable in the sixth hour, compared to 6/13 incubator infants. Eight out of 13 incubator subjects experienced hypothermia. Newborn care provided by skin-to-skin contact on the mother's chest results in better physiological outcomes and stability than the same care provided in closed servo-controlled incubators. The cardio-respiratory instability seen in separated infants in the first 6 h is consistent with mammalian "protest-despair" biology, and with "hyper-arousal and dissociation" response patterns described in human infants: newborns should not be separated from their mothers.

  16. Fusing EEG and fMRI based on a bottom-up model: inferring activation and effective connectivity in neural masses

    PubMed Central

    Riera, J; Aubert, E; Iwata, K; Kawashima, R; Wan, X; Ozaki, T

    2005-01-01

    The elucidation of the complex machinery used by the human brain to segregate and integrate information while performing high cognitive functions is a subject of imminent future consequences. The most significant contributions to date in this field, known as cognitive neuroscience, have been achieved by using innovative neuroimaging techniques, such as electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), which measure variations in both the time and the space of some interpretable physical magnitudes. Extraordinary maps of cerebral activation involving function-restricted brain areas, as well as graphs of the functional connectivity between them, have been obtained from EEG and fMRI data by solving some spatio-temporal inverse problems, which constitutes a top-down approach. However, in many cases, a natural bridge between these maps/graphs and the causal physiological processes is lacking, leading to some misunderstandings in their interpretation. Recent advances in the comprehension of the underlying physiological mechanisms associated with different cerebral scales have provided researchers with an excellent scenario to develop sophisticated biophysical models that permit an integration of these neuroimage modalities, which must share a common aetiology. This paper proposes a bottom-up approach, involving physiological parameters in a specific mesoscopic dynamic equations system. Further observation equations encapsulating the relationship between the mesostates and the EEG/fMRI data are obtained on the basis of the physical foundations of these techniques. A methodology for the estimation of parameters from fused EEG/fMRI data is also presented. In this context, the concepts of activation and effective connectivity are carefully revised. This new approach permits us to examine and discuss some future prospects for the integration of multimodal neuroimages. PMID:16087446

  17. Annual National Teachers Workshop on ’Human Biology’ Held in San Jose, California on 7-13 November 1995.

    DTIC Science & Technology

    1994-11-01

    Conference teacher program were to enable participating teachers to: (1) understand basic human anatomy and physiology content. (2) understand appropriate...teaching methodology for American Indian students. (3) engage in classroom activities that focus on human anatomy and physiology which can be transferred and applied to their own classrooms.

  18. Study of Physiological Responses to Acute Carbon Monoxide Exposure with a Human Patient Simulator

    ERIC Educational Resources Information Center

    Cesari, Whitney A.; Caruso, Dominique M.; Zyka, Enela L.; Schroff, Stuart T.; Evans, Charles H., Jr.; Hyatt, Jon-Philippe K.

    2006-01-01

    Human patient simulators are widely used to train health professionals and students in a clinical setting, but they also can be used to enhance physiology education in a laboratory setting. Our course incorporates the human patient simulator for experiential learning in which undergraduate university juniors and seniors are instructed to design,…

  19. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations.

    PubMed

    Safaei, Soroush; Blanco, Pablo J; Müller, Lucas O; Hellevik, Leif R; Hunter, Peter J

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data.

  20. Designing electrical stimulated bioreactors for nerve tissue engineering

    NASA Astrophysics Data System (ADS)

    Sagita, Ignasius Dwi; Whulanza, Yudan; Dhelika, Radon; Nurhadi, Ibrahim

    2018-02-01

    Bioreactor provides a biomimetic ecosystem that is able to culture cells in a physically controlled system. In general, the controlled-parameters are temperature, pH, fluid flow, nutrition flow, etc. In this study, we develop a bioreactor that specifically targeted to culture neural stem cells. This bioreactor could overcome some limitations of conventional culture technology, such as petri dish, by providing specific range of observation area and a uniform treatment. Moreover, the microfluidic bioreactor, which is a small-controlled environment, is able to observe as small number of cells as possible. A perfusion flow is applied to mimic the physiological environment in human body. Additionally, this bioreactor also provides an electrical stimulation which is needed by neural stem cells. In conclusion, we found the correlation between the induced shear stress with geometric parameters of the bioreactor. Ultimately, this system shall be used to observe the interaction between stimulation and cell growth.

  1. A Gibbs point field model for the spatial pattern of coronary capillaries

    NASA Astrophysics Data System (ADS)

    Karch, R.; Neumann, M.; Neumann, F.; Ullrich, R.; Neumüller, J.; Schreiner, W.

    2006-09-01

    We propose a Gibbs point field model for the pattern of coronary capillaries in transverse histologic sections from human hearts, based on the physiology of oxygen supply from capillaries to tissue. To specify the potential energy function of the Gibbs point field, we draw on an analogy between the equation of steady-state oxygen diffusion from an array of parallel capillaries to the surrounding tissue and Poisson's equation for the electrostatic potential of a two-dimensional distribution of identical point charges. The influence of factors other than diffusion is treated as a thermal disturbance. On this basis, we arrive at the well-known two-dimensional one-component plasma, a system of identical point charges exhibiting a weak (logarithmic) repulsive interaction that is completely characterized by a single dimensionless parameter. By variation of this parameter, the model is able to reproduce many characteristics of real capillary patterns.

  2. Endocrine Parameters and Phenotypes of the Growth Hormone Receptor Gene Disrupted (GHR−/−) Mouse

    PubMed Central

    List, Edward O.; Sackmann-Sala, Lucila; Berryman, Darlene E.; Funk, Kevin; Kelder, Bruce; Gosney, Elahu S.; Okada, Shigeru; Ding, Juan; Cruz-Topete, Diana

    2011-01-01

    Disruption of the GH receptor (GHR) gene eliminates GH-induced intracellular signaling and, thus, its biological actions. Therefore, the GHR gene disrupted mouse (GHR−/−) has been and is a valuable tool for helping to define various parameters of GH physiology. Since its creation in 1995, this mouse strain has been used by our laboratory and others for numerous studies ranging from growth to aging. Some of the most notable discoveries are their extreme insulin sensitivity in the presence of obesity. Also, the animals have an extended lifespan, which has generated a large number of investigations into the roles of GH and IGF-I in the aging process. This review summarizes the many results derived from the GHR−/− mice. We have attempted to present the findings in the context of current knowledge regarding GH action and, where applicable, to discuss how these mice compare to GH insensitivity syndrome in humans. PMID:21123740

  3. Determination of torque-limits for human and cat lumbar spine specimens during displacement-controlled physiological motions.

    PubMed

    Ianuzzi, Allyson; Pickar, Joel G; Khalsa, Partap S

    2009-01-01

    Quadruped animal models have been validated and used as biomechanical models for the lumbar spine. The biomechanics of the cat lumbar spine has not been well characterized, even though it is a common model used in neuromechanical studies. Compare the physiological ranges of motion and determine torque-limits for cat and human lumbar spine specimens during physiological motions. Biomechanics study. Cat and human lumbar spine specimens. Intervertebral angle (IVA), joint moment, yield point, torque-limit, and correlation coefficients. Cat (L2-sacrum) and human (T12-sacrum) lumbar spine specimens were mechanically tested to failure during displacement-controlled extension (E), lateral bending (LB), and axial rotation (AR). Single trials consisted of 10 cycles (10mm/s or 5 degrees /s) to a target displacement where the magnitude of the target displacement was increased for subsequent trials until failure occurred. Whole-lumbar stiffness, torque at yield point, and joint stiffness were determined. Scaling relationships were established using equations analogous to those that describe the load response of elliptically shaped beams. IVA magnitudes for cat and human lumbar spines were similar during physiological motions. Human whole-lumbar and joint stiffness magnitudes were significantly greater than those for cat spine specimens (p<.05). Torque-limits were also greater for humans compared with cats. Scaling relationships with high correlation (R(2) greater than 0.77) were established during later LB and AR. The current study defined "physiological ranges of movement" for human and cat lumbar spine specimens during displacement-controlled testing, and should be observed in future biomechanical studies conducted under displacement control.

  4. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors

    PubMed Central

    Zhang, Yu Shrike; Aleman, Julio; Shin, Su Ryon; Kim, Duckjin; Mousavi Shaegh, Seyed Ali; Massa, Solange; Riahi, Reza; Chae, Sukyoung; Hu, Ning; Avci, Huseyin; Zhang, Weijia; Silvestri, Antonia; Sanati Nezhad, Amir; Manbohi, Ahmad; De Ferrari, Fabio; Polini, Alessandro; Calzone, Giovanni; Shaikh, Noor; Alerasool, Parissa; Budina, Erica; Kang, Jian; Bhise, Nupura; Pourmand, Adel; Skardal, Aleksander; Shupe, Thomas; Bishop, Colin E.; Dokmeci, Mehmet Remzi; Atala, Anthony; Khademhosseini, Ali

    2017-01-01

    Organ-on-a-chip systems are miniaturized microfluidic 3D human tissue and organ models designed to recapitulate the important biological and physiological parameters of their in vivo counterparts. They have recently emerged as a viable platform for personalized medicine and drug screening. These in vitro models, featuring biomimetic compositions, architectures, and functions, are expected to replace the conventional planar, static cell cultures and bridge the gap between the currently used preclinical animal models and the human body. Multiple organoid models may be further connected together through the microfluidics in a similar manner in which they are arranged in vivo, providing the capability to analyze multiorgan interactions. Although a wide variety of human organ-on-a-chip models have been created, there are limited efforts on the integration of multisensor systems. However, in situ continual measuring is critical in precise assessment of the microenvironment parameters and the dynamic responses of the organs to pharmaceutical compounds over extended periods of time. In addition, automated and noninvasive capability is strongly desired for long-term monitoring. Here, we report a fully integrated modular physical, biochemical, and optical sensing platform through a fluidics-routing breadboard, which operates organ-on-a-chip units in a continual, dynamic, and automated manner. We believe that this platform technology has paved a potential avenue to promote the performance of current organ-on-a-chip models in drug screening by integrating a multitude of real-time sensors to achieve automated in situ monitoring of biophysical and biochemical parameters. PMID:28265064

  5. A Quadriparametric Model to Describe the Diversity of Waves Applied to Hormonal Data.

    PubMed

    Abdullah, Saman; Bouchard, Thomas; Klich, Amna; Leiva, Rene; Pyper, Cecilia; Genolini, Christophe; Subtil, Fabien; Iwaz, Jean; Ecochard, René

    2018-05-01

    Even in normally cycling women, hormone level shapes may widely vary between cycles and between women. Over decades, finding ways to characterize and compare cycle hormone waves was difficult and most solutions, in particular polynomials or splines, do not correspond to physiologically meaningful parameters. We present an original concept to characterize most hormone waves with only two parameters. The modelling attempt considered pregnanediol-3-alpha-glucuronide (PDG) and luteinising hormone (LH) levels in 266 cycles (with ultrasound-identified ovulation day) in 99 normally fertile women aged 18 to 45. The study searched for a convenient wave description process and carried out an extended search for the best fitting density distribution. The highly flexible beta-binomial distribution offered the best fit of most hormone waves and required only two readily available and understandable wave parameters: location and scale. In bell-shaped waves (e.g., PDG curves), early peaks may be fitted with a low location parameter and a low scale parameter; plateau shapes are obtained with higher scale parameters. I-shaped, J-shaped, and U-shaped waves (sometimes the shapes of LH curves) may be fitted with high scale parameter and, respectively, low, high, and medium location parameter. These location and scale parameters will be later correlated with feminine physiological events. Our results demonstrate that, with unimodal waves, complex methods (e.g., functional mixed effects models using smoothing splines, second-order growth mixture models, or functional principal-component- based methods) may be avoided. The use, application, and, especially, result interpretation of four-parameter analyses might be advantageous within the context of feminine physiological events. Schattauer GmbH.

  6. Inverse Tone Mapping Based upon Retina Response

    PubMed Central

    Huo, Yongqing; Yang, Fan; Brost, Vincent

    2014-01-01

    The development of high dynamic range (HDR) display arouses the research of inverse tone mapping methods, which expand dynamic range of the low dynamic range (LDR) image to match that of HDR monitor. This paper proposed a novel physiological approach, which could avoid artifacts occurred in most existing algorithms. Inspired by the property of the human visual system (HVS), this dynamic range expansion scheme performs with a low computational complexity and a limited number of parameters and obtains high-quality HDR results. Comparisons with three recent algorithms in the literature also show that the proposed method reveals more important image details and produces less contrast loss and distortion. PMID:24744678

  7. The Investigation of Some Physical, Physiological and Anthropometric Parameters of Visually Impaired and Non-Impaired a National Male Judoka

    ERIC Educational Resources Information Center

    Mayda, Muhammet Hakan; Karakoc, Onder; Ozdal, Mustafa

    2016-01-01

    It was pointed to analyze some physical, physiological and anthropometric parameters of visually impaired and non-impaired A National male judoka in this study. A total of 14 volunteer A National male judoka, of which 8 were visually impaired (age: 25.12 ± 3.75, disability status: 20-200) and 6 were not visually impaired (age: 21.50 ± 1.51),…

  8. Bio-logging of physiological parameters in higher marine vertebrates

    NASA Astrophysics Data System (ADS)

    Ponganis, Paul J.

    2007-02-01

    Bio-logging of physiological parameters in higher marine vertebrates had its origins in the field of bio-telemetry in the 1960s and 1970s. The development of microprocessor technology allowed its first application to bio-logging investigations of Weddell seal diving physiology in the early 1980s. Since that time, with the use of increased memory capacity, new sensor technology, and novel data processing techniques, investigators have examined heart rate, temperature, swim speed, stroke frequency, stomach function (gastric pH and motility), heat flux, muscle oxygenation, respiratory rate, diving air volume, and oxygen partial pressure (P) during diving. Swim speed, heart rate, and body temperature have been the most commonly studied parameters. Bio-logging investigation of pressure effects has only been conducted with the use of blood samplers and nitrogen analyses on animals diving at isolated dive holes. The advantages/disadvantages and limitations of recording techniques, probe placement, calibration techniques, and study conditions are reviewed.

  9. Parameters Selection for Bivariate Multiscale Entropy Analysis of Postural Fluctuations in Fallers and Non-Fallers Older Adults.

    PubMed

    Ramdani, Sofiane; Bonnet, Vincent; Tallon, Guillaume; Lagarde, Julien; Bernard, Pierre Louis; Blain, Hubert

    2016-08-01

    Entropy measures are often used to quantify the regularity of postural sway time series. Recent methodological developments provided both multivariate and multiscale approaches allowing the extraction of complexity features from physiological signals; see "Dynamical complexity of human responses: A multivariate data-adaptive framework," in Bulletin of Polish Academy of Science and Technology, vol. 60, p. 433, 2012. The resulting entropy measures are good candidates for the analysis of bivariate postural sway signals exhibiting nonstationarity and multiscale properties. These methods are dependant on several input parameters such as embedding parameters. Using two data sets collected from institutionalized frail older adults, we numerically investigate the behavior of a recent multivariate and multiscale entropy estimator; see "Multivariate multiscale entropy: A tool for complexity analysis of multichannel data," Physics Review E, vol. 84, p. 061918, 2011. We propose criteria for the selection of the input parameters. Using these optimal parameters, we statistically compare the multivariate and multiscale entropy values of postural sway data of non-faller subjects to those of fallers. These two groups are discriminated by the resulting measures over multiple time scales. We also demonstrate that the typical parameter settings proposed in the literature lead to entropy measures that do not distinguish the two groups. This last result confirms the importance of the selection of appropriate input parameters.

  10. The Directed Case Method.

    ERIC Educational Resources Information Center

    Cliff, William H.; Curtin, Leslie Nesbitt

    2000-01-01

    Provides an example of a directed case on human anatomy and physiology. Uses brief real life newspaper articles and clinical descriptions of medical reference texts to describe an actual, fictitious, or composite event. Includes interrelated human anatomy and physiology topics in the scenario. (YDS)

  11. Physiologically based kinetic modeling of bioactivation and detoxification of the alkenylbenzene methyleugenol in human as compared with rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Subeihi, Ala' A.A., E-mail: ala.alsubeihi@wur.nl; BEN-HAYYAN-Aqaba International Laboratories, Aqaba Special Economic Zone Authority; Spenkelink, Bert

    2012-05-01

    This study defines a physiologically based kinetic (PBK) model for methyleugenol (ME) in human based on in vitro and in silico derived parameters. With the model obtained, bioactivation and detoxification of methyleugenol (ME) at different doses levels could be investigated. The outcomes of the current model were compared with those of a previously developed PBK model for methyleugenol (ME) in male rat. The results obtained reveal that formation of 1′-hydroxymethyleugenol glucuronide (1′HMEG), a major metabolic pathway in male rat liver, appears to represent a minor metabolic pathway in human liver whereas in human liver a significantly higher formation of 1′-oxomethyleugenolmore » (1′OME) compared with male rat liver is observed. Furthermore, formation of 1′-sulfooxymethyleugenol (1′HMES), which readily undergoes desulfonation to a reactive carbonium ion (CA) that can form DNA or protein adducts (DA), is predicted to be the same in the liver of both human and male rat at oral doses of 0.0034 and 300 mg/kg bw. Altogether despite a significant difference in especially the metabolic pathways of the proximate carcinogenic metabolite 1′-hydroxymethyleugenol (1′HME) between human and male rat, the influence of species differences on the ultimate overall bioactivation of methyleugenol (ME) to 1′-sulfooxymethyleugenol (1′HMES) appears to be negligible. Moreover, the PBK model predicted the formation of 1′-sulfooxymethyleugenol (1′HMES) in the liver of human and rat to be linear from doses as high as the benchmark dose (BMD{sub 10}) down to as low as the virtual safe dose (VSD). This study shows that kinetic data do not provide a reason to argue against linear extrapolation from the rat tumor data to the human situation. -- Highlights: ► A PBK model is made for bioactivation and detoxification of methyleugenol in human. ► Comparison to the PBK model in male rat revealed species differences. ► PBK results support linear extrapolation from high to low dose and from rat to human.« less

  12. The impact of variation in scaling factors on the estimation of ...

    EPA Pesticide Factsheets

    Many physiologically based pharmacokinetic (PBPK) models include values for metabolic rate parameters extrapolated from in vitro metabolism studies using scaling factors such as mg of microsomal protein per gram of liver (MPPGL) and liver mass (FVL). Variation in scaling factor values impacts metabolic rate parameter estimates (Vmax) and hence estimates of internal dose used in dose response analysis. The impacts of adult human variation in MPPGL and FVL on estimates of internal dose were assessed using a human PBPK model for BDCM for several internal dose metrics for two exposure scenarios (single 0.25 liter drink of water or 10 minute shower) under plausible (5 micrograms/L) and high level (20 micrograms/L) water concentrations. For both concentrations, all internal dose metrics were changed less than 5% for the showering scenario (combined inhalation and dermal exposure). In contrast, a 27-fold variation in area under the curve for BDCM in venous blood was observed at both oral exposure concentrations, whereas total amount of BDCM metabolized in liver was relatively unchanged. This analysis demonstrates that variability in the scaling factors used for in vitro to in vivo extrapolation (IVIVE) for metabolic rate parameters can have a significant route-dependent impact on estimates of internal dose under environmentally relevant exposure scenarios. This indicates the need to evaluate both uncertainty and variability for scaling factors used for IVIVE. Sca

  13. The Use of an Acellular Oxygen Carrier in a Human Liver Model of Normothermic Machine Perfusion

    PubMed Central

    Wallace, Lorraine; Boteon, Yuri; Neil, Desley AH; Smith, Amanda; Stephenson, Barney TF; Schlegel, Andrea; Hübscher, Stefan G; Mirza, Darius F

    2017-01-01

    Background Normothermic machine perfusion of the liver (NMP-L) is a novel technique that preserves liver grafts under near-physiological conditions whilst maintaining their normal metabolic activity. This process requires an adequate oxygen supply, typically delivered by packed red blood cells (RBC). We present the first experience using an acellular hemoglobin-based oxygen carrier (HBOC) Hemopure in a human model of NMP-L. Methods Five discarded high-risk human livers were perfused with HBOC-based perfusion fluid and matched to 5 RBC-perfused livers. Perfusion parameters, oxygen extraction, metabolic activity and histological features were compared during 6 hours of NMP-L. The cytotoxicity of Hemopure was also tested on human hepatic primary cell line cultures using an in vitro model of ischemia reperfusion injury. Results The vascular flow parameters and the perfusate lactate clearance were similar in both groups. The HBOC-perfused livers extracted more oxygen than those perfused with RBCs (O2ER 13.75 vs 9.43 % x105 per gram of tissue, p=0.001). In vitro exposure to Hemopure did not alter intracellular levels of reactive oxygen species and there was no increase in apoptosis or necrosis observed in any of the tested cell lines. Histological findings were comparable between groups. There was no evidence of histological damage caused by Hemopure. Conclusion Hemopure can be used as an alternative oxygen carrier to packed red cells in NMP-L perfusion fluid. PMID:28520579

  14. Numerical simulation of gender differences in a long-term microgravity exposure

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni

    The objective of this work is to analyse and simulate gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairment which may put in jeopardy a long-term mission is also evaluated. Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numerical Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular architecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electricallike model of this control system, using inexpensive software development frameworks, and has been tested and validated with the available experimental data. Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobical exercise, and also thermal stress simulating an extra-vehicular activity. Results show that significant differences appear between men and women physiological response after long-term exposure (more than three months) to microgravity. Risk evaluation for every gender, and specific risk thresholds are provided. Initial results are compatible with the existing data, and provide unique information regarding different patterns of microgravity exposure. We conclude that computer-based models such us NELME are a promising line of work to predict health risks in long-term missions. More experimental work is needed to adjust some parameters of the model. This work may be seen as another contribution to a better understanding of the underlying processes involved for both women in man adaptation to long-term microgravity.

  15. Physiology Learning for Veterinary Students: Impact of Guided Practices on Students' Opinion and Physiological Parameters

    ERIC Educational Resources Information Center

    García-Vázquez, Francisco A.; Romar, Raquel; Gadea, Joaquín; Matás, Carmen; Coy, Pilar; Ruiz, Salvador

    2018-01-01

    Over recent decades, education has increasingly focused on student-centered learning. Guided practices represent a new way of learning for undergraduate students of physiology, whereby the students turn into teacher-students and become more deeply involved in the subject by preparing and teaching a practical (laboratory) class to their peers. The…

  16. Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming

    PubMed Central

    Hanna, Elizabeth G.; Tait, Peter W.

    2015-01-01

    Human thermoregulation and acclimatization are core components of the human coping mechanism for withstanding variations in environmental heat exposure. Amidst growing recognition that curtailing global warming to less than two degrees is becoming increasing improbable, human survival will require increasing reliance on these mechanisms. The projected several fold increase in extreme heat events suggests we need to recalibrate health protection policies and ratchet up adaptation efforts. Climate researchers, epidemiologists, and policy makers engaged in climate change adaptation and health protection are not commonly drawn from heat physiology backgrounds. Injecting a scholarly consideration of physiological limitations to human heat tolerance into the adaptation and policy literature allows for a broader understanding of heat health risks to support effective human adaptation and adaptation planning. This paper details the physiological and external environmental factors that determine human thermoregulation and acclimatization. We present a model to illustrate the interrelationship between elements that modulate the physiological process of thermoregulation. Limitations inherent in these processes, and the constraints imposed by differing exposure levels, and thermal comfort seeking on achieving acclimatization, are then described. Combined, these limitations will restrict the likely contribution that acclimatization can play in future human adaptation to global warming. We postulate that behavioral and technological adaptations will need to become the dominant means for human individual and societal adaptations as global warming progresses. PMID:26184272

  17. Oxidative DNA damage background estimated by a system model of base excision repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, B A; Wilson, III, D M

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less

  18. Quantifying Intrinsic and Extrinsic Contributions to Human Longevity: Application of a Two-Process Vitality Model to the Human Mortality Database.

    PubMed

    Sharrow, David J; Anderson, James J

    2016-12-01

    The rise in human life expectancy has involved declines in intrinsic and extrinsic mortality processes associated, respectively, with senescence and environmental challenges. To better understand the factors driving this rise, we apply a two-process vitality model to data from the Human Mortality Database. Model parameters yield intrinsic and extrinsic cumulative survival curves from which we derive intrinsic and extrinsic expected life spans (ELS). Intrinsic ELS, a measure of longevity acted on by intrinsic, physiological factors, changed slowly over two centuries and then entered a second phase of increasing longevity ostensibly brought on by improvements in old-age death reduction technologies and cumulative health behaviors throughout life. The model partitions the majority of the increase in life expectancy before 1950 to increasing extrinsic ELS driven by reductions in environmental, event-based health challenges in both childhood and adulthood. In the post-1950 era, the extrinsic ELS of females appears to be converging to the intrinsic ELS, whereas the extrinsic ELS of males is approximately 20 years lower than the intrinsic ELS.

  19. Quantifying Intrinsic and Extrinsic Contributions to Human Longevity: Application of a Two-Process Vitality Model to the Human Mortality Database

    PubMed Central

    Anderson, James J.

    2016-01-01

    The rise in human life expectancy has involved declines in intrinsic and extrinsic mortality processes associated, respectively, with senescence and environmental challenges. To better understand the factors driving this rise, we apply a two-process vitality model to data from the Human Mortality Database. Model parameters yield intrinsic and extrinsic cumulative survival curves from which we derive intrinsic and extrinsic expected life spans (ELS). Intrinsic ELS, a measure of longevity acted on by intrinsic, physiological factors, changed slowly over two centuries and then entered a second phase of increasing longevity ostensibly brought on by improvements in old-age death reduction technologies and cumulative health behaviors throughout life. The model partitions the majority of the increase in life expectancy before 1950 to increasing extrinsic ELS driven by reductions in environmental, event-based health challenges in both childhood and adulthood. In the post-1950 era, the extrinsic ELS of females appears to be converging to the intrinsic ELS, whereas the extrinsic ELS of males is approximately 20 years lower than the intrinsic ELS. PMID:27837429

  20. It's Difficult to Change the Way We Teach: Lessons from the Integrative Themes in Physiology Curriculum Module Project

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Thorn, Patti M.; Svinicki, Marilla D.

    2006-01-01

    The Integrative Themes in Physiology (ITIP) project was a National Science Foundation-funded collaboration between the American Physiological Society (APS) and the Human Anatomy and Physiology Society (HAPS). The project goal was to create instructional resources that emphasized active learning in undergraduate anatomy and physiology classrooms.…

  1. JPRS Report Science & Technology USSR: Life Sciences.

    DTIC Science & Technology

    1988-06-10

    V.F. Shilina; GIGIYENA ISANITARIYA No 10, Oct 87] 14 PHYSIOLOGY Changes in Cerebral Electrical Activity of Cats After Intravenous and...from human fibrosarcoma , was studied and compared to expression in normal human leukocytes and slightly transformed cells from human melanoma line...06508 JPRS-ULS-88-009 10 June 1988 PHYSIOLOGY 15 Changes in Cerebral Electrical Activity of Cats After Intravenous and Cerebroventricular

  2. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design.

    PubMed

    Vanos, Jennifer K; Warland, Jon S; Gillespie, Terry J; Kenny, Natasha A

    2010-07-01

    This review comprehensively examines scientific literature pertaining to human physiology during exercise, including mechanisms of heat formation and dissipation, heat stress on the body, the importance of skin temperature monitoring, the effects of clothing, and microclimatic measurements. This provides a critical foundation for microclimatologists and biometeorologists in the understanding of experiments involving human physiology. The importance of the psychological aspects of how an individual perceives an outdoor environment are also reviewed, emphasizing many factors that can indirectly affect thermal comfort (TC). Past and current efforts to develop accurate human comfort models are described, as well as how these models can be used to develop resilient and comfortable outdoor spaces for physical activity. Lack of suitable spaces plays a large role in the deterioration of human health due to physical inactivity, leading to higher rates of illness, heart disease, obesity and heat-related casualties. This trend will continue if urban designers do not make use of current knowledge of bioclimatic urban design, which must be synthesized with physiology, psychology and microclimatology. Increased research is required for furthering our knowledge on the outdoor human energy balance concept and bioclimatic design for health and well-being in urban areas.

  3. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design

    NASA Astrophysics Data System (ADS)

    Vanos, Jennifer K.; Warland, Jon S.; Gillespie, Terry J.; Kenny, Natasha A.

    2010-07-01

    This review comprehensively examines scientific literature pertaining to human physiology during exercise, including mechanisms of heat formation and dissipation, heat stress on the body, the importance of skin temperature monitoring, the effects of clothing, and microclimatic measurements. This provides a critical foundation for microclimatologists and biometeorologists in the understanding of experiments involving human physiology. The importance of the psychological aspects of how an individual perceives an outdoor environment are also reviewed, emphasizing many factors that can indirectly affect thermal comfort (TC). Past and current efforts to develop accurate human comfort models are described, as well as how these models can be used to develop resilient and comfortable outdoor spaces for physical activity. Lack of suitable spaces plays a large role in the deterioration of human health due to physical inactivity, leading to higher rates of illness, heart disease, obesity and heat-related casualties. This trend will continue if urban designers do not make use of current knowledge of bioclimatic urban design, which must be synthesized with physiology, psychology and microclimatology. Increased research is required for furthering our knowledge on the outdoor human energy balance concept and bioclimatic design for health and well-being in urban areas.

  4. Kinetic sensitivity of a receptor-binding radiopharmaceutical: Technetium-99m galactosyl-neoglycoalbumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vera, D.R.; Woodle, E.S.; Stadalnik, R.C.

    1989-09-01

    Kinetic sensitivity is the ability of a physiochemical parameter to alter the time-activity curve of a radiotracer. The kinetic sensitivity of liver and blood time-activity data resulting from a single bolus injection of ({sup 99m}Tc)galactosyl-neoglycoalbumin (( Tc)NGA) into healthy pigs was examined. Three parameters, hepatic plasma flow scaled as flow per plasma volume, ligand-receptor affinity, and total receptor concentration, were tested using (Tc)NGA injections of various molar doses and affinities. Simultaneous measurements of plasma volume (iodine-125 human serum albumin dilution), and hepatic plasma flow (indocyanine green extraction) were performed during 12 (Tc)NGA studies. Paired data sets demonstrated differences (P(chi v2)more » less than 0.01) in liver and blood time-activity curves in response to changes in each of the tested parameters. We conclude that the (Tc)NGA radiopharmacokinetic system is therefore sensitive to hepatic plasma flow, ligand-receptor affinity, and receptor concentration. In vivo demonstration of kinetic sensitivity permits delineation of the physiologic parameters that determine the biodistribution of a radiopharmaceutical. This delineation is a prerequisite to a valid analytic assessment of receptor biochemistry via kinetic modeling.« less

  5. Factor analytic reduction of the carotid-cardiac baroreflex parameters

    NASA Technical Reports Server (NTRS)

    Ludwig, David A.

    1989-01-01

    An accepted method for measuring the responsiveness of the carotid-cardiac baroreflex to arterial pressure changes is to artificially stimulate the baroreceptors in the neck. This is accomplished by using a pressurized neck cuff which constricts and distends the carotid artery and subsequently stimulates the baroreceptors. Nine physiological responses to this type of stimulation are quantified and used as indicators of the baroreflex. Thirty male humans between the ages 27 and 46 underwent the carotid-cardiac baroreflex test. The data for the nine response parameters were analyzed by principle component factor analysis. The results of this analysis indicated that 93 percent of the total variance across all nine parameters could be explained in four dimensions. Examination of the factor loadings following an orthogonal rotation of the principle components indicated four well defined dimensions. The first two dimensions reflected location points for R-R interval and carotid distending pressure respectively. The third dimension was composed of measures reflecting the gain of the reflex. The fourth dimension was the ratio of the resting R-R interval to R-R interval during simulated hypertension. The data suggests that the analysis of all nine baroreflex parameters is redundant.

  6. Physiology of man and animals in the Tenth Five-Year Plan: Proceedings of the Thirteenth Congress of the I. P. Pavlov All-Union Physiological Society

    NASA Technical Reports Server (NTRS)

    Lange, K. A.

    1980-01-01

    Research in the field of animal and human physiology is reviewed. The following topics on problems of physiological science and related fields of knowledge are discussed: neurophysiology and higher nervous activity, physiology of sensory systems, physiology of visceral systems, evolutionary and ecological physiology, physiological cybernetics, computer application in physiology, information support of physiological research, history and theory of development of physiology. Also discussed were: artificial intelligence, physiological problems of reflex therapy, correlation of structure and function of the brain, adaptation and activity, microcirculation, and physiological studies in nerve and mental diseases.

  7. Predicting bifurcation angle effect on blood flow in the microvasculature.

    PubMed

    Yang, Jiho; Pak, Y Eugene; Lee, Tae-Rin

    2016-11-01

    Since blood viscosity is a basic parameter for understanding hemodynamics in human physiology, great amount of research has been done in order to accurately predict this highly non-Newtonian flow property. However, previous works lacked in consideration of hemodynamic changes induced by heterogeneous vessel networks. In this paper, the effect of bifurcation on hemodynamics in a microvasculature is quantitatively predicted. The flow resistance in a single bifurcation microvessel was calculated by combining a new simple mathematical model with 3-dimensional flow simulation for varying bifurcation angles under physiological flow conditions. Interestingly, the results indicate that flow resistance induced by vessel bifurcation holds a constant value of approximately 0.44 over the whole single bifurcation model below diameter of 60μm regardless of geometric parameters including bifurcation angle. Flow solutions computed from this new model showed substantial decrement in flow velocity relative to other mathematical models, which do not include vessel bifurcation effects, while pressure remained the same. Furthermore, when applying the bifurcation angle effect to the entire microvascular network, the simulation results gave better agreements with recent in vivo experimental measurements. This finding suggests a new paradigm in microvascular blood flow properties, that vessel bifurcation itself, regardless of its angle, holds considerable influence on blood viscosity, and this phenomenon will help to develop new predictive tools in microvascular research. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. [MEDICAGO SATIVA L: IMPROVEMENT AND NEW APPROACHES OF ITS NUTRITIONAL AND FUNCTIONAL VALUE BY BACTERIAL CO-INOCULATION].

    PubMed

    Martínez, Rosario; Nebot, Elena; Porres, Jesús María; Kapravelou, Garyfallia; Del Moral, Ana; Talbi, Chouhra; Bedmar, Eulogio Jose; López-Jurado, María

    2015-12-01

    to study the effect of co-inoculation with Ensifer meliloti and Halomonas maura of the leguminous Medicago sativa L., on growth, nutritional and functional value, grown under salinity conditions. plants of M. sativa were grown in a solution with a mixture of salts (CaSO4, MgCl, NaCl and NaHCO 3) and were co-inoculated with its specific rhizobium and the halophilic moderated bacterium H. maura. Different physiologic parameters were determined, as well as, nitrogen and minerals content. Furthermore, an assay of in vitro digestibility was carried out. salinity had a negative effect on the plants; however, co-inoculation increased yield, nitrogen content, total minerals, Ca and Mg. Moreover, physiologic parameters as water potential and leghemoglobin content in fresh nodules were higher compared to those of plants inoculated only with E. meliloti. Both, salinity and bacterial treatment with E. meliloti and H. maura increased the antioxidant capacity of the legume, in dialyzates and retentates collected after an in vitro digestibility assay. co-inoculation of plants with E. meliloti and H. maura could improve the alfalfa yield under specific salinity conditions, increasing the nutritional and functional value of the plants. M. sativa could be considered in the formulations of nutritional supplements for the human diet. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  9. High Spatial Resolution Multi-Organ Finite Element Modeling of Ventricular-Arterial Coupling

    PubMed Central

    Shavik, Sheikh Mohammad; Jiang, Zhenxiang; Baek, Seungik; Lee, Lik Chuan

    2018-01-01

    While it has long been recognized that bi-directional interaction between the heart and the vasculature plays a critical role in the proper functioning of the cardiovascular system, a comprehensive study of this interaction has largely been hampered by a lack of modeling framework capable of simultaneously accommodating high-resolution models of the heart and vasculature. Here, we address this issue and present a computational modeling framework that couples finite element (FE) models of the left ventricle (LV) and aorta to elucidate ventricular—arterial coupling in the systemic circulation. We show in a baseline simulation that the framework predictions of (1) LV pressure—volume loop, (2) aorta pressure—diameter relationship, (3) pressure—waveforms of the aorta, LV, and left atrium (LA) over the cardiac cycle are consistent with the physiological measurements found in healthy human. To develop insights of ventricular-arterial interactions, the framework was then used to simulate how alterations in the geometrical or, material parameter(s) of the aorta affect the LV and vice versa. We show that changing the geometry and microstructure of the aorta model in the framework led to changes in the functional behaviors of both LV and aorta that are consistent with experimental observations. On the other hand, changing contractility and passive stiffness of the LV model in the framework also produced changes in both the LV and aorta functional behaviors that are consistent with physiology principles. PMID:29551977

  10. Effect of sweet orange aroma on experimental anxiety in humans.

    PubMed

    Goes, Tiago Costa; Antunes, Fabrício Dias; Alves, Péricles Barreto; Teixeira-Silva, Flavia

    2012-08-01

    The objective of this study was to evaluate the potential anxiolytic effect of sweet orange (Citrus sinensis) aroma in healthy volunteers submitted to an anxiogenic situation. Forty (40) male volunteers were allocated to five different groups for the inhalation of sweet orange essential oil (test aroma: 2.5, 5, or 10 drops), tea tree essential oil (control aroma: 2.5 drops), or water (nonaromatic control: 2.5 drops). Immediately after inhalation, each volunteer was submitted to a model of anxiety, the video-monitored version of the Stroop Color-Word Test (SCWT). Psychologic parameters (state-anxiety, subjective tension, tranquilization, and sedation) and physiologic parameters (heart rate and gastrocnemius electromyogram) were evaluated before the inhalation period and before, during, and after the SCWT. Unlike the control groups, the individuals exposed to the test aroma (2.5 and 10 drops) presented a lack of significant alterations (p>0.05) in state-anxiety, subjective tension and tranquillity levels throughout the anxiogenic situation, revealing an anxiolytic activity of sweet orange essential oil. Physiologic alterations along the test were not prevented in any treatment group, as has previously been observed for diazepam. Although more studies are needed to find out the clinical relevance of aromatherapy for anxiety disorders, the present results indicate an acute anxiolytic activity of sweet orange aroma, giving some scientific support to its use as a tranquilizer by aromatherapists.

  11. Impact of human emotions on physiological characteristics

    NASA Astrophysics Data System (ADS)

    Partila, P.; Voznak, M.; Peterek, T.; Penhaker, M.; Novak, V.; Tovarek, J.; Mehic, Miralem; Vojtech, L.

    2014-05-01

    Emotional states of humans and their impact on physiological and neurological characteristics are discussed in this paper. This problem is the goal of many teams who have dealt with this topic. Nowadays, it is necessary to increase the accuracy of methods for obtaining information about correlations between emotional state and physiological changes. To be able to record these changes, we focused on two majority emotional states. Studied subjects were psychologically stimulated to neutral - calm and then to the stress state. Electrocardiography, Electroencephalography and blood pressure represented neurological and physiological samples that were collected during patient's stimulated conditions. Speech activity was recording during the patient was reading selected text. Feature extraction was calculated by speech processing operations. Classifier based on Gaussian Mixture Model was trained and tested using Mel-Frequency Cepstral Coefficients extracted from the patient's speech. All measurements were performed in a chamber with electromagnetic compatibility. The article discusses a method for determining the influence of stress emotional state on the human and his physiological and neurological changes.

  12. Are We Listening to Music or Noise? Use of the Lyapunov Exponent for Comprehensive Assessment of Heart Rate Complexity During Hemorrhage in Sedated Conscious Miniature Swine

    DTIC Science & Technology

    2009-09-01

    physiologic mechanisms underlying experimental observations: a practical example☆ Sven Zenker, Andreas Hoeft Department of Anaesthesiology and...to describe experi - mental data (goodness of fit) and its complexity (number of parameters). Their use in macroscopic physiologic investigations...BSP, and BRS could either be identical or vary across interventions, resulting in models with 4 to 12 parameters. After digitizing the experimental data

  13. An integrated approach to develop, validate and operate thermo-physiological human simulator for the development of protective clothing.

    PubMed

    Psikuta, Agnes; Koelblen, Barbara; Mert, Emel; Fontana, Piero; Annaheim, Simon

    2017-12-07

    Following the growing interest in the further development of manikins to simulate human thermal behaviour more adequately, thermo-physiological human simulators have been developed by coupling a thermal sweating manikin with a thermo-physiology model. Despite their availability and obvious advantages, the number of studies involving these devices is only marginal, which plausibly results from the high complexity of the development and evaluation process and need of multi-disciplinary expertise. The aim of this paper is to present an integrated approach to develop, validate and operate such devices including technical challenges and limitations of thermo-physiological human simulators, their application and measurement protocol, strategy for setting test scenarios, and the comparison to standard methods and human studies including details which have not been published so far. A physical manikin controlled by a human thermoregulation model overcame the limitations of mathematical clothing models and provided a complementary method to investigate thermal interactions between the human body, protective clothing, and its environment. The opportunities of these devices include not only realistic assessment of protective clothing assemblies and equipment but also potential application in many research fields ranging from biometeorology, automotive industry, environmental engineering, and urban climate to clinical and safety applications.

  14. An integrated approach to develop, validate and operate thermo-physiological human simulator for the development of protective clothing

    PubMed Central

    PSIKUTA, Agnes; KOELBLEN, Barbara; MERT, Emel; FONTANA, Piero; ANNAHEIM, Simon

    2017-01-01

    Following the growing interest in the further development of manikins to simulate human thermal behaviour more adequately, thermo-physiological human simulators have been developed by coupling a thermal sweating manikin with a thermo-physiology model. Despite their availability and obvious advantages, the number of studies involving these devices is only marginal, which plausibly results from the high complexity of the development and evaluation process and need of multi-disciplinary expertise. The aim of this paper is to present an integrated approach to develop, validate and operate such devices including technical challenges and limitations of thermo-physiological human simulators, their application and measurement protocol, strategy for setting test scenarios, and the comparison to standard methods and human studies including details which have not been published so far. A physical manikin controlled by a human thermoregulation model overcame the limitations of mathematical clothing models and provided a complementary method to investigate thermal interactions between the human body, protective clothing, and its environment. The opportunities of these devices include not only realistic assessment of protective clothing assemblies and equipment but also potential application in many research fields ranging from biometeorology, automotive industry, environmental engineering, and urban climate to clinical and safety applications. PMID:28966294

  15. Effect of composted sewage sludge on morpho-physiological growth parameters, grain yield and selected functional compounds of barley.

    PubMed

    Pasqualone, Antonella; Summo, Carmine; Centomani, Isabella; Lacolla, Giovanni; Caranfa, Gianraffaele; Cucci, Giovanna

    2017-03-01

    Several studies have evaluated the effects of composted sewage sludge on barley and found a positive influence on crop productivity. No studies have investigated the effects of composted sewage sludge on functional compounds of the caryopsis, such as phenolics and β-glucans. The former play a role in plant defence mechanisms and both could be influenced by variations of kernel size related to fertilization intensity. The present study aimed to evaluate the effect of different doses (3-12 mg ha -1 ) of composted sewage sludge applied alone or in combination with mineral fertilization on morpho-physiological and yield qualitative parameters, especially phenolics and β-glucans contents of grains, in barley. Increasing fertilization rates, irrespective of fertilizer type, improved morpho-physiological and yield parameters, whereas the phenolic compounds and the related antioxidant activity significantly decreased (P < 0.05). The β-glucans and the main color indices did not show significant differences. The combined application of 6 mg ha -1 sewage sludge and nitrogen was not significantly different from mineral fertilization. Morpho-physiological and qualitative parameters, as well as bioactive compounds, were all significantly correlated with nutrient levels, with higher r values for nitrogen. Composted sewage sludge had a similar effect compared to mineral fertilization. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Absolute electrical impedance tomography (aEIT) guided ventilation therapy in critical care patients: simulations and future trends.

    PubMed

    Denaï, Mouloud A; Mahfouf, Mahdi; Mohamad-Samuri, Suzani; Panoutsos, George; Brown, Brian H; Mills, Gary H

    2010-05-01

    Thoracic electrical impedance tomography (EIT) is a noninvasive, radiation-free monitoring technique whose aim is to reconstruct a cross-sectional image of the internal spatial distribution of conductivity from electrical measurements made by injecting small alternating currents via an electrode array placed on the surface of the thorax. The purpose of this paper is to discuss the fundamentals of EIT and demonstrate the principles of mechanical ventilation, lung recruitment, and EIT imaging on a comprehensive physiological model, which combines a model of respiratory mechanics, a model of the human lung absolute resistivity as a function of air content, and a 2-D finite-element mesh of the thorax to simulate EIT image reconstruction during mechanical ventilation. The overall model gives a good understanding of respiratory physiology and EIT monitoring techniques in mechanically ventilated patients. The model proposed here was able to reproduce consistent images of ventilation distribution in simulated acutely injured and collapsed lung conditions. A new advisory system architecture integrating a previously developed data-driven physiological model for continuous and noninvasive predictions of blood gas parameters with the regional lung function data/information generated from absolute EIT (aEIT) is proposed for monitoring and ventilator therapy management of critical care patients.

  17. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.

    PubMed

    Kim, Seong-Gi; Ogawa, Seiji

    2012-07-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.

  18. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals

    PubMed Central

    Kim, Seong-Gi; Ogawa, Seiji

    2012-01-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 utilization (CMRO2), (5) dynamic responses of BOLD, CBF, CMRO2, and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means. PMID:22395207

  19. Detection of the human endogenous retrovirus ERV3-encoded Env-protein in human tissues using antibody-based proteomics.

    PubMed

    Fei, Chen; Atterby, Christina; Edqvist, Per-Henrik; Pontén, Fredrik; Zhang, Wei Wei; Larsson, Erik; Ryan, Frank P

    2014-01-01

    There is growing evidence to suggest that human endogenous retroviruses (HERVs) have contributed to human evolution, being expressed in development, normal physiology and disease. A key difficulty in the scientific evaluation of this potential viral contribution is the accurate demonstration of virally expressed protein in specific human cells and tissues. In this study, we have adopted the endogenous retrovirus, ERV3, as our test model in developing a reliable high-capacity methodology for the expression of such endogenous retrovirus-coded protein. Two affinity-purified polyclonal antibodies to ERV3 Env-encoded protein were generated to detect the corresponding protein expression pattern in specific human cells, tissues and organs. Sampling included normal tissues from 144 individuals ranging from childhood to old age. This included more than forty different tissues and organs and some 216 different cancer tissues representing the twenty commonest forms of human cancer. The Rudbeck Laboratory, Uppsala University and Uppsala University Hospital, Uppsala, Sweden. The potential expression at likely physiological level of the ERV3Env encoded protein in a wide range of human cells, tissues and organs. We found that ERV3 encoded Env protein is expressed at substantive levels in placenta, testis, adrenal gland, corpus luteum, Fallopian tubes, sebaceous glands, astrocytes, bronchial epithelium and the ducts of the salivary glands. Substantive expression was also seen in a variety of epithelial cells as well as cells known to undergo fusion in inflammation and in normal physiology, including fused macrophages, myocardium and striated muscle. This contrasted strongly with the low levels expressed in other tissues types. These findings suggest that this virus plays a significant role in human physiology and may also play a possible role in disease. This technique can now be extended to the study of other HERV genomes within the human chromosomes that may have contributed to human evolution, physiology and disease.

  20. On the role of numerical simulations in studies of reduced gravity-induced physiological effects in humans. Results from NELME.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni

    Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numercial Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular archi-tecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electrical-like model of this control system, using inexpensive development frameworks, and has been tested and validated with the available experimental data. The objective of this work is to analyse and simulate long-term effects and gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairement which may put in jeopardy a long-term mission is also evaluated. . Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying continuosly from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobic ex-ercise and thermal stress simulating an extra-vehicular activity. Results show that significant differences appear between men and women physiological response after long-term exposure (more than three months) to microgravity. Risk evaluation for every gender, and specific risk thresholds are provided. Different scenarios like a long-term mission to Moon or Mars are evaluated, including countermeasures such as aerobic exercise. Initial results are compatible with the existing data, and provide useful insights regarding different patterns of microgravity exposure. We conclude that computer-based models such us NELME are a promising line of work to predict health risks in long-term missions.

  1. Human urine and plasma concentrations of bisphenol A extrapolated from pharmacokinetics established in in vivo experiments with chimeric mice with humanized liver and semi-physiological pharmacokinetic modeling.

    PubMed

    Miyaguchi, Takamori; Suemizu, Hiroshi; Shimizu, Makiko; Shida, Satomi; Nishiyama, Sayako; Takano, Ryohji; Murayama, Norie; Yamazaki, Hiroshi

    2015-06-01

    The aim of this study was to extrapolate to humans the pharmacokinetics of estrogen analog bisphenol A determined in chimeric mice transplanted with human hepatocytes. Higher plasma concentrations and urinary excretions of bisphenol A glucuronide (a primary metabolite of bisphenol A) were observed in chimeric mice than in control mice after oral administrations, presumably because of enterohepatic circulation of bisphenol A glucuronide in control mice. Bisphenol A glucuronidation was faster in mouse liver microsomes than in human liver microsomes. These findings suggest a predominantly urinary excretion route of bisphenol A glucuronide in chimeric mice with humanized liver. Reported human plasma and urine data for bisphenol A glucuronide after single oral administration of 0.1mg/kg bisphenol A were reasonably estimated using the current semi-physiological pharmacokinetic model extrapolated from humanized mice data using algometric scaling. The reported geometric mean urinary bisphenol A concentration in the U.S. population of 2.64μg/L underwent reverse dosimetry modeling with the current human semi-physiological pharmacokinetic model. This yielded an estimated exposure of 0.024μg/kg/day, which was less than the daily tolerable intake of bisphenol A (50μg/kg/day), implying little risk to humans. Semi-physiological pharmacokinetic modeling will likely prove useful for determining the species-dependent toxicological risk of bisphenol A. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology.

    PubMed

    Seebacher, Frank; Franklin, Craig E

    2012-06-19

    The emerging field of Conservation Physiology links environmental change and ecological success by the application of physiological theory, approaches and tools to elucidate and address conservation problems. Human activity has changed the natural environment to a point where the viability of many ecosystems is now under threat. There are already many descriptions of how changes in biological patterns are correlated with environmental changes. The next important step is to determine the causative relationship between environmental variability and biological systems. Physiology provides the mechanistic link between environmental change and ecological patterns. Physiological research, therefore, should be integrated into conservation to predict the biological consequences of human activity, and to identify those species or populations that are most vulnerable.

  3. Physiological assessment of tongue function in dysarthria following traumatic brain injury.

    PubMed

    Goozée, J V; Murdoch, B E; Theodoros, D G

    2001-01-01

    A tongue pressure transducer system was used to assess tongue strength, endurance, fine pressure control and rate of repetitive movement in a group of 20 individuals, aged 17 to 60 years, with dysarthria following severe traumatic brain injury (TBI). Comparison of the TBI group's results against data obtained from a group of 20 age and sex matched control subjects revealed reductions in tongue endurance and rate of repetitive movement. Tongue strength and fine pressure control, however, were found not to differ significantly from the control group. Pearson's product-moment correlations indicated there to be only weak correlations between the physiological nonspeech tongue parameters and the deviant perceptual articulatory features exhibited by the TBI group. Further analysis of the results on an individual subject basis revealed no clear relationships between the physiological and perceptual parameters suggesting that the TBI subjects may have been compensating in different ways for the physiological impairments.

  4. Effects of gender and game type on autonomic nervous system physiological parameters in long-hour online game players.

    PubMed

    Lin, Tung-Cheng

    2013-11-01

    Online game playing may induce physiological effects. However, the physical mechanisms that cause these effects remain unclear. The purpose of this study was to examine the physiological effects of long-hour online gaming from an autonomic nervous system (ANS) perspective. Heart rate variability (HRV), a valid and noninvasive electrocardiographic method widely used to investigate ANS balance, was used to measure physiological effect parameters. This study used a five-time, repeated measures, mixed factorial design. Results found that playing violent games causes significantly higher sympathetic activity and diastolic blood pressure than playing nonviolent games. Long-hour online game playing resulted in the gradual dominance of the parasympathetic nervous system due to physical exhaustion. Gaming workload was found to modulate the gender effects, with males registering significantly higher sympathetic activity and females significantly higher parasympathetic activity in the higher gaming workload group.

  5. Impact of combined exposure of chemical, fertilizer, bio-fertilizer and compost on growth, physiology and productivity of Brassica campestries in old alluvial soil.

    PubMed

    Datta, J K; Banerjee, A; Sikdar, M Saha; Gupta, S; Mondal, N K

    2009-09-01

    Field experiment was carried out during November 2006 to February 2007 under old alluvial soil to evaluate the impact of combined dose of chemical fertilizer, biofertilizer in combination with compost for the yellow sarson (Brassica campestries cv. B9) in a randomized block design replicated thrice. Various morpho-physiological parameters viz., plant population, length of shoot and root, leaf area index (LAI), crop growth rate (CGR), net assimilation rate (NAR), yield attributes viz., number of siliquae per plant, number of seeds/siliquae, 1000 seed weight (test weight), seed yield, stover yield and physiological and biochemical parameters viz., pigment content, sugar, amino acid, protein, ascorbic acid content in physiologically active leaf were performed. The treatment T1 i.e., 40% less N fertilizer 25% less P fertilizer K fertilizer constant + 12 kg ha(-1) biofertilizer (Azophos) and organic manure (compost) @ 5Mt ha(-1), showed the maximum chlorophyll accumulation (10. 231 mg g(-1) freshweight), highest seed/siliquae (25.143), test weight of seeds (4. 861g) and highest seed yield (10.661 tha(-1)). A comparison between all the morphological, anatomical, physiological and biochemical parameters due to application of chemical fertilizer; bio-fertilizer and compost alone and in combination and their impact on soil microorganism, flora and fauna will throw a sound environmental information.

  6. Binding analysis of carbon nanoparticles to human immunoglobulin G: Elucidation of the cytotoxicity of CNPs and perturbation of immunoglobulin conformations

    NASA Astrophysics Data System (ADS)

    Zhang, Shengrui; Yang, Haitao; Ji, Xiaohui; Wang, Qin

    2016-02-01

    The chemical compositions, sizes and fluorescent properties of synthesized carbon nanoparticles (CNPs) were characterized. Escherichia coli (E. coli) cells were used as a model to study the cytotoxicity of CNPs, and the results of the cellular uptake of CNPs yielded excellent results: the CNPs demonstrated good biocompatibility and were non-toxic to the growth of the E. coli cells. Moreover, to assess the potential toxicity of CNPs to human health, the binding behavior of CNPs with human immunoglobulin G (HIgG) was examined by fluorescence quenching spectroscopy, synchronous fluorescence spectroscopy and circular dichroism spectroscopy under physiological conditions. The fluorescence quenching constants and parameters for the interaction at different temperatures had been calculated according to Scatchard. The thermodynamic parameters, such as enthalpy change (ΔH), entropy change (ΔS) and free energy change (ΔG), were calculated, and the results indicated strong static quenching and showed that van der Waals forces, hydrogen bonds and hydrophobic interactions were the predominant intermolecular forces stabilizing the CNP-HIgG complex. Synchronous fluorescence and circular dichroism spectra provided information regarding the conformational alteration of HIgG in the presence of CNPs. These findings help to characterize the interactions between CNPs and HIgG, which may clarify the potential risks and undesirable health effects of CNPs, as well as the related cellular trafficking and systemic translocation.

  7. Three-dimensional biomechanical properties of human vocal folds: parameter optimization of a numerical model to match in vitro dynamics.

    PubMed

    Yang, Anxiong; Berry, David A; Kaltenbacher, Manfred; Döllinger, Michael

    2012-02-01

    The human voice signal originates from the vibrations of the two vocal folds within the larynx. The interactions of several intrinsic laryngeal muscles adduct and shape the vocal folds to facilitate vibration in response to airflow. Three-dimensional vocal fold dynamics are extracted from in vitro hemilarynx experiments and fitted by a numerical three-dimensional-multi-mass-model (3DM) using an optimization procedure. In this work, the 3DM dynamics are optimized over 24 experimental data sets to estimate biomechanical vocal fold properties during phonation. Accuracy of the optimization is verified by low normalized error (0.13 ± 0.02), high correlation (83% ± 2%), and reproducible subglottal pressure values. The optimized, 3DM parameters yielded biomechanical variations in tissue properties along the vocal fold surface, including variations in both the local mass and stiffness of vocal folds. That is, both mass and stiffness increased along the superior-to-inferior direction. These variations were statistically analyzed under different experimental conditions (e.g., an increase in tension as a function of vocal fold elongation and an increase in stiffness and a decrease in mass as a function of glottal airflow). The study showed that physiologically relevant vocal fold tissue properties, which cannot be directly measured during in vivo human phonation, can be captured using this 3D-modeling technique. © 2012 Acoustical Society of America

  8. Three-dimensional biomechanical properties of human vocal folds: Parameter optimization of a numerical model to match in vitro dynamics

    PubMed Central

    Yang, Anxiong; Berry, David A.; Kaltenbacher, Manfred; Döllinger, Michael

    2012-01-01

    The human voice signal originates from the vibrations of the two vocal folds within the larynx. The interactions of several intrinsic laryngeal muscles adduct and shape the vocal folds to facilitate vibration in response to airflow. Three-dimensional vocal fold dynamics are extracted from in vitro hemilarynx experiments and fitted by a numerical three-dimensional-multi-mass-model (3DM) using an optimization procedure. In this work, the 3DM dynamics are optimized over 24 experimental data sets to estimate biomechanical vocal fold properties during phonation. Accuracy of the optimization is verified by low normalized error (0.13 ± 0.02), high correlation (83% ± 2%), and reproducible subglottal pressure values. The optimized, 3DM parameters yielded biomechanical variations in tissue properties along the vocal fold surface, including variations in both the local mass and stiffness of vocal folds. That is, both mass and stiffness increased along the superior-to-inferior direction. These variations were statistically analyzed under different experimental conditions (e.g., an increase in tension as a function of vocal fold elongation and an increase in stiffness and a decrease in mass as a function of glottal airflow). The study showed that physiologically relevant vocal fold tissue properties, which cannot be directly measured during in vivo human phonation, can be captured using this 3D-modeling technique. PMID:22352511

  9. Mapping MRI/MRS Parameters with Genetic Over-expression Profiles In Human Prostate Cancer: Demonstrating the Potential

    PubMed Central

    Lenkinski, Robert E.; Bloch, B. Nicholas; Liu, Fangbing; Frangioni, John V.; Perner, Sven; Rubin, Mark A.; Genega, Elizabeth; Rofsky, Neil M.; Gaston, Sandra M.

    2009-01-01

    Magnetic resonance imaging (MRI) and MR spectroscopy can probe a variety of physiological (e.g. blood vessel permeability) and metabolic characteristics of prostate cancer. However, little is known about the changes in gene expression that underlie the spectral and imaging features observed in prostate cancer. Tumor induced changes in vascular permeability and angiogenesis are thought to contribute to patterns of dynamic contrast enhanced (DCE) MRI images of prostate cancer even though the genetic basis of tumor vasculogenesis is complex and the specific mechanisms underlying these DCEMRI features have not yet been determined. In order to identify the changes in gene expression that correspond to MRS and DCEMRI patterns in human prostate cancers, we have utilized tissue print micropeel techniques to generate “whole mount” molecular maps of radical prostatectomy specimens that correspond to pre-surgical MRI/MRS studies. These molecular maps include RNA expression profiles from both Affymetrix GeneChip microarrays and quantitative reverse transcriptase PCR (qrt-PCR) analysis, as well as immunohistochemical studies. Using these methods on patients with prostate cancer, we found robust over-expression of choline kinase a in the majority of primary tumors. We also observed overexpression of neuropeptide Y (NPY), a newly identified angiogenic factor, in a subset of DCEMRI positive prostate cancers. These studies set the stage for establishing MRI/MRS parameters as validated biomarkers for human prostate cancer. PMID:18752015

  10. Environmental and biological context modulates the physiological stress response of bats to human disturbance.

    PubMed

    Phelps, Kendra L; Kingston, Tigga

    2018-06-01

    Environmental and biological context play significant roles in modulating physiological stress responses of individuals in wildlife populations yet are often overlooked when evaluating consequences of human disturbance on individual health and fitness. Furthermore, most studies gauge individual stress responses based on a single physiological biomarker, typically circulating glucocorticoid concentrations, which limits interpretation of the complex, multifaceted responses of individuals to stressors. We selected four physiological biomarkers to capture short-term and prolonged stress responses in a widespread cave-roosting bat, Hipposideros diadema, across multiple gradients of human disturbance in and around caves in the Philippines. We used conditional inference trees and random forest analysis to determine the role of environmental quality (cave complexity, available roosting area), assemblage composition (intra- and interspecific associations and species richness), and intrinsic characteristics of individuals (sex and reproductive status) in modulating responses to disturbance. Direct cave disturbance (hunting pressure and human visitation) was the primary driver of neutrophil-to-lymphocyte ratios, with lower ratios associated with increased disturbance, while context-specific factors were more important in explaining total leukocyte count, body condition, and ectoparasite load. Moreover, conditional inference trees revealed complex interactions among human disturbance and modulating factors. Cave complexity often ameliorated individual responses to human disturbance, whereas conspecific abundance often compounded responses. Our study demonstrates the importance of an integrated approach that incorporates environmental and biological context when identifying drivers of physiological responses, and that assesses responses to gradients of direct and indirect disturbance using multiple complementary biomarkers.

  11. Quantifying Diastolic Function: From E-Waves as Triangles to Physiologic Contours via the 'Geometric Method'.

    PubMed

    Golman, Mikhail; Padovano, William; Shmuylovich, Leonid; Kovács, Sándor J

    2018-03-01

    Conventional echocardiographic diastolic function (DF) assessment approximates transmitral flow velocity contours (Doppler E-waves) as triangles, with peak (E peak ), acceleration time (AT), and deceleration time (DT) as indexes. These metrics have limited value because they are unable to characterize the underlying physiology. The parametrized diastolic filling (PDF) formalism provides a physiologic, kinematic mechanism based characterization of DF by extracting chamber stiffness (k), relaxation (c), and load (x o ) from E-wave contours. We derive the mathematical relationship between the PDF parameters and E peak , AT, DT and thereby introduce the geometric method (GM) that computes the PDF parameters using E peak , AT, and DT as input. Numerical experiments validated GM by analysis of 208 E-waves from 31 datasets spanning the full range of clinical diastolic function. GM yielded indistinguishable average parameter values per subject vs. the gold-standard PDF method (k: R 2  = 0.94, c: R 2  = 0.95, x o : R 2  = 0.95, p < 0.01 all parameters). Additionally, inter-rater reliability for GM-determined parameters was excellent (k: ICC = 0.956 c: ICC = 0.944, x o : ICC = 0.993). Results indicate that E-wave symmetry (AT/DT) may comprise a new index of DF. By employing indexes (E peak , AT, DT) that are already in standard clinical use the GM capitalizes on the power of the PDF method to quantify DF in terms of physiologic chamber properties.

  12. A stochastic differential equation model of diurnal cortisol patterns

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Meehan, P. M.; Dempster, A. P.

    2001-01-01

    Circadian modulation of episodic bursts is recognized as the normal physiological pattern of diurnal variation in plasma cortisol levels. The primary physiological factors underlying these diurnal patterns are the ultradian timing of secretory events, circadian modulation of the amplitude of secretory events, infusion of the hormone from the adrenal gland into the plasma, and clearance of the hormone from the plasma by the liver. Each measured plasma cortisol level has an error arising from the cortisol immunoassay. We demonstrate that all of these three physiological principles can be succinctly summarized in a single stochastic differential equation plus measurement error model and show that physiologically consistent ranges of the model parameters can be determined from published reports. We summarize the model parameters in terms of the multivariate Gaussian probability density and establish the plausibility of the model with a series of simulation studies. Our framework makes possible a sensitivity analysis in which all model parameters are allowed to vary simultaneously. The model offers an approach for simultaneously representing cortisol's ultradian, circadian, and kinetic properties. Our modeling paradigm provides a framework for simulation studies and data analysis that should be readily adaptable to the analysis of other endocrine hormone systems.

  13. Symptom prevalence and physiologic biomarkers among adolescents using a mobile phone intervention following hematopoietic stem cell transplantation.

    PubMed

    Rodgers, Cheryl C; Krance, Robert; Street, Richard L; Hockenberry, Marilyn J

    2014-05-01

    To examine symptom reports and physiologic parameters in adolescents using the Eating After Transplant (EAT!) intervention during recovery after hematopoietic stem cell transplantation (HSCT). Repeated measures design. HSCT service at a pediatric teaching institution in the southern United States. 16 adolescents recovering from a first-time allogeneic HSCT. Use of EAT! was monitored electronically, symptom reports were obtained from a questionnaire, and physiologic parameters were obtained from the medical record at HSCT hospital discharge and 20, 40, and 60 days postdischarge. EAT! use, symptom prevalence, symptom-related distress, and physiologic parameters including weight, body mass index (BMI), pre-albumin, and albumin. Symptom prevalence was highest at hospital discharge and steadily declined; however, mean symptom distress scores remained stable. Mean weight and BMI significantly declined during the first 60 days postdischarge; pre-albumin and albumin markers were unchanged. No correlation was noted among use of EAT! and any research variables. The most frequent symptoms were not always the most distressing symptoms. Weight and BMI significantly declined during HSCT recovery. Nurses should assess symptom frequency and distress to fully understand patients' symptom experiences. Nurses should monitor weight and BMI throughout HSCT recovery.

  14. Multiphysics and Thermal Response Models to Improve Accuracy of Local Temperature Estimation in Rat Cortex under Microwave Exposure

    PubMed Central

    Kodera, Sachiko; Gomez-Tames, Jose; Hirata, Akimasa; Masuda, Hiroshi; Arima, Takuji; Watanabe, Soichi

    2017-01-01

    The rapid development of wireless technology has led to widespread concerns regarding adverse human health effects caused by exposure to electromagnetic fields. Temperature elevation in biological bodies is an important factor that can adversely affect health. A thermophysiological model is desired to quantify microwave (MW) induced temperature elevations. In this study, parameters related to thermophysiological responses for MW exposures were estimated using an electromagnetic-thermodynamics simulation technique. To the authors’ knowledge, this is the first study in which parameters related to regional cerebral blood flow in a rat model were extracted at a high degree of accuracy through experimental measurements for localized MW exposure at frequencies exceeding 6 GHz. The findings indicate that the improved modeling parameters yield computed results that match well with the measured quantities during and after exposure in rats. It is expected that the computational model will be helpful in estimating the temperature elevation in the rat brain at multiple observation points (that are difficult to measure simultaneously) and in explaining the physiological changes in the local cortex region. PMID:28358345

  15. Physiological responses to daily light exposure

    NASA Astrophysics Data System (ADS)

    Yang, Yefeng; Yu, Yonghua; Yang, Bo; Zhou, Hong; Pan, Jinming

    2016-04-01

    Long daylength artificial light exposure associates with disorders, and a potential physiological mechanism has been proposed. However, previous studies have examined no more than three artificial light treatments and limited metabolic parameters, which have been insufficient to demonstrate mechanical responses. Here, comprehensive physiological response curves were established and the physiological mechanism was strengthened. Chicks were illuminated for 12, 14, 16, 18, 20, or 22 h periods each day. A quadratic relationship between abdominal adipose weight (AAW) and light period suggested that long-term or short-term light exposure could decrease the amount of AAW. Quantitative relationships between physiological parameters and daily light period were also established in this study. The relationships between triglycerides (TG), cholesterol (TC), glucose (GLU), phosphorus (P) levels and daily light period could be described by quadratic regression models. TG levels, AAW, and BW positively correlated with each other, suggesting long-term light exposure significantly increased AAW by increasing TG thus resulting in greater BW. A positive correlation between blood triiodothyronine (T3) levels and BW suggested that daily long-term light exposure increased BW by thyroid hormone secretion. Though the molecular pathway remains unknown, these results suggest a comprehensive physiological mechanism through which light exposure affects growth.

  16. Physiological determinants of human acute hypoxia tolerance.

    DOT National Transportation Integrated Search

    2013-11-01

    AbstractIntroduction. We investigated possible physiological determinants of variability in hypoxia tolerance in subjects given a 5-minute normobaric exposure to 25,000 ft equivalent. Physiological tolerance to hypoxia was defined as the magnitude of...

  17. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia

    PubMed Central

    Carreau, Aude; Hafny-Rahbi, Bouchra El; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine

    2011-01-01

    Abstract Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO2), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique ‘tissue normoxia’ or ‘physioxia’ status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO2, i.e. ‘hypoxia’. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO2 values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O2 whereas current in vitro experimentations are usually performed in 19.95% O2, an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. PMID:21251211

  18. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia.

    PubMed

    Carreau, Aude; El Hafny-Rahbi, Bouchra; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine

    2011-06-01

    Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO(2)), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique 'tissue normoxia' or 'physioxia' status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO(2), i.e. 'hypoxia'. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO(2) values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O(2) whereas current in vitro experimentations are usually performed in 19.95% O(2), an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  19. Neuroimmunologic aspects of sleep and sleep loss

    NASA Technical Reports Server (NTRS)

    Rogers, N. L.; Szuba, M. P.; Staab, J. P.; Evans, D. L.; Dinges, D. F.

    2001-01-01

    The complex and intimate interactions between the sleep and immune systems have been the focus of study for several years. Immune factors, particularly the interleukins, regulate sleep and in turn are altered by sleep and sleep deprivation. The sleep-wake cycle likewise regulates normal functioning of the immune system. Although a large number of studies have focused on the relationship between the immune system and sleep, relatively few studies have examined the effects of sleep deprivation on immune parameters. Studies of sleep deprivation's effects are important for several reasons. First, in the 21st century, various societal pressures require humans to work longer and sleep less. Sleep deprivation is becoming an occupational hazard in many industries. Second, to garner a greater understanding of the regulatory effects of sleep on the immune system, one must understand the consequences of sleep deprivation on the immune system. Significant detrimental effects on immune functioning can be seen after a few days of total sleep deprivation or even several days of partial sleep deprivation. Interestingly, not all of the changes in immune physiology that occur as a result of sleep deprivation appear to be negative. Numerous medical disorders involving the immune system are associated with changes in the sleep-wake physiology--either being caused by sleep dysfunction or being exacerbated by sleep disruption. These disorders include infectious diseases, fibromyalgia, cancers, and major depressive disorder. In this article, we will describe the relationships between sleep physiology and the immune system, in states of health and disease. Interspersed will be proposals for future research that may illuminate the clinical relevance of the relationships between sleeping, sleep loss and immune function in humans. Copyright 2001 by W.B. Saunders Company.

  20. Combining ergometer exercise and artificial gravity in a compact-radius centrifuge

    NASA Astrophysics Data System (ADS)

    Diaz, Ana; Trigg, Chris; Young, Laurence R.

    2015-08-01

    Humans experience physiological deconditioning during space missions, primarily attributable to weightlessness. Some of these adverse consequences include bone loss, muscle atrophy, sensory-motor deconditioning, and cardiovascular alteration, which may lead to orthostatic intolerance when astronauts return to Earth. Artificial gravity could provide a comprehensive countermeasure capable of challenging all the physiological systems at once, particularly if combined with exercise, thereby maintaining overall health during extended exposure to weightlessness. A new Compact Radius Centrifuge (CRC) platform was designed and built on the existing Short Radius Centrifuge (SRC) at the Massachusetts Institute of Technology (MIT). The centrifuge has been constrained to a radius of 1.4 m, the upper radial limit for a centrifuge to fit within an International Space Station (ISS) module without extensive structural alterations. In addition, a cycle ergometer has been added for exercise during centrifugation. The CRC now includes sensors of foot forces, cardiovascular parameters, and leg muscle electromyography. An initial human experiment was conducted on 12 subjects to analyze the effects of different artificial gravity levels (0 g, 1 g, and 1.4 g, measured at the feet) and ergometer exercise intensities (25 W warm-up, 50 W moderate and 100 W vigorous) on the musculoskeletal function as well as motion sickness and comfort. Foot forces were measured during the centrifuge runs, and subjective comfort and motion sickness data were gathered after each session. Preliminary results indicate that ergometer exercise on a centrifuge may be effective in improving musculoskeletal function. The combination is well tolerated and motion sickness is minimal. The MIT CRC is a novel platform for future studies of exercise combined with artificial gravity. This combination may be effective as a countermeasure to space physiological deconditioning.

Top